Sample records for microscopy near-field scanning

  1. Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method

    E-Print Network [OSTI]

    Texas at Austin. University of

    Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method G and quality factor of the tip oscillations was used to control the scanning near-field optical microscope SNOM0021-8979 00 04017-2 I. INTRODUCTION Scanning near-field optical microscopy SNOM is in- creasingly

  2. NEAR-FIELD SCANNING MICROWAVE MICROSCOPY: MEASURING LOCAL MICROWAVE PROPERTIES AND ELECTRIC FIELD DISTRIBUTIONS

    E-Print Network [OSTI]

    Anlage, Steven

    WEIF-49 NEAR-FIELD SCANNING MICROWAVE MICROSCOPY: MEASURING LOCAL MICROWAVE PROPERTIES AND ELECTRIC>;ics, University of Maryland, College Park, MD 2OY@-4lll, USA Abstract We describe the near-field scanning methods of scanning probe microscopy have been developed. Generally spea- king one can divide

  3. Near-Field Scanning Optical Microscopy of Temperature-and Thickness-Dependent Morphology and

    E-Print Network [OSTI]

    Buratto, Steve

    Near-Field Scanning Optical Microscopy of Temperature- and Thickness-Dependent Morphology 21, 2000 We use near-field scanning optical microscopy (NSOM) to probe the local optical spectroscopy with bulk techniques such as differ- ential scanning calorimetry (DSC) and X-ray diffractom- etry

  4. Fabrication and characterization of coaxial scanning near-field optical microscopy cantilever sensors

    E-Print Network [OSTI]

    Aeschlimann, Martin

    -electromechanical (MEMS) fabrication technology in or- der to produce sensors with reproducible optical and mechanicalFabrication and characterization of coaxial scanning near-field optical microscopy cantilever sensors M. Salomo *, D. Bayer, B.R. Schaaf, M. Aeschlimann, E. Oesterschulze * Department of Physics

  5. Single Defect Center Scanning Near-Field Optical Microscopy on Graphene

    E-Print Network [OSTI]

    J. Tisler; T. Oeckinghaus; R. Stöhr; R. Kolesov; F. Reinhard; J. Wrachtrup

    2013-01-02T23:59:59.000Z

    We demonstrate high resolution scanning fluorescence resonance energy transfer 10 microscopy between a single nitrogen-vacancy center as donor and graphene as acceptor. 11 Images with few nanometer resolution of single and multilayer graphene structures were 12 attained. An energy transfer efficiency of 30% at distances of 10nm between a single 13 defect and graphene was measured. Further the energy transfer distance dependence of 14 the nitrogen-vacancy center to graphene was measured to show the predicted d-4 15 dependence. Our studies pave the way towards a diamond defect center based versatile 16 single emitter scanning microscope.

  6. Infrared Scattering Scanning Near-Field Optical Microscopy Using An External Cavity Quantum Cascade Laser For Nanoscale Chemical Imaging And Spectroscopy of Explosive Residues

    SciTech Connect (OSTI)

    Craig, Ian M.; Phillips, Mark C.; Taubman, Matthew S.; Josberger, Erik E.; Raschke, Markus Bernd

    2013-02-04T23:59:59.000Z

    Infrared scattering scanning near-field optical microscopy (s-SNOM) is an apertureless superfocusing technique that uses the antenna properties of a conducting atomic force microscope (AFM) tip to achieve infrared spatial resolution below the diffraction limit. The instrument can be used either in imaging mode, where a fixed wavelength light source is tuned to a molecular resonance and the AFM raster scans an image, or in spectroscopy mode where the AFM is held stationary over a feature of interest and the light frequency is varied to obtain a spectrum. In either case, a strong, stable, coherent infrared source is required. Here we demonstrate the integration of a broadly tunable external cavity quantum cascade laser (ECQCL) into an s-SNOM and use it to obtain infrared spectra of microcrystals of chemicals adsorbed onto gold substrates. Residues of the explosive compound tetryl was deposited onto gold substrates. s-SNOM experiments were performed in the 1260-1400 cm?1 tuning range of the ECQCL, corresponding to the NO2 symmetric stretch vibrational fingerprint region. Vibrational infrared spectra were collected on individual chemical domains with a collection area of *500nm2 and compared to ensemble averaged far-field reflection-absorption infrared spectroscopy (RAIRS) results.

  7. Introduction to Scanning Microwave Microscopy Mode

    E-Print Network [OSTI]

    Anlage, Steven

    Wenhai Han Introduction to Scanning Microwave Microscopy Mode Application Note Introduction Mapping through" and meanwhile achieve sufficient sensitivity and resolution. With the invention of scanning been developed to probe materials properties. These include scanning near-field to scanning microwave

  8. Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study

    E-Print Network [OSTI]

    Fan, Shanhui

    optical microscopy NSOM imaging to simultaneously obtain both the eigenfield distribution and the band

  9. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

    2006-07-11T23:59:59.000Z

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  10. NREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions and identify

    E-Print Network [OSTI]

    Solar cell producers are facing urgent pressures to lower module production cost.This achievementNREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions is an increasingly important issue for silicon solar cells. The issue has taken center stage now that the solar

  11. Near-field Mapping System to Scan in Time Domain the Magnetic Emissions of Integrated Circuits

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    low amplitude and need to be amplified. This is achieved, as shown figure 1, by a low noise 63db of instructions. Application of this measurement system is given to an industrial chip designed with a 180nm CMOS a low cost near-field mapping system. This system scans automatically and dynamically, in the time

  12. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

    1995-01-01T23:59:59.000Z

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  13. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16T23:59:59.000Z

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  14. Ultrafast scanning tunneling microscopy

    SciTech Connect (OSTI)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01T23:59:59.000Z

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  15. Sandia National Laboratories: scanning probe microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  16. Sandia National Laboratories: scanning tunneling microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  17. Scanning Transmission Electron Microscopy for Nanostructure

    E-Print Network [OSTI]

    Pennycook, Steve

    152 6 Scanning Transmission Electron Microscopy for Nanostructure Characterization S. J. Pennycook. Introduction The scanning transmission electron microscope (STEM) is an invaluable tool atom. The STEM works on the same principle as the normal scanning electron microscope (SEM), by forming

  18. Scanning Tunneling Microscopy currents on locally disordered graphene

    E-Print Network [OSTI]

    Tsai, Shan-Wen; Peres, Nuno M. R.; Santos, J. E.; Ribeiro, R. M.

    2009-01-01T23:59:59.000Z

    Scanning Tunneling Microscopy currents on locally disorderedcharacteristic curves of Scanning Tunneling Microscopy (STM)for the calculation of Scanning Tunneling Microscopy (STM)

  19. Focused ion beam modification of atomic force microscopy tips for near-field scanning optical microscopy

    E-Print Network [OSTI]

    Krogmeier, Jeffrey R.; Dunn, Robert C.

    2001-12-01T23:59:59.000Z

    spatial resolution be- yond the classical diffraction limit.1–3 While the technique can be implemented in several configurations, the most popular utilizes a metal-coated, tapered fiber optic probe to deliver light to nanometric dimensions. Introduced... by Betzig et al. in 1991,2 these metal-coated fiber optic probes have been successfully utilized to study single molecules, thin films, and in limited cases, biological samples.1,3 For the latter, the high spring constant of the fiber optic probes has...

  20. Fast scanning two-photon microscopy

    E-Print Network [OSTI]

    Chang, Jeremy T

    2010-01-01T23:59:59.000Z

    Fast scanning two-photon microscopy coupled with the use light activated ion channels provides the basis for fast imaging and stimulation in the characterization of in vivo neural networks. A two-photon microscope capable ...

  1. Scanning Transmission Electron Microscopy Investigations of Complex...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of...

  2. Scanning probe microscopy studies of semiconductor surfaces

    SciTech Connect (OSTI)

    Weinberg, W.H. [Univ. of California, Santa Barbara, CA (United States)

    1996-10-01T23:59:59.000Z

    Recent work involving atomic force microscopy and scanning tunneling microscopy is discussed which involves strain-induced, self-assembling nanostructures in compound semiconductor materials. Specific examples include one-dimensional quantum wires of InAs grown by MBE on GaAs(001) and zero-dimensional quantum dots of InP grown by MOCVD on InGaP which is lattice matched to GaAs(001).

  3. Flash Scanning Electron Microscopy Raphael Sznitman, Aurelien Lucchi, Marco Cantoni,

    E-Print Network [OSTI]

    Dalang, Robert C.

    Flash Scanning Electron Microscopy Raphael Sznitman, Aurelien Lucchi, Marco Cantoni, Graham Knott. Scanning Electron Microscopy (SEM) is an invaluable tool for biologists and neuroscientists to study brain earlier methods, we explicitly balance the conflicting requirements of spending enough time scanning

  4. Image Scanning Microscopy Claus B. Muller and Jorg Enderlein*

    E-Print Network [OSTI]

    Enderlein, Jörg

    Image Scanning Microscopy Claus B. Mu¨ller and Jo¨rg Enderlein* III. Institute of Physics, Georg microscopy technique is introduced, image scanning microscopy (ISM), which combines conventional confocal-laser scanning microscopy with fast wide-field CCD detection. The technique allows for doubling the lateral

  5. Scanning electron microscopy of cold gases

    E-Print Network [OSTI]

    Santra, Bodhaditya

    2015-01-01T23:59:59.000Z

    Ultracold quantum gases offer unique possibilities to study interacting many-body quantum systems. Probing and manipulating such systems with ever increasing degree of control requires novel experimental techniques. Scanning electron microscopy is a high resolution technique which can be used for in situ imaging, single site addressing in optical lattices and precision density engineering. Here, we review recent advances and achievements obtained with this technique and discuss future perspectives.

  6. Complete information acquisition in scanning probe microscopy

    SciTech Connect (OSTI)

    Belianinov, Alex [ORNL; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL

    2015-01-01T23:59:59.000Z

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  7. Near-field single molecule spectroscopy

    SciTech Connect (OSTI)

    Xie, X.S.; Dunn, R.C.

    1995-02-01T23:59:59.000Z

    The high spatial resolution and sensitivity of near-field fluorescence microscopy allows one to study spectroscopic and dynamical properties of individual molecules at room temperature. Time-resolved experiments which probe the dynamical behavior of single molecules are discussed. Ground rules for applying near-field spectroscopy and the effect of the aluminum coated near-field probe on spectroscopic measurements are presented.

  8. Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter

    E-Print Network [OSTI]

    Kimura, Hikari

    2010-01-01T23:59:59.000Z

    Title Josephson scanning tunneling microscopy – a local andthe sample using a novel scanning tunneling microscope (STM)discussed. I. INTRODUCTION Scanning tunneling microscopy (

  9. Scanning Tunneling Microscopy and Theoretical Study of Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Theoretical Study of Water Adsorption on Fe3O4: Implications for Catalysis. Scanning Tunneling Microscopy and Theoretical Study of Water Adsorption on Fe3O4: Implications...

  10. Near-field inverse scattering and image Images, projections, tomographs, reconstructions.

    E-Print Network [OSTI]

    scanning tunnelling microscopy," Journ. Opt.A: Pure and Appl. Opt. 4 S140-S144 (2002) P Scott Carney · Diffractive elements http://optics.beckman.uiuc.edu P Scott Carney #12;References P Scott Carney and John C Schotland,"Inverse scattering for near-field microscopy," Appl. Phys. Lett. 77, 2798 (2000). P Scott Carney

  11. Scanning X-ray Microscopy Investigations into the Electron Beam Exposure Mechanism of Hydrogen Silsesquioxane Resists

    E-Print Network [OSTI]

    Olynick, Deirdre L.; Tivanski, Alexei V.; Gilles, Mary K.; Tyliszczak, Tolek; Salmassi, Farhad; Liddle, J. Alexander

    2006-01-01T23:59:59.000Z

    Scanning X-ray Microscopy Investigations into the Electronchemistry is investigated by Scanning Transmission X-raythe area exposed. 15 Recently, scanning transmission x-ray

  12. Scanning acoustic microscopy for mapping the microstructure of soft materials

    E-Print Network [OSTI]

    N. G. Parker; M. J. W. Povey

    2009-04-30T23:59:59.000Z

    Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

  13. Scanning electron microscopy imaging of hydraulic cement microstructure

    E-Print Network [OSTI]

    Bentz, Dale P.

    Scanning electron microscopy imaging of hydraulic cement microstructure by Paul Stutzman Building Reprinted from Cement and Concrete Composites, Vol. 26, No. 8, 957-966 pp., November 2004. NOTE: This paper;Available online at www.sciencedirect.com SCIENCE@OIRECT@ Cement & Concrete CompositesELSEVIER Cement

  14. DOI: 10.1002/adma.200800742 Scanning Photoemission Microscopy of

    E-Print Network [OSTI]

    Kim, Sehun

    DOI: 10.1002/adma.200800742 Scanning Photoemission Microscopy of Graphene Sheets on SiO2** By Ki in extracting individual sheets of carbon atoms (graphene) from graphite crystals, graphene has been attracted metals or molecules.[4­6] In addition, the modification of graphene surfaces using a direct chemical

  15. Surface Science Letters Scanning tunneling microscopy study of the anatase

    E-Print Network [OSTI]

    Diebold, Ulrike

    ; Surface structure, morphology, roughness, and topography; Low index single crystal surfaces The structureSurface Science Letters Scanning tunneling microscopy study of the anatase (1 0 0) surface NancyO2 anatase (1 0 0) surface. Natural single crystals of anatase were employed; and after several

  16. Radio-frequency scanning tunnelling microscopy U. Kemiktarak1

    E-Print Network [OSTI]

    LETTERS Radio-frequency scanning tunnelling microscopy U. Kemiktarak1 , T. Ndukum3 , K. C. Schwab3 measurementsinmesoscopicelectronicsandmechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM available from nanoscale optical and electrical displacement detection tech- niques, and the radio

  17. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    E-Print Network [OSTI]

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-04-07T23:59:59.000Z

    ;m. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology... the aperture, light is lost into the surrounding metal coating of the probe. This leads to the two related phenomena of tip heating and failure, the characterization of which have been problematic due to the small size of the probe.3,7,8 However, understanding...

  18. Phase modulation mode of scanning ion conductance microscopy

    SciTech Connect (OSTI)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04T23:59:59.000Z

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  19. Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip

    E-Print Network [OSTI]

    Kimura, H.

    2010-01-01T23:59:59.000Z

    Title) Scanning Josephson Tunneling Microscopy of Singlea conventional superconducting scanning tunneling microscopeabstract} (Body) Remarkable scanning tunneling microscopy (

  20. Scanning Force Microscopy Studies on Molecular Packing and Friction Anisotropy in Thin Films of

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Scanning Force Microscopy Studies on Molecular Packing and Friction Anisotropy in Thin Films in bulk, was studied using differential scanning calorimetry, optical microscopy, magic angle solid were investigated at the molecular level by a combination of multimode scanning force microscopy (SFM

  1. Scanning microscopy using a short-focal-length Fresnel zone plate

    E-Print Network [OSTI]

    Scanning microscopy using a short-focal-length Fresnel zone plate Ethan Schonbrun,* Winnie N. Ye demonstrate a form of scanning microscopy using a short-focal-length Fresnel zone plate and a low-NA relay. In this scheme, parallel scanning microscopy using a Fresnel zone-plate array would require only a single spatial

  2. Scanning probe microscopy: Sulfate minerals in scales and cements

    SciTech Connect (OSTI)

    Hall, C. [Schlumberger Cambridge Research (United Kingdom)

    1995-11-01T23:59:59.000Z

    The principles of scanning probe microscopy (SPM) are illustrated with examples from oilfield mineralogy, particularly emphasizing sulfate minerals involved in scale formation and cement hydration chemistry. The topography of the (010) cleavage surface of gypsum observed by atomic force microscopy shows atomically flat terraces separated by shallow steps often only one unit cell high. SPM allows direct observation of processes on mineral surfaces while they are in contact with solutions. The dissolution etching and crystal growth of gypsum and barite are discussed and rates of step migration estimated. The orientation of steps is related to the crystallographic axes. The action of phosphonate crystal growth inhibitor on gypsum and of a chelating scale solvent on barite are also shown. The multiphase microstructure of an oilwell cement clinker is described in relation to its hydration chemistry in contact with water and its reaction with sulfate ions.

  3. In-situ scanning probe microscopy of electrodeposited nickel.

    SciTech Connect (OSTI)

    Kelly, James J.; Dibble, Dean C.

    2004-10-01T23:59:59.000Z

    The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.

  4. Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy

    SciTech Connect (OSTI)

    Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [Global Research Center for Environment and Energy Based on Nanomaterials Science National Institute for Materials Science (NIMS) 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Gao, Jianhua; Ishida, Nobuyuki [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Mingsheng, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Fujita, Daisuke [Advanced Key Technologies Division, Global Research Center for Environment and Energy Based on Nanomaterials Science, and International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-01-20T23:59:59.000Z

    Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

  5. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect (OSTI)

    Dahmen, Tim [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; Baudoin, Jean-Pierre G [ORNL] [ORNL; Lupini, Andrew R [ORNL] [ORNL; Kubel, Christian [Karlsruhe Institute of Technology, Leopoldshafen, Germany] [Karlsruhe Institute of Technology, Leopoldshafen, Germany; Slusallek, Phillip [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; De Jonge, Niels [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  6. Scanning transmission x-ray microscopy of isolated multiwall carbon A. Felten,a

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Scanning transmission x-ray microscopy of isolated multiwall carbon nanotubes A. Felten,a H. Hody September 2006 Scanning transmission x-ray microscopy STXM has been used to study isolated carbon nanotubes- cations including biological and chemical sensors, nanoelec- tronic devices, tips for scanning probe

  7. Scanning photovoltage microscopy of potential modulations in carbon Marcus Freitag,a

    E-Print Network [OSTI]

    Liu, Jie

    Scanning photovoltage microscopy of potential modulations in carbon nanotubes Marcus Freitag to understand their role in ac- tive devices. Here we use scanning photovoltage microscopy to probe the built. Scanning the laser laterally produces a moving potential step that is capable of inducing a photovoltage

  8. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01T23:59:59.000Z

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  9. The AFM was originally developed as an adaptation of another scanning probe microscopy technology, the scanning tunneling

    E-Print Network [OSTI]

    Van Vliet, Krystyn J.

    The AFM was originally developed as an adaptation of another scanning probe microscopy technology, the scanning tunneling microscope, to image nonconductive materials through direct physical contact between-scale displacement resolutions of the AFM enable the topographical scanning of mechanically compliant materials

  10. An Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study of Pattern Formation and Molecule Ordering under a Variety of Interactions

    E-Print Network [OSTI]

    Zhu, Yeming

    2013-01-01T23:59:59.000Z

    Chen, Introduction to Scanning Tunneling Microscopy, Oxfordvoltages to search the scanning area on the surface. Threecontrol system for scanning tun- neling microscope (STM)

  11. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  12. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Kalinin, Sergei V. (Knoxville, TN) [Knoxville, TN

    2010-08-17T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  13. Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

  14. ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE-EDGE SCANNING MICROSCOPY

    E-Print Network [OSTI]

    Keyser, John

    ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis Science #12;ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis) ______________________________ ______________________________ Ergun Akleman Valerie Taylor (Member) (Head of Department) December 2003 Major Subject: Computer Science

  15. A Method for Measuring Cerebral Blood Volume of Mouse using Multiphoton Laser Scanning Microscopy

    E-Print Network [OSTI]

    Vial, Jean-Claude

    A Method for Measuring Cerebral Blood Volume of Mouse using Multiphoton Laser Scanning Microscopy P Joseph Fourier,Grenoble, France ABSTRACT Knowledge of the volume of blood per unit volume of brain tissue-photon laser scanning microscopy to obtain the local blood volume in the cortex of the anesthetized mouse. We

  16. Video-rate Scanning Confocal Microscopy and Microendoscopy

    E-Print Network [OSTI]

    Nichols, Alexander J.

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, ...

  17. Alpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force microscopy

    E-Print Network [OSTI]

    -differential-interference-contrast microscopy; Scanning force microscopy; Natural radiation damage 1. Introduction Alpha-recoil tracks (ARTsAlpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force

  18. Scanning probe microscopy with inherent disturbance suppression using micromechanical systems

    E-Print Network [OSTI]

    Sparks, Andrew William, 1977-

    2005-01-01T23:59:59.000Z

    All scanning probe microscopes (SPMs) are affected by disturbances, or mechanical noise, in their environments which can limit their imaging resolution. This thesis introduces a general approach for suppressing out-of-plane ...

  19. Hydrogen adsorption on Ru(001) studied by Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Tatarkhanov, Mous; Rose, Franck; Fomin, Evgeny; Ogletree, D. Frank; Salmeron, Miquel

    2008-01-01T23:59:59.000Z

    001) and first hydrogen adsorption structure with (?3×?3)R30Hydrogen adsorption on Ru(001) studied by Scanning TunnelingCA 94720 Keywords: STM, Adsorption, Dissociation; Hydrogen,

  20. Acquisition and reconstruction of brain tissue using knife-edge scanning microscopy

    E-Print Network [OSTI]

    Mayerich, David Matthew

    2004-09-30T23:59:59.000Z

    ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis by DAVID MATTHEW MAYERICH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2003 Major Subject: Computer Science ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis by DAVID MATTHEW MAYERICH Submitted to Texas...

  1. Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Webb, Lauren J.

    Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling propargylglycine unnatural functional groups 20 Å apart and an alkanethiol self-assembled monolayer (SAM) on a gold-terminated surfaces were imaged by scanning tunneling microscopy (STM) using a low tunneling current of 10 p

  2. Oxygen driven reconstruction dynamics of Ni,,977... measured by time-lapse scanning tunneling microscopy

    E-Print Network [OSTI]

    Sibener, Steven

    Oxygen driven reconstruction dynamics of Ni,,977... measured by time-lapse scanning tunneling-lapse scanning tunneling microscopy STM has been used to observe the oxygen induced reconstruction behavior of Ni for the merging of steps in the presence of small amounts of adsorbed oxygen, less than 2% of a monolayer. Point

  3. Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons ABSTRACT A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video

  4. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01T23:59:59.000Z

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  5. Dynamic scanning probe microscopy of adsorbed molecules on graphite

    E-Print Network [OSTI]

    N. Berdunov; A. J. Pollard; P. H. Beton

    2009-01-08T23:59:59.000Z

    We have used a combined dynamic scanning tunneling and atomic force microscope to study the organisation of weakly bound adsorbed molecules on a graphite substrate. Specifically we have acquired images of islands of the perylene derivative molecules. These weakly bound molecules may be imaged in dynamic STM, in which the probe is oscillated above the surface. We show that molecular resolution may be readily attained and that a similar mode of imaging may be realised using conventional STM arrangement. We also show, using tunnelling spectroscopy, the presence of an energy gap for the adsorbed molecules confirming a weak molecule-substrate interaction.

  6. Near-Field Scanning Optical Microscopy (NSOM) Studies of the Relationship between Interchain Interactions, Morphology, Photodamage, and Energy Transport in Conjugated

    E-Print Network [OSTI]

    Cohen, Ronald C.

    for the last several years due to their potential for application in optoelectronic devices such as light-emitting diodes (LEDs),1,2 photodiodes,3 photovoltaics,4 and displays.5 It is becoming increasingly clear

  7. High Pressure Scanning Tunneling Microscopy and High Pressure X-ray Photoemission Spectroscopy Studies of Adsorbate Structure, Composition and Mobility during Catalytic Reactions on A Model Single Crystal

    E-Print Network [OSTI]

    Montano, M.O.

