Powered by Deep Web Technologies
Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sample heating in near-field scanning optical microscopy  

E-Print Network [OSTI]

Heating near the aperture of aluminumcoated,fiber opticnear-field scanning optical microscopy probes was studied as a function of input and output powers. Using the shear-force feedback method, near-field probes were positioned nanometers above a...

Erickson, Elizabeth S.; Dunn, Robert C.

2005-10-05T23:59:59.000Z

2

Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers  

SciTech Connect (OSTI)

We demonstrate the use of a pulsed quantum cascade laser, wavelength tuneable between 6 and 10??m, with a scattering-type scanning near-field optical microscope (s-SNOM). A simple method for calculating the signal-to-noise ratio (SNR) of the s-SNOM measurement is presented. For pulsed lasers, the SNR is shown to be highly dependent on the degree of synchronization between the laser pulse and the sampling circuitry; in measurements on a gold sample, the SNR is 26 with good synchronization and less than 1 without. Simulations and experimental s-SNOM images, with a resolution of 100?nm, corresponding to ?/80, and an acquisition time of less than 90 s, are presented as proof of concept. They show the change in the field profile of plasmon-resonant broadband antennas when they are excited with wavelengths of 7.9 and 9.5??m.

Yoxall, Edward, E-mail: edward.yoxall@imperial.ac.uk; Rahmani, Mohsen; Maier, Stefan A.; Phillips, Chris C. [The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)] [The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Navarro-Cía, Miguel [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom)] [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom)

2013-11-18T23:59:59.000Z

3

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene  

E-Print Network [OSTI]

We demonstrate high resolution scanning fluorescence resonance energy transfer 10 microscopy between a single nitrogen-vacancy center as donor and graphene as acceptor. 11 Images with few nanometer resolution of single and multilayer graphene structures were 12 attained. An energy transfer efficiency of 30% at distances of 10nm between a single 13 defect and graphene was measured. Further the energy transfer distance dependence of 14 the nitrogen-vacancy center to graphene was measured to show the predicted d-4 15 dependence. Our studies pave the way towards a diamond defect center based versatile 16 single emitter scanning microscope.

J. Tisler; T. Oeckinghaus; R. Stöhr; R. Kolesov; F. Reinhard; J. Wrachtrup

2013-01-02T23:59:59.000Z

4

Near-field microscopy with a scanning nitrogen-vacancy color center in a diamond nanocrystal: A brief review  

E-Print Network [OSTI]

We review our recent developments of near-field scanning optical microscopy (NSOM) that uses an active tip made of a single fluorescent nanodiamond (ND) grafted onto the apex of a substrate fiber tip. The ND hosting a limited number of nitrogen-vacancy (NV) color centers, such a tip is a scanning quantum source of light. The method for preparing the ND-based tips and their basic properties are summarized. Then we discuss theoretically the concept of spatial resolution that is achievable in this special NSOM configuration and find it to be only limited by the scan height over the imaged system, in contrast with the standard aperture-tip NSOM whose resolution depends critically on both the scan height and aperture diameter. Finally, we describe a scheme we have introduced recently for high-resolution imaging of nanoplasmonic structures with ND-based tips that is capable of approaching the ultimate resolution anticipated by theory.

Drezet, A; Cuche, A; Mollet, O; Berthel, M; Huant, S

2015-01-01T23:59:59.000Z

5

Infrared Scattering Scanning Near-Field Optical Microscopy Using An External Cavity Quantum Cascade Laser For Nanoscale Chemical Imaging And Spectroscopy of Explosive Residues  

SciTech Connect (OSTI)

Infrared scattering scanning near-field optical microscopy (s-SNOM) is an apertureless superfocusing technique that uses the antenna properties of a conducting atomic force microscope (AFM) tip to achieve infrared spatial resolution below the diffraction limit. The instrument can be used either in imaging mode, where a fixed wavelength light source is tuned to a molecular resonance and the AFM raster scans an image, or in spectroscopy mode where the AFM is held stationary over a feature of interest and the light frequency is varied to obtain a spectrum. In either case, a strong, stable, coherent infrared source is required. Here we demonstrate the integration of a broadly tunable external cavity quantum cascade laser (ECQCL) into an s-SNOM and use it to obtain infrared spectra of microcrystals of chemicals adsorbed onto gold substrates. Residues of the explosive compound tetryl was deposited onto gold substrates. s-SNOM experiments were performed in the 1260-1400 cm?1 tuning range of the ECQCL, corresponding to the NO2 symmetric stretch vibrational fingerprint region. Vibrational infrared spectra were collected on individual chemical domains with a collection area of *500nm2 and compared to ensemble averaged far-field reflection-absorption infrared spectroscopy (RAIRS) results.

Craig, Ian M.; Phillips, Mark C.; Taubman, Matthew S.; Josberger, Erik E.; Raschke, Markus Bernd

2013-02-04T23:59:59.000Z

6

Infrared near-field microscopy of materials motivation: ,,chemical nanoscope"  

E-Print Network [OSTI]

Infrared near-field microscopy of materials motivation: ,,chemical nanoscope" scattering principle) topography s-SNOM infrared: = 9.7 µm visible: = 633 nm #12; Ein Near-field interaction is nonlinear in z resolution /2000000 !! 700 MHz 7 MHz #12;Apertureless near-field microscopy chances wavelength

7

Scanning tip microwave near field microscope  

DOE Patents [OSTI]

A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

Xiang, Xiao-Dong (Alameda, CA); Schultz, Peter G. (Oakland, CA); Wei, Tao (Albany, CA)

1998-01-01T23:59:59.000Z

8

Photothermal imaging scanning microscopy  

DOE Patents [OSTI]

Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

2006-07-11T23:59:59.000Z

9

Near-field microwave microscopy of high-? oxides grown on graphene with an organic seeding layer  

SciTech Connect (OSTI)

Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100?nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

Tselev, Alexander, E-mail: tseleva@ornl.gov; Kalinin, Sergei V. [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States)] [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States); Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)] [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Marks, Tobin J.; Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States) [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

2013-12-09T23:59:59.000Z

10

NREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions and identify  

E-Print Network [OSTI]

and Characterization team examined local junction breakdown in silicon and thin-film solar cells by electroluminescenceNREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions is an increasingly important issue for silicon solar cells. The issue has taken center stage now that the solar

11

Ultrafast scanning probe microscopy  

DOE Patents [OSTI]

An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

1995-01-01T23:59:59.000Z

12

Ultrafast scanning probe microscopy  

DOE Patents [OSTI]

An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

1995-05-16T23:59:59.000Z

13

Ultrafast scanning tunneling microscopy  

SciTech Connect (OSTI)

I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

1995-09-01T23:59:59.000Z

14

Nonlinear Chemical Imaging Microscopy: Near-Field Third Harmonic Generation Imaging of  

E-Print Network [OSTI]

- field scanning optical microscope (NSOM) is demon- strated for the first time. A femtosecond, tunable near- infrared laser was used to generate both nonresonant and resonantly enhanced third harmonic radiation in human red blood cells. We show that resonantly enhanced THG is a chemically specific bulk probe

Cohen, Ronald C.

15

Scanning Probe Microscopy Studies of Carbon Nanotubes  

E-Print Network [OSTI]

Scanning Probe Microscopy Studies of Carbon Nanotubes Teri Wang Odom1 , Jason H. Hafner1 relationship between Single-Walled Carbon Nanotube (SWNT) atomic structure and electronic properties, (2, properties and application of carbon nanotube probe microscopy tips to ultrahigh resolution and chemically

Odom, Teri W.

16

Atomic Force and Scanning Electron Microscopy of Atmospheric Particles  

E-Print Network [OSTI]

conducted so as to characterize atmospheric aerosols from anthropogenic (pollution) and natural (sea saltAtomic Force and Scanning Electron Microscopy of Atmospheric Particles ZAHAVA BARKAY,1 * AMIT 69978, Israel KEY WORDS atmospheric aerosols; atomic force microscopy; scanning electron microscopy

Shapira, Yoram

17

Surface Plasmon mediated near-field imaging and optical addressing in nanoscience  

E-Print Network [OSTI]

We present an overview of recent progress in plasmonics. We focus our study on the observation and excitation of surface plasmon polaritons (SPPs) with optical near-field microscopy. We discuss in particular recent applications of photon scanning tunnelling microscope (PSTM) for imaging of SPP propagating in metal and dielectric wave guides. We show how near-field scanning optical microscopy (NSOM) can be used to optically and actively address remotely nano-objects such as quantum dots. Additionally we compare results obtained with near-field microscopy to those obtained with other optical far-field methods of analysis such as leakage radiation microscopy (LRM).

Drezet, A; Krenn, J R; Brun, M; Huant, S

2007-01-01T23:59:59.000Z

18

Sandia National Laboratories: scanning tunneling microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving thereversetunneling microscopy

19

Scanning acoustic microscopy for mapping the microstructure of soft materials  

E-Print Network [OSTI]

Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

N. G. Parker; M. J. W. Povey

2009-04-30T23:59:59.000Z

20

Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy  

E-Print Network [OSTI]

polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ?55–60°C as output powers reach ?50nW. At higher output powers, the sample...

Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

2007-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Laser scanning third-harmonic-generation microscopy in biology  

E-Print Network [OSTI]

. Denk, J. H. Stricker and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). 3. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel and W. W. Webb, "Measuring-214 (1996). 6. R. Hellwarth and P. Christensen, "Nonlinear optical microscopic examination of structure

Silberberg, Yaron

22

Phase modulation mode of scanning ion conductance microscopy  

SciTech Connect (OSTI)

This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

2014-08-04T23:59:59.000Z

23

E-Print Network 3.0 - absorption spectroscopic microscopy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

version of scanning near-field optical microscopy (SNOM). The tunable infrared radiation... the l 3.5 mm, CH vibrational stretch mode absorption band. ... Source:...

24

E-Print Network 3.0 - appendix a3 near-field Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Despite the rapid growth of near-field optical microscopy in the past... decade, many questions about the imaging properties of near-field microscopes ... Source: Dainty, Chris...

25

Scanning probe microscopy: Sulfate minerals in scales and cements  

SciTech Connect (OSTI)

The principles of scanning probe microscopy (SPM) are illustrated with examples from oilfield mineralogy, particularly emphasizing sulfate minerals involved in scale formation and cement hydration chemistry. The topography of the (010) cleavage surface of gypsum observed by atomic force microscopy shows atomically flat terraces separated by shallow steps often only one unit cell high. SPM allows direct observation of processes on mineral surfaces while they are in contact with solutions. The dissolution etching and crystal growth of gypsum and barite are discussed and rates of step migration estimated. The orientation of steps is related to the crystallographic axes. The action of phosphonate crystal growth inhibitor on gypsum and of a chelating scale solvent on barite are also shown. The multiphase microstructure of an oilwell cement clinker is described in relation to its hydration chemistry in contact with water and its reaction with sulfate ions.

Hall, C. [Schlumberger Cambridge Research (United Kingdom)

1995-11-01T23:59:59.000Z

26

In-situ scanning probe microscopy of electrodeposited nickel.  

SciTech Connect (OSTI)

The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.

Kelly, James J.; Dibble, Dean C.

2004-10-01T23:59:59.000Z

27

Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy  

SciTech Connect (OSTI)

Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [Global Research Center for Environment and Energy Based on Nanomaterials Science National Institute for Materials Science (NIMS) 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Gao, Jianhua; Ishida, Nobuyuki [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Mingsheng, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Fujita, Daisuke [Advanced Key Technologies Division, Global Research Center for Environment and Energy Based on Nanomaterials Science, and International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

2014-01-20T23:59:59.000Z

28

Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series  

SciTech Connect (OSTI)

In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

Dahmen, Tim [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; Baudoin, Jean-Pierre G [ORNL] [ORNL; Lupini, Andrew R [ORNL] [ORNL; Kubel, Christian [Karlsruhe Institute of Technology, Leopoldshafen, Germany] [Karlsruhe Institute of Technology, Leopoldshafen, Germany; Slusallek, Phillip [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; De Jonge, Niels [ORNL] [ORNL

2014-01-01T23:59:59.000Z

29

Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy  

SciTech Connect (OSTI)

Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

2011-01-01T23:59:59.000Z

30

Bioelectrical SPMs (G. Gomila, UB-IBEC) Bioelectric Scanning Probe Microscopies  

E-Print Network [OSTI]

-ups: Micropippete based electrodes Measurements of cell membrane ion transport on single cells 2. Scanning Ion (SNOM),Scanning Tunneling Microscope (STM), Scanning Ion Conductance Microscope (SICM), Scanning Conductance Microscopy #12;7 Bioelectrical SPMs (G. Gomila, UB-IBEC) Single ion channels recordings Average

Ritort, Felix

31

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE-EDGE SCANNING MICROSCOPY  

E-Print Network [OSTI]

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis Science #12;ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis) ______________________________ ______________________________ Ergun Akleman Valerie Taylor (Member) (Head of Department) December 2003 Major Subject: Computer Science

Keyser, John

32

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology  

E-Print Network [OSTI]

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

Xie, Xiaoliang Sunney

33

Near-field imaging of quantum cascade laser transverse modes  

E-Print Network [OSTI]

. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using: We report near field imaging of the transverse lasing modes of quantum cascade lasers. A mid-infrared. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared

34

Scanning probe microscopy with inherent disturbance suppression using micromechanical systems  

E-Print Network [OSTI]

All scanning probe microscopes (SPMs) are affected by disturbances, or mechanical noise, in their environments which can limit their imaging resolution. This thesis introduces a general approach for suppressing out-of-plane ...

Sparks, Andrew William, 1977-

2005-01-01T23:59:59.000Z

35

Alpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force microscopy  

E-Print Network [OSTI]

-differential-interference-contrast microscopy; Scanning force microscopy; Natural radiation damage 1. Introduction Alpha-recoil tracks (ARTsAlpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force

36

Scanning photovoltage microscopy of potential modulations in carbon Marcus Freitag,a  

E-Print Network [OSTI]

Scanning photovoltage microscopy of potential modulations in carbon nanotubes Marcus Freitag generated photovoltage in carbon nanotubes to image potential modulations produced by defects are consistent with trapped electrons near the tube. An offset photovoltage is generated when the laser populates

Liu, Jie

37

Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling Microscopy  

E-Print Network [OSTI]

Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling propargylglycine unnatural functional groups 20 Å apart and an alkanethiol self-assembled monolayer (SAM) on a gold-terminated surfaces were imaged by scanning tunneling microscopy (STM) using a low tunneling current of 10 p

Webb, Lauren J.

38

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons  

E-Print Network [OSTI]

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons ABSTRACT A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video

Tsien, Roger Y.

39

Oxygen driven reconstruction dynamics of Ni,,977... measured by time-lapse scanning tunneling microscopy  

E-Print Network [OSTI]

Oxygen driven reconstruction dynamics of Ni,,977... measured by time-lapse scanning tunneling-lapse scanning tunneling microscopy STM has been used to observe the oxygen induced reconstruction behavior of Ni for the merging of steps in the presence of small amounts of adsorbed oxygen, less than 2% of a monolayer. Point

Sibener, Steven

40

Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy  

SciTech Connect (OSTI)

Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

Grigg, D.A.; Russell, P.E.; Dow, T.A.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Scanning Transmission Electron Microscopy Investigations of Complex Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon Home WaterScanning Probe| Stanford

42

Near-Field Scanning Optical Microscopy (NSOM) Studies of the Relationship between Interchain Interactions, Morphology, Photodamage, and Energy Transport in Conjugated  

E-Print Network [OSTI]

for the last several years due to their potential for application in optoelectronic devices such as light-emitting diodes (LEDs),1,2 photodiodes,3 photovoltaics,4 and displays.5 It is becoming increasingly clear

Cohen, Ronald C.

43

Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy  

SciTech Connect (OSTI)

Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness d{sub g}—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM) combined with image analysis as well as by atomic force microscopy (AFM). The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for d{sub g} were obtained by SEM with image analysis and by AFM.

Lansåker, Pia C., E-mail: pia.lansaker@angstrom.uu.se; Niklasson, Gunnar A.; Granqvist, Claes G. [Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-751 21 Uppsala (Sweden); Hallén, Anders [Royal Institute of Technology, KTH-ICT, Elektrum 229, Kista, SE-164 40 Stockholm (Sweden)

2014-10-15T23:59:59.000Z

44

Scanning Hall probe microscopy of a diluted magnetic semiconductor  

SciTech Connect (OSTI)

We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga{sub 0.94}Mn{sub 0.06}As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 mum wide and fairly stable with temperature. Magnetic clusters are observed above T{sub C}, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

Kweon, Seongsoo [Materials Science and Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Samarth, Nitin [Physics Department, Penn State University, University Park, Pennsylvania 16802 (United States); Lozanne, Alex de [Materials Science and Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

2009-05-01T23:59:59.000Z

45

OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY  

SciTech Connect (OSTI)

Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

2005-03-01T23:59:59.000Z

46

Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy  

SciTech Connect (OSTI)

We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

2011-05-26T23:59:59.000Z

47

Near-field microscopy maps semiconductors Near-field microscopy maps semiconductors  

E-Print Network [OSTI]

technology is new, the combination represents a potentially important advance in high-resolution thermography

48

Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies  

SciTech Connect (OSTI)

Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Ievlev, Anton [ORNL] [ORNL; Balke, Nina [ORNL] [ORNL; Maksymovych, Petro [ORNL] [ORNL; Tselev, Alexander [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

2014-01-01T23:59:59.000Z

49

Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser  

SciTech Connect (OSTI)

Utilizing a broadly-tunable external cavity quantum cascade laser for scattering-type scanning near-field optical microscopy (s-SNOM), we measure infrared spectra of explosives particles by probing characteristic nitro-group resonances in the 7.1-7.9 µm wavelength range. Measurements are presented with spectral resolution of 0.25 cm-1, spatial resolution of 25 nm, <100 attomolar sensitivity, and at a rapid acquisition time of 90 s per spectrum. We demonstrate high reproducibility of the acquired s-SNOM spectra with very high signal-to-noise ratios and relative noise of <0.02 in self-homodyne detection.

Craig, Ian M.; Taubman, Matthew S.; Lea, Alan S.; Phillips, Mark C.; Josberger, Erik E.; Raschke, Markus Bernd

2013-12-16T23:59:59.000Z

50

Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies  

E-Print Network [OSTI]

Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies Arkady V STM images of both metallic and semiconducting single-wall carbon nanotubes with atomic vacancies predict that vacancies should result in the formation of hillock-like features in STM images of metallic

Krasheninnikov, Arkady V.

51

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High-Efficiency Sub-5 keV Electron Detection  

E-Print Network [OSTI]

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High for Scanning Electron Microscopy, based on ultrashallow p+ n boron-layer photodiodes, features nm-thin anodes, closely-packed photodiodes and through-wafer apertures allow flexible configurations for optimal material

Technische Universiteit Delft

52

Synthesis and structure of Al clusters supported on TiO2,,110...: A scanning tunneling microscopy study  

E-Print Network [OSTI]

Synthesis and structure of Al clusters supported on TiO2,,110...: A scanning tunneling microscopy, Texas 77843-3255 Received 14 October 1997; accepted 6 April 1998 Al clusters supported on TiO2(110) have been investigated using scanning tunneling microscopy. Al interacts strongly with the TiO2(110) surface

Goodman, Wayne

53

Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy  

SciTech Connect (OSTI)

The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

2013-12-15T23:59:59.000Z

54

Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy  

SciTech Connect (OSTI)

We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

2014-06-23T23:59:59.000Z

55

Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy  

SciTech Connect (OSTI)

Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

Kalinin, Sergei V [ORNL; Rodriguez, Brian J [ORNL; Jesse, Stephen [ORNL; Karapetian, Edgar [ORNL; Mirman, B [Suffolk University, Boston; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine

2007-01-01T23:59:59.000Z

56

Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis  

SciTech Connect (OSTI)

In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

2003-10-01T23:59:59.000Z

57

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

SciTech Connect (OSTI)

Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

2011-01-20T23:59:59.000Z

58

Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy  

SciTech Connect (OSTI)

A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress versus strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns), yielding and elastic modulus of 401 and 466.8 GPa, respectively.

Kent, R.M.; Vary, A.

1992-01-01T23:59:59.000Z

59

Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy  

SciTech Connect (OSTI)

A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress vs strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns). 8 refs.

Kent, R.M.; Vary, A.

1992-08-01T23:59:59.000Z

60

Low temperature laser scanning microscopy of a superconducting radio-frequency cavity  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

Ciovati, Gianluigi; Baldwin, Charles; Cheng, Guangfeng; Flood, Roger; Jordan, Kevin; Kneisel, Peter; Morrone, Michael; Nemes, George; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

2012-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy  

SciTech Connect (OSTI)

Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J., E-mail: gsimpson@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907 (United States)

2014-03-15T23:59:59.000Z

62

Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy  

SciTech Connect (OSTI)

This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

Tittmann, B. R. [Penn State; Xi, X. [Penn State

2014-09-01T23:59:59.000Z

63

Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan)] [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)] [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

2012-01-27T23:59:59.000Z

64

Ideal near-field thermophotovoltaic cells  

E-Print Network [OSTI]

We ask the question, what are the ideal characteristics of a near-field thermophotovoltaic cell? Our search leads us to a reexamination of near-field photonic heat transfer in terms of the joint density of electronic states. This form reveals that the presence of matched van Hove singularities resulting from quantum-confinement in the emitter and converter of a thermophotovoltaic cell boosts both the magnitude and spectral selectivity of photonic heat transfer; dramatically improving energy conversion efficiency. We provide a model near-field thermophotovoltaic design making use of this idea by employing the van Hove singularities present in carbon nanotubes. Shockely Queisser analysis shows that the predicted heat transfer characteristics of this model device are fundamentally better than existing thermophotovoltaic designs. Our work paves the way for the use of quantum dots, carbon nanotubes and two-dimensional materials as future materials for thermophotovoltaic near-field energy conversion devices.

Molesky, Sean

2015-01-01T23:59:59.000Z

65

Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy  

SciTech Connect (OSTI)

The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

2014-10-28T23:59:59.000Z

66

Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide  

SciTech Connect (OSTI)

Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter 5 discusses imaging of isolated vortices as a function of T{sub c}. Vortex images were fit with theoretical magnetic field profiles in order to extract the apparent vortex size. The data for the lowest T{sub c}'s (5 and 6.5 K) show some inhomogeneity and suggest that {lambda}{sub ab} might be larger than predicted by the T{sub c} {proportional_to} n{sub s}(0)/m* relation first suggested by results of Uemura et al. (1989) for underdoped cuprates. Finally, Chapter 6 examines observations of apparent ''partial vortices'' in the crystals. My studies of these features indicate that they are likely split pancake vortex stacks. Qualitatively, these split stacks reveal information about pinning and anisotropy in the samples. Collectively these magnetic imaging studies deepen our knowledge of cuprate superconductivity, especially in the important regime of low superfluid density.

Guikema, Janice Wynn; /SLAC, SSRL

2005-12-02T23:59:59.000Z

67

This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a  

E-Print Network [OSTI]

This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell­57 Dye-sensitized solar cells (DSCs) have received wide-spread research attention due to their high power incorporated into solid-state dye-sensitized solar cells (ss-DSCs) by nanoimprint lithography. The reflectors

McGehee, Michael

68

L-Cysteine Adsorption Structures on Au(111) Investigated by Scanning Tunneling Microscopy under Ultrahigh Vacuum Conditions  

E-Print Network [OSTI]

to 380 K lead to marked changes in the observed adsorption structures. At low coverages, the unordered containing pH- controlling buffer salts and with or without electrochemical control, to vapor deposition. The primary characterization techniques have been in situ electrochemical scanning tunneling microscopy (STM

Kühnle, Angelika

69

Graphene on Ru(0001) Moire Corrugation Studied by Scanning Tunneling Microscopy on Au/Graphene/Ru(0001) Heterostructures  

E-Print Network [OSTI]

Graphene on Ru(0001) Moire Corrugation Studied by Scanning Tunneling Microscopy on Au/Graphene on graphene/Ru(0001) were used to study the corrugation of the moire structure of graphene/Ru(0001 for the graphene/Ru(0001) moire is of structural nature rather than electronic. STM showed a large value

Ciobanu, Cristian

70

Scanning tunneling microscopy study of nitrogen incorporated HfO{sub 2}  

SciTech Connect (OSTI)

The impact of nitrogen incorporation on the physical and electrical characteristics of the HfO{sub 2} is examined. X-ray photoelectron spectroscopy shows that nitrogen can be incorporated into the HfO{sub 2} via a two-step thermal anneal--first in ultrahigh vacuum (UHV) and subsequently in N{sub 2}. Following the N{sub 2} anneal, scanning tunneling microscopy in UHV reveals a marked reduction in the low-voltage leakage current under gate injection biasing. From band theory and existing first-principles simulation results, one may consistently attribute this improvement to the passivation of oxygen vacancies in the HfO{sub 2} by nitrogen. Improvement in the breakdown strength of the HfO{sub 2} subjected to ramp-voltage stress (substrate injection) is also observed after the N{sub 2} anneal. The local current-voltage curves acquired concurrently during the ramp-voltage stress exhibit 'space-charge limited conduction', which implies that the observed improvement in breakdown strength may be related to a limitation of the current flow through the gate stack in the high stress voltage regime.

Ong, Y. C.; Ang, D. S.; Pey, K. L.; Li, X. [Nanyang Technological University, School of Electrical and Electronic Engineering, Nanyang Avenue, Singapore 639798 (Singapore); O'Shea, S. J.; Wang, S. J. [Institute of Materials Research and Engineering, A-STAR - Agency for Science, Technology and Research, 3 Research Link, Singapore 11760 (Singapore); Tung, C. H. [Institute of Microelectronics, A-STAR - Agency for Science, Technology and Research, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore)

2008-09-15T23:59:59.000Z

71

Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)  

SciTech Connect (OSTI)

Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112{sup ¯}] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11{sup ¯}0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular ? stacking. Two-dimensional delocalized electronic states are found on the K-deposited ? stacking structure.

