Sample records for microscopy lithography surface

  1. High resolution imaging and lithography using interference of light and surface plasmon waves

    E-Print Network [OSTI]

    Kim, Yang-Hyo

    2007-01-01T23:59:59.000Z

    The resolution of optical imaging and lithography is limited by the wave nature of light. Studies have been undertaken to overcome the diffraction limit for imaging and lithography. In our lab, the standing wave surface ...

  2. Random laser from engineered nanostructures obtained by surface tension driven lithography

    E-Print Network [OSTI]

    Ghofraniha, N; Di Maria, F; Barbarella, G; Gigli, G; Conti, C

    2013-01-01T23:59:59.000Z

    The random laser emission from the functionalized thienyl-S,S-dioxide quinquethiophene (T5OCx) in confined patterns with different shapes is demonstrated. Functional patterning of the light emitter organic material in well defined features is obtained by spontaneous molecular self-assembly guided by surface tension driven (STD) lithography. Such controlled supramolecular nano-aggregates act as scattering centers allowing the fabrication of one-component organic lasers with no external resonator and with desired shape and efficiency. Atomic force microscopy shows that different geometric pattern with different supramolecular organization obtained by the lithographic process tailors the coherent emission properties by controlling the distribution and the size of the random scatterers.

  3. Extreme ultraviolet mask substrate surface roughness effects on lithography patterning

    SciTech Connect (OSTI)

    George, Simi; Naulleau, Patrick; Salmassi, Farhad; Mochi, Iacopo; Gullikson, Eric; Goldberg, Kenneth; Anderson, Erik

    2010-06-21T23:59:59.000Z

    In extreme ultraviolet lithography exposure systems, mask substrate roughness induced scatter contributes to LER at the image plane. In this paper, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programmed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. We find that the roughness measurements by top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. We suggest at wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects.

  4. Development of a microfluidic device for patterning multiple species by scanning probe lithography

    E-Print Network [OSTI]

    Rivas Cardona, Juan Alberto

    2009-06-02T23:59:59.000Z

    Scanning Probe Lithography (SPL) is a versatile nanofabrication platform that leverages microfluidic “ink” delivery systems with Scanning Probe Microscopy (SPM) for generating surface-patterned chemical functionality on the sub-100 nm length scale...

  5. Surface Science Letters Scanning tunneling microscopy study of the anatase

    E-Print Network [OSTI]

    Diebold, Ulrike

    ; Surface structure, morphology, roughness, and topography; Low index single crystal surfaces The structureSurface Science Letters Scanning tunneling microscopy study of the anatase (1 0 0) surface NancyO2 anatase (1 0 0) surface. Natural single crystals of anatase were employed; and after several

  6. Scanning probe microscopy studies of semiconductor surfaces

    SciTech Connect (OSTI)

    Weinberg, W.H. [Univ. of California, Santa Barbara, CA (United States)

    1996-10-01T23:59:59.000Z

    Recent work involving atomic force microscopy and scanning tunneling microscopy is discussed which involves strain-induced, self-assembling nanostructures in compound semiconductor materials. Specific examples include one-dimensional quantum wires of InAs grown by MBE on GaAs(001) and zero-dimensional quantum dots of InP grown by MOCVD on InGaP which is lattice matched to GaAs(001).

  7. Investigations into Protein-Surface Interactions via Atomic Force Microscopy and Surface Plasmon Resonance

    E-Print Network [OSTI]

    Settle, Jenifer Kaye

    2012-08-31T23:59:59.000Z

    microscopy and surface plasmon resonance. Chapter one provides background information on protein surfaces interactions. Chapter 2 summarizes the techniques and surfaces utilized in the investigations in the following chapters. Chapter 3 provides background...

  8. Maskless lithography

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Stulen, Richard H. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

  9. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02T23:59:59.000Z

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  10. Chains of quantum dot molecules grown on Si surface pre-patterned by ion-assisted nanoimprint lithography

    SciTech Connect (OSTI)

    Smagina, Zh. V.; Stepina, N. P., E-mail: stepina@isp.nsc.ru; Zinovyev, V. A.; Kuchinskaya, P. A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Lavrenteva 13, 630090 Novosibirsk (Russian Federation); Novikov, P. L.; Dvurechenskii, A. V. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Lavrenteva 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation)