    2006-01-01T23:59:59.000Z

    Guntherodt, H. -J. , Eds. Scanning Tunneling Microscopy III;157. Chapter 7 : High-Pressure Scanning Tunneling Microscopypressure high-temperature scanning tunneling microscope and

  8. Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

    2011-05-26T23:59:59.000Z

    We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

  9. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    SciTech Connect (OSTI)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01T23:59:59.000Z

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  10. Near-field microscopy maps semiconductors Near-field microscopy maps semiconductors

    E-Print Network [OSTI]

    technology is new, the combination represents a potentially important advance in high-resolution thermography

  11. Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies

    SciTech Connect (OSTI)

    Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Ievlev, Anton [ORNL] [ORNL; Balke, Nina [ORNL] [ORNL; Maksymovych, Petro [ORNL] [ORNL; Tselev, Alexander [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

  12. Wurtzite GaN Surface Structures Studied by Scanning Tunneling Microscopy and Reflection High Energy

    E-Print Network [OSTI]

    Feenstra, Randall

    Wurtzite GaN Surface Structures Studied by Scanning Tunneling Microscopy and Reflection High Energy studies of the surface reconstructions for both the Ga-face and the N-face of wurtzite GaN films grown a surface phenomenon. Although numerous surface studies of wurtzite GaN have been performed, progress

  13. Scanning electron microscopy study of carbon nanotubes heated at high temperatures in air

    E-Print Network [OSTI]

    . INTRODUCTION Because of their remarkable physical and electronic properties, carbon nanotubes are promising nanotubes in air,3,4 in an oxygen stream,5 or under a flow of carbon dioxide gas.6 Thinning of nanotubesScanning electron microscopy study of carbon nanotubes heated at high temperatures in air Xuekun Lu

  14. Selective Analysis of Molecular States by Functionalized Scanning Tunneling Microscopy Tips Z. T. Deng,1

    E-Print Network [OSTI]

    Gao, Hongjun

    . Deng,1 H. Lin,2 W. Ji,1 L. Gao,1 X. Lin,1 Z. H. Cheng,1 X. B. He,1 J. L. Lu,1 D. X. Shi,1 W. A. Hofer,2Selective Analysis of Molecular States by Functionalized Scanning Tunneling Microscopy Tips Z. T

  15. Cross-sectional Scanning Tunneling Microscopy and Spectroscopy of InGaP/GaAs Heterojunctions

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Cross-sectional Scanning Tunneling Microscopy and Spectroscopy of InGaP/GaAs Heterojunctions Y Abstract Compositionally abrupt InGaP/GaAs heterojunctions grown by gas-source molecular beam epitaxy have the InGaP layer show non-uniform In and Ga distribution. About 1.5 nm of transition region

  16. The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

    SciTech Connect (OSTI)

    Orme, C A; Giocondi, J L

    2007-04-16T23:59:59.000Z

    Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth.

  17. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    SciTech Connect (OSTI)

    Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

    2013-12-15T23:59:59.000Z

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  18. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    SciTech Connect (OSTI)

    Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

    2014-06-23T23:59:59.000Z

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  19. The material dependence of temperature measurement resolution in thermal scanning electron microscopy

    SciTech Connect (OSTI)

    Wu, Xiaowei; Hull, Robert [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)] [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)

    2013-03-18T23:59:59.000Z

    Thermal scanning electron microscopy is a recently developed temperature mapping technique based on thermal diffuse scattering in electron backscatter diffraction in a scanning electron microscope. It provides nano-scale and non-contact temperature mapping capabilities. Due to the specific temperature sensitive mechanism inherent to this technique, the temperature resolution is highly material dependent. A thorough investigation of what material properties affect the temperature resolution is important for realizing the inherent temperature resolution limit for each material. In this paper, three material dependent parameters-the Debye-Waller B-factor temperature sensitivity, backscatter yield, and lattice constant-are shown to control the temperature resolution.

  20. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Rodriguez, Brian J [ORNL; Jesse, Stephen [ORNL; Karapetian, Edgar [ORNL; Mirman, B [Suffolk University, Boston; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine

    2007-01-01T23:59:59.000Z

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  1. Near-field resonance shifts of ferroelectric barium titanate domains upon low-temperature phase transition

    SciTech Connect (OSTI)

    Döring, Jonathan; Ribbeck, Hans-Georg von; Kehr, Susanne C.; Eng, Lukas M. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, D-01069 Dresden (Germany); Fehrenbacher, Markus [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden (Germany)

    2014-08-04T23:59:59.000Z

    Scattering scanning near-field optical microscopy (s-SNOM) has been established as an excellent tool to probe domains in ferroelectric crystals at room temperature. Here, we apply the s-SNOM possibilities to quantify low-temperature phase transitions in barium titanate single crystals by both temperature-dependent resonance spectroscopy and domain distribution imaging. The orthorhombic-to-tetragonal structural phase transition at 263?K manifests in a change of the spatial arrangement of ferroelectric domains as probed with a tunable free-electron laser. More intriguingly, the domain distribution unravels non-favored domain configurations upon sample recovery to room temperature as explainable by increased sample disorder. Ferroelectric domains and topographic influences are clearly deconvolved even at low temperatures, since complementing our s-SNOM nano-spectroscopy with piezoresponse force microscopy and topographic imaging using one and the same atomic force microscope and tip.

  2. Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis

    SciTech Connect (OSTI)

    Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

    2003-10-01T23:59:59.000Z

    In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

  3. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20T23:59:59.000Z

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  4. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    SciTech Connect (OSTI)

    Kent, R.M.; Vary, A.

    1992-01-01T23:59:59.000Z

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress versus strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns), yielding and elastic modulus of 401 and 466.8 GPa, respectively.

  5. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    SciTech Connect (OSTI)

    Kent, R.M.; Vary, A.

    1992-08-01T23:59:59.000Z

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress vs strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns). 8 refs.

  6. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    SciTech Connect (OSTI)

    Kim, Suhyun; Kim, Joong Jung; Jung, Younheum; Lee, Kyungwoo; Byun, Gwangsun; Hwang, KyoungHwan; Lee, Sunyoung; Lee, Kyupil [Memory Analysis Science and Engineering Group, Samsung Electronics, San 16, Hwasung City, Gyeonggi-Do 445-701 (Korea, Republic of)] [Memory Analysis Science and Engineering Group, Samsung Electronics, San 16, Hwasung City, Gyeonggi-Do 445-701 (Korea, Republic of)

    2013-09-15T23:59:59.000Z

    Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  7. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ciovati, Gianluigi; Baldwin, Charles; Cheng, Guangfeng; Flood, Roger; Jordan, Kevin; Kneisel, Peter; Morrone, Michael; Nemes, George; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

    2012-03-16T23:59:59.000Z

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  8. NOVEL INTEGRATING SOLID STATE DETECTOR WITH SEGMENTATION FOR SCANNING TRANSMISSION SOFT X-RAY MICROSCOPY.

    SciTech Connect (OSTI)

    FESER,M.; JACOBSEN,C.; REHAK,P.; DE GERONIMO,G.; HOLL,P.; STUDER,L.

    2001-07-29T23:59:59.000Z

    An integrating solid state detector with segmentation has been developed that addresses the needs in scanning transmission x-ray microscopy below 1 keV photon energy. The detector is not cooled and can be operated without an entrance window which leads to a total photon detection efficiency close to 100%. The chosen segmentation with 8 independent segments is matched to the geometry of the STXM to maximize image mode flexibility. In the bright field configuration for 1 ms integration time and 520 eV x-rays the rms noise is 8 photons per integration.

  9. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    SciTech Connect (OSTI)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J., E-mail: gsimpson@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15T23:59:59.000Z

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  10. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect (OSTI)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01T23:59:59.000Z

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

  11. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    SciTech Connect (OSTI)

    Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan)] [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)] [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2012-01-27T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  12. Dynamic Imaging of Au-nanoparticles via Scanning Electron Microscopy in a Graphene Wet Cell

    E-Print Network [OSTI]

    Wayne Yang; Yuning Zhang; Michael Hilke; Walter Reisner

    2015-06-10T23:59:59.000Z

    High resolution nanoscale imaging in liquid environments is crucial for studying molecular interactions in biological and chemical systems. In particular, electron microscopy is the gold-standard tool for nanoscale imaging, but its high-vacuum requirements make application to in-liquid samples extremely challenging. Here we present a new graphene based wet cell device where high resolution SEM (scanning electron microscope) and Energy Dispersive X-rays (EDX) analysis can be performed directly inside a liquid environment. Graphene is an ideal membrane material as its high transparancy, conductivity and mechanical strength can support the high vacuum and grounding requirements of a SEM while enabling maximal resolution and signal. In particular, we obtain high resolution (graphene wet cell and EDX analysis of nanoparticle composition in the liquid enviornment. Our obtained resolution surpasses current conventional silicon nitride devices imaged in both SEM and TEM under much higher electron doses.

  13. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect (OSTI)

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

    2014-10-28T23:59:59.000Z

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  14. Ideal near-field thermophotovoltaic cells

    E-Print Network [OSTI]

    Molesky, Sean

    2015-01-01T23:59:59.000Z

    We ask the question, what are the ideal characteristics of a near-field thermophotovoltaic cell? Our search leads us to a reexamination of near-field photonic heat transfer in terms of the joint density of electronic states. This form reveals that the presence of matched van Hove singularities resulting from quantum-confinement in the emitter and converter of a thermophotovoltaic cell boosts both the magnitude and spectral selectivity of photonic heat transfer; dramatically improving energy conversion efficiency. We provide a model near-field thermophotovoltaic design making use of this idea by employing the van Hove singularities present in carbon nanotubes. Shockely Queisser analysis shows that the predicted heat transfer characteristics of this model device are fundamentally better than existing thermophotovoltaic designs. Our work paves the way for the use of quantum dots, carbon nanotubes and two-dimensional materials as future materials for thermophotovoltaic near-field energy conversion devices.

  15. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    SciTech Connect (OSTI)

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02T23:59:59.000Z

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter 5 discusses imaging of isolated vortices as a function of T{sub c}. Vortex images were fit with theoretical magnetic field profiles in order to extract the apparent vortex size. The data for the lowest T{sub c}'s (5 and 6.5 K) show some inhomogeneity and suggest that {lambda}{sub ab} might be larger than predicted by the T{sub c} {proportional_to} n{sub s}(0)/m* relation first suggested by results of Uemura et al. (1989) for underdoped cuprates. Finally, Chapter 6 examines observations of apparent ''partial vortices'' in the crystals. My studies of these features indicate that they are likely split pancake vortex stacks. Qualitatively, these split stacks reveal information about pinning and anisotropy in the samples. Collectively these magnetic imaging studies deepen our knowledge of cuprate superconductivity, especially in the important regime of low superfluid density.

  16. GaN(0001) Surface Structures Studied Using Scanning Tunneling Microscopy and First-Principles Total Energy Calculations

    E-Print Network [OSTI]

    occurring on the (0001) surface of wurtzite GaN are studied using scanning tunneling microscopy, electron and electronic properties of wurtzite GaN surfaces. Several prior studies have reported that these surfaces do reconstructions were identified, corresponding to the two inequivalent polar fac- es of wurtzite GaN, the (0001

  17. Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy electron diffraction

    E-Print Network [OSTI]

    Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy-face of wurtzite GaN films grown using molecular beam epitaxy. N-face reconstructions are primarily adatom numerous surface studies of wurtzite GaN have been performed, progress in determining the true surface

  18. Graphene on Ru(0001) Moire Corrugation Studied by Scanning Tunneling Microscopy on Au/Graphene/Ru(0001) Heterostructures

    E-Print Network [OSTI]

    Ciobanu, Cristian

    Graphene on Ru(0001) Moire Corrugation Studied by Scanning Tunneling Microscopy on Au/Graphene on graphene/Ru(0001) were used to study the corrugation of the moire structure of graphene/Ru(0001 for the graphene/Ru(0001) moire is of structural nature rather than electronic. STM showed a large value

  19. This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a

    E-Print Network [OSTI]

    McGehee, Michael

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell­57 Dye-sensitized solar cells (DSCs) have received wide-spread research attention due to their high power incorporated into solid-state dye-sensitized solar cells (ss-DSCs) by nanoimprint lithography. The reflectors

  20. Strain variations in InGaAsP/InGaP superlattices studied by scanning probe microscopy

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Strain variations in InGaAsP/InGaP superlattices studied by scanning probe microscopy Huajie Chen, Kista, Sweden Abstract Strain-compensated InGaAsP/InGaP superlattices are studied in cross- section. The strain compensated InGaAsP/InGaP/InP superlattices studied here have application for light sources

  1. Oxidized GaN(0001) Surfaces studied by Scanning Tunneling Microscopy and Spectroscopy and by First-Principles Theory

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Oxidized GaN(0001) Surfaces studied by Scanning Tunneling Microscopy and Spectroscopy Abstract Oxidized Ga-polar GaN surfaces have been studied both experimentally and theoretically. For in tunneling spectroscopy revealed a surface band gap with size close to that of GaN, indicating that any

  2. Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    on sapphire substrate [2]. Park et al. performed the growth of Cr doped GaN single crystal by sodium fluxScanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Orleans, New Orleans, LA 70148, USA Abstract: Cr doped GaN was grown by rf N-plasma molecular beam epitaxy

  3. Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    doped MOCVD grown GaN on sapphire substrate [2]. Park et al. performed the growth of Cr doped GaN singleScanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Orleans, New Orleans, LA 70148, USA Abstract: Cr doped GaN was grown by rf N-plasma molecular beam epitaxy

  4. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01T23:59:59.000Z

    2-ID-B intermediate-energy scanning X-ray microscope at theW. D. , Morrison, G. R. et al. Scanning transmission X-rayX-ray spectromicroscopy with the scanning transmission X-ray

  5. Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)

    SciTech Connect (OSTI)

    Yoshida, Yasuo, E-mail: yyoshida@issp.u-tokyo.ac.jp; Yokosuka, Takuya; Hasegawa, Yukio, E-mail: hasegawa@issp.u-tokyo.ac.jp [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Yang, Hung-Hsiang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Huang, Hsu-Sheng; Guan, Shu-You; Su, Wei-Bin; Chang, Chia-Seng [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yanagisawa, Susumu [Department of Physics and Earth Science Department, University of the Ryukyus, 1 Nishihara, Okinawa 903-0213 (Japan); Lin, Minn-Tsong [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Hoffmann, Germar [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-09-21T23:59:59.000Z

    Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112{sup ¯}] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11{sup ¯}0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular ? stacking. Two-dimensional delocalized electronic states are found on the K-deposited ? stacking structure.

  6. Near field optical scanning system employing microfabricated solid immersion lens

    DOE Patents [OSTI]

    Cozier, Kenneth B. (Stanford, CA); Fletcher, Daniel A. (Menlo Park, CA); Kino, Gordon S. (Stanford, CA); Quate, Calvin F. (Stanford, CA); Soh, Hyongsok T. (Stanford, CA)

    2002-08-27T23:59:59.000Z

    A solid immersion lens integrated on a flexible support such as a cantilever or membrane is described, together with a method of forming the integrated structure.

  7. SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES

    SciTech Connect (OSTI)

    Hay, M.; O'Rourke, P.; Ajo, H.

    2012-03-08T23:59:59.000Z

    The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

  8. Evaluation of thermal evaporation conditions used in coating aluminum on near-field fiber-optic probes

    E-Print Network [OSTI]

    Hollars, Christopher W.; Dunn, Robert C.

    1998-01-01T23:59:59.000Z

    The effects that the thermal evaporation conditions have on the roughness of aluminum-coated near-field fiber-optic probes were investigated using the high-resolution capabilities of atomic force microscopy. The coating ...

  9. Evaluation of near-field earthquake effects

    SciTech Connect (OSTI)

    Shrivastava, H.P.

    1994-11-01T23:59:59.000Z

    Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.

  10. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation

    SciTech Connect (OSTI)

    Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

    2014-06-23T23:59:59.000Z

    We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

  11. Controlled Low-Temperature Molecular Manipulation of Sexiphenyl Molecules on Ag(111) Using Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Hla, Saw-Wai

    Controlled Low-Temperature Molecular Manipulation of Sexiphenyl Molecules on Ag(111) Using Scanning; published 11 November 2004) A novel scanning tunneling microscope manipulation scheme for a controlled displaced during imag- ing and often dragged with the STM tip [17]. Atomically controlled manipulation

  12. FLUID DISTRIBUTION IN PROGRESSIVE PULMONARY EDEMA: A LOW TEMPERATURE SCANNING ELECTRON MICROSCOPY STUDY

    E-Print Network [OSTI]

    Hook, Greogry R.

    2013-01-01T23:59:59.000Z

    extchanging function of the lung. Circulation 46: 390-408,electron microscopy of the lungs. Annals. Med. Sect. Pol.Bioengineering Aspects of the Lung, edited by J. B. West,

  13. Investigation of Self-Heating Phenomenon in Small Geometry Vias Using Scanning Joule Expansion Microscopy

    E-Print Network [OSTI]

    Investigation of Self-Heating Phenomenon in Small Geometry Vias Using Scanning Joule Expansion metallization levels) and increases in the current density and associated thermal effects, namely self-heating

  14. Largely defocused probe scanning transmission electron microscopy for imaging local modulation of strain field in a hetero interface

    SciTech Connect (OSTI)

    Kim, Suhyun, E-mail: u98kim@surface.phys.titech.ac.jp; Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum [Memory Analysis Science and Engineering Group, Samsung Electronics, San #16 Hwasung-City, Gyeonggi-Do 445-701 (Korea, Republic of); Oshima, Yoshifumi [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2014-10-13T23:59:59.000Z

    We present an innovative method for characterizing the strain field in three dimensions in a hetero interface. Largely defocused probe scanning transmission electron microscopy (LDP-STEM) was employed for imaging the inhomogeneous strain field in a germanium (Ge) layer deposited on a silicon (Si) substrate. In the LDP-STEM image, Ge-atomic columns that are relaxed or strained to the Si substrate in the Si/Ge hetero interface were observed to be distinguishable, allowing for the qualitative characterization of the coherency of the crystal growth. Our results revealed that the strain field is locally modulated along the in-plane direction in the Si/Ge hetero interface.

  15. Scanning mid-IR-laser microscopy: an efficient tool for materials studies in silicon-based photonics and photovoltaics

    E-Print Network [OSTI]

    Astafiev, O V; Yuryev, V A; 10.1016/S0022-0248(99)00711-3

    2011-01-01T23:59:59.000Z

    A method of scanning mid-IR-laser microscopy has recently been proposed for the investigation of large-scale electrically and recombination-active defects in semiconductors and non-destructive inspection of semiconductor materials and structures in the industries of microelectronics and photovoltaics. The basis for this development was laid with a wide cycle of investigations on low-angle mid-IR-light scattering in semiconductors. The essence of the technical idea was to apply the dark-field method for spatial filtering of the scattered light in the scanning mid-IR-laser microscope together with the local photoexcitation of excess carriers within a small domain in a studied sample, thus forming an artificial source of scattering of the probe IR light for the recombination contrast imaging of defects. The current paper presents three contrasting examples of application of the above technique for defect visualization in silicon-based materials designed for photovoltaics and photonics which demonstrate that this...

  16. Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 3) : a scanning tunneling microscopy study.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 × 3) : a scanning tunneling of the atomic and electronic structure of graphene monolayer islands on the 6H-SiC(0001)(3×3) (SiC(3×3)) surface reconstruction using scanning tunneling microscopy (STM) and spectroscopy (STS). The orientation of the graphene

  17. Bioelectrical SPMs (G. Gomila, UB-IBEC) Bioelectric Scanning Probe Microscopies

    E-Print Network [OSTI]

    Ritort, Felix

    -Surface Topography 900nm E.Coli Bacterium E.Coli Bacterium AFM Topography (2D colour image) 3D image measure with an SPM? 2-In addition to topography some other physical property depending on the type of SPM are softer. Topography Bioelectrical SPMs (G. Gomila, UB-IBEC) 1. Introduction Bioelectric scanning probe

  18. Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOE Patents [OSTI]

    Hu, Jun (Berkeley, CA); Ogletree, D. Frank (El Cerrito, CA); Salmeron, Miguel (El Cerrito, CA); Xiao, Xudong (Kowloon, CN)

    1998-01-01T23:59:59.000Z

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  19. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOE Patents [OSTI]

    Hu, Jun (Berkeley, CA); Ogletree, D. Frank (El Cerrito, CA); Salmeron, Miguel (El Cerrito, CA); Xiao, Xudong (Kowloon, CN)

    1999-01-01T23:59:59.000Z

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  20. Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy

    DOE Patents [OSTI]

    Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

    2014-09-30T23:59:59.000Z

    A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

  1. Lateral imaging of the superconducting vortex lattice using Doppler-modulated scanning tunneling microscopy

    E-Print Network [OSTI]

    Wei, John Y.T.

    Lateral imaging of the superconducting vortex lattice using Doppler-modulated scanning tunneling on the quasiparticle tunneling spectrum, we have laterally imaged the vortex lattice in superconducting 2H-NbSe2 that circulates along the sample edge. Above the lower critical field, field can penetrate into the superconductor

  2. Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy

    DOE Patents [OSTI]

    Kazmerski, Lawrence L. (Lakewood, CO)

    1990-01-01T23:59:59.000Z

    A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

  3. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09T23:59:59.000Z

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  4. Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies

    SciTech Connect (OSTI)

    Prof.Dr. Lukas Novotny

    2004-10-18T23:59:59.000Z

    The seventh conference in the NFO conference series, held here in Rochester, provided to be the principal forum for advances in sub-wavelength optics, near-field optical microscopy, local field enhancement, instrumental developments and the ever-increasing range of applications. This conference brought together the diverse scientific communities working on the theory and application of near-field optics (NFO) and related techniques.

  5. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect (OSTI)

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31T23:59:59.000Z

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  6. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect (OSTI)

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-01-01T23:59:59.000Z

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB?SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non?destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three?dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  7. Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images

    SciTech Connect (OSTI)

    Gonnissen, J.; De Backer, A.; Martinez, G. T.; Van Aert, S., E-mail: Sandra.VanAert@uantwerpen.be [Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Dekker, A. J. den [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Rosenauer, A. [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee NW1, 28359 Bremen (Germany); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2014-08-11T23:59:59.000Z

    We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.

  8. Investigation of Band-Offsets at Monolayer-Multilayer MoS2 Junctions by Scanning Photocurrent Microscopy

    E-Print Network [OSTI]

    Howell, Sarah L; Wu, Chung-Chiang; Chen, Kan-Sheng; Sangwan, Vinod K; Kang, Junmo; Marks, Tobin J; Hersam, Mark C; Lauhon, Lincoln J

    2015-01-01T23:59:59.000Z

    The thickness-dependent band structure of MoS2 implies that discontinuities in energy bands exist at the interface of monolayer (1L) and multilayer (ML) thin films. The characteristics of such heterojunctions are analyzed here using current versus voltage measurements, scanning photocurrent microscopy, and finite element simulations of charge carrier transport. Rectifying I-V curves are consistently observed between contacts on opposite sides of 1L-ML junctions, and a strong bias-dependent photocurrent is observed at the junction. Finite element device simulations with varying carrier concentrations and electron affinities show that a type II band alignment at single layer/multi-layer junctions reproduces both the rectifying electrical characteristics and the photocurrent response under bias. However, the zero-bias junction photocurrent and its energy dependence are not explained by conventional photovoltaic and photothermoelectric mechanisms, indicating the contributions of hot carriers.

  9. Infrared near-field spectroscopy of trace explosives using an...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy of trace explosives using an external cavity quantum cascade laser. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade...

  10. Numerical solution of inverse scattering for near-field optics

    E-Print Network [OSTI]

    2007-04-30T23:59:59.000Z

    May 2, 2007 ... tering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous me- dium located on a substrate from data ...

  11. EMSL - Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscopy Capability Details * Electron microscopes with tomography, cryo, scanning, photoemission and high-resolution (sub-nanometer) imaging capabilities* Focused ion beam...

  12. Quasi-real-time analysis of dynamic near field scattering data using a graphics processing unit

    E-Print Network [OSTI]

    Giovanni Cerchiari; Fabrizio Croccolo; Frédéric Cardinaux; Frank Scheffold

    2012-09-15T23:59:59.000Z

    We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit (GPU). We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.

  13. The application of reflected light microscopy, scanning electron microscopy-energy dispersive spectroscopy, Auger electron spectroscopy and electron microprobe analysis to the study of dusts

    SciTech Connect (OSTI)

    Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Dept. of Geology and Geophysics)

    1993-03-01T23:59:59.000Z

    Over 500,000 tons of electric arc furnace (EAF) dust is generated each year in the US. The mineralogy and characterization of this dust is being studied to determine the phases and relationships of the valuable zinc, the hazardous lead, cadmium, and chromium, and the deleterious chlorine and fluorine. EAF dust averages 15--20% zinc and is therefore a potential source for 100,000 tons of zinc per year. The major mineralogical phases of EAF dust are franklinite (ZnFe[sub 2]O[sub 4]), magnetite (FeFe[sub 2]O[sub 4]), jacobsite (MnFe[sub 2]O[sub 4]), solid solutions between franklinite-magnetite-jacobsite, and zincite (ZnO). Franklinite, magnetite, and jacobsite solid solutions commonly are cruciform or dendritic crystals in a Ca-Fe-Si matrix and contain up to 5% chromium. Magnetite also occurs as spheres partially oxidized to hematite (Fe[sub 2]O[sub 3]) along its octahedral planes. The dust particles are predominantly in the form of spheres and broken spheres, ranging in size from 200 [mu]m to less than 1 [mu]m. Although many spheres are in the size ranges of 40--50 [mu]m and 10--20 [mu]m, most are less than 1 [mu]m in diameter. Automated scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) probed 118 particles in search of chlorine phases. Chlorine-bearing lime (CaO) was identified by that SEM study. In addition, chlorine is present as hydrophylite (CaCl[sub 2]) and sylvite (KCl). Auger electron spectroscopy (AES) was used to sputter the outer 180[angstrom] layer of the dust particles to search for the possible presence of cotunnite (PbCl[sub 2]) coatings, but none were detected. Minor phases detected include chalcopyrite (CuFeS[sub 2]), sphalerite (ZnS), pyrite (FeS[sub 2]), and coke.