Yoshida, Yasuo, E-mail: yyoshida@issp.u-tokyo.ac.jp; Yokosuka, Takuya; Hasegawa, Yukio, E-mail: hasegawa@issp.u-tokyo.ac.jp [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Yang, Hung-Hsiang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Huang, Hsu-Sheng; Guan, Shu-You; Su, Wei-Bin; Chang, Chia-Seng [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yanagisawa, Susumu [Department of Physics and Earth Science Department, University of the Ryukyus, 1 Nishihara, Okinawa 903-0213 (Japan); Lin, Minn-Tsong [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Hoffmann, Germar [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

2014-09-21T23:59:59.000Z

72

Near-field diffractive elements Daniel Marks  

E-Print Network [OSTI]

by a near-field diffractive element (NDE) that scatters the high-spatial-frequency components of the field susceptibility r , and the NDE is described by the susceptibilty r . The field obeys the equation 2 U r +k0 2 U r to first order in both the NDE and the sample susceptibilities. It is assumed that the background terms

Bhargava, Rohit

73

SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES  

SciTech Connect (OSTI)

The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

Hay, M.; O'Rourke, P.; Ajo, H.

2012-03-08T23:59:59.000Z

74

Acquisition and reconstruction of brain tissue using knife-edge scanning microscopy  

E-Print Network [OSTI]

....................................................................................38 VII RESULTS..................................................................................................................40 A. Scanning of Golgi Stained Tissue and Alignment ...........................................40 B.... Scanning and Reconstruction of Nissl Stained Tissue .....................................43 VIII SUMMARY AND FUTURE WORK.......................................................................46 A. Summary...

Mayerich, David Matthew

2004-09-30T23:59:59.000Z

75

Evaluation of near-field earthquake effects  

SciTech Connect (OSTI)

Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.

Shrivastava, H.P.

1994-11-01T23:59:59.000Z

76

Low-temperature scanning tunneling microscopy and transport measurements on adsorbate-induced two-dimensional electron systems  

SciTech Connect (OSTI)

We have performed not only magnetotransport measurements on two-dimensional electron systems (2DESs) formed at the cleaved surfaces of p-InAs but also observations of the surface morphology of the adsorbate atoms, which induced the 2DES at the surfaces of narrow band-gap semiconductors, with use of a scanning tunneling microscopy. The electron density of the 2DESs is compared to the atomic density of the isolated Ag adatoms on InAs surfaces.

Masutomi, Ryuichi; Triyama, Naotaka; Okamoto, Tohru [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2013-12-04T23:59:59.000Z

77

Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation  

SciTech Connect (OSTI)

We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

2014-06-23T23:59:59.000Z

78

Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy  

SciTech Connect (OSTI)

The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn; Zhong, Jun, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)] [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)

2013-12-16T23:59:59.000Z

79

Scanning mid-IR-laser microscopy: an efficient tool for materials studies in silicon-based photonics and photovoltaics  

E-Print Network [OSTI]

A method of scanning mid-IR-laser microscopy has recently been proposed for the investigation of large-scale electrically and recombination-active defects in semiconductors and non-destructive inspection of semiconductor materials and structures in the industries of microelectronics and photovoltaics. The basis for this development was laid with a wide cycle of investigations on low-angle mid-IR-light scattering in semiconductors. The essence of the technical idea was to apply the dark-field method for spatial filtering of the scattered light in the scanning mid-IR-laser microscope together with the local photoexcitation of excess carriers within a small domain in a studied sample, thus forming an artificial source of scattering of the probe IR light for the recombination contrast imaging of defects. The current paper presents three contrasting examples of application of the above technique for defect visualization in silicon-based materials designed for photovoltaics and photonics which demonstrate that this...

Astafiev, O V; Yuryev, V A; 10.1016/S0022-0248(99)00711-3

2011-01-01T23:59:59.000Z

80

Method for imaging liquid and dielectric materials with scanning polarization force microscopy  

SciTech Connect (OSTI)

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

1999-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy  

DOE Patents [OSTI]

A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

2014-09-30T23:59:59.000Z

82

Direct determination of exact charge states of surface point defects using scanning tunneling microscopy: As vacancies on GaAs ,,110...  

E-Print Network [OSTI]

microscopy: As vacancies on GaAs ,,110... Kuo-Jen Chao, Arthur R. Smith, and Chih-Kang Shih* Department of the charge state of surface As vacancies on p-type GaAs 110 using scanning tunneling microscopy. This method utilizes the compensation between the local band bending result- ing from the As vacancy and the p

83

Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 3) : a scanning tunneling microscopy study.  

E-Print Network [OSTI]

Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 × 3) : a scanning tunneling of the atomic and electronic structure of graphene monolayer islands on the 6H-SiC(0001)(3×3) (SiC(3×3)) surface reconstruction using scanning tunneling microscopy (STM) and spectroscopy (STS). The orientation of the graphene

Paris-Sud XI, Université de

84

Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy  

DOE Patents [OSTI]

A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

Kazmerski, Lawrence L. (Lakewood, CO)

1990-01-01T23:59:59.000Z

85

Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy  

DOE Patents [OSTI]

An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

2013-07-09T23:59:59.000Z

86

Laser wavelength effects in ultrafast near-field laser nanostructuring of Si  

SciTech Connect (OSTI)

We study the effect of laser wavelength (400 nm and 800 nm) on the near-field processing of crystalline silicon (Si) in the femtosecond (fs) pulse duration regime through sub-wavelength apertures. Distinct differences in the obtained nanostructures are found in each case both in terms of their physical sizes as well as their structure which can be tuned between craters and protrusions. A single or a few fs pulses can deliver enough energy on the substrate to induce sub-diffraction limited surface modification, which is among the smallest ever reported in sub-wavelength apertured Near-field Scanning Optical Microscope (NSOM) schemes.

Zormpa, Vasileia; Mao, Xianglei; Russo, Richard E.

2010-03-18T23:59:59.000Z

87

Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies  

SciTech Connect (OSTI)

The seventh conference in the NFO conference series, held here in Rochester, provided to be the principal forum for advances in sub-wavelength optics, near-field optical microscopy, local field enhancement, instrumental developments and the ever-increasing range of applications. This conference brought together the diverse scientific communities working on the theory and application of near-field optics (NFO) and related techniques.

Prof.Dr. Lukas Novotny

2004-10-18T23:59:59.000Z

88

Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy  

SciTech Connect (OSTI)

X-ray nanotomography and focused ion beam scanning electron microscopy (FIB?SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non?destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three?dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

2011-01-01T23:59:59.000Z

89

Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter  

SciTech Connect (OSTI)

Direct measurements of the superconducting superfluid on the surface of vacuum-cleaved Bi2Sr2CaCu2O8+delta (BSCCO) samples are reported. These measurements are accomplished via Josephson tunneling into the sample using a novel scanning tunneling microscope (STM) equipped with a superconducting tip. The spatial resolution of the STM of lateral distances less than the superconducting coherence length allows it to reveal local inhomogeneities in the pair wavefunction of the BSCCO. Instrument performance is demonstrated first with Josephson measurements of Pb films followed by the layered superconductor NbSe2. The relevant measurement parameter, the Josephson ICRN product, is discussed within the context of both BCS superconductors and the high transition temperature superconductors. The local relationship between the ICRN product and the quasiparticle density of states (DOS) gap are presented within the context of phase diagrams for BSCCO. Excessive current densities can be produced with these measurements and have been found to alter the local DOS in the BSCCO. Systematic studies of this effect were performed to determine the practical measurement limits for these experiments. Alternative methods for preparation of the BSCCO surface are also discussed.

Kimura, Hikari; Dynes, Robert; Barber Jr., Richard. P.; Ono, S.; Ando, Y.

2009-09-01T23:59:59.000Z

90

Infrared near-field spectroscopy of trace explosives using an...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spectroscopy of trace explosives using an external cavity quantum cascade laser. Infrared near-field spectroscopy of trace explosives using an external cavity quantum...

91

Numerical solution of inverse scattering for near-field optics  

E-Print Network [OSTI]

May 2, 2007 ... tering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous me- dium located on a substrate from data ...

2007-04-30T23:59:59.000Z

92

The application of reflected light microscopy, scanning electron microscopy-energy dispersive spectroscopy, Auger electron spectroscopy and electron microprobe analysis to the study of dusts  

SciTech Connect (OSTI)

Over 500,000 tons of electric arc furnace (EAF) dust is generated each year in the US. The mineralogy and characterization of this dust is being studied to determine the phases and relationships of the valuable zinc, the hazardous lead, cadmium, and chromium, and the deleterious chlorine and fluorine. EAF dust averages 15--20% zinc and is therefore a potential source for 100,000 tons of zinc per year. The major mineralogical phases of EAF dust are franklinite (ZnFe[sub 2]O[sub 4]), magnetite (FeFe[sub 2]O[sub 4]), jacobsite (MnFe[sub 2]O[sub 4]), solid solutions between franklinite-magnetite-jacobsite, and zincite (ZnO). Franklinite, magnetite, and jacobsite solid solutions commonly are cruciform or dendritic crystals in a Ca-Fe-Si matrix and contain up to 5% chromium. Magnetite also occurs as spheres partially oxidized to hematite (Fe[sub 2]O[sub 3]) along its octahedral planes. The dust particles are predominantly in the form of spheres and broken spheres, ranging in size from 200 [mu]m to less than 1 [mu]m. Although many spheres are in the size ranges of 40--50 [mu]m and 10--20 [mu]m, most are less than 1 [mu]m in diameter. Automated scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) probed 118 particles in search of chlorine phases. Chlorine-bearing lime (CaO) was identified by that SEM study. In addition, chlorine is present as hydrophylite (CaCl[sub 2]) and sylvite (KCl). Auger electron spectroscopy (AES) was used to sputter the outer 180[angstrom] layer of the dust particles to search for the possible presence of cotunnite (PbCl[sub 2]) coatings, but none were detected. Minor phases detected include chalcopyrite (CuFeS[sub 2]), sphalerite (ZnS), pyrite (FeS[sub 2]), and coke.

Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Dept. of Geology and Geophysics)

1993-03-01T23:59:59.000Z

93

Quasi-real-time analysis of dynamic near field scattering data using a graphics processing unit  

E-Print Network [OSTI]

We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit (GPU). We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.

Giovanni Cerchiari; Fabrizio Croccolo; Frédéric Cardinaux; Frank Scheffold

2012-09-15T23:59:59.000Z

94

Laser Scanning Confocal Microscopy Study of Dye Diffusion in Fibers Ye Song, Mohan Srinivasarao,*, Alan Tonelli, C. M. Balik, and Ralph McGregor  

E-Print Network [OSTI]

Laser Scanning Confocal Microscopy Study of Dye Diffusion in Fibers Ye Song, Mohan Srinivasarao to noninvasively obtain high-resolution three-dimensional images of the spatial distribution of dyes (fluorescein) in fibers dyed for various length of times. Integration over the dye distribution yields the total amount

Srinivasarao, Mohan

95

Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy  

SciTech Connect (OSTI)

The atomic-resolved reversal of the polarity across an antiphase boundary (APB) was observed in GaSb films grown on Si by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The investigation of the interface structure at the origin of the APB reveals that coalescence of two domains with Ga-prelayer and Sb-prelayer causes the sublattice reversal. The local strain and lattice rotation distributions of the APB, attributed to the discordant bonding length at the APB with the surrounding GaSb lattice, were further studied using the geometric phase analysis technique. The crystallographic characteristics of the APBs and their interaction with other planar defects were observed with HAADF-STEM. The quantitative agreement between experimental and simulated images confirms the observed polarities in the acquired HAADF-STEM data. The self-annihilation mechanism of the APBs is addressed based on the rotation induced by anti-site bonds and APBs' faceting.

Hosseini Vajargah, S.; Woo, S. Y.; Botton, G. A. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Brockhouse Institute for Material Research, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Ghanad-Tavakoli, S. [Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Kleiman, R. N.; Preston, J. S. [Brockhouse Institute for Material Research, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

2012-11-01T23:59:59.000Z

96

scanning tunneling microscopy | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(3-dimercapto-1-propanol, BAL)significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the...

97

Coherent Time-Stretch Transform for Near-Field Spectroscopy  

E-Print Network [OSTI]

losses results in reduction in peak power and loss of sensitivity; a key innovation has been diffraction theoryVthe Fraunhofer limit. We may also consider the temporal near-field regime in analogy

Jalali. Bahram

98

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network [OSTI]

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

99

Background Suppression in Near-Field Optical Imaging  

E-Print Network [OSTI]

irradiation of the optical antenna (e.g., tip or particle) also directly irradiates the sample and thereforeBackground Suppression in Near-Field Optical Imaging Christiane Ho¨ppener, Ryan Beams, and Lukas Novotny* Institute of Optics, UniVersity of Rochester, Rochester, New York 14627 Received December 25

Novotny, Lukas

100

E-Print Network 3.0 - advanced microwave scanning Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measurements. Near-field microwave reflectometer... -field microwave probe and signal processing section. This automated scanning 12;platform is easy to use... scanning...

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Type of presentation: Oral IT-10-O-2435 Towards 4-D EEL spectroscopic scanning confocal electron microscopy  

E-Print Network [OSTI]

the entire energy loss range. References: [1] P.D. Nellist, P. Wang, Annual Review of Materials Research, 42 electron microscopy with electron energy-loss spectroscopy (STEM-EELS) has been widely used for materials-aberrations in the post-specimen optics, inelastically scattered electrons with different energy losses E are focused

Dunin-Borkowski, Rafal E.

102

Two-dimensional Vortex Behavior in Highly Underdoped YBa2Cu3O6 x Observed by Scanning Hall Probe Microscopy  

SciTech Connect (OSTI)

We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+x} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Iota}{sub 0}) through the sample surface. The sub-{Iota}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.

Guikema, J.W.

2010-02-22T23:59:59.000Z

103

Two-dimensional Vortex Behavior in Highly Underdoped YBa_2Cu_3O_{6+x} Observed byScanning Hall Probe Microscopy  

SciTech Connect (OSTI)

We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+z} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Phi}{sub 0}) through the sample surface. The sub-{Phi}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.

Guikema, J.W.; Bluhm, Hendrik; /Stanford U., Appl. Phys. Dept.; Bonn, D.A.; Liang, Ruixing; Hardy, W.N.; /British Columbia U.; Moler, K.A.; /Stanford U., Appl. Phys. Dept.

2008-04-22T23:59:59.000Z

104

Thermal excitation of plasmons for near-field thermophotovoltaics  

SciTech Connect (OSTI)

The traditional approaches of exciting plasmons consist of either using electrons (e.g., electron energy loss spectroscopy) or light (Kretchman and Otto geometry) while more recently plasmons have been excited even by single photons. A different approach: thermal excitation of a plasmon resonance at high temperatures using alternate plasmonic media was proposed by S. Molesky et al. [Opt. Express 21, A96–A110 (2013)]. Here, we show how the long-standing search for a high temperature narrowband near-field emitter for thermophotovoltaics can be fulfilled by thermally exciting plasmons. We also describe a method to control Wein's displacement law in the near-field using high temperature epsilon-near-zero metamaterials. Finally, we show that our work opens up an interesting direction of research for the field of slow light: thermal emission control.

Guo, Yu; Molesky, Sean; Hu, Huan; Cortes, Cristian L.; Jacob, Zubin, E-mail: zjacob@ualberta.ca [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

2014-08-18T23:59:59.000Z

105

Electrically-gated near-field radiative thermal transistor  

E-Print Network [OSTI]

In this work, we propose a near-field radiative thermal transistor made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. Thick SiC plates serve as the thermal "source" and "drain", while graphene sheets function as the "gate" to modulate the near-field photon tunneling by tuning chemical potential with applied voltage biases symmetrically or asymmetrically. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials, which can tune the coupling between graphene plasmon across the vacuum gap. Thermal modulation, switching, and amplification, which are the key features required for a thermal transistor, are theoretically realized and analyzed. This work will pave the way to active thermal management, thermal circuits, and thermal computing.

Yang, Yue

2015-01-01T23:59:59.000Z

106

Active Thermal Extraction of Near-field Thermal Radiation  

E-Print Network [OSTI]

Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. Our study demonstrates a new approach to manipulate thermal radiation that could find applications in thermal management.

Ding, Ding

2015-01-01T23:59:59.000Z

107

Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis  

SciTech Connect (OSTI)

State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 {mu}m in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program 'SARINA,' which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

Wirtz, Tom; Fleming, Yves; Gerard, Mathieu [Department 'Science and Analysis of Materials' (SAM), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Gysin, Urs; Glatzel, Thilo; Meyer, Ernst [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Wegmann, Urs [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Maier, Urs [Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Odriozola, Aitziber Herrero; Uehli, Daniel [SPECS Zurich GmbH, Technoparkstr. 1, CH-8005 Zuerich (Switzerland)

2012-06-15T23:59:59.000Z

108

Carrier redistribution between different potential sites in semipolar (202{sup ¯}1) InGaN quantum wells studied by near-field photoluminescence  

SciTech Connect (OSTI)

Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202{sup ¯}1) InGaN quantum wells (QWs) emitting in violet, blue, and green-yellow spectral regions. With increased excitation power, an untypical PL peak energy shift to lower energies was observed. The shift was attributed to carrier density dependent carrier redistribution between nm-scale sites of different potentials. Near-field PL scans showed that in (202{sup ¯}1) QWs the in-plane carrier diffusion is modest, and the recombination properties are uniform, which is advantageous for photonic applications.

Marcinkevi?ius, S. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden); Gelžinyt?, K. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden); Institute of Applied Research, Vilnius University, Saul?tekio 9-3, 10222 Vilnius (Lithuania); Zhao, Y.; Nakamura, S.; DenBaars, S. P.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2014-09-15T23:59:59.000Z

109

Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy  

SciTech Connect (OSTI)

The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

Harumoto, T. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sawada, H. [Japan Electron Optics Laboratory (JEOL) Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Tanaka, T.; Tanishiro, Y.; Takayanagi, K. [Department of Physics, Tokyo Institute of Technology, 2-12-1-H-51 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)

2013-02-28T23:59:59.000Z

110

Electronic structures and bonding properties of chlorine-treated nitrogenated carbon nanotubes: X-ray absorption and scanning photoelectron microscopy studies  

SciTech Connect (OSTI)

The electronic and bonding properties of nitrogenated carbon nanotubes (N-CNTs) exposed to chlorine plasma were investigated using C and N K-edge x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy (SPEM). The C and N K-edge XANES spectra of chlorine-treated N-CNTs consistently reveal the formation of pyridinelike N-CNTs by the observation of 1s{yields}{pi}*(e{sub 2u}) antibonding and 1s{yields}{pi}*(b{sub 2g}) bonding states. The valence-band photoemission spectra obtained from SPEM images indicate that chlorination of the nanotubes enhances the C-N bonding. First-principles calculations of the partial densities of states in conjunction with C K-edge XANES data identify the presence of C-Cl bonding in chlorine treated N-CNTs.

Ray, S. C.; Pao, C. W.; Tsai, H. M.; Chiou, J. W.; Pong, W. F.; Chen, C. W.; Tsai, M.-H.; Papakonstantinou, P.; Chen, L. C.; Chen, K. H.; Graham, W. G. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); NRI, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, County Antrim BT37OQB, Northern Ireland (United Kingdom); Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics and Astronomy, Queens University of Belfast, Belfast, Antrim BT71NN, Northern Ireland (United Kingdom)

2007-05-07T23:59:59.000Z

111

Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis  

SciTech Connect (OSTI)

A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

2007-05-16T23:59:59.000Z

112

Tip-Enhanced Near-Field Raman Spectroscopy Probing Single Dye...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tip-Enhanced Near-Field Raman Spectroscopy Probing Single Dye-Sensitized TiO2 Nanoparticles. Tip-Enhanced Near-Field Raman Spectroscopy Probing Single Dye-Sensitized TiO2...

113

Near-field thermal radiation transfer controlled by plasmons in graphene  

E-Print Network [OSTI]

It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange ...

Ilic, Ognjen

114

Numerical calculations of ultrasonic fields I: transducer near fields  

SciTech Connect (OSTI)

A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two-dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two-dimensional plane strain or two-dimensional axial symmetries can be solved. Free, fixed, or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. This paper gives a brief description of the method and shows the results of the calculation of the near fields of circular flat and focused transducers. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens reconstruction technique off-axis.

Johnson, J.A.

1982-03-01T23:59:59.000Z

115

Numerical calculations of ultrasonic fields I: transducer near fields  

SciTech Connect (OSTI)

A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two dimensional plane strain or two dimensional axial symmetries can be solved. Free, fixed or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. A brief description of the method is given and the results of the calculation of the near fields of circular flat and focused transducers are shown. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens' reconstruction technique off axis.

Johnson, J.A.

1982-04-01T23:59:59.000Z

116

Imaging the irradiance distribution in the optical near field J. Aizenberg,a)  

E-Print Network [OSTI]

Imaging the irradiance distribution in the optical near field J. Aizenberg,a) J. A. Rogers, K. E of the irradiance distribution in the optical near field for contact-mode photolithography using elastomeric phase of a sensitive photoresist for direct imaging of optical intensity profiles in near-field photolithographic

Prentiss, Mara

117

Correlation between Charge State of Insulating NaCl Surfaces and Ionic Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Force Microscopy Study  

SciTech Connect (OSTI)

In situ ambient pressure X-ray photoelectron spectroscopy (APPES) and scanning force microscopy were used to characterize the surface discharge induced by water layers grown on (001) surfaces of sodium chloride single crystals. The APPES studies show that both kinetic energy (KE) and full width at half-maximum (FWHM) of the Na 2s and Cl 2p core level peaks, monitored as a function of relative humidity (RH), mimic surface conductivity curves measured using scanning force microscopy. The KE position and FWHM of the core level peaks therefore are directly related to the solvation and diffusion of ions at the NaCl(100) surface upon adsorption of water.

Verdaguer, Albert; Jose Segura, Juan; Fraxedas, Jordi; Bluhm, Hendrik; Salmeron, Miquel

2008-09-03T23:59:59.000Z

118

A novel mathematical model for controllable near-field electrospinning  

SciTech Connect (OSTI)

Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers.

Ru, Changhai, E-mail: rchhai@gmail.com, E-mail: luojun@shu.edu.cn [College of Automation, Harbin Engineering University, Harbin 150001 (China) [College of Automation, Harbin Engineering University, Harbin 150001 (China); Robotics and Microsystems Center, Soochow University, Suzhou 215021 (China); Chen, Jie; Shao, Zhushuai [Robotics and Microsystems Center, Soochow University, Suzhou 215021 (China)] [Robotics and Microsystems Center, Soochow University, Suzhou 215021 (China); Pang, Ming [College of Automation, Harbin Engineering University, Harbin 150001 (China)] [College of Automation, Harbin Engineering University, Harbin 150001 (China); Luo, Jun, E-mail: rchhai@gmail.com, E-mail: luojun@shu.edu.cn [School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072 (China)] [School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072 (China)

2014-01-15T23:59:59.000Z

119

Near-field millimeter-wave imaging for weapon detection  

SciTech Connect (OSTI)

Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K[sub a]-band system.

Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

1992-11-01T23:59:59.000Z

120

Near-field millimeter-wave imaging for weapon detection  

SciTech Connect (OSTI)

Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K{sub a}-band system.

Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Scanning tunneling microscopy of dimeric and polymeric products of electroreduced (Re(CO) sub 3 (4-vinyl,4 prime -methyl-2,2 prime -bipyridine)Cl)  

SciTech Connect (OSTI)

Scanning tunneling microscopy (STM) was used to image adsorbed products resulting from electroreduction of (Re(CO){sub 3}(vbpy)Cl) (vbpy = 4-vinyl,4{prime}-methyl-2,2{prime}-bipyridine) on highly oriented pyrolytic graphite (HOPG). STM images, in air, of HOPG electrodes following electroreduction of (Re(CO){sub 3}(vbpy)Cl) (in acetonitrile/0.1 M tetra-n-butylammonium perchlorate) by cycling the potential between 0 and {minus}2.0 V vs a sodium saturated colomel electrode (SSCE) show molecular species uniformly distributed on the surface including approximately dumbbell shaped molecules ({approx} 40 {times} 20 {angstrom}). The size and shape of these aggregates is consistent with products derived from vinyl-vinvyl coupling of Re-Re bonded dimers: ((vbpy)(CO){sub 3}Re-Re(CO){sub 3}(vbpyH-vbpyH)(CO){sub 3}Re-Re(CO){sub 3}(vbpy)). STM images of electrodes prepared by cycling the potential between 0 and {minus}1.45 V vs SSCE (less reducing conditions) show highly nonuniform coating of the surface by polymer. Several polymer morphologies were observed with polymer nucleation preferentially occurring at step sites on HOPG.

Snyder, S.R.; White, H.S. (Univ. of Minnesota, Minneapolis (USA)); Lopez, S.; Abruna, H.D. (Cornell Univ., Ithaca, NY (USA))

1990-02-14T23:59:59.000Z

122

Influence of Surface Preparation on Scanning Kelvin Probe Microscopy and Electron Backscatter Diffraction Analysis of Cross Sections of CdTe/CdS Solar Cells  

SciTech Connect (OSTI)

Electron backscatter diffraction (EBSD) provides information on the crystallographic structure of a sample, while scanning Kelvin probe microscopy (SKPM) provides information on its electrical properties. The advantage of these techniques is their high spatial resolution, which cannot be attained with any other techniques. However, because these techniques analyze the top layers of the sample, surface or cross section features directly influence the results of the measurements, and sample preparation is a main step in the analysis. In this work we investigated different methods to prepare cross sections of CdTe/CdS solar cells for EBSD and SKPM analyses. We observed that procedures used to prepare surfaces for EBSD are not suitable to prepare cross sections, and we were able to develop a process using polishing and ion-beam milling. This process resulted in very good results and allowed us to reveal important aspects of the cross section of the CdTe films. For SKPM, polishing and a light ion-beam milling resulted in cross sections that provided good data. We were able to observe the depletion region on the CdTe film and the p-n junction as well as the interdiffusion layer between CdTe and CdS. However, preparing good-quality cross sections for SKPM is not a reproducible process, and artifacts are often observed.

Moutinho, H. R.; Dhere, R. G.; Jiang, C. S.; Al-Jassim, M. M.

2011-01-01T23:59:59.000Z

123

Elemental relationships in rock varnish as seen with SEM/EDX (scanning electron microscopy/energy dispersive x-ray) elemental line profiling  

SciTech Connect (OSTI)

The heterogeneous nature of rock varnish requires a thorough survey of elemental and mineralogic compositions before relating chemical variability of rock varnish to past geochemical environments. Elemental relationships in rock varnish can be examined using scanning electron microscopy (SEM) in conjunction with an elemental line profiling routine using semi-quantitative, energy dispersive x-ray (EDX) analysis. Results of SEM/EDX analysis suggest: variations in cation concentrations used in varnish cation ratio dating relate more specifically to variations in detritus within the varnish than to element mobility as defined by weathering indices; Mn concentration rather than Mn:Fe ratios may be a more appropriate indicator of paleoclimatic fluctuations; and the Mn-oxide phase existing in varnish is most likely a Ba-enriched phase rather than birnessite. Element line profiling offers great potential for gaining insights into geochemical processes affecting the deposition and diagenesis of rock varnish and for testing hypotheses relating to its chemical variability. 27 refs., 9 figs.

