Powered by Deep Web Technologies
Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ultrafast scanning probe microscopy  

DOE Patents [OSTI]

An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

1995-01-01T23:59:59.000Z

2

Ultrafast scanning probe microscopy  

DOE Patents [OSTI]

An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

1995-05-16T23:59:59.000Z

3

Scanning Probe Microscopy Studies of Carbon Nanotubes  

E-Print Network [OSTI]

Scanning Probe Microscopy Studies of Carbon Nanotubes Teri Wang Odom1 , Jason H. Hafner1 relationship between Single-Walled Carbon Nanotube (SWNT) atomic structure and electronic properties, (2, properties and application of carbon nanotube probe microscopy tips to ultrahigh resolution and chemically

Odom, Teri W.

4

Scanning probe microscopy: Sulfate minerals in scales and cements  

SciTech Connect (OSTI)

The principles of scanning probe microscopy (SPM) are illustrated with examples from oilfield mineralogy, particularly emphasizing sulfate minerals involved in scale formation and cement hydration chemistry. The topography of the (010) cleavage surface of gypsum observed by atomic force microscopy shows atomically flat terraces separated by shallow steps often only one unit cell high. SPM allows direct observation of processes on mineral surfaces while they are in contact with solutions. The dissolution etching and crystal growth of gypsum and barite are discussed and rates of step migration estimated. The orientation of steps is related to the crystallographic axes. The action of phosphonate crystal growth inhibitor on gypsum and of a chelating scale solvent on barite are also shown. The multiphase microstructure of an oilwell cement clinker is described in relation to its hydration chemistry in contact with water and its reaction with sulfate ions.

Hall, C. [Schlumberger Cambridge Research (United Kingdom)

1995-11-01T23:59:59.000Z

5

In-situ scanning probe microscopy of electrodeposited nickel.  

SciTech Connect (OSTI)

The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.

Kelly, James J.; Dibble, Dean C.

2004-10-01T23:59:59.000Z

6

Scanning probe microscopy with inherent disturbance suppression using micromechanical systems  

E-Print Network [OSTI]

All scanning probe microscopes (SPMs) are affected by disturbances, or mechanical noise, in their environments which can limit their imaging resolution. This thesis introduces a general approach for suppressing out-of-plane ...

Sparks, Andrew William, 1977-

2005-01-01T23:59:59.000Z

7

Scanning Hall probe microscopy of a diluted magnetic semiconductor  

SciTech Connect (OSTI)

We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga{sub 0.94}Mn{sub 0.06}As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 mum wide and fairly stable with temperature. Magnetic clusters are observed above T{sub C}, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

Kweon, Seongsoo [Materials Science and Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Samarth, Nitin [Physics Department, Penn State University, University Park, Pennsylvania 16802 (United States); Lozanne, Alex de [Materials Science and Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

2009-05-01T23:59:59.000Z

8

Scanning Probe Laser Terahertz Emission Microscopy System Ryotaro INOUE  

E-Print Network [OSTI]

is irradiated from the vicinity of the surface by an optical-fiber probe. The large numerical aperture pulse is irradiated to the sample surface by a commercial optical-fiber probe (LWP-LEN-SM, Cascade the sample surface, and terahertz emission from the locally photoexcited area is obtained. Using an optical-fiber

Tonouchi, Masayoshi

9

Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies  

SciTech Connect (OSTI)

Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Ievlev, Anton [ORNL] [ORNL; Balke, Nina [ORNL] [ORNL; Maksymovych, Petro [ORNL] [ORNL; Tselev, Alexander [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

2014-01-01T23:59:59.000Z

10

Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy  

SciTech Connect (OSTI)

Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

Kalinin, Sergei V [ORNL; Rodriguez, Brian J [ORNL; Jesse, Stephen [ORNL; Karapetian, Edgar [ORNL; Mirman, B [Suffolk University, Boston; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine

2007-01-01T23:59:59.000Z

11

Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy  

SciTech Connect (OSTI)

The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

2013-12-15T23:59:59.000Z

12

Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide  

SciTech Connect (OSTI)

Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter 5 discusses imaging of isolated vortices as a function of T{sub c}. Vortex images were fit with theoretical magnetic field profiles in order to extract the apparent vortex size. The data for the lowest T{sub c}'s (5 and 6.5 K) show some inhomogeneity and suggest that {lambda}{sub ab} might be larger than predicted by the T{sub c} {proportional_to} n{sub s}(0)/m* relation first suggested by results of Uemura et al. (1989) for underdoped cuprates. Finally, Chapter 6 examines observations of apparent ''partial vortices'' in the crystals. My studies of these features indicate that they are likely split pancake vortex stacks. Qualitatively, these split stacks reveal information about pinning and anisotropy in the samples. Collectively these magnetic imaging studies deepen our knowledge of cuprate superconductivity, especially in the important regime of low superfluid density.

Guikema, Janice Wynn; /SLAC, SSRL

2005-12-02T23:59:59.000Z

13

Bioelectrical SPMs (G. Gomila, UB-IBEC) Bioelectric Scanning Probe Microscopies  

E-Print Network [OSTI]

-ups: Micropippete based electrodes Measurements of cell membrane ion transport on single cells 2. Scanning Ion (SNOM),Scanning Tunneling Microscope (STM), Scanning Ion Conductance Microscope (SICM), Scanning Conductance Microscopy #12;7 Bioelectrical SPMs (G. Gomila, UB-IBEC) Single ion channels recordings Average

Ritort, Felix

14

Switchable stiffness scanning microscope probe  

E-Print Network [OSTI]

Atomic Force Microscopy (AFM) has rapidly gained widespread utilization as an imaging device and micro/nano-manipulator during recent years. This thesis investigates the new concept of a dual stiffness scanning probe with ...

Mueller-Falcke, Clemens T. (Clemens Tobias)

2005-01-01T23:59:59.000Z

15

Ultrafast scanning tunneling microscopy  

SciTech Connect (OSTI)

I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

1995-09-01T23:59:59.000Z

16

Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy  

SciTech Connect (OSTI)

The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn; Zhong, Jun, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)] [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)

2013-12-16T23:59:59.000Z

17

Photothermal imaging scanning microscopy  

DOE Patents [OSTI]

Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

2006-07-11T23:59:59.000Z

18

Soft, entirely photoplastic probes for scanning force microscopy G. Genolet,a)  

E-Print Network [OSTI]

. The stiffness of a cantilever is given by its spring constant k Ewt3 /4l3 where w, t, and l denote the width with integrated tips made with a batch molding technique. II. DESCRIPTION AND FABRICATION OF PHOTOPLASTIC PROBES

Bielefeld, Universität

19

Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis  

SciTech Connect (OSTI)

In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

2003-10-01T23:59:59.000Z

20

Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy  

DOE Patents [OSTI]

An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

2013-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter  

SciTech Connect (OSTI)

Direct measurements of the superconducting superfluid on the surface of vacuum-cleaved Bi2Sr2CaCu2O8+delta (BSCCO) samples are reported. These measurements are accomplished via Josephson tunneling into the sample using a novel scanning tunneling microscope (STM) equipped with a superconducting tip. The spatial resolution of the STM of lateral distances less than the superconducting coherence length allows it to reveal local inhomogeneities in the pair wavefunction of the BSCCO. Instrument performance is demonstrated first with Josephson measurements of Pb films followed by the layered superconductor NbSe2. The relevant measurement parameter, the Josephson ICRN product, is discussed within the context of both BCS superconductors and the high transition temperature superconductors. The local relationship between the ICRN product and the quasiparticle density of states (DOS) gap are presented within the context of phase diagrams for BSCCO. Excessive current densities can be produced with these measurements and have been found to alter the local DOS in the BSCCO. Systematic studies of this effect were performed to determine the practical measurement limits for these experiments. Alternative methods for preparation of the BSCCO surface are also discussed.

Kimura, Hikari; Dynes, Robert; Barber Jr., Richard. P.; Ono, S.; Ando, Y.

2009-09-01T23:59:59.000Z

22

Two-dimensional Vortex Behavior in Highly Underdoped YBa2Cu3O6 x Observed by Scanning Hall Probe Microscopy  

SciTech Connect (OSTI)

We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+x} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Iota}{sub 0}) through the sample surface. The sub-{Iota}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.

Guikema, J.W.

2010-02-22T23:59:59.000Z

23

Two-dimensional Vortex Behavior in Highly Underdoped YBa_2Cu_3O_{6+x} Observed byScanning Hall Probe Microscopy  

SciTech Connect (OSTI)

We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+z} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Phi}{sub 0}) through the sample surface. The sub-{Phi}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.

Guikema, J.W.; Bluhm, Hendrik; /Stanford U., Appl. Phys. Dept.; Bonn, D.A.; Liang, Ruixing; Hardy, W.N.; /British Columbia U.; Moler, K.A.; /Stanford U., Appl. Phys. Dept.

2008-04-22T23:59:59.000Z

24

Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis  

SciTech Connect (OSTI)

State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 {mu}m in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program 'SARINA,' which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

Wirtz, Tom; Fleming, Yves; Gerard, Mathieu [Department 'Science and Analysis of Materials' (SAM), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Gysin, Urs; Glatzel, Thilo; Meyer, Ernst [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Wegmann, Urs [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Maier, Urs [Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Odriozola, Aitziber Herrero; Uehli, Daniel [SPECS Zurich GmbH, Technoparkstr. 1, CH-8005 Zuerich (Switzerland)

2012-06-15T23:59:59.000Z

25

Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy  

E-Print Network [OSTI]

polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ?55–60°C as output powers reach ?50nW. At higher output powers, the sample...

Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

2007-04-07T23:59:59.000Z

26

Sample heating in near-field scanning optical microscopy  

E-Print Network [OSTI]

Heating near the aperture of aluminumcoated,fiber opticnear-field scanning optical microscopy probes was studied as a function of input and output powers. Using the shear-force feedback method, near-field probes were positioned nanometers above a...

Erickson, Elizabeth S.; Dunn, Robert C.

2005-10-05T23:59:59.000Z

27

Influence of Surface Preparation on Scanning Kelvin Probe Microscopy and Electron Backscatter Diffraction Analysis of Cross Sections of CdTe/CdS Solar Cells  

SciTech Connect (OSTI)

Electron backscatter diffraction (EBSD) provides information on the crystallographic structure of a sample, while scanning Kelvin probe microscopy (SKPM) provides information on its electrical properties. The advantage of these techniques is their high spatial resolution, which cannot be attained with any other techniques. However, because these techniques analyze the top layers of the sample, surface or cross section features directly influence the results of the measurements, and sample preparation is a main step in the analysis. In this work we investigated different methods to prepare cross sections of CdTe/CdS solar cells for EBSD and SKPM analyses. We observed that procedures used to prepare surfaces for EBSD are not suitable to prepare cross sections, and we were able to develop a process using polishing and ion-beam milling. This process resulted in very good results and allowed us to reveal important aspects of the cross section of the CdTe films. For SKPM, polishing and a light ion-beam milling resulted in cross sections that provided good data. We were able to observe the depletion region on the CdTe film and the p-n junction as well as the interdiffusion layer between CdTe and CdS. However, preparing good-quality cross sections for SKPM is not a reproducible process, and artifacts are often observed.

Moutinho, H. R.; Dhere, R. G.; Jiang, C. S.; Al-Jassim, M. M.

2011-01-01T23:59:59.000Z

28

Development of a microfluidic device for patterning multiple species by scanning probe lithography  

E-Print Network [OSTI]

Scanning Probe Lithography (SPL) is a versatile nanofabrication platform that leverages microfluidic “ink” delivery systems with Scanning Probe Microscopy (SPM) for generating surface-patterned chemical functionality on the sub-100 nm length scale...

Rivas Cardona, Juan Alberto

2009-06-02T23:59:59.000Z

29

Scanning acoustic microscopy for mapping the microstructure of soft materials  

E-Print Network [OSTI]

Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

N. G. Parker; M. J. W. Povey

2009-04-30T23:59:59.000Z

30

Atomic Force and Scanning Electron Microscopy of Atmospheric Particles  

E-Print Network [OSTI]

conducted so as to characterize atmospheric aerosols from anthropogenic (pollution) and natural (sea saltAtomic Force and Scanning Electron Microscopy of Atmospheric Particles ZAHAVA BARKAY,1 * AMIT 69978, Israel KEY WORDS atmospheric aerosols; atomic force microscopy; scanning electron microscopy

Shapira, Yoram

31

Sandia National Laboratories: scanning probe microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving thereverse

32

Scanning Probe AFM Compound Microscope | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon Home WaterScanning Probe AFM

33

Atom probe field ion microscopy and related topics: A bibliography 1989  

SciTech Connect (OSTI)

This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

Miller, M.K.; Hawkins, A.R.; Russell, K.F.

1990-12-01T23:59:59.000Z

34

Sandia National Laboratories: scanning tunneling microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving thereversetunneling microscopy

35

Atom chip microscopy: A novel probe for strongly correlated materials  

SciTech Connect (OSTI)

Improved measurements of strongly correlated systems will enable the predicative design of the next generation of supermaterials. In this program, we are harnessing recent advances in the quantum manipulation of ultracold atomic gases to expand our ability to probe these technologically important materials in heretofore unexplored regions of temperature, resolution, and sensitivity parameter space. We are working to demonstrate the use of atom chips to enable single-shot, large area detection of magnetic flux at the 10^-7 flux quantum level and below. By harnessing the extreme sensitivity of atomic clocks and Bose-Einstein condensates (BECs) to external perturbations, the cryogenic atom chip technology developed here will provide a magnetic flux detection capability that surpasses other techniques---such as scanning SQUIDs---by a factor of 10--1000. We are testing the utility of this technique by using rubidium BECs to image the magnetic fields emanating from charge transport and magnetic domain percolation in strongly correlated materials as they undergo temperature-tuned metal--to--insulator phase transitions. Cryogenic atom chip microscopy introduces three very important features to the toolbox of high-resolution, strongly correlated material microscopy: simultaneous detection of magnetic and electric fields (down to the sub-single electron charge level); no invasive large magnetic fields or gradients; simultaneous micro- and macroscopic spatial resolution; freedom from 1/f flicker noise at low frequencies; and, perhaps most importantly, the complete decoupling of probe and sample temperatures. The first of these features will play an important role in studying the interplay between magnetic and electric domain structure. The last two are crucial for low frequency magnetic noise detection in, e.g., the cuprate pseudogap region and for precision measurements of transport in the high temperature, technologically relevant regime inaccessible to other techniques based on superconducting scanning probes. In periods 1--3 of this grant, which we now close at the University of Illinois at Urbana-Champaign and restart at Stanford University where our new lab is being built, we have demonstrated the ability to rapidly create Rb BECs and trap them within microns of a surface ina cryostat. Period 4 of this grant, to be performed at Stanford, will demonstrate the feasibility of using atom chips with a BEC to image transport features on a cryogenically cooled surface. Successful demonstration, in future funding cycles, will lead directly to the use of system for studies of transport in exotic and technologically relevant materials such as cuprate superconductors and topological insulators.

Lev, Benjamin L

2011-11-03T23:59:59.000Z

36

Laser scanning third-harmonic-generation microscopy in biology  

E-Print Network [OSTI]

. Denk, J. H. Stricker and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). 3. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel and W. W. Webb, "Measuring-214 (1996). 6. R. Hellwarth and P. Christensen, "Nonlinear optical microscopic examination of structure

Silberberg, Yaron

37

Modulated microwave microscopy and probes used therewith  

DOE Patents [OSTI]

A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

2012-09-11T23:59:59.000Z

38

Dynamic study of tunable stiffness scanning microscope probe  

E-Print Network [OSTI]

This study examines the dynamic characteristics of the in-plane tunable stiffness scanning microscope probe for an atomic force microscope (AFM). The analysis was carried out using finite element analysis (FEA) methods for ...

Vega González, Myraida Angélica

2005-01-01T23:59:59.000Z

39

Phase modulation mode of scanning ion conductance microscopy  

SciTech Connect (OSTI)

This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

2014-08-04T23:59:59.000Z

40

Scanning Transmission Electron Microscopy Investigations of Complex Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon Home WaterScanning Probe| Stanford

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Probing graphene defects and estimating graphene quality with optical microscopy  

SciTech Connect (OSTI)

We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

2014-01-27T23:59:59.000Z

42

Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy  

SciTech Connect (OSTI)

Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [Global Research Center for Environment and Energy Based on Nanomaterials Science National Institute for Materials Science (NIMS) 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Gao, Jianhua; Ishida, Nobuyuki [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Mingsheng, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Fujita, Daisuke [Advanced Key Technologies Division, Global Research Center for Environment and Energy Based on Nanomaterials Science, and International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

2014-01-20T23:59:59.000Z

43

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

SciTech Connect (OSTI)

Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

2011-01-20T23:59:59.000Z

44

Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series  

SciTech Connect (OSTI)

In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

Dahmen, Tim [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; Baudoin, Jean-Pierre G [ORNL] [ORNL; Lupini, Andrew R [ORNL] [ORNL; Kubel, Christian [Karlsruhe Institute of Technology, Leopoldshafen, Germany] [Karlsruhe Institute of Technology, Leopoldshafen, Germany; Slusallek, Phillip [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; De Jonge, Niels [ORNL] [ORNL

2014-01-01T23:59:59.000Z

45

Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy  

SciTech Connect (OSTI)

Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

2011-01-01T23:59:59.000Z

46

Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy  

SciTech Connect (OSTI)

The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

2014-10-28T23:59:59.000Z

47

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE-EDGE SCANNING MICROSCOPY  

E-Print Network [OSTI]

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis Science #12;ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis) ______________________________ ______________________________ Ergun Akleman Valerie Taylor (Member) (Head of Department) December 2003 Major Subject: Computer Science

Keyser, John

48

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology  

E-Print Network [OSTI]

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

Xie, Xiaoliang Sunney

49

SCANNING HALL PROBE MICROSCOPY OF SUPERCURRENTS IN YBCO FILMS  

E-Print Network [OSTI]

and reducing gears. It en- ables me to image an entire sample, then zoom in on regions of interest, down image two "coat- ed conductors"--YBCO grown on metal tape. I find relatively homogeneous flux

Moler, Kathryn A.

50

Band Excitation Method Applicable to Scanning Probe Microscopy - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High Energy PhysicsInnovation Portal

51

Iran Thomas Auditorium, 8600 Transport Measurements by Scanning Probe Microscopy:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface Reactions andOctober 5,October

52

Scanning Probe Microscopy with Spectroscopic Molecular Recognition - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclearof DataNarrows Dam

53

Atom probe field ion microscopy and related topics: A bibliography 1991  

SciTech Connect (OSTI)

This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory.

Russell, K.F.; Miller, M.K.

1993-01-01T23:59:59.000Z

54

Atom probe field ion microscopy and related topics: A bibliography 1992  

SciTech Connect (OSTI)

This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

Russell, K.F.; Godfrey, R.D.; Miller, M.K.

1993-12-01T23:59:59.000Z

55

Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy  

SciTech Connect (OSTI)

This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

Tittmann, B. R. [Penn State; Xi, X. [Penn State

2014-09-01T23:59:59.000Z

56

Alpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force microscopy  

E-Print Network [OSTI]

-differential-interference-contrast microscopy; Scanning force microscopy; Natural radiation damage 1. Introduction Alpha-recoil tracks (ARTsAlpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force

57

In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry  

SciTech Connect (OSTI)

Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

2011-10-31T23:59:59.000Z

58

Scanning photovoltage microscopy of potential modulations in carbon Marcus Freitag,a  

E-Print Network [OSTI]

Scanning photovoltage microscopy of potential modulations in carbon nanotubes Marcus Freitag generated photovoltage in carbon nanotubes to image potential modulations produced by defects are consistent with trapped electrons near the tube. An offset photovoltage is generated when the laser populates

Liu, Jie

59

Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling Microscopy  

E-Print Network [OSTI]

Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling propargylglycine unnatural functional groups 20 Å apart and an alkanethiol self-assembled monolayer (SAM) on a gold-terminated surfaces were imaged by scanning tunneling microscopy (STM) using a low tunneling current of 10 p

Webb, Lauren J.

60

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons  

E-Print Network [OSTI]

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons ABSTRACT A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video

Tsien, Roger Y.

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oxygen driven reconstruction dynamics of Ni,,977... measured by time-lapse scanning tunneling microscopy  

E-Print Network [OSTI]

Oxygen driven reconstruction dynamics of Ni,,977... measured by time-lapse scanning tunneling-lapse scanning tunneling microscopy STM has been used to observe the oxygen induced reconstruction behavior of Ni for the merging of steps in the presence of small amounts of adsorbed oxygen, less than 2% of a monolayer. Point

Sibener, Steven

62

Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy  

SciTech Connect (OSTI)

Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

Grigg, D.A.; Russell, P.E.; Dow, T.A.

1988-12-01T23:59:59.000Z

63

Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold  

SciTech Connect (OSTI)

This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n {+-} 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

Wong, Sze-Shun Season

1999-12-10T23:59:59.000Z

64

Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-  

E-Print Network [OSTI]

Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-scan-range pump-probe scheme is experimentally demonstrated using a dual-wavelength passively mode- locked fiber. 134(25), 10569­10583 (2012). 4. A. Schmidt, M. Chiesa, X. Chen, and G. Chen, "An optical pump

Wu, Shin-Tson

65

Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy  

SciTech Connect (OSTI)

Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness d{sub g}—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM) combined with image analysis as well as by atomic force microscopy (AFM). The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for d{sub g} were obtained by SEM with image analysis and by AFM.

Lansåker, Pia C., E-mail: pia.lansaker@angstrom.uu.se; Niklasson, Gunnar A.; Granqvist, Claes G. [Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-751 21 Uppsala (Sweden); Hallén, Anders [Royal Institute of Technology, KTH-ICT, Elektrum 229, Kista, SE-164 40 Stockholm (Sweden)

2014-10-15T23:59:59.000Z

66

Scanning mid-IR-laser microscopy: an efficient tool for materials studies in silicon-based photonics and photovoltaics  

E-Print Network [OSTI]

A method of scanning mid-IR-laser microscopy has recently been proposed for the investigation of large-scale electrically and recombination-active defects in semiconductors and non-destructive inspection of semiconductor materials and structures in the industries of microelectronics and photovoltaics. The basis for this development was laid with a wide cycle of investigations on low-angle mid-IR-light scattering in semiconductors. The essence of the technical idea was to apply the dark-field method for spatial filtering of the scattered light in the scanning mid-IR-laser microscope together with the local photoexcitation of excess carriers within a small domain in a studied sample, thus forming an artificial source of scattering of the probe IR light for the recombination contrast imaging of defects. The current paper presents three contrasting examples of application of the above technique for defect visualization in silicon-based materials designed for photovoltaics and photonics which demonstrate that this...

Astafiev, O V; Yuryev, V A; 10.1016/S0022-0248(99)00711-3

2011-01-01T23:59:59.000Z

67

OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY  

SciTech Connect (OSTI)

Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

2005-03-01T23:59:59.000Z

68

Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy  

SciTech Connect (OSTI)

We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

2011-05-26T23:59:59.000Z

69

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells  

E-Print Network [OSTI]

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

Fisher, Frank

70

Half-harmonic Kelvin probe force microscopy with transfer function correction  

SciTech Connect (OSTI)

An approach for surface potential imaging based on half-harmonic band excitation (BE) in Kelvin probe force microscopy is demonstrated. Using linear and half-harmonic BE enables quantitative correction of the cantilever transfer function. Half-harmonic band excitation Kelvin probe force microscopy (HBE KPFM) thus allows quantitative separation of surface potential and topographic contributions to the signal, obviating the primary sources of topographic cross-talk. HBE KPFM imaging and voltage spectroscopy methods are illustrated for several model systems.

Guo, Senli [ORNL] [ORNL; Jesse, Stephen [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

2012-01-01T23:59:59.000Z

71

Method for imaging liquid and dielectric materials with scanning polarization force microscopy  

SciTech Connect (OSTI)

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

1999-03-09T23:59:59.000Z

72

Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies  

E-Print Network [OSTI]

Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies Arkady V STM images of both metallic and semiconducting single-wall carbon nanotubes with atomic vacancies predict that vacancies should result in the formation of hillock-like features in STM images of metallic

Krasheninnikov, Arkady V.

73

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High-Efficiency Sub-5 keV Electron Detection  

E-Print Network [OSTI]

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High for Scanning Electron Microscopy, based on ultrashallow p+ n boron-layer photodiodes, features nm-thin anodes, closely-packed photodiodes and through-wafer apertures allow flexible configurations for optimal material

Technische Universiteit Delft

74

Synthesis and structure of Al clusters supported on TiO2,,110...: A scanning tunneling microscopy study  

E-Print Network [OSTI]

Synthesis and structure of Al clusters supported on TiO2,,110...: A scanning tunneling microscopy, Texas 77843-3255 Received 14 October 1997; accepted 6 April 1998 Al clusters supported on TiO2(110) have been investigated using scanning tunneling microscopy. Al interacts strongly with the TiO2(110) surface

Goodman, Wayne

75

Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy  

SciTech Connect (OSTI)

We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

2014-06-23T23:59:59.000Z

76

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene  

E-Print Network [OSTI]

We demonstrate high resolution scanning fluorescence resonance energy transfer 10 microscopy between a single nitrogen-vacancy center as donor and graphene as acceptor. 11 Images with few nanometer resolution of single and multilayer graphene structures were 12 attained. An energy transfer efficiency of 30% at distances of 10nm between a single 13 defect and graphene was measured. Further the energy transfer distance dependence of 14 the nitrogen-vacancy center to graphene was measured to show the predicted d-4 15 dependence. Our studies pave the way towards a diamond defect center based versatile 16 single emitter scanning microscope.