  14. Factors influencing quantitative liquid (scanning) transmission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing quantitative liquid (scanning) transmission electron microscopy. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Abstract:...

  15. Cell Detection in Knife-Edge Scanning Microscopy Images of Nissl-stained Mouse and Rat Brain Samples Using Random Forests

    E-Print Network [OSTI]

    Lal Das, Shashwat

    2014-11-26T23:59:59.000Z

    Microscopy has developed into a very powerful medium for studying the brain. The Knife-Edge Scanning Microscope (KESM), for example, is capable of imaging whole rat and mouse brains in three dimensions, and produces over 1.5 terabytes of images per...

  16. Application of Scanning Transmission X-ray Microscopy to the Rubber Industry D.A. Winesett*, H. Ade, A.P. Smith**, and S.G. Urquhart***

    E-Print Network [OSTI]

    Application of Scanning Transmission X-ray Microscopy to the Rubber Industry D.A. Winesett*, H. Ade ExxonMobil Research and Engineering Company Annandale, NJ 08801 Presented at the 2002 ACS Rubber in the rubber industry are usually multi- component systems composed of several elastomers and various fillers

  17. Near-field Localization in Plasmonic Superfocusing: a Nanoemitter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    even resorting to a multitude of new strategies based on near-field effects, surface plasmon polaritons, and metamaterials1-7. The propagation of surface plasmon polaritons (SPP)...

  18. Inverse elastic surface scattering with near-field data

    E-Print Network [OSTI]

    Peijun Li

    2015-02-06T23:59:59.000Z

    Feb 11, 2015 ... detection of oil and ore bodies, they have played an important role in the ... is a suitable assumption in the scenario of near-field imaging.

  19. Characterization of one-dimensional molecular chains of 4,4'-biphenyl diisocyanide on Au(111) by scanning tunneling microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Jing [Univ. of Stony Brook, Stony Brook, NY (United States); White, Michael G. [Univ. of Stony Brook, Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Yan [Brookhaven National Lab. (BNL), Upton, NY (United States); Zahl, Percy [Brookhaven National Lab. (BNL), Upton, NY (United States); Sutter, Peter [Brookhaven National Lab. (BNL), Upton, NY (United States); Stacchiola, Dario J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-14T23:59:59.000Z

    The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy (STM). When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [110] direction of the Au(111) substrate, but exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free –NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions

  20. Characterization of one-dimensional molecular chains of 4,4'-biphenyl diisocyanide on Au(111) by scanning tunneling microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Jing; White, Michael G.; Li, Yan; Zahl, Percy; Sutter, Peter; Stacchiola, Dario J.

    2015-03-14T23:59:59.000Z

    The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy (STM). When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [110] direction of the Au(111) substrate, butmore »exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free –NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions« less

  1. Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials

    E-Print Network [OSTI]

    Svend-Age Biehs

    2011-03-15T23:59:59.000Z

    We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

  2. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    SciTech Connect (OSTI)

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03T23:59:59.000Z

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  3. A robust, scanning quantum system for nanoscale sensing and imaging

    E-Print Network [OSTI]

    P. Maletinsky; S. Hong; M. S. Grinolds; B. Hausmann; M. D. Lukin; R. -L. Walsworth; M. Loncar; A. Yacoby

    2011-08-22T23:59:59.000Z

    Controllable atomic-scale quantum systems hold great potential as sensitive tools for nanoscale imaging and metrology. Possible applications range from nanoscale electric and magnetic field sensing to single photon microscopy, quantum information processing, and bioimaging. At the heart of such schemes is the ability to scan and accurately position a robust sensor within a few nanometers of a sample of interest, while preserving the sensor's quantum coherence and readout fidelity. These combined requirements remain a challenge for all existing approaches that rely on direct grafting of individual solid state quantum systems or single molecules onto scanning-probe tips. Here, we demonstrate the fabrication and room temperature operation of a robust and isolated atomic-scale quantum sensor for scanning probe microscopy. Specifically, we employ a high-purity, single-crystalline diamond nanopillar probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the versatility and performance of our scanning NV sensor by conducting quantitative nanoscale magnetic field imaging and near-field single-photon fluorescence quenching microscopy. In both cases, we obtain imaging resolution in the range of 20 nm and sensitivity unprecedented in scanning quantum probe microscopy.

  4. Electrically-gated near-field radiative thermal transistor

    E-Print Network [OSTI]

    Yang, Yue

    2015-01-01T23:59:59.000Z

    In this work, we propose a near-field radiative thermal transistor made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. Thick SiC plates serve as the thermal "source" and "drain", while graphene sheets function as the "gate" to modulate the near-field photon tunneling by tuning chemical potential with applied voltage biases symmetrically or asymmetrically. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials, which can tune the coupling between graphene plasmon across the vacuum gap. Thermal modulation, switching, and amplification, which are the key features required for a thermal transistor, are theoretically realized and analyzed. This work will pave the way to active thermal management, thermal circuits, and thermal computing.

  5. Thermal excitation of plasmons for near-field thermophotovoltaics

    SciTech Connect (OSTI)

    Guo, Yu; Molesky, Sean; Hu, Huan; Cortes, Cristian L.; Jacob, Zubin, E-mail: zjacob@ualberta.ca [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

    2014-08-18T23:59:59.000Z

    The traditional approaches of exciting plasmons consist of either using electrons (e.g., electron energy loss spectroscopy) or light (Kretchman and Otto geometry) while more recently plasmons have been excited even by single photons. A different approach: thermal excitation of a plasmon resonance at high temperatures using alternate plasmonic media was proposed by S. Molesky et al. [Opt. Express 21, A96–A110 (2013)]. Here, we show how the long-standing search for a high temperature narrowband near-field emitter for thermophotovoltaics can be fulfilled by thermally exciting plasmons. We also describe a method to control Wein's displacement law in the near-field using high temperature epsilon-near-zero metamaterials. Finally, we show that our work opens up an interesting direction of research for the field of slow light: thermal emission control.

  6. Near-field heat transfer between gold nanoparticle arrays

    SciTech Connect (OSTI)

    Phan, Anh D., E-mail: anhphan@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 10000 (Viet Nam); Phan, The-Long, E-mail: ptlong2512@yahoo.com [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Woods, Lilia M. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2013-12-07T23:59:59.000Z

    The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.

  7. Active Thermal Extraction of Near-field Thermal Radiation

    E-Print Network [OSTI]

    Ding, Ding

    2015-01-01T23:59:59.000Z

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. Our study demonstrates a new approach to manipulate thermal radiation that could find applications in thermal management.

  8. Rumen microbial degradation of the top internode of maize Co125 and maize W401 observed by scanning electron microscopy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Rumen microbial degradation of the top internode of maize Co125 and maize W401 observed by scanning, respectively. Observations before and after degradation in the rumen of the top and the bottom of the upper on the tissues were observed. Cell- wall degradation began in the parenchyma and the phloem from the bottom of Co

  9. Carrier redistribution between different potential sites in semipolar (202{sup ¯}1) InGaN quantum wells studied by near-field photoluminescence

    SciTech Connect (OSTI)

    Marcinkevi?ius, S. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden); Gelžinyt?, K. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden); Institute of Applied Research, Vilnius University, Saul?tekio 9-3, 10222 Vilnius (Lithuania); Zhao, Y.; Nakamura, S.; DenBaars, S. P.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-09-15T23:59:59.000Z

    Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202{sup ¯}1) InGaN quantum wells (QWs) emitting in violet, blue, and green-yellow spectral regions. With increased excitation power, an untypical PL peak energy shift to lower energies was observed. The shift was attributed to carrier density dependent carrier redistribution between nm-scale sites of different potentials. Near-field PL scans showed that in (202{sup ¯}1) QWs the in-plane carrier diffusion is modest, and the recombination properties are uniform, which is advantageous for photonic applications.

  10. Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis

    SciTech Connect (OSTI)

    Wirtz, Tom; Fleming, Yves; Gerard, Mathieu [Department 'Science and Analysis of Materials' (SAM), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Gysin, Urs; Glatzel, Thilo; Meyer, Ernst [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Wegmann, Urs [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Maier, Urs [Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Odriozola, Aitziber Herrero; Uehli, Daniel [SPECS Zurich GmbH, Technoparkstr. 1, CH-8005 Zuerich (Switzerland)

    2012-06-15T23:59:59.000Z

    State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 {mu}m in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program 'SARINA,' which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

  11. Direct imaging of light elements by annular dark-field aberration-corrected scanning transmission electron microscopy

    SciTech Connect (OSTI)

    Lotnyk, Andriy, E-mail: andriy.lotnyk@iom-leipzig.de; Poppitz, David; Gerlach, Jürgen W.; Rauschenbach, Bernd [Leibniz Institute of Surface Modification, Permoserstr. 15, D-04318 Leipzig (Germany)

    2014-02-17T23:59:59.000Z

    In this report, we show that an annular dark-field detector in an aberration-corrected scanning transmission electron microscope allows the direct observation of light element columns in crystalline lattices. At specific imaging conditions, an enhancement of the intensities of light element columns in the presence of heavy element columns is observed. Experimental results are presented for imaging the nitrogen and carbon atomic columns at the GaN-SiC interface and within the GaN and SiC compounds. The crystal polarity of GaN at the interface is identified. The obtained findings are discussed and are well supported by image simulations.

  12. Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy

    SciTech Connect (OSTI)

    Harumoto, T. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sawada, H. [Japan Electron Optics Laboratory (JEOL) Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Tanaka, T.; Tanishiro, Y.; Takayanagi, K. [Department of Physics, Tokyo Institute of Technology, 2-12-1-H-51 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2013-02-28T23:59:59.000Z

    The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

  13. Iron on GaN(0001) pseudo-1?×?1 (1+1/(12) ) investigated by scanning tunneling microscopy and first-principles theory

    SciTech Connect (OSTI)

    Lin, Wenzhi; Mandru, Andrada-Oana; Smith, Arthur R., E-mail: smitha2@ohio.edu [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Takeuchi, Noboru [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico Apartado Postal 14, Ensenada Baja California, Codigo Postal 22800 (Mexico); Al-Brithen, Hamad A. H. [Physics and Astronomy Department, King Abdulah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia, and National Center for Nano Technology, KACST, Riyadh (Saudi Arabia)

    2014-04-28T23:59:59.000Z

    We have investigated sub-monolayer iron deposition on atomically smooth GaN(0001) pseudo-1?×?1 (1+1/(12) ). The iron is deposited at a substrate temperature of 360?°C, upon which reflection high energy electron diffraction shows a transformation to a ?(3)×?(3)-R30° pattern. After cooling to room temperature, the pattern transforms to a 6?×?6, and scanning tunneling microscopy reveals 6?×?6 reconstructed regions decorating the GaN step edges. First-principles theoretical calculations have been carried out for a range of possible structural models, one of the best being a Ga dimer model consisting of 2/9 monolayer of Fe incorporated into 7/3 monolayer of Ga in a relaxed but distorted structure.

  14. Report on THMC Modeling of the Near Field Evolution of a Generic...

    Energy Savers [EERE]

    Report on THMC Modeling of the Near Field Evolution of a Generic Clay Repository: Model Validation and Demonstration Rev 2 Report on THMC Modeling of the Near Field Evolution of a...

  15. Near-field thermal radiation transfer controlled by plasmons in graphene

    E-Print Network [OSTI]

    Ilic, Ognjen

    It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange ...

  16. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    SciTech Connect (OSTI)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15T23:59:59.000Z

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  17. Numerical calculations of ultrasonic fields I: transducer near fields

    SciTech Connect (OSTI)

    Johnson, J.A.

    1982-03-01T23:59:59.000Z

    A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two-dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two-dimensional plane strain or two-dimensional axial symmetries can be solved. Free, fixed, or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. This paper gives a brief description of the method and shows the results of the calculation of the near fields of circular flat and focused transducers. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens reconstruction technique off-axis.

  18. Numerical calculations of ultrasonic fields I: transducer near fields

    SciTech Connect (OSTI)

    Johnson, J.A.

    1982-04-01T23:59:59.000Z

    A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two dimensional plane strain or two dimensional axial symmetries can be solved. Free, fixed or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. A brief description of the method is given and the results of the calculation of the near fields of circular flat and focused transducers are shown. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens' reconstruction technique off axis.

  19. Near field radiative heat transfer between two nonlocal dielectrics

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01T23:59:59.000Z

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  20. Near-Field Focused Photoemission from Polystyrene Microspheres...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electron microscopy (PEEM) to image 3 ?m diameter polystyrene spheres supported on a metal thin film illuminated by 400 nm (?3.1 eV) and 800 nm (?1.5 eV) femtosecond...

  1. Imaging of InGaN inhomogeneities using visible apertureless near-field scanning optical microscope

    E-Print Network [OSTI]

    Stebounova, Larissa V.; Romanyuk, Yaroslav E.; Chen, Dongxue; Leone, Stephen R.

    2007-01-01T23:59:59.000Z

    InGaN dots deposited on a GaN substrate. 44 In that work, itGaN buffer layer is grown after the nitridation of the substrate.

  2. Direct comparison between X-ray nanotomography and scanning electron microscopy for the microstructure characterization of a solid oxide fuel cell anode

    SciTech Connect (OSTI)

    Quey, R., E-mail: quey@emse.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); École des Mines de Saint-Étienne, CNRS UMR 5307, 158 cours Fauriel, 42023 Saint-Étienne, Cedex 2 (France); Suhonen, H., E-mail: heikki.suhonen@esrf.fr [European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz BP 220, 38043 Grenoble (France); Laurencin, J., E-mail: jerome.laurencin@cea.fr [CEA-Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Cloetens, P., E-mail: peter.cloetens@esrf.fr [European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz BP 220, 38043 Grenoble (France); Bleuet, P., E-mail: pierre.bleuet@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-04-15T23:59:59.000Z

    X-ray computed nanotomography (nano-CT) and scanning electron microscopy (SEM) have been applied to characterize the microstructure of a Solid Oxide Fuel Cell (SOFC) anode. A direct comparison between the results of both methods is conducted on the same region of the microstructure to assess the spatial resolution of the nano-CT microstructure, SEM being taken as a reference. A registration procedure is proposed to find out the position of the SEM image within the nano-CT volume. It involves a second SEM observation, which is taken along an orthogonal direction and gives an estimate reference SEM image position, which is then refined by an automated optimization procedure. This enables an unbiased comparison between the cell porosity morphologies provided by both methods. In the present experiment, nano-CT is shown to underestimate the number of pores smaller than 1 ?m and overestimate the size of the pores larger than 1.5 ?m. - Highlights: ? X-ray computed nanotomography (nano-CT) and SEM are used to characterize an SOFC anode. ? A methodology is proposed to compare the nano-CT and SEM data on the same region. ? The spatial resolution of the nano-CT data is assessed from that comparison.

  3. Scanning tunneling microscopy of dimeric and polymeric products of electroreduced (Re(CO) sub 3 (4-vinyl,4 prime -methyl-2,2 prime -bipyridine)Cl)

    SciTech Connect (OSTI)

    Snyder, S.R.; White, H.S. (Univ. of Minnesota, Minneapolis (USA)); Lopez, S.; Abruna, H.D. (Cornell Univ., Ithaca, NY (USA))

    1990-02-14T23:59:59.000Z

    Scanning tunneling microscopy (STM) was used to image adsorbed products resulting from electroreduction of (Re(CO){sub 3}(vbpy)Cl) (vbpy = 4-vinyl,4{prime}-methyl-2,2{prime}-bipyridine) on highly oriented pyrolytic graphite (HOPG). STM images, in air, of HOPG electrodes following electroreduction of (Re(CO){sub 3}(vbpy)Cl) (in acetonitrile/0.1 M tetra-n-butylammonium perchlorate) by cycling the potential between 0 and {minus}2.0 V vs a sodium saturated colomel electrode (SSCE) show molecular species uniformly distributed on the surface including approximately dumbbell shaped molecules ({approx} 40 {times} 20 {angstrom}). The size and shape of these aggregates is consistent with products derived from vinyl-vinvyl coupling of Re-Re bonded dimers: ((vbpy)(CO){sub 3}Re-Re(CO){sub 3}(vbpyH-vbpyH)(CO){sub 3}Re-Re(CO){sub 3}(vbpy)). STM images of electrodes prepared by cycling the potential between 0 and {minus}1.45 V vs SSCE (less reducing conditions) show highly nonuniform coating of the surface by polymer. Several polymer morphologies were observed with polymer nucleation preferentially occurring at step sites on HOPG.

  4. Scanning Electron Microscopy Analysis of Fuel/Matrix Interaction Layers in Highly-Irradiated U–Mo Dispersion Fuel Plates with Al and Al–Si Alloy Matrices

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Brandon D. Miller; Jian Gan; Adam B. Robinson; Pavel Medvedev; James Madden; Dan Wachs; Mitch Meyer

    2014-04-01T23:59:59.000Z

    In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U–7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U–7Mo dispersion fuel elements with pure Al, Al–2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U–7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission-gas bubbles. Additionally, solid-fission-product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U–7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al–Si matrices.

  5. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect (OSTI)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01T23:59:59.000Z

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K[sub a]-band system.

  6. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect (OSTI)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01T23:59:59.000Z

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K{sub a}-band system.

  7. Direct imaging of crystal structure and defects in metastable Ge{sub 2}Sb{sub 2}Te{sub 5} by quantitative aberration-corrected scanning transmission electron microscopy

    SciTech Connect (OSTI)

    Ross, Ulrich; Lotnyk, Andriy, E-mail: andriy.lotnyk@iom-leipzig.de; Thelander, Erik; Rauschenbach, Bernd [Leibniz Institute of Surface Modification, Permoserstr. 15, D-04318 Leipzig (Germany)

    2014-03-24T23:59:59.000Z

    Knowledge about the atomic structure and vacancy distribution in phase change materials is of foremost importance in order to understand the underlying mechanism of fast reversible phase transformation. In this Letter, by combining state-of-the-art aberration-corrected scanning transmission electron microscopy with image simulations, we are able to map the local atomic structure and composition of a textured metastable Ge{sub 2}Sb{sub 2}Te{sub 5} thin film deposited by pulsed laser deposition with excellent spatial resolution. The atomic-resolution scanning transmission electron microscopy investigations display the heterogeneous defect structure of the Ge{sub 2}Sb{sub 2}Te{sub 5} phase. The obtained results are discussed. Highly oriented Ge{sub 2}Sb{sub 2}Te{sub 5} thin films appear to be a promising approach for further atomic-resolution investigations of the phase change behavior of this material class.

  8. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna

    E-Print Network [OSTI]

    Xu, Xianfan

    Three-dimensional mapping of optical near field of a nanoscale bowtie antenna Rui Guo*, Edward C. This paper describes an experimental three-dimensional optical near-field mapping of a bowtie nano. The experimental results also demonstrate the polarization dependence of the transmission through the bowtie

  9. Enhanced optical near field from a bowtie aperture Eric X. Jin and Xianfan Xua

    E-Print Network [OSTI]

    Xu, Xianfan

    Enhanced optical near field from a bowtie aperture Eric X. Jin and Xianfan Xua School of Mechanical 2006; published online 11 April 2006 The enhanced optical near field from a bowtie aperture of the same opening area. Light concentration and transmission enhancement of bowtie apertures promise

  10. Tiled-Grating Compressor with Uncompensated Dispersion for Near-Field-Intensity Smoothing

    SciTech Connect (OSTI)

    Huang, H.; Kessler, T.J.

    2007-07-02T23:59:59.000Z

    A tiled-grating compressor, in which the spatial dispersion is not completely compensated, reduces the near-field-intensity modulation caused by tiling gaps and provides near-field spatial filtering of the input laser beam, thus reducing the laser damage to the final optics.

  11. The growth of epitaxial iron oxides on platinum (111) as studied by X-ray photoelectron diffraction, scanning tunneling microscopy, and low energy electron diffraction

    SciTech Connect (OSTI)

    Kim, Y.J.

    1995-05-01T23:59:59.000Z

    Three complementary surface structure probes, x-ray photoelectron diffraction (XPD), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED) have been combined in a single instrument. This experimental system has been utilized to study the structure and growth mechanisms of iron oxide films on Pt(111); these films were formed by first depositing a single overlayer of Fe with a certain coverage in monolayers (ML`s), and then thermally oxidizing it in an oxygen atmosphere. For films up to {approximately}1 ML in thickness, a bilayer of Fe and O similar to those in FeO(111) is found to form. In agreement with prior studies, STM and LEED show this to be an incommensurate oxide film forming a lateral superlattice with short- and long-range periodicities of {approximately}3.1 {Angstrom} and {approximately}26.0 {Angstrom}. XPD in addition shows a topmost oxygen layer to be relaxed inward by -0.6 {Angstrom} compared to bulk FeO(111), and these are new structural conclusions. The oxygen stacking in the FeO(111) bilayer is dominated by one of two possible binding sites. For thicker iron oxide films from 1.25 ML to 3.0 ML, the growth mode is essentially Stranski-Krastanov: iron oxide islands form on top of the FeO(111) bilayer mentioned above. For iron oxide films of 3.0 ML thickness, x-ray photoelectron spectroscopy (XPS) yields an Fe 2p{sub 3/2} binding energy and an Fe:O stoichiometry consistent with the presence of Fe{sub 3}O{sub 4}. Our XPD data further prove this overlayer to be Fe{sub 3}O{sub 4}(111)-magnetite in two almost equally populated domains with a 180{degrees} rotation between them. The structural parameters for this Fe{sub 3}O{sub 4} overlayer generally agree with those of a previous LEED study, except that we find a significant difference in the first Fe-O interplanar spacing. This work demonstrates the considerable benefits to be derived by using this set of complementary surface structure probes in such epitaxial growth studies.

  12. Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip

    E-Print Network [OSTI]

    Kimura, H.

    2010-01-01T23:59:59.000Z

    +? with a Conventional Superconducting Tip Hikari Kimura,1,2between a conventional superconducting scanning tunnelinginhomogeneity in the superconductivity of BSCCO. The

  13. Evaluation of Near Field Atmospheric Dispersion Around Nuclear Facilities Using a Lorentzian Distribution Methodology

    SciTech Connect (OSTI)

    Gavin Hawkley

    2014-12-01T23:59:59.000Z

    Abstract: Atmospheric dispersion modeling within the near field of a nuclear facility typically applies a building wake correction to the Gaussian plume model, whereby a point source is modeled as a plane source. The plane source results in greater near field dilution and reduces the far field effluent concentration. However, the correction does not account for the concentration profile within the near field. Receptors of interest, such as the maximally exposed individual, may exist within the near field and thus the realm of building wake effects. Furthermore, release parameters and displacement characteristics may be unknown, particularly during upset conditions. Therefore, emphasis is placed upon the need to analyze and estimate an enveloping concentration profile within the near field of a release. This investigation included the analysis of 64 air samples collected over 128 wk. Variables of importance were then derived from the measurement data, and a methodology was developed that allowed for the estimation of Lorentzian-based dispersion coefficients along the lateral axis of the near field recirculation cavity; the development of recirculation cavity boundaries; and conservative evaluation of the associated concentration profile. The results evaluated the effectiveness of the Lorentzian distribution methodology for estimating near field releases and emphasized the need to place air-monitoring stations appropriately for complete concentration characterization. Additionally, the importance of the sampling period and operational conditions were discussed to balance operational feedback and the reporting of public dose.

  14. Scanning Tunneling Spectroscopy of Graphene and Magnetic Nanostructures

    E-Print Network [OSTI]

    Brar, Victor Watson

    2010-01-01T23:59:59.000Z

    C. J. Chen, Introduction to Scanning Tunneling Microscopy (Scanning Tunneling Spectroscopy of Graphene and MagneticAli Javey Fall 2010 Scanning Tunneling Spectroscopy of

  15. Electron Microscopy | Center for Functional Nanomaterials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Atomic-resolution imaging of internal materials structure with scanning transmission and transmission electron microscopy Spectroscopic characterization with...