Raymond, R. Jr.; Reneau, S.L.; Harrington, C.D.

1990-01-01T23:59:59.000Z

124

Scanning Electron Microscopy Analysis of Fuel/Matrix Interaction Layers in Highly-Irradiated U–Mo Dispersion Fuel Plates with Al and Al–Si Alloy Matrices  

SciTech Connect (OSTI)

In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U–7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U–7Mo dispersion fuel elements with pure Al, Al–2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U–7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission-gas bubbles. Additionally, solid-fission-product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U–7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al–Si matrices.

Dennis D. Keiser, Jr.; Jan-Fong Jue; Brandon D. Miller; Jian Gan; Adam B. Robinson; Pavel Medvedev; James Madden; Dan Wachs; Mitch Meyer

2014-04-01T23:59:59.000Z

125

Tiled-Grating Compressor with Uncompensated Dispersion for Near-Field-Intensity Smoothing  

SciTech Connect (OSTI)

A tiled-grating compressor, in which the spatial dispersion is not completely compensated, reduces the near-field-intensity modulation caused by tiling gaps and provides near-field spatial filtering of the input laser beam, thus reducing the laser damage to the final optics.

Huang, H.; Kessler, T.J.

2007-07-02T23:59:59.000Z

126

Phonon-Polaritons enhance near field thermal transfer across the phase transition of VO2  

E-Print Network [OSTI]

conductivity contrasts of larger than an order of magnitude exist for switchable materials. Yet the control or very low temperatures. A first effort of rectification of thermal transfer in near field by 40 shown that whereas thermal conductivity and far field heat transfer are difficult to tune, in near field

Paris-Sud XI, Université de

127

SVNY294-Kalinin July 17, 2006 16:18 Principles of Near-Field  

E-Print Network [OSTI]

in the field, and discuss a novel quantitative modeling approach to interpreting near-field microwave images samples to eliminate de-magnetization and de-polarization effects, but such sam- ples are rarely available

Anlage, Steven

128

Chiral-field microwave antennas (Chiral microwave near fields for far-field radiation)  

E-Print Network [OSTI]

In a single-element structure we obtain a radiation pattern with a squint due to chiral microwave near fields originated from a magnetostatic-mode ferrite disk. At the magnetostatic resonances, one has strong subwavelength localization of energy of microwave radiation. Magnetostatic oscillations in a thin ferrite disk are characterized by unique topological properties: the Poynting-vector vortices and the field helicity. The chiral-topology near fields allow obtaining unique phase structure distribution for far-field microwave radiation.

Kamenetskii, E O; Shavit, R

2015-01-01T23:59:59.000Z

129

Atomic-Scale Investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling Microscopy and Spectroscopy  

E-Print Network [OSTI]

Atomic-Scale Investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling ReceiVed: June 26, 2010 Graphene was epitaxially grown on a 6H-SiC(0001) substrate by thermal the evolution of the graphene growth as a function of the temperature. We found that the evaporation of Si

Kim, Sehun

130

Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes  

SciTech Connect (OSTI)

The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10?nm gap.

Liu, X. L.; Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2013-11-18T23:59:59.000Z

131

Graphene-assisted near-field radiative heat transfer between corrugated polar materials  

SciTech Connect (OSTI)

Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2014-06-23T23:59:59.000Z

132

Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip  

SciTech Connect (OSTI)

We have performed both Josephson and quasiparticle tunneling in vacuum tunnel junctions formed between a conventional superconducting scanning tunneling microscope tip and overdoped Bi2Sr2CaCu2O8+ single crystals. A Josephson current is observed with a peak centered at a small finite voltage due to the thermal-fluctuation-dominated superconducting phase dynamics. Josephson measurements at different surface locations yield local values for the Josephson ICRN product. Corresponding energy gap measurements were also performed and a surprising inverse correlation was observed between the local ICRN product and the local energy gap.

Kimura, H.; Barber Jr., R. P.; Ono, S.; Ando, Yoichi; Dynes, Robert C.

2009-10-28T23:59:59.000Z

133

Near-field dispersal modeling for liquid fuel-air explosives  

SciTech Connect (OSTI)

The near-field, explosive dispersal of a liquid into air has been explored using a combination of analytical and numerical models. The near-field flow regime is transient, existing only as long as the explosive forces produced by the detonation of the burster charge dominate or are approximately equal in magnitude to the aerodynamic drag forces on the liquid. The near-field model provides reasonable initial conditions for the far-field model, which is described in a separate report. The near-field model consists of the CTH hydrodynamics code and a film instability model. In particular, the CTH hydrodynamics code is used to provide initial temperature, pressure, and velocity fields, and bulk material distribution for the far-field model. The film instability model is a linear stability model for a radially expanding fluid film, and is used to provide a lower bound on the breakup time and an upper and lower bound on the initial average drop diameter for the liquid following breakup. Predictions of the liquid breakup time and the initial arithmetic average drop diameter from the model compare favorably with the sparse experimental data. 26 refs., 20 figs., 8 tabs.

Gardner, D.R.

1990-07-01T23:59:59.000Z

134

Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography  

SciTech Connect (OSTI)

We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified. {copyright} 2001 American Institute of Physics.

Li, S. P.; Lebib, A.; Peyrade, D.; Natali, M.; Chen, Y.; Lew, W. S.; Bland, J. A. C.

2001-07-01T23:59:59.000Z

135

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network [OSTI]

Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

Paris-Sud XI, Université de

136

Sub-THz Beam-forming using Near-field Coupling of Distributed Active Radiator Arrays  

E-Print Network [OSTI]

91125, USA Abstract -- The paper demonstrates Distributed Active Radiator (DAR) arrays as a novel way for mutually locking multiple DARs to beam-form and generate high EIRP. As proofs of concept, 2x1 and 2x2 arrays of DARs, mutually synchronized through near-field coupling, are implemented in 65nm bulk CMOS

Hajimiri, Ali

137

EMC-ORIENTED ANALYSIS OF ELECTRIC NEAR-FIELD IN HIGH FREQUENCY  

E-Print Network [OSTI]

EMC-ORIENTED ANALYSIS OF ELECTRIC NEAR-FIELD IN HIGH FREQUENCY Ali Alaeldine12 , Olivier Maurice3 - 35043 Rennes Cedex - France 3 EMC for Automotive Systems Group - Research and Development Center - PSA - Route de Gachet - 44300 Nantes - France Abstract. This paper introduces an EMC-oriented study

Paris-Sud XI, Université de

138

Dielectric microscopy with submillimeter resolution  

E-Print Network [OSTI]

In analogy with optical near-field scanning methods, we use tapered dielectric waveguides as probes for a millimeter wave vector network analyzer. By scanning thin samples between two such probes we are able to map the spatially varying dielectric properties of materials with sub-wavelength resolution; using a 150 GHz probe in transmision mode we see spatial resolution of around 500 microns. We have applied this method to a variety of highly heterogeneous materials. Here we show dielectric maps of granite and oil shale.

Nathan S. Greeney; John A. Scales

2007-06-20T23:59:59.000Z

139

Strain relief and AlSb buffer layer morphology in GaSb heteroepitaxial films grown on Si as revealed by high-angle annular dark-field scanning transmission electron microscopy  

SciTech Connect (OSTI)

The interfacial misfit (IMF) dislocation array of an epitaxial GaSb film on a Si substrate has been imaged with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The mismatch strain accommodation through dislocation formation has been investigated using geometric phase analysis (GPA) on HAADF-STEM images with atomic resolution to probe the defects' local strain distribution. These measurements indicate that the lattice parameter of the epitaxial film recovers its bulk value within three unit cells from the interface due to the relaxation through IMF dislocations. The atomic number contrast of the HAADF-STEM images and energy dispersive x-ray spectrometry illustrate the formation of islands of AlSb buffer layer along the interface. The role of the AlSb buffer layer in facilitating the GaSb film growth on Si is further elucidated by investigating the strain field of the islands with the GPA.

Vajargah, S. Hosseini; Couillard, M.; Cui, K. [Department of Material Science and Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1 (Canada); Tavakoli, S. Ghanad; Robinson, B.; Kleiman, R. N.; Preston, J. S. [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Botton, G. A. [Department of Material Science and Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2011-02-21T23:59:59.000Z

140

Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash  

SciTech Connect (OSTI)

Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

2013-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film  

E-Print Network [OSTI]

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

Basu, Soumyadipta; Wang, Liping

2014-01-01T23:59:59.000Z

142

Decision making based on optical excitation transfer via near-field interactions between quantum dots  

SciTech Connect (OSTI)

Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.

Naruse, Makoto, E-mail: naruse@nict.go.jp [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Nomura, Wataru; Ohtsu, Motoichi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Aono, Masashi [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguru-ku, Tokyo 152-8550 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge [Université Grenoble Alpes, Inst. NEEL, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France); Kim, Song-Ju [WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2014-10-21T23:59:59.000Z

143

Novel microwave near-field sensors for material characterization, biology, and nanotechnology  

E-Print Network [OSTI]

The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterization, biology, and nanotechnology. The sensor is based on a subwavelength ferrite-disk resonator with magnetic-dipolar-mode (MDM) oscillations. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring material parameters in microwaves, both for ordinary structures and objects with chiral properties.

Joffe, R; Shavit, R

2015-01-01T23:59:59.000Z

144

Photon sorting in the near field using subwavelength cavity arrays in the near-infrared  

SciTech Connect (OSTI)

A frequency selective metasurface capable of sorting photons in the near-infrared spectral range is designed, fabricated, and characterized. The metasurface, a periodic array of dielectric cylindrical cavities in a gold film, localizes and transmits light of two spectral frequency bands into spatially separated cavities, resulting in near-field light splitting. The design and fabrication methodologies of the metasurface are discussed. The transmittance and photon sorting properties of the designed structure is simulated numerically and the measured transmission is presented.

Mandel, Isroel M., E-mail: imandel@gc.cuny.edu; Lansey, Eli [Department of Physics, Graduate Center and City College of the City University of New York, New York 10016 (United States)] [Department of Physics, Graduate Center and City College of the City University of New York, New York 10016 (United States); Gollub, Jonah N.; Sarantos, Chris H.; Akhmechet, Roman [Phoebus Optoelectronics, New York, New York 10013 (United States)] [Phoebus Optoelectronics, New York, New York 10013 (United States); Golovin, Andrii B.; Crouse, David T. [Department of Electrical Engineering, The City College of New York, New York, New York 10031 (United States)] [Department of Electrical Engineering, The City College of New York, New York, New York 10031 (United States)

2013-12-16T23:59:59.000Z

145

Laminar and turbulent nozzle-jet flows and their acoustic near-field  

SciTech Connect (OSTI)

We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18?100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard [Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich (Switzerland)

2014-08-15T23:59:59.000Z

146

Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces  

SciTech Connect (OSTI)

The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of their top planes. Hence, we name them as Pd+(with Pd) and Pd-(without Pd). Based on their planer structure and the step height, it can be said that these two families can be viable surface terminations. However, besides the Pd content, these two sets differ in terms of relative densities of their top planes as well as the gap separating the layer from the nearest atomic plane. The experimental data and other arguments lead to the conclusion that the Pd- family is favored over the Pd+. This has an important implication on the interpretation of local motifs seen in the high resolution STM images. In other words, the dark stars are not formed by cut-Bergmans rather they are formed by cut-Mackays.

Unal, Baris

2008-12-01T23:59:59.000Z

147

Piezoelectric & Optical Set-up to measure an Electrical Field. Application to the Longitudinal Near-Field generated by a  

E-Print Network [OSTI]

influences the longitudinal electrical near-field generated by it. For this application, we designed our set extremity on the longitudinal electrical near-field generated by a coaxial cable. Considering1/12 Piezoelectric & Optical Set-up to measure an Electrical Field. Application to the Longitudinal

Paris-Sud XI, Université de

148

Novel Approaches to Soft X-ray Spectroscopy: Scanning TransmissionX-ray Microscopy and Ambient Pressure X-Ray PhotoelectronSpectroscopy  

SciTech Connect (OSTI)

This workshop focused on novel spectroscopies at Beamlines 11.0.2, 5.3.2 and 9.3.2 at the ALS. The workshop brought together users from a wide range of fields to highlight recent experimental and technical developments both in scanning transmission X-ray spectroscopy (STXM) and ambient pressure photoelectron spectroscopy (APPES). The morning session featured talks on experiments involving new developments at the STXM, while the afternoon session was devoted to those using APXPS. In the morning session, Tolek Tyliszczak discussed the improved detector developments at the STXM, such as an avalanche photodiode detector and fluorescence and electron detection, as well as the continued development of in situ cells for heating, gas flow, and electrochemical cells. Of these, only the avalanche photodiode in combination with a novel multichannel photon-counting system is in routine use in time-resolved studies. Bartel Van Waeyenberge (Ghent University) presented results of magnetic imaging with a time resolution of 70-100 ps combined with a lateral resolution of 20-40 nm performed with the STXM (Beamline 11.0.2). As a complement to the time-domain ''pump-and-probe'' measurements, they developed a frequency-domain ''sine-excitation'' technique in order to study specific eigenmodes of these ferromagnetic patterns with high spatial resolution. This new approach was used to study the gyrotropic vortex motions in micron-sized ferromagnetic patterns. Adam Hitchcock (McMaster University) presented the development, in collaboration with Daniel Guay (INRS, Varennes) and Sherry Zhang, of the apparatus and techniques for applying STXM to in-situ studies of electrochemistry, in particular electrochromism in polyaniline. In addition, substantial progress was reported on a joint project to develop substrates and methods for chemically selective lithography of multilayer polymer systems. Selective patterns, such as that displayed in the figure, can now be written efficiently with the bend magnet STXM on Beamline 5.3.2. Yves Acremann (SSRL) discussed time and spatially resolved X-ray magnetic circular dichroism (XMCD) experiments on spin transfer devices at the STXM (Beamline 11.0.2). These elegant experiments explore time resolved measurements of the magnetization dynamics within a 100 x 150 nm sample influenced by a spin-polarized current. This experiment shows that the magnetization in these magnetic nanostructures are not uniform, as they are influenced by the Oersted field of the charge current needed to generate the spin current. The implementation of a novel multichannel photon counting system in combination with an avalanche photon detector decreased the data-acquisition time by a factor of 10, owing to its ability to resolve the structure of multi bunch mode. Gordon E. Brown, Jr. (Stanford University and SSRL) described ''Applications of STXM to Microbial Bioweathering and Biomineralization''. In the interaction of bacteria with ferrihydrite nanoparticles, microenvironments that were very different than the bulk material were observed, showing that bulk thermodynamics may not be useful for predicting micro phases. Gordon also presented work showing that iron nanoparticles are attracted to the negatively charged bacteria and form a coating that reduces iron oxide minerals. The afternoon session started with presentations by Simon Mun and Hendrik Bluhm, who discussed the current status and the future plans for the two APPES end-stations at the ALS, which are located at Beamlines 9.3.2 and 11.0.2, respectively. In both end-stations, samples can be measured in gaseous environments at pressures of up to several Torr, which makes possible the investigation of numerous phenomena, in particular in the fields of atmospheric and environmental science as well as heterogeneous catalysis. Specific examples of the application of APPES were shown in the following presentations. John Hemminger (University of California, Irvine) reported on APPES investigations at Beamlines 9.3.2 and 11.0.2 of the interaction of alkali halide surfaces with water. The m

Bluhm, Hendrik; Gilles, Mary K.; Mun, Simon B.; Tyliszczak, Tolek

2006-02-01T23:59:59.000Z

149

A New Interpretation of the Scanning Tunneling Microscope Image...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Graphite. A New Interpretation of the Scanning Tunneling Microscope Image of Graphite. Abstract: In this work, highly-resolved scanning tunneling microscopy images of graphite...

150

Geochemistry of Natural Components in the Near-Field Environment, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage, and pore water. The chemical compositions of these components have been determined for assessing possible chemical and mineralogical reactions that may occur after nuclear waste is emplaced. The rock hosting the proposed repository is relatively uniform as shown by a mean coefficient of variation (CV) of 9 percent for major elements. In contrast, compositional variations of dust (bulk and water-soluble fractions), pore water, and seepage are large with mean CVs ranging from 28 to 64 percent. (authors)

Peterman, Zell E. [Yucca Mountain Project Branch, U.S. Geological Survey, MS 963 Box 25046 Denver Federal Center, 6th and Kipling Sts., Denver, CO, 80225 (United States); Oliver, Thomas A. [c/o U.S. Geological Survey, S.M. Stoller Corporation, MS 421 Box 25046 Denver Federal Center, Denver, CO, 80225 (United States)

2007-07-01T23:59:59.000Z

151

katherine henderson Pathology Slide Scanning rev1 Page 1 10/21/14 Scanning in Pathology  

E-Print Network [OSTI]

katherine henderson Pathology Slide Scanning rev1 Page 1 10/21/14 Scanning in Pathology Pathology offers several scanning methods: · Whole slide scans to be used as virtual microscopy ­ Aperio Coolscan for 35mm slides or glass slides with adapter (scans tissue area, not cells) The above scanners

152

Expected near-field thermal performance for nuclear waste repositories at potential salt sites: Technical report  

SciTech Connect (OSTI)

Thermal analyses were made for the environmental assessments of seven potential salt sites for a nuclear waste repository. These analyses predicted that potential repository sites in domal salts located in the Gulf Coast will experience higher temperature than those in bedded salts of Paradox and Palo Duro Basins, mainly because of higher ambient temperatures at depth. The TEMPV5 code, a semi-analytical heat transfer code for finite line sources, calculated temperatures for commercial high-level waste (CHLW) and spent fuel from pressurized-water reactors (SFPWR). Benchmarks with HEATING6, THAC-SIP-3D, STEALTH, and SPECTROM-41 showed that TEMPV5 agreed closely in the very near field around the waste package and approximately in the near-field and far-field regions of the repository. The analyses used site-specific thermal conductivities that were increased by 40% to compensate for reductions caused by testing technique, salt impurities, and other heterogeneities, and sampling disturbance. Analyses showed peak salt temperatures of 236/sup 0/C (CHLW) and 134/sup 0/C (SFPWR) for the bedded salt and 296/sup 0/C (CHLW) and 180/sup 0/C (SFPWR) for the domal salt. Analyses with uncorrected laboratory thermal conductivities would increase peak salt temperatures by about 120/sup 0/C for CHLW and about 60/sup 0/C for SFPWR. These temperature increases would increase the thermally induced flow of brine and accelerate corrosion of the waste package. 30 refs., 35 figs., 48 tabs.

McNulty, E.G.

1987-08-01T23:59:59.000Z

153

Tungsten Nanowire Based Hyperbolic Metamaterial Emitters for Near-field Thermophotovoltaic Applications  

E-Print Network [OSTI]

Recently, near-field radiative heat transfer enhancement across nanometer vacuum gaps has been intensively studied between two hyperbolic metamaterials (HMMs) due to unlimited wavevectors and high photonic density of state. In this work, we theoretically analyze the energy conversion performance of a thermophotovoltaic (TPV) cell made of In0.2Ga0.8Sb when paired with a HMM emitter composed of tungsten nanowire arrays embedded in Al2O3 host at nanometer vacuum gaps. Fluctuational electrodynamics integrated with effective medium theory and anisotropic thin-film optics is used to calculate the near-field radiative heat transfer. It is found that the spectral radiative energy is enhanced by the epsilon-near-zero and hyperbolic modes at different polarizations. As a result, the power output from a semi-infinite TPV cell is improved by 1.85 times with the nanowire HMM emitter over that with a plain tungsten emitter at a vacuum gap of 10 nm. Moreover, by using a thin TPV cell with 10 um thickness, the conversion eff...

Chang, Jui-Yung; Wang, Liping

2014-01-01T23:59:59.000Z

154

Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis  

SciTech Connect (OSTI)

Extending spatial resolution in laser-based chemical analysis to the nanoscale becomes increasingly important as nanoscience and nanotechnology develop. Implementation of femtosecond laser pulses arises as a basic strategy for increasing resolution since it is associated with spatially localized material damage. In this work we study femtosecond laser far- and near-field processing of silicon (Si) at two distinct wavelengths (400 and 800 nm), for nanoscale chemical analysis. By tightly focusing femtosecond laser beams in the far-field we were able to produce sub-micrometer craters. In order to further reduce the crater size, similar experiments were performed in the near-field through sub-wavelength apertures, resulting to the formation of sub-30 nm craters. Laser Induced Breakdown Spectroscopy (LIBS) was used for chemical analysis with a goal to identify the minimum crater size from which spectral emission could be measured. Emission from sub-micrometer craters (full-with-at-half-maximum) was possible, which are among the smallest ever reported for femtosecond LIBS.

Zormpa, Vasileia; Mao, Xianglei; Russo, Richard E.

2010-02-02T23:59:59.000Z

155

Shape-independent limits to near-field radiative heat transfer  

E-Print Network [OSTI]

We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced bodies, generalizing the concept of a black body to the case of near-field energy transfer. By conservation of energy, we show that each body of susceptibility $\\chi$ can emit and absorb radiation at enhanced rates bounded by $|\\chi|^2 / \\operatorname{Im} \\chi$, optimally mediated by near-field photon transfer proportional to $1/d^2$ across a separation distance $d$. Dipole--dipole and dipole--plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and s...

Miller, Owen D; Rodriguez, Alejandro W

2015-01-01T23:59:59.000Z

156

Image Resolution in Scanning Transmission Electron Microscopy  

SciTech Connect (OSTI)

Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

Pennycook, S. J.; Lupini, A.R.

2008-06-26T23:59:59.000Z

157

Scanning electron microscopy of intestinal villous structures  

E-Print Network [OSTI]

briefly in running water for 30 minutes and were dehydrated through graded ethanol series (1 hour each in 50, 70, 80, 95 and 100 %). Dehydrated specimens were dried in a carbon dioxide critical point drier to avoid exposure of the specimens to any surface tension forces when drying. The dried specimens were

Boyer, Edmond

158

Sandia National Laboratories: scanning probe microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving thereverse

159

Switchable stiffness scanning microscope probe  

E-Print Network [OSTI]

Atomic Force Microscopy (AFM) has rapidly gained widespread utilization as an imaging device and micro/nano-manipulator during recent years. This thesis investigates the new concept of a dual stiffness scanning probe with ...

Mueller-Falcke, Clemens T. (Clemens Tobias)

2005-01-01T23:59:59.000Z

160

Spectrally enhancing near-field radiative heat transfer by exciting magnetic polariton in SiC gratings  

E-Print Network [OSTI]

In the present work, we theoretically demonstrate, for the first time, that near field radiative transport between 1D periodic grating microstructures separated by subwavelength vacuum gaps can be significantly enhanced by exciting magnetic resonance or polariton. Fluctuational electrodynamics that incorporates scattering matrix theory with rigorous coupled wave analysis is employed to exactly calculate the near field radiative heat flux between two SiC gratings. Besides the well known coupled surface phonon polaritons (SPhP), an additional spectral radiative heat flux peak, which is due to magnetic polariton, is found within the phonon absorption band of SiC. The mechanisms, behaviors and interplays between magnetic polariton, coupled SPhP, single interface SPhP, and Wood's anomaly in the near field radiative transport are elucidated in detail. The findings will open up a new way to control near field radiative heat transfer by magnetic resonance with micro or nanostructured metamaterials.

Yang, Yue

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Apparatus comprising a tunable nanomechanical near-field grating and method for controlling far-field emission  

DOE Patents [OSTI]

A tunable nanomechanical near-field grating is disclosed which is capable of varying the intensity of a diffraction mode of an optical output signal. The tunable nanomechanical near-field grating includes two sub-gratings each having line-elements with width and thickness less than the operating wavelength of light with which the grating interacts. Lateral apertures in the two sub-gratings are formed from the space between one line-element of the first sub-grating and at least one line-element of the second sub-grating. One of the sub-gratings is capable of motion such that at least one of aperture width and aperture depth changes, causing a perturbation to the near-field intensity distribution of the tunable nanomechanical near-field grating and a corresponding change to the far-field emission of thereof.

Carr, Dustin Wade (Albuquerque, NM); Bogart, Gregory Robert (Corrales, NM)

2007-02-06T23:59:59.000Z

162

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network [OSTI]

Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

Riccardo Messina; Philippe Ben-Abdallah

2012-07-05T23:59:59.000Z

163

Acceleration of electrons in the near field of lower hybrid frequency grills  

SciTech Connect (OSTI)

On Tore Supra, during lower hybrid (LH) current drive experiments, localized heat flux deposition is observed on plasma facing components such as the guard limiters of the LH grills or any object which is magnetically connected to the LH launching waveguides : modular low-field side limiters, ion cyclotron heating antennas, inner first wall. Similar observations have been made on the divertor plates and limiters of TdeV. In particular, by alternating the rf powers of the 2 grills of Tore Supra, it was shown that the heat flux on the tiles of the guard limiters is related to the local electric field but not with the convective power. We present here a model of acceleration of electrons in the near field of LH antennas. Results of this model are compared to experimental results.

Goniche, M. [JET Joint Undertaking, Abingdon, Oxfordshire (England); Mailloux, J.; Demers, Y.; Jacquet, P.; Bibet, P.; Froissard, P.; Rey, G.; Surle, F.; Tareb, M. [Centre canadien de fusion magnetique, Varnnes, Quebec, (Canada); Guilhem, D.; Harris, J.H. [Oak Ridge National Lab., TN (United States)

1996-09-01T23:59:59.000Z

164

Near-field heat transfer between a nanoparticle and a rough surface  

E-Print Network [OSTI]

In this work we focus on the surface roughness correction to the near-field radiative heat transfer between a nanoparticle and a material with a rough surface utilizing a direct perturbation theory up to second order in the surface profile. We discuss the different distance regimes for the local density of states above the rough material and the heat flux analytically and numerically. We show that the heat transfer rate is larger than that corresponding to a flat surface at short distances. At larger distances it can become smaller due to surface polariton scattering by the rough surface. For distances much smaller than the correlation length of the surface profile, we show that the results converge to a proximity approximation, whereas in the opposite limit the rough surface can be replaced by an equivalent surface layer.