J. Tisler; T. Oeckinghaus; R. Stöhr; R. Kolesov; F. Reinhard; J. Wrachtrup

2013-01-02T23:59:59.000Z

77

Atom probe field ion microscopy and related topics: A bibliography 1990  

SciTech Connect (OSTI)

This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

Russell, K.F.; Miller, M.K.

1991-12-01T23:59:59.000Z

78

Scanning Probe Direct-Write of Germanium Nanostructures. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclearof DataNarrows Dam -Probe

79

Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy  

SciTech Connect (OSTI)

A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress versus strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns), yielding and elastic modulus of 401 and 466.8 GPa, respectively.

Kent, R.M.; Vary, A.

1992-01-01T23:59:59.000Z

80

Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy  

SciTech Connect (OSTI)

A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress vs strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns). 8 refs.

Kent, R.M.; Vary, A.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low temperature laser scanning microscopy of a superconducting radio-frequency cavity  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

Ciovati, Gianluigi; Baldwin, Charles; Cheng, Guangfeng; Flood, Roger; Jordan, Kevin; Kneisel, Peter; Morrone, Michael; Nemes, George; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

2012-03-16T23:59:59.000Z

82

Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy  

SciTech Connect (OSTI)

Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J., E-mail: gsimpson@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907 (United States)

2014-03-15T23:59:59.000Z

83

Low resistivity of Pt silicide nanowires measured using double-scanning-probe tunneling microscope  

E-Print Network [OSTI]

experimentally shown to be conductive.8­10 However, RE metal silicide NWs are easily oxidized, so that inert NWs similarly to RE metal silicide NWs.11 It is essential to study the electrical properties, especiallyLow resistivity of Pt silicide nanowires measured using double-scanning- probe tunneling microscope

Kim, Sehun

84

Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan)] [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)] [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

2012-01-27T23:59:59.000Z

85

The application of reflected light microscopy, scanning electron microscopy-energy dispersive spectroscopy, Auger electron spectroscopy and electron microprobe analysis to the study of dusts  

SciTech Connect (OSTI)

Over 500,000 tons of electric arc furnace (EAF) dust is generated each year in the US. The mineralogy and characterization of this dust is being studied to determine the phases and relationships of the valuable zinc, the hazardous lead, cadmium, and chromium, and the deleterious chlorine and fluorine. EAF dust averages 15--20% zinc and is therefore a potential source for 100,000 tons of zinc per year. The major mineralogical phases of EAF dust are franklinite (ZnFe[sub 2]O[sub 4]), magnetite (FeFe[sub 2]O[sub 4]), jacobsite (MnFe[sub 2]O[sub 4]), solid solutions between franklinite-magnetite-jacobsite, and zincite (ZnO). Franklinite, magnetite, and jacobsite solid solutions commonly are cruciform or dendritic crystals in a Ca-Fe-Si matrix and contain up to 5% chromium. Magnetite also occurs as spheres partially oxidized to hematite (Fe[sub 2]O[sub 3]) along its octahedral planes. The dust particles are predominantly in the form of spheres and broken spheres, ranging in size from 200 [mu]m to less than 1 [mu]m. Although many spheres are in the size ranges of 40--50 [mu]m and 10--20 [mu]m, most are less than 1 [mu]m in diameter. Automated scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) probed 118 particles in search of chlorine phases. Chlorine-bearing lime (CaO) was identified by that SEM study. In addition, chlorine is present as hydrophylite (CaCl[sub 2]) and sylvite (KCl). Auger electron spectroscopy (AES) was used to sputter the outer 180[angstrom] layer of the dust particles to search for the possible presence of cotunnite (PbCl[sub 2]) coatings, but none were detected. Minor phases detected include chalcopyrite (CuFeS[sub 2]), sphalerite (ZnS), pyrite (FeS[sub 2]), and coke.

Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Dept. of Geology and Geophysics)

1993-03-01T23:59:59.000Z

86

Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface  

SciTech Connect (OSTI)

Kelvin probe force microscopy (KPFM) is a powerful technique for the determination of the contact potential difference (CPD) between an atomic force microscope tip and a sample under ambient and vacuum conditions. However, for many energy storage and conversion systems, including graphene-based electrochemical capacitors, understanding electrochemical phenomena at the solid–liquid interface is paramount. Despite the vast potential to provide fundamental insight for energy storage materials at the nanoscale, KPFM has found limited applicability in liquid environments to date. Here, using dual harmonic (DH)-KPFM, we demonstrate CPD imaging of graphene in liquid. We find good agreement with measurements performed in air, highlighting the potential of DH-KPFM to probe electrochemistry at the graphene–liquid interface.

Collins, Liam; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Kilpatrick, Jason I.; Weber, Stefan A. L. [Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Vlassiouk, Ivan V. [Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Tselev, Alexander; Jesse, Stephen; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-03-31T23:59:59.000Z

87

A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface  

E-Print Network [OSTI]

low-noise measurements in ambient, in situ, and electrochemical environments. II. DESIGNA flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface, specifically in electrolyte environments. Quantification of system noise limits

Gimzewski, James

88

This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a  

E-Print Network [OSTI]

This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell­57 Dye-sensitized solar cells (DSCs) have received wide-spread research attention due to their high power incorporated into solid-state dye-sensitized solar cells (ss-DSCs) by nanoimprint lithography. The reflectors

McGehee, Michael

89

L-Cysteine Adsorption Structures on Au(111) Investigated by Scanning Tunneling Microscopy under Ultrahigh Vacuum Conditions  

E-Print Network [OSTI]

to 380 K lead to marked changes in the observed adsorption structures. At low coverages, the unordered containing pH- controlling buffer salts and with or without electrochemical control, to vapor deposition. The primary characterization techniques have been in situ electrochemical scanning tunneling microscopy (STM

Kühnle, Angelika

90

Graphene on Ru(0001) Moire Corrugation Studied by Scanning Tunneling Microscopy on Au/Graphene/Ru(0001) Heterostructures  

E-Print Network [OSTI]

Graphene on Ru(0001) Moire Corrugation Studied by Scanning Tunneling Microscopy on Au/Graphene on graphene/Ru(0001) were used to study the corrugation of the moire structure of graphene/Ru(0001 for the graphene/Ru(0001) moire is of structural nature rather than electronic. STM showed a large value

Ciobanu, Cristian

91

Scanning tunneling microscopy study of nitrogen incorporated HfO{sub 2}  

SciTech Connect (OSTI)

The impact of nitrogen incorporation on the physical and electrical characteristics of the HfO{sub 2} is examined. X-ray photoelectron spectroscopy shows that nitrogen can be incorporated into the HfO{sub 2} via a two-step thermal anneal--first in ultrahigh vacuum (UHV) and subsequently in N{sub 2}. Following the N{sub 2} anneal, scanning tunneling microscopy in UHV reveals a marked reduction in the low-voltage leakage current under gate injection biasing. From band theory and existing first-principles simulation results, one may consistently attribute this improvement to the passivation of oxygen vacancies in the HfO{sub 2} by nitrogen. Improvement in the breakdown strength of the HfO{sub 2} subjected to ramp-voltage stress (substrate injection) is also observed after the N{sub 2} anneal. The local current-voltage curves acquired concurrently during the ramp-voltage stress exhibit 'space-charge limited conduction', which implies that the observed improvement in breakdown strength may be related to a limitation of the current flow through the gate stack in the high stress voltage regime.

Ong, Y. C.; Ang, D. S.; Pey, K. L.; Li, X. [Nanyang Technological University, School of Electrical and Electronic Engineering, Nanyang Avenue, Singapore 639798 (Singapore); O'Shea, S. J.; Wang, S. J. [Institute of Materials Research and Engineering, A-STAR - Agency for Science, Technology and Research, 3 Research Link, Singapore 11760 (Singapore); Tung, C. H. [Institute of Microelectronics, A-STAR - Agency for Science, Technology and Research, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore)

2008-09-15T23:59:59.000Z

92

Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)  

SciTech Connect (OSTI)

Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112{sup ¯}] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11{sup ¯}0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular ? stacking. Two-dimensional delocalized electronic states are found on the K-deposited ? stacking structure.

Yoshida, Yasuo, E-mail: yyoshida@issp.u-tokyo.ac.jp; Yokosuka, Takuya; Hasegawa, Yukio, E-mail: hasegawa@issp.u-tokyo.ac.jp [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Yang, Hung-Hsiang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Huang, Hsu-Sheng; Guan, Shu-You; Su, Wei-Bin; Chang, Chia-Seng [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yanagisawa, Susumu [Department of Physics and Earth Science Department, University of the Ryukyus, 1 Nishihara, Okinawa 903-0213 (Japan); Lin, Minn-Tsong [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Hoffmann, Germar [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

2014-09-21T23:59:59.000Z

93

Scanning tunneling microscope tip as a positionable contact: Probing a Josephson-junction array at subkelvin temperatures  

E-Print Network [OSTI]

Scanning tunneling microscope tip as a positionable contact: Probing a Josephson-junction arrayK. The STM enables us to probe the structure, a Josephson-junction array, at various positions. Examples of such systems are two- dimensional electron gases and Josephson junction arrays.1

94

Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections  

DOE Patents [OSTI]

An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

2013-02-12T23:59:59.000Z

95

Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections  

SciTech Connect (OSTI)

An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

DiMambro, Joseph (Placitas, NM); Roach, Dennis P. (Albuquerque, NM); Rackow, Kirk A. (Albuquerque, NM); Nelson, Ciji L. (Albuquerque, NM); Dasch, Cameron J. (Boomfield Hills, MI); Moore, David G. (Albuquerque, NM)

2012-01-03T23:59:59.000Z

96

Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy  

SciTech Connect (OSTI)

The transformation sequence of electroless plated nanocrystalline Ni-3.6 at.% P layers upon different heat treatments is studied by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and atom-probe field-ion microscopy (APFIM). APFIM reveals P segregation at the grain boundaries in the as-plated nanocrystalline alloy. DSC shows two heat releases upon isochronic heat treatment. During the first heat release, starting at about 136 C for a heating rate of 20 C/min, structural relaxation occurs first, followed by slight crystal growth and segregation enhancement, as shown by XRD and APFIM. Nucleation of the equilibrium phase Ni{sub 3}P starts in the transition to the second heat release. This second heat release, with a sharp onset at 417 C for heating at a rate of 20 C/min, is related to the major part of Ni{sub 3}P-phase formation and substantial grain growth. The transformation sequence is compared with the one observed on amorphous Ni-P alloys and discussed in terms of a thermodynamic model.

Hentschel, T.; Isheim, D.; Kirchheim, R.; Mueller, F.; Kreye, H.

2000-02-25T23:59:59.000Z

97

SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES  

SciTech Connect (OSTI)

The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

Hay, M.; O'Rourke, P.; Ajo, H.

2012-03-08T23:59:59.000Z

98

Near-field microscopy with a scanning nitrogen-vacancy color center in a diamond nanocrystal: A brief review  

E-Print Network [OSTI]

We review our recent developments of near-field scanning optical microscopy (NSOM) that uses an active tip made of a single fluorescent nanodiamond (ND) grafted onto the apex of a substrate fiber tip. The ND hosting a limited number of nitrogen-vacancy (NV) color centers, such a tip is a scanning quantum source of light. The method for preparing the ND-based tips and their basic properties are summarized. Then we discuss theoretically the concept of spatial resolution that is achievable in this special NSOM configuration and find it to be only limited by the scan height over the imaged system, in contrast with the standard aperture-tip NSOM whose resolution depends critically on both the scan height and aperture diameter. Finally, we describe a scheme we have introduced recently for high-resolution imaging of nanoplasmonic structures with ND-based tips that is capable of approaching the ultimate resolution anticipated by theory.

Drezet, A; Cuche, A; Mollet, O; Berthel, M; Huant, S

2015-01-01T23:59:59.000Z

99

Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy  

E-Print Network [OSTI]

Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which explains this behavior.

Simon Carpentier; Mario S. Rodrigues; Luca Costa; Miguel V. Vitorino; Elisabeth Charlaix; Joel Chevrier

2015-03-18T23:59:59.000Z

100

Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy  

E-Print Network [OSTI]

Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which expla...

Carpentier, Simon; Costa, Luca; Vitorino, Miguel V; Charlaix, Elisabeth; Chevrier, Joel

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Acquisition and reconstruction of brain tissue using knife-edge scanning microscopy  

E-Print Network [OSTI]

....................................................................................38 VII RESULTS..................................................................................................................40 A. Scanning of Golgi Stained Tissue and Alignment ...........................................40 B.... Scanning and Reconstruction of Nissl Stained Tissue .....................................43 VIII SUMMARY AND FUTURE WORK.......................................................................46 A. Summary...

Mayerich, David Matthew

2004-09-30T23:59:59.000Z

102

A calibration method for lateral forces for use with colloidal probe force microscopy cantilevers  

SciTech Connect (OSTI)

A calibration method is described for colloidal probe cantilevers that enables friction force measurements obtained using lateral force microscopy (LFM) to be quantified. The method is an adaptation of the lever method of Feiler et al. [A. Feiler, P. Attard, and I. Larson, Rev. Sci. Instum. 71, 2746 (2000)] and uses the advantageous positioning of probe particles that are usually offset from the central axis of the cantilever. The main sources of error in the calibration method are assessed, in particular, the potential misalignment of the long axis of the cantilever that ideally should be perpendicular to the photodiode detector. When this is not taken into account, the misalignment is shown to have a significant effect on the cantilever torsional stiffness but not on the lateral photodiode sensitivity. Also, because the friction signal is affected by the topography of the substrate, the method presented is valid only against flat substrates. Two types of particles, 20 {mu}m glass beads and UO{sub 3} agglomerates attached to silicon tapping mode cantilevers were used to test the method against substrates including glass, cleaved mica, and UO{sub 2} single crystals. Comparisons with the lateral compliance method of Cain et al. [R. G. Cain, S. Biggs, and N. W. Page, J. Colloid Interface Sci. 227, 55 (2000)] are also made.

Quintanilla, M. A. S.; Goddard, D. T. [Nexia Solutions Ltd., Springfields, Salwick, Preston, Lancashire PR4 0XJ (United Kingdom)

2008-02-15T23:59:59.000Z

103

Low-temperature scanning tunneling microscopy and transport measurements on adsorbate-induced two-dimensional electron systems  

SciTech Connect (OSTI)

We have performed not only magnetotransport measurements on two-dimensional electron systems (2DESs) formed at the cleaved surfaces of p-InAs but also observations of the surface morphology of the adsorbate atoms, which induced the 2DES at the surfaces of narrow band-gap semiconductors, with use of a scanning tunneling microscopy. The electron density of the 2DESs is compared to the atomic density of the isolated Ag adatoms on InAs surfaces.

Masutomi, Ryuichi; Triyama, Naotaka; Okamoto, Tohru [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2013-12-04T23:59:59.000Z

104

Scanning Hall Probe Imaging of ErNi2B2C  

SciTech Connect (OSTI)

We report scanning Hall probe imaging of ErNi{sub 2}B{sub 2}C in the superconducting, antiferromagnetic, and weakly ferromagnetic regimes in magnetic fields up to 20 Oe, well below H{sub c1}, with two results. First, imaging isolated vortices shows that they spontaneously rearrange on cooling through the antiferromagnetic transition temperature T{sub N} = 6 K to pin on twin boundaries, forming a striped pattern. Second, a weak, random magnetic signal appears in the ferromagnetic phase below T{sub WFM} = 2.3 K, and no spontaneous vortex lattice is present down to 1.9 K. We conclude that ferromagnetism coexists with superconductivity either by forming small ferromagnetic domains or with oscillatory variation of the magnetization on sub-penetration depth length scales.

Bluhm, Hendrik; Sebastian, Suchitra; Guikema, Janice W.; Fisher, I.R.; Moler, Kathryn A.; /Stanford U., Appl. Phys. Dept.

2005-12-02T23:59:59.000Z

105

Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy.  

E-Print Network [OSTI]

??Cobalt disilicide (CoSi2) islands have been formed on Si(111) and Si(100) through UHV deposition and annealing. Current-voltage (I-V) and temperature-dependent current-voltage (I-V-T) curves have been… (more)

Tedesco, Joseph Leo

2007-01-01T23:59:59.000Z

106

Thermally driven visco-elastic measurement technique via spectral variations in scanning probe microscopy cantilevers  

E-Print Network [OSTI]

Understanding how fluids respond to various deformations is of great importance to a spectrum of disciplines ranging from bio-medical research on joint replacements to sealing technology in industrial machinery. Specifically, ...

Jones, Ryan Edward, 1974-

2004-01-01T23:59:59.000Z

107

Interface circuits for quartz crystal sensors in scanning probe microscopy applications  

E-Print Network [OSTI]

interface based on an amplitude controlled oscillator and a phase-locked loop frequency demodulator, are of great interest. A self-excitation scheme with QCR is particularly promising and allows the development excitation modes in QCR based tech- niques: first, the mechanical excitation QCR is typically at- tached

La Rosa, Andres H.

108

Electron and Scanning Probe Microscopies | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJuneDocumenting the Life and DeathElectron and

109

Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy  

E-Print Network [OSTI]

vibrational noise. The extension of the technique to a vertical orientation required by many SPM applications stepper motors4 to more elegant approaches such as the "louse,"5 "Besocke," beetle,6 "Inchworm® ,"7

Gimzewski, James

110

Measurement of probe displacement to the thermal resolution limit in photonic force microscopy using a miniature quadrant photodetector  

SciTech Connect (OSTI)

A photonic force microscope comprises of an optically trapped micro-probe and a position detection system to track the motion of the probe. Signal collection for motion detection is often carried out using the backscattered light off the probe-however, this mode has problems of low S/N due to the small backscattering cross sections of the micro-probes typically used. The position sensors often used in these cases are quadrant photodetectors. To ensure maximum sensitivity of such detectors, it would help if the detector size matched with the detection beam radius after the condenser lens (which for backscattered detection would be the trapping objective itself). To suit this condition, we have used a miniature displacement sensor whose dimensions makes it ideal to work with 1:1 images of micrometer-sized trapped probes in the backscattering detection mode. The detector is based on the quadrant photo-integrated chip in the optical pick-up head of a compact disc player. Using this detector, we measured absolute displacements of an optically trapped 1.1 {mu}m probe with a resolution of {approx}10 nm for a bandwidth of 10 Hz at 95% significance without any sample or laser stabilization. We characterized our optical trap for different sized probes by measuring the power spectrum for each probe to 1% accuracy, and found that for 1.1 {mu}m diameter probes, the noise in our position measurement matched the thermal resolution limit for averaging times up to 10 ms. We also achieved a linear response range of around 385 nm with cross talk between axes {approx_equal}4% for 1.1 {mu}m diameter probes. The detector has extremely high bandwidth (few MHz) and low optical power threshold-other factors that can lead to its widespread use in photonic force microscopy.

Pal, Sambit Bikas; Haldar, Arijit; Roy, Basudev; Banerjee, Ayan [Department of Physical Sciences, IISER-Kolkata, West Bengal 741252 (India)

2012-02-15T23:59:59.000Z

111

High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets  

E-Print Network [OSTI]

by direct exfoli- ation of crystalline graphite. The single-layer films were identified by using Raman layers. In the first method, sample layers are mechanically exfoliated from bulk graphite crystals-layer graphene films prepared by mechanical exfoliation and probed on an insulating substrate

112

Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy  

DOE Patents [OSTI]

A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

2014-09-30T23:59:59.000Z

113

Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe  

SciTech Connect (OSTI)

We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

Saive, Rebecca, E-mail: rebecca.saive@innovationlab.de; Kowalsky, Wolfgang [InnovationLab GmbH, 69115 Heidelberg (Germany) [InnovationLab GmbH, 69115 Heidelberg (Germany); Institut für Hochfrequenztechnik, TU Braunschweig, 38106 Braunschweig (Germany); Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg (Germany); Mueller, Christian [InnovationLab GmbH, 69115 Heidelberg (Germany) [InnovationLab GmbH, 69115 Heidelberg (Germany); Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg (Germany); Schinke, Janusz; Lovrincic, Robert [InnovationLab GmbH, 69115 Heidelberg (Germany) [InnovationLab GmbH, 69115 Heidelberg (Germany); Institut für Hochfrequenztechnik, TU Braunschweig, 38106 Braunschweig (Germany)

2013-12-09T23:59:59.000Z

114

Direct determination of exact charge states of surface point defects using scanning tunneling microscopy: As vacancies on GaAs ,,110...  

E-Print Network [OSTI]

microscopy: As vacancies on GaAs ,,110... Kuo-Jen Chao, Arthur R. Smith, and Chih-Kang Shih* Department of the charge state of surface As vacancies on p-type GaAs 110 using scanning tunneling microscopy. This method utilizes the compensation between the local band bending result- ing from the As vacancy and the p

115

Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 3) : a scanning tunneling microscopy study.  

E-Print Network [OSTI]

Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 × 3) : a scanning tunneling of the atomic and electronic structure of graphene monolayer islands on the 6H-SiC(0001)(3×3) (SiC(3×3)) surface reconstruction using scanning tunneling microscopy (STM) and spectroscopy (STS). The orientation of the graphene

Paris-Sud XI, Université de

116

Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy  

DOE Patents [OSTI]

A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

Kazmerski, Lawrence L. (Lakewood, CO)

1990-01-01T23:59:59.000Z

117

Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation  

SciTech Connect (OSTI)

Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

2014-03-26T23:59:59.000Z

118

A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum  

SciTech Connect (OSTI)

We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

Schaefer-Nolte, E.; Wrachtrup, J. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Reinhard, F. [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany)] [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Ternes, M., E-mail: m.ternes@fkf.mpg.de [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Kern, K. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condenseé, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

2014-01-15T23:59:59.000Z

119

Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers  

SciTech Connect (OSTI)

We demonstrate the use of a pulsed quantum cascade laser, wavelength tuneable between 6 and 10??m, with a scattering-type scanning near-field optical microscope (s-SNOM). A simple method for calculating the signal-to-noise ratio (SNR) of the s-SNOM measurement is presented. For pulsed lasers, the SNR is shown to be highly dependent on the degree of synchronization between the laser pulse and the sampling circuitry; in measurements on a gold sample, the SNR is 26 with good synchronization and less than 1 without. Simulations and experimental s-SNOM images, with a resolution of 100?nm, corresponding to ?/80, and an acquisition time of less than 90 s, are presented as proof of concept. They show the change in the field profile of plasmon-resonant broadband antennas when they are excited with wavelengths of 7.9 and 9.5??m.

Yoxall, Edward, E-mail: edward.yoxall@imperial.ac.uk; Rahmani, Mohsen; Maier, Stefan A.; Phillips, Chris C. [The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)] [The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Navarro-Cía, Miguel [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom)] [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom)

2013-11-18T23:59:59.000Z

120

Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy  

SciTech Connect (OSTI)

X-ray nanotomography and focused ion beam scanning electron microscopy (FIB?SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non?destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three?dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy  

SciTech Connect (OSTI)

The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant ({beta}) of 0.52/{angstrom}.

Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L.M.; Salmeron, Miquel

2009-02-06T23:59:59.000Z

122

A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments  

SciTech Connect (OSTI)

The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

Smith, Doran D.; Alexson, Dimitri A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)] [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); Garbini, Joseph L. [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)] [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)

2013-09-15T23:59:59.000Z

123

Laser Scanning Confocal Microscopy Study of Dye Diffusion in Fibers Ye Song, Mohan Srinivasarao,*, Alan Tonelli, C. M. Balik, and Ralph McGregor  

E-Print Network [OSTI]

Laser Scanning Confocal Microscopy Study of Dye Diffusion in Fibers Ye Song, Mohan Srinivasarao to noninvasively obtain high-resolution three-dimensional images of the spatial distribution of dyes (fluorescein) in fibers dyed for various length of times. Integration over the dye distribution yields the total amount

Srinivasarao, Mohan

124

Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy  

SciTech Connect (OSTI)

The atomic-resolved reversal of the polarity across an antiphase boundary (APB) was observed in GaSb films grown on Si by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The investigation of the interface structure at the origin of the APB reveals that coalescence of two domains with Ga-prelayer and Sb-prelayer causes the sublattice reversal. The local strain and lattice rotation distributions of the APB, attributed to the discordant bonding length at the APB with the surrounding GaSb lattice, were further studied using the geometric phase analysis technique. The crystallographic characteristics of the APBs and their interaction with other planar defects were observed with HAADF-STEM. The quantitative agreement between experimental and simulated images confirms the observed polarities in the acquired HAADF-STEM data. The self-annihilation mechanism of the APBs is addressed based on the rotation induced by anti-site bonds and APBs' faceting.