  16. The thermoelectric properties of molecular junctions can now be investigated with scanning tunnelling microscopy. Such experiments provide insights into charge transport in single

    E-Print Network [OSTI]

    Heller, Eric

    The thermoelectric properties of molecular junctions can now be investigated with scanning . They used a scanning tunnelling microscope (STM) to investigate thermoelectricity -- the voltage generated that thermoelectric measurements by STM provide a solution to this problem MOLECULAR ELECTRONICS Charges feel the heat

  17. ITERATIVE NEAR-FIELD (INF) PRECONDITIONER FOR THE MULTILEVEL FAST MULTIPOLE ALGORITHM

    E-Print Network [OSTI]

    Gürel, Levent

    ITERATIVE NEAR-FIELD (INF) PRECONDITIONER FOR THE MULTILEVEL FAST MULTIPOLE ALGORITHM LEVENT G in computa- tional electromagnetics using the multilevel fast multipole algorithm (MLFMA), preconditioners multipole method (FMM), multilevel fast multipole algorithm (MLFMA), sparse approximate inverse

  18. Near-Field Nanopatterning and Associated Energy Transport Analysis with Thermoreflectance 

    E-Print Network [OSTI]

    Soni, Alok

    2013-05-31T23:59:59.000Z

    Laser nano-patterning with near-field optical microscope (NSOM) and the associated energy transport analysis are achieved in this study. Based on combined experimental/theoretical analyses, it is found that laser nano-patterning with a NSOM...

  19. SVNY294-Kalinin July 17, 2006 16:18 Principles of Near-Field

    E-Print Network [OSTI]

    Anlage, Steven

    in the field, and discuss a novel quantitative modeling approach to interpreting near-field microwave images samples to eliminate de-magnetization and de-polarization effects, but such sam- ples are rarely available

  20. Tip-Enhanced Near-Field Raman Spectroscopy Probing Single Dye...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was used to characterize an interfacial electron transfer system of dye-sensitized titanium oxide (TiO2) nanoparticles. We have obtained the near-field Raman spectra that are...

  1. Scanning Gate Spectroscopy and Its Application to Carbon Nanotube Defects

    E-Print Network [OSTI]

    Collins, Philip G

    2011-01-01T23:59:59.000Z

    24) Sarid, D. Exploring Scanning Probe Microscopy withS. V. ; Gruverman, A. Scanning probe microscopy: electricalLETTER pubs.acs.org/NanoLett Scanning Gate Spectroscopy and

  2. Scanning probe characterization of novel semiconductor materials and devices

    E-Print Network [OSTI]

    Zhou, Xiaotian

    2007-01-01T23:59:59.000Z

    InGaN/GaN quantum wells by scanning capacitance microscopywell heterostructures by scanning capacitance microscopy”InGaN/GaN quantum wells by scanning capacitance microscopy”

  3. Phase modulated multiphoton microscopy

    E-Print Network [OSTI]

    Karki, Khadga Jung; Pullerits, Tonu

    2015-01-01T23:59:59.000Z

    We show that the modulation of the phases of the laser beams of ultra-short pulses leads to modulation of the two photon fluorescence intensity. The phase modulation technique when used in multi-photon microscopy can improve the signal to noise ratio. The technique can also be used in multiplexing the signals in the frequency domain in multi-focal raster scanning microscopy. As the technique avoids the use of array detectors as well as elaborate spatiotemporal multiplexing schemes it provides a convenient means to multi-focal scanning in axial direction. We show examples of such uses. Similar methodology can be used in other non-linear scanning microscopies, such as second or third harmonic generation microscopy.

  4. Atomic-Scale Investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling Microscopy and Spectroscopy

    E-Print Network [OSTI]

    Kim, Sehun

    Atomic-Scale Investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling ReceiVed: June 26, 2010 Graphene was epitaxially grown on a 6H-SiC(0001) substrate by thermal the evolution of the graphene growth as a function of the temperature. We found that the evaporation of Si

  5. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-06-23T23:59:59.000Z

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  6. Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-18T23:59:59.000Z

    The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10?nm gap.

  7. Dielectric microscopy with submillimeter resolution

    E-Print Network [OSTI]

    Nathan S. Greeney; John A. Scales

    2007-06-20T23:59:59.000Z

    In analogy with optical near-field scanning methods, we use tapered dielectric waveguides as probes for a millimeter wave vector network analyzer. By scanning thin samples between two such probes we are able to map the spatially varying dielectric properties of materials with sub-wavelength resolution; using a 150 GHz probe in transmision mode we see spatial resolution of around 500 microns. We have applied this method to a variety of highly heterogeneous materials. Here we show dielectric maps of granite and oil shale.

  8. Near-field dispersal modeling for liquid fuel-air explosives

    SciTech Connect (OSTI)

    Gardner, D.R.

    1990-07-01T23:59:59.000Z

    The near-field, explosive dispersal of a liquid into air has been explored using a combination of analytical and numerical models. The near-field flow regime is transient, existing only as long as the explosive forces produced by the detonation of the burster charge dominate or are approximately equal in magnitude to the aerodynamic drag forces on the liquid. The near-field model provides reasonable initial conditions for the far-field model, which is described in a separate report. The near-field model consists of the CTH hydrodynamics code and a film instability model. In particular, the CTH hydrodynamics code is used to provide initial temperature, pressure, and velocity fields, and bulk material distribution for the far-field model. The film instability model is a linear stability model for a radially expanding fluid film, and is used to provide a lower bound on the breakup time and an upper and lower bound on the initial average drop diameter for the liquid following breakup. Predictions of the liquid breakup time and the initial arithmetic average drop diameter from the model compare favorably with the sparse experimental data. 26 refs., 20 figs., 8 tabs.

  9. Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography

    SciTech Connect (OSTI)

    Li, S. P.; Lebib, A.; Peyrade, D.; Natali, M.; Chen, Y.; Lew, W. S.; Bland, J. A. C.

    2001-07-01T23:59:59.000Z

    We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified. {copyright} 2001 American Institute of Physics.

  10. Sub-THz Beam-forming using Near-field Coupling of Distributed Active Radiator Arrays

    E-Print Network [OSTI]

    Hajimiri, Ali

    91125, USA Abstract -- The paper demonstrates Distributed Active Radiator (DAR) arrays as a novel way for mutually locking multiple DARs to beam-form and generate high EIRP. As proofs of concept, 2x1 and 2x2 arrays of DARs, mutually synchronized through near-field coupling, are implemented in 65nm bulk CMOS

  11. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

  12. Particle resuspension in the Columbia River plume near field Emily Y. Spahn,1

    E-Print Network [OSTI]

    Particle resuspension in the Columbia River plume near field Emily Y. Spahn,1 Alexander R. Horner are used to investigate the mechanisms of sediment resuspension and entrainment into the plume. An east, the plume is much less stratified during low-discharge conditions, and large resuspension events

  13. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging

    E-Print Network [OSTI]

    Xu, Xianfan

    High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging Liang Wang probe integrated with nanoscale bowtie aperture for enhanced optical transmission is demonstrated. The bowtie-shape aperture allows a propagating mode in the bowtie gap region, which enables simultaneous

  14. Improving near-field confinement of a bowtie aperture using surface plasmon polaritons

    E-Print Network [OSTI]

    Xu, Xianfan

    Improving near-field confinement of a bowtie aperture using surface plasmon polaritons Pornsak; published online 1 June 2011 Bowtie aperture is known to produce subdiffraction-limited optical spot with high intensity. In this work, we investigate integrating a bowtie aperture with circular grooves

  15. EMC-ORIENTED ANALYSIS OF ELECTRIC NEAR-FIELD IN HIGH FREQUENCY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EMC-ORIENTED ANALYSIS OF ELECTRIC NEAR-FIELD IN HIGH FREQUENCY Ali Alaeldine12 , Olivier Maurice3 - 35043 Rennes Cedex - France 3 EMC for Automotive Systems Group - Research and Development Center - PSA - Route de Gachet - 44300 Nantes - France Abstract. This paper introduces an EMC-oriented study

  16. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect (OSTI)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2013-01-21T23:59:59.000Z

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  17. An environmental sample chamber for reliable scanning transmission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor. An environmental sample chamber for reliable scanning transmission...

  18. Subsurface Examination of a Foliar Biofilm Using Scanning Electron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam Microscopy. Subsurface Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam...

  19. Decision making based on optical excitation transfer via near-field interactions between quantum dots

    SciTech Connect (OSTI)

    Naruse, Makoto, E-mail: naruse@nict.go.jp [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Nomura, Wataru; Ohtsu, Motoichi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Aono, Masashi [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguru-ku, Tokyo 152-8550 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge [Université Grenoble Alpes, Inst. NEEL, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France); Kim, Song-Ju [WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-21T23:59:59.000Z

    Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.

  20. Novel microwave near-field sensors for material characterization, biology, and nanotechnology

    E-Print Network [OSTI]

    Joffe, R; Shavit, R

    2015-01-01T23:59:59.000Z

    The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterization, biology, and nanotechnology. The sensor is based on a subwavelength ferrite-disk resonator with magnetic-dipolar-mode (MDM) oscillations. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring material parameters in microwaves, both for ordinary structures and objects with chiral properties.

  1. Photon sorting in the near field using subwavelength cavity arrays in the near-infrared

    SciTech Connect (OSTI)

    Mandel, Isroel M., E-mail: imandel@gc.cuny.edu; Lansey, Eli [Department of Physics, Graduate Center and City College of the City University of New York, New York 10016 (United States)] [Department of Physics, Graduate Center and City College of the City University of New York, New York 10016 (United States); Gollub, Jonah N.; Sarantos, Chris H.; Akhmechet, Roman [Phoebus Optoelectronics, New York, New York 10013 (United States)] [Phoebus Optoelectronics, New York, New York 10013 (United States); Golovin, Andrii B.; Crouse, David T. [Department of Electrical Engineering, The City College of New York, New York, New York 10031 (United States)] [Department of Electrical Engineering, The City College of New York, New York, New York 10031 (United States)

    2013-12-16T23:59:59.000Z

    A frequency selective metasurface capable of sorting photons in the near-infrared spectral range is designed, fabricated, and characterized. The metasurface, a periodic array of dielectric cylindrical cavities in a gold film, localizes and transmits light of two spectral frequency bands into spatially separated cavities, resulting in near-field light splitting. The design and fabrication methodologies of the metasurface are discussed. The transmittance and photon sorting properties of the designed structure is simulated numerically and the measured transmission is presented.

  2. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect (OSTI)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard [Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich (Switzerland)

    2014-08-15T23:59:59.000Z

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18?100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  3. Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces

    SciTech Connect (OSTI)

    Unal, Baris

    2008-12-01T23:59:59.000Z

    The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of their top planes. Hence, we name them as Pd+(with Pd) and Pd-(without Pd). Based on their planer structure and the step height, it can be said that these two families can be viable surface terminations. However, besides the Pd content, these two sets differ in terms of relative densities of their top planes as well as the gap separating the layer from the nearest atomic plane. The experimental data and other arguments lead to the conclusion that the Pd- family is favored over the Pd+. This has an important implication on the interpretation of local motifs seen in the high resolution STM images. In other words, the dark stars are not formed by cut-Bergmans rather they are formed by cut-Mackays.

  4. Novel Approaches to Soft X-ray Spectroscopy: Scanning TransmissionX-ray Microscopy and Ambient Pressure X-Ray PhotoelectronSpectroscopy

    SciTech Connect (OSTI)

    Bluhm, Hendrik; Gilles, Mary K.; Mun, Simon B.; Tyliszczak, Tolek

    2006-02-01T23:59:59.000Z

    This workshop focused on novel spectroscopies at Beamlines 11.0.2, 5.3.2 and 9.3.2 at the ALS. The workshop brought together users from a wide range of fields to highlight recent experimental and technical developments both in scanning transmission X-ray spectroscopy (STXM) and ambient pressure photoelectron spectroscopy (APPES). The morning session featured talks on experiments involving new developments at the STXM, while the afternoon session was devoted to those using APXPS. In the morning session, Tolek Tyliszczak discussed the improved detector developments at the STXM, such as an avalanche photodiode detector and fluorescence and electron detection, as well as the continued development of in situ cells for heating, gas flow, and electrochemical cells. Of these, only the avalanche photodiode in combination with a novel multichannel photon-counting system is in routine use in time-resolved studies. Bartel Van Waeyenberge (Ghent University) presented results of magnetic imaging with a time resolution of 70-100 ps combined with a lateral resolution of 20-40 nm performed with the STXM (Beamline 11.0.2). As a complement to the time-domain ''pump-and-probe'' measurements, they developed a frequency-domain ''sine-excitation'' technique in order to study specific eigenmodes of these ferromagnetic patterns with high spatial resolution. This new approach was used to study the gyrotropic vortex motions in micron-sized ferromagnetic patterns. Adam Hitchcock (McMaster University) presented the development, in collaboration with Daniel Guay (INRS, Varennes) and Sherry Zhang, of the apparatus and techniques for applying STXM to in-situ studies of electrochemistry, in particular electrochromism in polyaniline. In addition, substantial progress was reported on a joint project to develop substrates and methods for chemically selective lithography of multilayer polymer systems. Selective patterns, such as that displayed in the figure, can now be written efficiently with the bend magnet STXM on Beamline 5.3.2. Yves Acremann (SSRL) discussed time and spatially resolved X-ray magnetic circular dichroism (XMCD) experiments on spin transfer devices at the STXM (Beamline 11.0.2). These elegant experiments explore time resolved measurements of the magnetization dynamics within a 100 x 150 nm sample influenced by a spin-polarized current. This experiment shows that the magnetization in these magnetic nanostructures are not uniform, as they are influenced by the Oersted field of the charge current needed to generate the spin current. The implementation of a novel multichannel photon counting system in combination with an avalanche photon detector decreased the data-acquisition time by a factor of 10, owing to its ability to resolve the structure of multi bunch mode. Gordon E. Brown, Jr. (Stanford University and SSRL) described ''Applications of STXM to Microbial Bioweathering and Biomineralization''. In the interaction of bacteria with ferrihydrite nanoparticles, microenvironments that were very different than the bulk material were observed, showing that bulk thermodynamics may not be useful for predicting micro phases. Gordon also presented work showing that iron nanoparticles are attracted to the negatively charged bacteria and form a coating that reduces iron oxide minerals. The afternoon session started with presentations by Simon Mun and Hendrik Bluhm, who discussed the current status and the future plans for the two APPES end-stations at the ALS, which are located at Beamlines 9.3.2 and 11.0.2, respectively. In both end-stations, samples can be measured in gaseous environments at pressures of up to several Torr, which makes possible the investigation of numerous phenomena, in particular in the fields of atmospheric and environmental science as well as heterogeneous catalysis. Specific examples of the application of APPES were shown in the following presentations. John Hemminger (University of California, Irvine) reported on APPES investigations at Beamlines 9.3.2 and 11.0.2 of the interaction of alkali halide surfaces with water. The m

  5. katherine henderson Pathology Slide Scanning rev1 Page 1 10/21/14 Scanning in Pathology

    E-Print Network [OSTI]

    katherine henderson Pathology Slide Scanning rev1 Page 1 10/21/14 Scanning in Pathology Pathology offers several scanning methods: · Whole slide scans to be used as virtual microscopy ­ Aperio or Bioimager · Flatbed scans for gels, art work, radiology film, transparencies (12in x 17in max.) · Nikon

  6. Geochemistry of Natural Components in the Near-Field Environment, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Peterman, Zell E. [Yucca Mountain Project Branch, U.S. Geological Survey, MS 963 Box 25046 Denver Federal Center, 6th and Kipling Sts., Denver, CO, 80225 (United States); Oliver, Thomas A. [c/o U.S. Geological Survey, S.M. Stoller Corporation, MS 421 Box 25046 Denver Federal Center, Denver, CO, 80225 (United States)

    2007-07-01T23:59:59.000Z

    The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage, and pore water. The chemical compositions of these components have been determined for assessing possible chemical and mineralogical reactions that may occur after nuclear waste is emplaced. The rock hosting the proposed repository is relatively uniform as shown by a mean coefficient of variation (CV) of 9 percent for major elements. In contrast, compositional variations of dust (bulk and water-soluble fractions), pore water, and seepage are large with mean CVs ranging from 28 to 64 percent. (authors)

  7. Nonlocal study of the near field radiative heat transfer between two n-doped semiconductors

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01T23:59:59.000Z

    We study in this work the near-field radiative heat transfer between two semi-infinite parallel planes of highly n-doped semiconductors. Using a nonlocal model of the dielectric permittivity, usually used for the case of metallic planes, we show that the radiative heat transfer coefficientsaturates as the separation distance is reduced for high doping concentration. These results replace the 1/d${}^2$ infinite divergence obtained in the local model case. Different features of the obtained results are shown to relate physically to the parameters of the materials, mainly the doping concentration and the plasmon frequency.

  8. Characterizing Low-Permeable Granitic Rock From Micrometer to Centimeter Scale: X-ray Micro-computed Tomography, Confocal Laser Scanning Microscopy and {sup 14}C-PMMA Method

    SciTech Connect (OSTI)

    Laehdemaeki, T.; Kelokaski, M.; Siitari-Kauppi, M. [Laboratory of Radiochemistry, University of Helsinki, P.O.Box 55, University of Helsinki, FIN- 00014 (Finland); Voutilainen, M.; Myllys, M.; Turpeinen, T.; Timonen, J. [Department of Physics, University of Jyvaeskylae, P.O.Box 35, Jyvaeskylae, FIN-40351 (Finland); Mateos, F.; Montoto, M. [Department of Geology, University of Oviedo, Oviedo, 33005 (Spain)

    2007-07-01T23:59:59.000Z

    First results of combining X-ray micro-computed tomography ({mu}CT), confocal laser-scanning microscopy (CLSM) and {sup 14}C-poly-methyl-methacrylate ({sup 14}C-PMMA) impregnation techniques in the study of granitic rock samples are reported. Combining results of {mu}CT and CLSM with those of the {sup 14}C-PMMA technique, the mineral-specific porosity and morphology of the open pore space, as well as its connectivity, could be analyzed from a micrometer up to a decimeter scale. Three different types of granite were studied. In two cases part of the micro-fissure and pore apertures were found to be in a micrometer scale, but in one case all grain-boundary openings were below the detection limit. Micrometer-scale apertures could be analyzed by CLSM and {mu}CT. The benefit of {mu}CT is that it can also provide the heterogeneous distribution of minerals in 3D. The 2D porosity distributions in the mineral phases, consisting of nanometer-scale pores, could be measured by the {sup 14}C-PMMA method together with the micro-fissures. This method does not, however, give the exact pore apertures. The limitations and applicability of the methods are discussed. (authors)

  9. Shape-independent limits to near-field radiative heat transfer

    E-Print Network [OSTI]

    Miller, Owen D; Rodriguez, Alejandro W

    2015-01-01T23:59:59.000Z

    We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced bodies, generalizing the concept of a black body to the case of near-field energy transfer. By conservation of energy, we show that each body of susceptibility $\\chi$ can emit and absorb radiation at enhanced rates bounded by $|\\chi|^2 / \\operatorname{Im} \\chi$, optimally mediated by near-field photon transfer proportional to $1/d^2$ across a separation distance $d$. Dipole--dipole and dipole--plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and s...

  10. Expected near-field thermal performance for nuclear waste repositories at potential salt sites: Technical report

    SciTech Connect (OSTI)

    McNulty, E.G.

    1987-08-01T23:59:59.000Z

    Thermal analyses were made for the environmental assessments of seven potential salt sites for a nuclear waste repository. These analyses predicted that potential repository sites in domal salts located in the Gulf Coast will experience higher temperature than those in bedded salts of Paradox and Palo Duro Basins, mainly because of higher ambient temperatures at depth. The TEMPV5 code, a semi-analytical heat transfer code for finite line sources, calculated temperatures for commercial high-level waste (CHLW) and spent fuel from pressurized-water reactors (SFPWR). Benchmarks with HEATING6, THAC-SIP-3D, STEALTH, and SPECTROM-41 showed that TEMPV5 agreed closely in the very near field around the waste package and approximately in the near-field and far-field regions of the repository. The analyses used site-specific thermal conductivities that were increased by 40% to compensate for reductions caused by testing technique, salt impurities, and other heterogeneities, and sampling disturbance. Analyses showed peak salt temperatures of 236/sup 0/C (CHLW) and 134/sup 0/C (SFPWR) for the bedded salt and 296/sup 0/C (CHLW) and 180/sup 0/C (SFPWR) for the domal salt. Analyses with uncorrected laboratory thermal conductivities would increase peak salt temperatures by about 120/sup 0/C for CHLW and about 60/sup 0/C for SFPWR. These temperature increases would increase the thermally induced flow of brine and accelerate corrosion of the waste package. 30 refs., 35 figs., 48 tabs.

  11. Tungsten Nanowire Based Hyperbolic Metamaterial Emitters for Near-field Thermophotovoltaic Applications

    E-Print Network [OSTI]

    Chang, Jui-Yung; Wang, Liping

    2014-01-01T23:59:59.000Z

    Recently, near-field radiative heat transfer enhancement across nanometer vacuum gaps has been intensively studied between two hyperbolic metamaterials (HMMs) due to unlimited wavevectors and high photonic density of state. In this work, we theoretically analyze the energy conversion performance of a thermophotovoltaic (TPV) cell made of In0.2Ga0.8Sb when paired with a HMM emitter composed of tungsten nanowire arrays embedded in Al2O3 host at nanometer vacuum gaps. Fluctuational electrodynamics integrated with effective medium theory and anisotropic thin-film optics is used to calculate the near-field radiative heat transfer. It is found that the spectral radiative energy is enhanced by the epsilon-near-zero and hyperbolic modes at different polarizations. As a result, the power output from a semi-infinite TPV cell is improved by 1.85 times with the nanowire HMM emitter over that with a plain tungsten emitter at a vacuum gap of 10 nm. Moreover, by using a thin TPV cell with 10 um thickness, the conversion eff...

  12. Scanning electron microscopy of intestinal villous structures

    E-Print Network [OSTI]

    Boyer, Edmond

    briefly in running water for 30 minutes and were dehydrated through graded ethanol series (1 hour each in 50, 70, 80, 95 and 100 %). Dehydrated specimens were dried in a carbon dioxide critical point drier to avoid exposure of the specimens to any surface tension forces when drying. The dried specimens were

  13. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26T23:59:59.000Z

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  14. A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV

    E-Print Network [OSTI]

    Kilcoyne, David

    2010-01-01T23:59:59.000Z

    and y interferometers (z is optional) sample scanning stackzone plate scanning stack FIGURE 6 Layout of functionalMagnet Beam Line for Scanning Transmission X-ray Microscopy

  15. Correlated Topographic and Spectroscopic Imaging by Combined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Combined Atomic Force Microscopy and Optical Microscopy. Abstract: Near-field scanning microscopy is a powerful approach to obtain topographic and spectroscopic...

  16. Modification of the Absorption Cross Section in the Optical Near-field

    E-Print Network [OSTI]

    Moritz Striebel; Jeff F. Young; Jörg Wrachtrup; Ilja Gerhardt

    2014-11-20T23:59:59.000Z

    The optical interaction of light and matter is modeled as an oscillating dipole in a plane wave. We analyze absorption, scattering and extinction for this system by the energy flow, which is depicted by streamlines of the Poynting vector. Depending on the dissipative damping of the oscillator, the streamlines end up in the dipole. Based on a graphical investigation of the streamlines, this represents the absorption cross section, and forms a far-field absorption aperture. In the near-field of the oscillator, a modification of the aperture is observed. This scheme can be adapted to a single dipolar emitter, interacting with a light field. In the case of the absorption by a single atom, where the oscillator has a circular dipole characteristics, we model the energy flow and derive the apertures.

  17. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Riccardo Messina; Philippe Ben-Abdallah

    2012-07-05T23:59:59.000Z

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

  18. Near-field heat transfer between a nanoparticle and a rough surface

    E-Print Network [OSTI]

    Svend-Age Biehs; Jean-Jacques Greffet

    2011-03-11T23:59:59.000Z

    In this work we focus on the surface roughness correction to the near-field radiative heat transfer between a nanoparticle and a material with a rough surface utilizing a direct perturbation theory up to second order in the surface profile. We discuss the different distance regimes for the local density of states above the rough material and the heat flux analytically and numerically. We show that the heat transfer rate is larger than that corresponding to a flat surface at short distances. At larger distances it can become smaller due to surface polariton scattering by the rough surface. For distances much smaller than the correlation length of the surface profile, we show that the results converge to a proximity approximation, whereas in the opposite limit the rough surface can be replaced by an equivalent surface layer.