Svend-Age Biehs; Jean-Jacques Greffet

2011-03-11T23:59:59.000Z

165

Modification of the Absorption Cross Section in the Optical Near-field  

E-Print Network [OSTI]

The optical interaction of light and matter is modeled as an oscillating dipole in a plane wave. We analyze absorption, scattering and extinction for this system by the energy flow, which is depicted by streamlines of the Poynting vector. Depending on the dissipative damping of the oscillator, the streamlines end up in the dipole. Based on a graphical investigation of the streamlines, this represents the absorption cross section, and forms a far-field absorption aperture. In the near-field of the oscillator, a modification of the aperture is observed. This scheme can be adapted to a single dipolar emitter, interacting with a light field. In the case of the absorption by a single atom, where the oscillator has a circular dipole characteristics, we model the energy flow and derive the apertures.

Moritz Striebel; Jeff F. Young; Jörg Wrachtrup; Ilja Gerhardt

2014-11-20T23:59:59.000Z

166

Nanomechanical near-field grating apparatus and acceleration sensor formed therefrom  

DOE Patents [OSTI]

A nanomechanical near-field grating device is disclosed which includes two sub-gratings vertically spaced by a distance less than or equal to an operating wavelength. Each sub-grating includes a plurality of line-elements spaced apart by a distance less than or equal to the operating wavelength. A light source (e.g., a VCSEL or LED) can provide light at the operating wavelength for operation of the device. The device can operate as an active grating, with the intensity of a reflected or transmitted portion of the light varying as the relative positions of the sub-gratings are controlled by an actuator. The device can also operate as a passive grating, with the relative positions of the sub-gratings changing in response to an environmentally-induced force due to acceleration, impact, shock, vibration, gravity, etc. Since the device can be adapted to sense an acceleration that is directed laterally or vertically, a plurality of devices can be located on a common substrate to form a multi-axis acceleration sensor.

Carr, Dustin Wade (Albuquerque, NM); Bogart, Gregory Robert (Corrales, NM); Keeler, Bianca E. N. (Albuquerque, NM)

2008-03-04T23:59:59.000Z

167

Scanning evanescent electro-magnetic microscope  

DOE Patents [OSTI]

A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

2001-01-01T23:59:59.000Z

168

PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons in graphene  

E-Print Network [OSTI]

in graphene Ognjen Ilic,1,* Marinko Jablan,2 John D. Joannopoulos,1 Ivan Celanovic,3 Hrvoje Buljan,2 and Marin-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene

Soljaèiæ, Marin

169

hal-00252040,version1-12Feb2008 Near-field induction heating of metallic nanoparticles due to infrared magnetic  

E-Print Network [OSTI]

hal-00252040,version1-12Feb2008 Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution Pierre-Olivier Chapuis, Marine Laroche, Sebastian Volz, and Jean.ecp.fr We revisit the electromagnetic heat transfer between a metallic nanoparticle and a metallic semi

Paris-Sud XI, Université de

170

Technical Work Plan for: Near Field Environment: Engineered System: Radionuclide Transport Abstraction Model Report  

SciTech Connect (OSTI)

This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model will be revised to be consistent with model changes.

J.D. Schreiber

2006-12-08T23:59:59.000Z

171

Near-Field Hydrology Data Package for the Integrated Disposal Facility 2005 Performance Assessment  

SciTech Connect (OSTI)

CH2MHill Hanford Group, Inc. (CHG) is designing and assessing the performance of an Integrated Disposal Facility (IDF) to receive immobilized low-activity waste (ILAW), Low-Level and Mixed Low-Level Wastes (LLW/MLLW), and the Waste Treatment Plant (WTP) melters used to vitrify the ILAW. The IDF Performance Assessment (PA) assesses the performance of the disposal facility to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. The PA requires prediction of contaminant migration from the facilities, which is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists CHG in its performance assessment activities. One of PNNL’s tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information were previously presented in a report prepared for the 2001 ILAW PA. This report updates the parameter estimates for the 2005 IDF PA using additional information and data collected since publication of the earlier report.

Meyer, Philip D.; Saripalli, Prasad; Freedman, Vicky L.

2004-06-25T23:59:59.000Z

172

Seismic Protection of Bridge Structures Using Shape Memory Alloy-Based Isolation Systems against Near-Field Earthquakes  

E-Print Network [OSTI]

SEISMIC PROTECTION OF BRIDGE STRUCTURES USING SHAPE MEMORY ALLOY-BASED ISOLATION SYSTEMS AGAINST NEAR-FIELD EARTHQUAKES A Dissertation by OSMAN ESER OZBULUT Submitted to the Office of Graduate Studies of Texas A&M University... Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Stefan Hurlebaus Committee Members, Jose Roesset Monique Head...

Ozbulut, Osman Eser

2012-02-14T23:59:59.000Z

173

Microscopy image segmentation tool: Robust image data analysis  

SciTech Connect (OSTI)

We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)] [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

2014-03-15T23:59:59.000Z

174

Microscopy | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells InDioxideusingMicroscopy

175

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy  

E-Print Network [OSTI]

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy Carolyn A. SuttonCarolyn A. Sutton PH 464PH 464 #12;OverviewOverview The OpticalThe Optical MicroscopeMicroscopy 4 Pi Microscopy4 Pi Microscopy Optical Microscope for Metallography #12;Optical Microscope: OriginsOptical

La Rosa, Andres H.

176

Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical K. Bittkau* and R. Carius  

E-Print Network [OSTI]

relevance. In particular, when designing thin-film solar cells and light emitting diodes LEDs , ran- domly

Peinke, Joachim

177

A Combined Near-field Scanning Microwave Microscope and Transport Measurement System for Characterizing Dissipation in Conducting and High-Tc Superconducting Films at Variable Temperature  

E-Print Network [OSTI]

Identifying defects and non-superconducting regions in high-temperature superconductors (HTS) is of great importance because they limit the material's capability to carry higher current densities and serve as nucleation ...

Dizon, Jonathan Reyes

2009-04-28T23:59:59.000Z

178

Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays  

SciTech Connect (OSTI)

This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys������� that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

2013-01-26T23:59:59.000Z

179

Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt  

SciTech Connect (OSTI)

Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

Elders, W.A.; Cohen, L.H.

1983-11-01T23:59:59.000Z

180

Near-field Second Harmonic Imaging of Granular Membrane Structures in Natural Killer Richard D. Schaller, Claude Roth, David H. Raulet, and Richard J. Saykally*,  

E-Print Network [OSTI]

Near-field Second Harmonic Imaging of Granular Membrane Structures in Natural Killer Cells Richard) cells were recorded at four different wavelengths using a tunable near-infrared femtosecond laser membrane. Introduction Natural killer cells are a class of white blood cells that attack pathogen

Cohen, Ronald C.

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials  

E-Print Network [OSTI]

of energy from a hot to a cold body is well known to be enhanced (even exceeding the black- body limit) whenFrequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3 Department

Soljaèiæ, Marin

182

annular dark-field scanning: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry nanoparticles. The image contrast in HAADF-STEM is...

183

Development of a microfluidic device for patterning multiple species by scanning probe lithography  

E-Print Network [OSTI]

Scanning Probe Lithography (SPL) is a versatile nanofabrication platform that leverages microfluidic “ink” delivery systems with Scanning Probe Microscopy (SPM) for generating surface-patterned chemical functionality on the sub-100 nm length scale...

Rivas Cardona, Juan Alberto

2009-06-02T23:59:59.000Z

184

SCANNING ACOUSTIC MICROSCOPY MODELING FOR MICROMECHANICAL MEASUREMENTS OF COMPLEX SUBSTRATES  

E-Print Network [OSTI]

function of the substrate-fluid interface form the two key problems of effective SAM modeling. In the SAM modeling literature, a variety of approaches have been proposed for evaluating Eq 2.1. The approaches most frequently adopted are founded either... 1973). As seen from Eq 2.1, the evaluation of the reflected pressure field requires the computation of the angular spectrum and reflectance function. In general, these quantities can be computed independently. For angular spectrum calculation we...

Marangos, Orestes

2010-05-31T23:59:59.000Z

185

Surface Science Letters Scanning tunneling microscopy study of the anatase  

E-Print Network [OSTI]

understand, and ultimately im- prove, the performance of TiO2 as a gas sensor or heterogeneous catalyst and as a photo-active ma- terial. TiO2 exists in three crystallographic poly- morphs. These are: anatase promise as a more photo-active material than rutile [2], but relatively few surface studies have been

Diebold, Ulrike

186

Scanning Probe Laser Terahertz Emission Microscopy System Ryotaro INOUE  

E-Print Network [OSTI]

is irradiated from the vicinity of the surface by an optical-fiber probe. The large numerical aperture pulse is irradiated to the sample surface by a commercial optical-fiber probe (LWP-LEN-SM, Cascade the sample surface, and terahertz emission from the locally photoexcited area is obtained. Using an optical-fiber

Tonouchi, Masayoshi

187

SCANNING HALL PROBE MICROSCOPY OF SUPERCURRENTS IN YBCO FILMS  

E-Print Network [OSTI]

and reducing gears. It en- ables me to image an entire sample, then zoom in on regions of interest, down image two "coat- ed conductors"--YBCO grown on metal tape. I find relatively homogeneous flux

Moler, Kathryn A.

188

Scanning Tunneling Microscopy currents on locally disordered graphene  

E-Print Network [OSTI]

Intrinsic ripples in graphene“, Nature Materials 6, 858 (Novoselov, ”Control of graphene’s properties by reversiblespectroscopy of monolayer graphene on SiO 2 ”, arXiv:

Tsai, Shan-Wen; Peres, Nuno M. R.; Santos, J. E.; Ribeiro, R. M.

2009-01-01T23:59:59.000Z

189

Multifocal Multiphoton Laser-Scanning Structured Illumination Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2

190

Band Excitation Method Applicable to Scanning Probe Microscopy - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High Energy PhysicsInnovation Portal

191

Iran Thomas Auditorium, 8600 Transport Measurements by Scanning Probe Microscopy:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface Reactions andOctober 5,October

192

Scanning Probe Microscopy with Spectroscopic Molecular Recognition - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclearof DataNarrows Dam

193

Scanning Tunneling Microscopy and Theoretical Study of Water Adsorption on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclearof DataNarrows DamFe3O4:

194

1996, Journal of Microscopy 181, 225-237 (and vol 182, p 240.) Multimodal microscopy by digital image processing  

E-Print Network [OSTI]

, Blakistone and Kyryk 1990 compared applications of polarised light, bright eld, DIC and scanning electron microscopy SEM in the paper industry. Fluorescence microscopy adds further possible imaging modes to light. 1 #12;1 Introduction Di erent imaging modes with the light microscope convey complementary infor

Stone, J. V.

195

Analytical scanning evanescent microwave microscope and control stage  

DOE Patents [OSTI]

A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

2013-01-22T23:59:59.000Z

196

Application of High-Angle Annular Dark Field Scanning Transmission  

E-Print Network [OSTI]

Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometry, and Energy-Filtered Transmission field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry). Techniquesthatareusefulinanalyzingultrafineatmospheric particles, such as STEM, EELS (electron energy loss spec- trometry), AFM, and mass spectrometry

Utsunomiya, Satoshi

197

SUBMOLECULAR IMAGING OF EPITAXIALLY CRYSTALLIZED HELICAL POLYOLEFINS BY ATOMIC FORCE MICROSCOPY  

E-Print Network [OSTI]

Digital Instruments, Inc., Santa Barbara, Cal. USA. Images were taken with an A­type scan head (max. scan microscopy EM and electron diffraction ED. AFM pictures with high resolution could be obtained when using polypropylene has been determined by electron microscopy EM and electron diffraction ED: chain conformation

Peters, Achim

198

NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2)  

SciTech Connect (OSTI)

Motion along joints and fractures in the rock has been proposed as one of the sources of near-source shear wave generation, and demonstrating the validity of this hypothesis is a focal scientific objective of the source physics experimental campaign in the Climax Stock granitic outcrop. A modeling effort has been undertaken by LLNL to complement the experimental campaign, and over the long term provide a validated computation capability for the nuclear explosion monitoring community. The approach involves performing the near-field nonlinear modeling with hydrodynamic codes (e.g., GEODYN, GEODYN-L), and the far-field seismic propagation with an elastic wave propagation code (e.g., WPP). the codes will be coupled together to provide a comprehensive source-to-sensor modeling capability. The technical approach involves pre-test predictions of each of the SPE experiments using their state of the art modeling capabilities, followed by code improvements to alleviate deficiencies identified in the pre-test predictions. This spiral development cycle wherein simulations are used to guide experimental design and the data from the experiment used to improve the models is the most effective approach to enable a transition from the descriptive phenomenological models in current use to the predictive, hybrid physics models needed for a science-based modeling capability for nuclear explosion monitoring. The objective of this report is to describe initial results of non-linear motion predictions of the first two SPE shots in the Climax Stock: a 220-lb shot at a depth of 180 ft (SPE No.1), and a 2570-lb shot at a depth of 150 ft (SPE No.2). The simulations were performed using the LLNL ensemble granite model, a model developed to match velocity and displacement attenuation from HARDHAT, PILE DRIVER, and SHOAL, as well as Russian and French nuclear test data in granitic rocks. This model represents the state of the art modeling capabilities as they existed when the SPE campaign was launched in 2010, and the simulation results presented here will establish a baseline that will be used for gauging progress as planned modeling improvements are implemented during the remainder of the SPE program. The initial simulations were performed under 2D axisymmetric conditions assuming the geologic medium to be a homogeneous half space. However, logging data obtained from the emplacement hole reveal two major faults that intersect the borehole at two different depth intervals (NSTec report, 2011) and four major joint sets. To evaluate the effect of these discrete structures on the wave forms generated they have performed 2D and 3D analysis with a Lagrangian hydrocode, GEODYN-L that shares the same material models with GEODYN but can explicitly take joints and fault into consideration. They discuss results obtained using these two different approaches in this report.

Antoun, T; Xu, H; Vorobiev, O; Lomov, I

2011-10-20T23:59:59.000Z

199

Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository--BMT1 of the DECOVALEX III project. Part 1: Conceptualization  

E-Print Network [OSTI]

Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste on the safety of a hypothetical nuclear waste repository at the near-field and are presented in three on the safety of nuclear waste repositories. To achieve the second objective, hypothetical benchmark test

Paris-Sud XI, Université de

200

Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces  

SciTech Connect (OSTI)

We report on the shallow synthesis by low energy ion implantation of delta-layers of Ag nanocrystals in SiO{sub 2} at few nanometers under its free surface. Transmission electron microscopy observations, ballistic simulations, and reflectance measurements are coupled to define the conditions for which the synthesis is fully controlled and when, on the contrary, this control is lost. We show that low dose implantation leads to the formation of a well-defined single plane of nanocrystals, while for larger doses, sputtering and diffusion effects limit the control of the size, position, and volume amount of these nanocrystals. This paper provides the experimental evidence of the incorporated dose saturation predicted in the literature when implanting metal ions at high doses in glass matrices. Its consequences on the particle population and the plasmonic optical response of the composite layers are carefully analyzed. We show here that this saturation phenomenon is underestimated in standard simulation predictions due to diffusion of metal atoms towards the surface and nanocrystal nucleation during the implantation process.

Benzo, Patrizio; Bonafos, Caroline; Bayle, Maxime; Carles, Robert; Cattaneo, Laura; Benassayag, Gerard; Pecassou, Beatrice [Groupe Nanomat-CEMES-CNRS and Universite de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)] [Groupe Nanomat-CEMES-CNRS and Universite de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Farcau, Cosmin [Institute for Interdisciplinary Research in Bio-Nano-Sciences, and Faculty of Physics, Babes-Bolyai University, 42 T. Laurian, 400271 Cluj-Napoca (Romania)] [Institute for Interdisciplinary Research in Bio-Nano-Sciences, and Faculty of Physics, Babes-Bolyai University, 42 T. Laurian, 400271 Cluj-Napoca (Romania); Muller, Dominique [InESS-CNRS and Universite de Strasbourg, 23 rue du Loess, F-67037 Strasbourg (France)] [InESS-CNRS and Universite de Strasbourg, 23 rue du Loess, F-67037 Strasbourg (France)

2013-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Computational microscopy for sample analysis  

E-Print Network [OSTI]

Computational microscopy is an emerging technology which extends the capabilities of optical microscopy with the help of computation. One of the notable example is super resolution fluorescence microscopy which achieves ...

Ikoma, Hayato

2014-01-01T23:59:59.000Z

202

Nonlinear vibrational microscopy  

DOE Patents [OSTI]

The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

2000-01-01T23:59:59.000Z

203

Probing graphene defects and estimating graphene quality with optical microscopy  

SciTech Connect (OSTI)

We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

2014-01-27T23:59:59.000Z

204

A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area  

SciTech Connect (OSTI)

Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

Castillo, D. A., [Department of Geology and Geophysics, University of Adelaide (Australia); Younker, L.W. [Lawrence Livermore National Lab., CA (United States)

1997-01-30T23:59:59.000Z

205

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect (OSTI)

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

206

Atom probe field ion microscopy and related topics: A bibliography 1989  

SciTech Connect (OSTI)

This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

Miller, M.K.; Hawkins, A.R.; Russell, K.F.

1990-12-01T23:59:59.000Z

207

Vector generator scan converter  

DOE Patents [OSTI]

High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

Moore, J.M.; Leighton, J.F.

1988-02-05T23:59:59.000Z

208

Vector generator scan converter  

DOE Patents [OSTI]

High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

1990-01-01T23:59:59.000Z

209

Microscopy (XSD-MIC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichaelGE1 Micropulse Lidar TheMicroscopy

210

Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository--BMT1 of the DECOVALEX III project. Part 2: Effects of THM  

E-Print Network [OSTI]

Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste, Germany (7) Canadian Nuclear Safety Commission (CNSC), Ottawa, Canada (8) Lawrence Berkeley National Laboratory (LBNL), Berkeley, USA (9) INERIS-LAEGO, Ecole des Mines de Nancy, Nancy, France (10) Japan Nuclear

Paris-Sud XI, Université de

211

A case study on the influence of THM coupling on the near field safety of a spent fuel repository in sparsely fractured granite  

SciTech Connect (OSTI)

In order to demonstrate the feasibility of geological disposal of spent CANDU fuel in Canada, a safety assessment was performed for a hypothetical repository in the Canadian Shield. The assessment shows that such repository would meet international criteria for dose rate; however, uncertainties in the assumed evolution of the repository were identified. Such uncertainties could be resolved by the consideration of coupled Thermal-Hydro-Mechanical-Chemical (THMC) processes. In Task A of the DECOVALEX-THMC project, THM models were developed within the framework of the theory of poroelasticity. Such model development was performed in an iterative manner, using experimental data from laboratory and field tests. The models were used to perform near-field simulations of the evolution of the repository in order to address the above uncertainties. This paper presents the definition and rationale of task A and the results of the simulations. From a repository safety point of view, the simulations predict that the maximum temperature would be well below the design target of 100 C, however the load on the container can marginally exceed the design value of 15 MPa. However, the most important finding from the simulations is that a rock damage zone could form around the emplacement borehole. Such damage zone can extend a few metres from the walls of the emplacement holes, with permeability values that are orders of magnitude higher than the initial values. The damage zone has the potential to increase the radionuclide transport flux from the geosphere; the effect of such an increase should be taken into account in the safety assessment and mitigated if necessary by the provision of sealing systems.

Nguyen, T.S.; Borgesson, L.; Chijimatsu, M.; Hernelind, J.; Jing, L.; Kobayashi, A.; Rutqvist, J.

2009-03-01T23:59:59.000Z

212

Scanning micro-sclerometer  

DOE Patents [OSTI]

A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

Oliver, Warren C. (Knoxville, TN); Blau, Peter J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

213

Scanning micro-sclerometer  

DOE Patents [OSTI]

A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

Oliver, W.C.; Blau, P.J.

1994-11-01T23:59:59.000Z

214

Introduction to Photoelectron Emission Microscopy: Principles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction to Photoelectron Emission Microscopy: Principles and Applications. Introduction to Photoelectron Emission Microscopy: Principles and Applications. Abstract: In the...

215

Scanning TEM | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon Home WaterScanning Probe

216

Free motion scanning system  

DOE Patents [OSTI]

The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

Sword, Charles K. (Pleasant Hills, PA)

2000-01-01T23:59:59.000Z

217

Synchronisation in Scan-On-Scan-On-Scan I. Vaughan L. Clarkson  

E-Print Network [OSTI]

strategy. I. INTRODUCTION Electronic Support (ES) is that area of Electronic Warfare (EW) concerned-on-scan-on-scan' problem, important in Electronic Support. In this paper, the theory of three-way and higher

Clarkson, Vaughan

218

4 K, ultrahigh vacuum scanning tunneling microscope having two orthogonal tips with tunnel junctions as close as a few nanometers  

E-Print Network [OSTI]

with a scanning electron microscopy SEM , these two imaging methods nicely bridge the gap from mi- crons structure of semiconductor devices by interrupting the fabri- cation process.7­11 This has led

Thibado, Paul M.

219

Scanning Microscopy, Vol. 5, No. 2, 1991 (Pages 317-328) Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA  

E-Print Network [OSTI]

(AMF O'Hare), IL 60666 USA 0891-7035/91$3.00+.00 RESTRICTED ENERGY TRANSFER IN LASER DESORPTION OF HIGH- guished importance in mass spectrometry. In our present study we survey different laser desorption methods of restricted energy transfer pathways as a pos- sible explanation to the volatilization of non-degraded large

Vertes, Akos

220

ORNL microscopy directly images problematic lithium dendrites...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

National High Magnetic Field Laboratory: Optical Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of materials (such as this metallic superlattice) are produced in Optical Microscopy. Web-based Education This department runs four microscopy Web sites that together comprise...

222

Directly correlated transmission electron microscopy and atom...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary Directly correlated transmission electron microscopy...

223

Reproducible strain measurement in electronic devices by applying integer multiple to scanning grating in scanning moiré fringe imaging  

SciTech Connect (OSTI)

Scanning moiré fringe (SMF) imaging by high-angle annular dark field scanning transmission electron microscopy was used to measure the strain field in the channel of a transistor with a CoSi{sub 2} source and drain. Nanometer-scale SMFs were formed with a scanning grating size of d{sub s} at integer multiples of the Si crystal lattice spacing d{sub l} (d{sub s} ? nd{sub l}, n = 2, 3, 4, 5). The moiré fringe formula was modified to establish a method for quantifying strain measurement. We showed that strain fields in a transistor measured by SMF images were reproducible with an accuracy of 0.02%.

Kim, Suhyun, E-mail: u98kim@surface.phys.titech.ac.jp; Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum [Memory Analysis Science and Engineering Group, Samsung Electronics, San #16 Hwasung-city, Gyeonggi-Do 445-701 (Korea, Republic of); Kondo, Yukihito [EM Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan)

2014-10-15T23:59:59.000Z

224

Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report  

SciTech Connect (OSTI)

A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

1994-10-01T23:59:59.000Z

225

High Gain, Fast Scan, Broad Spectrum, Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM  

SciTech Connect (OSTI)

Parallax Research, Inc. proposes to produce a new type of x-ray spectrometer for use with Scanning Electron Microscopy (SEM) that would have the energy resolution of WDS and the ease of use of EDS with sufficient gain for lower energies that it can be used at low beam currents as is EDS. Parallax proposes to do this by development of new multiple reflection x-ray collimation optics, new diffractor technology, new detector technology and new scan algorithms.

David OHara; Dr. Eric Lochmer

2003-09-12T23:59:59.000Z

226

Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission Electron Microscopy  

E-Print Network [OSTI]

Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission of graphene on Ru(0001) was investigated by photoemission electron microscopy (PEEM) and scanning tunneling, we show that graphene overlayers with sizes ranging from nanometers to sub-millimeters have been

Bao, Xinhe

227

Dynamic imaging with electron microscopy  

SciTech Connect (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-02-20T23:59:59.000Z

228

Dynamic imaging with electron microscopy  

ScienceCinema (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-05-30T23:59:59.000Z

229

Role of bias voltage and tunneling current in the perpendicular displacements of freestanding graphene via scanning  

E-Print Network [OSTI]

graphene via scanning tunneling microscopy Peng Xu, Steven D. Barber, Matthew L. Ackerman, James Kevin measurements of freestanding graphene as a function of applied bias voltage and tunneling current setpoint, the graphene approaches the STM tip, while, on the other hand, when the tunneling current is increased

Thibado, Paul M.

230

Scanning tunneling microscopy studies on the structure and stability of model catalysts  

E-Print Network [OSTI]

assistance has largely facilitated the writing of this dissertation. viii TABLE OF CONTENTS Page ABSTRACT .............................................................................................................. iii DEDICATION... of the Auger processes (KL 1 L 2,3 ). (a) Ionization of a core electron. (b) Excitation of an Auger electron........ 34 Figure 9 The performance and vibration isolation of the RHK VT-UHV300 STM. (a) Atomic resolution STM images obtained by RHK...

Yang, Fan

2009-05-15T23:59:59.000Z

231

A technique for quantitative and qualitative viewing of aquatic bacteria using scanning electron microscopy  

E-Print Network [OSTI]

microscopic enumeration techniques. Water samples are concentrated on pre-wetted (Triton X-100) Nuclepore filters (0. 2 um pore size) to prov1de a uniform distri- bution of bacteria on the filter surface and vacuum filtered (660 Torr). The filter... is transferred to a petri dish containing filter paper soaked 1n 2% glutaraldehyde and the bacter1a are fixed for one hour. Dehydration 1s performed by transferr1ng the filters through a series of petri dishes conta1ning filter paper saturated with 25, 50, 75...

Dreier, Thomas Michael

2012-06-07T23:59:59.000Z

232

Scanning Tunneling Microscopy Studies of Metal Clusters Supported on Graphene and Silica Thin Film  

E-Print Network [OSTI]

The understanding of nucleation and growth of metals on a planar support at the atomic level is critical for both surface science research and heterogeneous catalysis studies. In this dissertation, two planar substrates, including graphene and ultra...

Zhou, Zihao

2012-10-19T23:59:59.000Z

233

Scanning tunneling microscopy of doping and composilionallll-V homo.. and heterostructures  

E-Print Network [OSTI]

and compositional effects can be resolved by the topographic contrasts of constant-current STM images. The samples sections of sam~ pIes were prepared by two methods: (1) in situ cleaving in an UHY c

234

A revision of generic concepts in the subfamily Acetabularieae (Acetabulariaceae, dasycladales) based on scanning electron microscopy  

E-Print Network [OSTI]

by Eiseman (1970) in Lake Surprise, Florida. He reported a variety of phenotypes which formed a continuum between Chalmasia antillana Solms-Laubach, 1895 (calcified cysts} and Acetabularia farlowii Solms-Laubach, 1895 (uncalcified cysts). He concluded... lime matrix between adjacent cysts similar to the type of calcification in the genus Acicularia. He also reported a difference in crystal habits produced by species of Acetabularia anti liana. found in two different habitats, again indicating...