    2014-10-13T23:59:59.000Z

    An original approach based on the combination of nanoimprint lithography and ion irradiation through mask has been developed for fabrication of large-area periodical pattern on Si(100). Using the selective etching of regions amorphized by ion irradiation ordered structures with grooves and ridges were obtained. The shape and depth of the relief were governed by ion energy and by the number of etching stages as well. Laterally ordered chains of Ge quantum dots were fabricated by molecular beam epitaxy of Ge on the pre-patterned Si substrates. For small amount of Ge deposited chains contain separate quantum dot molecules. The increase of deposition amount leads to overlapping of quantum dot molecules with formation of dense homogeneous chains of quantum dots. It was shown that the residual irradiation-induced bulk defects underneath the grooves suppress nucleation of Ge islands at the bottom of grooves. On pre-patterned substrates with whole defect regions, etched quantum dots grow at the bottom of grooves. The observed location of Ge quantum dots is interpreted in terms of local strain-mediated surface chemical potential which controls the sites of islands nucleation. The local chemical potential is affected by additional strain formed by the residual defects. It was shown by molecular dynamics calculations that these defects form the compressive strain at the bottom of grooves.

  11. VUV lithography

    DOE Patents [OSTI]

    George, Edward V. (Livermore, CA); Oster, Yale (Danville, CA); Mundinger, David C. (Stockton, CA)

    1990-01-01T23:59:59.000Z

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.

  12. Wurtzite GaN Surface Structures Studied by Scanning Tunneling Microscopy and Reflection High Energy

    E-Print Network [OSTI]

    Feenstra, Randall

    Wurtzite GaN Surface Structures Studied by Scanning Tunneling Microscopy and Reflection High Energy studies of the surface reconstructions for both the Ga-face and the N-face of wurtzite GaN films grown a surface phenomenon. Although numerous surface studies of wurtzite GaN have been performed, progress

  13. Absorbance modulation optical lithography

    E-Print Network [OSTI]

    Tsai, Hsin-Yu Sidney

    2007-01-01T23:59:59.000Z

    In this thesis, the concept of absorbance-modulation optical lithography (AMOL) is described, and the feasibility experimentally verified. AMOL is an implementation of nodal lithography, which is not bounded by the diffraction ...

  14. Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Webb, Lauren J.

    Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling propargylglycine unnatural functional groups 20 Å apart and an alkanethiol self-assembled monolayer (SAM) on a gold-terminated surfaces were imaged by scanning tunneling microscopy (STM) using a low tunneling current of 10 p

  15. ATOMIC FORCE LITHOGRAPHY OF NANO/MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING OF AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Mendez-Torres, A.; Torres, R.; Lam, P.

    2011-07-15T23:59:59.000Z

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  16. ATOMIC FORCE LITHOGRAPHY OF NANO MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING IN AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Torres, R.; Mendez-Torres, A.; Lam, P.

    2011-06-09T23:59:59.000Z

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  17. Automation of soft lithography

    E-Print Network [OSTI]

    Kim, Hyung-Jun

    2006-01-01T23:59:59.000Z

    This dissertation is a final documentation of the project whose goal is demonstrating manufacturability of soft lithography. Specifically, our target is creating micron scale patterns of resists on a 3 square inch, relatively ...

  18. Contact thermal lithography

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2004-01-01T23:59:59.000Z

    Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

  19. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10T23:59:59.000Z

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  20. GaN(0001) Surface Structures Studied Using Scanning Tunneling Microscopy and First-Principles Total Energy Calculations

    E-Print Network [OSTI]

    occurring on the (0001) surface of wurtzite GaN are studied using scanning tunneling microscopy, electron and electronic properties of wurtzite GaN surfaces. Several prior studies have reported that these surfaces do reconstructions were identified, corresponding to the two inequivalent polar fac- es of wurtzite GaN, the (0001

  1. Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy electron diffraction

    E-Print Network [OSTI]

    Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy-face of wurtzite GaN films grown using molecular beam epitaxy. N-face reconstructions are primarily adatom numerous surface studies of wurtzite GaN have been performed, progress in determining the true surface

  2. Oxidized GaN(0001) Surfaces studied by Scanning Tunneling Microscopy and Spectroscopy and by First-Principles Theory

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Oxidized GaN(0001) Surfaces studied by Scanning Tunneling Microscopy and Spectroscopy Abstract Oxidized Ga-polar GaN surfaces have been studied both experimentally and theoretically. For in tunneling spectroscopy revealed a surface band gap with size close to that of GaN, indicating that any

  3. Electron caustic lithography

    SciTech Connect (OSTI)

    Kennedy, S. M.; Zheng, C. X.; Tang, W. X.; Paganin, D. M.; Jesson, D. E. [School of Physics, Monash University, Victoria, 3800 (Australia); Fu, J. [Department of Mechanical and Aerospace Engineering, Monash University, Victoria, 3800 (Australia)

    2012-06-15T23:59:59.000Z

    A maskless method of electron beam lithography is described which uses the reflection of an electron beam from an electrostatic mirror to produce caustics in the demagnified image projected onto a resist-coated wafer. By varying the electron optics, e.g. via objective lens defocus, both the morphology and dimensions of the caustic features may be controlled, producing a range of bright and tightly focused projected features. The method is illustrated for line and fold caustics and is complementary to other methods of reflective electron beam lithography.