  19. Slide27 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    ETDEWEB - Bibliographic Citation image of report downloaded (Investigation of optical nanostructures for photovoltaics with near-field scanning microscopy...

  20. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Anhui, CN); Schultz, Peter G. (La Jolla, CA); Wei, Tao (Sunnyvale, CA)

    2003-01-01T23:59:59.000Z

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  1. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

    2001-01-01T23:59:59.000Z

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  2. hal-00252040,version1-12Feb2008 Near-field induction heating of metallic nanoparticles due to infrared magnetic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hal-00252040,version1-12Feb2008 Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution Pierre-Olivier Chapuis, Marine Laroche, Sebastian Volz, and Jean.ecp.fr We revisit the electromagnetic heat transfer between a metallic nanoparticle and a metallic semi

  3. PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons in graphene

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    2012-01-01T23:59:59.000Z

    in graphene Ognjen Ilic,1,* Marinko Jablan,2 John D. Joannopoulos,1 Ivan Celanovic,3 Hrvoje Buljan,2 and Marin-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene

  4. Near-Field Hydrology Data Package for the Integrated Disposal Facility 2005 Performance Assessment

    SciTech Connect (OSTI)

    Meyer, Philip D.; Saripalli, Prasad; Freedman, Vicky L.

    2004-06-25T23:59:59.000Z

    CH2MHill Hanford Group, Inc. (CHG) is designing and assessing the performance of an Integrated Disposal Facility (IDF) to receive immobilized low-activity waste (ILAW), Low-Level and Mixed Low-Level Wastes (LLW/MLLW), and the Waste Treatment Plant (WTP) melters used to vitrify the ILAW. The IDF Performance Assessment (PA) assesses the performance of the disposal facility to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. The PA requires prediction of contaminant migration from the facilities, which is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists CHG in its performance assessment activities. One of PNNL’s tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information were previously presented in a report prepared for the 2001 ILAW PA. This report updates the parameter estimates for the 2005 IDF PA using additional information and data collected since publication of the earlier report.

  5. Microscopy image segmentation tool: Robust image data analysis

    SciTech Connect (OSTI)

    Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)] [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2014-03-15T23:59:59.000Z

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  6. Heat assisted magnetic recording with patterned FePt recording media using a lollipop near field transducer

    SciTech Connect (OSTI)

    Ghoreyshi, Ali; Victora, R. H., E-mail: victora@umn.edu [MINT, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-05-07T23:59:59.000Z

    In heat-assisted magnetic recording, optical energy is transferred to a small optical spot on the recording media using a near field transducer. In this study, a scattered field finite difference time domain simulation is used to analyze the performance of a lollipop transducer in heat assisted magnetic recording on both a patterned FePt media and a continuous thin film. To represent wear, sharp corners of the peg are approximated with curved ones, which are found to narrow the track width without excessive loss of intensity. Compared with continuous media, the patterned media exhibits higher energy efficiency and a better concentrated optical beam spot. This effect is due to the near field effects of patterned media on the performance of the transducer.

  7. Magnetic-field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters

    E-Print Network [OSTI]

    Moncada-Villa, Edwin; Garcia-Vidal, Francisco J; Garcia-Martin, Antonio; Cuevas, Juan Carlos

    2015-01-01T23:59:59.000Z

    We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semicond...

  8. Optical 2-D Scanning System for Laser - Generated Shockwave Treatment of Wound Infections

    E-Print Network [OSTI]

    Patel, Shahzad Neville

    2013-01-01T23:59:59.000Z

    biofilm structure from confocal scanning laser microscopyAngeles Optical 2-D Scanning System for Laser - GeneratedTHE THESIS Optical 2-D Scanning System for Laser-Generated

  9. Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy Carolyn A. SuttonCarolyn A. Sutton PH 464PH 464 #12;OverviewOverview The OpticalThe Optical MicroscopeMicroscopy 4 Pi Microscopy4 Pi Microscopy Optical Microscope for Metallography #12;Optical Microscope: OriginsOptical

  10. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  11. Variable-ambient scanning stage for a laser scanning confocal microscope D. J. Sirbuly, J. P. Schmidt, M. D. Mason, M. A. Summers, and S. K. Burattoa)

    E-Print Network [OSTI]

    Buratto, Steve

    Variable-ambient scanning stage for a laser scanning confocal microscope D. J. Sirbuly, J. P A variable-ambient scanning stage for a laser scanning confocal microscope was designed and tested. The stage attempts to remove deleterious species such as oxygen in laser scanning confocal microscopy experiments

  12. A Combined Near-field Scanning Microwave Microscope and Transport Measurement System for Characterizing Dissipation in Conducting and High-Tc Superconducting Films at Variable Temperature

    E-Print Network [OSTI]

    Dizon, Jonathan Reyes

    2009-04-28T23:59:59.000Z

    Identifying defects and non-superconducting regions in high-temperature superconductors (HTS) is of great importance because they limit the material's capability to carry higher current densities and serve as nucleation ...

  13. Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical K. Bittkau* and R. Carius

    E-Print Network [OSTI]

    Peinke, Joachim

    relevance. In particular, when designing thin-film solar cells and light emitting diodes LEDs , ran- domly

  14. Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon and Washington: behavior in near-field and far-field plumes

    E-Print Network [OSTI]

    Hickey, Barbara

    and Washington: behavior in near-field and far-field plumes Matthew T. Brown* and Kenneth W. Bruland Department conditions (Bruland et al., 2008). The Columbia River plume also plays a key role in the delivery of both mac

  15. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

    2013-01-26T23:59:59.000Z

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys������� that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

  16. Optical near-field induced visible response photoelectrochemical water splitting on nanorod TiO{sub 2}

    SciTech Connect (OSTI)

    Thu Hac Huong Le; Mawatari, Kazuma; Pihosh, Yuriy; Kitamori, Takehiko [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Kawazoe, Tadashi; Yatsui, Takashi; Ohtsu, Motoichi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Tosa, Masahiro [Micro-Nano Component Materials Group, Materials Engineering Laboratory, National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-11-21T23:59:59.000Z

    Here we report a way to induce the visible response of non-doped TiO{sub 2} in the photocatalytic electrochemical water splitting, which is achieved by utilizing the optical near-field (ONF) generated on nanorod TiO{sub 2}. The visible response is attributed to the ONF-induced phonon-assisted excitation process, in which TiO{sub 2} is excited by sub-bandgap photons via phonon energy. Our approach directly gets involved in the excitation process without chemical modification of materials; accordingly it is expected to have few drawbacks on the photocatalytic performance. This study may offer another perspective on the development of solar harvesting materials.

  17. Massively Parallel Scanning Probe Nanolithography Daniel J. Arbuckle and Aristides A. G. Requicha

    E-Print Network [OSTI]

    Southern California, University of

    Massively Parallel Scanning Probe Nanolithography Daniel J. Arbuckle and Aristides A. G. Requicha on Scanning Probe Microscopy (SPM) are sequential, and therefore have a low throughput. This paper discusses are presented to validate the approach. Keywords-Nanorobotics, Scanning Probe Microscopy (SPM), Multi-Tip SPM

  18. FSU Property Scanning Procedures To Scan Barcodes

    E-Print Network [OSTI]

    McQuade, D. Tyler

    1 of 3 FSU Property Scanning Procedures To Scan Barcodes: 1) To power up the scanner BLUE=CONTINUE ESC=DONE 4) Press the yellow button to scan your FSU location tag. When the location tag has been successfully scanned you will hear a beep and the display will look like this: ITEM

  19. Demonstration of Ballistic Electron Emission Microscopy / Spectroscopy on the Au/Si (001) system

    E-Print Network [OSTI]

    Drummond, Mary Alyssa

    1997-01-01T23:59:59.000Z

    The Ballistic Electron Emission Microscopy (BEEM) capabilities of a Scanning Tunneling Microscope (STM) have been verified. BEEM is used to analyze the characteristics of buried energy barriers and was developed as an extension of scanning tunneling...

  20. annular dark-field scanning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry nanoparticles. The image contrast in HAADF-STEM is...

  1. Combining In-Situ Buffer-Layer-Assisted-Growth with Scanning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capability Development Proposals Combining In Situ Buffer-Layer-Assisted-Growth with Scanning Probe Microscopy for Formation and Study of Supported Model Catalysts Project start...

  2. Development of a microfluidic device for patterning multiple species by scanning probe lithography

    E-Print Network [OSTI]

    Rivas Cardona, Juan Alberto

    2009-06-02T23:59:59.000Z

    Scanning Probe Lithography (SPL) is a versatile nanofabrication platform that leverages microfluidic “ink” delivery systems with Scanning Probe Microscopy (SPM) for generating surface-patterned chemical functionality on the sub-100 nm length scale...

  3. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Elders, W.A.; Cohen, L.H.

    1983-11-01T23:59:59.000Z

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  4. 1996, Journal of Microscopy 181, 225-237 (and vol 182, p 240.) Multimodal microscopy by digital image processing

    E-Print Network [OSTI]

    Stone, J. V.

    , Blakistone and Kyryk 1990 compared applications of polarised light, bright eld, DIC and scanning electron microscopy SEM in the paper industry. Fluorescence microscopy adds further possible imaging modes to light. 1 #12;1 Introduction Di erent imaging modes with the light microscope convey complementary infor

  5. Near-field Second Harmonic Imaging of Granular Membrane Structures in Natural Killer Richard D. Schaller, Claude Roth, David H. Raulet, and Richard J. Saykally*,

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Near-field Second Harmonic Imaging of Granular Membrane Structures in Natural Killer Cells Richard) cells were recorded at four different wavelengths using a tunable near-infrared femtosecond laser membrane. Introduction Natural killer cells are a class of white blood cells that attack pathogen

  6. 228 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 6, NO. 3, JUNE 2012 Maximum Achievable Efficiency in Near-Field

    E-Print Network [OSTI]

    Gulak, P. Glenn

    the maximum possible power ef- ficiency under arbitrary input impedance conditions based on the general two are remotely powered by means of a power amplifier operating at a fixed carrier frequency. Additional or bidirectional command and data transfer. The power efficiency of the near-field link is a measure of: (i

  7. Analysis and Design of a Test Apparatus for Resolving Near-Field Effects Associated With Using a Coarse Sun Sensor as Part of a 6-DOF Solution 

    E-Print Network [OSTI]

    Stancliffe, Devin Aldin

    2011-10-21T23:59:59.000Z

    for low-cost, low-mass solutions for close-proximity relative navigation sensors, this research analyzed the expected errors due to near-field effects using a coarse sun sensor as part of a 6-degree-of-freedom (6-dof) solution. To characterize these near...

  8. Instrument Series: Microscopy Ultra-High Vacuum, Low-

    E-Print Network [OSTI]

    Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM range of surface analytical techniques at low temperature ­ enables ultra-violet/X-ray photoelectron

  9. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22T23:59:59.000Z

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Danville, CA); Gao, Chen (Anhui, CN); Duewer, Fred (Albany, CA); Yang, Hai Tao (Albany, CA); Lu, Yalin (Chelmsford, MA)

    2009-06-23T23:59:59.000Z

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  11. Application of High-Angle Annular Dark Field Scanning Transmission

    E-Print Network [OSTI]

    Utsunomiya, Satoshi

    Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometry, and Energy-Filtered Transmission field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry). Techniquesthatareusefulinanalyzingultrafineatmospheric particles, such as STEM, EELS (electron energy loss spec- trometry), AFM, and mass spectrometry

  12. SCANNING HALL PROBE MICROSCOPY OF SUPERCURRENTS IN YBCO FILMS

    E-Print Network [OSTI]

    Moler, Kathryn A.

    and reducing gears. It en- ables me to image an entire sample, then zoom in on regions of interest, down image two "coat- ed conductors"--YBCO grown on metal tape. I find relatively homogeneous flux

  13. Scanning probe microscopy of nucleic acids and thin organic films

    E-Print Network [OSTI]

    Marat Olegovich Gallyamov

    2011-04-24T23:59:59.000Z

    We developed the models and algorithms to describe two main artefacts of AFM: (i) broadening effect and (ii) decreased heights of profiles for individual objects adsorbed on a hard substrate. It was shown how to measure elastic properties of a single adsorbed microobject. From the viewpoint of contact deformation theory we analysed mechanism of AFM visualisation of an atomic (molecular) structure of a flat surface. We tested technique of immobilisation on a substrate for free single-stranded RNA molecules in an extended state. Using AFM we visualised stages of processes of RNA release from protein coat of tobacco mosaic virus particles. The asymmetry of this process regarding two ends of a macromolecule was confirmed. The dynamics of compaction for DNA T4 molecules was traced using AFM in real time regime. The partially compacted macromolecules were clearly resolved. We detected that the partially compacted structures consisted of toroidal parts formed by different macromolecular strands. The real geometry of the compacted structures was reconstructed on the basis of systematic AFM measurements. That allowed us to calculate the amount of molecules combining each condensed DNA particle. We demonstrated clear benefits of horizontal deposition method for formation of LB films. Using AFM we achieved molecular resolution for some thin film coating and detected lattice parameters with the precision determined by the errors within a few percent. We demonstrated that the structure of the film is determined by the concurrence of several factors: by the closest packing principle for hydrocarbon tails, by the values of surface areas of polar heads at water subphase as well as by the substrate influence.

  14. Scanning Tunneling Microscopy currents on locally disordered graphene

    E-Print Network [OSTI]

    Tsai, Shan-Wen; Peres, Nuno M. R.; Santos, J. E.; Ribeiro, R. M.

    2009-01-01T23:59:59.000Z

    Intrinsic ripples in graphene“, Nature Materials 6, 858 (Novoselov, ”Control of graphene’s properties by reversiblespectroscopy of monolayer graphene on SiO 2 ”, arXiv:

  15. Surface Science Letters Scanning tunneling microscopy of gold clusters on

    E-Print Network [OSTI]

    Goodman, Wayne

    ; Catalysis There are many fundamental and applied reasons for studying the stability of deposited junctions and active elements. In catalysis, deactivation of the active metal component is di- rectly

  16. SCANNING ACOUSTIC MICROSCOPY MODELING FOR MICROMECHANICAL MEASUREMENTS OF COMPLEX SUBSTRATES

    E-Print Network [OSTI]

    Marangos, Orestes

    2010-05-31T23:59:59.000Z

    , Composition and Mechanical Properties ...................................... 80 3.5 Characteristics of Acid-Etched Dentin...................................................................... 82 3.6 Application of SAM to dental materials... structure and composition at different spatial scales which is responsible for how material properties manifest in experimental measurements. In order to observe a material property, we “probe” and measure the reaction. The observable property is thus...

  17. Band Excitation Method Applicable to Scanning Probe Microscopy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIAL JohnE P

  18. Scanning Transmission Electron Microscopy Investigations of Complex Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal InvestigatorsSave Energy onofCNMS, SNS launch|

  19. Multifocal Multiphoton Laser-Scanning Structured Illumination Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUS Dept ofActingMultidimensionalwith

  20. Iran Thomas Auditorium, 8600 Transport Measurements by Scanning Probe Microscopy:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer Review 2012IowaFebruary 9,January

  1. Scanning Probe Microscopy with Spectroscopic Molecular Recognition - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs TheSanket A.LittleFY13

  2. Scanning the Conservation Horizon

    E-Print Network [OSTI]

    Scanning the Conservation Horizon A Guide to Climate Change Vulnerability Assessment #12;Scanning.A. Stein, and N.A. Edelson, editors. 2011. Scanning the Conservation Horizon: A Guide to Climate Change.S. Geological Survey Fundamental Science Practices. Scanning the Conservation Horizon is available online at

  3. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository--BMT1 of the DECOVALEX III project. Part 1: Conceptualization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste on the safety of a hypothetical nuclear waste repository at the near-field and are presented in three on the safety of nuclear waste repositories. To achieve the second objective, hypothetical benchmark test

  4. NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2)

    SciTech Connect (OSTI)

    Antoun, T; Xu, H; Vorobiev, O; Lomov, I

    2011-10-20T23:59:59.000Z

    Motion along joints and fractures in the rock has been proposed as one of the sources of near-source shear wave generation, and demonstrating the validity of this hypothesis is a focal scientific objective of the source physics experimental campaign in the Climax Stock granitic outcrop. A modeling effort has been undertaken by LLNL to complement the experimental campaign, and over the long term provide a validated computation capability for the nuclear explosion monitoring community. The approach involves performing the near-field nonlinear modeling with hydrodynamic codes (e.g., GEODYN, GEODYN-L), and the far-field seismic propagation with an elastic wave propagation code (e.g., WPP). the codes will be coupled together to provide a comprehensive source-to-sensor modeling capability. The technical approach involves pre-test predictions of each of the SPE experiments using their state of the art modeling capabilities, followed by code improvements to alleviate deficiencies identified in the pre-test predictions. This spiral development cycle wherein simulations are used to guide experimental design and the data from the experiment used to improve the models is the most effective approach to enable a transition from the descriptive phenomenological models in current use to the predictive, hybrid physics models needed for a science-based modeling capability for nuclear explosion monitoring. The objective of this report is to describe initial results of non-linear motion predictions of the first two SPE shots in the Climax Stock: a 220-lb shot at a depth of 180 ft (SPE No.1), and a 2570-lb shot at a depth of 150 ft (SPE No.2). The simulations were performed using the LLNL ensemble granite model, a model developed to match velocity and displacement attenuation from HARDHAT, PILE DRIVER, and SHOAL, as well as Russian and French nuclear test data in granitic rocks. This model represents the state of the art modeling capabilities as they existed when the SPE campaign was launched in 2010, and the simulation results presented here will establish a baseline that will be used for gauging progress as planned modeling improvements are implemented during the remainder of the SPE program. The initial simulations were performed under 2D axisymmetric conditions assuming the geologic medium to be a homogeneous half space. However, logging data obtained from the emplacement hole reveal two major faults that intersect the borehole at two different depth intervals (NSTec report, 2011) and four major joint sets. To evaluate the effect of these discrete structures on the wave forms generated they have performed 2D and 3D analysis with a Lagrangian hydrocode, GEODYN-L that shares the same material models with GEODYN but can explicitly take joints and fault into consideration. They discuss results obtained using these two different approaches in this report.

  5. Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning tunneling microscopy study. Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning tunneling...

  6. Scanning Optical Mosaic Scope for Micro-Manipulation Benjamin Potsaid, Yves Bellouard, John T. Wen

    E-Print Network [OSTI]

    Wen, John Ting-Yung

    Scanning Optical Mosaic Scope for Micro-Manipulation Benjamin Potsaid, Yves Bellouard, John T. Wen microscopy, which we call scanning optical mosaic scope (SOMS), that addresses the limitation of the field of vision. The key idea is to use high-speed scanners and a high- speed camera to scan the workspace

  7. Computational microscopy for sample analysis

    E-Print Network [OSTI]

    Ikoma, Hayato

    2014-01-01T23:59:59.000Z

    Computational microscopy is an emerging technology which extends the capabilities of optical microscopy with the help of computation. One of the notable example is super resolution fluorescence microscopy which achieves ...

  8. Probing graphene defects and estimating graphene quality with optical microscopy

    SciTech Connect (OSTI)

    Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

    2014-01-27T23:59:59.000Z

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

  9. Vulnerability Scanning Policy 1 Introduction

    E-Print Network [OSTI]

    Vulnerability Scanning Policy 1 Introduction Vulnerability scanning is an important and necessary and can alert system administrators to potentially serious problems. However vulnerability scanning also to compromise system security. The following policy details the conditions under which vulnerability scans may

  10. Nonlinear vibrational microscopy

    DOE Patents [OSTI]

    Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

    2000-01-01T23:59:59.000Z

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  11. Effect of quantum well non-uniformities on lasing threshold, linewidth, and lateral near field filamentation in violet (Al,In)GaN laser diodes

    SciTech Connect (OSTI)

    Jeschke, J.; Zeimer, U.; Redaelli, L.; Einfeldt, S.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin (Germany); Kneissl, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin (Germany); Institute of Solid State Physics, Technical University of Berlin, 10623 Belin (Germany)

    2014-10-27T23:59:59.000Z

    The lateral near field patterns and filamentation effects of gain guided broad area (Al,In)GaN-based laser diodes emitting around 415?nm have been investigated. Diodes from the same laser bar, which are close to each other, show nearly the same number and widths of filaments. Comparison of different bars, which are from the same wafer but further apart from each other, reveals that a higher number of filaments correlates with a higher laser threshold and broader spectral linewidth. Cathodoluminescence mappings at 80?K show strong variations of the quantum well band gap and hence of the emission wavelength for the bars with strong filamentation. These observations confirm previous theoretical predictions stating that large band gap fluctuations increase the threshold current and spectral linewidth. Furthermore, filamentation is enhanced as well because of a reduction of the carrier diffusion length.

  12. A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area

    SciTech Connect (OSTI)

    Castillo, D. A., [Department of Geology and Geophysics, University of Adelaide (Australia); Younker, L.W. [Lawrence Livermore National Lab., CA (United States)

    1997-01-30T23:59:59.000Z

    Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

  13. Spectroscopic imaging in electron microscopy

    SciTech Connect (OSTI)

    Pennycook, Stephen J [ORNL; Colliex, C. [Universite Paris Sud, Orsay, France

    2012-01-01T23:59:59.000Z

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  14. Atom probe field ion microscopy and related topics: A bibliography 1989

    SciTech Connect (OSTI)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01T23:59:59.000Z

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

  15. Scanning probe lithography of self-assembled monolayers Guohua Yang, Nabil A. Amro, Gang-yu Liu*

    E-Print Network [OSTI]

    Liu, Gang-yu

    Scanning probe lithography of self-assembled monolayers Guohua Yang, Nabil A. Amro, Gang-yu Liu* Department ofChemistry, University ofCalifornia, Davis, CA, USA 95616 ABSTRACT Systematic studies on scanning, and nanopen reader and writer (NPRW), which rely on the local force, and two scanning tunneling microscopy

  16. Appendix 3 Document Scanning Guidelines Appendix 3 Document Scanning Guidelines

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Appendix 3 Document Scanning Guidelines App.3-1 Appendix 3 ­ Document Scanning Guidelines 1. Turn. Note: Whenever possible, it is best to convert a Word document into a PDF than to scan a document and convert it to a PDF. A Word document that has been converted is searchable; a scanned document is not. 2

  17. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  18. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  19. Scanning computed confocal imager

    DOE Patents [OSTI]

    George, John S. (Los Alamos, NM)

    2000-03-14T23:59:59.000Z

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  20. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect (OSTI)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01T23:59:59.000Z

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  1. Documentation and Scanning Tips NUFinancials

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Documentation and Scanning Tips NUFinancials Documentation and Scanning Tips 2/6/2014 - RB © 2014 of a transaction (expense reports, online vouchers, journals, or requisitions) that has been scanned and attached. · All relevant backup documentation that is not scanned and attached to the transaction record should

  2. Scanning Probe AFM Compound Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a dye-sensitization system,... Tip-Enhanced Near-Field Raman Spectroscopy Probing Single Dye-Sensitized TiO2 Nanoparticles. The correlated metallic tip-enhanced Raman spectroscopy...

  3. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository--BMT1 of the DECOVALEX III project. Part 2: Effects of THM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste, Germany (7) Canadian Nuclear Safety Commission (CNSC), Ottawa, Canada (8) Lawrence Berkeley National Laboratory (LBNL), Berkeley, USA (9) INERIS-LAEGO, Ecole des Mines de Nancy, Nancy, France (10) Japan Nuclear

  4. A case study on the influence of THM coupling on the near field safety of a spent fuel repository in sparsely fractured granite

    SciTech Connect (OSTI)

    Nguyen, T.S.; Borgesson, L.; Chijimatsu, M.; Hernelind, J.; Jing, L.; Kobayashi, A.; Rutqvist, J.

    2009-03-01T23:59:59.000Z

    In order to demonstrate the feasibility of geological disposal of spent CANDU fuel in Canada, a safety assessment was performed for a hypothetical repository in the Canadian Shield. The assessment shows that such repository would meet international criteria for dose rate; however, uncertainties in the assumed evolution of the repository were identified. Such uncertainties could be resolved by the consideration of coupled Thermal-Hydro-Mechanical-Chemical (THMC) processes. In Task A of the DECOVALEX-THMC project, THM models were developed within the framework of the theory of poroelasticity. Such model development was performed in an iterative manner, using experimental data from laboratory and field tests. The models were used to perform near-field simulations of the evolution of the repository in order to address the above uncertainties. This paper presents the definition and rationale of task A and the results of the simulations. From a repository safety point of view, the simulations predict that the maximum temperature would be well below the design target of 100 C, however the load on the container can marginally exceed the design value of 15 MPa. However, the most important finding from the simulations is that a rock damage zone could form around the emplacement borehole. Such damage zone can extend a few metres from the walls of the emplacement holes, with permeability values that are orders of magnitude higher than the initial values. The damage zone has the potential to increase the radionuclide transport flux from the geosphere; the effect of such an increase should be taken into account in the safety assessment and mitigated if necessary by the provision of sealing systems.