Bailey, Glenn Paul

1975-01-01T23:59:59.000Z

235

SINTERING OF A12O3 POWDER COMPACT BY HOT STAGE SCANNING ELECTRON MICROSCOPY  

E-Print Network [OSTI]

from W. R. Grace, General Electric and Lniun Carbide Co:apa!2 G3 WITH 0..1 WT. % MgG GENERAL ELECTRIC Co. GREEN DENSITY·compacts. WITH 0.1 WT. GENERAL ELECTRIC CO. EEN DENSITY: 40

Wang, D.N.-K.

2010-01-01T23:59:59.000Z

236

Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy.  

E-Print Network [OSTI]

??Cobalt disilicide (CoSi2) islands have been formed on Si(111) and Si(100) through UHV deposition and annealing. Current-voltage (I-V) and temperature-dependent current-voltage (I-V-T) curves have been… (more)

Tedesco, Joseph Leo

2007-01-01T23:59:59.000Z

237

Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy  

E-Print Network [OSTI]

emerging in the field of optoelectronics and nanophotonicsemerging in the field of optoelectronics and nanophotonics.

Yang, P.

2009-01-01T23:59:59.000Z

238

SINTERING OF A12O3 POWDER COMPACT BY HOT STAGE SCANNING ELECTRON MICROSCOPY  

E-Print Network [OSTI]

2 G3 WITH 0..1 WT. % MgG GENERAL ELECTRIC Co. GREEN DENSITY·compacts. WITH 0.1 WT. GENERAL ELECTRIC CO. EEN DENSITY: 40R. Grace, General Electric and Lniun Carbide Co:apa! lic,,~

Wang, D.N.-K.

2010-01-01T23:59:59.000Z

239

SCANNING ELECTRON MICROSCOPY AND PORE CASTING: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH  

SciTech Connect (OSTI)

Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

Thomas C. Chidsey Jr; David E. Eby; Louis H. Taylor

2003-12-01T23:59:59.000Z

240

Characterization and Theory of Electrocatalysts Based on Scanning Electrochemical Microscopy Screening Methods  

E-Print Network [OSTI]

.g., by water-in-oil micro- emulsion or template methods), prepare carbon-supported catalysts state...). 7. Carry out theoretical studies of the catalyst to improve models for how they work

Henkelman, Graeme

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy  

SciTech Connect (OSTI)

The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solving the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.

Gregerova, Miroslava, E-mail: mirka@sci.muni.cz [Masaryk University in Brno, Faculty of Science, Institute of Geological Sciences, Kotlarska 2, 611 37 Brno (Czech Republic); Vsiansky, Dalibor, E-mail: daliborv@centrum.cz [Research Institute of Building Materials, JSC., Hnevkovskeho 65, 617 00 Brno (Czech Republic)

2009-07-15T23:59:59.000Z

242

High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets  

E-Print Network [OSTI]

by direct exfoli- ation of crystalline graphite. The single-layer films were identified by using Raman layers. In the first method, sample layers are mechanically exfoliated from bulk graphite crystals-layer graphene films prepared by mechanical exfoliation and probed on an insulating substrate

243

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

E-Print Network [OSTI]

related to the total atomic absorption cross section, ? A (number. Tabulations of atomic absorption cross sections areC are the mass absorption coefficients and atomic masses for

Moffet, Ryan C.

2011-01-01T23:59:59.000Z

244

Scanning Electron Microscopy of Squid, Loligo peale;: Raw, Cooked, and Frozen Mantle  

E-Print Network [OSTI]

OTWELL and GEORGE G. GIDDINGS W. Steven Otwell is with the Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611. George G. Gid- dings is with the Fundacion Chile, Avda Santa, but cooking caused gross distortions in all mantle tissues. North Carolina, and cleaned for use (skin, head

245

Thermally driven visco-elastic measurement technique via spectral variations in scanning probe microscopy cantilevers  

E-Print Network [OSTI]

Understanding how fluids respond to various deformations is of great importance to a spectrum of disciplines ranging from bio-medical research on joint replacements to sealing technology in industrial machinery. Specifically, ...

Jones, Ryan Edward, 1974-

2004-01-01T23:59:59.000Z

246

Evaluation of drilled circuit boards using scanning white light interference microscopy  

E-Print Network [OSTI]

of panels drilled at one time. ~ Head Height (HD) - Height of the drill head in inches over the panel. Head height is indicative of the non-drilling, cool-off time out of the hole. A higher head height takes longer time between holes. . Table 4 shows... 7 Avera e Ra, R, and Rt values Bit Block HT SP CL HD PN R& R, R4 1 3 -1 1 -1 -1 1 45. 0395 3. 33275 2. 2925 -1 -1 1 1 -1 609535 5. 28325 3. 752 10 12 -1 1 -1 1 -1 37. 034 3. 5655 2. 7505 4. 14425 4. 3065 5. 827 1 1 1 60. 2075 1 1 1 -1 1 -1...

Nissen, Kristine Kay

2012-06-07T23:59:59.000Z

247

Scanning tunneling microscopy investigation of the TiO2 anatase ,,101... surface Wilhelm Hebenstreit,1  

E-Print Network [OSTI]

of tunneling sites in STM. Titanium dioxide (TiO2) is a versatile material that finds uses as a promoter. Fourfold-coordinated Ti atoms at step edges are preferred adsorption sites and allow the identification

Diebold, Ulrike

248

Interface circuits for quartz crystal sensors in scanning probe microscopy applications  

E-Print Network [OSTI]

interface based on an amplitude controlled oscillator and a phase-locked loop frequency demodulator, are of great interest. A self-excitation scheme with QCR is particularly promising and allows the development excitation modes in QCR based tech- niques: first, the mechanical excitation QCR is typically at- tached

La Rosa, Andres H.

249

Study of perineal patterns of four species of Meloidogyne (Nematoda:Heteroderoidea) using scanning electron microscopy  

E-Print Network [OSTI]

the perineal pattern, terms originated by Esser et al. (8) were utilized (Fig. 48). The pattern was divided into 4 zones and a tail area. Zone 1 is the rough'ty circular area in the center of the pattern, within which the peri ni um occurs . The perinium...

Khan, Zainab Najafali

2012-06-07T23:59:59.000Z

250

Investigation of furan on vicinal Pd(1 1 1) by scanning tunneling microscopy  

E-Print Network [OSTI]

fraction in liquids derived from coal and biomass, with methylated phe- nols and furanic rings constituting, including coal and biomass [1]. Oxygen-containing aromatic heterocompounds form the largest contaminant

Chiang, Shirley

251

Internal Image Potential in Semiconductors - Effect on Scanning-Tunneling-Microscopy  

E-Print Network [OSTI]

). J. Bono and R. H. Good, Surf. Sci. 151, 543 (1985). J. Mahanty and M. T. Michalewicz, J. Phys. C 19, 5005 (1986). H. Morawitz et al. , Surf. Sci. 180, 333 (1987). A. A. Lucas et al. , Phys. Rev. B 37, 10708 (1988). S. Ossicini and M. Bertoni..., Phys. Rev. B 35, 848 (1987). R. Garcia, Phys. Rev. B 42, 5476 (1990). i5B. N. J. Persson and A. Baratoff', Phys. Rev. B 38, 9616 (1988). i J. Bono and R. H. Good, Surf. Sci. 175, 415 (1986). i7M. Kleefstra and G. C. Herman, J. Appl. Phys. 51, 4923...

HUANG, ZH; WEIMER, M.; Allen, Roland E.

1993-01-01T23:59:59.000Z

252

Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride  

E-Print Network [OSTI]

Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy–momentum dispersion relations which cross at the Dirac point1, 2. However, ...

Xue, Jiamin

253

Atomic force and scanning tunneling microscopy analysis of palladium and silver nanophase materials  

E-Print Network [OSTI]

. INTRODUCTION Nanophase materials consolidated from atom clusters produced by the gas condensation method be made by gas condensation, not only at the labo- ratory scale but also in commercial production and properties of nano- phase materials assembled by consolidating gas-condensed atom clusters in vacuum have

Sattler, Klaus

254

Proximity heater for elevated temperature in situ vacuum scanning tunneling microscopy of metal surfaces  

E-Print Network [OSTI]

surfaces T. P. Pearl and S. J. Sibenera) The James Franck Institute and the Department of Chemistry, as well as thermally activated inter- facial chemistry. In this article, we will present a simple. The chamber is pumped by a 220 L/s D-I ion pump, cryoshroud and titanium sublimation pump as well as a 55 L

Sibener, Steven

255

Electron and Scanning Probe Microscopies | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJuneDocumenting the Life and DeathElectron and

256

Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy  

E-Print Network [OSTI]

vibrational noise. The extension of the technique to a vertical orientation required by many SPM applications stepper motors4 to more elegant approaches such as the "louse,"5 "Besocke," beetle,6 "Inchworm® ,"7

Gimzewski, James

257

Imaging an ionic liquid adlayer by scanning tunneling microscopy at the solid|vacuum interface  

E-Print Network [OSTI]

of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany 2 Institute of Particle Technology, Clausthal University of Technology, D-38678 Clausthal- Zellerfeld, Gemany Abstract The first imaging(pentafluoroethyl)trifluorophosphate ([Py1,4]FAP) was evaporated onto a clean Au(111) surface by a Knudsen-type evaporator and the surface

Pfeifer, Holger

258

Recent Advances in Atomic-Scale Spin-Polarized Scanning Tunneling Microscopy  

E-Print Network [OSTI]

, Faradayweg 4-6 D-14195 Berlin (Dahlem) Germany WALTER R. L. LAMBRECHT Department of Physics, Case Western of atomically clean magnetic surfaces. Several key findings have been obtained. First, both magnetic and non Nanometer scale science and technology has been an area of intense research and development activity within

259

Improvement of lateral resolution of scanning photo-induced impedance microscopy (SPIM)  

E-Print Network [OSTI]

in the gate metal into an area not covered by metal Influence of semiconductor donor concentration Ga Control Lock-In-Amp. Z X Y CD-ROM player optics Computer Control Output 1000 2000 3000 4000 1000 2000 3000

Moritz, Werner

260

Soft, entirely photoplastic probes for scanning force microscopy G. Genolet,a)  

E-Print Network [OSTI]

. The stiffness of a cantilever is given by its spring constant k Ewt3 /4l3 where w, t, and l denote the width with integrated tips made with a batch molding technique. II. DESCRIPTION AND FABRICATION OF PHOTOPLASTIC PROBES

Bielefeld, Universität

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design of a scanning Josephson junction microscope for submicron-resolution magnetic imaging  

SciTech Connect (OSTI)

We describe a magnetic field scanning instrument designed to extend the spatial resolution of scanning superconducting quantum interference device microscopy into the submicron regime. This instrument, the scanning Josephson junction microscope, scans a single Josephson junction across the surface of a sample, detecting the local magnetic field by the modulation of the junction critical current. By using a submicron junction and a scanning tunneling microscope feedback system to maintain close proximity to the surface, magnetic field sensitivity of 10 {mu}G with a spatial resolution of 0.3 {mu}m should be attainable, opening up new opportunities for imaging vortex configurations and core structure in superconductors and magnetic domains in magnetic materials. {copyright} {ital 1999 American Institute of Physics.}

Plourde, B.L.; Van Harlingen, D.J. [Department of Physics, Science and Technology Center for Superconductivity, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)] [Department of Physics, Science and Technology Center for Superconductivity, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

1999-11-01T23:59:59.000Z

262

Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience  

E-Print Network [OSTI]

A number of questions in systems biology such as understanding how dynamics of neuronal networks are related to brain function require the ability to capture the functional dynamics of large cellular populations at high speed. Recently, this has driven the development of a number of parallel and high speed imaging techniques such as light-sculpting microscopy, which has been used to capture neuronal dynamics at the whole brain and single cell level in small model organism. However, the broader applicability of light-sculpting microscopy is limited by the size of volumes for which high speed imaging can be obtained and scattering in brain tissue. Here, we present strategies for optimizing the present tradeoffs in light-sculpting microscopy. Various scanning modalities in light-sculpting microscopy are theoretically and experimentally evaluated, and strategies to maximize the obtainable volume speeds, and depth penetration in brain tissue using different laser systems are provided. Design-choices, important par...

Rupprecht, Peter; Groessl, Florian; Haubensak, Wulf E; Vaziri, Alipasha

2015-01-01T23:59:59.000Z

263

Analytical Electron Microscopy examination of uranium contamination at the DOE Fernald operation site  

SciTech Connect (OSTI)

Analytical Electron Microscopy (AEM) has been used to identify uranium-bearing phases present in contaminated soils from the DOE Fernald operation site. A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and AEM was used in isolating and characterizing uranium-rich regions of the contaminated soils. Soil samples were prepared for transmission electron microscopy (TEM) by ultramicrotomy using an embedding resin previously employed for aquatic colloids and biological samples. This preparation method allowed direct comparison between SEM and TEM images. At the macroscopic level much of the uranium appears to be associated with clays in the soils; however, electron beam analysis revealed that the uranium is present as discrete phases, including iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Only low levels of uranium were actually within the clay minerals. The distribution of uranium phases was inhomogeneous at the submicron level.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1993-02-01T23:59:59.000Z

264

Visual-servoing optical microscopy  

DOE Patents [OSTI]

The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

Callahan, Daniel E; Parvin, Bahram

2013-10-01T23:59:59.000Z

265

Visual-servoing optical microscopy  

DOE Patents [OSTI]

The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Mill Valley, CA)

2011-05-24T23:59:59.000Z

266

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

267

Characterization of multilayer nitride coatings by electron microscopy and modulus mapping  

SciTech Connect (OSTI)

This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: • Microstructure of a triple layer nitride coating studied at multiple length scales. • Phases identified by EDS, EBSD and SAED (TEM). • Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. • Modulus mapping identified moduli variation even in a nani-multilayer architecture.

Pemmasani, Sai Pramod [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Rajulapati, Koteswararao V. [School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Ramakrishna, M.; Valleti, Krishna [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Gundakaram, Ravi C., E-mail: ravi.gundakaram@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Joshi, Shrikant V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India)

2013-07-15T23:59:59.000Z

268

Near Field Magneto-Optical Microscope  

DOE Patents [OSTI]

A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

Vlasko-Vlasov, Vitalii K. (Downers Grove, IL); Welp, Ulrich (Lisle, IL); Crabtree, George W. (Chicago, IL)

2005-12-06T23:59:59.000Z

269

Convergence analysis in near-field imaging  

E-Print Network [OSTI]

Jul 25, 2014 ... inverse scattering problem is that of determining the nature of the ... A comprehensive review can be found in [7] on diffractive optics tech-.

Gang Bao

2014-07-24T23:59:59.000Z

270

Near-Field Magneto-Optical Microscope  

DOE Patents [OSTI]

A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.

2005-12-06T23:59:59.000Z

271

Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser  

SciTech Connect (OSTI)

Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

Phillips, Mark C.; Bernacki, Bruce E.

2012-12-26T23:59:59.000Z

272

Monte Carlo simulation study of scanning Auger electron images  

SciTech Connect (OSTI)

Simulation of contrast formation in Auger electron imaging of surfaces is helpful for analyzing scanning Auger microscopy/microanalysis (SAM) images. In this work, we have extended our previous Monte Carlo model and the simulation method for calculation of scanning electron microscopy (SEM) images to SAM images of complex structures. The essentials of the simulation method are as follows. (1) We use a constructive solid geometry modeling for a sample geometry, which is complex in elemental distribution, as well as in topographical configuration and a ray-tracing technique in the calculation procedure of electron flight steps that across the different element zones. The combination of the basic objects filled with elements, alloys, or compounds enables the simulation to a variety of sample geometries. (2) Sampled Auger signal electrons with a characteristic energy are generated in the simulation following an inner-shell ionization event, whose description is based on the Castani's inner-shell ionization cross section. This paper discusses in detail the features of simulated SAM images and of line scans for structured samples, i.e., the objects embedded in a matrix, under various experimental conditions (object size, location depth, beam energy, and the incident angle). Several effects are predicted and explained, such as the contrast reversion for nanoparticles in sizes of 10-60 nm, the contrast enhancement for particles made of different elements and wholly embedded in a matrix, and the artifact contrast due to nearby objects containing different elements. The simulated SAM images are also compared with the simulated SEM images of secondary electrons and of backscattered electrons. The results indicate that the Monte Carlo simulation can play an important role in quantitative SAM mapping.

Li, Y. G.; Ding, Z. J. [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Z. M. [Department of Astronomy and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2009-07-15T23:59:59.000Z

273

The development of optical microscopy techniques for the advancement of single-particle studies  

SciTech Connect (OSTI)

Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

Marchuk, Kyle

2013-05-15T23:59:59.000Z

274

ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

SciTech Connect (OSTI)

X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

2011-09-14T23:59:59.000Z

275

ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

276

ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Bharadwaj, Nitin; Widener, Kevin

277

ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

278

Three-dimensional scanning confocal laser microscope  

DOE Patents [OSTI]

A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

Anderson, R. Rox (Lexington, MA); Webb, Robert H. (Lincoln, MA); Rajadhyaksha, Milind (Charlestown, MA)

1999-01-01T23:59:59.000Z

279

Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of  

E-Print Network [OSTI]

Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

280

CARS polarized microscopy of three-dimensional director structures in liquid crystals  

E-Print Network [OSTI]

We demonstrate three-dimensional vibrational imaging of director structures in liquid crystals using coherent anti-Stokes Raman scattering (CARS) polarized microscopy. Spatial mapping of the structures is based on sensitivity of a polarized CARS signal to orientation of anisotropic molecules in liquid crystals. As an example, we study structures in a smectic material and demonstrate that single-scan CARS and two-photon fluorescence images of molecular orientation patterns are consistent with each other and with the structure model.

A. V. Kachynski; A. N. Kuzmin; P. N. Prasad; I. I. Smalyukh

2007-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fast scanning mode and its realization in a scanning acoustic microscope  

SciTech Connect (OSTI)

The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

Ju Bingfeng; Bai Xiaolong; Chen Jian [The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027 (China)

2012-03-15T23:59:59.000Z

282

Faculty Position in Materials Electron Microscopy  

E-Print Network [OSTI]

Faculty Position in Materials Electron Microscopy at the Ecole Polytechnique Fédérale de Lausanne in electron microscopy of materials within its Institute of Materials. We seek exceptional individuals who community. Top-level applications are invited from candidates at the cutting edge of electron microscopic

Candea, George

283

Multiphoton microscopy with near infrared contrast  

E-Print Network [OSTI]

Multiphoton microscopy with near infrared contrast agents Siavash Yazdanfar,a, * Chulmin Joo,a Chun limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared NIR fluorescent Engineers. DOI: 10.1117/1.3420209 Keywords: two-photon microscopy; ultrafast fiber lasers; near-infrared

Larson-Prior, Linda

284

Nonlinear Dark-Field Microscopy Hayk Harutyunyan,  

E-Print Network [OSTI]

/20/2010 Published on Web: 11/16/2010 FIGURE 1. Illustration of the nonlinear dark-field imaging method. Two incidentNonlinear Dark-Field Microscopy Hayk Harutyunyan, Stefano Palomba, Jan Renger, Romain Quidant Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large

Novotny, Lukas

285

Scanning ARM Cloud Radar Handbook  

SciTech Connect (OSTI)

The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

Widener, K; Bharadwaj, N; Johnson, K

2012-06-18T23:59:59.000Z

286

Photon tunnelling microscopy of polyethylene single crystals  

E-Print Network [OSTI]

Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

Srinivasarao, Mohan

287

Subwavelength optical microscopy in the far field  

E-Print Network [OSTI]

We present a procedure for subwavelength optical microscopy. The identical atoms are distributed on a plane and shined with a standing wave. We rotate the plane to different angles and record the resonant fluorescence spectra in the far field, from...

Sun, Qingqing; Al-Amri, M.; Scully, Marlan O.; Zubairy, M. Suhail.

2011-01-01T23:59:59.000Z

288

Imaging - Clearer brain scans ... | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Imaging - Clearer brain scans ... A clever signal noise reduction strategy developed by a team that includes Oak Ridge National Laboratory's Ben Lawrie could dramatically improve...

289

In Situ Photoelectron Emission Microscopy of a Thermally Induced...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

290

In-situ Transmission Electron Microscopy and Spectroscopy Studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and In-situ Transmission Electron Microscopy and Spectroscopy Studies of...

291

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

292

City of College Station's Thermographic Mobile Scan  

E-Print Network [OSTI]

During the first quarter of 1986, the City of College Station conducted a thermographic mobile scan of the entire city. A thermographic mobile scan is a process by which heat loss/heat gain data is accumulated by a vehicle traveling the city...

Shear, C. K.

1986-01-01T23:59:59.000Z

293

Scanning tunneling microscope assembly, reactor, and system  

DOE Patents [OSTI]

An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

2014-11-18T23:59:59.000Z

294

An atomic force microscopy-based method for line edge roughness measurement  

SciTech Connect (OSTI)

With the constant decrease of semiconductor device dimensions, line edge roughness (LER) becomes one of the most important sources of device variability and needs to be controlled below 2 nm for the future technological nodes of the semiconductor roadmap. LER control at the nanometer scale requires accurate measurements. We introduce a technique for LER measurement based upon the atomic force microscope (AFM). In this technique, the sample is tilted at about 45 Degree-Sign and feature sidewalls are scanned along their length with the AFM tip to obtain three-dimensional images. The small radius of curvature of the tip together with the low noise level of a laboratory AFM result in high resolution images. Half profiles and LER values on all the height of the sidewalls are extracted from the 3D images using a procedure that we developed. The influence of sample angle variations on the measurements is shown to be small. The technique is applied to the study of a full pattern transfer into a simplified gate stack. The images obtained are qualitatively consistent with cross-section scanning electron microscopy images and the average LER values agree with that obtained by critical dimension scanning electron microscopy. In addition to its high resolution, this technique presents several advantages such as the ability to image the foot of photoresist lines, complex multi-layer stacks regardless of the materials, and deep re-entrant profiles.

Fouchier, M.; Pargon, E.; Bardet, B. [CNRS/UJF-Grenoble1/CEA LTM, 17 avenue des Martyrs, 38054 Grenoble cedex 9 (France)

2013-03-14T23:59:59.000Z

295

Atom chip microscopy: A novel probe for strongly correlated materials  

SciTech Connect (OSTI)

Improved measurements of strongly correlated systems will enable the predicative design of the next generation of supermaterials. In this program, we are harnessing recent advances in the quantum manipulation of ultracold atomic gases to expand our ability to probe these technologically important materials in heretofore unexplored regions of temperature, resolution, and sensitivity parameter space. We are working to demonstrate the use of atom chips to enable single-shot, large area detection of magnetic flux at the 10^-7 flux quantum level and below. By harnessing the extreme sensitivity of atomic clocks and Bose-Einstein condensates (BECs) to external perturbations, the cryogenic atom chip technology developed here will provide a magnetic flux detection capability that surpasses other techniques---such as scanning SQUIDs---by a factor of 10--1000. We are testing the utility of this technique by using rubidium BECs to image the magnetic fields emanating from charge transport and magnetic domain percolation in strongly correlated materials as they undergo temperature-tuned metal--to--insulator phase transitions. Cryogenic atom chip microscopy introduces three very important features to the toolbox of high-resolution, strongly correlated material microscopy: simultaneous detection of magnetic and electric fields (down to the sub-single electron charge level); no invasive large magnetic fields or gradients; simultaneous micro- and macroscopic spatial resolution; freedom from 1/f flicker noise at low frequencies; and, perhaps most importantly, the complete decoupling of probe and sample temperatures. The first of these features will play an important role in studying the interplay between magnetic and electric domain structure. The last two are crucial for low frequency magnetic noise detection in, e.g., the cuprate pseudogap region and for precision measurements of transport in the high temperature, technologically relevant regime inaccessible to other techniques based on superconducting scanning probes. In periods 1--3 of this grant, which we now close at the University of Illinois at Urbana-Champaign and restart at Stanford University where our new lab is being built, we have demonstrated the ability to rapidly create Rb BECs and trap them within microns of a surface ina cryostat. Period 4 of this grant, to be performed at Stanford, will demonstrate the feasibility of using atom chips with a BEC to image transport features on a cryogenically cooled surface. Successful demonstration, in future funding cycles, will lead directly to the use of system for studies of transport in exotic and technologically relevant materials such as cuprate superconductors and topological insulators.

Lev, Benjamin L

2011-11-03T23:59:59.000Z

296

Potential applications of microscopy for steam coal  

SciTech Connect (OSTI)

Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

DeVanney, K.F.; Clarkson, R.J.

1995-08-01T23:59:59.000Z

297

Scanning the Technology Energy Infrastructure Defense Systems  

E-Print Network [OSTI]

systems and to develop de- fense plans to protect the network against extreme contingencies causedScanning the Technology Energy Infrastructure Defense Systems MASSOUD AMIN, SENIOR MEMBER, IEEE Energy infrastructure faced with deregulation and coupled with interdependencies with other critical

Amin, S. Massoud

298

Spatial resolution in vector potential photoelectron microscopy  

SciTech Connect (OSTI)

The experimental spatial resolution of vector potential photoelectron microscopy is found to be much higher than expected because of the cancellation of one of the expected contributions to the point spread function. We present a new calculation of the spatial resolution with support from finite element ray tracing, and experimental results.

Browning, R. [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)] [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)

2014-03-15T23:59:59.000Z

299

Scanning fluorescent microthermal imaging apparatus and method  

DOE Patents [OSTI]

A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

Barton, D.L.; Tangyunyong, P.