Hosseini Vajargah, S.; Woo, S. Y.; Botton, G. A. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Brockhouse Institute for Material Research, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Ghanad-Tavakoli, S. [Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Kleiman, R. N.; Preston, J. S. [Brockhouse Institute for Material Research, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

2012-11-01T23:59:59.000Z

125

scanning tunneling microscopy | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(3-dimercapto-1-propanol, BAL)significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the...

126

Strain relief and AlSb buffer layer morphology in GaSb heteroepitaxial films grown on Si as revealed by high-angle annular dark-field scanning transmission electron microscopy  

SciTech Connect (OSTI)

The interfacial misfit (IMF) dislocation array of an epitaxial GaSb film on a Si substrate has been imaged with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The mismatch strain accommodation through dislocation formation has been investigated using geometric phase analysis (GPA) on HAADF-STEM images with atomic resolution to probe the defects' local strain distribution. These measurements indicate that the lattice parameter of the epitaxial film recovers its bulk value within three unit cells from the interface due to the relaxation through IMF dislocations. The atomic number contrast of the HAADF-STEM images and energy dispersive x-ray spectrometry illustrate the formation of islands of AlSb buffer layer along the interface. The role of the AlSb buffer layer in facilitating the GaSb film growth on Si is further elucidated by investigating the strain field of the islands with the GPA.

Vajargah, S. Hosseini; Couillard, M.; Cui, K. [Department of Material Science and Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1 (Canada); Tavakoli, S. Ghanad; Robinson, B.; Kleiman, R. N.; Preston, J. S. [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Botton, G. A. [Department of Material Science and Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2011-02-21T23:59:59.000Z

127

Atom probe field-ion microscopy investigation of nickel base superalloy welds  

SciTech Connect (OSTI)

Microstructure development and elemental partitioning between {gamma} and {gamma}{prime} were measured in PWA-1480 electron beam welds and CMSX-4 pulsed-laser welds. In PWA-1480 EB welds, eutectic {gamma}{prime} phases were observed along the dendritic boundaries. The elemental partitioning between {gamma} and {gamma}{prime} was found to be similar to that in PWA-1480 base metal. In CMSX-4 pulsed laser welds, negligible eutectic {gamma}{prime} was observed. In addition, fine and irregularly shaped {gamma}{prime} precipitates were observed. The elemental partitioning between {gamma} and {gamma}{prime} was found to be different from that measured in the base metal. Large concentration gradients were observed in the {gamma} phase. The {gamma}{prime} precipitation kinetics in CM247DS alloy was measured using dilatometry and showed differences with different cooling rates. The microstructural investigations showed that at large undercoolings the number density of {gamma}{prime} precipitates increased and led to a finer size. This supports the microstructure development observations in PWA-1480 and CMSX-4 welds. Thermodynamic and kinetic calculations for the Ni-Al-Cr alloy system showed that as the cooling rate increases, the {gamma}{prime} growth leads to large concentration gradients in the {gamma} phase. The calculations agree with the atom probe results from PWA-1480 and CMSX-4 welds.

Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

1998-11-01T23:59:59.000Z

128

Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging  

SciTech Connect (OSTI)

This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

Lorenz, Matthias [ORNL] [ORNL; Ovchinnikova, Olga S [ORNL] [ORNL; Kertesz, Vilmos [ORNL] [ORNL; Van Berkel, Gary J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

129

Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy  

SciTech Connect (OSTI)

One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

2014-02-21T23:59:59.000Z

130

Type of presentation: Oral IT-10-O-2435 Towards 4-D EEL spectroscopic scanning confocal electron microscopy  

E-Print Network [OSTI]

the entire energy loss range. References: [1] P.D. Nellist, P. Wang, Annual Review of Materials Research, 42 electron microscopy with electron energy-loss spectroscopy (STEM-EELS) has been widely used for materials-aberrations in the post-specimen optics, inelastically scattered electrons with different energy losses E are focused

Dunin-Borkowski, Rafal E.

131

Probes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FORPoints of Contact Privacy Points ofPrivateProbes

132

Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy  

SciTech Connect (OSTI)

The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

Harumoto, T. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sawada, H. [Japan Electron Optics Laboratory (JEOL) Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Tanaka, T.; Tanishiro, Y.; Takayanagi, K. [Department of Physics, Tokyo Institute of Technology, 2-12-1-H-51 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)

2013-02-28T23:59:59.000Z

133

Electronic structures and bonding properties of chlorine-treated nitrogenated carbon nanotubes: X-ray absorption and scanning photoelectron microscopy studies  

SciTech Connect (OSTI)

The electronic and bonding properties of nitrogenated carbon nanotubes (N-CNTs) exposed to chlorine plasma were investigated using C and N K-edge x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy (SPEM). The C and N K-edge XANES spectra of chlorine-treated N-CNTs consistently reveal the formation of pyridinelike N-CNTs by the observation of 1s{yields}{pi}*(e{sub 2u}) antibonding and 1s{yields}{pi}*(b{sub 2g}) bonding states. The valence-band photoemission spectra obtained from SPEM images indicate that chlorination of the nanotubes enhances the C-N bonding. First-principles calculations of the partial densities of states in conjunction with C K-edge XANES data identify the presence of C-Cl bonding in chlorine treated N-CNTs.

Ray, S. C.; Pao, C. W.; Tsai, H. M.; Chiou, J. W.; Pong, W. F.; Chen, C. W.; Tsai, M.-H.; Papakonstantinou, P.; Chen, L. C.; Chen, K. H.; Graham, W. G. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); NRI, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, County Antrim BT37OQB, Northern Ireland (United Kingdom); Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics and Astronomy, Queens University of Belfast, Belfast, Antrim BT71NN, Northern Ireland (United Kingdom)

2007-05-07T23:59:59.000Z

134

Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis  

SciTech Connect (OSTI)

A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

2007-05-16T23:59:59.000Z

135

Infrared Scattering Scanning Near-Field Optical Microscopy Using An External Cavity Quantum Cascade Laser For Nanoscale Chemical Imaging And Spectroscopy of Explosive Residues  

SciTech Connect (OSTI)

Infrared scattering scanning near-field optical microscopy (s-SNOM) is an apertureless superfocusing technique that uses the antenna properties of a conducting atomic force microscope (AFM) tip to achieve infrared spatial resolution below the diffraction limit. The instrument can be used either in imaging mode, where a fixed wavelength light source is tuned to a molecular resonance and the AFM raster scans an image, or in spectroscopy mode where the AFM is held stationary over a feature of interest and the light frequency is varied to obtain a spectrum. In either case, a strong, stable, coherent infrared source is required. Here we demonstrate the integration of a broadly tunable external cavity quantum cascade laser (ECQCL) into an s-SNOM and use it to obtain infrared spectra of microcrystals of chemicals adsorbed onto gold substrates. Residues of the explosive compound tetryl was deposited onto gold substrates. s-SNOM experiments were performed in the 1260-1400 cm?1 tuning range of the ECQCL, corresponding to the NO2 symmetric stretch vibrational fingerprint region. Vibrational infrared spectra were collected on individual chemical domains with a collection area of *500nm2 and compared to ensemble averaged far-field reflection-absorption infrared spectroscopy (RAIRS) results.

Craig, Ian M.; Phillips, Mark C.; Taubman, Matthew S.; Josberger, Erik E.; Raschke, Markus Bernd

2013-02-04T23:59:59.000Z

136

Correlation between Charge State of Insulating NaCl Surfaces and Ionic Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Force Microscopy Study  

SciTech Connect (OSTI)

In situ ambient pressure X-ray photoelectron spectroscopy (APPES) and scanning force microscopy were used to characterize the surface discharge induced by water layers grown on (001) surfaces of sodium chloride single crystals. The APPES studies show that both kinetic energy (KE) and full width at half-maximum (FWHM) of the Na 2s and Cl 2p core level peaks, monitored as a function of relative humidity (RH), mimic surface conductivity curves measured using scanning force microscopy. The KE position and FWHM of the core level peaks therefore are directly related to the solvation and diffusion of ions at the NaCl(100) surface upon adsorption of water.

Verdaguer, Albert; Jose Segura, Juan; Fraxedas, Jordi; Bluhm, Hendrik; Salmeron, Miquel

2008-09-03T23:59:59.000Z

137

Scanning tunneling microscopy of dimeric and polymeric products of electroreduced (Re(CO) sub 3 (4-vinyl,4 prime -methyl-2,2 prime -bipyridine)Cl)  

SciTech Connect (OSTI)

Scanning tunneling microscopy (STM) was used to image adsorbed products resulting from electroreduction of (Re(CO){sub 3}(vbpy)Cl) (vbpy = 4-vinyl,4{prime}-methyl-2,2{prime}-bipyridine) on highly oriented pyrolytic graphite (HOPG). STM images, in air, of HOPG electrodes following electroreduction of (Re(CO){sub 3}(vbpy)Cl) (in acetonitrile/0.1 M tetra-n-butylammonium perchlorate) by cycling the potential between 0 and {minus}2.0 V vs a sodium saturated colomel electrode (SSCE) show molecular species uniformly distributed on the surface including approximately dumbbell shaped molecules ({approx} 40 {times} 20 {angstrom}). The size and shape of these aggregates is consistent with products derived from vinyl-vinvyl coupling of Re-Re bonded dimers: ((vbpy)(CO){sub 3}Re-Re(CO){sub 3}(vbpyH-vbpyH)(CO){sub 3}Re-Re(CO){sub 3}(vbpy)). STM images of electrodes prepared by cycling the potential between 0 and {minus}1.45 V vs SSCE (less reducing conditions) show highly nonuniform coating of the surface by polymer. Several polymer morphologies were observed with polymer nucleation preferentially occurring at step sites on HOPG.

Snyder, S.R.; White, H.S. (Univ. of Minnesota, Minneapolis (USA)); Lopez, S.; Abruna, H.D. (Cornell Univ., Ithaca, NY (USA))

1990-02-14T23:59:59.000Z

138

Elemental relationships in rock varnish as seen with SEM/EDX (scanning electron microscopy/energy dispersive x-ray) elemental line profiling  

SciTech Connect (OSTI)

The heterogeneous nature of rock varnish requires a thorough survey of elemental and mineralogic compositions before relating chemical variability of rock varnish to past geochemical environments. Elemental relationships in rock varnish can be examined using scanning electron microscopy (SEM) in conjunction with an elemental line profiling routine using semi-quantitative, energy dispersive x-ray (EDX) analysis. Results of SEM/EDX analysis suggest: variations in cation concentrations used in varnish cation ratio dating relate more specifically to variations in detritus within the varnish than to element mobility as defined by weathering indices; Mn concentration rather than Mn:Fe ratios may be a more appropriate indicator of paleoclimatic fluctuations; and the Mn-oxide phase existing in varnish is most likely a Ba-enriched phase rather than birnessite. Element line profiling offers great potential for gaining insights into geochemical processes affecting the deposition and diagenesis of rock varnish and for testing hypotheses relating to its chemical variability. 27 refs., 9 figs.

Raymond, R. Jr.; Reneau, S.L.; Harrington, C.D.

1990-01-01T23:59:59.000Z

139

Scanning Electron Microscopy Analysis of Fuel/Matrix Interaction Layers in Highly-Irradiated U–Mo Dispersion Fuel Plates with Al and Al–Si Alloy Matrices  

SciTech Connect (OSTI)

In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U–7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U–7Mo dispersion fuel elements with pure Al, Al–2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U–7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission-gas bubbles. Additionally, solid-fission-product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U–7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al–Si matrices.

Dennis D. Keiser, Jr.; Jan-Fong Jue; Brandon D. Miller; Jian Gan; Adam B. Robinson; Pavel Medvedev; James Madden; Dan Wachs; Mitch Meyer

2014-04-01T23:59:59.000Z

140

Directly correlated transmission electron microscopy and atom...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary Directly correlated transmission electron microscopy...

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries  

SciTech Connect (OSTI)

Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

2014-10-27T23:59:59.000Z

142

Novel Approaches to Soft X-ray Spectroscopy: Scanning TransmissionX-ray Microscopy and Ambient Pressure X-Ray PhotoelectronSpectroscopy  

SciTech Connect (OSTI)

This workshop focused on novel spectroscopies at Beamlines 11.0.2, 5.3.2 and 9.3.2 at the ALS. The workshop brought together users from a wide range of fields to highlight recent experimental and technical developments both in scanning transmission X-ray spectroscopy (STXM) and ambient pressure photoelectron spectroscopy (APPES). The morning session featured talks on experiments involving new developments at the STXM, while the afternoon session was devoted to those using APXPS. In the morning session, Tolek Tyliszczak discussed the improved detector developments at the STXM, such as an avalanche photodiode detector and fluorescence and electron detection, as well as the continued development of in situ cells for heating, gas flow, and electrochemical cells. Of these, only the avalanche photodiode in combination with a novel multichannel photon-counting system is in routine use in time-resolved studies. Bartel Van Waeyenberge (Ghent University) presented results of magnetic imaging with a time resolution of 70-100 ps combined with a lateral resolution of 20-40 nm performed with the STXM (Beamline 11.0.2). As a complement to the time-domain ''pump-and-probe'' measurements, they developed a frequency-domain ''sine-excitation'' technique in order to study specific eigenmodes of these ferromagnetic patterns with high spatial resolution. This new approach was used to study the gyrotropic vortex motions in micron-sized ferromagnetic patterns. Adam Hitchcock (McMaster University) presented the development, in collaboration with Daniel Guay (INRS, Varennes) and Sherry Zhang, of the apparatus and techniques for applying STXM to in-situ studies of electrochemistry, in particular electrochromism in polyaniline. In addition, substantial progress was reported on a joint project to develop substrates and methods for chemically selective lithography of multilayer polymer systems. Selective patterns, such as that displayed in the figure, can now be written efficiently with the bend magnet STXM on Beamline 5.3.2. Yves Acremann (SSRL) discussed time and spatially resolved X-ray magnetic circular dichroism (XMCD) experiments on spin transfer devices at the STXM (Beamline 11.0.2). These elegant experiments explore time resolved measurements of the magnetization dynamics within a 100 x 150 nm sample influenced by a spin-polarized current. This experiment shows that the magnetization in these magnetic nanostructures are not uniform, as they are influenced by the Oersted field of the charge current needed to generate the spin current. The implementation of a novel multichannel photon counting system in combination with an avalanche photon detector decreased the data-acquisition time by a factor of 10, owing to its ability to resolve the structure of multi bunch mode. Gordon E. Brown, Jr. (Stanford University and SSRL) described ''Applications of STXM to Microbial Bioweathering and Biomineralization''. In the interaction of bacteria with ferrihydrite nanoparticles, microenvironments that were very different than the bulk material were observed, showing that bulk thermodynamics may not be useful for predicting micro phases. Gordon also presented work showing that iron nanoparticles are attracted to the negatively charged bacteria and form a coating that reduces iron oxide minerals. The afternoon session started with presentations by Simon Mun and Hendrik Bluhm, who discussed the current status and the future plans for the two APPES end-stations at the ALS, which are located at Beamlines 9.3.2 and 11.0.2, respectively. In both end-stations, samples can be measured in gaseous environments at pressures of up to several Torr, which makes possible the investigation of numerous phenomena, in particular in the fields of atmospheric and environmental science as well as heterogeneous catalysis. Specific examples of the application of APPES were shown in the following presentations. John Hemminger (University of California, Irvine) reported on APPES investigations at Beamlines 9.3.2 and 11.0.2 of the interaction of alkali halide surfaces with water. The m

Bluhm, Hendrik; Gilles, Mary K.; Mun, Simon B.; Tyliszczak, Tolek

2006-02-01T23:59:59.000Z

143

Scanning Probe Alloying Nanolithography (SPAN)  

E-Print Network [OSTI]

..................................................................... 66 xi Page Figure 6.1 (a) Cross-sectional view for the gold-coated PVDF (b) L-shaped sensor used in the tests (c) Attachment location at the ?femur- tibia? joint is shown .............. 73 Figure 6.2 Experimental setup for roach....5 Voltage output generated by sensors attached to a roach?s leg ........ 78 Figure 6.6 The linear motorized system mimics the bending motion of the roaches? legs ............................................................................ 80 Figure...

Lee, Hyungoo

2010-07-14T23:59:59.000Z

144

Atomic-Scale Investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling Microscopy and Spectroscopy  

E-Print Network [OSTI]

Atomic-Scale Investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling ReceiVed: June 26, 2010 Graphene was epitaxially grown on a 6H-SiC(0001) substrate by thermal the evolution of the graphene growth as a function of the temperature. We found that the evaporation of Si

Kim, Sehun

145

Influence of Surface Preparation on Scanning Kelvin Probe Microscopy and Electron Backscatter Diffraction Analysis of Cross Sections of CdTe/CdS Solar Cells: Preprint  

SciTech Connect (OSTI)

In this work we investigated different methods to prepare cross sections of CdTe/CdS solar cells for EBSD and SKPM analyses. We observed that procedures used to prepare surfaces for EBSD are not suitable to prepare cross sections, and we were able to develop a process using polishing and ion-beam milling. This process resulted in very good results and allowed us to reveal important aspects of the cross section of the CdTe film. For SKPM, polishing and a light ion-beam milling resulted in cross sections that provided good data. We were able to observe the depletion region on the CdTe film and the p-n junction as well as the interdiffusion layer between CdTe and CdS. However, preparing good-quality cross sections for SKPM is not a reproducible process, and artifacts are often observed.

Moutinho, H. R.; Dhere, R. G.; Jiang, C. S.; Al-Jassim, M. M.

2011-06-01T23:59:59.000Z

146

Probing the Superconducting Order Parameter of High-Tc Superconductor Bi2Sr2CaCu2O8+? by Scanning Josephson Tunneling Microscopy  

E-Print Network [OSTI]

Turner, Principles of Superconductive Devices and Circuits (P. G. de Gennes, Superconductivity , edited by R. D. Parks (Tinkham, Introduction to Superconductivity (McGraw-Hill, New

Kimura, Hikari

2009-01-01T23:59:59.000Z

147

Intrinsic current-voltage properties of nanowires with four-probe scanning tunneling microscopy: A conductance transition of ZnO nanowire  

E-Print Network [OSTI]

strain. The ZnO-nanowire samples used in our experiments were synthesized via reduction and oxidation of ZnS powder13 and dispersed on a silicon wafer coated with a 500-nm-thick silicon dioxide layer as insulator. The STM tips were made from a tungsten or gold wire using the stan- dard preparation proce

Liu, Feng

148

Probing the Superconducting Order Parameter of High-Tc Superconductor Bi2Sr2CaCu2O8+? by Scanning Josephson Tunneling Microscopy  

E-Print Network [OSTI]

for the high- T C superconducting cuprates. Bibliography [Microscope …………………. 15 2-2 Superconducting STM tip and S/I/SProbing the Superconducting Order Parameter of High-T C

Kimura, Hikari

2009-01-01T23:59:59.000Z

149

Combining In-Situ Buffer-Layer-Assisted-Growth with Scanning Probe Microscopy for Formation and Study of Supported Model Catalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structure researchinREVISIONApril »STM

150

Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of  

E-Print Network [OSTI]

Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

151

Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip  

SciTech Connect (OSTI)

We have performed both Josephson and quasiparticle tunneling in vacuum tunnel junctions formed between a conventional superconducting scanning tunneling microscope tip and overdoped Bi2Sr2CaCu2O8+ single crystals. A Josephson current is observed with a peak centered at a small finite voltage due to the thermal-fluctuation-dominated superconducting phase dynamics. Josephson measurements at different surface locations yield local values for the Josephson ICRN product. Corresponding energy gap measurements were also performed and a surprising inverse correlation was observed between the local ICRN product and the local energy gap.

Kimura, H.; Barber Jr., R. P.; Ono, S.; Ando, Yoichi; Dynes, Robert C.

2009-10-28T23:59:59.000Z

152

Tunable nanowire nonlinear optical probe  

SciTech Connect (OSTI)

One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.

Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong

2008-02-18T23:59:59.000Z

153

Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash  

SciTech Connect (OSTI)

Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

2013-01-21T23:59:59.000Z

154

Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution  

SciTech Connect (OSTI)

We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.; Molenkamp, L. W. [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany)] [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany); Biermann, K.; Santos, P. V. [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)] [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)

2013-12-15T23:59:59.000Z

155

Probing Structure-Property Relationship of Energy Storage Materials Using Ex-Situ, In-Situ Dynamic Microscopy and Spectroscopy with High Spatial and Fast Temporal Resolution  

E-Print Network [OSTI]

Probing Structure-Property Relationship of Energy Storage Materials Using Ex-Situ, In-Situ Dynamic, chemistry, and properties of energy storage materials Find general guiding principle for accelerated-situ chemical imaging and spectroscopic study of structure and chemical evolution of new energy storage

156

Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces  

SciTech Connect (OSTI)

The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of their top planes. Hence, we name them as Pd+(with Pd) and Pd-(without Pd). Based on their planer structure and the step height, it can be said that these two families can be viable surface terminations. However, besides the Pd content, these two sets differ in terms of relative densities of their top planes as well as the gap separating the layer from the nearest atomic plane. The experimental data and other arguments lead to the conclusion that the Pd- family is favored over the Pd+. This has an important implication on the interpretation of local motifs seen in the high resolution STM images. In other words, the dark stars are not formed by cut-Bergmans rather they are formed by cut-Mackays.

Unal, Baris

2008-12-01T23:59:59.000Z

157

A New Interpretation of the Scanning Tunneling Microscope Image...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Graphite. A New Interpretation of the Scanning Tunneling Microscope Image of Graphite. Abstract: In this work, highly-resolved scanning tunneling microscopy images of graphite...

158

katherine henderson Pathology Slide Scanning rev1 Page 1 10/21/14 Scanning in Pathology  

E-Print Network [OSTI]

katherine henderson Pathology Slide Scanning rev1 Page 1 10/21/14 Scanning in Pathology Pathology offers several scanning methods: · Whole slide scans to be used as virtual microscopy ­ Aperio Coolscan for 35mm slides or glass slides with adapter (scans tissue area, not cells) The above scanners

159

Image Resolution in Scanning Transmission Electron Microscopy  

SciTech Connect (OSTI)

Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

Pennycook, S. J.; Lupini, A.R.

2008-06-26T23:59:59.000Z

160

Scanning electron microscopy of intestinal villous structures  

E-Print Network [OSTI]

briefly in running water for 30 minutes and were dehydrated through graded ethanol series (1 hour each in 50, 70, 80, 95 and 100 %). Dehydrated specimens were dried in a carbon dioxide critical point drier to avoid exposure of the specimens to any surface tension forces when drying. The dried specimens were

Boyer, Edmond

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Dielectric microscopy with submillimeter resolution  

E-Print Network [OSTI]

In analogy with optical near-field scanning methods, we use tapered dielectric waveguides as probes for a millimeter wave vector network analyzer. By scanning thin samples between two such probes we are able to map the spatially varying dielectric properties of materials with sub-wavelength resolution; using a 150 GHz probe in transmision mode we see spatial resolution of around 500 microns. We have applied this method to a variety of highly heterogeneous materials. Here we show dielectric maps of granite and oil shale.

Nathan S. Greeney; John A. Scales

2007-06-20T23:59:59.000Z

162

Characterization of multilayer nitride coatings by electron microscopy and modulus mapping  

SciTech Connect (OSTI)

This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: • Microstructure of a triple layer nitride coating studied at multiple length scales. • Phases identified by EDS, EBSD and SAED (TEM). • Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. • Modulus mapping identified moduli variation even in a nani-multilayer architecture.

Pemmasani, Sai Pramod [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Rajulapati, Koteswararao V. [School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Ramakrishna, M.; Valleti, Krishna [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Gundakaram, Ravi C., E-mail: ravi.gundakaram@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Joshi, Shrikant V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India)

2013-07-15T23:59:59.000Z

163

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

164

E-Print Network 3.0 - advanced microwave scanning Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measurements. Near-field microwave reflectometer... -field microwave probe and signal processing section. This automated scanning 12;platform is easy to use... scanning...

165

Sub-microsecond-resolution probe microscopy  

DOE Patents [OSTI]

Methods and apparatus are provided herein for time-resolved analysis of the effect of a perturbation (e.g., a light or voltage pulse) on a sample. By operating in the time domain, the provided method enables sub-microsecond time-resolved measurement of transient, or time-varying, forces acting on a cantilever.