  5. Scanning micro-sclerometer

    DOE Patents [OSTI]

    Oliver, Warren C. (Knoxville, TN); Blau, Peter J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  6. Scanning micro-sclerometer

    DOE Patents [OSTI]

    Oliver, W.C.; Blau, P.J.

    1994-11-01T23:59:59.000Z

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

  7. 4 K, ultrahigh vacuum scanning tunneling microscope having two orthogonal tips with tunnel junctions as close as a few nanometers

    E-Print Network [OSTI]

    Thibado, Paul M.

    with a scanning electron microscopy SEM , these two imaging methods nicely bridge the gap from mi- crons structure of semiconductor devices by interrupting the fabri- cation process.7­11 This has led

  8. Homodyne scanning holography Joseph Rosen*

    E-Print Network [OSTI]

    Rosen, Joseph

    Homodyne scanning holography Joseph Rosen* Department of Electrical and Computer Engineering, Ben developed a modified version of a scanning holography microscope in which the Fresnel Zone Plates (FZP) are created by a homodyne rather than a heterodyne interferometer. Therefore, during the scanning

  9. ARM Scanning Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new,Scanning Radar Azores Graciosa

  10. Photoemission Electron Microscopy of a Plasmonic Silver Nanoparticle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near-fields resulting from femtosecond (fs) laser excitation of localized surface plasmon oscillations in the triangular core-shell structure. We demonstrate that the...

  11. Synchronisation in Scan-On-Scan-On-Scan I. Vaughan L. Clarkson

    E-Print Network [OSTI]

    Clarkson, Vaughan

    strategy. I. INTRODUCTION Electronic Support (ES) is that area of Electronic Warfare (EW) concerned-on-scan-on-scan' problem, important in Electronic Support. In this paper, the theory of three-way and higher

  12. Free motion scanning system

    DOE Patents [OSTI]

    Sword, Charles K. (Pleasant Hills, PA)

    2000-01-01T23:59:59.000Z

    The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

  13. Scanning Microscopy, Vol. 5, No. 2, 1991 (Pages 317-328) Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA

    E-Print Network [OSTI]

    Vertes, Akos

    (AMF O'Hare), IL 60666 USA 0891-7035/91$3.00+.00 RESTRICTED ENERGY TRANSFER IN LASER DESORPTION OF HIGH- guished importance in mass spectrometry. In our present study we survey different laser desorption methods of restricted energy transfer pathways as a pos- sible explanation to the volatilization of non-degraded large

  14. Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M Abstract Scanning tunneling microscopy and spectroscopy are used to study InGaP/GaAs heterojunctions computation of the tunnel current. Curve fitting of theory to experiment is performed. Using an InGaP band gap

  15. Reproducible strain measurement in electronic devices by applying integer multiple to scanning grating in scanning moiré fringe imaging

    SciTech Connect (OSTI)

    Kim, Suhyun, E-mail: u98kim@surface.phys.titech.ac.jp; Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum [Memory Analysis Science and Engineering Group, Samsung Electronics, San #16 Hwasung-city, Gyeonggi-Do 445-701 (Korea, Republic of); Kondo, Yukihito [EM Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan)

    2014-10-15T23:59:59.000Z

    Scanning moiré fringe (SMF) imaging by high-angle annular dark field scanning transmission electron microscopy was used to measure the strain field in the channel of a transistor with a CoSi{sub 2} source and drain. Nanometer-scale SMFs were formed with a scanning grating size of d{sub s} at integer multiples of the Si crystal lattice spacing d{sub l} (d{sub s} ? nd{sub l}, n = 2, 3, 4, 5). The moiré fringe formula was modified to establish a method for quantifying strain measurement. We showed that strain fields in a transistor measured by SMF images were reproducible with an accuracy of 0.02%.

  16. Continuous scanning mode for ptychography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; Robinson, Ian K.

    2014-01-01T23:59:59.000Z

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. The impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  17. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    SciTech Connect (OSTI)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01T23:59:59.000Z

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

  18. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

  19. Non-contact atomic-level interfacial force microscopy

    SciTech Connect (OSTI)

    Houston, J.E.; Fleming, J.G.

    1997-02-01T23:59:59.000Z

    The scanning force microscopies (notably the Atomic Force Microscope--AFM), because of their applicability to nearly all materials, are presently the most widely used of the scanning-probe techniques. However, the AFM uses a deflection sensor to measure sample/probe forces which suffers from an inherent mechanical instability that occurs when the rate of change of the force with respect to the interfacial separation becomes equal to the spring constant of the deflecting member. This instability dramatically limits the breadth of applicability of AFM-type techniques to materials problems. In the course of implementing a DOE sponsored basic research program in interfacial adhesion, a self-balancing force sensor concept has been developed and incorporated into an Interfacial Force Microscopy (IFM) system by Sandia scientists. This sensor eliminates the instability problem and greatly enhances the applicability of the scanning force-probe technique to a broader range of materials and materials parameters. The impact of this Sandia development was recognized in 1993 by a Department of Energy award for potential impact on DOE programs and by an R and D 100 award for one of the most important new products of 1994. However, in its present stage of development, the IFM is strictly a research-level tool and a CRADA was initiated in order to bring this sensor technology into wide-spread availability by making it accessible in the form of a commercial instrument. The present report described the goals, approach and results of this CRADA effort.

  20. High Gain, Fast Scan, Broad Spectrum, Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect (OSTI)

    David OHara; Dr. Eric Lochmer

    2003-09-12T23:59:59.000Z

    Parallax Research, Inc. proposes to produce a new type of x-ray spectrometer for use with Scanning Electron Microscopy (SEM) that would have the energy resolution of WDS and the ease of use of EDS with sufficient gain for lower energies that it can be used at low beam currents as is EDS. Parallax proposes to do this by development of new multiple reflection x-ray collimation optics, new diffractor technology, new detector technology and new scan algorithms.

  1. Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission Electron Microscopy

    E-Print Network [OSTI]

    Bao, Xinhe

    Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission of graphene on Ru(0001) was investigated by photoemission electron microscopy (PEEM) and scanning tunneling, we show that graphene overlayers with sizes ranging from nanometers to sub-millimeters have been

  2. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    SciTech Connect (OSTI)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28T23:59:59.000Z

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-?-carotene (?-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute ?-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of ?-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of ?-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of ?-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  3. Eddy current scanning at Fermilab

    SciTech Connect (OSTI)

    Boffo, C.; Bauer, P.; Foley, M.; /Fermilab; Brinkmann, A.; /DESY; Ozelis, J.; /Jefferson Lab

    2005-07-01T23:59:59.000Z

    In the framework of SRF cavity development, Fermilab is creating the infrastructure needed for the characterization of the material used in the cavity fabrication. An important step in the characterization of ''as received'' niobium sheets is the eddy current scanning. Eddy current scanning is a non-destructive technique first adopted and further developed by DESY with the purpose of checking the cavity material for sub-surface defects and inclusions. Fermilab has received and further upgraded a commercial eddy current scanner previously used for the SNS project. The upgrading process included developing new filtering software. This scanner is now used daily to scan the niobium sheets for the Fermilab third harmonic and transverse deflecting cavities. This paper gives a status report on the scanning results obtained so far, including a discussion of the typology of signals being detected. We also report on the efforts to calibrate this scanner, a work conducted in collaboration with DESY.

  4. Controlled Manipulation of Nanoparticles : Scanning Probe Measurements and Modelling of Trajectories

    E-Print Network [OSTI]

    Amrhein, Valentin

    Controlled Manipulation of Nanoparticles : Scanning Probe Measurements and Modelling on the manipulation of Au nanoparticles. A new technique for controlled manipulation of nanospheres and asymmetric, is a common experience in atomic force microscopy (AFM). Understanding how to control and turn this effect

  5. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30T23:59:59.000Z

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  6. Electron Spectrometer: Scanning Multiprobe Surface Analysis System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Multiprobe Surface Analysis System - Versaprobe Electron Spectrometer: Scanning Multiprobe Surface Analysis System - Versaprobe The SMSAS is a multi-technique surface...

  7. Analytical Electron Microscopy examination of uranium contamination at the DOE Fernald operation site

    SciTech Connect (OSTI)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1993-02-01T23:59:59.000Z

    Analytical Electron Microscopy (AEM) has been used to identify uranium-bearing phases present in contaminated soils from the DOE Fernald operation site. A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and AEM was used in isolating and characterizing uranium-rich regions of the contaminated soils. Soil samples were prepared for transmission electron microscopy (TEM) by ultramicrotomy using an embedding resin previously employed for aquatic colloids and biological samples. This preparation method allowed direct comparison between SEM and TEM images. At the macroscopic level much of the uranium appears to be associated with clays in the soils; however, electron beam analysis revealed that the uranium is present as discrete phases, including iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Only low levels of uranium were actually within the clay minerals. The distribution of uranium phases was inhomogeneous at the submicron level.

  8. Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience

    E-Print Network [OSTI]

    Rupprecht, Peter; Groessl, Florian; Haubensak, Wulf E; Vaziri, Alipasha

    2015-01-01T23:59:59.000Z

    A number of questions in systems biology such as understanding how dynamics of neuronal networks are related to brain function require the ability to capture the functional dynamics of large cellular populations at high speed. Recently, this has driven the development of a number of parallel and high speed imaging techniques such as light-sculpting microscopy, which has been used to capture neuronal dynamics at the whole brain and single cell level in small model organism. However, the broader applicability of light-sculpting microscopy is limited by the size of volumes for which high speed imaging can be obtained and scattering in brain tissue. Here, we present strategies for optimizing the present tradeoffs in light-sculpting microscopy. Various scanning modalities in light-sculpting microscopy are theoretically and experimentally evaluated, and strategies to maximize the obtainable volume speeds, and depth penetration in brain tissue using different laser systems are provided. Design-choices, important par...

  9. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    SciTech Connect (OSTI)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14T23:59:59.000Z

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing ?s time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few ?m{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular benefit of UFM and related methods for nanoscale mapping of stiff materials.

  10. Ultrafast pump-probe force microscopy with nanoscale resolution

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Cerullo, “Confocal ultrafast pump-probe spectroscopy: A newand H. J. Maris, “Time-resolved pump-probe experiments withand U. Keller, “Femtosecond pump-porbe near-field optical

  11. RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Gilchrist, James F.

    RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY Department of Materials Science. #12;Job Description (for website) Job Title: Research Engineer in Advanced Analytical Electron or an engineering discipline and four years of demonstrated experience in electron microscopy. Requirements

  12. Interface circuits for quartz crystal sensors in scanning probe microscopy applications

    E-Print Network [OSTI]

    La Rosa, Andres H.

    interface based on an amplitude controlled oscillator and a phase-locked loop frequency demodulator, are of great interest. A self-excitation scheme with QCR is particularly promising and allows the development excitation modes in QCR based tech- niques: first, the mechanical excitation QCR is typically at- tached

  13. Role of pseudospin in quasiparticle interferences in epitaxial probed by high resolution scanning tunneling microscopy

    E-Print Network [OSTI]

    Boyer, Edmond

    Role of pseudospin in quasiparticle interferences in epitaxial graphene, probed by high resolution of freedom emerging in graphene as a direct consequence of its honeycomb atomic structure, is responsible to provide a clear understanding of how such graphene's pseudospin impacts the quasiparticle interferences

  14. SINTERING OF A12O3 POWDER COMPACT BY HOT STAGE SCANNING ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Wang, D.N.-K.

    2010-01-01T23:59:59.000Z

    2 G3 WITH 0..1 WT. % MgG GENERAL ELECTRIC Co. GREEN DENSITY·compacts. WITH 0.1 WT. GENERAL ELECTRIC CO. EEN DENSITY: 40R. Grace, General Electric and Lniun Carbide Co:apa! lic,,~

  15. SCANNING ELECTRON MICROSCOPY AND PORE CASTING: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Louis H. Taylor

    2003-12-01T23:59:59.000Z

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  16. Characterization and Theory of Electrocatalysts Based on Scanning Electrochemical Microscopy Screening Methods

    E-Print Network [OSTI]

    Henkelman, Graeme

    .g., by water-in-oil micro- emulsion or template methods), prepare carbon-supported catalysts state...). 7. Carry out theoretical studies of the catalyst to improve models for how they work

  17. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy

    SciTech Connect (OSTI)

    Gregerova, Miroslava, E-mail: mirka@sci.muni.cz [Masaryk University in Brno, Faculty of Science, Institute of Geological Sciences, Kotlarska 2, 611 37 Brno (Czech Republic); Vsiansky, Dalibor, E-mail: daliborv@centrum.cz [Research Institute of Building Materials, JSC., Hnevkovskeho 65, 617 00 Brno (Czech Republic)

    2009-07-15T23:59:59.000Z

    The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solving the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.

  18. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets

    E-Print Network [OSTI]

    by direct exfoli- ation of crystalline graphite. The single-layer films were identified by using Raman layers. In the first method, sample layers are mechanically exfoliated from bulk graphite crystals-layer graphene films prepared by mechanical exfoliation and probed on an insulating substrate

  19. Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy

    E-Print Network [OSTI]

    Gimzewski, James

    vibrational noise. The extension of the technique to a vertical orientation required by many SPM applications stepper motors4 to more elegant approaches such as the "louse,"5 "Besocke," beetle,6 "Inchworm® ,"7

  20. Scanning Tunneling Microscopy Studies of Metal Clusters Supported on Graphene and Silica Thin Film 

    E-Print Network [OSTI]

    Zhou, Zihao

    2012-10-19T23:59:59.000Z

    with other traditional surface science techniques. In the study of the graphene/Ru(0001) system, the key factors that govern the growth and distribution of metals on the graphene have been studied based on different behaviors of five transition metals...

  1. Scanning tunneling microscopy studies on the structure and stability of model catalysts

    E-Print Network [OSTI]

    Yang, Fan

    2009-05-15T23:59:59.000Z

    assistance has largely facilitated the writing of this dissertation. viii TABLE OF CONTENTS Page ABSTRACT .............................................................................................................. iii DEDICATION... of the Auger processes (KL 1 L 2,3 ). (a) Ionization of a core electron. (b) Excitation of an Auger electron........ 34 Figure 9 The performance and vibration isolation of the RHK VT-UHV300 STM. (a) Atomic resolution STM images obtained by RHK...

  2. Scanning tunneling microscopy of doping and composilionallll-V homo.. and heterostructures

    E-Print Network [OSTI]

    and compositional effects can be resolved by the topographic contrasts of constant-current STM images. The samples sections of sam~ pIes were prepared by two methods: (1) in situ cleaving in an UHY c

  3. Scanning Tunneling Microscopy Studies of Metal Clusters Supported on Graphene and Silica Thin Film

    E-Print Network [OSTI]

    Zhou, Zihao

    2012-10-19T23:59:59.000Z

    with other traditional surface science techniques. In the study of the graphene/Ru(0001) system, the key factors that govern the growth and distribution of metals on the graphene have been studied based on different behaviors of five transition metals...

  4. A revision of generic concepts in the subfamily Acetabularieae (Acetabulariaceae, dasycladales) based on scanning electron microscopy

    E-Print Network [OSTI]

    Bailey, Glenn Paul

    1975-01-01T23:59:59.000Z

    by Eiseman (1970) in Lake Surprise, Florida. He reported a variety of phenotypes which formed a continuum between Chalmasia antillana Solms-Laubach, 1895 (calcified cysts} and Acetabularia farlowii Solms-Laubach, 1895 (uncalcified cysts). He concluded... lime matrix between adjacent cysts similar to the type of calcification in the genus Acicularia. He also reported a difference in crystal habits produced by species of Acetabularia anti liana. found in two different habitats, again indicating...

  5. REVIEW OF SCIENTIFIC INSTRUMENTS 83, 034704 (2012) Low temperature laser scanning microscopy of a superconducting

    E-Print Network [OSTI]

    Anlage, Steven

    2012-01-01T23:59:59.000Z

    Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA of achievable accelerating gradients, has been continuously improving over the years. Niobium, either as a thin in high-temperature superconductors (HTS).6 The origins of the technique go back to electron-beam heating7

  6. SINTERING OF A12O3 POWDER COMPACT BY HOT STAGE SCANNING ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Wang, D.N.-K.

    2010-01-01T23:59:59.000Z

    from W. R. Grace, General Electric and Lniun Carbide Co:apa!2 G3 WITH 0..1 WT. % MgG GENERAL ELECTRIC Co. GREEN DENSITY·compacts. WITH 0.1 WT. GENERAL ELECTRIC CO. EEN DENSITY: 40

  7. SINTERING OF A12O3 POWDER COMPACT BY HOT STAGE SCANNING ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Wang, D.N.-K.

    2010-01-01T23:59:59.000Z

    previous investigators for Linde-A A1 20 3 with MgO dopant (by previous investigators for Linde-A A1 0 with MgO dopant (by Jorgensen for undoped Linde-A A1 0 (Ref. 18), Jorgensen's

  8. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01T23:59:59.000Z

    X-ray microscope at BESSY II. Journal of SynchrotronSaskatoon, Canada), 11 BESSY II (Berlin, Germany), 12 Swiss

  9. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01T23:59:59.000Z

    microscope at BESSY II. Journal of Synchrotron Radiation ,BESSY II (Berlin, Germany), 12 Swiss Light Source (Paul Scherrer Institut, Villingen, Switzerland), 13 Elettra (Trieste, Italy), 14 European Synchrotron

  10. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01T23:59:59.000Z

    to those of fulvic acid and tar balls. 38 The secondary/The spectra from these acids and the tar balls all containsamples as the tar balls), humic and fulvic acids. Tar ball

  11. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride

    E-Print Network [OSTI]

    Xue, Jiamin

    Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy–momentum dispersion relations which cross at the Dirac point1, 2. However, ...

  12. Cathodoluminescent properties at nanometer resolution through Z-contrast scanning transmission electron microscopy

    E-Print Network [OSTI]

    Pennycook, Steve

    another factor to be crucial to external radiative efficiency, the porosity of the films. Poros- ity information about the deposition can be found elsewhere.10 Cross-sectional slices were obtained by cutting a , the sample prepared at 735 °C, 10 Hz shows a high density of pores at the edge of the sample, with an average

  13. A technique for quantitative and qualitative viewing of aquatic bacteria using scanning electron microscopy 

    E-Print Network [OSTI]

    Dreier, Thomas Michael

    1977-01-01T23:59:59.000Z

    microscopic enumeration techniques. Water samples are concentrated on pre-wetted (Triton X-100) Nuclepore filters (0. 2 um pore size) to prov1de a uniform distri- bution of bacteria on the filter surface and vacuum filtered (660 Torr). The filter... is transferred to a petri dish containing filter paper soaked 1n 2% glutaraldehyde and the bacter1a are fixed for one hour. Dehydration 1s performed by transferr1ng the filters through a series of petri dishes conta1ning filter paper saturated with 25, 50, 75...

  14. A technique for quantitative and qualitative viewing of aquatic bacteria using scanning electron microscopy

    E-Print Network [OSTI]

    Dreier, Thomas Michael

    1977-01-01T23:59:59.000Z

    microscopic enumeration techniques. Water samples are concentrated on pre-wetted (Triton X-100) Nuclepore filters (0. 2 um pore size) to prov1de a uniform distri- bution of bacteria on the filter surface and vacuum filtered (660 Torr). The filter... is transferred to a petri dish containing filter paper soaked 1n 2% glutaraldehyde and the bacter1a are fixed for one hour. Dehydration 1s performed by transferr1ng the filters through a series of petri dishes conta1ning filter paper saturated with 25, 50, 75...

  15. Supplementary Information: An Experimental Demonstration Of Scanned Spin-Precession Microscopy

    E-Print Network [OSTI]

    Stroud, David

    the top layer forms the membrane. A nominally lattice-matched InGaP layer is grown under this device layer a recipe given elsewhere1 . The etch stops at the InGaP layer because of the high etch selectivity. The InGaP-manipulators, under an optical microscope. n-GaAs, 1000 nm Si: 1.4e22 m3 (Si doped) n-InGaP

  16. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy

    E-Print Network [OSTI]

    Wise, W. D.

    One of the main challenges in understanding high-Tc superconductivity is to disentangle the rich variety of states of matter that may coexist, cooperate or compete with d-wave superconductivity. At centre stage is the ...

  17. Study of perineal patterns of four species of Meloidogyne (Nematoda:Heteroderoidea) using scanning electron microscopy

    E-Print Network [OSTI]

    Khan, Zainab Najafali

    1978-01-01T23:59:59.000Z

    , except that in M. ~ha la a raised and clearly differentiated tail area was always observed. M. ~fco it hibited tiy a high d I a h. The inner st 1- tions around the vulva and up the tail area formed a distinctive pear shape. The lateral field... was sometimes differentiated. The vulval lip striations were present and a whorl in the tail area was p o inent. M. java ica had both Iow and high d a1 a h . The typical lateral lines and pattern rays were seen in most specimens. A whorl in the tail area...

  18. Atomic force and scanning tunneling microscopy analysis of palladium and silver nanophase materials

    E-Print Network [OSTI]

    Sattler, Klaus

    . INTRODUCTION Nanophase materials consolidated from atom clusters produced by the gas condensation method be made by gas condensation, not only at the labo- ratory scale but also in commercial production and properties of nano- phase materials assembled by consolidating gas-condensed atom clusters in vacuum have

  19. Internal Image Potential in Semiconductors - Effect on Scanning-Tunneling-Microscopy

    E-Print Network [OSTI]

    HUANG, ZH; WEIMER, M.; Allen, Roland E.

    1993-01-01T23:59:59.000Z

    The tunneling of electrons from a semiconductor surface to a metal tip, across a vacuum gap, is influenced by two image interactions: an attractive image potential in the vacuum region, which lowers the apparent tunneling barrier, and a repulsive...

  20. Quantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations and Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Seideman, Tamar

    Quantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations hydrocarbon on silicon, desorption is observed at bias magnitudes as low as 2.5 V, albeit the desorption with conventional silicon microelectronic tech- nology [17­22]. A detailed understanding of both the electronic

  1. Electron and Scanning Probe Microscopies | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC Supports - Energy3 PierreElectron

  2. Franz Leberl & Michael Gruber PHOTOGRAMMETRIC COLOR SCANNING

    E-Print Network [OSTI]

    Binford, Michael W.

    Franz Leberl & Michael Gruber 231 PHOTOGRAMMETRIC COLOR SCANNING Franz Leberl 1 , Michael Gruber 2 II, WG II/6 KEY WORDS: Photogrammetric scanning systems, color scanning, masked negative film, calibration, density standards, scanner testing ABSTRACT: Scanning of analog image material remains a key

  3. CASE SERIES Scanning Eye Movements in Homonymous

    E-Print Network [OSTI]

    Peli, Eli

    CASE SERIES Scanning Eye Movements in Homonymous Hemianopia Documented by Scanning Laser not be real but instead may be due to an artifact such as scanning eye movement. This article illustrates a way to separate the actual visual field sparing from scanning eye movement artifact by using perimetry

  4. Characterization of multilayer nitride coatings by electron microscopy and modulus mapping

    SciTech Connect (OSTI)

    Pemmasani, Sai Pramod [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Rajulapati, Koteswararao V. [School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Ramakrishna, M.; Valleti, Krishna [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Gundakaram, Ravi C., E-mail: ravi.gundakaram@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Joshi, Shrikant V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India)

    2013-07-15T23:59:59.000Z

    This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: • Microstructure of a triple layer nitride coating studied at multiple length scales. • Phases identified by EDS, EBSD and SAED (TEM). • Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. • Modulus mapping identified moduli variation even in a nani-multilayer architecture.

  5. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E; Parvin, Bahram

    2013-10-01T23:59:59.000Z

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  6. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Mill Valley, CA)

    2011-05-24T23:59:59.000Z

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  7. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

  8. Scanning tunneling microscope nanoetching method

    DOE Patents [OSTI]

    Li, Yun-Zhong (West Lafayette, IN); Reifenberger, Ronald G. (West Lafayette, IN); Andres, Ronald P. (West Lafayette, IN)

    1990-01-01T23:59:59.000Z

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  9. Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser

    SciTech Connect (OSTI)

    Phillips, Mark C.; Bernacki, Bruce E.