1998-01-06T23:59:59.000Z

300

Scanning fluorescent microthermal imaging apparatus and method  

DOE Patents [OSTI]

A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

Barton, Daniel L. (Albuquerque, NM); Tangyunyong, Paiboon (Albuquerque, NM)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering  

SciTech Connect (OSTI)

We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

2006-06-05T23:59:59.000Z

302

Instrument Series: Microscopy Helium Ion Microscope  

E-Print Network [OSTI]

the nature of nanostructure and chemical functionality Energy ­ studying surface/interface characteristics charge for insulating samples based on line or frame scans Small beam size ­ provides stable beam energy Novel features ­ offers EMSL users an additional 4.5-inch center port and two 2.75-inch ports for other

303

Single particle microscopy with nanometer resolution  

E-Print Network [OSTI]

We experimentally demonstrate nanoscopic transmission microscopy relying on a deterministic single particle source. This increases the signal-to-noise ratio with respect to conventional microscopy methods, which employ Poissonian particle sources. We use laser-cooled ions extracted from a Paul trap, and demonstrate remote imaging of transmissive objects with a resolution of 8.6 $\\pm$ 2.0nm and a minimum two-sample deviation of the beam position of 1.5nm. Detector dark counts can be suppressed by 6 orders of magnitudes through gating by the extraction event. The deterministic nature of our source enables an information-gain driven approach to imaging. We demonstrate this by performing efficient beam characterization based on a Bayes experiment design method.

Georg Jacob; Karin Groot-Berning; Sebastian Wolf; Stefan Ulm; Luc Couturier; Ulrich G. Poschinger; Ferdinand Schmidt-Kaler; Kilian Singer

2014-05-26T23:59:59.000Z

304

Dark Field Microscopy for Analytical Laboratory Courses  

SciTech Connect (OSTI)

An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

2014-06-10T23:59:59.000Z

305

affecting electronically scanned: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences Websites Summary: Middle Drive, Knoxville, TN 37996 The scanning electron microscope (SEM) has long been used-chamber scanning...

306

A scanning tunneling microscopy study of atomic-scale clustering in InAsP/InP heterostructures  

E-Print Network [OSTI]

Deer Creek Road, MS 26M-7, Palo Alto, CA 94304. that facilitates population inversion.7 Furthermore, the large conduction-band offset in this material system8 ( Ec

Yu, Edward T.

307

Adhesion of Rice Flour-Based Batter to Chicken Drumsticks Evaluated by Laser Scanning Confocal Microscopy and Texture Analysis  

E-Print Network [OSTI]

societies such as the United States (Shukla, 1993). The per capita consumption of battered and breaded foods consumption of rice and rice products, rice flour is a logical alternative for wheat flour in traditional of formulated batters and breadings is about 52 × 107 kg. The consumption of battered and breaded products

308

Exploration, Registration, and Analysis of High-Throughput 3D Microscopy Data from the Knife-Edge Scanning Microscope  

E-Print Network [OSTI]

connectivity analysis; (2) the size of the uncompressed KESM data exceeds a few terabytes and to compare and combine with other data sets from different imaging modalities, the KESM data must be registered to a standard coordinate space; and (3) quantitative...

Sung, Chul

2014-04-25T23:59:59.000Z

309

Thin Film Morphology Control by Mechanical, Electronic and Chemical Interactions: a Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study  

E-Print Network [OSTI]

of the formation of Anthraquinone self-assembled honeycombsizes are the same. Anthraquinone (AQ) molecules adsorb on

Sun, Dezheng

2012-01-01T23:59:59.000Z

310

An Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study of Pattern Formation and Molecule Ordering under a Variety of Interactions  

E-Print Network [OSTI]

CO Molecules inside an Anthraquinone comb Network on Cu(111)CO Molecules inside an Anthraquinone Honey- comb Network onformed by deposition of anthraquinone according to Ref. [42

Zhu, Yeming

2013-01-01T23:59:59.000Z

311

Scanning and storage of electrophoretic records  

DOE Patents [OSTI]

An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.

McKean, Ronald A. (Royal Oak, MI); Stiegman, Jeff (Ann Arbor, MI)

1990-01-01T23:59:59.000Z

312

Apparatus for controlling the scan width of a scanning laser beam  

DOE Patents [OSTI]

Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

Johnson, G.W.

1996-10-22T23:59:59.000Z

313

Apparatus for controlling the scan width of a scanning laser beam  

DOE Patents [OSTI]

Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

Johnson, Gary W. (Livermore, CA)

1996-01-01T23:59:59.000Z

314

Quantitative imaging of living cells by deep ultraviolet microscopy  

E-Print Network [OSTI]

Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

Zeskind, Benjamin J

2006-01-01T23:59:59.000Z

315

New Developments in Transmission Electron Microscopy for Nanotechnology**  

E-Print Network [OSTI]

New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

Wang, Zhong L.

316

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

317

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

318

Tomography and High-Resolution Electron Microscopy Study of Surfaces...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tomography and High-Resolution Electron Microscopy Study of Surfaces and Porosity in a Plate-Like ?-Al2O3. Tomography and High-Resolution Electron Microscopy Study of...

319

TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS  

E-Print Network [OSTI]

377 TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS H. STRUNK Max'importance croissante du durcissement de la solution solide. Abstract. 2014 Transmission electron microscopy (TEM Abstracts 7j66 - 7 I' 1. Introduction. - It is only some years ago that transmission electron microscopy

Boyer, Edmond

320

Chemically-selective imaging of brain structures with CARS microscopy  

E-Print Network [OSTI]

Chemically-selective imaging of brain structures with CARS microscopy Conor L. Evans1§ , Xiaoyin Xu anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy

Xie, Xiaoliang Sunney

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Department of Health I. Internal Scan  

E-Print Network [OSTI]

and cholesterol; and working with consumers, health plans and providers to improve the quality of care and other non- institutional settings. CURRRENT PLANS: The Division of Health care Financing has been takingDepartment of Health I. Internal Scan There are a variety of areas that will be impacted

Tipple, Brett

322

Student Charter Scan the QR-code  

E-Print Network [OSTI]

Student Charter 2013/2014 Scan the QR-code to obtain the online version. TechnischeUniversiteitDelft #12;#12;Student Charter 2013/2014 Delft University of Technology This is the English version of the Student Charter of Delft University of Technology, published on the TU Delft website: www

323

LIVE SCAN FINGERPRINTING PROCESS AND RESPONSIBILITIES  

E-Print Network [OSTI]

LIVE SCAN FINGERPRINTING PROCESS AND RESPONSIBILITIES HUMAN RESOURCES Workforce Planning | One of recruitment) to your Workforce Planning Analyst. Notify Finalists Department must notify finalists of the Live. Workforce Planning Analyst will make available at the Human Resources reception desk, the appropriate number

Eirinaki, Magdalini

324

Fast electron microscopy via compressive sensing  

DOE Patents [OSTI]

Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

2014-12-09T23:59:59.000Z

325

Electron Microscopy | Center for Functional Nanomaterials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the‹ See allElectrochemicalElectron Microscopy

326

NREL: Measurements and Characterization - Analytical Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResultsGeothermalAnalytical Microscopy

327

Imaging doped silicon test structures using low energy electron microscopy.  

SciTech Connect (OSTI)

This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

2010-01-01T23:59:59.000Z

328

Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy  

SciTech Connect (OSTI)

Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL) [Center for Nanophase Materials Sciences, ORNL

2010-10-19T23:59:59.000Z

329

Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source  

SciTech Connect (OSTI)

Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.

Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk [Photonic Systems Research Laboratory, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

2014-07-28T23:59:59.000Z

330

Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold  

SciTech Connect (OSTI)

This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n {+-} 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

Wong, Sze-Shun Season

1999-12-10T23:59:59.000Z

331

Improved methods for high resolution electron microscopy  

SciTech Connect (OSTI)

Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

Taylor, J.R.

1987-04-01T23:59:59.000Z

332

T3PS: Tool for Parallel Processing in Parameter Scans  

E-Print Network [OSTI]

T3PS is a program that can be used to quickly design and perform parameter scans while easily taking advantage of the multi-core architecture of current processors. It takes an easy to read and write parameter scan definition file format as input. Based on the parameter ranges and other options contained therein, it distributes the calculation of the parameter space over multiple processes and possibly computers. The derived data is saved in a plain text file format readable by most plotting software. The supported scanning strategies include: grid scan, random scan, Markov Chain Monte Carlo, numerical optimization. Several example parameter scans are shown and compared with results in the literature.

Maurer, Vinzenz

2015-01-01T23:59:59.000Z

333

Final Scientific/Technical Report for DE-FG02-07ER64500 Study of Lignocellulosic Material Degradation with CARS Microscopy  

SciTech Connect (OSTI)

The program of research undertaken by our Harvard group, in collaboration with Dr. Ding at the National Renewable Energy Laboratory (NREL) in Golden, CO, seeks to introduce, validate and apply a new analytical technique to study the conversion of lignocellulosic biomass into ethanol. This conversion process has been the subject of intense interest over the past few years because of its potential to provide a clean, renewable source of energy to meet increasing global demand. During the funding period, we have clearly demonstrated visualization of lignin and cellulose using intrinsic vibrational contrast with simulated Raman scattering (SRS) microscopy, developed at Harvard. Our approach offers high spatial resolution and time resolution that is sufficient to capture the kinetics of a pre?treatment process. This is reflected by the publications listed below, as well as the use of SRS microscopy at NREL as a routine analysis tool for research on lignocellulosic biomass. In our original proposal, we envisioned moving to near?field CARS imaging in order to perform chemical mapping at the nanoscale. However, given the dramatic progress made by our group in SRS imaging, we concentrated our efforts on using multi?component SRS (lignin, cellulose, lipid, water, protein, deuterated metabolites, etc.) to quantitatively understand the spatially dispersed kinetics in a variety of plant samples under a variety of conditions. In addition, we built a next generation laser system based on fiber laser technology that allowed rugged and portable instrumentation for SRS microscopy. We also pursued new imaging approaches to improve the acquisition speed of SRS imaging of lignocellulose without sacrificing signal?to?noise ratio. This allowed us to image larger volumes of tissue with higher time resolution to get a more comprehensive picture of the heterogeneity of this chemical process from the submicron up to the centimeter scale.

Xie, Xiaoliang Sunney; Ding, Shi-You

2013-09-30T23:59:59.000Z

334

NATIONAL CENTRE FOR SENSOR RESEARCH (NCSR) Research Engineer Fluorescence Microscopy  

E-Print Network [OSTI]

manuals, prepare standard operating procedures and ensure documentation is maintained. · Manage online projects. · Undertake the commissioning and maintenance of microscopy equipment. · Collate operations

Humphrys, Mark

335

Circular zig-zag scan video format  

DOE Patents [OSTI]

A circular, ziz-zag scan for use with vidicon tubes is disclosed. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal. 10 figs.

Peterson, C.G.; Simmons, C.M.

1992-06-09T23:59:59.000Z

336

ARM - Field Campaign - NSA Scanning Radar IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning Radar IOP ARM

337

Rapid Scan AERI Observations: Benefits and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323Program2Raftopoulos(MeVcm²/mg)Rapid Scan AERI

338

WorldScan | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodson County,Worden, Montana:WorldScan Jump to:

339

Sandia National Laboratories: ScanEagle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaled WindScanEagle

340

Scanning Probe AFM Compound Microscope | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon Home WaterScanning Probe AFM

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hetero-epitaxial EuO interfaces studied by analytic electron microscopy  

SciTech Connect (OSTI)

With nearly complete spin polarization, the ferromagnetic semiconductor europium monoxide could enable next-generation spintronic devices by providing efficient ohmic spin injection into silicon. Spin injection is greatly affected by the quality of the interface between the injector and silicon. Here, we use atomic-resolution scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy to directly image and chemically characterize a series of EuO|Si and EuO|YAlO{sub 3} interfaces fabricated using different growth conditions. We identify the presence of europium silicides and regions of disorder at the EuO|Si interfaces, imperfections that could significantly reduce spin injection efficiencies via spin-flip scattering.

Mundy, Julia A. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Hodash, Daniel; Melville, Alexander; Held, Rainer [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Mairoser, Thomas; Schmehl, Andreas [Zentrum für Elektronische Korrelationen und Magnetismus, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg (Germany); Muller, David A.; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Schlom, Darrell G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

2014-03-03T23:59:59.000Z

342

An electron microscopy study of the microstructure and microarchitecture of the Strombus gigas shell  

SciTech Connect (OSTI)

A scanning and transmission electron microscopy study is presented of the microstructure of the Strombus gigas shell. The hierarchical nature of this crossed-lamellar structure and the defect content of the mineral component are described. The mineral component consists of small single crystal grains of aragonite, the metastable orthorhombic polymorph of CaCO{sub 3}. The habit and morphology of the grains discussed here have not been determined previously. The observed habit and defect structure suggest that the organic matrix exerts a high degree of control over the crystal growth of the mineral phase and is responsible for the long range order in the microarhitecture. Electron beam heating of the mineral component leads to certain phase changes and these are discussed. 15 refs., 6 figs.

Rieke, P.C.; Laraia, V.J. (Pacific Northwest Lab., Richland, WA (USA)); Heuer, A.H. (Case Western Reserve Univ., Cleveland, OH (USA)); Aindow, M. (Ohio State Univ., Columbus, OH (USA))

1989-11-01T23:59:59.000Z

343

Scanning ARM Cloud Radars Part I: Operational Sampling Strategies  

SciTech Connect (OSTI)

Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A “cloud surveillance” scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

2014-03-01T23:59:59.000Z

344

Video Article Three-dimensional Optical-resolution Photoacoustic Microscopy  

E-Print Network [OSTI]

of optical microscopy optical-resolution photoacoustic microscopy (OR-PAM)1, where the optical irradiation © 2011 Journal of Visualized Experiments 1. Optical irradiation 1. Optical irradiation source: a diode for ultrasonic detection, which is aligned coaxially with the diffraction-limited optical irradiation. 3

Wang, Lihong

345

Photoacoustic microscopy of tyrosinase reporter gene in vivo  

E-Print Network [OSTI]

Photoacoustic microscopy of tyrosinase reporter gene in vivo Arie Krumholz Sarah J. Van microscopy of tyrosinase reporter gene in vivo Arie Krumholz,a Sarah J. VanVickle-Chavez,b Junjie Yao for tyrosinase, the primary enzyme responsible for expression of melanin in melanogenic cells. Optical res

Wang, Lihong

346

Slow positron annihilation spectroscopy and electron microscopy of electron beam evaporated cobalt and nickel silicides  

SciTech Connect (OSTI)

Metal silicide thin films on single-crystal silicon substrates are the subject of much research, due to their applications as electrical contacts and interconnects, diffusion barriers, low resistance gates, and field-assisted positron moderators, among others. Defects within the silicide layer and/or at the silicide/silicon interface are detrimental to device performance, since they can act as traps for charge carriers, as well as positrons. Pinholes penetrating the film are another detriment particularly for cobalt silicide films, since they allow electrons to permeate the film, rather than travel ballistically, in addition to greatly increasing surface area for recombination events. A series of epitaxial cobalt and nickel silicide thin films, deposited via electron-beam evaporation and annealed at various temperatures, have been grown on single-crystal silicon (111) substrates, in an effort to establish a relationship between deposition and processing parameters and film quality. The films have been analyzed by transmission and scanning electron microscopy, sputter depth profile Auger, and slow positron annihilation spectroscopy. The latter has been shown to both correlate and complement the traditional electron microscopy results.

Frost, R.L.; DeWald, A.B. (Georgia Institute of Technology, Atlanta, Georgia 30332 (USA)); Zaluzec, M.; Rigsbee, J.M. (University of Illinois, Urbana, Illinois 61801 (USA)); Nielsen, B.; Lynn, K.G. (Brookhaven National Laboratory, Upton, New York 11973 (USA))

1990-07-01T23:59:59.000Z

347

Near-field imaging of perfectly conducting grating surfaces  

E-Print Network [OSTI]

Nov 8, 2013 ... We consider the diffraction when a time-harmonic electro- magnetic ... ness and stability for the inverse problem have been studied by many ...

2013-11-06T23:59:59.000Z

348

Near-field imaging of perfectly conducting grating surfaces  

E-Print Network [OSTI]

We consider the diffraction when a time-harmonic electro- magnetic plane wave is ... ness and stability for the inverse problem have been studied by many ...

2013-11-06T23:59:59.000Z

349

Near field optical probe for critical dimension measurements  

DOE Patents [OSTI]

A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.

Stallard, B.R.; Kaushik, S.

1999-05-18T23:59:59.000Z

350

NEAR-FIELD IMAGING OF INFINITE ROUGH SURFACES 1 ...  

E-Print Network [OSTI]

cal exploration (e.g., oil and gas exploration), and medical imaging (e.g., breast cancer detection). However, there is a resolution limit to the sharpness of details

2013-09-03T23:59:59.000Z

351

Near-Field Focused Photoemission from Polystyrene Microspheres Studied with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007 (nextNauruNe utrino s o urce π

352

Near-Field Imaging of Interior Cavities 1 Introduction  

E-Print Network [OSTI]

[14] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release ... [26] F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering ...

2014-07-04T23:59:59.000Z

353

Lansce Wire Scanning Diagnostics Device Mechanical Design  

SciTech Connect (OSTI)

The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

354

Target-specific contrast agents for magnetic resonance microscopy  

E-Print Network [OSTI]

High-resolution ex vivo magnetic resonance microscopy (MRM) can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. The goal ...

Hepler Blackwell, Megan Leticia

2007-01-01T23:59:59.000Z

355

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys. Rev. Lett. 107, 033904 (2011). Web: http:prl.aps.orgpdfPRLv107i3e033904...

356

Optical fiber based ultrashort pulse multispectral nonlinear optical microscopy  

E-Print Network [OSTI]

Nonlinear optical microscopy (NLOM) utilizing femtosecond laser pulses is well suited for imaging living tissues. This work reports on the design and development of an optical fiber based multispectral NLOM developed around a laser generating...

Larson, Adam Michael

2009-05-15T23:59:59.000Z

357

Doppler optical coherence microscopy for studies of cochlear mechanics  

E-Print Network [OSTI]

The possibility of measuring subnanometer motions with micron scale spatial resolution in the intact mammalian cochlea using Doppler optical coherence microscopy (DOCM) is demonstrated. A novel DOCM system is described ...

Hong, Stanley S.

358

Estimating Geometric Dislocation Densities in Polycrystalline Materialsfrom Orientation Imaging Microscopy  

SciTech Connect (OSTI)

Herein we consider polycrystalline materials which can be taken as statistically homogeneous and whose grains can be adequately modeled as rigid-plastic. Our objective is to obtain, from orientation imaging microscopy (OIM), estimates of geometrically necessary dislocation (GND) densities.

Man, Chi-Sing [University of Kentucky; Gao, Xiang [University of Kentucky; Godefroy, Scott [University of Kentucky; Kenik, Edward A [ORNL

2010-01-01T23:59:59.000Z

359

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

360

Carmichael's Concise Review Microscopy is Only Skin Deep  

E-Print Network [OSTI]

Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

Heller, Eric

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.  

SciTech Connect (OSTI)

The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 %C2%B0C very little oxidation took place; at 850 %C2%B0C oxidation occurred after an induction period, while at 950 %C2%B0C oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 %C2%B0C rapid passivation of the surface of the aluminum foil occurred, while at 1250 %C2%B0C and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

Coker, Eric Nicholas

2013-10-01T23:59:59.000Z

362

Toward single cell traction microscopy within 3D collagen matrices  

SciTech Connect (OSTI)

Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

2013-10-01T23:59:59.000Z

363

Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible  

SciTech Connect (OSTI)

The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide computational models of the focusing of multi-GHz acoustic waves to the nanometer scale and innovated a series fabrication approaches for a new type of broadband high-frequency acoustic focusing microscope objective by applying methods on nanoimprinting and focused-ion beam techniques. In the following, the Phase I and Phase II instrument development is reported as Section II. The first segment of this section describes the POAM instrument and its development, while including much of the underlying ultrafast acoustic physics which is common to all of our work for this grant. Then, the science and engineering of the SOAM instrument is described, including the methods of fabricating new types of acoustic microlenses. The results section is followed by reports on publications (Section III), Participants (Section IV), and statement of full use of the allocated grant funds (Section V).

Nurmikko, Arto; Humphrey, Maris

2014-07-10T23:59:59.000Z

364

Rapid Scan Humidified Growth Cloud Condensation Nuclei Counter  

SciTech Connect (OSTI)

This research focused on enhancements to the streamwise thermal gradient cloud condensation nuclei counter to support the rapid scan mode and to enhance the capability for aerosol humidified growth measurements. The research identified the needs for flow system modifications and range of capability for operating the conventional instrument in the rapid scan and humidified growth modes.

Gregory L. Kok; Athanasios Nenes

2013-03-13T23:59:59.000Z

365

Fast 3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

Fast 3D Scanning for Biometric Identification and Verification June 2011 Authors Anselmo., & Chen, A. (2011). Fast 3D Scanning for Biometric Identification and Verification. (Prepared by RTI..................................................10 Summary and Findings for Integration of Imperceptible Structured Lighting and SIS's 3D Snapshot

McShea, Daniel W.

366

Joint estimation of attenuation and emission images from PET scans  

E-Print Network [OSTI]

Joint estimation of attenuation and emission images from PET scans Hakan Erdogan and Jeffrey A Motivation · Attenuation correction needed for quantitatively accurate PET · Post-injection transmission scans necessitated by whole-body PET Inject (in waiting room) Radioisotope Uptake 40-60 minutes 10

Fessler, Jeffrey A.

367

ProxiScan?: A Novel Camera for Imaging Prostate Cancer  

ScienceCinema (OSTI)

ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

Ralph James

2010-01-08T23:59:59.000Z

368

Automatic Radar Antenna Scan Type Recognition in Electronic  

E-Print Network [OSTI]

Automatic Radar Antenna Scan Type Recognition in Electronic Warfare BILLUR BARSHAN BAHAEDDIN ERAVCI in electronic warfare (EW). The stages of the algorithm are scan period estimation, preprocessing (normalization Continuous-wave EW Electronic warfare EM Electromagnetic LFM Linear frequency modulation DTW Dynamic time

Barshan, Billur

369

Saline absorption in calcium silicate brick observed by NMR scanning  

E-Print Network [OSTI]

Saline absorption in calcium silicate brick observed by NMR scanning L. Pel #3; , K. Kopinga #3 in calcium-silicate brick was investigated by nuclear magnetic resonance scanning. This method hasCl solution in a calcium silicate brick will be discussed. 2 Theory If gravity is neglected, the isothermal

Eindhoven, Technische Universiteit

370

E-Print Network 3.0 - advanced microscopy techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

microscopy techniques and their practice in relationship to materials structure characterization... of Microscopy", Edited by P.W. Hawkes and J.C.H. Spence, Springer, 2006 (An...

371

E-Print Network 3.0 - atomic force microscopy-based Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrochemical strain microscopy... -ion kinetics without changing the charging state of the battery. An atomic force microscopy tip in contact Source: Pint, Bruce A. -...

372

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source. Soft X-Ray Microscopy and Spectroscopy at the Molecular...

373

Swept source optical coherence microscopy for pathological assessment of cancerous tissues  

E-Print Network [OSTI]

Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable ...

Ahsen, Osman Oguz

2013-01-01T23:59:59.000Z

374

Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods  

SciTech Connect (OSTI)

Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ?52 ± 2 ?m deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m{sup ?1} K{sup ?1} and 26.7 ±1 W m{sup ?1} K{sup ?1}, respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10{sup ?6} m{sup 2} K W{sup ?1}. The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials.

Jensen, C. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France) [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States); Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France)] [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Ban, H. [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)] [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)

2013-10-07T23:59:59.000Z

375

Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy  

SciTech Connect (OSTI)

Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

2011-02-01T23:59:59.000Z

376

Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy  

SciTech Connect (OSTI)

Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

2011-01-01T23:59:59.000Z

377

3D rotational diffusion microrheology using 2D video microscopy  

E-Print Network [OSTI]

We propose a simple way to perform three-dimensional (3D) rotational microrheology using two-dimensional (2D) video microscopy. The 3D rotational brownian motion of micrometric wires in a viscous fluid is deduced from their projection on the focal plane of an optical microscope objective. The rotational diffusion coefficient of the wires of length between 1-100 \\mu m is extracted, as well as their diameter distribution in good agreement with electron microscopy measurements. This is a promising way to characterize soft visco-elastic materials, and probe the dimensions of anisotropic objects.

Rémy Colin; Minhao Yan; Loudjy Chevry; Jean-François Berret; Bérengère Abou

2012-01-05T23:59:59.000Z

378

Atom probe field ion microscopy and related topics: A bibliography 1992  

SciTech Connect (OSTI)

This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

Russell, K.F.; Godfrey, R.D.; Miller, M.K.

1993-12-01T23:59:59.000Z

379

Generative Models for Super-Resolution Single Molecule Microscopy Images of Biological Structures  

E-Print Network [OSTI]

an information bridge between super-resolution microscopy and structural biology by using generative models

Matsuda, Noboru

380

A Rapid Scanning Inspection Method for Insulated Ferromagnetic Tubing  

E-Print Network [OSTI]

long expanse of insulated piping. PA Incorporated has developed an electromagnetic inspection device which rapidly scans nearly 100 percent of an insulated pipeline (flanges and tees excluded) and provides a quantitative (2 percent) measurement...

Marsh, G. M.; Milewits, M.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dynamic study of tunable stiffness scanning microscope probe  

E-Print Network [OSTI]

This study examines the dynamic characteristics of the in-plane tunable stiffness scanning microscope probe for an atomic force microscope (AFM). The analysis was carried out using finite element analysis (FEA) methods for ...

Vega González, Myraida Angélica

2005-01-01T23:59:59.000Z

382

Multi-atlas segmentation in head and neck CT scans  

E-Print Network [OSTI]

We investigate automating the task of segmenting structures in head and neck CT scans, to minimize time spent on manual contouring of structures of interest. We focus on the brainstem and left and right parotids. To generate ...

Arbisser, Amelia M

2012-01-01T23:59:59.000Z

383

Surface skeleton generation based on 360-degree profile scan  

E-Print Network [OSTI]

A rapid prototyping method is invented, which works on a specific data structure produced by an optical metrology technique: 360-degree surface profile scanning. A computer algorithm takes an object profile data, restructure ...

Chen, Lujie

384

Observing Warm Clouds in 3D Using ARM Scanning Cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

385

Achieving sub-10-nm resolution using scanning electron beam lithography  

E-Print Network [OSTI]

Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications have driven demand for ...

Cord, Bryan M. (Bryan Michael), 1980-

2009-01-01T23:59:59.000Z

386

LINEAR SCANNING METHOD BASED ON THE SAFT COARRAY  

SciTech Connect (OSTI)

This work presents a method to obtain B-scan images based on linear array scanning and 2R-SAFT. Using this technique some advantages are obtained: the ultrasonic system is very simple; it avoids the grating lobes formation, characteristic in conventional SAFT; and subaperture size and focussing lens (to compensate emission-reception) can be adapted dynamically to every image point. The proposed method has been experimentally tested in the inspection of CFRP samples.