Ginger, David; Giridharagopal, Rajiv; Moore, David; Rayermann, Glennis; Reid, Obadiah

2014-04-01T23:59:59.000Z

166

Scanning optical microscope with long working distance objective  

DOE Patents [OSTI]

A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

Cloutier, Sylvain G. (Newark, DE)

2010-10-19T23:59:59.000Z

167

Scanned probe characterization of semiconductor nanostructures  

E-Print Network [OSTI]

of the window and wing region of the a–plane GaN film,? m thick GaN film was then grown through the windows in thewindow regions, lateral overgrowth over the dielectric mask, and coalescence of the film

Law, James Jeremy MacDonald

2009-01-01T23:59:59.000Z

168

Scanned probe characterization of semiconductor nanostructures  

E-Print Network [OSTI]

is cancelled out and the voltage oscillation ceases. Thisthe sample, this ac voltage causes a mechanical oscillation.voltage to the tip through a feedback loop, the mechanical oscillations

Law, James Jeremy MacDonald

2009-01-01T23:59:59.000Z

169

Scanning Probe AFM Compound Microscope | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclearof DataNarrows Dam -

170

Microscopy image segmentation tool: Robust image data analysis  

SciTech Connect (OSTI)

We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)] [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

2014-03-15T23:59:59.000Z

171

Scanning TEM | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon Home WaterScanning Probe

172

Microscopy | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells InDioxideusingMicroscopy

173

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy  

E-Print Network [OSTI]

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy Carolyn A. SuttonCarolyn A. Sutton PH 464PH 464 #12;OverviewOverview The OpticalThe Optical MicroscopeMicroscopy 4 Pi Microscopy4 Pi Microscopy Optical Microscope for Metallography #12;Optical Microscope: OriginsOptical

La Rosa, Andres H.

174

Free motion scanning system  

DOE Patents [OSTI]

The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

Sword, Charles K. (Pleasant Hills, PA)

2000-01-01T23:59:59.000Z

175

Probing the Degradation Mechanisms in Electrolyte Solutions for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy. Probing the Degradation Mechanisms in Electrolyte Solutions for...

176

atom probe study: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

using both APT and correlative microscopy techniques, a more complete understanding... Bennett, Samantha 2011-02-08 2 ATOM-PROBE TOMOGRAPHIC STUDY OF THE THREE-DIMENSIONAL...

177

Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy  

SciTech Connect (OSTI)

Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL) [Center for Nanophase Materials Sciences, ORNL

2010-10-19T23:59:59.000Z

178

electric Probe Applications Laboratory, Hanyang University DiPS (Diversified Plasma Simulator)  

E-Print Network [OSTI]

electric Probe Applications Laboratory, Hanyang University DiPS (Diversified Plasma Simulator Science, Toki, Gifu, Japan Kyu-Sun Chung and ePALers* Hanyang University, Seoul, Korea #12;electric Probe and processing plasmas with various electric probes: fast-scanning single probe, triple probe, Mach probe, slow

Princeton Plasma Physics Laboratory

179

Spectrophotometric probe  

DOE Patents [OSTI]

A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

Prather, W.S.; O'Rourke, P.E.

1994-08-02T23:59:59.000Z

180

Fiber delivered probe for efficient CARS imaging of tissues  

E-Print Network [OSTI]

probe based on microelectromechanical system mirror forbased on a microelectromechanical systems scanning mirror,”based on a microelectromechanical systems two-dimensional

Balu, Mihaela; Liu, Gangjun; Chen, Zhongping; Tromberg, Bruce J; Potma, Eric O

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - absorption spectroscopic microscopy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

version of scanning near-field optical microscopy (SNOM). The tunable infrared radiation... the l 3.5 mm, CH vibrational stretch mode absorption band. ... Source:...

182

annular dark-field scanning: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry nanoparticles. The image contrast in HAADF-STEM is...

183

SCANNING ACOUSTIC MICROSCOPY MODELING FOR MICROMECHANICAL MEASUREMENTS OF COMPLEX SUBSTRATES  

E-Print Network [OSTI]

function of the substrate-fluid interface form the two key problems of effective SAM modeling. In the SAM modeling literature, a variety of approaches have been proposed for evaluating Eq 2.1. The approaches most frequently adopted are founded either... 1973). As seen from Eq 2.1, the evaluation of the reflected pressure field requires the computation of the angular spectrum and reflectance function. In general, these quantities can be computed independently. For angular spectrum calculation we...

Marangos, Orestes

2010-05-31T23:59:59.000Z

184

Surface Science Letters Scanning tunneling microscopy study of the anatase  

E-Print Network [OSTI]

understand, and ultimately im- prove, the performance of TiO2 as a gas sensor or heterogeneous catalyst and as a photo-active ma- terial. TiO2 exists in three crystallographic poly- morphs. These are: anatase promise as a more photo-active material than rutile [2], but relatively few surface studies have been

Diebold, Ulrike

185

Scanning Tunneling Microscopy currents on locally disordered graphene  

E-Print Network [OSTI]

Intrinsic ripples in graphene“, Nature Materials 6, 858 (Novoselov, ”Control of graphene’s properties by reversiblespectroscopy of monolayer graphene on SiO 2 ”, arXiv:

Tsai, Shan-Wen; Peres, Nuno M. R.; Santos, J. E.; Ribeiro, R. M.

2009-01-01T23:59:59.000Z

186

Multifocal Multiphoton Laser-Scanning Structured Illumination Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2

187

Scanning Tunneling Microscopy and Theoretical Study of Water Adsorption on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclearof DataNarrows DamFe3O4:

188

1996, Journal of Microscopy 181, 225-237 (and vol 182, p 240.) Multimodal microscopy by digital image processing  

E-Print Network [OSTI]

, Blakistone and Kyryk 1990 compared applications of polarised light, bright eld, DIC and scanning electron microscopy SEM in the paper industry. Fluorescence microscopy adds further possible imaging modes to light. 1 #12;1 Introduction Di erent imaging modes with the light microscope convey complementary infor

Stone, J. V.

189

Application of High-Angle Annular Dark Field Scanning Transmission  

E-Print Network [OSTI]

Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometry, and Energy-Filtered Transmission field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry). Techniquesthatareusefulinanalyzingultrafineatmospheric particles, such as STEM, EELS (electron energy loss spec- trometry), AFM, and mass spectrometry

Utsunomiya, Satoshi

190

SUBMOLECULAR IMAGING OF EPITAXIALLY CRYSTALLIZED HELICAL POLYOLEFINS BY ATOMIC FORCE MICROSCOPY  

E-Print Network [OSTI]

Digital Instruments, Inc., Santa Barbara, Cal. USA. Images were taken with an A­type scan head (max. scan microscopy EM and electron diffraction ED. AFM pictures with high resolution could be obtained when using polypropylene has been determined by electron microscopy EM and electron diffraction ED: chain conformation

Peters, Achim

191

E-Print Network 3.0 - array aperture probes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

29 NEAR-FIELD SCANNING OPTICAL MICRO PROBE INTEGRATED WITH ANANOMETER-SIZED LIGHT EMITTING DIODE Summary: apertures2,3 and probes with a light absorbing gold particle or a...

192

E-Print Network 3.0 - attached vibrational probe Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 NEAR-FIELD SCANNING OPTICAL MICRO PROBE INTEGRATED WITH ANANOMETER-SIZED LIGHT EMITTING DIODE Summary: to 93KHz with the probe attached. As the tip approaches the surface of...

193

Scanning evanescent electro-magnetic microscope  

DOE Patents [OSTI]

A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

2001-01-01T23:59:59.000Z

194

350-?m side-view optical probe for imaging the murine brain in vivo from the cortex to the hypothalamus  

E-Print Network [OSTI]

Miniature endoscopic probes offer a solution for deep brain imaging by overcoming the limited depth of intravital microscopy. We describe a small-diameter (350 ?m) graded-index optical probe with a side-view design for in ...

Kim, Jun Ki

195

An investigation of receiver probe development for magnetic resonance microscopy  

E-Print Network [OSTI]

planar microcoils and microcoil array designs are given that can be rearranged using integrated circuit and printed circuit board fabrication techniques....

Boyer, Jeffrey Scott

1995-01-01T23:59:59.000Z

196

Directly correlated transmission electron microscopy and atom probe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation ofthe APS User Office New

197

Computational microscopy for sample analysis  

E-Print Network [OSTI]

Computational microscopy is an emerging technology which extends the capabilities of optical microscopy with the help of computation. One of the notable example is super resolution fluorescence microscopy which achieves ...

Ikoma, Hayato

2014-01-01T23:59:59.000Z

198

The Application of Fluorescence Lifetime Imaging Microscopy to Quantitatively Map Mixing and Temperature in Microfluidic Systems   

E-Print Network [OSTI]

The technique of Fluorescence Lifetime Imaging Microscopy (FLIM) has been employed to quantitatively and spatially map the fluid composition and temperature within microfluidic systems. A molecular probe with a ...

Graham, Emmelyn M

2008-01-01T23:59:59.000Z

199

Analytical scanning evanescent microwave microscope and control stage  

DOE Patents [OSTI]

A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

2013-01-22T23:59:59.000Z

200

Three-dimensional Chemical Imaging of Embedded Nanoparticles using Atom Probe Tomography  

SciTech Connect (OSTI)

Analysis of nanoparticles is often challenging especially when they are embedded in a matrix. Hence, we have used laser-assisted atom probe tomography (APT) to analyze the Au-nanoclusters synthesized in situ using ion beam implantation in single crystal MgO matrix. APT analysis along with scanning transmission electron microscopy and energy dispersive spectroscopy (STEM-EDS) indicated that the nanoparticles have an average size ~ 8 - 12 nm. While it is difficult to analyze the composition of individual nanoparticles using STEM, APT analysis can give three dimensional compositions of the same. It was shown that the maximum Au-concentration in the nanoparticles increases with increasing particle size, with a maximum Au-concentration of up to 50%.

Kuchibhatla, Satyanarayana V N T; Shutthanandan, V.; Prosa, Ty J.; Adusumilli, Praneet; Arey, Bruce W.; Buxbaum, Alex; Wang, Y. C.; Tessner, Ted; Ulfig, Robert M.; Wang, Chong M.; Thevuthasan, Suntharampillai

2012-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fiber optic probe of free electron evanescent fields in the optical frequency range  

SciTech Connect (OSTI)

We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50?keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300?nm (free-space) wavelength range.

So, Jin-Kyu, E-mail: js1m10@orc.soton.ac.uk; MacDonald, Kevin F. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Singapore)

2014-05-19T23:59:59.000Z

202

Nonlinear vibrational microscopy  

DOE Patents [OSTI]

The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

2000-01-01T23:59:59.000Z

203

Development of Micromachined Probes for Bio-Nano Applications  

E-Print Network [OSTI]

. A scanning electron micrograph showing the existence of a wear scar on the scanning probe tip after writing. ........................................ 51 Figure 32. Computer images reconstructed from AFM measurement results showing the formation...? tips. .......................................................................................... 56 xi Page Figure 35. An illustration of the controllable process for the formation of variable sized cavities based on bulk micromachining of an SOI...

Yapici, Murat K.

2010-01-14T23:59:59.000Z

204

Nanoscale Probing of Voltage Activated Oxygen Reduction/Evolution Reactions in Nanopatterned (LaxSr1-x)CoO3- Cathodes  

SciTech Connect (OSTI)

Bias-dependent mechanisms of reversible and irreversible electrochemical processes on a (La0.5Sr0.5)2CoO4 modified (LaxSr1-x)CoO3- surface are studied using dynamic electrochemical strain microscopy (D-ESM). The reversible oxygen reduction/evolution process is activated at voltages as low as 3 4 V and the degree of transformation increases linearly with applied bias. The irreversible processes associated with static surface deformation become apparent above 10 12 V. Post-mortem focused-ion milling combined with atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy is used to establish the mechanisms of irreversible transformations and attribute it to amorphization of the top layer of material. These studies both establish the framework for probing irreversible electrochemical processes in solids and illustrate rich spectrum of electrochemical transformations underpinning electrocatalytic activity in cobaltites.

Leonard, Donovan N [ORNL; Kumar, Amit [ORNL; Jesse, Stephen [ORNL; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Mutoro, Eva [Massachusetts Institute of Technology (MIT); Crumlin, Ethan [Massachusetts Institute of Technology (MIT); Shao-Horn, Yang [Massachusetts Institute of Technology (MIT); Kalinin, Sergei V [ORNL; Borisevich, Albina Y [ORNL

2013-01-01T23:59:59.000Z

205

Scanning ARM Cloud Radars Part I: Operational Sampling Strategies  

SciTech Connect (OSTI)

Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A “cloud surveillance” scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

2014-03-01T23:59:59.000Z

206

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect (OSTI)

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

207

Hydrodynamic ultrasonic probe  

DOE Patents [OSTI]

An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

Day, Robert A. (Livermore, CA); Conti, Armond E. (San Jose, CA)

1980-01-01T23:59:59.000Z

208

Cryogenic scanning Hall-probe microscope with centimeter scan range and submicron resolution  

E-Print Network [OSTI]

with 200 nm positioning resolution by coupling stepper motors to high-resolution drivers and reducing gears in coated conductors--high-Tc superconducting tapes--is demonstrated via model systems. We image an entire also use motor-driven microme- ters but couple them to improved electronics and reducing gears

Moler, Kathryn A.

209

Vector generator scan converter  

DOE Patents [OSTI]

High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

Moore, J.M.; Leighton, J.F.

1988-02-05T23:59:59.000Z

210

Vector generator scan converter  

DOE Patents [OSTI]

High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

1990-01-01T23:59:59.000Z

211

3D rotational diffusion microrheology using 2D video microscopy  

E-Print Network [OSTI]

We propose a simple way to perform three-dimensional (3D) rotational microrheology using two-dimensional (2D) video microscopy. The 3D rotational brownian motion of micrometric wires in a viscous fluid is deduced from their projection on the focal plane of an optical microscope objective. The rotational diffusion coefficient of the wires of length between 1-100 \\mu m is extracted, as well as their diameter distribution in good agreement with electron microscopy measurements. This is a promising way to characterize soft visco-elastic materials, and probe the dimensions of anisotropic objects.

Rémy Colin; Minhao Yan; Loudjy Chevry; Jean-François Berret; Bérengère Abou

2012-01-05T23:59:59.000Z

212

Microscopy (XSD-MIC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichaelGE1 Micropulse Lidar TheMicroscopy

213

Scanning micro-sclerometer  

DOE Patents [OSTI]

A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

Oliver, Warren C. (Knoxville, TN); Blau, Peter J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

214

Scanning micro-sclerometer  

DOE Patents [OSTI]

A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

Oliver, W.C.; Blau, P.J.

1994-11-01T23:59:59.000Z

215

Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy  

SciTech Connect (OSTI)

This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

2014-04-15T23:59:59.000Z

216

Introduction to Photoelectron Emission Microscopy: Principles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction to Photoelectron Emission Microscopy: Principles and Applications. Introduction to Photoelectron Emission Microscopy: Principles and Applications. Abstract: In the...

217

High temperature probe  

DOE Patents [OSTI]

A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

Swan, Raymond A. (Fremont, CA)

1994-01-01T23:59:59.000Z

218

Atom probe study of grain boundary segregation in technically pure molybdenum  

SciTech Connect (OSTI)

Molybdenum, a metal with excellent physical, chemical and high-temperature properties, is an interesting material for applications in lighting-technology, high performance electronics, high temperature furnace construction and coating technology. However, its applicability as a structural material is limited because of the poor oxidation resistance at high temperatures and a brittle-to-ductile transition around room temperature, which is influenced by the grain size and the content of interstitial impurities at the grain boundaries. Due to the progress of the powder metallurgical production during the last decades, the amount of impurities in the current quality of molybdenum has become so small that surface sensitive techniques are not applicable anymore. Therefore, the atom probe, which allows the detection of small amounts of impurities as well as their location, seems to be a more suitable technique. However, a site-specific specimen preparation procedure for grain boundaries in refractory metals with a dual focused ion beam/scanning electron microscope is still required. The present investigation describes the development and successful application of such a site-specific preparation technique for grain boundaries in molybdenum, which is significantly improved by a combination with transmission electron microscopy. This complimentary technique helps to improve the visibility of grain boundaries during the last preparation steps and to evidence the presence of grain and subgrain boundaries without segregants in atom probe specimens. Furthermore, in industrially processed and recrystallized molybdenum sheets grain boundary segregation of oxygen, nitrogen and potassium is successfully detected close to segregated regions which are believed to be former sinter pores. - Highlights: • First study of grain boundary segregation in molybdenum by atom probe • Site-specific preparation technique by FIB and TEM successfully developed • Grain boundary segregation of oxygen, nitrogen and potassium found • Segregation in former sinter-pores detected • Presence of grain boundaries without segregation evidenced.

Babinsky, K., E-mail: katharina.babinsky@stud.unileoben.ac.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Weidow, J., E-mail: jonathan.weidow@chalmers.se [Chalmers University of Technology, Department of Applied Physics, 412 96 Gothenburg (Sweden); Knabl, W., E-mail: wolfram.knabl@plansee.com [PLANSEE SE, Metallwerk-Plansee-Straße 71, 6600 Reutte (Austria); Lorich, A., E-mail: alexander.lorich@plansee.com [PLANSEE SE, Metallwerk-Plansee-Straße 71, 6600 Reutte (Austria); Leitner, H., E-mail: harald.leitner@bohler-edelstahl.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Primig, S., E-mail: sophie.primig@unileoben.ac.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria)

2014-01-15T23:59:59.000Z

219

Synchronisation in Scan-On-Scan-On-Scan I. Vaughan L. Clarkson  

E-Print Network [OSTI]

strategy. I. INTRODUCTION Electronic Support (ES) is that area of Electronic Warfare (EW) concerned-on-scan-on-scan' problem, important in Electronic Support. In this paper, the theory of three-way and higher

Clarkson, Vaughan

220

4 K, ultrahigh vacuum scanning tunneling microscope having two orthogonal tips with tunnel junctions as close as a few nanometers  

E-Print Network [OSTI]

with a scanning electron microscopy SEM , these two imaging methods nicely bridge the gap from mi- crons structure of semiconductor devices by interrupting the fabri- cation process.7­11 This has led

Thibado, Paul M.

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Scanning Microscopy, Vol. 5, No. 2, 1991 (Pages 317-328) Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA  

E-Print Network [OSTI]

(AMF O'Hare), IL 60666 USA 0891-7035/91$3.00+.00 RESTRICTED ENERGY TRANSFER IN LASER DESORPTION OF HIGH- guished importance in mass spectrometry. In our present study we survey different laser desorption methods of restricted energy transfer pathways as a pos- sible explanation to the volatilization of non-degraded large

Vertes, Akos

222

Atom probe tomography studies of Al{sub 2}O{sub 3} gate dielectrics on GaN  

SciTech Connect (OSTI)

Atom probe tomography was used to achieve three-dimensional characterization of in situ Al{sub 2}O{sub 3}/GaN structures grown by metal organic chemical vapor deposition (MOCVD). Al{sub 2}O{sub 3} dielectrics grown at three different temperatures of 700, 900, and 1000?°C were analyzed and compared. A low temperature GaN cap layer grown atop Al{sub 2}O{sub 3} enabled a high success rate in the atom probe experiments. The Al{sub 2}O{sub 3}/GaN interfaces were found to be intermixed with Ga, N, and O over the distance of a few nm. Impurity measurements data showed that the 1000?°C sample contains higher amounts of C (4?×?10{sup 19}/cm{sup 3}) and lower amounts of H (7?×?10{sup 19}/cm{sup 3}), whereas the 700?°C sample exhibits lower C impurities (<10{sup 17}/cm{sup 3}) and higher H incorporation (2.2?×?10{sup 20}/cm{sup 3}). On comparing with Al{sub 2}O{sub 3} grown by atomic layer deposition (ALD), it was found that the MOCVD Al{sub 2}O{sub 3}/GaN interface is comparatively abrupt. Scanning transmission electron microscopy data showed that the 900?°C and 1000?°C MOCVD films exhibit polycrystalline nature, while the ALD films were found to be amorphous.

Mazumder, Baishakhi, E-mail: bmazumder@engineering.ucsb.edu; Wu, Feng; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Liu, Xiang; Yeluri, Ramya; Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

2014-10-07T23:59:59.000Z

223

Carbon nanotube based electromechanical probes  

E-Print Network [OSTI]

Electromechanical probing applications continuously require smaller pitches, faster manufacturing and lower electrical resistance. Conventional techniques, such as MEMS based cantilever probes have their shortcomings in ...

Yaglioglu, Onnik, 1976-

2007-01-01T23:59:59.000Z

224

Foldable polymers as probes  

DOE Patents [OSTI]

Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

Li, Alexander D. Q. (Pullman, WA); Wang, Wei (Pullman, WA)

2009-07-07T23:59:59.000Z

225

Chemical sensing flow probe  

SciTech Connect (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

Laguna, G.R.; Peter, F.J.; Butler, M.A.

1999-02-16T23:59:59.000Z

226

Probing metal solidification nondestructively  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentationsSRS Responds toPrivacyProbingProbingProbing

227

Chemical sensing flow probe  

DOE Patents [OSTI]

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

228

ORNL microscopy directly images problematic lithium dendrites...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

229

National High Magnetic Field Laboratory: Optical Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of materials (such as this metallic superlattice) are produced in Optical Microscopy. Web-based Education This department runs four microscopy Web sites that together comprise...

230

Reproducible strain measurement in electronic devices by applying integer multiple to scanning grating in scanning moiré fringe imaging  

SciTech Connect (OSTI)

Scanning moiré fringe (SMF) imaging by high-angle annular dark field scanning transmission electron microscopy was used to measure the strain field in the channel of a transistor with a CoSi{sub 2} source and drain. Nanometer-scale SMFs were formed with a scanning grating size of d{sub s} at integer multiples of the Si crystal lattice spacing d{sub l} (d{sub s} ? nd{sub l}, n = 2, 3, 4, 5). The moiré fringe formula was modified to establish a method for quantifying strain measurement. We showed that strain fields in a transistor measured by SMF images were reproducible with an accuracy of 0.02%.

Kim, Suhyun, E-mail: u98kim@surface.phys.titech.ac.jp; Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum [Memory Analysis Science and Engineering Group, Samsung Electronics, San #16 Hwasung-city, Gyeonggi-Do 445-701 (Korea, Republic of); Kondo, Yukihito [EM Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan)

2014-10-15T23:59:59.000Z

231

FEATURE ARTICLE Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and  

E-Print Network [OSTI]

probes fast diffusion dynamics with vibrational selectivity. 1. Introduction Investigation of molecular-photon fluorescence microscopy a useful tool for in vivo imaging. Chemical imaging by use of inherent molecular is, however, limited by the long excitation wavelength (several micrometers) and the IR absorption

Xie, Xiaoliang Sunney

232

Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report  

SciTech Connect (OSTI)

A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

1994-10-01T23:59:59.000Z

233

Entanglement-assisted electron microscopy based on a flux qubit  

SciTech Connect (OSTI)

A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

Okamoto, Hiroshi, E-mail: okamoto@akita-pu.ac.jp [Department of Electronics and Information Systems, Akita Prefectural University, Yurihonjo 015-0055 (Japan); Nagatani, Yukinori [National Institute for Physiological Sciences, Okazaki 444-8787 (Japan)

2014-02-10T23:59:59.000Z

234

High Gain, Fast Scan, Broad Spectrum, Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM  

SciTech Connect (OSTI)

Parallax Research, Inc. proposes to produce a new type of x-ray spectrometer for use with Scanning Electron Microscopy (SEM) that would have the energy resolution of WDS and the ease of use of EDS with sufficient gain for lower energies that it can be used at low beam currents as is EDS. Parallax proposes to do this by development of new multiple reflection x-ray collimation optics, new diffractor technology, new detector technology and new scan algorithms.

David OHara; Dr. Eric Lochmer

2003-09-12T23:59:59.000Z

235

Convective heat flow probe  

DOE Patents [OSTI]

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

236

Nonlinear Chemical Imaging Microscopy: Near-Field Third Harmonic Generation Imaging of  

E-Print Network [OSTI]

- field scanning optical microscope (NSOM) is demon- strated for the first time. A femtosecond, tunable near- infrared laser was used to generate both nonresonant and resonantly enhanced third harmonic radiation in human red blood cells. We show that resonantly enhanced THG is a chemically specific bulk probe

Cohen, Ronald C.