  4. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    SciTech Connect (OSTI)

    Hopf, Juliane [ORNL; Pierce, Eric M [ORNL

    2014-01-01T23:59:59.000Z

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  5. Switching surface polarization of atomic force microscopy probe utilizing photoisomerization of photochromic molecules

    SciTech Connect (OSTI)

    Aburaya, Yoshihiro; Nomura, Hikaru; Kageshima, Masami; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro [Department of Applied Physics, Graduate School of Engineering, Osaka University 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2011-03-15T23:59:59.000Z

    An attempt to develop an atomic force microscopy (AFM) probe with optically switchable polarization is described. Modification with a single molecular layer of photochromic molecules was attempted onto a Si substrate that is a prototype for a probe surface. Polarization switching caused by alternate irradiation of UV and visible lights were detected using the electrostatic force?>spectroscopy (EFS) technique. Si substrates modified with spiropyran and azobenzene exhibited reversible polarization switching that caused changes in CPD of about 100 and 50 mV, respectively. Modification with spiropyran was also attempted onto a Si probe and resulted in a CPD change of about 100 mV. It was confirmed that modification of an AFM probe or substrate with a single molecular layer of photochromic molecules can generate surface polarization switching of a mechanically detectable level.

  6. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al

    2015-03-04T23:59:59.000Z

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore »environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  7. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect (OSTI)

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

    2014-10-28T23:59:59.000Z

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  8. Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    on sapphire substrate [2]. Park et al. performed the growth of Cr doped GaN single crystal by sodium fluxScanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Orleans, New Orleans, LA 70148, USA Abstract: Cr doped GaN was grown by rf N-plasma molecular beam epitaxy

  9. Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    doped MOCVD grown GaN on sapphire substrate [2]. Park et al. performed the growth of Cr doped GaN singleScanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Orleans, New Orleans, LA 70148, USA Abstract: Cr doped GaN was grown by rf N-plasma molecular beam epitaxy

  10. Programmable imprint lithography template

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA); Talin, Albert A. (Livermore, CA)

    2006-10-31T23:59:59.000Z

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  11. Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy

    SciTech Connect (OSTI)

    Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L.M.; Salmeron, Miquel

    2009-02-06T23:59:59.000Z

    The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant ({beta}) of 0.52/{angstrom}.

  12. Phase states of water near the surface of a polymer membrane. Phase microscopy and luminescence spectroscopy experiments

    SciTech Connect (OSTI)

    Bunkin, N. F., E-mail: nbunkin@kapella.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Gorelik, V. S. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kozlov, V. A., E-mail: v.kozlov@hotmail.com; Shkirin, A. V., E-mail: avshkirin@mephi.ru; Suyazov, N. V., E-mail: nvs@kapella.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2014-11-15T23:59:59.000Z

    Phase microscopy is used to show that the refractive index in the near-surface layer of water at the surface of a polymer Nafion membrane increases by a factor of 1.1 as compared to bulk water. Moreover, this layer exhibits birefringence. Experiments on UV irradiation of dry (anhydrous) and water-soaked Nafion are performed in grazing-incidence geometry to study their stimulated luminescence spectra. These spectra are found to be identical in both cases. For dry Nafion, luminescence can only be excited if probing radiation illuminates the polymer surface. The luminescence of water-soaked Nafion can also be excited if the distance between the optical axis and the surface is several hundred micrometers.

  13. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    SciTech Connect (OSTI)

    Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

    2014-06-23T23:59:59.000Z

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  14. Extreme ultraviolet lithography machine

    DOE Patents [OSTI]

    Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Haney, Steven J. (Tracy, CA); Sweeney, Donald W. (San Ramon, CA)

    2000-01-01T23:59:59.000Z

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  15. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    E-Print Network [OSTI]

    Mårsell, Erik; Arnold, Cord L; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders

    2015-01-01T23:59:59.000Z

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 micrometer. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy (STM) on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission process above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM ...