Martin, C. J.; Martinez-Graullera, O.; Romero, D.; Ullate, L. G. [Instituto de Automatica Industrial-CSIC, Carretera de Campo Real, km 0.200, La Poveda, Arganda del Rey, Madrid, E-28500 (Spain); Higuti, R. T. [UNESP-Universidade Estadual Paulista, Dep. Electrical Engineering, Av. Brasil, 56, 15385-000, Ilha Solteira, SP (Brazil)

2010-02-22T23:59:59.000Z

387

Ecological and agricultural applications of synchrotron IR microscopy  

E-Print Network [OSTI]

Ecological and agricultural applications of synchrotron IR microscopy T.K. Raab a,*, J.P. Vogel b factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes to pro- liferate when environmental conditions and re- sources are optimum. Cellulose, an abundant

388

Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy  

SciTech Connect (OSTI)

We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

2007-11-01T23:59:59.000Z

389

Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy  

SciTech Connect (OSTI)

This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

2014-04-15T23:59:59.000Z

390

XRD, Electron Microscopy and Vibrational Spectroscopy Characterization of Simulated SB6 HLW Glasses - 13028  

SciTech Connect (OSTI)

Sample glasses have been made using SB6 high level waste (HLW) simulant (high in both Al and Fe) with 12 different frit compositions at a constant waste loading of 36 wt.%. As follows from X-ray diffraction (XRD) and optical and scanning electron microscopy (SEM) data, all the samples are composed of primarily glass and minor concentration of spinel phases which form both isometric grains and fine cubic (?1 ?m) crystals. Infrared spectroscopy (IR) spectra of all the glasses within the range of 400-1600 cm{sup -1} consist of the bands due to stretching and bending modes in silicon-oxygen, boron-oxygen, aluminum-oxygen and iron-oxygen structural groups. Raman spectra showed that for the spectra of all the glasses within the range of 850-1200 cm{sup -1} the best fit is achieved by suggestion of overlapping of three major components with maxima at 911-936 cm{sup -1}, 988-996 cm{sup -1} and 1020-1045 cm{sup -1}. The structural network is primarily composed of metasilicate chains and rings with embedded AlO{sub 4} and FeO{sub 4} tetrahedra. Major BO{sub 4} tetrahedra and BO{sub 3} triangles form complex borate units and are present as separate constituents. (authors)

Stefanovsky, S.V. [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation) [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation); Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Moscow 119991 (Russian Federation); Nikonov, B.S.; Omelianenko, B.I. [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetniy lane 35, Moscow 100117 (Russian Federation)] [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetniy lane 35, Moscow 100117 (Russian Federation); Choi, A.; Marra, J.C. [Savannah River National Laboratory, Building 773A, Aiken 29808 (United States)] [Savannah River National Laboratory, Building 773A, Aiken 29808 (United States)

2013-07-01T23:59:59.000Z

391

Analysis of confocal microscopy under ultrashort light-pulse illumination  

SciTech Connect (OSTI)

The resolution of confocal laser scanning microscopes is analyzed if they are used in measurements that are to combine high spatial and high temporal resoltuion. A generalized Fourier-optical treatment is developed in which the system characteristics contain all necessary information regarding the optical arrangement and the illuminating light pulses. Coherent and incoherent imaging are considered in detail. 10 refs., 8 figs.

Kempe, M.; Rudolph, W. (Univ. of New Mexico, Albuquerque (United States))

1993-02-01T23:59:59.000Z

392

The StarScan plate measuring machine: overview and calibrations  

E-Print Network [OSTI]

The StarScan machine at the U.S. Naval Observatory (USNO) completed measuring photographic astrograph plates to allow determination of proper motions for the USNO CCD Astrograph Catalog (UCAC) program. All applicable 1940 AGK2 plates, about 2200 Hamburg Zone Astrograph plates, 900 Black Birch (USNO Twin Astrograph) plates, and 300 Lick Astrograph plates have been measured. StarScan comprises of a CCD camera, telecentric lens, air-bearing granite table, stepper motor screws, and Heidenhain scales to operate in a step-stare mode. The repeatability of StarScan measures is about 0.2 micrometer. The CCD mapping as well as the global table coordinate system has been calibrated using a special dot calibration plate and the overall accuracy of StarScan x,y data is derived to be 0.5 micrometer. Application to real photographic plate data shows that position information of at least 0.65 micrometer accuracy can be extracted from course grain 103a-type emulsion astrometric plates. Transformations between "direct" and "reverse" measures of fine grain emulsion plate measures are obtained on the 0.3 micrometer level per well exposed stellar image and coordinate, which is at the limit of the StarScan machine.

Norbert Zacharias; Lars Winter; Ellis Holdenried; Jean-Pierre de Cuyper; Ted Rafferty; Gary Wycoff

2008-06-02T23:59:59.000Z

393

E-Print Network 3.0 - analytical scanning electron Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscope Philips CM20 Analytical Scanning... during formation of the carbide particles. 12;Philips CM20 Analytical Scanning Transmission Electron... at SCSAM ...

394

E-Print Network 3.0 - adaptive optics scanning Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: adaptive optics scanning Page: << < 1 2 3 4 5 > >> 1 Biomedical Imaging with the Adaptive Scanning...

395

Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase  

SciTech Connect (OSTI)

The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2?} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2?} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.

Taoufyq, A. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache (France); Société CESIGMA—Signals and Systems, 1576 Chemin de La Planquette, F 83 130 LA GARDE (France); Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Benlhachemi, A.; Ezahri, M. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); and others

2013-07-15T23:59:59.000Z

396

Microfabricated high-bandpass foucault aperture for electron microscopy  

DOE Patents [OSTI]

A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

Glaeser, Robert; Cambie, Rossana; Jin, Jian

2014-08-26T23:59:59.000Z

397

Biological imaging by soft x-ray diffraction microscopy  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

2005-10-25T23:59:59.000Z

398

A scanning electron microscopy study of the effects of starvation-feeding schedules on the development of the statoliths of Fundulus heteroclitus L.  

E-Print Network [OSTI]

sensory rudiment becomes hollowed-out secondarily to form the otic vesicle, the rudiment of the labyrinth (Wilson and Mattocks 1897; Balinsky 1965). In mummichogs the otic vesicles appear 66 hours after fertilization (Armstrong and Child 1965; New 1966... 1969). Passage of hydrogen ions through the chorion accelerates with increasing salinity. The pH of the subchorionic fluid of mummichog eggs changes to approxi- mate that of the environment so changes in pH may affect development (Armstrong 1927...

Leitner, Roxanne

1978-01-01T23:59:59.000Z

399

Influence of Surface Preparation on Scanning Kelvin Probe Microscopy and Electron Backscatter Diffraction Analysis of Cross Sections of CdTe/CdS Solar Cells: Preprint  

SciTech Connect (OSTI)

In this work we investigated different methods to prepare cross sections of CdTe/CdS solar cells for EBSD and SKPM analyses. We observed that procedures used to prepare surfaces for EBSD are not suitable to prepare cross sections, and we were able to develop a process using polishing and ion-beam milling. This process resulted in very good results and allowed us to reveal important aspects of the cross section of the CdTe film. For SKPM, polishing and a light ion-beam milling resulted in cross sections that provided good data. We were able to observe the depletion region on the CdTe film and the p-n junction as well as the interdiffusion layer between CdTe and CdS. However, preparing good-quality cross sections for SKPM is not a reproducible process, and artifacts are often observed.

Moutinho, H. R.; Dhere, R. G.; Jiang, C. S.; Al-Jassim, M. M.

2011-06-01T23:59:59.000Z

400

Investigating the relationship between the superconducting and pseudogap states of the high-temperature superconductor Bi-2201 using scanning tunneling microscopy  

E-Print Network [OSTI]

There is considerable controversy regarding the nature of the relationship between the superconducting and pseudogap states of high-temperature superconductors. Although there exist a large number of theories regarding ...

Boyer, Michael Christopher

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Atomic-Scale Spin-Polarized Scanning Tunneling Microscopy Applied To Mn3N2(010) Haiqiang Yang and Arthur R. Smith  

E-Print Network [OSTI]

source effusion cell for Mn and a rf plasma source for N [5,6]. All STM imaging is performed at 300 K-centered tetragonal (fct) rock-salt type struc- ture. The bulk magnetic moments of the Mn atoms are FM within (001

402

Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy  

SciTech Connect (OSTI)

Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H2, O2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8, results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.

McIntyre, B.J.

1994-05-01T23:59:59.000Z

403

Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip  

E-Print Network [OSTI]

materials in the Josephson junction where, Ic is theYBCO) single crystal Josephson junctions can be explained byfor Pb/I/Pb STM Josephson junctions near zero bias with

Kimura, H.

2010-01-01T23:59:59.000Z

404

Probing the Superconducting Order Parameter of High-Tc Superconductor Bi2Sr2CaCu2O8+? by Scanning Josephson Tunneling Microscopy  

E-Print Network [OSTI]

Turner, Principles of Superconductive Devices and Circuits (P. G. de Gennes, Superconductivity , edited by R. D. Parks (Tinkham, Introduction to Superconductivity (McGraw-Hill, New

Kimura, Hikari

2009-01-01T23:59:59.000Z

405

Structure, defects, and impurities at the rutile TiO2(011)-(2 1) surface: A scanning tunneling microscopy study  

E-Print Network [OSTI]

Available online 21 July 2006 Abstract The titanium dioxide rutile (011) (equivalent to (101)) surface boundaries 1. Introduction Titanium dioxide is a versatile material that finds appli- cations in a wide range) structure are active adsorption sites. Segregation of calcium impurities from the bulk results in an ordered

Diebold, Ulrike

406

Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy  

DOE Patents [OSTI]

Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

Thomas, Clarence E. (Knoxville, TN); Baylor, Larry R. (Farragut, TN); Voelkl, Edgar (Oak Ridge, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Whealton, John H. (Oak Ridge, TN); Whitson, John C. (Clinton, TN); Wilgen, John B. (Oak Ridge, TN)

2002-12-24T23:59:59.000Z

407

Intrinsic current-voltage properties of nanowires with four-probe scanning tunneling microscopy: A conductance transition of ZnO nanowire  

E-Print Network [OSTI]

strain. The ZnO-nanowire samples used in our experiments were synthesized via reduction and oxidation of ZnS powder13 and dispersed on a silicon wafer coated with a 500-nm-thick silicon dioxide layer as insulator. The STM tips were made from a tungsten or gold wire using the stan- dard preparation proce

Liu, Feng

408

Vacancy migration, adatom motion, a.nd atomic bistability on the GaAs(110) surface studied by scanning tunneling microscopy  

E-Print Network [OSTI]

Vacancy migration, adatom motion, a.nd atomic bistability on the GaAs(110) surface studied temperature are reported. The slow dynamic behavior of vacancies and As adatoms can be resolved within a time scale of about one minute, The vacancies and As adatoms are observed to move preferably along the [110

409

Probing the Superconducting Order Parameter of High-Tc Superconductor Bi2Sr2CaCu2O8+? by Scanning Josephson Tunneling Microscopy  

E-Print Network [OSTI]

for the high- T C superconducting cuprates. Bibliography [Microscope …………………. 15 2-2 Superconducting STM tip and S/I/SProbing the Superconducting Order Parameter of High-T C

Kimura, Hikari

2009-01-01T23:59:59.000Z

410

Investigation of the ligand shells of homo-ligand and mixed-ligand monolayer protected metal nanoparticles : a scanning tunneling microscopy study  

E-Print Network [OSTI]

Monolayer Protected Metal Nanoparticles have recently found widespread use in and are the focus of intensive study in many areas of scientific research ranging from biology to physics to medicine. Consisting of a nanoscale, ...

Jackson, Alicia M

2007-01-01T23:59:59.000Z

411

Atomic scale investigations of the thermal and electron induced chemistry of small molecules on platinum(111) as revealed by scanning tunneling microscopy  

SciTech Connect (OSTI)

The work presented here can be divided into two parts: 1) an experimental and analysis section dealing with the investigation of small molecules such as methyl bromide, carbon dioxide, diatomic nitrogen, methane and methane?s photochemical derivative methyl radical adsorbed onto the Pt(111) surface, and 2) A detailed explanation of the current STM and chamber, with included designs and detailed instructions for operation and maintenance of both the STM and chamber. The investigations of the methyl bromide molecule show interesting dipole-dipole interactions on the Pt(111) surface. With a (6 x 3) lattice being described as the full monolayer that was created by overdosing and annealing to 104 K. The (6 x 3) lattice is shown to occupy top sites and three fold hollow sites on the Pt(111) surface giving rise to a very sharp and symmetrically split ?2 RAIRS mode, and the absence of the ?5 mode in RAIRS is indicative that the molecules are all aligned with their C-Br bond parallel to the surface normal. Additional sub-monolayer structures were observed that had components that were not aligned with the surface normal. The submonolayer lattices ranging from a structured 0.12 ML to a random coverages estimated at 0.20 ML, to a shift in the (6 x 3) lattice resulting in a high local line coverage of 0.33 ML. Analysis of the CO2 molecules adsorbed onto the Pt(111) surface shows that there is a preferred high temperature dosing that results in a thermodynamically stable system of a (3 x 3) lattice consisting of both horizontal and vertical molecules. The coverage of the (3 x 3) lattice of vertical molecules is 0.11 ML which can be assigned to the RAIRS peak of 2287 cm-1. The vertical molecules are seen to occupy the hollow sites within the horizontal (3 x 3) lattice. The low temperature dosage of multilayers and annealing, to 78 K, show that the (3 x 3) lattice is compressed into a lattice of (5 x 3) with some of the molecules in the unit cell that are incommensurate with the Pt(111) lattice. However, isolated unit cells of the horizontal (3 x 3) lattices remain after the compression which allows a single vertical CO2 molecule to occupy the hollow site resulting in the characteristic 2277 cm-1 peak in RAIRS. The resulting local coverage of the (5 x 3) lattice is calculated to be 0.40 ML. Methane was found to adsorb onto the Pt(111) lattice in a (?3 x ?3) configuration yielding a coverage of 0.33 ML in perfect agreement with previous coverage assignments. With a full coverage of methane adsorbed onto the crystal surface an ArF excimer laser was used to photodissociate the molecules to create methyl radicals that could be imaged by STM. After photochemical deposition of methyl radicals and annealing the surface to 175 K, the STM was used to image the surface. The methyl radical were estimated to arrange in a (?3 by ?3) lattice same as the methane, and imaged as roughly 0.4 ? high protrusions from the surface with a diameter of 5.5 ?. The last molecule that was studied, was the adsorption of diatomic nitrogen on the Pt(111) surface at a temperature of 25 K. Due to the very low desorption temperature of N2 (i.e. 46 K) and the relatively high temperature of the crystal, only chemisorbed molecules were able to be resolved. The results confirm that diatomic nitrogen binds to the top side of the Pt(111) step edge in agreement with Yates RAIRS studies, and calculations by Norskov. However, there was observed a stable cluster of molecules bound to the lower side of the step edge in a (2 x 2) lattice configuration which has previously unknown before these images and is the most likely source of the photoactivity of nitrogen molecules on the crystal surface. It is the hopes of this author that the experiments described within the dissertation lead to new and better understanding of the role that the microscopic scale structures of adsorbates on the surface play in catalysis. Also that the general information of STM design, construction and tip fabrication will be useful to all students who follow me in working

Schwendemann, Todd Charles

2006-01-01T23:59:59.000Z

412

Combining In-Situ Buffer-Layer-Assisted-Growth with Scanning Probe Microscopy for Formation and Study of Supported Model Catalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structure researchinREVISIONApril »STM

413

Scanning optical microscope with long working distance objective  

DOE Patents [OSTI]

A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

Cloutier, Sylvain G. (Newark, DE)

2010-10-19T23:59:59.000Z

414

Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).  

DOE Patents [OSTI]

The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

Ishikawa, Muriel Y. (Livermore, CA); Wood, Lowell L. (Simi Valley, CA); Campbell, E. Michael (Danveille, CA); Stuart, Brent C. (Livermore, CA); Perry, Michael D. (Livermore, CA)

2002-01-01T23:59:59.000Z

415

Single beam Fourier transform digital holographic quantitative phase microscopy  

SciTech Connect (OSTI)

Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India)] [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany)] [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India)] [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)] [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

2014-03-10T23:59:59.000Z

416

Detection of bone disease in dogs by radioisotope scanning  

E-Print Network [OSTI]

DETECTION OZ BONE DISEASE IN DOGS BY RADIOISOTOPE SCANNING A Thesis EARL LOUIS MORRIS Submitted to the Graduate College of Texas A8cM University in partial fulfillment of' the requirement for the degree of MASTER OP SCIENCE May 1971 Major...' Bone Disease in Dogs by Radioisotope Scanning. (May 1971) Earl Louis Morris, B. S. , Texas Ad:I University; B. S. , Texas MM University; D. V. M. , Texas A8cM University; Directed by: Dan Eightower, D. V. M. The use of radioisotope scintiscanning...

Morris, Earl Louis

1971-01-01T23:59:59.000Z

417

CMOS ROM arrays programmable by laser beam scanning  

E-Print Network [OSTI]

capability of' a scanned diode is inferior to an unblown fuse in a bipolar PROM or a floating gate transistor in EPROM. Assume that diodes are designed to have 10 urn*10 um junction area and leakage current of a scanned diode is 0. 24 pA Figure 2). V CC... the data in the TI CMOS layout and. design rules [15]. Assume the Junction area is 100 um and the gate area is 28 2 um . Then, the Junction capacitance is 6. 8 fF and the gate 2 capacitance is 10 fF. So, i'or the 8 V step input, the ini- t' al gate...

Lee, Jongjune

2012-06-07T23:59:59.000Z

418

Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis  

SciTech Connect (OSTI)

Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in the other, tumor was identified but the site could not be specified. The radionuclide lung scan is a technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

Bates, S.E.; Tranum, B.L.

1982-07-15T23:59:59.000Z

419

Atom probe field ion microscopy and related topics: A bibliography 1991  

SciTech Connect (OSTI)

This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory.

Russell, K.F.; Miller, M.K.

1993-01-01T23:59:59.000Z

420

High throughput 3D optical microscopy : from image cytometry to endomicroscopy  

E-Print Network [OSTI]

Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

Choi, Heejin

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications  

E-Print Network [OSTI]

Spectrally encoded confocal microscopy (SECM) is a technique that facilitates the incorporation of confocal microscopy into small, portable clinical instruments. This would allow in vivo evaluation of cellular and sub-cellular ...

Boudoux, Caroline

2007-01-01T23:59:59.000Z

422

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00...

423

100% container scanning : security policy implications for global supply chains  

E-Print Network [OSTI]

On August 3, 2007, President George Bush signed into law HR1 the "Implementing Recommendations of the 9/11 Commission Act of 2007." The 9/11 Act requires 100% scanning of US-bound containers at foreign seaports by 2012 ...

Bennett, Allison C. (Allison Christine)

2008-01-01T23:59:59.000Z

424

Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes  

E-Print Network [OSTI]

Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes B. J. LeRoy,a) S. G-wall carbon nanotubes that are freely suspended over a trench. The nanotubes were grown by chemical vapor on the freestanding portions of the nanotubes. Spatially resolved spectroscopy on the suspended portion of both

Dekker, Cees

425

ProScan IITM 1 Table of Contents  

E-Print Network [OSTI]

an Existing Stage 19 4.2 Fitting the ProScan Stage 19 4.3 Cable Connections 20 4.4 USB Operation 20 4.5 Focus only to designated power sources as marked on the product. · Make sure the electrical cord is located manufacturers overstate thei

Gardel, Margaret

426

3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

June 2010 3D Scanning for Biometric Identification and Verification Project Leads Anselmo Lastra visibility, cannot be controlled. A relatively new biometric, 3D facial recognition, holds great promise performance using 3D shape and texture matched that of the much more mature technologies of high

McShea, Daniel W.

427

International Scan on Pedestrian and Bicyclist Safety and Mobility  

E-Print Network [OSTI]

­ Differences in culture and behavior, but these can adapt over time ­ Typical safety evaluations mayInternational Scan on Pedestrian and Bicyclist Safety and Mobility: May 2009 Sponsored by Federal Pedestrian and Bicyclist Safety and Mobility ­ Policy ­ Engineering ­ Education ­ Enforcement · Safe Routes

Bertini, Robert L.

428

Towards automatic cell identi cation in DIC microscopy , C.A. Glasbey2y  

E-Print Network [OSTI]

1998. Journal of Microscopy, 192, 186-193. #12;a b c Figure 1: DIC microscope images: a Chlorella algal

Stone, J. V.

429

Invited Review Article: Advanced light microscopy for biological space research  

SciTech Connect (OSTI)

As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

2014-10-15T23:59:59.000Z

430

Confocal Microscopy for Modeling Electron Microbeam Irradiation of Skin  

SciTech Connect (OSTI)

For radiation exposures employing targeted sources such as particle microbeams, the deposition of energy and dose will depend on the spatial heterogeneity of the spample. Although cell structural variations are relatively minor for two-dimensional cell cultures, they can vary significantly for fully differential tissues. Employing high-resolution confocal microscopy, we have determined the spatial distribution, size, and shape of epidermal kerantinocyte nuclei for the full-thickness EpiDerm skin model (MatTek, Ashland, VA). Application of these data to claculate the microdosimetry and microdistribution of energy deposition by an electron microbeam is discussed.

Miller, John H.; Chrisler, William B.; Wang, Xihai; Sowa, Marianne B.

2011-08-01T23:59:59.000Z

431

DeepView: A collaborative framework for distributed microscopy  

SciTech Connect (OSTI)

This paper outlines the motivation, requirements, and architecture of a collaborative framework for distributed virtual microscopy. In this context, the requirements are specified in terms of (1) functionality, (2) scalability, (3) interactivity, and (4) safety and security. Functionality refers to what and how an instrument does something. Scalability refers to the number of instruments, vendor-specific desktop workstations, analysis programs, and collaborators that can be accessed. Interactivity refers to how well the system can be steered either for static or dynamic experiments. Safety and security refers to safe operation of an instrument coupled with user authentication, privacy, and integrity of data communication. To meet these requirements, we introduce three types of services in the architecture: Instrument Services (IS), Exchange Services (ES), and Computational Services (CS). These services may reside on any host in the distributed system. The IS provide an abstraction for manipulating different types of microscopes; the ES provide common services that are required between different resources; and the CS provide analytical capabilities for data analysis and simulation. These services are brought together through CORBA and its enabling services, e.g., Event Services, Time Services, Naming Services, and Security Services. Two unique applications have been introduced into the CS for analyzing scientific images either for instrument control or recovery of a model for objects of interest. These include: in-situ electron microscopy and recovery of 3D shape from holographic microscopy. The first application provides a near real-time processing of the video-stream for on-line quantitative analysis and the use of that information for closed-loop servo control. The second application reconstructs a 3D representation of an inclusion (a crystal structure in a matrix) from multiple views through holographic electron microscopy. These application require steering external stimuli or computational parameters for a particular result. In a sense, ''computational instruments'' (symmetric multiprocessors) interact closely with data generated from ''experimental instruments'' (unique microscopes) to conduct new experiments and bring new functionalities to these instruments. Both of these features exploit high-performance computing and low-latency networks to bring novel functionalities to unique scientific imaging instruments.

Parvin, B.; Taylor, J.; Cong, G.

1998-08-10T23:59:59.000Z

432

Entanglement-assisted electron microscopy based on a flux qubit  

SciTech Connect (OSTI)

A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

Okamoto, Hiroshi, E-mail: okamoto@akita-pu.ac.jp [Department of Electronics and Information Systems, Akita Prefectural University, Yurihonjo 015-0055 (Japan); Nagatani, Yukinori [National Institute for Physiological Sciences, Okazaki 444-8787 (Japan)

2014-02-10T23:59:59.000Z

433

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SREL Reprints BackRecord-Setting Microscopy

434

Microscopy with Slow Electrons: From LEEM to XPEEM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichaelGE1 Micropulse Lidar TheMicroscopy

435

Combined Application of QEM-SEM and Hard X-ray Microscopy to Determine Mineralogical Associations and Chemcial Speciation of Trace Metals  

SciTech Connect (OSTI)

We describe the application of quantitative evaluation of mineralogy by scanning electron microscopy in combination with techniques commonly available at hard X-ray microprobes to define the mineralogical environment of a bauxite residue core segment with the more specific aim of determining the speciation of trace metals (e.g., Ti, V, Cr, and Mn) within the mineral matrix. Successful trace metal speciation in heterogeneous matrices, such as those encountered in soils or mineral residues, relies on a combination of techniques including spectroscopy, microscopy, diffraction, and wet chemical and physical experiments. Of substantial interest is the ability to define the mineralogy of a sample to infer redox behavior, pH buffering, and mineral-water interfaces that are likely to interact with trace metals through adsorption, coprecipitation, dissolution, or electron transfer reactions. Quantitative evaluation of mineralogy by scanning electron microscopy coupled with micro-focused X-ray diffraction, micro-X-ray fluorescence, and micro-X-ray absorption near edge structure (mXANES) spectroscopy provided detailed insights into the composition of mineral assemblages and their effect on trace metal speciation during this investigation. In the sample investigated, titanium occurs as poorly ordered ilmenite, as rutile, and is substituted in iron oxides. Manganese's spatial correlation to Ti is closely linked to ilmenite, where it appears to substitute for Fe and Ti in the ilmenite structure based on its mXANES signature. Vanadium is associated with ilmenite and goethite but always assumes the +4 oxidation state, whereas chromium is predominantly in the +3 oxidation state and solely associated with iron oxides (goethite and hematite) and appears to substitute for Fe in the goethite structure.

M Grafe; M Landers; R Tappero; P Austin; B Gan; A Grabsch; C Klauber

2011-12-31T23:59:59.000Z

436

Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy  

SciTech Connect (OSTI)

Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to an external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].

Unocic, Raymond R [ORNL; Baggetto, Loic [ORNL; Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL; More, Karren Leslie [ORNL

2012-01-01T23:59:59.000Z

437

Micron-Scale Differential Scanning Calorimeter on a Chip  

DOE Patents [OSTI]

A differential scanning microcalorimeter produced on a silicon chip enables microscopic scanning calorimetry measurements of small samples and thin films. The chip may be fabricated using standard CMOS processes. The microcalorimeter includes a reference zone and a sample zone. The reference and sample zones may be at opposite ends of a suspended platform or may reside on separate platforms. An integrated polysilicon heater provides heat to each zone. A thermopile consisting of a succession of thermocouple junctions generates a voltage representing the temperature difference between the reference and sample zones. Temperature differences between the zones provide information about the chemical reactions and phase transitions that occur in a sample placed in the sample zone.