237

Multispectral imaging probe  

DOE Patents [OSTI]

A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

Sandison, David R. (Moriarty, NM); Platzbecker, Mark R. (Albuquerque, NM); Descour, Michael R. (Tucson, AZ); Armour, David L. (Albuquerque, NM); Craig, Marcus J. (Albuquerque, NM); Richards-Kortum, Rebecca (Austin, TX)

1999-01-01T23:59:59.000Z

238

Multispectral imaging probe  

DOE Patents [OSTI]

A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

1999-07-27T23:59:59.000Z

239

Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission Electron Microscopy  

E-Print Network [OSTI]

Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission of graphene on Ru(0001) was investigated by photoemission electron microscopy (PEEM) and scanning tunneling, we show that graphene overlayers with sizes ranging from nanometers to sub-millimeters have been

Bao, Xinhe

240

Probing Mercury's Partnering Preferences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentationsSRS Responds toPrivacy ActProbingProbing

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Probing metal solidification nondestructively  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FORPoints ofProbing Strain-Induced ChangesProbing

242

Atom Probe Tomography | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. NozikAtom Probe Tomography Atom Probe

243

Dynamic imaging with electron microscopy  

SciTech Connect (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-02-20T23:59:59.000Z

244

Dynamic imaging with electron microscopy  

ScienceCinema (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-05-30T23:59:59.000Z

245

Langmuir probe diagnostic suite in the C-2 field-reversed configuration  

SciTech Connect (OSTI)

Several in situ probes have been designed and implemented into the diagnostic array of the C-2 field-reversed configuration (FRC) at Tri Alpha Energy [M. Tuszewski et al. (the TAE Team), Phys. Rev. Lett. 108, 255008 (2012)]. The probes are all variations on the traditional Langmuir probe. They include linear arrays of triple probes, linear arrays of single-tipped swept probes, a multi-faced Gundestrup probe, and an ion-sensitive probe. The probes vary from 5 to 7 mm diameter in size to minimize plasma perturbations. They also have boron nitride outer casings that prevent unwanted electrical breakdown and reduce the introduction of impurities. The probes are mounted on motorized linear-actuators allowing for programmatic scans of the various plasma parameters over the course of several shots. Each probe has a custom set of electronics that allows for measurement of the desired signals. High frequency ( > 5MHz) analog optical-isolators ensure that plasma parameters can be measured at sub-microsecond time scales while providing electrical isolation between machine and data acquisition systems. With these probes time-resolved plasma parameters (temperature, density, spatial potential, flow, and electric field) can be directly/locally measured in the FRC jet and edge/scrape-off layer.

Roche, T., E-mail: troche@trialphaenergy.com; Armstrong, S.; Knapp, K.; Slepchenkov, M. [Tri Alpha Energy Inc., PO Box 7010, Rancho Santa Margarita, California 92688 (United States); Sun, X. [Department of Modern Physics, University of Science and Technology of China, Hefei Anhui 230026 (China)

2014-11-15T23:59:59.000Z

246

Role of bias voltage and tunneling current in the perpendicular displacements of freestanding graphene via scanning  

E-Print Network [OSTI]

graphene via scanning tunneling microscopy Peng Xu, Steven D. Barber, Matthew L. Ackerman, James Kevin measurements of freestanding graphene as a function of applied bias voltage and tunneling current setpoint, the graphene approaches the STM tip, while, on the other hand, when the tunneling current is increased

Thibado, Paul M.

247

Scanning tunneling microscopy studies on the structure and stability of model catalysts  

E-Print Network [OSTI]

assistance has largely facilitated the writing of this dissertation. viii TABLE OF CONTENTS Page ABSTRACT .............................................................................................................. iii DEDICATION... of the Auger processes (KL 1 L 2,3 ). (a) Ionization of a core electron. (b) Excitation of an Auger electron........ 34 Figure 9 The performance and vibration isolation of the RHK VT-UHV300 STM. (a) Atomic resolution STM images obtained by RHK...

Yang, Fan

2009-05-15T23:59:59.000Z

248

A technique for quantitative and qualitative viewing of aquatic bacteria using scanning electron microscopy  

E-Print Network [OSTI]

microscopic enumeration techniques. Water samples are concentrated on pre-wetted (Triton X-100) Nuclepore filters (0. 2 um pore size) to prov1de a uniform distri- bution of bacteria on the filter surface and vacuum filtered (660 Torr). The filter... is transferred to a petri dish containing filter paper soaked 1n 2% glutaraldehyde and the bacter1a are fixed for one hour. Dehydration 1s performed by transferr1ng the filters through a series of petri dishes conta1ning filter paper saturated with 25, 50, 75...

Dreier, Thomas Michael

2012-06-07T23:59:59.000Z

249

Scanning Tunneling Microscopy Studies of Metal Clusters Supported on Graphene and Silica Thin Film  

E-Print Network [OSTI]

The understanding of nucleation and growth of metals on a planar support at the atomic level is critical for both surface science research and heterogeneous catalysis studies. In this dissertation, two planar substrates, including graphene and ultra...

Zhou, Zihao

2012-10-19T23:59:59.000Z

250

Scanning tunneling microscopy of doping and composilionallll-V homo.. and heterostructures  

E-Print Network [OSTI]

and compositional effects can be resolved by the topographic contrasts of constant-current STM images. The samples sections of sam~ pIes were prepared by two methods: (1) in situ cleaving in an UHY c

251

A revision of generic concepts in the subfamily Acetabularieae (Acetabulariaceae, dasycladales) based on scanning electron microscopy  

E-Print Network [OSTI]

by Eiseman (1970) in Lake Surprise, Florida. He reported a variety of phenotypes which formed a continuum between Chalmasia antillana Solms-Laubach, 1895 (calcified cysts} and Acetabularia farlowii Solms-Laubach, 1895 (uncalcified cysts). He concluded... lime matrix between adjacent cysts similar to the type of calcification in the genus Acicularia. He also reported a difference in crystal habits produced by species of Acetabularia anti liana. found in two different habitats, again indicating...

Bailey, Glenn Paul

1975-01-01T23:59:59.000Z

252

SINTERING OF A12O3 POWDER COMPACT BY HOT STAGE SCANNING ELECTRON MICROSCOPY  

E-Print Network [OSTI]

from W. R. Grace, General Electric and Lniun Carbide Co:apa!2 G3 WITH 0..1 WT. % MgG GENERAL ELECTRIC Co. GREEN DENSITY·compacts. WITH 0.1 WT. GENERAL ELECTRIC CO. EEN DENSITY: 40

Wang, D.N.-K.

2010-01-01T23:59:59.000Z

253

Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy  

E-Print Network [OSTI]

emerging in the field of optoelectronics and nanophotonicsemerging in the field of optoelectronics and nanophotonics.

Yang, P.

2009-01-01T23:59:59.000Z

254

SINTERING OF A12O3 POWDER COMPACT BY HOT STAGE SCANNING ELECTRON MICROSCOPY  

E-Print Network [OSTI]

2 G3 WITH 0..1 WT. % MgG GENERAL ELECTRIC Co. GREEN DENSITY·compacts. WITH 0.1 WT. GENERAL ELECTRIC CO. EEN DENSITY: 40R. Grace, General Electric and Lniun Carbide Co:apa! lic,,~

Wang, D.N.-K.

2010-01-01T23:59:59.000Z

255

SCANNING ELECTRON MICROSCOPY AND PORE CASTING: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH  

SciTech Connect (OSTI)

Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

Thomas C. Chidsey Jr; David E. Eby; Louis H. Taylor

2003-12-01T23:59:59.000Z

256

Characterization and Theory of Electrocatalysts Based on Scanning Electrochemical Microscopy Screening Methods  

E-Print Network [OSTI]

.g., by water-in-oil micro- emulsion or template methods), prepare carbon-supported catalysts state...). 7. Carry out theoretical studies of the catalyst to improve models for how they work

Henkelman, Graeme

257

Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy  

SciTech Connect (OSTI)

The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solving the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.

Gregerova, Miroslava, E-mail: mirka@sci.muni.cz [Masaryk University in Brno, Faculty of Science, Institute of Geological Sciences, Kotlarska 2, 611 37 Brno (Czech Republic); Vsiansky, Dalibor, E-mail: daliborv@centrum.cz [Research Institute of Building Materials, JSC., Hnevkovskeho 65, 617 00 Brno (Czech Republic)

2009-07-15T23:59:59.000Z

258

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

E-Print Network [OSTI]

related to the total atomic absorption cross section, ? A (number. Tabulations of atomic absorption cross sections areC are the mass absorption coefficients and atomic masses for

Moffet, Ryan C.

2011-01-01T23:59:59.000Z

259

Scanning Electron Microscopy of Squid, Loligo peale;: Raw, Cooked, and Frozen Mantle  

E-Print Network [OSTI]

OTWELL and GEORGE G. GIDDINGS W. Steven Otwell is with the Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611. George G. Gid- dings is with the Fundacion Chile, Avda Santa, but cooking caused gross distortions in all mantle tissues. North Carolina, and cleaned for use (skin, head

260

Evaluation of drilled circuit boards using scanning white light interference microscopy  

E-Print Network [OSTI]

of panels drilled at one time. ~ Head Height (HD) - Height of the drill head in inches over the panel. Head height is indicative of the non-drilling, cool-off time out of the hole. A higher head height takes longer time between holes. . Table 4 shows... 7 Avera e Ra, R, and Rt values Bit Block HT SP CL HD PN R& R, R4 1 3 -1 1 -1 -1 1 45. 0395 3. 33275 2. 2925 -1 -1 1 1 -1 609535 5. 28325 3. 752 10 12 -1 1 -1 1 -1 37. 034 3. 5655 2. 7505 4. 14425 4. 3065 5. 827 1 1 1 60. 2075 1 1 1 -1 1 -1...

Nissen, Kristine Kay

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Scanning tunneling microscopy investigation of the TiO2 anatase ,,101... surface Wilhelm Hebenstreit,1  

E-Print Network [OSTI]

of tunneling sites in STM. Titanium dioxide (TiO2) is a versatile material that finds uses as a promoter. Fourfold-coordinated Ti atoms at step edges are preferred adsorption sites and allow the identification

Diebold, Ulrike

262

Study of perineal patterns of four species of Meloidogyne (Nematoda:Heteroderoidea) using scanning electron microscopy  

E-Print Network [OSTI]

the perineal pattern, terms originated by Esser et al. (8) were utilized (Fig. 48). The pattern was divided into 4 zones and a tail area. Zone 1 is the rough'ty circular area in the center of the pattern, within which the peri ni um occurs . The perinium...

Khan, Zainab Najafali

2012-06-07T23:59:59.000Z

263

Investigation of furan on vicinal Pd(1 1 1) by scanning tunneling microscopy  

E-Print Network [OSTI]

fraction in liquids derived from coal and biomass, with methylated phe- nols and furanic rings constituting, including coal and biomass [1]. Oxygen-containing aromatic heterocompounds form the largest contaminant

Chiang, Shirley

264

Internal Image Potential in Semiconductors - Effect on Scanning-Tunneling-Microscopy  

E-Print Network [OSTI]

). J. Bono and R. H. Good, Surf. Sci. 151, 543 (1985). J. Mahanty and M. T. Michalewicz, J. Phys. C 19, 5005 (1986). H. Morawitz et al. , Surf. Sci. 180, 333 (1987). A. A. Lucas et al. , Phys. Rev. B 37, 10708 (1988). S. Ossicini and M. Bertoni..., Phys. Rev. B 35, 848 (1987). R. Garcia, Phys. Rev. B 42, 5476 (1990). i5B. N. J. Persson and A. Baratoff', Phys. Rev. B 38, 9616 (1988). i J. Bono and R. H. Good, Surf. Sci. 175, 415 (1986). i7M. Kleefstra and G. C. Herman, J. Appl. Phys. 51, 4923...

HUANG, ZH; WEIMER, M.; Allen, Roland E.

1993-01-01T23:59:59.000Z

265

Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride  

E-Print Network [OSTI]

Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy–momentum dispersion relations which cross at the Dirac point1, 2. However, ...

Xue, Jiamin

266

Atomic force and scanning tunneling microscopy analysis of palladium and silver nanophase materials  

E-Print Network [OSTI]

. INTRODUCTION Nanophase materials consolidated from atom clusters produced by the gas condensation method be made by gas condensation, not only at the labo- ratory scale but also in commercial production and properties of nano- phase materials assembled by consolidating gas-condensed atom clusters in vacuum have

Sattler, Klaus

267

Proximity heater for elevated temperature in situ vacuum scanning tunneling microscopy of metal surfaces  

E-Print Network [OSTI]

surfaces T. P. Pearl and S. J. Sibenera) The James Franck Institute and the Department of Chemistry, as well as thermally activated inter- facial chemistry. In this article, we will present a simple. The chamber is pumped by a 220 L/s D-I ion pump, cryoshroud and titanium sublimation pump as well as a 55 L

Sibener, Steven

268

Imaging an ionic liquid adlayer by scanning tunneling microscopy at the solid|vacuum interface  

E-Print Network [OSTI]

of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany 2 Institute of Particle Technology, Clausthal University of Technology, D-38678 Clausthal- Zellerfeld, Gemany Abstract The first imaging(pentafluoroethyl)trifluorophosphate ([Py1,4]FAP) was evaporated onto a clean Au(111) surface by a Knudsen-type evaporator and the surface

Pfeifer, Holger

269

Recent Advances in Atomic-Scale Spin-Polarized Scanning Tunneling Microscopy  

E-Print Network [OSTI]

, Faradayweg 4-6 D-14195 Berlin (Dahlem) Germany WALTER R. L. LAMBRECHT Department of Physics, Case Western of atomically clean magnetic surfaces. Several key findings have been obtained. First, both magnetic and non Nanometer scale science and technology has been an area of intense research and development activity within

270

Improvement of lateral resolution of scanning photo-induced impedance microscopy (SPIM)  

E-Print Network [OSTI]

in the gate metal into an area not covered by metal Influence of semiconductor donor concentration Ga Control Lock-In-Amp. Z X Y CD-ROM player optics Computer Control Output 1000 2000 3000 4000 1000 2000 3000

Moritz, Werner

271

Design of a scanning Josephson junction microscope for submicron-resolution magnetic imaging  

SciTech Connect (OSTI)

We describe a magnetic field scanning instrument designed to extend the spatial resolution of scanning superconducting quantum interference device microscopy into the submicron regime. This instrument, the scanning Josephson junction microscope, scans a single Josephson junction across the surface of a sample, detecting the local magnetic field by the modulation of the junction critical current. By using a submicron junction and a scanning tunneling microscope feedback system to maintain close proximity to the surface, magnetic field sensitivity of 10 {mu}G with a spatial resolution of 0.3 {mu}m should be attainable, opening up new opportunities for imaging vortex configurations and core structure in superconductors and magnetic domains in magnetic materials. {copyright} {ital 1999 American Institute of Physics.}

Plourde, B.L.; Van Harlingen, D.J. [Department of Physics, Science and Technology Center for Superconductivity, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)] [Department of Physics, Science and Technology Center for Superconductivity, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

1999-11-01T23:59:59.000Z

272

Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience  

E-Print Network [OSTI]

A number of questions in systems biology such as understanding how dynamics of neuronal networks are related to brain function require the ability to capture the functional dynamics of large cellular populations at high speed. Recently, this has driven the development of a number of parallel and high speed imaging techniques such as light-sculpting microscopy, which has been used to capture neuronal dynamics at the whole brain and single cell level in small model organism. However, the broader applicability of light-sculpting microscopy is limited by the size of volumes for which high speed imaging can be obtained and scattering in brain tissue. Here, we present strategies for optimizing the present tradeoffs in light-sculpting microscopy. Various scanning modalities in light-sculpting microscopy are theoretically and experimentally evaluated, and strategies to maximize the obtainable volume speeds, and depth penetration in brain tissue using different laser systems are provided. Design-choices, important par...

Rupprecht, Peter; Groessl, Florian; Haubensak, Wulf E; Vaziri, Alipasha

2015-01-01T23:59:59.000Z

273

Analytical Electron Microscopy examination of uranium contamination at the DOE Fernald operation site  

SciTech Connect (OSTI)

Analytical Electron Microscopy (AEM) has been used to identify uranium-bearing phases present in contaminated soils from the DOE Fernald operation site. A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and AEM was used in isolating and characterizing uranium-rich regions of the contaminated soils. Soil samples were prepared for transmission electron microscopy (TEM) by ultramicrotomy using an embedding resin previously employed for aquatic colloids and biological samples. This preparation method allowed direct comparison between SEM and TEM images. At the macroscopic level much of the uranium appears to be associated with clays in the soils; however, electron beam analysis revealed that the uranium is present as discrete phases, including iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Only low levels of uranium were actually within the clay minerals. The distribution of uranium phases was inhomogeneous at the submicron level.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1993-02-01T23:59:59.000Z

274

Dark Energy Probes of Dark Energy  

E-Print Network [OSTI]

19/12/2013 1 Dark Energy Probes of Dark Energy Probes Dark Energy Supernovae Ia probing luminosity (Betti numbers) #12;19/12/2013 2 Dark Energy Probes: Comparison Method Strengths Weaknesses Systematics

Weijgaert, Rien van de

275

Sonar probing of concrete  

E-Print Network [OSTI]

ABSTRACT Sonar Probing of Concrete (May 1988) John H. Mims, B. A. , Carleton College Chairman of Advisory Committee: Dr. Robert R, Unterberger Two systems were used for acoustical tests at concrete dams. The first system used a pair of donated... reflections from several concrete-air interfaces at the Norfork Dam, Arkansas. A reflection between two walls in the dam's operating gallery which were 6. 73 m apart was recorded at 3. 4 ms (peak value). After subtracting the appropriate delays, this value...

Mims, John Hornsby

1988-01-01T23:59:59.000Z

276

Visual-servoing optical microscopy  

DOE Patents [OSTI]

The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

Callahan, Daniel E; Parvin, Bahram

2013-10-01T23:59:59.000Z

277

Visual-servoing optical microscopy  

DOE Patents [OSTI]

The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Mill Valley, CA)

2011-05-24T23:59:59.000Z

278

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

279

Experimental probes of axions  

SciTech Connect (OSTI)

Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

Chou, Aaron S.; /Fermilab

2009-10-01T23:59:59.000Z

280

Electromagnetic Probes in PHENIX  

E-Print Network [OSTI]

Electromagnetic probes are arguably the most universal tools to study the different physics processes in high energy hadron and heavy ion collisions. In this paper we summarize recent measurements of real and virtual direct photons at central rapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions. We also discuss the impact of the results and the constraints they put on theoretical models. At the end we report on the immediate as well as on the mid-term future of photon measurements at RHIC.

Gabor David

2006-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser  

SciTech Connect (OSTI)

Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

Phillips, Mark C.; Bernacki, Bruce E.

2012-12-26T23:59:59.000Z

282

Electromagnetic Probes at RHIC-II  

E-Print Network [OSTI]

We summarize how future measurements of electromagnetic (e.m.) probes at the Relativistic Heavy Ion Collider (RHIC), in connection with theoretical analysis, can advance our understanding of strongly interacting matter at high energy densities and temperatures. After a brief survey of the important role that e.m. probes data have played at the Super Proton Synchrotron (SPS, CERN) and RHIC to date, we identify key physics objectives and observables that remain to be addressed to characterize the (strongly interacting) Quark-Gluon Plasma (sQGP) and associated transition properties at RHIC. These include medium modifications of vector mesons via low-mass dileptons, a temperature measurement of the hot phases via continuum radiation, as well as gamma-gamma correlations to characterize early source sizes. We outline strategies to establish microscopic matter and transition properties such as the number of degrees of freedom in the sQGP, the origin of the hadron masses and manifestations of chiral symmetry restoration, which will require accompanying but rather well-defined advances in theory. Increased experimental precision, order of magnitude higher statistics than currently achievable, as well as a detailed scan of colliding species and energies are then mandatory to achieve sufficient discrimination power in theoretical interpretations. This increased precision can be achieved with hardware upgrades to the large RHIC detectors (PHENIX and STAR) along with at least a factor of ten as increase in luminosity over the next few years as envisioned for RHIC-II.

G. David; R. Rapp; Z. Xu

2008-04-25T23:59:59.000Z

283

Monte Carlo simulation study of scanning Auger electron images  

SciTech Connect (OSTI)

Simulation of contrast formation in Auger electron imaging of surfaces is helpful for analyzing scanning Auger microscopy/microanalysis (SAM) images. In this work, we have extended our previous Monte Carlo model and the simulation method for calculation of scanning electron microscopy (SEM) images to SAM images of complex structures. The essentials of the simulation method are as follows. (1) We use a constructive solid geometry modeling for a sample geometry, which is complex in elemental distribution, as well as in topographical configuration and a ray-tracing technique in the calculation procedure of electron flight steps that across the different element zones. The combination of the basic objects filled with elements, alloys, or compounds enables the simulation to a variety of sample geometries. (2) Sampled Auger signal electrons with a characteristic energy are generated in the simulation following an inner-shell ionization event, whose description is based on the Castani's inner-shell ionization cross section. This paper discusses in detail the features of simulated SAM images and of line scans for structured samples, i.e., the objects embedded in a matrix, under various experimental conditions (object size, location depth, beam energy, and the incident angle). Several effects are predicted and explained, such as the contrast reversion for nanoparticles in sizes of 10-60 nm, the contrast enhancement for particles made of different elements and wholly embedded in a matrix, and the artifact contrast due to nearby objects containing different elements. The simulated SAM images are also compared with the simulated SEM images of secondary electrons and of backscattered electrons. The results indicate that the Monte Carlo simulation can play an important role in quantitative SAM mapping.

Li, Y. G.; Ding, Z. J. [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Z. M. [Department of Astronomy and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2009-07-15T23:59:59.000Z

284

Probing Multiparton Correlations at CEBAF  

E-Print Network [OSTI]

In this talk, I explore the possibilities of probing the multiparton correlation functions at CEBAF at its current energy and the energies with its future upgrades.

Jianwei Qiu

1998-08-08T23:59:59.000Z

285

ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

SciTech Connect (OSTI)

X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

2011-09-14T23:59:59.000Z

286

ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

287

ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Bharadwaj, Nitin; Widener, Kevin

288

ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

289

Three-dimensional scanning confocal laser microscope  

DOE Patents [OSTI]

A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

Anderson, R. Rox (Lexington, MA); Webb, Robert H. (Lincoln, MA); Rajadhyaksha, Milind (Charlestown, MA)

1999-01-01T23:59:59.000Z

290

Heat transfer probe  

DOE Patents [OSTI]

Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

2006-10-10T23:59:59.000Z

291

Evaluation of magnetic flux distribution from magnetic domains in [Co/Pd] nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor  

SciTech Connect (OSTI)

Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the “magnetic domain scope for wide area with nano-order resolution (nano-MDS)” method has been proposed recently that could detect the magnetic flux distribution from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]{sub 21}/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20??m and 150?nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.

Okuda, Mitsunobu, E-mail: okuda.m-ky@nhk.or.jp; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Hayashi, Naoto [NHK Science and Technology Research Laboratories, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)

2014-05-07T23:59:59.000Z

292

CARS polarized microscopy of three-dimensional director structures in liquid crystals  

E-Print Network [OSTI]

We demonstrate three-dimensional vibrational imaging of director structures in liquid crystals using coherent anti-Stokes Raman scattering (CARS) polarized microscopy. Spatial mapping of the structures is based on sensitivity of a polarized CARS signal to orientation of anisotropic molecules in liquid crystals. As an example, we study structures in a smectic material and demonstrate that single-scan CARS and two-photon fluorescence images of molecular orientation patterns are consistent with each other and with the structure model.

A. V. Kachynski; A. N. Kuzmin; P. N. Prasad; I. I. Smalyukh

2007-10-18T23:59:59.000Z

293

Fast scanning mode and its realization in a scanning acoustic microscope  

SciTech Connect (OSTI)

The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

Ju Bingfeng; Bai Xiaolong; Chen Jian [The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027 (China)

2012-03-15T23:59:59.000Z

294

Rotating concave eddy current probe  

SciTech Connect (OSTI)

A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

Roach, Dennis P. (Albuquerque, NM); Walkington, Phil (Albuquerque, NM); Rackow, Kirk A. (Albuquerque, NM); Hohman, Ed (Albuquerque, NM)

2008-04-01T23:59:59.000Z

295

Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry  

E-Print Network [OSTI]

1 Pump-probe measurements of the thermal conductivity tensor for materials lacking in conductivity corresponding to the scanning direction. Also, we demonstrate Nb- V as a low thermal conductivity thermal conductivity tensor and the illuminating spots have arbitrary intensity profiles

Cahill, David G.

296

Faculty Position in Materials Electron Microscopy  

E-Print Network [OSTI]

Faculty Position in Materials Electron Microscopy at the Ecole Polytechnique Fédérale de Lausanne in electron microscopy of materials within its Institute of Materials. We seek exceptional individuals who community. Top-level applications are invited from candidates at the cutting edge of electron microscopic

Candea, George

297

Multiphoton microscopy with near infrared contrast  

E-Print Network [OSTI]

Multiphoton microscopy with near infrared contrast agents Siavash Yazdanfar,a, * Chulmin Joo,a Chun limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared NIR fluorescent Engineers. DOI: 10.1117/1.3420209 Keywords: two-photon microscopy; ultrafast fiber lasers; near-infrared

Larson-Prior, Linda

298

Nonlinear Dark-Field Microscopy Hayk Harutyunyan,  

E-Print Network [OSTI]

/20/2010 Published on Web: 11/16/2010 FIGURE 1. Illustration of the nonlinear dark-field imaging method. Two incidentNonlinear Dark-Field Microscopy Hayk Harutyunyan, Stefano Palomba, Jan Renger, Romain Quidant Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large

Novotny, Lukas

299

On single-molecule DNA sequencing with atomic force microscopy using functionalized carbon nanotube probes  

E-Print Network [OSTI]

A novel DNA sequencing method is proposed based on the specific binding nature of nucleotides and measured by an atomic force microscope (AFM). A single molecule of DNA is denatured and immobilized on an atomically fiat ...