  16. Organization of Block Copolymers using NanoImprint Lithography: Comparison of Theory and Experiments

    E-Print Network [OSTI]

    Xingkun Man; Daivd Andelman; Henri Orland; Pascal Thebault; Pang-Hung Liu; Patrick Guenoun; Jean Daillant; Stefan Landis

    2011-01-26T23:59:59.000Z

    We present NanoImprint lithography experiments and modeling of thin films of block copolymers (BCP). The NanoImprint lithography is used to align perpendicularly lamellar phases, over distances much larger than the natural lamellar periodicity. The modeling relies on self-consistent field calculations done in two- and three-dimensions. We get a good agreement with the NanoImprint lithography setups. We find that, at thermodynamical equilibrium, the ordered BCP lamellae are much better aligned than when the films are deposited on uniform planar surfaces.

  17. IIII--E. Scanning Probe LithographyE. Scanning Probe Lithography Voltage pulse

    E-Print Network [OSTI]

    Liu, Kai

    Molnar, PRB 57 14028 (1998) Lithography Liu, UCD Phy250-1, 2011, NanoFab34 Contamination PRB 57 14028 GrowthStep Growth--66 Annealed NaCl substrates Sugawara & Scheinfein, PRB 56, 8499 (1997). Lithography

  18. Solvent Immersion Imprint Lithography

    SciTech Connect (OSTI)

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21T23:59:59.000Z

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  19. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  20. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  1. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with...

  2. Reflective masks for extreme ultraviolet lithography

    SciTech Connect (OSTI)

    Nguyen, Khanh Bao

    1994-05-01T23:59:59.000Z

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 {mu}m wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  3. XUV free-electron laser-based projection lithography systems

    SciTech Connect (OSTI)

    Newnam, B.E.

    1990-01-01T23:59:59.000Z

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  4. Self-cleaning optic for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-12-16T23:59:59.000Z

    A multilayer reflective optic or mirror for lithographic applications, and particularly extreme ultraviolet (EUV) lithography, having a surface or "capping" layer which in combination with incident radiation and gaseous molecular species such as O.sub.2, H.sub.2, H.sub.2 O provides for continuous cleaning of carbon deposits from the optic surface. The metal capping layer is required to be oxidation resistant and capable of transmitting at least 90% of incident EUV radiation. Materials for the capping layer include Ru, Rh, Pd, Ir, Pt and Au and combinations thereof.

  5. Low-cost method for producing extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA); Montcalm, Claude (Fort Collins, CO); Taylor, John S. (Livermore, CA); Spiller, Eberhard A. (Mt. Kisco, NY)

    2003-11-21T23:59:59.000Z

    Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

  6. Scanning probe lithography of self-assembled monolayers Guohua Yang, Nabil A. Amro, Gang-yu Liu*

    E-Print Network [OSTI]

    Liu, Gang-yu

    Scanning probe lithography of self-assembled monolayers Guohua Yang, Nabil A. Amro, Gang-yu Liu* Department ofChemistry, University ofCalifornia, Davis, CA, USA 95616 ABSTRACT Systematic studies on scanning, and nanopen reader and writer (NPRW), which rely on the local force, and two scanning tunneling microscopy

  7. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Livermore, CA); Kubiak, Glenn D. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  8. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (727 Clara St., Livermore, Alameda County, CA 94550); Kubiak, G. D. (475 Maple St., Livermore, Alameda County, CA 94550)

    2000-01-01T23:59:59.000Z

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  9. Diffractive optics for maskless lithography and imaging

    E-Print Network [OSTI]

    Menon, Rajesh, 1976-

    2003-01-01T23:59:59.000Z

    Semiconductor industry has primarily been driven by the capability of lithography to pattern smaller and smaller features. However due to increasing mask costs and complexity, and increasing tool costs, the state-of-the-art ...

  10. Holographic illuminator for synchrotron-based projection lithography systems

    DOE Patents [OSTI]

    Naulleau, Patrick P.

    2005-08-09T23:59:59.000Z

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  11. A novel lithography technique for formation of large areas of uniform nanostructures

    E-Print Network [OSTI]

    Shahriar, Selim

    such as plasmonics, sensors, storage devices, solar cells, nano-filtration and artificial kidneys require applications such as surface plasmonics[1] , data storage[2] , optoelectronic devices[3] , and nanoA novel lithography technique for formation of large areas of uniform nanostructures Wei Wu

  12. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

    2006-07-11T23:59:59.000Z

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  13. A direct-write thick-film lithography process for multi-parameter control of tooling in continuous roll-to-roll microcontact printing

    E-Print Network [OSTI]

    Nietner, Larissa F

    2014-01-01T23:59:59.000Z

    Roll-to-roll (R2R) microcontact printing ([mu]CP) aims to transform micron-precision soft lithography in a continuous, large-scale, high-throughput process for large-area surface patterning, flexible electronics and ...