Cavicchi, Richard E.; Poirier, Gregory Ernest; Suehle, John S.; Gaitan, Michael; Tea, Nim H.

1998-06-30T23:59:59.000Z

438

Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis  

SciTech Connect (OSTI)

Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

Bates, S.E.; Tranum, B.L.

1982-07-15T23:59:59.000Z

439

Photoionization microscopy in terms of local frame transformation theory  

E-Print Network [OSTI]

Two-photon ionization of an alkali-metal atom in the presence of a uniform electric field is investigated using a standardized form of local frame transformation and generalized quantum defect theory. The relevant long-range quantum defect parameters in the combined Coulombic plus Stark potential is calculated with eigenchannel R-matrix theory applied in the downstream parabolic coordinate $\\eta$. The present formulation permits us to express the corresponding microscopy observables in terms of the local frame transformation, and it gives a critical test of the accuracy of the Harmin-Fano theory permitting a scholastic investigation of the claims presented in Zhao {\\it et al.} [Phys. Rev. A 86, 053413 (2012)].

P. Giannakeas; F. Robicheaux; Chris H. Greene

2014-10-27T23:59:59.000Z

440

In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry  

SciTech Connect (OSTI)

Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

2011-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Calibration of fluorescence resonance energy transfer in microscopy  

DOE Patents [OSTI]

Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

2003-12-09T23:59:59.000Z

442

Handheld and low-cost digital holographic microscopy  

E-Print Network [OSTI]

This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

2012-01-01T23:59:59.000Z

443

Integrated fiducial sample mount and software for correlated microscopy  

SciTech Connect (OSTI)

A novel design sample mount with integrated fiducials and software for assisting operators in easily and efficiently locating points of interest established in previous analytical sessions is described. The sample holder and software were evaluated with experiments to demonstrate the utility and ease of finding the same points of interest in two different microscopy instruments. Also, numerical analysis of expected errors in determining the same position with errors unbiased by a human operator was performed. Based on the results, issues related to acquiring reproducibility and best practices for using the sample mount and software were identified. Overall, the sample mount methodology allows data to be efficiently and easily collected on different instruments for the same sample location.

Timothy R McJunkin; Jill R. Scott; Tammy L. Trowbridge; Karen E. Wright

2014-02-01T23:59:59.000Z

444

Calibration of fluorescence resonance energy transfer in microscopy  

DOE Patents [OSTI]

Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

2002-09-24T23:59:59.000Z

445

Cryo diffraction microscopy: Ice conditions and finite supports  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

Miao, H; Downing, K; Huang, X; Kirz, J; Marchesini, S; Nelson, J; Shapiro, D; Steinbrener, J; Stewart, A; Jacobsen, C

2009-09-01T23:59:59.000Z

446

A New Interpretation of the Scanning Tunneling Microscope Image of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A First LookMicroscopy for Analysis of

447

E-Print Network 3.0 - automatic scanning system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002 597 Low-Power Scan Testing and Test Data Compression Summary: 2002 597 Low-Power Scan Testing and Test Data...

448

Test Scanning Request Form Please complete one form for each test and key.  

E-Print Network [OSTI]

Test Scanning Request Form Please complete one form for each test and key. This Section: Test Name: Contact Person: Email Regarding This Scan Date Received Time Initials Number of Tests Scored: / / : A.M. P

Pantaleone, Jim

449

E-Print Network 3.0 - analog scanning electron Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scan Gadget CK2 D2 Q TC SI SO Q SHIFT 1... Electron Test circuit and hence, the delay overhead reduces greatly compared to the enhanced scan. We have... Customized cells used in...

450

E-Print Network 3.0 - automated scanning electron Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing Summary: of the corresponding scan cell, as it is shown in ACM Transactions on Design Automation of Electronic Systems, Vol. 14... cell gating for low-power scan-based...

451

E-Print Network 3.0 - adaptive-optics-based scanning laser Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

optics-based scanning laser Search Powered by Explorit Topic List Advanced Search Sample search results for: adaptive-optics-based scanning laser Page: << < 1 2 3 4 5 > >> 1 NEW...

452

E-Print Network 3.0 - analysing laser-scanned digital Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

laser-scanned digital Search Powered by Explorit Topic List Advanced Search Sample search results for: analysing laser-scanned digital Page: << < 1 2 3 4 5 > >> 1 This special...

453

Commissioning of output factors for uniform scanning proton beams  

SciTech Connect (OSTI)

Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output measurements for proton treatments.

Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer [ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Treatment Centers, 420 North Walnut Street, Bloomington, Indiana 47404 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States)

2011-04-15T23:59:59.000Z

454

Inserting Test Points to Control Peak Power During Scan Testing Ranganathan Sankaralingam and Nur A. Touba  

E-Print Network [OSTI]

simply reducing the average power dissipation per clock cycle. Proceedings of the 17th IEEE International. The average power dissipation during scan testing can be controlled by reducing the scan frequency. However, the peak power during scan testing cannot be controlled by reducing clock frequency and hence is more

Touba, Nur A.

455

LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS  

E-Print Network [OSTI]

LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS Thorsten Schulz and Hilmar, EAWAG Email: michele.steiner@eawag.ch Abstract: Terrestrial laser scanning was applied to acquire 3D the catchment area of a road with respect to a pilot plant. As laser scanning requires only a few minutes

Giger, Christine

456

Improving the detection ...1 Improving the detection of On-line Vertical Port Scan  

E-Print Network [OSTI]

Improving the detection ...1 Improving the detection of On-line Vertical Port Scan Improving the detection of On-line Vertical Port Scan in IP Traffic Yousra Chabchoub , Christine Fricker and Philippe to detect port scan attacks in IP traffic. Only relevant information about destination IP addresses

Paris-Sud XI, Université de

457

Low-cost wearable low-vision aid using a handmade retinal light-scanning microdisplay  

E-Print Network [OSTI]

scanning fiber display6 to present icons indicating the location of potential hazards. The scanning fiberLow-cost wearable low-vision aid using a handmade retinal light-scanning microdisplay Ryland C) is a portable system that uses machine vision to track potential walking hazards for the visually impaired

Washington at Seattle, University of

458

Transmission electron microscopy of whiskers and hillocks formed on Al films deposited onto a glass  

SciTech Connect (OSTI)

Whiskers and hillocks formed on an Al film deposited onto a glass substrate have been observed by means of a variety of transmission electron microscopy technique.

Saka, H.; Fujino, S.; Kuroda, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-01 (Japan); Tsujimoto, K.; Tsuji, S. [Display Technology, IBM Japan, Ltd., Shimotsuruma, Yamato, Kanagawa 242 (Japan); Takatsuji, H. [Display Technology, IBM Japan, Ltd., Ichimiyake, Yasu-gun, Shiga 520-23 (Japan)

1998-01-05T23:59:59.000Z

459

E-Print Network 3.0 - analytical electron microscopy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director Rutgers Research Showcase Summary: Electron Microscopy Nuclear Magnetic Resonance Spectroscopy X-Ray Diffraction Facility (XRD) Micro-Analytical... for...

460

Beam energy scan using a viscous hydro+cascade model  

E-Print Network [OSTI]

Following the experimental program at BNL RHIC, we perform a similar "energy scan" using 3+1D viscous hydrodynamics coupled to the UrQMD hadron cascade, and study the collision energy dependence of pion and kaon rapidity distributions and $m_T$-spectra, as well as charged hadron elliptic flow. To this aim the equation of state for finite baryon density from a Chiral model coupled to the Polyakov loop is employed for hydrodynamic stage. 3D initial conditions from UrQMD are used to study gradual deviation from boost-invariant scaling flow. We find that the inclusion of shear viscosity in the hydrodynamic stage of evolution consistently improves the description of the data for Pb-Pb collisions at CERN SPS, as well as of the elliptic flow measurements for Au-Au collisions in the Beam Energy Scan (BES) program at BNL RHIC. The suggested value of shear viscosity is $\\eta/s\\ge0.2$ for $\\sqrt{s_{NN}}=6.3\\dots39$ GeV.

Karpenko, Iu A; Huovinen, P; Petersen, H

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS  

SciTech Connect (OSTI)

A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similar in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.

Tosten, M; Michael Morgan, M

2008-12-12T23:59:59.000Z

462

Refractive Optics for Hard X-ray Transmission Microscopy  

SciTech Connect (OSTI)

For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E. [Institute for Microstructure Technology, Karlsruhe Institute of Technology Kaiserstrasse 12, 76131 Karlsruhe (Germany); Ahrens, G.; Voigt, A. [Microresist Technology, Koepenikerstrasse 325, 12555 Berlin (Germany)

2011-09-09T23:59:59.000Z

463

Microrheological Studies of Regenerated Silk Fibroin Solution by Video Microscopy  

E-Print Network [OSTI]

We have carried out studies on the rheological properties of regenerated silk fibroin (RSF) solution using video microscopy. The degummed silk from the Bombyx mori silkworm was used to prepare RSF solution by dissolving it in calcium nitrate tetrahydrate-methanol solvent. Measurements were carried out by tracking the position of an embedded micron-sized polystyrene bead within the RSF solution through video imaging. The time dependent mean squared displacement (MSD) of the bead in solution and hence, the complex shear modulus of this solution was calculated from the bead's position information. An optical tweezer was used to transport and locate the bead at any desired site within the micro-volume of the sample, to facilitate the subsequent free-bead video analysis. We present here the results of rheological measurements of the silk polymer network in solution over a frequency range, whose upper limit is the frame capture rate of our camera, at full resolution. By examining the distribution of MSD of beads at different locations within the sample volume, we demonstrate that this probe technique enables us to detect local inhomogeneties at micrometer length scales, not detectable either by a rheometer or from diffusing wave spectroscopy.

Raghu A; Somashekar R; Sharath Ananthamurthy

2007-02-01T23:59:59.000Z

464

Application of fluorescence microscopy to coal-derived resid characterization  

SciTech Connect (OSTI)

This study evaluates the usefulness of a fluorescence microscopy methodology to analyze coal-derived resids and interpret the data in the light of liquefaction processing conditions, process response, the inferred resid reactivity, and in relation to results of other analytical data. The fluorescence technique utilized has been widely applied to coal and kerogen characterization, albeit with some modifications, but is novel in its application to the characterization of coal liquids. Fluorescence is the emission of light energy which occurs when electrons, having been excited to a higher energy orbital, return to their lower energy ground state. The majority of organic molecules that fluoresce are those with conjugated double bonds (chromophores), such as aromatics, characterized by pi-electrons less strongly bound within the molecule than sigma electrons, that can be excited to anti-bonding pi-orbitals. Increasing the extent of pi-bond conjugation (i.e. larger molecular size) generally imparts a shift in absorption and emission spectra to longer wavelengths. Resid fluorescence largely depends on the concentration and degree of conjugation of aromatic chromophores in the high molecular weight liquids, possibly with ancillary effects from oxygen functionalities. In this context, fluorescence analysis of liquefaction resids can potentially evaluate process performance, since direct liquefaction processes endeavor to break down the macromolecular structure of coal, and reduce the molecular weight of polycondensed aromatics through hydrogenation, the opening of ring structures, and heteroatom removal.

Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

1991-01-01T23:59:59.000Z

465

Application of fluorescence microscopy to coal-derived resid characterization  

SciTech Connect (OSTI)

This study evaluates the usefulness of a fluorescence microscopy methodology to analyze coal-derived resids and interpret the data in the light of liquefaction processing conditions, process response, the inferred resid reactivity, and in relation to results of other analytical data. The fluorescence technique utilized has been widely applied to coal and kerogen characterization, albeit with some modifications, but is novel in its application to the characterization of coal liquids. Fluorescence is the emission of light energy which occurs when electrons, having been excited to a higher energy orbital, return to their lower energy ground state. The majority of organic molecules that fluoresce are those with conjugated double bonds (chromophores), such as aromatics, characterized by pi-electrons less strongly bound within the molecule than sigma electrons, that can be excited to anti-bonding pi-orbitals. Increasing the extent of pi-bond conjugation (i.e. larger molecular size) generally imparts a shift in absorption and emission spectra to longer wavelengths. Resid fluorescence largely depends on the concentration and degree of conjugation of aromatic chromophores in the high molecular weight liquids, possibly with ancillary effects from oxygen functionalities. In this context, fluorescence analysis of liquefaction resids can potentially evaluate process performance, since direct liquefaction processes endeavor to break down the macromolecular structure of coal, and reduce the molecular weight of polycondensed aromatics through hydrogenation, the opening of ring structures, and heteroatom removal.

Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

1991-12-31T23:59:59.000Z

466

Microstructure of highly strained BiFeO{sub 3} thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies  

SciTech Connect (OSTI)

Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO{sub 3}) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

Heon Kim, Young, E-mail: young.h.kim@kriss.re.kr [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Bhatnagar, Akash; Pippel, Eckhard; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Alexe, Marin [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); University of Warwick, Coventry CV4 7AL, West Midlands (United Kingdom)

2014-01-28T23:59:59.000Z

467

Imaging of ferromagnetic domains using photoelectrons: Photoelectron emission microscopy of neodymium-iron-boron (Nd{sub 2}Fe{sub 14}B)  

SciTech Connect (OSTI)

Ferromagnetic domains of a single crystal of neodymium-iron-boron, Nd{sub 2}Fe{sub 14}B (one of the strongest permanent magnetic materials known) are imaged by focusing a beam of photoelectrons with electrostatic optics in a photoelectron emission microscope. Photoelectrons emitted from the surface are deflected laterally into two opposite directions by stray magnetic fields that exist above the domains. The photoelectron beam is partially split into two. Magnetic contrast is produced by blocking part of the beam and imaging with an edge of the beam. The magnetic contrast mechanism appears to be similar to the type I magnetic contrast mechanism known from scanning electron microscopy, in which stray magnetic fields above the ferromagnetic domains deflect secondary electrons either towards or away from the electron detector. Upon heating the sample above the Curie temperature, the ferromagnetic domains gradually disappear, as expected for a second order phase transition. They reappear upon cooling. {copyright} {ital 1996 American Vacuum Society}

Mundschau, M.; Romanowicz, J. [Center for Materials Science, Bowling Green State University, Bowling Green, Ohio 43403-0213 (United States)] [Center for Materials Science, Bowling Green State University, Bowling Green, Ohio 43403-0213 (United States); Wang, J.Y.; Sun, D.L.; Chen, H.C. [Institute of Crystal Materials, Shandong University, Jinan 250100, People`s Republic of (China)] [Institute of Crystal Materials, Shandong University, Jinan 250100, People`s Republic of (China)

1996-07-01T23:59:59.000Z

468

Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy  

SciTech Connect (OSTI)

One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

2014-02-21T23:59:59.000Z

469

Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy  

SciTech Connect (OSTI)

The transformation sequence of electroless plated nanocrystalline Ni-3.6 at.% P layers upon different heat treatments is studied by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and atom-probe field-ion microscopy (APFIM). APFIM reveals P segregation at the grain boundaries in the as-plated nanocrystalline alloy. DSC shows two heat releases upon isochronic heat treatment. During the first heat release, starting at about 136 C for a heating rate of 20 C/min, structural relaxation occurs first, followed by slight crystal growth and segregation enhancement, as shown by XRD and APFIM. Nucleation of the equilibrium phase Ni{sub 3}P starts in the transition to the second heat release. This second heat release, with a sharp onset at 417 C for heating at a rate of 20 C/min, is related to the major part of Ni{sub 3}P-phase formation and substantial grain growth. The transformation sequence is compared with the one observed on amorphous Ni-P alloys and discussed in terms of a thermodynamic model.

Hentschel, T.; Isheim, D.; Kirchheim, R.; Mueller, F.; Kreye, H.

2000-02-25T23:59:59.000Z

470

High spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a)  

E-Print Network [OSTI]

a total optical power proportional to its absolute temperature to the fourth power. An object that hasHigh spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a) S. A. Thorne, M. G increasing lens technique to subsurface thermal emission microscopy of Si integrated circuits. We achieve

471

Imaging Lignin-Downregulated Alfalfa Using Coherent Anti-Stokes Raman Scattering Microscopy  

E-Print Network [OSTI]

Imaging Lignin-Downregulated Alfalfa Using Coherent Anti-Stokes Raman Scattering Microscopy Yining-downregulated alfalfa lines were imaged using coherent anti-Stokes Raman scattering (CARS) microscopy. The 1,600-cm-1 (CARS) . Lignin-downregulated alfalfa Introduction Lignocellulosic biomass is under consideration

Xie, Xiaoliang Sunney

472

Technical note: Characterizing individual milk fat globules with holographic video microscopy  

E-Print Network [OSTI]

Technical note: Characterizing individual milk fat globules with holographic video microscopy Fook representation of holographic video microscopy. The sample scatters light from a collimated laser beam. Both to a video camera, which records their interference as a hologram. A typical example of one fat droplet

Grier, David

473

Size effects in bimetallic nickelgold nanowires: Insight from atomic force microscopy nanoindentation  

E-Print Network [OSTI]

Size effects in bimetallic nickel­gold nanowires: Insight from atomic force microscopy the local plastic behavior and hardness properties of electrodeposited bimetallic Ni­Au NWs ranging from 60 rights reserved. Keywords: Atomic force microscopy (AFM); Nanowire; Nickel; Gold; Nanoindentation 1

Sansoz, Frederic

474

Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices  

E-Print Network [OSTI]

Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene; accepted 24 July 2007; published online 15 August 2007 Raman microscopy of graphene was carried out over-band frequencies extracted from Raman spectra of the single-layer graphene are - 1.6±0.2 10-2 cm-1 /K and - 3

475

Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution  

SciTech Connect (OSTI)

64x64 scan of a group of latex spheres with 45 nm step size, used for demonstrating Wigner-distribution deconvolution.

Chapman, Henry, N.

2014-10-30T23:59:59.000Z

476

Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

64x64 scan of a group of latex spheres with 45 nm step size, used for demonstrating Wigner-distribution deconvolution.

Chapman, Henry, N.

477

Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe  

SciTech Connect (OSTI)

We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

Saive, Rebecca, E-mail: rebecca.saive@innovationlab.de; Kowalsky, Wolfgang [InnovationLab GmbH, 69115 Heidelberg (Germany) [InnovationLab GmbH, 69115 Heidelberg (Germany); Institut für Hochfrequenztechnik, TU Braunschweig, 38106 Braunschweig (Germany); Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg (Germany); Mueller, Christian [InnovationLab GmbH, 69115 Heidelberg (Germany) [InnovationLab GmbH, 69115 Heidelberg (Germany); Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg (Germany); Schinke, Janusz; Lovrincic, Robert [InnovationLab GmbH, 69115 Heidelberg (Germany) [InnovationLab GmbH, 69115 Heidelberg (Germany); Institut für Hochfrequenztechnik, TU Braunschweig, 38106 Braunschweig (Germany)

2013-12-09T23:59:59.000Z

478

A Mobile Automated Tomographic Gamma Scanning System - 13231  

SciTech Connect (OSTI)

Canberra Industries have recently designed and built a new automated Tomographic Gamma Scanning (TGS) system for mobile deployment. The TGS technique combines high-resolution gamma spectroscopy with low spatial resolution 3-dimensional image reconstruction to provide increased accuracy over traditional approaches for the assay of non-uniform source distributions in low-to medium-density, non-heterogeneous matrices. Originally pioneered by R. Estep at Los Alamos National Laboratory (LANL), the TGS method has been further developed and commercialized by Canberra Industries in recent years. The present system advances the state of the art on several fronts: it is designed to be housed in a standard cargo transport container for ease of transport, allowing waste characterization at multiple facilities under the purview of a single operator. Conveyor feed, drum rotator, and detector and collimator positioning mechanisms operated by programmable logic control (PLC) allow automated batch mode operation. The variable geometry settings can accommodate a wide range of waste packaging, including but not limited to standard 220 liter drums, 380 liter overpack drums, and smaller 20 liter cans. A 20 mCi Eu-152 transmission source provides attenuation corrections for drum matrices up to 1 g/cm{sup 3} in TGS mode; the system can be operated in Segmented Gamma Scanning (SGS) mode to measure higher density drums. To support TGS assays at higher densities, the source shield is sufficient to house an alternate Co-60 transmission source of higher activity, up to 250 mCi. An automated shutter and attenuator assembly is provided for operating the system with a dual intensity transmission source. The system's 1500 kg capacity rotator turntable can handle heavy containers such as concrete lined 380 liter overpack drums. Finally, data acquisition utilizes Canberra's Broad Energy Germanium (BEGE) detector and Lynx MCA, with 32 k channels, providing better than 0.1 keV/channel resolution to support both isotopic analysis with the MGA/MGAU software and a wide 3 MeV dynamic range. The calibration and verification of the system is discussed, and quantitative results are presented for a variety of drum types and matrices. (authors)

Kirkpatrick, J.M.; LeBlanc, P.J.; Nakazawa, D.; Petroka, D.L.; Kane Smith, S.; Venkataraman, R.; Villani, M. [Canberra Industries, Inc. 800 Research Parkway, Meriden CT 06450 (United States)] [Canberra Industries, Inc. 800 Research Parkway, Meriden CT 06450 (United States)

2013-07-01T23:59:59.000Z

479

Analysis and evaluation of a forward-viewing scanning radar scatterometer system  

E-Print Network [OSTI]

the b as i c scanning technique. A scanning scatteromoter is analyzed by system sul&esse!?bi! es: transmission, reception, signal reduction and . logic, recol ding, and 'RT display. possible klystron transmission frequency dri ft problems... The Scatterometer The Scanning Scatteromoter Summary II. SYSTEM Transmission Reception Signal Reduction and Logic Re corder CRT Display I II . MEAN DFTFRNIINANCE OF A BACKSCATTFR SIGNAL USING A HALF- IVAVE LINF AR DETECTOR Fading Detection Sampled...

Arnold, Richard H

2012-06-07T23:59:59.000Z

480

Atom probe field ion microscopy and related topics: A bibliography 1990  

SciTech Connect (OSTI)

This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

Russell, K.F.; Miller, M.K.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy near-field scanning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Anti-contamination device for cryogenic soft X-ray diffraction microscopy  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

2011-05-01T23:59:59.000Z

482

Dual energy scanning beam laminographic x-radiography  

DOE Patents [OSTI]

A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

Majewski, Stanislaw (Grafton, VA); Wojcik, Randolph F. (Yorktown, VA)

1998-01-01T23:59:59.000Z

483

Dual energy scanning beam laminographic x-radiography  

DOE Patents [OSTI]

A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

Majewski, S.; Wojcik, R.F.

1998-04-21T23:59:59.000Z

484

E-Print Network 3.0 - apella monkey scanning Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scans were digitized using commercially available architecture and design software (Solid- Works Source: Collection: Biology and Medicine 91 How Capuchin Monkeys (Cebus...

485

E-Print Network 3.0 - airborne laser scanning Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology ; Geosciences 95 Morphological Characteristics of Shrub Coppice Dunes in Desert Grasslands of Summary: of scanning laser systems together with...

486

E-Print Network 3.0 - association scan reveals Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

changed?" The remainder... into clusters, which are then grouped by target destination ports. This final comparison reveals scanning... are then grouped by target destination...

487

New side-channel attack against scan chains Jean Da Rolt, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre  

E-Print Network [OSTI]

New side-channel attack against scan chains Jean Da Rolt, Giorgio Di Natale, Marie-Lise Flottes jeopardize the overall security. Several scan-based attacks on cryptographic functions have been described and shown the need for secure scan implementations. These attacks assume a single scan chain. However

Paris-Sud XI, Université de

488

Industrial Affiliates Day 2006, April 21, 2006 ULTRAFAST NONLINEAR OPTICAL MICROSCOPY  

E-Print Network [OSTI]

of studies, including photochemical reactions, molecular dynamics, micropharmacology and optical memory. History of Two-Photon Molecular Excitation 1905 First Conception: A. Einstein: Creation and Conversion for data storage. Combined with fluorescence microscopy, multiphoton excitation (MPE) provides 3D

Van Stryland, Eric

489

Super-resolution wide-field optical microscopy by use of Evanescent standing waves  

E-Print Network [OSTI]

The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Optical fluorescence microscopy is an essential tool for investigations in many disciplines ...

Chung, Euiheon

2007-01-01T23:59:59.000Z

490

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells  

E-Print Network [OSTI]

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

Fisher, Frank

491

Improving the delivery and efficacy of molecular medicine via extracellular matrix modulation : insights from intravital microscopy  

E-Print Network [OSTI]

The extracellular matrix of tumors is a major barrier to the delivery of molecular medicine. We used fluorescence recovery after photobleaching combined with intravital microscopy to quantitate the transport properties of ...

McKee, Trevor David

2005-01-01T23:59:59.000Z

492

Application of magnetic resonance microscopy to tissue engineering: A polylactide model  

E-Print Network [OSTI]

Application of magnetic resonance microscopy to tissue engineering: A polylactide model K. J. L seeding; magnetic resonance mi- croscopy; polylactide; tissue engineering INTRODUCTION Absorbable polymers Engineering Research Center, Clemson University, Clemson, South Carolina 29634-0905 2 Department of Radiology

493

Thermal and Optical Characterization of Photonic Integrated Circuits by Thermoreflectance Microscopy  

E-Print Network [OSTI]

We report high resolution, non-invasive, thermal and optical characterization of semiconductor optical amplifiers (SOAs) and SOA-based photonic integrated circuits (PICs) using thermoreflectance microscopy. Chip-scale ...

Hudgings, Janice A.

494

Demonstration of Ballistic Electron Emission Microscopy / Spectroscopy on the Au/Si (001) system  

E-Print Network [OSTI]

microscopy; hence, the analytical capabilities of BEEM are on a manometer scale. To use BEEM, low-noise Au/Si (001) Schottky diodes have been fabricated. The diodes were macroscopically tested for their electrical properties using conventional current...

Drummond, Mary Alyssa

2012-06-07T23:59:59.000Z

495

Supervised Machine Learning Algorithms for Early Detection of Oral Epithelial Cancer Using Fluorescence Lifetime Imaging Microscopy  

E-Print Network [OSTI]

In this study, the clinical potential of the endogenous multispectral Fluorescence lifetime imaging microscopy (FLIM) was investigated to objectively detect oral cancer. To this end, in vivo FLIM imaging was performed on a hamster cheek pouch model...

Lee, Joohyung

2014-08-06T23:59:59.000Z