Burns, Daniel James

2004-01-01T23:59:59.000Z

300

In-Situ Transmission Electron Microscopy Probing of Native Oxide and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300Aptamers andInSaturated PorousTo

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Scanning ARM Cloud Radar Handbook  

SciTech Connect (OSTI)

The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

Widener, K; Bharadwaj, N; Johnson, K

2012-06-18T23:59:59.000Z

302

Long duration ash probe  

DOE Patents [OSTI]

A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

Hurley, J.P.; McCollor, D.P.; Selle, S.J.

1994-07-26T23:59:59.000Z

303

Long duration ash probe  

DOE Patents [OSTI]

A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

Hurley, John P. (Grand Forks, ND); McCollor, Don P. (Grand Forks, ND); Selle, Stanley J. (Grand Forks, MN)

1994-01-01T23:59:59.000Z

304

Probing Organic Transistors with Infrared Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood,...

305

Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope  

SciTech Connect (OSTI)

We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ?}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ?}? effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ?} images.

Imtiaz, Atif [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel, E-mail: kabos@boulder.nist.gov [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Weber, Joel C. [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Coakley, Kevin J. [Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

2014-06-30T23:59:59.000Z

306

Optic probe for semiconductor characterization  

DOE Patents [OSTI]

Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

Sopori, Bhushan L. (Denver, CO); Hambarian, Artak (Yerevan, AM)

2008-09-02T23:59:59.000Z

307

Differential probes aid flow measurement  

SciTech Connect (OSTI)

Nonconstricting differential pressure flow probes which help solve the problems of clogging, wear, and pressure loss at the Seawater Filtration Facility in Saudi Arabia are described. Treated seawater is pumped into oil-bearing formations for secondary recovery. Figures showing principle of operation for probes, installation schematic and long-term accuracy results (flow probes vs. orifice meters) are presented. The new diamond-shaped design flow sensor offers accurate flow measurement with low permanent pressure loss, which translates into cost savings for the operator.

Mesnard, D.R.

1982-07-01T23:59:59.000Z

308

Synthesis and characterization of carbon nanotubes using scanning probe based nano-lithographic techniques  

E-Print Network [OSTI]

A novel process which does not require the traditional Chemical Vapor Deposition (CVD) synthesis techniques and which works at temperatures lower than the conventional techniques was developed for synthesis of carbon nanotubes (CNT). The substrates...

Gargate, Rohit Vasant

2009-05-15T23:59:59.000Z

309

Fast scanning probe for tokamak plasmas J. Boedo, D. Gray, L. Chousal, and R. Conn  

E-Print Network [OSTI]

implications for large fusion projects such as the International Thermonuclear Experimental Reactor ITER-6748 98 00307-4 I. INTRODUCTION Characterizing the plasma edge and scrape-off layer SOL of fusion devices and future fusion devices since their performance is limited by the heat load on the plasma facing wall

Krstic, Miroslav

310

Laser-assisted scanning probe alloying nanolithography (LASPAN) and its application in gold-silicon system  

E-Print Network [OSTI]

nanostructures. Fundamental research is also being conducted to investigate structural, physical and chemical properties of the nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. Doing...

Peng, Luohan

2009-05-15T23:59:59.000Z

311

Development of a Scanning Probe Microscope and Studies of Graphene Grown on Copper  

E-Print Network [OSTI]

of Graphene Grown on Copper (100) Single Crystals,” JournalGraphene on Polycrystalline Copper,” Nano Letters 11, 251 (5 GRAPHENE GROWTH ON COPPER (100) SINGLE CRYSTALS 5.1

Rasool, Haider Imad

2012-01-01T23:59:59.000Z

312

Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluatingconstruction is13, 2013|Queue Available

313

The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope in EMSL's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe Life ofSciencethe NewTheThe

314

Photon tunnelling microscopy of polyethylene single crystals  

E-Print Network [OSTI]

Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

Srinivasarao, Mohan

315

Subwavelength optical microscopy in the far field  

E-Print Network [OSTI]

We present a procedure for subwavelength optical microscopy. The identical atoms are distributed on a plane and shined with a standing wave. We rotate the plane to different angles and record the resonant fluorescence spectra in the far field, from...

Sun, Qingqing; Al-Amri, M.; Scully, Marlan O.; Zubairy, M. Suhail.

2011-01-01T23:59:59.000Z

316

Imaging - Clearer brain scans ... | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Imaging - Clearer brain scans ... A clever signal noise reduction strategy developed by a team that includes Oak Ridge National Laboratory's Ben Lawrie could dramatically improve...

317

In Situ Photoelectron Emission Microscopy of a Thermally Induced...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

318

In-situ Transmission Electron Microscopy and Spectroscopy Studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and In-situ Transmission Electron Microscopy and Spectroscopy Studies of...

319

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

320

City of College Station's Thermographic Mobile Scan  

E-Print Network [OSTI]

During the first quarter of 1986, the City of College Station conducted a thermographic mobile scan of the entire city. A thermographic mobile scan is a process by which heat loss/heat gain data is accumulated by a vehicle traveling the city...

Shear, C. K.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Scanning tunneling microscope assembly, reactor, and system  

DOE Patents [OSTI]

An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

2014-11-18T23:59:59.000Z

322

Surface plasmon resonance method for probing interactions in nanostructures: CdS nanoparticles linked to Au and Ag substrates by self-assembled hexanedithiol and aminoethanethiol monolayers  

SciTech Connect (OSTI)

Self-assembled hexanedithiol (HDT) and aminoethanethiol (AET) monolayers (SAMs), {approx}0.4--0.8 nm in thickness, are used to link {approx}5 nm diam CdS nanoparticles covalently and electrostatically onto Au and Ag substrates. The resulting nanostructures are probed with scanning electron microscopy (SEM) and surface plasmon resonance (SPR) measurements. The CdS nanoparticle--SAM--substrate interactions manifesting themselves in the dielectric functions of the multilayered systems, are detected in the SPR data, and are discussed in terms of a phenomenological six-layer model. The SPR response of the Ag substrate is more sensitive to neighboring interactions than the Au substrate. The SEM images show that the CdS, connected either by HDT or AET onto Ag substrates, forms crystalline structures. The interactions responsible for this crystallization are absent in samples employing Au substrates, in which case only {approx}5 nm diam CdS nanoparticles are detected by SEM. The experimental results of the present article, analyzed in detail using Fresnel and Maxwell equations, demonstrate how the SPR technique can be used to characterize layered nanostructured materials. {copyright} 2001 American Institute of Physics.

Hutter, E.; Fendler, J. H.; Roy, D.

2001-08-15T23:59:59.000Z

323

Neutron and Gamma Probe Application to Hanford Tank 241-SY-101  

SciTech Connect (OSTI)

A neutron (moisture-sensitive) and gamma (in-situ radiation) probe technique has been utilized at a number of Hanford radioactive waste tanks for many years. This technology has been adapted for use in tank 241-SY-101's two Multifunction Instrument Trees (MITs) which have a hollow dry-well center opening two inches (51 cm) in diameter. These probes provide scans starting within a few inches of the tank bottom and traversing up through the top of the tank revealing a variety of waste features as a function of tank elevation. These features have been correlated with void fraction data obtained independently from two other devices, the Retained Gas Sampler (RGS) and the Void Fraction Instrument (VFI). The MIT probes offer the advantage of nearly continuous count-rate versus elevation scans and they can be operated significantly more often and at lower cost than temperature probes or the RGS or VFI devices while providing better depth resolution. The waste level in tank 241-SY-101 had been rising at higher rates than expected during 1998 and early 1999 indicating an increasing amount of trapped gas in the waste. The use of the MIT probes has assisted in evaluating changes in crust thickness and level and also in estimating relative changes in gas stored in the crust. This information is important in assuring that the tank remains in a safe configuration and will support safe waste transfer when those operations take place.

CANNON, N.S.

2000-02-01T23:59:59.000Z

324

Hand-held survey probe  

DOE Patents [OSTI]

A system for providing operational feedback to a user of a detection probe may include an optical sensor to generate data corresponding to a position of the detection probe with respect to a surface; a microprocessor to receive the data; a software medium having code to process the data with the microprocessor and pre-programmed parameters, and making a comparison of the data to the parameters; and an indicator device to indicate results of the comparison. A method of providing operational feedback to a user of a detection probe may include generating output data with an optical sensor corresponding to the relative position with respect to a surface; processing the output data, including comparing the output data to pre-programmed parameters; and indicating results of the comparison.

Young, Kevin L. (Idaho Falls, ID) [Idaho Falls, ID; Hungate, Kevin E. (Idaho Falls, ID) [Idaho Falls, ID

2010-02-23T23:59:59.000Z

325

An atomic force microscopy-based method for line edge roughness measurement  

SciTech Connect (OSTI)

With the constant decrease of semiconductor device dimensions, line edge roughness (LER) becomes one of the most important sources of device variability and needs to be controlled below 2 nm for the future technological nodes of the semiconductor roadmap. LER control at the nanometer scale requires accurate measurements. We introduce a technique for LER measurement based upon the atomic force microscope (AFM). In this technique, the sample is tilted at about 45 Degree-Sign and feature sidewalls are scanned along their length with the AFM tip to obtain three-dimensional images. The small radius of curvature of the tip together with the low noise level of a laboratory AFM result in high resolution images. Half profiles and LER values on all the height of the sidewalls are extracted from the 3D images using a procedure that we developed. The influence of sample angle variations on the measurements is shown to be small. The technique is applied to the study of a full pattern transfer into a simplified gate stack. The images obtained are qualitatively consistent with cross-section scanning electron microscopy images and the average LER values agree with that obtained by critical dimension scanning electron microscopy. In addition to its high resolution, this technique presents several advantages such as the ability to image the foot of photoresist lines, complex multi-layer stacks regardless of the materials, and deep re-entrant profiles.

Fouchier, M.; Pargon, E.; Bardet, B. [CNRS/UJF-Grenoble1/CEA LTM, 17 avenue des Martyrs, 38054 Grenoble cedex 9 (France)

2013-03-14T23:59:59.000Z

326

Potential applications of microscopy for steam coal  

SciTech Connect (OSTI)

Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

DeVanney, K.F.; Clarkson, R.J.

1995-08-01T23:59:59.000Z

327

Microrheological Studies of Regenerated Silk Fibroin Solution by Video Microscopy  

E-Print Network [OSTI]

We have carried out studies on the rheological properties of regenerated silk fibroin (RSF) solution using video microscopy. The degummed silk from the Bombyx mori silkworm was used to prepare RSF solution by dissolving it in calcium nitrate tetrahydrate-methanol solvent. Measurements were carried out by tracking the position of an embedded micron-sized polystyrene bead within the RSF solution through video imaging. The time dependent mean squared displacement (MSD) of the bead in solution and hence, the complex shear modulus of this solution was calculated from the bead's position information. An optical tweezer was used to transport and locate the bead at any desired site within the micro-volume of the sample, to facilitate the subsequent free-bead video analysis. We present here the results of rheological measurements of the silk polymer network in solution over a frequency range, whose upper limit is the frame capture rate of our camera, at full resolution. By examining the distribution of MSD of beads at different locations within the sample volume, we demonstrate that this probe technique enables us to detect local inhomogeneties at micrometer length scales, not detectable either by a rheometer or from diffusing wave spectroscopy.

Raghu A; Somashekar R; Sharath Ananthamurthy

2007-02-01T23:59:59.000Z

328

Eddy current probe and method for flaw detection in metals  

DOE Patents [OSTI]

A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner.

Watjen, John P. (Sunnyvale, CA)

1987-06-23T23:59:59.000Z

329

Eddy current probe and method for flaw detection in metals  

DOE Patents [OSTI]

A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner. 9 figs.

Watjen, J.P.

1987-06-23T23:59:59.000Z

330

Nuclear Physics with Electroweak Probes  

E-Print Network [OSTI]

In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects.

Omar Benhar

2009-02-26T23:59:59.000Z

331

Scanning the Technology Energy Infrastructure Defense Systems  

E-Print Network [OSTI]

systems and to develop de- fense plans to protect the network against extreme contingencies causedScanning the Technology Energy Infrastructure Defense Systems MASSOUD AMIN, SENIOR MEMBER, IEEE Energy infrastructure faced with deregulation and coupled with interdependencies with other critical

Amin, S. Massoud

332

Spatial resolution in vector potential photoelectron microscopy  

SciTech Connect (OSTI)

The experimental spatial resolution of vector potential photoelectron microscopy is found to be much higher than expected because of the cancellation of one of the expected contributions to the point spread function. We present a new calculation of the spatial resolution with support from finite element ray tracing, and experimental results.

Browning, R. [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)] [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)

2014-03-15T23:59:59.000Z

333

Scanning fluorescent microthermal imaging apparatus and method  

DOE Patents [OSTI]

A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

Barton, D.L.; Tangyunyong, P.

1998-01-06T23:59:59.000Z

334

Scanning fluorescent microthermal imaging apparatus and method  

DOE Patents [OSTI]

A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

Barton, Daniel L. (Albuquerque, NM); Tangyunyong, Paiboon (Albuquerque, NM)

1998-01-01T23:59:59.000Z

335

Cantilevered probe detector with piezoelectric element  

DOE Patents [OSTI]

A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

Adams, Jesse D. (Reno, NV); Sulchek, Todd A. (Oakland, CA); Feigin, Stuart C. (Reno, NV)

2012-07-10T23:59:59.000Z

336

Cantilevered probe detector with piezoelectric element  

DOE Patents [OSTI]

A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

2014-04-29T23:59:59.000Z

337

Cantilevered probe detector with piezoelectric element  

DOE Patents [OSTI]

A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

2013-04-30T23:59:59.000Z

338

Handheld force-controlled ultrasound probe  

E-Print Network [OSTI]

An hand-held force controlled ultrasound probe has been developed. The controller maintains a prescribed contact force between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand ...

Gilbertson, Matthew Wright

2010-01-01T23:59:59.000Z

339

Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering  

SciTech Connect (OSTI)

We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

2006-06-05T23:59:59.000Z

340

Instrument Series: Microscopy Helium Ion Microscope  

E-Print Network [OSTI]

the nature of nanostructure and chemical functionality Energy ­ studying surface/interface characteristics charge for insulating samples based on line or frame scans Small beam size ­ provides stable beam energy Novel features ­ offers EMSL users an additional 4.5-inch center port and two 2.75-inch ports for other

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

COMBINED FLUORESCENT AND GOLD PROBES FOR MICROSCOPIC AND MORPHOLOGICAL INVESTIGATIONS.  

SciTech Connect (OSTI)

Nanogold{reg_sign}, a gold cluster with a core of gold atoms 1.4 nm in diameter, has proven to be a superior probe label for electron microscopy (EM), giving both higher labeling density and improved access to previously hindered or restricted antigens. It may be visualized by autometallography (AMG) for use in light microscopy (LM): silver-and gold-amplified Nanogold detection has proven to be one of the most sensitive methods available for the detection of low copy number targets such as viral DNA in cells and tissue specimens. AMG enhancement has also made Nanogold an effective detection label in blots and gels. The following protocols will be described: Labeling of nuclear components in cells. Protocol for in situ hybridization and detection with fluorescein-Nanogold--or Cy3{trademark}-Nanogold-labeled streptavidin. Nanogold is an inert molecule, and generally does not interact with biological molecules unless a specific chemical reactivity is introduced into the molecule. Conjugates are prepared using site-specific chemical conjugation through reactive chemical functionalities introduced during Nanogold preparation, which allows the gold label to be attached to a specific site on the conjugate biomolecule. For example, a maleimido-Nanogold derivative, which is specific for thiol binding, is frequently attached to the hinge region of an antibody at a unique thiol site generated by selective reduction of a hinge disulfide. This site is remote from the antigen combining region, and the Nanogold, therefore, does not compromise target binding. Nanogold may also be prepared with specific reactivity towards amines or other unique chemical groups. This mode of attachment enables the preparation of probes labeled with both Nanogold and fluorescent labels. Different chemical reactivities are used to attach the Nanogold and the fluorescent groups to different sites in the conjugate biomolecule, as shown in Figure 7.1. In this manner, the two labels are spaced sufficiently far apart that fluorescent resonance energy transfer does not quench the fluorescent signal, and the probes may be used to label specimens for fluorescent and EM observation in a single staining procedure. This reduces the complexity of the staining procedure, allowing less specimen perturbation, and also enables a higher degree of correlation between the fluorescence and EM localization of the target, thus increasing the usefulness of the complementary data sets. Since gold and fluorescent-labeled probes are often used at different concentrations under different conditions, optimum procedures for the use of fluorescent and gold probes may entail some degree of compromise between the most appropriate conditions for the two types of probes. However, the chemical stability of the Nanogold label means that it is generally stable to a wide range of use conditions, and the following protocols have been found to be effective for labeling specimens with combined fluorescein and Nanogold-labeled antibody Fab' probes and with combined Cy3 and Nanogold-labeled streptavidin.

POWELL,R.D.HAINFELD,J.F.

2002-04-17T23:59:59.000Z

342

Scanning tip microwave near field microscope  

DOE Patents [OSTI]

A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

Xiang, Xiao-Dong (Alameda, CA); Schultz, Peter G. (Oakland, CA); Wei, Tao (Albany, CA)

1998-01-01T23:59:59.000Z

343

Downhole probes evaluate cavern integrity  

SciTech Connect (OSTI)

Obtaining natural-gas storage caverns` pressures and temperatures with downhole probes has allowed TransGas Ltd., Regina, to monitor and evaluate cavern integrity. TransGas has more than 5 years` experience with the devices. The acquired data have also helped determine gas-in-place inventory and confirm and assess changes in spatial volumes. These changes may have resulted from cavern creep (shrinkage or closure) or downhole abnormality such as fluid infill or collapse of the side walls or roof. This first of two articles presents background and many of the details and lessons to date of TransGas` cavern gas-storage probe program; the conclusion describes a specific storage site with some results.

Crossley, N.G. [TransGas Ltd., Regina, Saskatchewan (Canada)

1997-03-03T23:59:59.000Z

344

Optical probe with reference fiber  

DOE Patents [OSTI]

A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.

Da Silva, Luiz B. (Danville, CA); Chase, Charles L. (Dublin, CA)

2006-03-14T23:59:59.000Z

345

pH Meter probe assembly  

DOE Patents [OSTI]

An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

Hale, Charles J. (San Jose, CA)

1983-01-01T23:59:59.000Z

346

pH Meter probe assembly  

DOE Patents [OSTI]

An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

Hale, C.J.

1983-11-15T23:59:59.000Z

347

Single particle microscopy with nanometer resolution  

E-Print Network [OSTI]

We experimentally demonstrate nanoscopic transmission microscopy relying on a deterministic single particle source. This increases the signal-to-noise ratio with respect to conventional microscopy methods, which employ Poissonian particle sources. We use laser-cooled ions extracted from a Paul trap, and demonstrate remote imaging of transmissive objects with a resolution of 8.6 $\\pm$ 2.0nm and a minimum two-sample deviation of the beam position of 1.5nm. Detector dark counts can be suppressed by 6 orders of magnitudes through gating by the extraction event. The deterministic nature of our source enables an information-gain driven approach to imaging. We demonstrate this by performing efficient beam characterization based on a Bayes experiment design method.

Georg Jacob; Karin Groot-Berning; Sebastian Wolf; Stefan Ulm; Luc Couturier; Ulrich G. Poschinger; Ferdinand Schmidt-Kaler; Kilian Singer

2014-05-26T23:59:59.000Z

348

Dark Field Microscopy for Analytical Laboratory Courses  

SciTech Connect (OSTI)

An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

2014-06-10T23:59:59.000Z

349

affecting electronically scanned: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences Websites Summary: Middle Drive, Knoxville, TN 37996 The scanning electron microscope (SEM) has long been used-chamber scanning...

350

A scanning tunneling microscopy study of atomic-scale clustering in InAsP/InP heterostructures  

E-Print Network [OSTI]

Deer Creek Road, MS 26M-7, Palo Alto, CA 94304. that facilitates population inversion.7 Furthermore, the large conduction-band offset in this material system8 ( Ec

Yu, Edward T.

351

Adhesion of Rice Flour-Based Batter to Chicken Drumsticks Evaluated by Laser Scanning Confocal Microscopy and Texture Analysis  

E-Print Network [OSTI]

societies such as the United States (Shukla, 1993). The per capita consumption of battered and breaded foods consumption of rice and rice products, rice flour is a logical alternative for wheat flour in traditional of formulated batters and breadings is about 52 × 107 kg. The consumption of battered and breaded products

352

Exploration, Registration, and Analysis of High-Throughput 3D Microscopy Data from the Knife-Edge Scanning Microscope  

E-Print Network [OSTI]

connectivity analysis; (2) the size of the uncompressed KESM data exceeds a few terabytes and to compare and combine with other data sets from different imaging modalities, the KESM data must be registered to a standard coordinate space; and (3) quantitative...

Sung, Chul

2014-04-25T23:59:59.000Z

353

Thin Film Morphology Control by Mechanical, Electronic and Chemical Interactions: a Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study  

E-Print Network [OSTI]

of the formation of Anthraquinone self-assembled honeycombsizes are the same. Anthraquinone (AQ) molecules adsorb on

Sun, Dezheng

2012-01-01T23:59:59.000Z

354

An Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study of Pattern Formation and Molecule Ordering under a Variety of Interactions  

E-Print Network [OSTI]

CO Molecules inside an Anthraquinone comb Network on Cu(111)CO Molecules inside an Anthraquinone Honey- comb Network onformed by deposition of anthraquinone according to Ref. [42

Zhu, Yeming

2013-01-01T23:59:59.000Z

355

Grand Challenges of Characterization & Modeling of Cellulose...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

11 Technique Summary: *Microscopy: light, e-, ion, scanning probe *Diffraction: e-, neutron, x-ray *Inelastic Scattering: Raman *Scattering: DLS, *Spectroscopy: NMR, IR,...

356

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

The Materials Technology Section is establishing scanning probe microscopy (SPM) and fuel cell battery testing capabilities in HTRL. Initial SPM testing will be on metal coupons...

357

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

Materials Technology Section is establishing scanning probe microscopy (SPM) and fuel cell battery testing capabilities in HTRL. Initial SPM testing will be on metal coupons or...

358

E-Print Network 3.0 - afm-based force spectroscopy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 4 5 > >> Page: << < 1 2 3 4 5 > >> 61 Investigation of nanolocal fluorescence resonance energy transfer for scanning probe microscopy Summary: confirmed in another series of...

359

E-Print Network 3.0 - altered nanoscale topographies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioelectric Scanning Probe Microscopies Summary: . Fumagalli, G. Gomila, et al. Nano Letters (2009) Topography Capacitance Dielectric constant 4. Nanoscale... to measure...

360

Calendar | OSTI, US Dept of Energy, Office of Scientific and...  

Office of Scientific and Technical Information (OSTI)

double layers in ionic liquids 2015-02-02 14:38 Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: Status and perspectives...

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Local electrochemical functionality in energy storage materials...  

Office of Scientific and Technical Information (OSTI)

devices by scanning probe microscopies: Status and perspectives Re-direct Destination: Energy storage and conversion systems are an integral component of emerging green...

362

Scanning and storage of electrophoretic records  

DOE Patents [OSTI]

An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.

McKean, Ronald A. (Royal Oak, MI); Stiegman, Jeff (Ann Arbor, MI)

1990-01-01T23:59:59.000Z

363

Apparatus for controlling the scan width of a scanning laser beam  

DOE Patents [OSTI]

Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

Johnson, G.W.

1996-10-22T23:59:59.000Z

364

Apparatus for controlling the scan width of a scanning laser beam  

DOE Patents [OSTI]

Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

Johnson, Gary W. (Livermore, CA)

1996-01-01T23:59:59.000Z

365

Quantitative imaging of living cells by deep ultraviolet microscopy  

E-Print Network [OSTI]

Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

Zeskind, Benjamin J

2006-01-01T23:59:59.000Z

366

New Developments in Transmission Electron Microscopy for Nanotechnology**  

E-Print Network [OSTI]

New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

Wang, Zhong L.

367

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

368

Tomography and High-Resolution Electron Microscopy Study of Surfaces...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tomography and High-Resolution Electron Microscopy Study of Surfaces and Porosity in a Plate-Like ?-Al2O3. Tomography and High-Resolution Electron Microscopy Study of...