  14. Sub-10-nm lithography with light-ion beams

    E-Print Network [OSTI]

    Winston, Donald, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Scanning-electron-beam lithography (SEBL) is the workhorse of nanoscale lithography in part because of the high brightness of the Schottky source of electrons, but also benefiting from decades of incremental innovation and ...

  15. Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist

    E-Print Network [OSTI]

    Winston, Donald

    A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article ...

  16. II. Types of LithographyII. Types of Lithography A. Photolithography (optical, UV, EUV) F. Step Growth

    E-Print Network [OSTI]

    Liu, Kai

    lithography S i b I. Self-Assembly J NanotemplatesE. Scanning Probe Voltage pulse CVD Local electrodeposition J. Nanotemplates Diblock copolymer Sphere Alumina membraneLocal electrodeposition Dip Interference Lithography FIG. 1. SEM images of nickel dot arrays fabricated by x-ray interference lithography

  17. NANOMETER-SCALE INVESTIGATIONS BY ATOMIC FORCE MICROSCOPY INTO THE EFFECT OF DIFFERENT TREATMENTS ON THE SURFACE STRUCTURE OF HAIR

    E-Print Network [OSTI]

    Durkan, C.; Wang, N.

    2014-09-15T23:59:59.000Z

    that the CPD between the hair and the cantilever was 0.4-0.6 V. In Figs. 4(a) and (b), we show the topography and KPFM images of a small area, and in Fig. 4(c), the surface potential (in colour) is overlaid on the 3-d topography. It is known that the surface... in the topography and the potential map, it is also a possibility that it is the deposits themselves that possess a lower surface potential than the hair surface they are on, and that this is where the overall negative charge on hair originates. A cross...

  18. Method for the protection of extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22T23:59:59.000Z

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  19. Vitreous carbon mask substrate for X-ray lithography

    DOE Patents [OSTI]

    Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

    2009-10-27T23:59:59.000Z

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  20. EMSL - Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscopy Capability Details * Electron microscopes with tomography, cryo, scanning, photoemission and high-resolution (sub-nanometer) imaging capabilities* Focused ion beam...

  1. EUV lithography cost of ownership analysis

    SciTech Connect (OSTI)

    Hawryluk, A.M.; Ceglio, N.M.

    1995-01-19T23:59:59.000Z

    The cost of fabricating state-of-the-art integrated circuits (ICs) has been increasing and it will likely be economic rather than technical factors that ultimately limit the progress of ICs toward smaller devices. It is estimated that lithography currently accounts for approximately one-third the total cost of fabricating modem ICs({sup 1}). It is expected that this factor will be fairly stable for the forseeable future, and as a result, any lithographic process must be cost-effective before it can be considered for production. Additionally, the capital equipment cost for a new fabrication facility is growing at an exponential rate (2); it will soon require a multibillion dollar investment in capital equipment alone to build a manufacturing facility. In this regard, it is vital that any advanced lithography candidate justify itself on the basis of cost effectiveness. EUV lithography is no exception and close attention to issues of wafer fabrication costs have been a hallmark of its early history. To date, two prior cost analyses have been conducted for EUV lithography (formerly called {open_quotes}Soft X-ray Projection Lithography{close_quotes}). The analysis by Ceglio, et. al., provided a preliminary system design, set performance specifications and identified critical technical issues for cost control. A follow-on analysis by Early, et.al., studied the impact of issues such as step time, stepper overhead, tool utilization, escalating photoresist costs and limited reticle usage on wafer exposure costs. This current study provides updated system designs and specifications and their impact on wafer exposure costs. In addition, it takes a first cut at a preliminary schematic of an EUVL fabrication facility along with an estimate of the capital equipment costs for such a facility.