    2012-12-26T23:59:59.000Z

    Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

  10. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging

    E-Print Network [OSTI]

    Pohl, Karsten

    An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope of the scanner tube. The total scanning area is about 8 8 m2 . The sample temperature can be adjusted by a few

  11. Monte Carlo simulation study of scanning Auger electron images

    SciTech Connect (OSTI)

    Li, Y. G.; Ding, Z. J. [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Z. M. [Department of Astronomy and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15T23:59:59.000Z

    Simulation of contrast formation in Auger electron imaging of surfaces is helpful for analyzing scanning Auger microscopy/microanalysis (SAM) images. In this work, we have extended our previous Monte Carlo model and the simulation method for calculation of scanning electron microscopy (SEM) images to SAM images of complex structures. The essentials of the simulation method are as follows. (1) We use a constructive solid geometry modeling for a sample geometry, which is complex in elemental distribution, as well as in topographical configuration and a ray-tracing technique in the calculation procedure of electron flight steps that across the different element zones. The combination of the basic objects filled with elements, alloys, or compounds enables the simulation to a variety of sample geometries. (2) Sampled Auger signal electrons with a characteristic energy are generated in the simulation following an inner-shell ionization event, whose description is based on the Castani's inner-shell ionization cross section. This paper discusses in detail the features of simulated SAM images and of line scans for structured samples, i.e., the objects embedded in a matrix, under various experimental conditions (object size, location depth, beam energy, and the incident angle). Several effects are predicted and explained, such as the contrast reversion for nanoparticles in sizes of 10-60 nm, the contrast enhancement for particles made of different elements and wholly embedded in a matrix, and the artifact contrast due to nearby objects containing different elements. The simulated SAM images are also compared with the simulated SEM images of secondary electrons and of backscattered electrons. The results indicate that the Monte Carlo simulation can play an important role in quantitative SAM mapping.

  12. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect (OSTI)

    Marchuk, Kyle

    2013-05-15T23:59:59.000Z

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  13. Automation of BESSY scanning tables

    E-Print Network [OSTI]

    Hanton, J

    1981-01-01T23:59:59.000Z

    A microprocessor M6800 is used for the automation of scanning and premeasuring BESSY tables. The tasks achieved by the microprocessor are: control of spooling of the four asynchronous film winding devices and switching on and off the 4 projection lamps; preprocessing of the data coming from a bipolar coordinates measuring device; bidirectional interchange of information between the operator, the BESSY table and the DEC PDP 11/34 mini computer controlling the scanning operations; control of the magnification on the table by swapping the projection lenses of appropriate focal lengths and the associated light boxes (under development). In connection with the last of these, study is being made for the use of BESSY tables for accurate measurements (+/- 5 microns), by encoding the displacements of the projection lenses. (0 refs).

  14. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization...

  15. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    E-Print Network [OSTI]

    Mårsell, Erik; Arnold, Cord L; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders

    2015-01-01T23:59:59.000Z

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 micrometer. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy (STM) on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission process above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM ...

  16. Near-Field Magneto-Optical Microscope

    DOE Patents [OSTI]

    Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.

    2005-12-06T23:59:59.000Z

    A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

  17. Convergence analysis in near-field imaging

    E-Print Network [OSTI]

    Gang Bao

    2014-07-24T23:59:59.000Z

    Jul 25, 2014 ... power series in the deformation parameter by using the transformed field and ... deformation parameter, measurement distance, noise level of the ...... Taking the real part, and applying lemma 2.5 and lemma 2.1, we obtain.

  18. Near-field characterization of photonic nanodevices

    E-Print Network [OSTI]

    Abashin, Maxim

    2009-01-01T23:59:59.000Z

    High transmission nanoscale bowtie-shaped aperture probe forlocalize the light spot bowtie or small monopole antennas

  19. Near field optical probe tip manufacture.

    E-Print Network [OSTI]

    La Rosa, Andres H.

    #12;Coating · Whether pulling your tip or etching it the next step in the process of fabrication heater will evaporate the aluminum held within. #12;Ion Sputtering Ion sputtering is the bombardment

  20. Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of

    E-Print Network [OSTI]

    Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

  1. SCANNING TOUR SUMMARY REPORT PRICING EXPERIENCE IN NORTHERN EUROPE

    E-Print Network [OSTI]

    Minnesota, University of

    #12;SCANNING TOUR SUMMARY REPORT PRICING EXPERIENCE IN NORTHERN EUROPE: LESSONS LEARNED...........................................................................................1 2. PURPOSE OF SCANNING TOUR..........................................................................................................................30 PARTICIPANTS IN SCANNING TOUR SCANNING TOUR HOSTS #12;Scanning Tour Summary Report 1 October 20

  2. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  3. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  4. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bharadwaj, Nitin; Widener, Kevin

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  5. CARS polarized microscopy of three-dimensional director structures in liquid crystals

    E-Print Network [OSTI]

    A. V. Kachynski; A. N. Kuzmin; P. N. Prasad; I. I. Smalyukh

    2007-10-18T23:59:59.000Z

    We demonstrate three-dimensional vibrational imaging of director structures in liquid crystals using coherent anti-Stokes Raman scattering (CARS) polarized microscopy. Spatial mapping of the structures is based on sensitivity of a polarized CARS signal to orientation of anisotropic molecules in liquid crystals. As an example, we study structures in a smectic material and demonstrate that single-scan CARS and two-photon fluorescence images of molecular orientation patterns are consistent with each other and with the structure model.

  6. Three-dimensional scanning confocal laser microscope

    DOE Patents [OSTI]

    Anderson, R. Rox (Lexington, MA); Webb, Robert H. (Lincoln, MA); Rajadhyaksha, Milind (Charlestown, MA)

    1999-01-01T23:59:59.000Z

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  7. Scanning Options at the MSU Libraries

    E-Print Network [OSTI]

    Scanning Options at the MSU Libraries The Main Library, Engineering Library and Gast Business Library each have scanning services available. Service hours for each location are available at lib scanned copies of non-electronic journal articles and individual book chapters that the MSU Libraries own

  8. Understanding Localized-Scanning Worms Zesheng Chen

    E-Print Network [OSTI]

    Ji, Chuanyi

    Understanding Localized-Scanning Worms Zesheng Chen School of Electrical & Computer Engineering Email: jic@ece.gatech.edu Abstract-- Localized scanning is a simple technique used by attackers to search for vulnerable hosts. Localized scanning trades off between the local and the global search

  9. Optimal worm-scanning method using

    E-Print Network [OSTI]

    Ji, Chuanyi

    Optimal worm-scanning method using vulnerable-host distributions Zesheng Chen and Chuanyi Ji School}@ece.gatech.edu Abstract: Most Internet worms use random scanning. The distribution of vulnerable hosts on the Internet, however, is highly non-uniform over the IP-address space. This implies that random scanning wastes many

  10. Automatic building modeling from terrestrial laser scanning

    E-Print Network [OSTI]

    Pu, Shi

    Automatic building modeling from terrestrial laser scanning Shi Pu International Institute for Geo hard to recover 3D building structures from 2D image. Recent studies ([2] [6]) show that laser scanning imagery, airborne and terrestrial laser scanning give explicit 3D information, which enables the rapid

  11. Scanning/Transmission Electron Microscopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffectsScanning/Transmission Electron Microscopes

  12. Fast scanning mode and its realization in a scanning acoustic microscope

    SciTech Connect (OSTI)

    Ju Bingfeng; Bai Xiaolong; Chen Jian [The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027 (China)

    2012-03-15T23:59:59.000Z

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  13. Atomic-resolution study of Mn tetramer clusters using scanning tunneling Rong Yang, Haiqiang Yang, and Arthur R. Smitha

    E-Print Network [OSTI]

    Atomic-resolution study of Mn tetramer clusters using scanning tunneling microscopy Rong Yang clusters is investigated. The clusters are composed of a quadrant array of Mn atoms forming a tetramer of manganese nitride, on which are stabilized peri- odic, self-organized array of MnN-bonded Mn tetramer clus

  14. In Situ Electrochemical Transmission Electron Microscopy for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Battery Research. Abstract: The recent development of in situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details...

  15. Methodology for assessing coastal change using terrestrial laser scanning

    E-Print Network [OSTI]

    Olsen, Michael J.

    2009-01-01T23:59:59.000Z

    Michelangelo Project: 3D Scanning of Large Statues,” Proc.for terrestrial laser scanning of long cliff sections inPress). Terrestrial laser scanning based structural damage

  16. Methodology for assessing coastal change using terrestrial laser scanning

    E-Print Network [OSTI]

    Olsen, Michael James

    2009-01-01T23:59:59.000Z

    for terrestrial laser scanning of long cliff sections inPress). Terrestrial laser scanning based structural damageresolution 3d laser scanning to slope stability studies. ”

  17. Sustainable Transportation: Findings from an International Scanning Review

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2006-01-01T23:59:59.000Z

    FROM AN INTERNATIONAL SCANNING REVIEW AND INIPLICATIONS FORpart through an international scanning tour funded by the USThe group that conducted the scanning tour contributed ideas

  18. Scanning strategies for imaging arrays

    E-Print Network [OSTI]

    A. Kovacs

    2008-06-30T23:59:59.000Z

    Large-format (sub)millimeter wavelength imaging arrays are best operated in scanning observing modes rather than traditional position-switched (chopped) modes. The choice of observing mode is critical for isolating source signals from various types of noise interference, especially for ground-based instrumentation operating under a bright atmosphere. Ideal observing strategies can combat 1/f noise, resist instrumental defects, sensitively recover emission on large scales, and provide an even field coverage -- all under feasible requirements of telescope movement. This work aims to guide the design of observing patterns that maximize scientific returns. It also compares some of the popular choices of observing modes for (sub)millimeter imaging, such as random, Lissajous, billiard, spiral, On-The-Fly (OTF), DREAM, chopped and stare patterns. Many of the conclusions are also applicable other imaging applications and imaging in one dimension (e.g. spectroscopic observations).

  19. A versatile scanning acoustic platform

    E-Print Network [OSTI]

    N G Parker; P V Nelson; M J W Povey

    2010-02-01T23:59:59.000Z

    We present a versatile and highly configurable scanning acoustic platform. This platform, comprising of a high frequency transducer, bespoke positioning system and temperature-regulated sample unit, enables the acoustic probing of materials over a wide range of length scales and with minimal thermal aberration. In its bare form the platform acts as a reflection-mode acoustic microscope, while optical capabilities are readily incorporated to extend its abilities to the acousto-optic domain. Here we illustrate the capabilities of the platform through its incarnation as an acoustic microscope. Operating at 55 MHz we demonstrate acoustic imaging with a lateral resolution of 25 microns. We outline its construction, calibration and capabilities as an acoustic microscope, and discuss its wider applications.

  20. Nanomaterials Analysis using a Scanning Electron Microscope ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanomaterials Analysis using a Scanning Electron Microscope Technology available for licensing: Steradian X-ray detection system increases the detection capability of SEMs during...

  1. Scanning Probe AFM Compound Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe AFM Compound Microscope Scanning Probe AFM Compound Microscope The atomic force microscope (AFM) compound microscope is designed primarily for fluorescence imaging in the...

  2. Imaging - Clearer brain scans ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging - Clearer brain scans ... A clever signal noise reduction strategy developed by a team that includes Oak Ridge National Laboratory's Ben Lawrie could dramatically improve...

  3. In-situ Transmission Electron Microscopy and Spectroscopy Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and In-situ Transmission Electron Microscopy and Spectroscopy Studies of...

  4. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

  5. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

  6. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization Catalyst...

  7. ORNL microscopy pencils patterns in polymers at the nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (865) 574-7308 ORNL microscopy pencils patterns in polymers at the nanoscale Oak Ridge National Laboratory researchers used atomic force microscopy to draw nanoscale patterns in a...

  8. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials Investigations of electrode interface and architecture...

  9. City of College Station's Thermographic Mobile Scan

    E-Print Network [OSTI]

    Shear, C. K.

    1986-01-01T23:59:59.000Z

    During the first quarter of 1986, the City of College Station conducted a thermographic mobile scan of the entire city. A thermographic mobile scan is a process by which heat loss/heat gain data is accumulated by a vehicle traveling the city...

  10. 13:30-14:45 Octreotide Scan

    E-Print Network [OSTI]

    Wu, Yih-Min

    ; CT MRI RFA PET Octreotide Scan 24 #12;? ? · 1. ! ! · 2 2012-09-21 13:30-14:45 #12; 1. 2. 3. -, 4. 4. 5. 6. - 7. 8. Q&A #12; CT MRI RFA PET Octreotide Scan 24 #12; 2006 McGraw-Hill Higher Education

  11. Scanning tunneling microscope assembly, reactor, and system

    DOE Patents [OSTI]

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18T23:59:59.000Z

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  12. Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor

    E-Print Network [OSTI]

    Li, Jiang; Paudel, Hari; Barankov, Roman; Bifano, Thomas; Mertz, Jerome

    2015-01-01T23:59:59.000Z

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and proof of concept experimental demonstrations.

  13. Potential applications of microscopy for steam coal

    SciTech Connect (OSTI)

    DeVanney, K.F.; Clarkson, R.J.

    1995-08-01T23:59:59.000Z

    Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

  14. Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering

    SciTech Connect (OSTI)

    Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

    2006-06-05T23:59:59.000Z

    We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

  15. Nanosecond switching in GeSe phase change memory films by atomic force microscopy

    SciTech Connect (OSTI)

    Bosse, James L.; Huey, Bryan D., E-mail: bhuey@ims.uconn.edu [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Grishin, Ilya; Kolosov, Oleg V. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Gyu Choi, Yong [Department of Materials Science and Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do, 412-791 (Korea, Republic of); Cheong, Byung-ki; Lee, Suyoun [Electronic Materials Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-02-03T23:59:59.000Z

    Nanosecond scale threshold switching is investigated with conducting atomic force microscopy (AFM) for an amorphous GeSe film. Switched bits exhibit 2–3 orders of magnitude variations in conductivity, as demonstrated in phase change based memory devices. Through the nm-scale AFM probe, this crystallization was achieved with pulse durations of as low as 15?ns, the fastest reported with scanning probe based methods. Conductance AFM imaging of the switched bits further reveals correlations between the switched volume, pulse amplitude, and pulse duration. The influence of film heterogeneities on switching is also directly detected, which is of tremendous importance for optimal device performance.

  16. Spatial resolution in vector potential photoelectron microscopy

    SciTech Connect (OSTI)

    Browning, R. [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)] [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)

    2014-03-15T23:59:59.000Z

    The experimental spatial resolution of vector potential photoelectron microscopy is found to be much higher than expected because of the cancellation of one of the expected contributions to the point spread function. We present a new calculation of the spatial resolution with support from finite element ray tracing, and experimental results.

  17. Scanning fluorescent microthermal imaging apparatus and method

    DOE Patents [OSTI]

    Barton, Daniel L. (Albuquerque, NM); Tangyunyong, Paiboon (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

  18. Scanning fluorescent microthermal imaging apparatus and method

    DOE Patents [OSTI]

    Barton, D.L.; Tangyunyong, P.

    1998-01-06T23:59:59.000Z

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

  19. All-codon scanning identifies p53 cancer rescue mutations

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    interactions by alanine-scanning mutagenesis. Science, 244,10.1093/nar/gkq571 All-codon scanning identifies p53 cancer2010 ABSTRACT In vitro scanning mutagenesis strategies are

  20. A New Interpretation of the Scanning Tunneling Microscope Image...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interpretation of the Scanning Tunneling Microscope Image of Graphite. A New Interpretation of the Scanning Tunneling Microscope Image of Graphite. Abstract: In this work,...

  1. CFN | Hitachi HD2700C Scanning Transmission Electron Microscope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hitachi HD2700C Scanning Transmission Electron Microscope Contacts: Dong Su | Lihua Zhang | Huolin Xin The Hitachi 2700C is a dedicated Scanning Transmission Electron Microscope...

  2. affecting electronically scanned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Technologies and Information Sciences Websites Summary: Middle Drive, Knoxville, TN 37996 The scanning electron microscope (SEM) has long been used-chamber scanning...

  3. Single particle microscopy with nanometer resolution

    E-Print Network [OSTI]

    Georg Jacob; Karin Groot-Berning; Sebastian Wolf; Stefan Ulm; Luc Couturier; Ulrich G. Poschinger; Ferdinand Schmidt-Kaler; Kilian Singer

    2014-05-26T23:59:59.000Z

    We experimentally demonstrate nanoscopic transmission microscopy relying on a deterministic single particle source. This increases the signal-to-noise ratio with respect to conventional microscopy methods, which employ Poissonian particle sources. We use laser-cooled ions extracted from a Paul trap, and demonstrate remote imaging of transmissive objects with a resolution of 8.6 $\\pm$ 2.0nm and a minimum two-sample deviation of the beam position of 1.5nm. Detector dark counts can be suppressed by 6 orders of magnitudes through gating by the extraction event. The deterministic nature of our source enables an information-gain driven approach to imaging. We demonstrate this by performing efficient beam characterization based on a Bayes experiment design method.

  4. Frontiers of in situ electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01T23:59:59.000Z

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore »this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  5. Dark Field Microscopy for Analytical Laboratory Courses

    SciTech Connect (OSTI)

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-06-10T23:59:59.000Z

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

  6. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

  7. Quantitative imaging of living cells by deep ultraviolet microscopy

    E-Print Network [OSTI]

    Zeskind, Benjamin J

    2006-01-01T23:59:59.000Z

    Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

  8. New Developments in Transmission Electron Microscopy for Nanotechnology**

    E-Print Network [OSTI]

    Wang, Zhong L.

    New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

  9. Thin Film Morphology Control by Mechanical, Electronic and Chemical Interactions: a Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study

    E-Print Network [OSTI]

    Sun, Dezheng

    2012-01-01T23:59:59.000Z

    of the formation of Anthraquinone self-assembled honeycombsizes are the same. Anthraquinone (AQ) molecules adsorb on

  10. An Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study of Pattern Formation and Molecule Ordering under a Variety of Interactions

    E-Print Network [OSTI]

    Zhu, Yeming

    2013-01-01T23:59:59.000Z

    CO Molecules inside an Anthraquinone comb Network on Cu(111)CO Molecules inside an Anthraquinone Honey- comb Network onformed by deposition of anthraquinone according to Ref. [42

  11. Magnetic domain structures of focused ion beam-patterned cobalt films using scanning ion microscopy with polarization analysis

    E-Print Network [OSTI]

    Rau, Carl

    in the areas of ultrahigh density magnetic recording, MRAM design, and miniaturized magnetic sensor arrays, it is found that rectangular Co bars of sizes between 10­30 m exhibit S type, whereas circular shaped magnetic elements show C type micromagnetic magnetization patterns. It is shown that SIMPA provides a simple way

  12. Adhesion of Rice Flour-Based Batter to Chicken Drumsticks Evaluated by Laser Scanning Confocal Microscopy and Texture Analysis

    E-Print Network [OSTI]

    societies such as the United States (Shukla, 1993). The per capita consumption of battered and breaded foods consumption of rice and rice products, rice flour is a logical alternative for wheat flour in traditional of formulated batters and breadings is about 52 × 107 kg. The consumption of battered and breaded products

  13. An Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study of Pattern Formation and Molecule Ordering under a Variety of Interactions

    E-Print Network [OSTI]

    Zhu, Yeming

    2013-01-01T23:59:59.000Z

    Kim, D. , Sun, D. , Lu, W. , Cheng, Z. , Zhu, Y. , Le, D. ,Kim, D.H. , Sun, D. , Cheng, Z. , Berland, K. , Kim, Y.S. ,11, 2944 (2011) [6] Cheng Z. , Chu E. , Sun, D. , Kim D. ,

  14. Thin Film Morphology Control by Mechanical, Electronic and Chemical Interactions: a Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study

    E-Print Network [OSTI]

    Sun, Dezheng

    2012-01-01T23:59:59.000Z

    Y. , Luo M. , Wyrick J. , Cheng Z. , Einstein T.L. , Rahman63 (2001) (11), p. 115415. 2. Z. Cheng, E.S. Chu, D. Sun, D.Lu, Y. Zhu, M. Luo, J. Wyrick, Z. Cheng, T.L. Einstein, T.S.

  15. Chemical imaging at 30 nm spatial resolution in 2-d and 3-d with Scanning Transmission X-ray Microscopy

    E-Print Network [OSTI]

    Fisher, Frank

    sensitive imaging of environmental biofilms; speciation and quantitative mapping of metals in natural river in January 1997, after serving on the editorial board since 1986. He has worked with AFCC since 2008 on fuel

  16. Compositional variations in strain-compensated InGaAsP/InAsP superlattices studied by scanning tunneling microscopy

    E-Print Network [OSTI]

    Feenstra, Randall

    structures fabricated by this method. Structures utilizing tensile In- GaP barriers have previously been to eight periods, the high bandgap of InGaP affects the hole transport in the MQW, resulting in an uneven a reduced material quality compared to the structures with InGaP barriers but the device performance

  17. Novel Contrast Mechanism in Cross-Sectional Scanning Tunneling Microscopy of GaSb/GaAs Type-II Nanostructures

    E-Print Network [OSTI]

    Feenstra, Randall

    very interesting both for fundamental physics23 and applications as e.g. charge storage devices24-II Nanostructures R. Timm,1, R. M. Feenstra,2 H. Eisele,1 A. Lenz,1 L. Ivanova,1 E. Lenz,3 and M. D¨ahne1 1, sharply defined contrast of the nanostructure at negative sample bias, but a smoothly broadened contrast

  18. Scanning Tunneling Microscopy and Surface Simulation of Zinc-Blende GaN(001) Intrinsic 4 Reconstruction: Linear Gallium Tetramers?

    E-Print Network [OSTI]

    Reconstruction: Linear Gallium Tetramers? Hamad A. AL-Brithen, Rong Yang, Muhammad B. Haider, Costel Constantin and occupied states, in agreement with surface simulations based on the 4 1 linear tetramer model the existence of linear Ga tetramers. DOI: PACS numbers: 68.35.Bs, 68.37.Ef, 73.20.At Based on both fundamental

  19. HIGH RESOLUTION SCANNING AUGER MICROANALYSIS OF HIGH-STRENGTH SILICON CARBIDES

    E-Print Network [OSTI]

    Krivanek, O.L.

    2012-01-01T23:59:59.000Z

    Society HIGH RESOLUTION SCANNING AUGER MICROANALYSIS OFCalifornia. HIGH RESOLUTION SCANNING AUGER MICROANALYSIS OFhelium, by high resolution scanning Auger microanalysis and

  20. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  1. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, G.W.

    1996-10-22T23:59:59.000Z

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  2. Scanning and storage of electrophoretic records

    DOE Patents [OSTI]

    McKean, Ronald A. (Royal Oak, MI); Stiegman, Jeff (Ann Arbor, MI)

    1990-01-01T23:59:59.000Z

    An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.

  3. Chemically-selective imaging of brain structures with CARS microscopy

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Chemically-selective imaging of brain structures with CARS microscopy Conor L. Evans1§ , Xiaoyin Xu anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy

  4. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    SciTech Connect (OSTI)

    Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk [Photonic Systems Research Laboratory, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2014-07-28T23:59:59.000Z

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.