369

The development of optical microscopy techniques for the advancement of single-particle studies  

SciTech Connect (OSTI)

Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

Marchuk, Kyle

2013-05-15T23:59:59.000Z

370

TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS  

E-Print Network [OSTI]

377 TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS H. STRUNK Max'importance croissante du durcissement de la solution solide. Abstract. 2014 Transmission electron microscopy (TEM Abstracts 7j66 - 7 I' 1. Introduction. - It is only some years ago that transmission electron microscopy

Boyer, Edmond

371

Chemically-selective imaging of brain structures with CARS microscopy  

E-Print Network [OSTI]

Chemically-selective imaging of brain structures with CARS microscopy Conor L. Evans1§ , Xiaoyin Xu anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy

Xie, Xiaoliang Sunney

372

Department of Health I. Internal Scan  

E-Print Network [OSTI]

and cholesterol; and working with consumers, health plans and providers to improve the quality of care and other non- institutional settings. CURRRENT PLANS: The Division of Health care Financing has been takingDepartment of Health I. Internal Scan There are a variety of areas that will be impacted

Tipple, Brett

373

Student Charter Scan the QR-code  

E-Print Network [OSTI]

Student Charter 2013/2014 Scan the QR-code to obtain the online version. TechnischeUniversiteitDelft #12;#12;Student Charter 2013/2014 Delft University of Technology This is the English version of the Student Charter of Delft University of Technology, published on the TU Delft website: www

374

LIVE SCAN FINGERPRINTING PROCESS AND RESPONSIBILITIES  

E-Print Network [OSTI]

LIVE SCAN FINGERPRINTING PROCESS AND RESPONSIBILITIES HUMAN RESOURCES Workforce Planning | One of recruitment) to your Workforce Planning Analyst. Notify Finalists Department must notify finalists of the Live. Workforce Planning Analyst will make available at the Human Resources reception desk, the appropriate number

Eirinaki, Magdalini

375

Fast electron microscopy via compressive sensing  

DOE Patents [OSTI]

Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

2014-12-09T23:59:59.000Z

376

Electron Microscopy | Center for Functional Nanomaterials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the‹ See allElectrochemicalElectron Microscopy

377

NREL: Measurements and Characterization - Analytical Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResultsGeothermalAnalytical Microscopy

378

Imaging doped silicon test structures using low energy electron microscopy.  

SciTech Connect (OSTI)

This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

2010-01-01T23:59:59.000Z

379

Entangled quantum probes for dynamical environmental noise  

E-Print Network [OSTI]

We address the use of entangled qubits as quantum probes to characterize the dynamical noise induced by complex environments. In particular, we show that entangled probes improve estimation of the correlation time for a broad class of environmental noises compared to any sequential strategy involving single qubit preparation. The effect is present when the noise is faster than a threshold value, a regime which may always be achieved by tuning the coupling between the quantum probe and the environment inducing the noise. Our scheme exploits time-dependent sensitivity of quantum systems to decoherence and does not require dynamical control on the probes. We derive the optimal interaction time and the optimal probe preparation, showing that it corresponds to multiqubit GHZ states when entanglement is useful. We also show robustness of the scheme against depolarization or dephasing of the probe, and discuss simple measurements approaching optimal precision.

Matteo A. C. Rossi; Matteo G. A. Paris

2015-03-11T23:59:59.000Z

380

Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source  

SciTech Connect (OSTI)

Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.

Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk [Photonic Systems Research Laboratory, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

2014-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Probing Organic Transistors with Infrared Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is...

382

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network [OSTI]

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

Stocker, H.

2012-01-01T23:59:59.000Z

383

Probing Inhomogeneous Vibrational Reorganization Energy Barriers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(AFM) and confocal Raman microscopy study on the interfacial electron transfer of a dye-sensitization system, alizarin adsorbed upon TiO2 nanoparticles. Resonance Raman and...

384

Comparing the performance of plasma impedance probes and Langmuir probes for RF plasma diagnostics  

E-Print Network [OSTI]

Comparing the performance of plasma impedance probes and Langmuir probes for RF plasma diagnostics probing, a less developed technique, can possibly overcome these problems. Better plasma diagnostic tools Ethan Dale, Dr. Mitchell Walker High-Power Electric Propulsion Laboratory Objective Plasma is the most

Walker, Mitchell

385

Direct Probing of Charge Injection and Polarization-Controlled Ionic Mobility on Ferroelectric LiNbO3 Surfaces  

SciTech Connect (OSTI)

Mapping surface potential with time-resolved Kelvin Probe Force Microscopy (tr-KPFM) in LiNbO3 periodically-poled single crystal revealed activation of the surface ionic subsystem. Electric fields higher than certain threshold value but lower than the switching field induce injection of charge from the biased electrode, formation of an active region in its vicinity and uneven distribution of screening charge on the opposite ferroelectric domains. Tr-KPFM technique allows investigating these phenomena in details.

Strelcov, Evgheni [ORNL] [ORNL; Ievlev, Dr. Anton [Ural State University, Russia] [Ural State University, Russia; Jesse, Stephen [ORNL] [ORNL; Kravchenko, Ivan I [ORNL] [ORNL; Shur, V.Y. [Institute of Physics and Applied Mathematics, Ural State University] [Institute of Physics and Applied Mathematics, Ural State University; Kalinin, Sergei V [ORNL] [ORNL

2014-01-01T23:59:59.000Z

386

Millimeter-wave active probe  

DOE Patents [OSTI]

A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

1991-01-01T23:59:59.000Z

387

MERIT Pump/Probe Data OutlineOutline  

E-Print Network [OSTI]

MERIT Pump/Probe Data Analysis OutlineOutline The pump/probe program Particle detector response correction Pump/probe analysis results NFMCC Collaboration Meeting , LBNL, January 26, 2009 Ilias Efthymiopoulos - CERN #12;The pump/probe program #12;The pump/probe program Use of the CERN PS flexibility

McDonald, Kirk

388

Improved methods for high resolution electron microscopy  

SciTech Connect (OSTI)

Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

Taylor, J.R.

1987-04-01T23:59:59.000Z

389

T3PS: Tool for Parallel Processing in Parameter Scans  

E-Print Network [OSTI]

T3PS is a program that can be used to quickly design and perform parameter scans while easily taking advantage of the multi-core architecture of current processors. It takes an easy to read and write parameter scan definition file format as input. Based on the parameter ranges and other options contained therein, it distributes the calculation of the parameter space over multiple processes and possibly computers. The derived data is saved in a plain text file format readable by most plotting software. The supported scanning strategies include: grid scan, random scan, Markov Chain Monte Carlo, numerical optimization. Several example parameter scans are shown and compared with results in the literature.

Maurer, Vinzenz

2015-01-01T23:59:59.000Z

390

Rugged fiber optic probe for raman measurement  

DOE Patents [OSTI]

An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

O'Rourke, Patrick E. (Martinez, GA); Toole, Jr., William R. (Aiken, SC); Nave, Stanley E. (Evans, GA)

1998-01-01T23:59:59.000Z

391

Protective shield for an instrument probe  

DOE Patents [OSTI]

A shield is disclosed that is particularly useful for protecting exposed optical elements at the end of optical probes used in the analysis of hazardous emissions in and around an industrial environment from the contaminating effects of those emissions. The instant invention provides a hood or cowl in the shape of a right circular cylinder that can be fitted over the end of such optical probes. The hood provides a clear aperture through which the probe can perform unobstructed analysis. The probe optical elements are protected from the external environment by passing a dry gas through the interior of the hood and out through the hood aperture in sufficient quantity and velocity to prevent any significant mixing between the internal and external environments. Additionally, the hood is provided with a cooling jacket to lessen the potential for damaging the probe due to temperature excursions.

Johnsen, Howard A.; Ross, James R.; Birtola, Sal R.

2004-10-26T23:59:59.000Z

392

Individual quantum probes for optimal thermometry  

E-Print Network [OSTI]

The unknown temperature of a sample may be estimated with minimal disturbance by putting it in thermal contact with an individual quantum probe. If the interaction time is sufficiently long so that the probe thermalizes, the temperature can be read out directly from its steady state. Here we prove that the optimal quantum probe, acting as a thermometer with maximal thermal sensitivity, is an effective two-level atom with a maximally degenerate excited state. When the total interaction time is insufficient to produce full thermalization, we optimize the estimation protocol by breaking it down into sequential stages of probe preparation, thermal contact and measurement. We observe that frequently interrogated probes initialized in the ground state achieve the best performance. For both fully and partly thermalized thermometers, the sensitivity grows significantly with the number of levels, though optimization over their energy spectrum remains always crucial.

Luis A. Correa; Mohammad Mehboudi; Gerardo Adesso; Anna Sanpera

2014-11-23T23:59:59.000Z

393

Characterization of grain boundary conductivity of spin-sprayed ferrites using scanning microwave microscope  

SciTech Connect (OSTI)

Grain boundary electrical conductivity of ferrite materials has been characterized using scanning microwave microscope. Structural, electrical, and magnetic properties of Fe{sub 3}O{sub 4} spin-sprayed thin films onto glass substrates for different length of growth times were investigated using a scanning microwave microscope, an atomic force microscope, a four-point probe measurement, and a made in house transmission line based magnetic permeameter. The real part of the magnetic permeability shows almost constant between 10 and 300?MHz. As the Fe{sub 3}O{sub 4} film thickness increases, the grain size becomes larger, leading to a higher DC conductivity. However, the loss in the Fe{sub 3}O{sub 4} films at high frequency does not increase correspondingly. By measuring the reflection coefficient s{sub 11} from the scanning microwave microscope, it turns out that the grain boundaries of the Fe{sub 3}O{sub 4} films exhibit higher electric conductivity than the grains, which contributes loss at radio frequencies. This result will provide guidance for further improvement of low loss ferrite materials for high frequency applications.

Myers, J.; Nicodemus, T.; Zhuang, Y., E-mail: yan.zhuang@wright.edu [Department of Electrical Engineering, Wright State University, Dayton, Ohio 45435 (United States); Watanabe, T.; Matsushita, N. [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Yamaguchi, M. [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)

2014-05-07T23:59:59.000Z

394

Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint  

SciTech Connect (OSTI)

Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

Gorman, B. P.; Guthrey, H.; Norman, A. G.; Al-Jassim, M.; Lawrence, D.; Prosa, T.

2011-07-01T23:59:59.000Z

395

Local tunneling characteristics near a grain boundary of a d-wave superconductor as probed by a normal-metal or a low-Tc-superconductor STM tip  

E-Print Network [OSTI]

We studied the local single-particle tunneling characteristics [as observed with scanning tunnel microscopy (STM)] for N D and S D tunneling, where N is a normal metal, S is a s-wave superconductor, and D is a d-wave superconductor with a {100...

Zhao, Hongwei

2005-08-29T23:59:59.000Z

396

Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si  

SciTech Connect (OSTI)

Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ?50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2013-09-30T23:59:59.000Z

397

NATIONAL CENTRE FOR SENSOR RESEARCH (NCSR) Research Engineer Fluorescence Microscopy  

E-Print Network [OSTI]

manuals, prepare standard operating procedures and ensure documentation is maintained. · Manage online projects. · Undertake the commissioning and maintenance of microscopy equipment. · Collate operations

Humphrys, Mark

398

Applied Scanning Probe Methods II, (2006) Eds. B. Bhushan and H. Fuchs,, Springer-Verlag; Heidelberg (2005) Probing Macromolecular Dynamics and  

E-Print Network [OSTI]

AND RENÃ? M. OVERNEY Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA Molecular Motion 15 5. Constraints and Structural Modifications near Interfaces 16 5.1 Interfacial Plasticization 16 5.2 Dewetting Kinetics 16 5.3 Disentanglement Barriers 17 5.4 Interfacial Glass Transition

399

Circular zig-zag scan video format  

DOE Patents [OSTI]

A circular, ziz-zag scan for use with vidicon tubes is disclosed. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal. 10 figs.

Peterson, C.G.; Simmons, C.M.

1992-06-09T23:59:59.000Z

400

ARM - Field Campaign - NSA Scanning Radar IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning Radar IOP ARM

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Rapid Scan AERI Observations: Benefits and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323Program2Raftopoulos(MeVcm²/mg)Rapid Scan AERI

402

WorldScan | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodson County,Worden, Montana:WorldScan Jump to:

403

Sandia National Laboratories: ScanEagle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaled WindScanEagle

404

Probing Signal Design for Power System Identification  

SciTech Connect (OSTI)

This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

2010-05-31T23:59:59.000Z

405

Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne...

406

Understanding Atom Probe Tomography of Oxide-Supported Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Understanding Atom Probe Tomography of Oxide-Supported Metal...

407

Probing Organic Transistors with Infrared Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentationsSRS Responds toPrivacy ActProbingProbingProbing

408

Site-Specific DNA Structural and Dynamic Features Revealed by Nucleotide-Independent Nitroxide Probes  

SciTech Connect (OSTI)

In site-directed spin labeling, a covalently attached nitroxide probe containing a chemically inert unpaired electron is utilized to obtain information on the local environment of the parent macromolecule. Studies presented here examine the feasibility of probing local DNA structural and dynamic features using a class of nitroxide probes that are linked to chemically substituted phosphorothioate positions at the DNA backbone. Two members of this family, designated as R5 and R5a, were attached to eight different sites of a dodecameric DNA duplex without severely perturbing the native B-form conformation. Measured X-band electron paramagnetic resonance (EPR) spectra, which report on nitroxide rotational motions, were found to vary depending on the location of the label (e.g., duplex center vs termini) and the surrounding DNA sequence. This indicates that R5 and R5a can provide information on the DNA local environment at the level of an individual nucleotide. As these probes can be attached to arbitrary nucleotides within a nucleic acid sequence, they may provide a means to “scan” a given DNA molecule in order to interrogate its local structural and dynamic features.

Popova, Anna; Kalai, Tamas; Hideg, Kalman; Qin, Peter Z.

2009-09-15T23:59:59.000Z

409

Probing electron acceleration and x-ray emission in laser-plasma accelerators  

SciTech Connect (OSTI)

While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M. S.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

2013-06-15T23:59:59.000Z

410

Hetero-epitaxial EuO interfaces studied by analytic electron microscopy  

SciTech Connect (OSTI)

With nearly complete spin polarization, the ferromagnetic semiconductor europium monoxide could enable next-generation spintronic devices by providing efficient ohmic spin injection into silicon. Spin injection is greatly affected by the quality of the interface between the injector and silicon. Here, we use atomic-resolution scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy to directly image and chemically characterize a series of EuO|Si and EuO|YAlO{sub 3} interfaces fabricated using different growth conditions. We identify the presence of europium silicides and regions of disorder at the EuO|Si interfaces, imperfections that could significantly reduce spin injection efficiencies via spin-flip scattering.

Mundy, Julia A. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Hodash, Daniel; Melville, Alexander; Held, Rainer [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Mairoser, Thomas; Schmehl, Andreas [Zentrum für Elektronische Korrelationen und Magnetismus, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg (Germany); Muller, David A.; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Schlom, Darrell G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

2014-03-03T23:59:59.000Z

411

Near-field microwave microscopy of high-? oxides grown on graphene with an organic seeding layer  

SciTech Connect (OSTI)

Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100?nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

Tselev, Alexander, E-mail: tseleva@ornl.gov; Kalinin, Sergei V. [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States)] [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States); Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)] [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Marks, Tobin J.; Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States) [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

2013-12-09T23:59:59.000Z

412

An electron microscopy study of the microstructure and microarchitecture of the Strombus gigas shell  

SciTech Connect (OSTI)

A scanning and transmission electron microscopy study is presented of the microstructure of the Strombus gigas shell. The hierarchical nature of this crossed-lamellar structure and the defect content of the mineral component are described. The mineral component consists of small single crystal grains of aragonite, the metastable orthorhombic polymorph of CaCO{sub 3}. The habit and morphology of the grains discussed here have not been determined previously. The observed habit and defect structure suggest that the organic matrix exerts a high degree of control over the crystal growth of the mineral phase and is responsible for the long range order in the microarhitecture. Electron beam heating of the mineral component leads to certain phase changes and these are discussed. 15 refs., 6 figs.

Rieke, P.C.; Laraia, V.J. (Pacific Northwest Lab., Richland, WA (USA)); Heuer, A.H. (Case Western Reserve Univ., Cleveland, OH (USA)); Aindow, M. (Ohio State Univ., Columbus, OH (USA))

1989-11-01T23:59:59.000Z

413

Specific Visualization of Nitric Oxide in the Vasculature with Two-Photon Microscopy Using a Copper Based Fluorescent Probe  

E-Print Network [OSTI]

To study the role and (sub) cellular nitric oxide (NO) constitution in various disease processes, its direct and specific detection in living cells and tissues is a major requirement. Several methods are available to measure ...

Ghosh, Mitrajit

414

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy  

E-Print Network [OSTI]

v List of Tables vii 1 Introduction 1.1 Photovoltaicsand J. V. Manca. Prog. Photovoltaics Res. Appl. , 15:713,polymer blends. Prog. Photovoltaics Res. Appl. , 15:727,

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

415

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy  

E-Print Network [OSTI]

output” means the power output of the solar cell with theof a solar cell is de?ned by [46]: max power output sunlightsolar cell for various values of an applied voltage. This is equivalent to measuring the power output

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

416

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy  

E-Print Network [OSTI]

for harvesting solar energy by Anna Monro Zaniewski Amaterials for harvesting solar energy Copyright 2012 by Annafor harvesting solar energy by Anna Monro Zaniewski Doctor

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

417

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy.  

E-Print Network [OSTI]

??The ability to make materials with nanoscale dimensions opens vast opportunities for creating custom materials with unique properties. The properties of materials on the nanoscale… (more)

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

418

IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 24 (2013) 335703 (7pp) doi:10.1088/0957-4484/24/33/335703  

E-Print Network [OSTI]

. In the new mode, the grid size of the final generated image is an independent variable. Inpainting to a few.1088/0957-4484/24/33/335703 Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position especially when imaging at higher frame rates. We present a new operation mode for scanning probe microscopy

Münster, Westfälische Wilhelms-Universität

419

Catheter based magnetic resonance compatible perfusion probe  

E-Print Network [OSTI]

Neurosurgeons are using a thermal based technique to quantify brain perfusion. The thermal diffusion probe (TDP) technology measures perfusion in a relatively small volume of brain tissue. The neurosurgeon chooses the ...

Toretta, Cara Lynne

2007-01-01T23:59:59.000Z

420

Lecture Notes on Langmuir Probe Diagnostics  

E-Print Network [OSTI]

University of California, Los Angeles Mini-Course on Plasma Diagnostics, IEEE-ICOPS meeting, Jeju, KoreaLecture Notes on Langmuir Probe Diagnostics Francis F. Chen Electrical Engineering Department...................................................................25 1. Fully ionized plasmas

Chen, Francis F.

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Surface sampling concentration and reaction probe  

DOE Patents [OSTI]

A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

Van Berkel, Gary J; Elnaggar, Mariam S

2013-07-16T23:59:59.000Z

422

Probes of strong-field gravity  

E-Print Network [OSTI]

In this thesis, I investigate several ways to probe gravity in the strong-field regime. These investigations focus on observables from the gravitational dynamics, i.e. when time derivatives are large: thus I focus on sources ...

Stein, Leo Chaim

2012-01-01T23:59:59.000Z

423

Single Molecule Probes of Lipid Membrane Structure  

E-Print Network [OSTI]

Biological membranes are highly heterogeneous structures that are thought to use this heterogeneity to organize and modify the function of membrane constituents. Probing membrane organization, structure, and changes therein ...

Livanec, Philip W.

2009-12-14T23:59:59.000Z

424

Self-referencing remote optical probe  

DOE Patents [OSTI]

A probe for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables.

O'Rourke, Patrick E. (157 Greenwood Dr., Martinez, GA 30907); Prather, William S. (2419 Dickey Rd., Augusta, GA 30906); Livingston, Ronald R. (137 Breckenridge Dr., N. Augusta, GA)

1991-01-01T23:59:59.000Z

425

Self-referencing remote optical probe  

DOE Patents [OSTI]

A probe is described for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables. 3 figures.

O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

1991-08-13T23:59:59.000Z

426

Video Article Three-dimensional Optical-resolution Photoacoustic Microscopy  

E-Print Network [OSTI]

of optical microscopy optical-resolution photoacoustic microscopy (OR-PAM)1, where the optical irradiation © 2011 Journal of Visualized Experiments 1. Optical irradiation 1. Optical irradiation source: a diode for ultrasonic detection, which is aligned coaxially with the diffraction-limited optical irradiation. 3

Wang, Lihong

427

Photoacoustic microscopy of tyrosinase reporter gene in vivo  

E-Print Network [OSTI]

Photoacoustic microscopy of tyrosinase reporter gene in vivo Arie Krumholz Sarah J. Van microscopy of tyrosinase reporter gene in vivo Arie Krumholz,a Sarah J. VanVickle-Chavez,b Junjie Yao for tyrosinase, the primary enzyme responsible for expression of melanin in melanogenic cells. Optical res

Wang, Lihong

428

Infrared near-field microscopy of materials motivation: ,,chemical nanoscope"  

E-Print Network [OSTI]

Infrared near-field microscopy of materials motivation: ,,chemical nanoscope" scattering principle) topography s-SNOM infrared: = 9.7 µm visible: = 633 nm #12; Ein Near-field interaction is nonlinear in z resolution /2000000 !! 700 MHz 7 MHz #12;Apertureless near-field microscopy chances wavelength

429

AdHoc Probe: End-to-end Capacity Probing in Wireless Ad Hoc Networks  

E-Print Network [OSTI]

AdHoc Probe: End-to-end Capacity Probing in Wireless Ad Hoc Networks Ling-Jyh Chen1 , Tony Sun2 and systematic study in ad hoc, multihop wireless networks is still lacking. Yet the rate of a wireless link can deployment. In this paper, we present AdHoc Probe, a packet-pair based technique, to estimate end-to-end path

Chen, Ling-Jyh

430

Fiber optic probe for light scattering measurements  

DOE Patents [OSTI]

A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

Nave, Stanley E. (Evans, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

1995-01-01T23:59:59.000Z

431

Fiber optic probe for light scattering measurements  

DOE Patents [OSTI]

This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

Nave, S.E.; Livingston, R.R.; Prather, W.S.

1993-01-01T23:59:59.000Z

432

Slow positron annihilation spectroscopy and electron microscopy of electron beam evaporated cobalt and nickel silicides  

SciTech Connect (OSTI)

Metal silicide thin films on single-crystal silicon substrates are the subject of much research, due to their applications as electrical contacts and interconnects, diffusion barriers, low resistance gates, and field-assisted positron moderators, among others. Defects within the silicide layer and/or at the silicide/silicon interface are detrimental to device performance, since they can act as traps for charge carriers, as well as positrons. Pinholes penetrating the film are another detriment particularly for cobalt silicide films, since they allow electrons to permeate the film, rather than travel ballistically, in addition to greatly increasing surface area for recombination events. A series of epitaxial cobalt and nickel silicide thin films, deposited via electron-beam evaporation and annealed at various temperatures, have been grown on single-crystal silicon (111) substrates, in an effort to establish a relationship between deposition and processing parameters and film quality. The films have been analyzed by transmission and scanning electron microscopy, sputter depth profile Auger, and slow positron annihilation spectroscopy. The latter has been shown to both correlate and complement the traditional electron microscopy results.

Frost, R.L.; DeWald, A.B. (Georgia Institute of Technology, Atlanta, Georgia 30332 (USA)); Zaluzec, M.; Rigsbee, J.M. (University of Illinois, Urbana, Illinois 61801 (USA)); Nielsen, B.; Lynn, K.G. (Brookhaven National Laboratory, Upton, New York 11973 (USA))

1990-07-01T23:59:59.000Z

433

Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes  

SciTech Connect (OSTI)

Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

2007-09-01T23:59:59.000Z

434

Evaluation of probes used to detect alpha radiation  

E-Print Network [OSTI]

such probes were evaluated in this study, the 350A Alpha Probe of Dosimeter Corporation and the AB100 Scintillator Probe produced by Harshaw Bicron. As an additional comparison, a Ludlum Model 44-9 (Pancake) GM Probe was also evaluated, since it has served...

Sackett, Gregory Duane

1995-01-01T23:59:59.000Z

435

Mach flow angularity probes for scramjet engine flow path diagnostics  

SciTech Connect (OSTI)

Mach-flow angularity (MFA) probes were developed for use in scramjet flow path probe rakes. Prototype probes were fabricated to demonstrate the assembly processes (numerical control machining, furnace brazing, and electron beam welding). Tests of prototype probes confirmed the thermal durability margins and life cycle. Selected probes were calibrated in air at Mach numbers from 1.75 to 6.0. Acceptance criteria for the production probes stressed thermal durability and pressure (and, consequently, Mach number) measurement quality. This new water-cooled MFA probe has 0.397-cm shaft diameter and is capable of withstanding heat fluxes of 2.724 kW/sq cm.

Jalbert, P.A.; Hiers, R.S. Jr. [Sverdrup Technology, Inc., Arnold AFS, TN (United States)

1993-12-31T23:59:59.000Z

436

Corrosion monitoring with hydrogen probes in the oilfield  

SciTech Connect (OSTI)

An overview of the application of hydrogen probes for corrosion monitoring in the oilfield is presented. The three basic types of hydrogen probes are described and their relative merits discussed. The construction and installation of a simple and inexpensive electrochemical hydrogen probe is described. Experiences with hydrogen probes in oilfield operations are discussed, and it is concluded from these experiences that production systems where hydrogen probes can provide useful corrosion data are limited.