  2. Nanopatterning of Si/SiGe Two-dimensional Hole Gases by PFOTS-aided AFM Lithography of Carrier Supply Layer

    E-Print Network [OSTI]

    Nanopatterning of Si/SiGe Two-dimensional Hole Gases by PFOTS-aided AFM Lithography of Carrier The nanopatterning of Si/SiGe layers by PFOTS (perfluorooctyl trichlorosilane) -aided AFM (atomic force microscopy and then transfer patterns in to underlying SiGe layers by a two-step selective wet etching. Minimum linewidths

  3. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    SciTech Connect (OSTI)

    Koffas, Telly Stelianos

    2004-05-15T23:59:59.000Z

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to the surface in order to minimize the total surface energy. With an understanding of the structural and environmental parameters which govern polymer surface structure, SFG is then used to explore the effects of surface hydrophobicity and solvent polarity on the orientation and ordering of amphiphilic neutral polymers adsorbed at the solid/liquid interface. SFG spectra show that poly(propylene glycol) (PPG) and poly(ethylene glycol) (PEG) adsorb with their hydrophobic moieties preferentially oriented toward hydrophobic polystyrene surfaces. These same moieties, however, disorder when adsorbed onto a hydrophilic silica/water interface. Water is identified as a critical factor for mediating the orientation and ordering of hydrophobic moieties in polymers adsorbed at hydrophobic interfaces. The role of bulk water content and water vapor, as they influence hydrogel surface structure and mechanics, continues to be explored in the next series of experiments. A method was developed to probe the surface viscoelastic properties of hydroxylethyl methacrylate (HEMA) based contact lens materials by analyzing AFM force-distance curves. AFM analysis indicates that the interfacial region is dehydrated, relative to the bulk. Experiments performed on poly(HEMA+MA) (MA = methacrylic acid), a more hydrophilic copolymer with greater bulk water content, show even greater water depletion at the surface. SFG spectra, as well as surface energy arguments, suggest that the more hydrophilic polymer component (such as MA) is not favored at the air interface; this may explain anomalies in water retention at the hydrogel surface. Adsorption of lysozyme onto poly(HEMA+MA) was found to further reduce near-surface viscous behavior, suggesting lower surface water content. Lastly, protein adsorption is studied using a model polymer system of polystyrene covalently bound with a monolayer of bovine serum albumin. SFG results indicate that some amino acid residues in proteins adopt preferred orientations. SFG spectra also show that the phenyl rings of the bare polystyrene substrate in contact with air or

  4. Scanning Tunneling Microscopy and Surface Simulation of Zinc-Blende GaN(001) Intrinsic 4 Reconstruction: Linear Gallium Tetramers?

    E-Print Network [OSTI]

    Reconstruction: Linear Gallium Tetramers? Hamad A. AL-Brithen, Rong Yang, Muhammad B. Haider, Costel Constantin and occupied states, in agreement with surface simulations based on the 4 1 linear tetramer model the existence of linear Ga tetramers. DOI: PACS numbers: 68.35.Bs, 68.37.Ef, 73.20.At Based on both fundamental

  5. Multilevel interference lithography--fabricating sub-wavelength periodic nanostructures

    E-Print Network [OSTI]

    Chang, Chih-Hao, 1980-

    2008-01-01T23:59:59.000Z

    Periodic nanostructures have many exciting applications, including high-energy spectroscopy, patterned magnetic media, photonic crystals, and templates for self-assembly. Interference lithography (IL) is an attractive ...

  6. Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces

    SciTech Connect (OSTI)

    Unal, Baris

    2008-12-01T23:59:59.000Z

    The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of their top planes. Hence, we name them as Pd+(with Pd) and Pd-(without Pd). Based on their planer structure and the step height, it can be said that these two families can be viable surface terminations. However, besides the Pd content, these two sets differ in terms of relative densities of their top planes as well as the gap separating the layer from the nearest atomic plane. The experimental data and other arguments lead to the conclusion that the Pd- family is favored over the Pd+. This has an important implication on the interpretation of local motifs seen in the high resolution STM images. In other words, the dark stars are not formed by cut-Bergmans rather they are formed by cut-Mackays.

  7. An Ice Lithography Instrument Anpan Han 1, John Chervinsky2

    E-Print Network [OSTI]

    Page 1 An Ice Lithography Instrument Anpan Han 1, John Chervinsky2 , Daniel Branton3 , and J. A a new nano-patterning method called ice lithography, where ice is used as the resist. Water vapor. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice

  8. Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy Carolyn A. SuttonCarolyn A. Sutton PH 464PH 464 #12;OverviewOverview The OpticalThe Optical MicroscopeMicroscopy 4 Pi Microscopy4 Pi Microscopy Optical Microscope for Metallography #12;Optical Microscope: OriginsOptical

  9. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  10. Photoresist composition for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Alameda County, CA); Kubiak, G. D. (Alameda County, CA)

    1999-01-01T23:59:59.000Z

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  11. Two-dimensional Photonic Crystals Fabricated by Nanoimprint Lithography

    E-Print Network [OSTI]

    Chen, A.