  5. Importance-Scanning Worm Using Vulnerable-Host Distribution

    E-Print Network [OSTI]

    Ji, Chuanyi

    Importance-Scanning Worm Using Vulnerable-Host Distribution Zesheng Chen School of Electrical scanning. The distribution of vulnerable hosts on the Internet, however, is highly non- uniform over the IP-address space. This implies that random scanning wastes many scans on invulnerable addresses, and more virulent

  6. A new screen scanning system based on clustering screen objects

    E-Print Network [OSTI]

    Robinson, Peter

    A new screen scanning system based on clustering screen objects Pradipta Biswas Research Student with a computer through one or two switches with the help of a scanning mechanism. In this paper we present a new scanning technique based on clustering screen objects and then compare it with two other scanning systems

  7. Simultaneous Operation of Multiple Collocated Radios and the Scanning Problem

    E-Print Network [OSTI]

    Barbeau, Michel

    Simultaneous Operation of Multiple Collocated Radios and the Scanning Problem Michel Barbeau. The radio interface scans channels to uncover beacons periodically sent by transmitters. The goal of the scanning activity is to uncover the beacons within the shortest possible time. We call this the scanning

  8. Universal Scanning and Sequential Decision Making for Multidimensional Data

    E-Print Network [OSTI]

    Weissman, Tsachy

    Universal Scanning and Sequential Decision Making for Multidimensional Data Asaf Cohen Department in scanning of multidimensional data arrays, such as universal scanning and prediction ("scandiction, it is natural to ask what is the optimal method to scan and predict a given image, what is the resulting minimum

  9. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect (OSTI)

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01T23:59:59.000Z

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

  10. PNNL SA 95506 Scan to learn more

    E-Print Network [OSTI]

    PNNL SA 95506 Scan to learn more www.pnnl.gov At Pacific Northwest National Laboratory, we are transforming the world through courageous discovery and innovation. The evidence is all around us. PNNL called PNNL) developed the standards and devices for setting and measuring radiation doses received

  11. Department of Transportation I. Internal Scan

    E-Print Network [OSTI]

    Tipple, Brett

    Department of Transportation I. Internal Scan The number of older drivers in the United States-driver basis, older adults are among the safest. The average annual number of crashes in the United States million vehicle miles traveled (MVMT), drivers over the age of 75 have a fatality rate of 3.7 deaths per

  12. Vertically aligned nanostructure scanning probe microscope tips

    DOE Patents [OSTI]

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19T23:59:59.000Z

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  13. Department of Health I. Internal Scan

    E-Print Network [OSTI]

    Tipple, Brett

    and cholesterol; and working with consumers, health plans and providers to improve the quality of care and other non- institutional settings. CURRRENT PLANS: The Division of Health care Financing has been takingDepartment of Health I. Internal Scan There are a variety of areas that will be impacted

  14. Fast electron microscopy via compressive sensing

    DOE Patents [OSTI]

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09T23:59:59.000Z

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  15. New Microscopy Patent Awarded | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNewIdeasofNew Microscopy Patent

  16. OPTICAL BIOPSY: COMPLEMENTING HISTOLOGY WITH NONLINEAR OPTICAL MICROSCOPY

    E-Print Network [OSTI]

    Shafer, Christina

    2006-08-16T23:59:59.000Z

    acquisition from 32 detectors. The initial task competed involved the scanning mechanism; a program was created to control motorized optical scanning mirrors. The next task required a circuit board to be built to interface the detectors with the computer. A...

  17. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    SciTech Connect (OSTI)

    Wong, Sze-Shun Season

    1999-12-10T23:59:59.000Z

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n {+-} 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

  18. Laser scanning system for object monitoring

    DOE Patents [OSTI]

    McIntyre, Timothy James [Knoxville, TN; Maxey, Lonnie Curtis [Powell, TN; Chiaro, Jr; John, Peter [Clinton, TN

    2008-04-22T23:59:59.000Z

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  19. Macroscopic model of scanning force microscope

    DOE Patents [OSTI]

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05T23:59:59.000Z

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  20. Systematic Sampling of Scanning Lidar Swaths

    E-Print Network [OSTI]

    Marcell, Wesley Tyler

    2011-02-22T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Marian Eriksson Sorin Pospescu Committee Members, Cristine Morgan Ross Nelson Head of Department, Steven Whisenant December 2009 Major Subject: Forestry... iii ABSTRACT Systematic Sampling of Scanning Lidar Swaths. (December 2009) Wesley Tyler Marcell, B.S., Texas A&M University Co-Chairs of Advisory Committee: Dr. Marian Eriksson Dr. Sorin...

  1. Dislocation engineering in SiGe on periodic and aperiodic Si(001) templates studied by fast scanning X-ray nanodiffraction

    SciTech Connect (OSTI)

    Mondiali, Valeria; Cecchi, Stefano; Chrastina, Daniel [L-NESS, Dipartimento di Fisica, Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Bollani, Monica, E-mail: monica.bollani@ifn.cnr.it [IFN-CNR, L-NESS, via Anzani 42, 22100 Como (Italy); Richard, Marie-Ingrid [ID01/ESRF, BP 220, F-38043 Grenoble Cedex (France); Aix-Marseille Université, CNRS, IM2NP UMR 7334, Campus de St Jérôme, F-13397 Marseille Cedex (France); Schülli, Tobias; Chahine, Gilbert [ID01/ESRF, BP 220, F-38043 Grenoble Cedex (France)

    2014-01-13T23:59:59.000Z

    Fast-scanning X-ray nanodiffraction microscopy is used to directly visualize the misfit dislocation network in a SiGe film deposited on a pit-patterned Si substrate at the beginning of plastic relaxation. X-ray real-space diffracted intensity maps are compared to topographic atomic force microscopy images, in which crosshatch lines can be seen. The change in intensity distribution as a function of the incidence angle shows localized variations in strain within the SiGe film. These variations, which reflect the order imposed by the substrate pattern, are attributed to the presence of both bunches of misfit dislocations and defect-free regions.

  2. T3PS: Tool for Parallel Processing in Parameter Scans

    E-Print Network [OSTI]

    Maurer, Vinzenz

    2015-01-01T23:59:59.000Z

    T3PS is a program that can be used to quickly design and perform parameter scans while easily taking advantage of the multi-core architecture of current processors. It takes an easy to read and write parameter scan definition file format as input. Based on the parameter ranges and other options contained therein, it distributes the calculation of the parameter space over multiple processes and possibly computers. The derived data is saved in a plain text file format readable by most plotting software. The supported scanning strategies include: grid scan, random scan, Markov Chain Monte Carlo, numerical optimization. Several example parameter scans are shown and compared with results in the literature.

  3. In-Situ Transmission Electron Microscopy Probing of Native Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial...

  4. NATIONAL CENTRE FOR SENSOR RESEARCH (NCSR) Research Engineer Fluorescence Microscopy

    E-Print Network [OSTI]

    Humphrys, Mark

    manuals, prepare standard operating procedures and ensure documentation is maintained. · Manage online projects. · Undertake the commissioning and maintenance of microscopy equipment. · Collate operations

  5. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials In-situ characterization and diagnostics of mechanical degradation in electrodes...

  6. Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist

    E-Print Network [OSTI]

    Winston, Donald

    A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article ...

  7. Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast

    E-Print Network [OSTI]

    Wang, Lihong

    Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast Geng Ku Scanning thermoacoustic tomography was explored in the microwave region of the electromagnetic spectrum ultrasonic transducer detected the time-resolved thermoacoustic signals. Based on the microwave

  8. Toward nano-accuracy in scanning beam interference lithography

    E-Print Network [OSTI]

    Montoya, Juan, 1976-

    2006-01-01T23:59:59.000Z

    Scanning beam interference lithography is a technique developed in our laboratory which uses interfering beams and a scanning stage to rapidly pattern gratings over large areas (300x300 mm2) with high precision. The ...

  9. Design and Construction of a Low Temperature Scanning Tunneling Microscope

    E-Print Network [OSTI]

    Chen, Chi

    2010-10-12T23:59:59.000Z

    A low temperature scanning tunneling microscope (LTSTM) was built that we could use in an ultra high vacuum (UHV) system. The scanning tunneling microscope (STM) was tested on an existing 3He cryostat and calibrated at room, liquid nitrogen...

  10. Optical Theorem in Nonlinear Media

    E-Print Network [OSTI]

    Li, Wei

    2015-01-01T23:59:59.000Z

    We consider the optical theorem for scattering of electromagnetic waves in nonlinear media. This result is used to obtain the power extinguished from a field by a nonlinear scatterer. The cases of second harmonic generation and the Kerr effect are studied in some detail. Applications to nonlinear apertureless scanning near-field optical microscopy are considered.

  11. nanostructures: Theoretical

    E-Print Network [OSTI]

    Zimmermann, Roland

    for the interpretation of optical measurements. The focus is on spatially resolved spectroscopy, such as micro photoluminescence (¯­PL) and near­field scanning optical microscopy (NSOM). A related technique which al­ lows be derived [5] : ` \\Gamma ¯ h 2 \\DeltaR 2MX +v(R) ' /ff (R) = Eff /ff (R) : (2.1) Here a factorization

  12. prsente par Blandine Romain

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for the interpretation of optical measurements. The focus is on spatially resolved spectroscopy, such as micro photoluminescence (¯­PL) and near­field scanning optical microscopy (NSOM). A related technique which al­ lows be derived [5] : ` \\Gamma ¯ h 2 \\DeltaR 2MX +v(R) ' /ff (R) = Eff /ff (R) : (2.1) Here a factorization

  13. Hetero-epitaxial EuO interfaces studied by analytic electron microscopy

    SciTech Connect (OSTI)

    Mundy, Julia A. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Hodash, Daniel; Melville, Alexander; Held, Rainer [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Mairoser, Thomas; Schmehl, Andreas [Zentrum für Elektronische Korrelationen und Magnetismus, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg (Germany); Muller, David A.; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Schlom, Darrell G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2014-03-03T23:59:59.000Z

    With nearly complete spin polarization, the ferromagnetic semiconductor europium monoxide could enable next-generation spintronic devices by providing efficient ohmic spin injection into silicon. Spin injection is greatly affected by the quality of the interface between the injector and silicon. Here, we use atomic-resolution scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy to directly image and chemically characterize a series of EuO|Si and EuO|YAlO{sub 3} interfaces fabricated using different growth conditions. We identify the presence of europium silicides and regions of disorder at the EuO|Si interfaces, imperfections that could significantly reduce spin injection efficiencies via spin-flip scattering.

  14. FDF: Frequency Detection-Based Filtering of Scanning Worms

    E-Print Network [OSTI]

    Bahk, Saewoong

    FDF: Frequency Detection-Based Filtering of Scanning Worms Byungseung Kim and Saewoong Bahk School@korea.ac.kr Abstract-- In this paper, we propose a simple algorithm for detecting scanning worms with high detection characteristic of scanning worms from a monitored network. Its low complexity allows it to be used on any network

  15. SCANNING TUNNELING MICROSCOPE ASSEMBLY INSTRUCTIONS FOR NANOSCOPE II

    E-Print Network [OSTI]

    SCANNING TUNNELING MICROSCOPE ASSEMBLY INSTRUCTIONS FOR NANOSCOPE II 1) Set monitor #1 on top side of the able. 3) Set the keyboard on top and front of the computer. 4) Set the scanning head on gel into the scanning head. 12) Suspend bungee cords, as necessary, from a secure point in the ceiling. 13) Fasten onto

  16. Rapid mapping of protein functional epitopes by combinatorial alanine scanning

    E-Print Network [OSTI]

    Weiss, Gregory A.

    Rapid mapping of protein functional epitopes by combinatorial alanine scanning Gregory A. Weiss for review March 2, 2000) A combinatorial alanine-scanning strategy was used to determine simultaneously previously determined by conventional alanine-scanning mutagenesis and suggest that this technology should

  17. IEEE 802.11 scanning algorithms: cross-layer experiments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IEEE 802.11 scanning algorithms: cross-layer experiments German Castignani (Télécom Bretagne.11 Scanning Algorithms: Cross-Layer Experiments German Castignani1 , Nicolas Montavont1 , Andr´es Arcia-Moret2 scanning functions. For both, timers are usually constant (within the 802.11 driver

  18. CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING

    E-Print Network [OSTI]

    Marco, Shmuel "Shmulik"

    CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING Sagi Filin1 , Amit@tau.ac.il Commission VIII/8 KEY WORDS: Airborne laser scanning, Geomorphology, Dead Sea, Land Degradation, Sinkholes of collapse sinkholes in high resolution using airborne laser scanning technology. As a study case, we use

  19. Computer-intensive rate estimation, diverging statistics, and scanning

    E-Print Network [OSTI]

    Politis, Dimitris N.

    Computer-intensive rate estimation, diverging statistics, and scanning Tucker McElroy U.S. Bureau in a very general setting without requiring the choice of a tun- ing parameter. The notion of scanning method is ap- plied to different scans, and the resulting estimators are then combined to improve

  20. 3D Scanning for Biometric Identification and Verification

    E-Print Network [OSTI]

    McShea, Daniel W.

    June 2010 3D Scanning for Biometric Identification and Verification Project Leads Anselmo Lastra example the subject's face could be rapidly scanned while his or her smart-card ID is being examined, and the system could then match the scan with data on the ID); (b) identification at a secure site or even

  1. Analysing PET scans data for predicting response to chemotherapy in

    E-Print Network [OSTI]

    Sleeman, Derek

    (CT1, CT2,. . .) and PET scans (PT1 to PT4). cancer cells tend to grow more rapidly than other tissueAnalysing PET scans data for predicting response to chemotherapy in breast cancer patients Elias the use of Positron Emission Tomography (PET) [11, 13]. PET scans can be used to visualise

  2. Circular zig-zag scan video format

    DOE Patents [OSTI]

    Peterson, C.G.; Simmons, C.M.

    1992-06-09T23:59:59.000Z

    A circular, ziz-zag scan for use with vidicon tubes is disclosed. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal. 10 figs.

  3. ScanArc ASA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°, -122.0230146° ShowSavannahSavvasScanArc

  4. WorldScan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters Jump to:Technologies IncWorldScan

  5. H2Scan LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersville ElectricControlon State - LandScan LLC Jump

  6. Rapid Scan AERI Observations: Benefits and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds for a cureEnergy StorageRapid Scan

  7. Scan welding: Thermomechanical model and experimental validation

    SciTech Connect (OSTI)

    Fourligkas, N.; Doumanidis, C.C. [Tufts Univ., Medford, MA (United States)

    1996-12-31T23:59:59.000Z

    This article presents a comparative thermomechanical analysis of classical versus the new scan welding methods, that have been recently developed to achieve simultaneous control of multiple weld quality features. Unlike conventional welding with a concentrated heat source in sequential motion, the scan welding torch reciprocates rapidly on dynamic trajectories, and its power is modulated in-process, to provide a regulated heat input distribution on the entire weld surface. The new process was modeled by a real-time analytical, lumped model, consisting of a composite heat source description, double-cell circulation in the weld puddle, dynamic solid conduction and estimation of the mechanical strength of the joint. The process is computationally and experimentally shown to generate a smooth and uniform temperature field, and to deposit the full length of the weld bead simultaneously at a controlled solidification rate. The observed interlacing of grains on the bead interface and the regulated material microstructure yield improved tensile joint strength. The model can be used for design of a closed-loop thermal controller, using temperature feedback from an infrared pyrometer and model-referenced parameter identification.

  8. Library Scanning Service for Academic The University subscribes to the Copyright Licensing Agency's (CLA) photocopying and scanning licence for higher

    E-Print Network [OSTI]

    Rzepa, Henry S.

    Library Scanning Service for Academic Staff The University subscribes to the Copyright Licensing Agency's (CLA) photocopying and scanning licence for higher education. This grants library staff as the material meets the terms of the Licence. What can be scanned? Printed material in the Library

  9. Scanning using the Axon GenePix scanner Time on the scanner is scheduled for both scanning and data

    E-Print Network [OSTI]

    Grünwald, Niklaus J.

    1 5/15/07 Scanning using the Axon GenePix scanner Time on the scanner is scheduled for both scanning and data extraction tasks at http://calendar.oregonstate.edu/cgrb-genepix/. To reserve time scanning. Turn on the scanner using the toggle switch (low center on the back of the instrument). Turn

  10. Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells

    E-Print Network [OSTI]

    Bernal, Javier

    - mentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy fluorescence microscopy; k-means cluster; image segmentation; cell edge; bivariate simi- larity index NUMEROUSComparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells Alden A. Dima,1

  11. High-temperature piezoresponse force microscopy B. Bhatia,1

    E-Print Network [OSTI]

    King, William P.

    High-temperature piezoresponse force microscopy B. Bhatia,1 J. Karthik,2 D. G. Cahill,1,2 L. W September 2011; published online 24 October 2011) We report high temperature piezoresponse force microscopy resistive heater allows local temperature control up to 1000 C with minimal electrostatic interactions

  12. Photoacoustic microscopy of tyrosinase reporter gene in vivo

    E-Print Network [OSTI]

    Wang, Lihong

    Photoacoustic microscopy of tyrosinase reporter gene in vivo Arie Krumholz Sarah J. Van microscopy of tyrosinase reporter gene in vivo Arie Krumholz,a Sarah J. VanVickle-Chavez,b Junjie Yao for tyrosinase, the primary enzyme responsible for expression of melanin in melanogenic cells. Optical res

  13. HIGH RESOLUTION SCANNING AUGER MICROSCOPIC INVESTIGATION OF INTERGRANULAR FRACTURE IN AS-QUENCHED Fe-12Mn

    E-Print Network [OSTI]

    Lee, H.J.

    2013-01-01T23:59:59.000Z

    contents in Fe-Mn alloys. Scanning electron fractographsTransactions HIGH RESOLUTION SCANNING AUGER MICROSCOPICof Califomia. HIGH RESOLUTION SCANNING AUGER MICROSCOPIC

  14. Development of a Scanning Probe Microscope and Studies of Graphene Grown on Copper

    E-Print Network [OSTI]

    Rasool, Haider Imad

    2012-01-01T23:59:59.000Z

    1: INTRODUCTION 1.1. BRIEF DISCUSSION OF SCANNING PROBEhighly stable electrochemical scanning probe microscope forincorporated it into a scanning probe microscope, performed

  15. Particle Formation from Pulsed Laser Irradiation of Soot Aggregates studied with scanning

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    incandescence method with scanning mobility particle sizerAde, "Interferometer-controlled scanning transmission X-rayto hamiche@ca.sandia.gov A scanning mobility particle sizer

  16. Towards a warped inflationary brane scanning

    E-Print Network [OSTI]

    Heng-Yu Chen; Jinn-Ouk Gong

    2009-08-31T23:59:59.000Z

    We present a detailed systematics for comparing warped brane inflation with the observations, incorporating the effects of both moduli stabilization and ultraviolet bulk physics. We explicitly construct an example of the inflaton potential governing the motion of a mobile D3 brane in the entire warped deformed conifold. This allows us to precisely identify the corresponding scales of the cosmic microwave background. The effects due to bulk fluxes or localized sources are parametrized using gauge/string duality. We next perform some sample scannings to explore the parameter space of the complete potential, and first demonstrate that without the bulk effects there can be large degenerate sets of parameters with observationally consistent predictions. When the bulk perturbations are included, however, the observational predictions are generally spoiled. For them to remain consistent, the magnitudes of the bulk effects need to be highly suppressed via fine tuning.

  17. Direct-Write Piezoelectric Nanogenerator by Near-Field Electrospinning

    E-Print Network [OSTI]

    Chang, Chieh

    2009-01-01T23:59:59.000Z

    P. Jacob, “Harvesting ocean wave energy,” Science, vol. 323,ocean waves, into electricity [1,2] to small-scale energy

  18. Near-Field Imaging of Interior Cavities 1 Introduction

    E-Print Network [OSTI]

    2014-10-21T23:59:59.000Z

    The scattering data is taken on a circle centered at the source. The ... where a>0 is the base radius and f(?) is the cavity surface function. We assume that f is.

  19. NEAR-FIELD RECEIVING WATER MONITORING OF A BENTHIC

    E-Print Network [OSTI]

    CONTROL PLANT IN SOUTH SAN FRANCISCO BAY: FEBRUARY 1974 THROUGH DECEMBER 2003 By Michelle K. Shouse ..........................................................................................................B 3 #12;FIGURES Figure 1. Map of sampling station located on Sand Point in Palo Alto in South San Francisco Bay with the location of Palo Alto Regional Water Quality Control Plant (PARWQCP) effluent noted

  20. Near-field imaging of perfectly conducting grating surfaces

    E-Print Network [OSTI]

    2013-11-06T23:59:59.000Z

    and sensors. Depending on the ... method in order to capture fine structures of grating profiles with multiple ..... For the stability test, some relative random ... g only contains a couple of low Fourier modes. .... will report the results elsewhere.

  1. Near-field imaging of perfectly conducting grating surfaces

    E-Print Network [OSTI]

    2013-08-29T23:59:59.000Z

    Aug 29, 2013 ... reflective interfaces, beam splitters, and sensors. De- pending on the ... capture fine structures of grating profiles with multi- ..... grating profile func- tion g only contains a couple of low Fourier modes. ... We considered two exam- ples, one of ... tions should be considered, and will report the results elsewhere.

  2. Near-field imaging of perfectly conducting grating surfaces

    E-Print Network [OSTI]

    2013-11-06T23:59:59.000Z

    We consider the diffraction when a time-harmonic electro- magnetic plane wave is ... ness and stability for the inverse problem have been studied by many ...

  3. Near field optical probe for critical dimension measurements

    DOE Patents [OSTI]

    Stallard, B.R.; Kaushik, S.

    1999-05-18T23:59:59.000Z

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.

  4. Near-field imaging of quantum cascade laser transverse modes

    E-Print Network [OSTI]

    . Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near

  5. INVERSE ELASTIC SURFACE SCATTERING WITH NEAR-FIELD ...

    E-Print Network [OSTI]

    2015-03-20T23:59:59.000Z

    reconstruction formulas are derived for two types of measurement data. The method ... can penetrate the surface into the substrate, as well as the obstacle problem where the surface is bounded and .... Let us first specify the problem geometry.

  6. Carmichael's Concise Review Microscopy is Only Skin Deep

    E-Print Network [OSTI]

    Heller, Eric

    Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

  7. advanced microscopy techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Syllabus MSE 581: Advanced Electron Microscopy Course description: Present the theory of...

  8. advanced electron microscopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Syllabus MSE 581: Advanced Electron Microscopy Course description: Present the theory of...

  9. Optical fiber based ultrashort pulse multispectral nonlinear optical microscopy

    E-Print Network [OSTI]

    Larson, Adam Michael

    2009-05-15T23:59:59.000Z

    Nonlinear optical microscopy (NLOM) utilizing femtosecond laser pulses is well suited for imaging living tissues. This work reports on the design and development of an optical fiber based multispectral NLOM developed around a laser generating...

  10. Target-specific contrast agents for magnetic resonance microscopy

    E-Print Network [OSTI]

    Hepler Blackwell, Megan Leticia

    2007-01-01T23:59:59.000Z

    High-resolution ex vivo magnetic resonance microscopy (MRM) can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. The goal ...

  11. Doppler optical coherence microscopy for studies of cochlear mechanics

    E-Print Network [OSTI]

    Hong, Stanley S.

    The possibility of measuring subnanometer motions with micron scale spatial resolution in the intact mammalian cochlea using Doppler optical coherence microscopy (DOCM) is demonstrated. A novel DOCM system is described ...

  12. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys. Rev. Lett. 107, 033904 (2011). Web: http:prl.aps.orgpdfPRLv107i3e033904...

  13. Multi-level scanning method for defect inspection

    DOE Patents [OSTI]

    Bokor, Jeffrey (Oakland, CA); Jeong, Seongtae (Richmond, CA)

    2002-01-01T23:59:59.000Z

    A method for performing scanned defect inspection of a collection of contiguous areas using a specified false-alarm-rate and capture-rate within an inspection system that has characteristic seek times between inspection locations. The multi-stage method involves setting an increased false-alarm-rate for a first stage of scanning, wherein subsequent stages of scanning inspect only the detected areas of probable defects at lowered values for the false-alarm-rate. For scanning inspection operations wherein the seek time and area uncertainty is favorable, the method can substantially increase inspection throughput.

  14. Scanning Probe Direct-Write of Germanium Nanostructures. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe Direct-Write of Germanium Nanostructures. Scanning Probe Direct-Write of Germanium Nanostructures. Abstract: Bottom-up nanostructure synthesis has played a pivotal role in...

  15. Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis

    E-Print Network [OSTI]

    Kang, Jeon Woong

    We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed ...

  16. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect (OSTI)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01T23:59:59.000Z

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  17. Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods

    SciTech Connect (OSTI)

    Jensen, C. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France) [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States); Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France)] [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Ban, H. [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)] [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)

    2013-10-07T23:59:59.000Z

    Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ?52 ± 2 ?m deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m{sup ?1} K{sup ?1} and 26.7 ±1 W m{sup ?1} K{sup ?1}, respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10{sup ?6} m{sup 2} K W{sup ?1}. The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials.

  18. Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source. Soft X-Ray Microscopy and Spectroscopy at the Molecular...

  19. Swept source optical coherence microscopy for pathological assessment of cancerous tissues

    E-Print Network [OSTI]

    Ahsen, Osman Oguz

    2013-01-01T23:59:59.000Z

    Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable ...

  20. Joint estimation of attenuation and emission images from PET scans

    E-Print Network [OSTI]

    Fessler, Jeffrey A.

    Joint estimation of attenuation and emission images from PET scans Hakan Erdogan and Jeffrey A Motivation · Attenuation correction needed for quantitatively accurate PET · Post-injection transmission scans necessitated by whole-body PET Inject (in waiting room) Radioisotope Uptake 40-60 minutes 10