Thomason, W.H.

1984-05-01T23:59:59.000Z

437

Lansce Wire Scanning Diagnostics Device Mechanical Design  

SciTech Connect (OSTI)

The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

438

Target-specific contrast agents for magnetic resonance microscopy  

E-Print Network [OSTI]

High-resolution ex vivo magnetic resonance microscopy (MRM) can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. The goal ...

Hepler Blackwell, Megan Leticia

2007-01-01T23:59:59.000Z

439

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys. Rev. Lett. 107, 033904 (2011). Web: http:prl.aps.orgpdfPRLv107i3e033904...

440

Optical fiber based ultrashort pulse multispectral nonlinear optical microscopy  

E-Print Network [OSTI]

Nonlinear optical microscopy (NLOM) utilizing femtosecond laser pulses is well suited for imaging living tissues. This work reports on the design and development of an optical fiber based multispectral NLOM developed around a laser generating...

Larson, Adam Michael

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Doppler optical coherence microscopy for studies of cochlear mechanics  

E-Print Network [OSTI]

The possibility of measuring subnanometer motions with micron scale spatial resolution in the intact mammalian cochlea using Doppler optical coherence microscopy (DOCM) is demonstrated. A novel DOCM system is described ...

Hong, Stanley S.

442

Estimating Geometric Dislocation Densities in Polycrystalline Materialsfrom Orientation Imaging Microscopy  

SciTech Connect (OSTI)

Herein we consider polycrystalline materials which can be taken as statistically homogeneous and whose grains can be adequately modeled as rigid-plastic. Our objective is to obtain, from orientation imaging microscopy (OIM), estimates of geometrically necessary dislocation (GND) densities.

Man, Chi-Sing [University of Kentucky; Gao, Xiang [University of Kentucky; Godefroy, Scott [University of Kentucky; Kenik, Edward A [ORNL

2010-01-01T23:59:59.000Z

443

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

444

Carmichael's Concise Review Microscopy is Only Skin Deep  

E-Print Network [OSTI]

Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

Heller, Eric

445

Fireside corrosion probes--an update  

SciTech Connect (OSTI)

The ability to monitor the corrosion degradation of key metallic components in fossil fuel power plants will become increasingly important for FutureGen and ultra-supercritical power plants. A number of factors (ash deposition, coal composition changes, thermal gradients, and low NOx conditions, among others) which occur in the high temperature sections of energy production facilities, will contribute to fireside corrosion. Several years of research have shown that high temperature corrosion rate probes need to be better understood before corrosion rate can be used as a process variable by power plant operators. Our recent research has shown that electrochemical corrosion probes typically measure lower corrosion rates than those measured by standard mass loss techniques. While still useful for monitoring changes in corrosion rates, absolute probe corrosion rates will need a calibration factor to be useful. Continuing research is targeted to help resolve these issues.

Covino, B.S., Jr.; Bullard, S.J.; Holcomb, G.R.; Ziomek-Moroz, M.; Matthes, S.A.

2007-01-01T23:59:59.000Z

446

Gamma-ray blind beta particle probe  

DOE Patents [OSTI]

An intra-operative beta particle probe is provided by placing a suitable photomultiplier tube (PMT), micro channel plate (MCP) or other electron multiplier device within a vacuum housing equipped with: 1) an appropriate beta particle permeable window; and 2) electron detection circuitry. Beta particles emitted in the immediate vicinity of the probe window will be received by the electron multiplier device and amplified to produce a detectable signal. Such a device is useful as a gamma insensitive, intra-operative, beta particle probe in surgeries where the patient has been injected with a beta emitting radiopharmaceutical. The method of use of such a device is also described, as is a position sensitive such device.

Weisenberger, Andrew G. (Grafton, VA)

2001-01-01T23:59:59.000Z

447

Remote adjustable focus Raman spectroscopy probe  

DOE Patents [OSTI]

A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

Schmucker, John E. (Hurt, VA); Blasi, Raymond J. (Harrison City, PA); Archer, William B. (Bethel Park, PA)

1999-01-01T23:59:59.000Z

448

The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.  

SciTech Connect (OSTI)

The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 %C2%B0C very little oxidation took place; at 850 %C2%B0C oxidation occurred after an induction period, while at 950 %C2%B0C oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 %C2%B0C rapid passivation of the surface of the aluminum foil occurred, while at 1250 %C2%B0C and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

Coker, Eric Nicholas

2013-10-01T23:59:59.000Z

449

Toward single cell traction microscopy within 3D collagen matrices  

SciTech Connect (OSTI)

Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

2013-10-01T23:59:59.000Z

450

Scintillation probe with photomultiplier tube saturation indicator  

DOE Patents [OSTI]

A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

Ruch, Jeffrey F. (Bethel Park, PA); Urban, David J. (Glassport, PA)

1996-01-01T23:59:59.000Z

451

Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible  

SciTech Connect (OSTI)

The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide computational models of the focusing of multi-GHz acoustic waves to the nanometer scale and innovated a series fabrication approaches for a new type of broadband high-frequency acoustic focusing microscope objective by applying methods on nanoimprinting and focused-ion beam techniques. In the following, the Phase I and Phase II instrument development is reported as Section II. The first segment of this section describes the POAM instrument and its development, while including much of the underlying ultrafast acoustic physics which is common to all of our work for this grant. Then, the science and engineering of the SOAM instrument is described, including the methods of fabricating new types of acoustic microlenses. The results section is followed by reports on publications (Section III), Participants (Section IV), and statement of full use of the allocated grant funds (Section V).

Nurmikko, Arto; Humphrey, Maris

2014-07-10T23:59:59.000Z

452

Rapid Scan Humidified Growth Cloud Condensation Nuclei Counter  

SciTech Connect (OSTI)

This research focused on enhancements to the streamwise thermal gradient cloud condensation nuclei counter to support the rapid scan mode and to enhance the capability for aerosol humidified growth measurements. The research identified the needs for flow system modifications and range of capability for operating the conventional instrument in the rapid scan and humidified growth modes.

Gregory L. Kok; Athanasios Nenes

2013-03-13T23:59:59.000Z

453

Fast 3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

Fast 3D Scanning for Biometric Identification and Verification June 2011 Authors Anselmo., & Chen, A. (2011). Fast 3D Scanning for Biometric Identification and Verification. (Prepared by RTI..................................................10 Summary and Findings for Integration of Imperceptible Structured Lighting and SIS's 3D Snapshot

McShea, Daniel W.

454

Joint estimation of attenuation and emission images from PET scans  

E-Print Network [OSTI]

Joint estimation of attenuation and emission images from PET scans Hakan Erdogan and Jeffrey A Motivation · Attenuation correction needed for quantitatively accurate PET · Post-injection transmission scans necessitated by whole-body PET Inject (in waiting room) Radioisotope Uptake 40-60 minutes 10

Fessler, Jeffrey A.

455

ProxiScan?: A Novel Camera for Imaging Prostate Cancer  

ScienceCinema (OSTI)

ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

Ralph James

2010-01-08T23:59:59.000Z

456

Automatic Radar Antenna Scan Type Recognition in Electronic  

E-Print Network [OSTI]

Automatic Radar Antenna Scan Type Recognition in Electronic Warfare BILLUR BARSHAN BAHAEDDIN ERAVCI in electronic warfare (EW). The stages of the algorithm are scan period estimation, preprocessing (normalization Continuous-wave EW Electronic warfare EM Electromagnetic LFM Linear frequency modulation DTW Dynamic time

Barshan, Billur

457

Saline absorption in calcium silicate brick observed by NMR scanning  

E-Print Network [OSTI]

Saline absorption in calcium silicate brick observed by NMR scanning L. Pel #3; , K. Kopinga #3 in calcium-silicate brick was investigated by nuclear magnetic resonance scanning. This method hasCl solution in a calcium silicate brick will be discussed. 2 Theory If gravity is neglected, the isothermal

Eindhoven, Technische Universiteit

458

Probe and method for DNA detection  

DOE Patents [OSTI]

A hybridization probe containing two linear strands of DNA lights up upon hybridization to a target DNA using silver nanoclusters that have been templated onto one of the DNA strands. Hybridization induces proximity between the nanoclusters on one strand and an overhang on the other strand, which results in enhanced fluorescence emission from the nanoclusters.

Yeh, Hsin-Chih; Werner, James Henry; Sharma, Jaswinder Kumar; Martinez, Jennifer Suzanne

2013-07-02T23:59:59.000Z

459

Probe Measurements of Electrostatic Fluctuations in LDX  

E-Print Network [OSTI]

-axis ­ Motor positioning controlled with PLC · VERTICAL PROBES: ­ -pos: one - two meters off mid-plane ­ -pos density. Density(cm-3 ) 0.00118 0.0000 PlasmaFlux (Tesla/sec) 1010 109 #12;7 Electric Fluctuations

460

Astrophysikalisches Institut Potsdam Probes of Dark Energy  

E-Print Network [OSTI]

Astrophysikalisches Institut Potsdam Probes of Dark Energy using Cosmological Simulations Nonlinear component, called dark energy. This unknown energy causes the expansion of the universe to accelerate theoretical model of dark energy has been developed. Instead a number of models have been proposed that range

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High temperature electrochemical corrosion rate probes  

SciTech Connect (OSTI)

Corrosion occurs in the high temperature sections of energy production plants due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Electrochemical corrosion rate (ECR) probes have been shown to operate in high temperature gaseous environments that are similar to those found in fossil fuel combustors. ECR probes are rarely used in energy production plants at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the nature of these probes. Factors being considered are values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits. The nature of ECR probes will be explored in a number of different atmospheres and with different electrolytes (ash and corrosion product). Corrosion rates measured using an electrochemical multi-technique capabilities instrument will be compared to those measured using the linear polarization resistance (LPR) technique. In future experiments, electrochemical corrosion rates will be compared to penetration corrosion rates determined using optical profilometry measurements.

Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, M.

2005-09-01T23:59:59.000Z

462

E-Print Network 3.0 - advanced microscopy techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

microscopy techniques and their practice in relationship to materials structure characterization... of Microscopy", Edited by P.W. Hawkes and J.C.H. Spence, Springer, 2006 (An...

463

E-Print Network 3.0 - atomic force microscopy-based Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrochemical strain microscopy... -ion kinetics without changing the charging state of the battery. An atomic force microscopy tip in contact Source: Pint, Bruce A. -...

464

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source. Soft X-Ray Microscopy and Spectroscopy at the Molecular...

465

Swept source optical coherence microscopy for pathological assessment of cancerous tissues  

E-Print Network [OSTI]

Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable ...

Ahsen, Osman Oguz

2013-01-01T23:59:59.000Z

466

Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods  

SciTech Connect (OSTI)

Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ?52 ± 2 ?m deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m{sup ?1} K{sup ?1} and 26.7 ±1 W m{sup ?1} K{sup ?1}, respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10{sup ?6} m{sup 2} K W{sup ?1}. The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials.

Jensen, C. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France) [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States); Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France)] [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Ban, H. [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)] [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)

2013-10-07T23:59:59.000Z

467

Improvements in 500-kHz Ultrasonic Phased-Array Probe Designs for Evaluation of Thick Section Cast Austenitic Stainless Steel Piping Welds  

SciTech Connect (OSTI)

PNNL has been studying and performing confirmatory research on the inspection of piping welds in coarse-grained steels for over 30 years. More recent efforts have been the application of low frequency phased array technology to this difficult to inspect material. The evolution of 500 kHz PA probes and the associated electronics and scanning protocol are documented in this report. The basis for the probe comparisons are responses from one mechanical fatigue crack and two thermal fatigue cracks in large-bore cast mockup specimens on loan from the Electric Power Research Institution. One of the most significant improvements was seen in the use of piezo-composite elements in the later two probes instead of the piezo-ceramic material used in the prototype array. This allowed a reduction in system gain of 30 dB and greatly reduced electronic noise. The latest probe had as much as a 5 dB increase in signal to noise, adding to its flaw discrimination capability. The system electronics for the latest probe were fully optimized for a 500 kHz center frequency, however significant improvements were not observed in the center frequency of the flaw responses. With improved scanner capabilities, smaller step sizes were used, allowing both line and raster data improvements to be made with the latest probe. The small step sizes produce high resolution images that improve flaw discrimination and, along with the increased signal-to-noise ratio inherent in the latest probe design, enhanced detection of the upper regions of the flaw make depth sizing more plausible. Finally, the physical sizes of the probes were progressively decreased allowing better access to the area of interest on specimens with weld crowns, and the latest probe was designed with non-integral wedges providing flexibility in focusing on different specimen geometries.

Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Anderson, Michael T.; Diaz, Aaron A.

2011-02-01T23:59:59.000Z

468

ELECTROSTATIC PROBE DIAGNOSTICS ON THE LBL 10 AMPERE NEUTRAL BEAM ION SOURCE  

E-Print Network [OSTI]

Probes," in Plasma Diagnostics (Lochte- Holtgreven, eds. ),Electric Probes," in Plasma Diagnostic Techniques (R. H.Spatial probe diagnostics schematic. Radial plasma profile:

Schoenberg, Kurt F.

2011-01-01T23:59:59.000Z

469

Semiconductor nanocrystal probes for biological applications and process for making and using such probes  

DOE Patents [OSTI]

A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

2014-01-28T23:59:59.000Z

470

Semiconductor nanocrystal probes for biological applications and process for making and using such probes  

DOE Patents [OSTI]

A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

2012-10-16T23:59:59.000Z

471

Surface enhanced Raman gene probe and methods thereof  

DOE Patents [OSTI]

The subject invention disclosed herein is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

Vo-Dinh, T.

1998-09-29T23:59:59.000Z

472

Surface enhanced Raman gene probe and methods thereof  

DOE Patents [OSTI]

The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

Vo-Dinh, T.

1998-07-21T23:59:59.000Z

473

Lens-array PDV Probe Using a Pyramid Prism  

SciTech Connect (OSTI)

A bug eye probe is shown using a pyramid prism, and its advantages and disadvantages are enumerated. Also shown is abug eye imaging probe, with its advantages and disadvantages enumerated.

Malone, R. M., Kaufman, M. I., Cox, B., Romero, V., Cata B., Sorenson, D. Pazuchanics, P.

2011-11-01T23:59:59.000Z

474

Surface enhanced Raman gene probe and methods thereof  

DOE Patents [OSTI]

The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

Vo-Dinh, T.

1998-02-24T23:59:59.000Z

475

acceleration probe studying: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23 24 25 Next Page Last Page Topic Index 1 Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae Astrophysics (arXiv) Summary: The Supernova Acceleration Probe...

476

Steady and unsteady calibration of multi-hole probes  

E-Print Network [OSTI]

This thesis presents the development of a data crographics. reduction algorithm for multi-hole pressure probes. The algorithm has been developed for the reduction of calibration data from miniature non-nulling multi-hole probes in compressible...

Johansen, Espen S

1998-01-01T23:59:59.000Z

477

Local tunneling characteristics near a grain boundary of a d-wave superconductor as probed by a normal-metal or a low-T-c-superconductor STM tip  

E-Print Network [OSTI]

We study the local single-particle tunneling characteristics [as observed with scanning tunnel microscopy (STM)] for N-D and S-D tunneling, where D is a d-wave superconductor with a {100}{110} grain boundary. The tunneling Hamiltonian method is used...

Zhao, HW; Hu, Chia-Ren.

2000-01-01T23:59:59.000Z

478

Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy  

SciTech Connect (OSTI)

Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

2011-02-01T23:59:59.000Z

479

Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy  

SciTech Connect (OSTI)

Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

2011-01-01T23:59:59.000Z

480

Can a Pump-probe Experiment be Simulated Efficiently?  

E-Print Network [OSTI]

Can a Pump-probe Experiment be Simulated Efficiently? Thesis Submitted for the Degree Doctor things in the world. #12;i ABSTRACT Measuring a quantum system disturbs its evolution. A pump-probe exper measurements. Modeling the evolution of observables in the pump-probe experiment is an essential ingredient

Kosloff, Ronnie

Note: This page contains sample records for the topic "microscopy scanning probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Dielectric spectroscopy at the nanoscale by atomic force microscopy: A simple model linking materials properties and experimental response  

SciTech Connect (OSTI)

The use of an atomic force microscope for studying molecular dynamics through dielectric spectroscopy with spatial resolution in the nanometer scale is a recently developed approach. However, difficulties in the quantitative connection of the obtained data and the material dielectric properties, namely, frequency dependent dielectric permittivity, have limited its application. In this work, we develop a simple electrical model based on physically meaningful parameters to connect the atomic force microscopy (AFM) based dielectric spectroscopy experimental results with the material dielectric properties. We have tested the accuracy of the model and analyzed the relevance of the forces arising from the electrical interaction with the AFM probe cantilever. In this way, by using this model, it is now possible to obtain quantitative information of the local dielectric material properties in a broad frequency range. Furthermore, it is also possible to determine the experimental setup providing the best sensitivity in the detected signal.

Miccio, Luis A., E-mail: luisalejandro-miccio@ehu.es; Colmenero, Juan [Centro de Física de Materiales (CSIC-UPV/EHU), P. M. de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center, P. M. de Lardizabal 4, 20018 San Sebastián (Spain); Departamento de Física de Materiales (UPV/EHU), 20080 San Sebastián (Spain); Kummali, Mohammed M.; Alegría, Ángel [Centro de Física de Materiales (CSIC-UPV/EHU), P. M. de Lardizabal 5, 20018 San Sebastián (Spain); Departamento de Física de Materiales (UPV/EHU), 20080 San Sebastián (Spain); Schwartz, Gustavo A. [Centro de Física de Materiales (CSIC-UPV/EHU), P. M. de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center, P. M. de Lardizabal 4, 20018 San Sebastián (Spain)

2014-05-14T23:59:59.000Z

482

Phase states of water near the surface of a polymer membrane. Phase microscopy and luminescence spectroscopy experiments  

SciTech Connect (OSTI)

Phase microscopy is used to show that the refractive index in the near-surface layer of water at the surface of a polymer Nafion membrane increases by a factor of 1.1 as compared to bulk water. Moreover, this layer exhibits birefringence. Experiments on UV irradiation of dry (anhydrous) and water-soaked Nafion are performed in grazing-incidence geometry to study their stimulated luminescence spectra. These spectra are found to be identical in both cases. For dry Nafion, luminescence can only be excited if probing radiation illuminates the polymer surface. The luminescence of water-soaked Nafion can also be excited if the distance between the optical axis and the surface is several hundred micrometers.

Bunkin, N. F., E-mail: nbunkin@kapella.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Gorelik, V. S. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kozlov, V. A., E-mail: v.kozlov@hotmail.com; Shkirin, A. V., E-mail: avshkirin@mephi.ru; Suyazov, N. V., E-mail: nvs@kapella.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

2014-11-15T23:59:59.000Z

483

Electric force microscopy of semiconductors: Theory of cantilever frequency fluctuations and noncontact friction  

SciTech Connect (OSTI)

An electric force microscope employs a charged atomic force microscope probe in vacuum to measure fluctuating electric forces above the sample surface generated by dynamics of molecules and charge carriers. We present a theoretical description of two observables in electric force microscopy of a semiconductor: the spectral density of cantilever frequency fluctuations (jitter), which are associated with low-frequency dynamics in the sample, and the coefficient of noncontact friction, induced by higher-frequency motions. The treatment is classical-mechanical, based on linear response theory and classical electrodynamics of diffusing charges in a dielectric continuum. Calculations of frequency jitter explain the absence of contributions from carrier dynamics to previous measurements of an organic field effect transistor. Calculations of noncontact friction predict decreasing friction with increasing carrier density through the suppression of carrier density fluctuations by intercarrier Coulomb interactions. The predicted carrier density dependence of the friction coefficient is consistent with measurements of the dopant density dependence of noncontact friction over Si. Our calculations predict that in contrast to the measurement of cantilever frequency jitter, a noncontact friction measurement over an organic semiconductor could show appreciable contributions from charge carriers.

Lekkala, Swapna; Marohn, John A.; Loring, Roger F., E-mail: roger.loring@cornell.edu [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

2013-11-14T23:59:59.000Z

484

Site tests validate benefits of cavern probes  

SciTech Connect (OSTI)

More than 5 years` experience with downhole probes has allowed TransGas Ltd., Regina, to monitor and evaluate cavern integrity. The devices access natural-gas storage caverns` pressures and temperatures. Acquired data have helped determine gas-in-place inventory volumes, confirm spatial volumes, and assess changes in spatial volumes that may have resulted from cavern creep (shrinkage or closure) or downhole abnormality such as fluid infill or collapse of the side walls or roof areas. This conclusion of two articles presents details and results of a specific storage-site. The first article presented background and many of the details and lessons of TransGas` cavern gas-storage probe program.

Crossley, N.G. [TransGas Ltd., Regina, Saskatchewan (Canada)

1997-03-10T23:59:59.000Z

485

Non-Contact Gaging with Laser Probe  

SciTech Connect (OSTI)

A gage has been constructed using conventional (high end) components for the application of measuring fragile syntactic foam parts in a non-contact mode. Success with this approach has been achieved through a novel method of transferring (mapping) high accuracy local measurements of a coated aluminum master, taken on a Leitz Coordinate Measurement Machine (CMM), to the gage software system. The mapped data is then associated with local voltage readings from two (inner and outer) laser triangulating probes. This couples discreet laser probe offset and linearity characteristics to the measured master geometry. The gage software compares real part measured data against the master data to provide non-contact part inspection that results in a high accuracy and low uncertainty performance. Uncertainty from the part surface becomes the prevailing contributor to the gaging process. The gaging process provides a high speed, hands off measurement with nearly zero impedance.

Clinesmith, Mike

2009-03-20T23:59:59.000Z

486

Probing Nano-Mechanical QED Effects  

E-Print Network [OSTI]

We propose and study an "intrinsic probing" approach, without introducing any external detector, to mimic cavity QED effects in a qubit-nanomechanical resonator system. This metallic nanomechanical resonator can act as an intrinsic detector when a weak driving current passes through it. The nanomechanical resonator acts as both the cavity and the detector. A cavity QED-like effect is demonstrated by the correlation spectrum of the electromotive force between the two ends of the nanomechanical resonator. Using the quantum regression theorem and perturbation theory, we analytically calculate the correlation spectrum. In the weak driving limit, we study the effect on the vacuum Rabi splitting of both the strength of the driving as well as the frequency-detuning between the charge qubit and the nanomechanical resonator. Numerical calculations confirm the validity of our intrinsic probing approach.

Y. B. Gao; S. Yang; Yu-xi Liu; C. P. Sun; Franco Nori

2009-02-15T23:59:59.000Z

487

Generative Models for Super-Resolution Single Molecule Microscopy Images of Biological Structures  

E-Print Network [OSTI]

an information bridge between super-resolution microscopy and structural biology by using generative models

Matsuda, Noboru

488

Probe for EPMA v. 10.3.5 User's Guide and Reference  

E-Print Network [OSTI]

Database for Data Integrity...........................................................15 History of Probe

489

Regenerable activated bauxite adsorbent alkali monitor probe  

DOE Patents [OSTI]

A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

Lee, S.H.D.

1992-12-22T23:59:59.000Z

490

Fireside corrosion probes for fossil fuel combustion  

SciTech Connect (OSTI)

Electrochemical corrosion rate probes have been constructed and tested along with mass loss coupons in environments consisting of N2/O2/CO2/SO2 plus water vapor. Temperatures ranged from 450° to 700°C. Results show that electrochemical corrosion rates for ash-covered mild steel are a function of time, temperature, and gaseous environment. Correlation between the electrochemical and mass loss corrosion rates was poor.

Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.; Eden, D.A. (Intercorr International, Houston, TX)

2006-03-01T23:59:59.000Z

491

A Rapid Scanning Inspection Method for Insulated Ferromagnetic Tubing  

E-Print Network [OSTI]

long expanse of insulated piping. PA Incorporated has developed an electromagnetic inspection device which rapidly scans nearly 100 percent of an insulated pipeline (flanges and tees excluded) and provides a quantitative (2 percent) measurement...

Marsh, G. M.; Milewits, M.

1984-01-01T23:59:59.000Z

492

Multi-atlas segmentation in head and neck CT scans  

E-Print Network [OSTI]

We investigate automating the task of segmenting structures in head and neck CT scans, to minimize time spent on manual contouring of structures of interest. We focus on the brainstem and left and right parotids. To generate ...

Arbisser, Amelia M

2012-01-01T23:59:59.000Z

493

Surface skeleton generation based on 360-degree profile scan  

E-Print Network [OSTI]

A rapid prototyping method is invented, which works on a specific data structure produced by an optical metrology technique: 360-degree surface profile scanning. A computer algorithm takes an object profile data, restructure ...

Chen, Lujie

494

Observing Warm Clouds in 3D Using ARM Scanning Cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

495

Achieving sub-10-nm resolution using scanning electron beam lithography  

E-Print Network [OSTI]

Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications have driven demand for ...

Cord, Bryan M. (Bryan Michael), 1980-

2009-01-01T23:59:59.000Z