    We report on the process parameters of nanoimprint lithography (NIL) for the fabrication of two-dimensional (2-D) photonic crystals. The nickel mould with 2-D photonic crystal patterns covering the area up to 20mm² is ...

  12. Toward nano-accuracy in scanning beam interference lithography

    E-Print Network [OSTI]

    Montoya, Juan, 1976-

    2006-01-01T23:59:59.000Z

    Scanning beam interference lithography is a technique developed in our laboratory which uses interfering beams and a scanning stage to rapidly pattern gratings over large areas (300x300 mm2) with high precision. The ...

  13. Achieving sub-10-nm resolution using scanning electron beam lithography

    E-Print Network [OSTI]

    Cord, Bryan M. (Bryan Michael), 1980-

    2009-01-01T23:59:59.000Z

    Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications have driven demand for ...

  14. Pool boiling on nano-finned surfaces 

    E-Print Network [OSTI]

    Sriraman, Sharan Ram

    2008-10-10T23:59:59.000Z

    experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive...

  15. Pool boiling on nano-finned surfaces 

    E-Print Network [OSTI]

    Sriraman, Sharan Ram

    2009-05-15T23:59:59.000Z

    experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive...

  16. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect (OSTI)

    Musket, R.G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2006-06-01T23:59:59.000Z

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8} cm{sup -2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nmmicroscopy hole diameter <{approx}100 nm), the energy deposition calculated for the incident ion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  17. UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays

    SciTech Connect (OSTI)

    Lausecker, E.; Brehm, M.; Grydlik, M.; Hackl, F.; Fromherz, T.; Schaeffler, F.; Bauer, G. [Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040 Linz (Austria); Bergmair, I.; Muehlberger, M. [Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink (Austria)

    2011-04-04T23:59:59.000Z

    We use UV nanoimprint lithography for the pit-patterning of silicon substrates. Ordered silicon-germanium islands are grown inside these pits by molecular-beam epitaxy on arrays of 3x3 mm{sup 2} and characterized by atomic force microscopy (AFM) and photoluminescence (PL) measurements. AFM-based statistics reveals an extremely uniform size distribution of the islands in the patterned areas. These results are confirmed by very narrow and uniform PL peaks recorded at various positions across the patterned arrays.

  18. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    SciTech Connect (OSTI)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15T23:59:59.000Z

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5?nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6?nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  19. This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a

    E-Print Network [OSTI]

    McGehee, Michael

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell­57 Dye-sensitized solar cells (DSCs) have received wide-spread research attention due to their high power incorporated into solid-state dye-sensitized solar cells (ss-DSCs) by nanoimprint lithography. The reflectors

  20. Design and prototype : a manufacturing system for the soft lithography technique

    E-Print Network [OSTI]

    Cao, Arthur Y. (Arthur Yao)

    2006-01-01T23:59:59.000Z

    Ever since 1998 when the term "soft lithography" was first created, soft lithography techniques have drawn close attention of the academia and the industry. Micro contact printing is by far the most widely used soft ...

  1. Pattern-placement-error detection for spatial-phase-locked e-beam lithography (SPLEBL)

    E-Print Network [OSTI]

    Caramana, Cynthia L. (Cynthia Louise), 1978-

    2004-01-01T23:59:59.000Z

    Spatial-phase-locked electron-beam lithography (SPLEBL) is a new paradigm for scanning electron-beam lithography (SEBL) that permits nanometer-level pattern placement accuracy. Unlike conventional SEBL systems which run ...

  2. Exploring the nature of surface barriers on MOF Zn(tbip) by applying IR microscopy in high temporal and spatial resolution

    E-Print Network [OSTI]

    Li, Jing

    ,8­10], surface permeabilities are by far more complicated to be assessed. This complication is related by deviations from the ideal crystal structure which are more likely to occur close to the surface than in the crystal bulk phase. They may give rise to pore narrowing or to total pore blocking at the surface and

  3. "A Novel Objective for EUV Microscopy and EUV Lithography" Inventors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfiresImpurity Transport,12,Top MineSimultaneously the Bulk

  4. Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    SciTech Connect (OSTI)

    Jiang, Ximan

    2006-05-18T23:59:59.000Z

    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3{delta} CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator.

  5. Condenser for extreme-UV lithography with discharge source

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Kubiak, Glenn D. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

  6. Ultratech Develops an Improved Lithography Tool for LED Wafer Manufacturing

    Broader source: Energy.gov [DOE]

    Ultratech modified an existing lithography tool used for semiconductor manufacturing to better meet the cost and performance targets of the high-brightness LED manufacturing industry. The goal was to make the equipment compatible with the wide range of substrate diameters and thicknesses prevalent in the industry while reducing the capital cost and the overall cost of ownership (COO).

  7. Diffractive element in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Ray-Chaudhurl, Avijit K. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  8. Digital microfluidics using soft lithography{ John Paul Urbanski,a

    E-Print Network [OSTI]

    Amarasinghe, Saman

    Digital microfluidics using soft lithography{ John Paul Urbanski,a William Thies,b Christopher published as an Advance Article on the web 29th November 2005 DOI: 10.1039/b510127a Although microfluidic software to drive the pumps, valves, and electrodes used to manipulate fluids in microfluidic devices

  9. Diffractive element in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Ray-Chaudhuri, Avijit (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  10. Surfaces

    E-Print Network [OSTI]

    DeMaio, Ernest Vincent, 1964-

    1989-01-01T23:59:59.000Z

    Surfaces is a collection of four individual essays which focus on the characteristics and tactile qualities of surfaces within a variety of perceived landscapes. Each essay concentrates on a unique surface theme and purpose; ...

  11. Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO{sub 2} laser irradiation

    SciTech Connect (OSTI)

    Robin, Lucile; Cormont, Philippe; Hebert, David; Mainfray, Christelle; Rullier, Jean-Luc [CEA Cesta, Le Barp, F-33114 France (France); Combis, Patrick [CEA DAM Ile-de-France, Arpajon Cedex, 91297 France (France); Gallais, Laurent [Institut Fresnel, CNRS, Aix-Marseille Universite, Ecole Centrale Marseille, Marseille, 13013 France (France)

    2012-03-15T23:59:59.000Z

    In situ spatial and temporal temperature measurements of a fused silica surface heated by a 10.6 {mu}m CO{sub 2} laser were performed using an infrared camera. These measurements were derived from heat flux emission of the fused silica. High temperature measurements--in the range 400-2500 K--were performed at the surface of a semi-transparent media with a high spatial resolution. Particular attention was given to the experimental conception and to the calibration of the infrared device. Moreover, both conventional and interferential microscopes were used to characterize the silica surfaces after CO{sub 2} laser irradiation. By associating these results with thermal camera measurements we identified the major surface temperature levels of silica transformation when heated during 250 ms. Surface deformation of silica is observed for temperatures <2000 K. This is consistent with other recent work using CO{sub 2} laser heating. At higher temperatures, matter ejection, as deduced from microscope observations, occurs at temperatures that are still much lower than the standard boiling point. Such evaporation is described by a thermodynamical approach, and calculations show very good agreement with experiment.

  12. Development of free-electron lasers for xuv projection lithography

    SciTech Connect (OSTI)

    Newnam, B.E.

    1990-01-01T23:59:59.000Z

    Future rf-linac-driven FELs, operating in the range from 4 nm to 100 nm, could be excellent exposure tools for extending the resolution limit of projection optical lithography to {le}0.1 {mu}m and with adequate total depth of focus (1 to 2 {mu}m). When operated at a moderate duty rate of {ge}1%, XUV FELs should be able to supply sufficient average power to support high-volume chip production. Recent developments of the electron beam, magnetic undulator, and resonator mirrors are described which raise our expectation that FEL operation below 100 nm is almost ready for demonstration. Included as a supplement is a review of initial design studies of the reflecting XUV projection optics, fabrication of reflection masks, characterization of photoresists, and the first experimental demonstrations of the capability of projection lithography with 14-nm radiation to produce lines and spaces as small as 0.05 {mu}m. 88 refs., 10 figs.

  13. A laser triggered vacuum spark x-ray lithography source 

    E-Print Network [OSTI]

    Keating, Richard Allen

    1987-01-01T23:59:59.000Z

    was 50 cm. Obviously, this type of configurat, ion is totally impractical for a step and repeat system. Synchrotron radiation is being considered as an x-ray lithography source. Many laboratories are experi- menting with synchrotron sources. Also... for production of submicron geometries and improvements needed is presented. 1v ACKNOWLEDGMENT This thesis was made possible through the assistance of a number of people. Huang Wei Ling helped gather much of the data presented in this thesis. She also...

  14. Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy

    SciTech Connect (OSTI)

    McIntyre, B.J.

    1994-05-01T23:59:59.000Z

    Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H2, O2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8, results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.

  15. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30T23:59:59.000Z

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  16. Superconducting x-ray lithography source Phase 1 (XLS) safety analysis report

    SciTech Connect (OSTI)

    Blumberg, L. (ed.)

    1990-07-01T23:59:59.000Z

    This paper discusses safety aspects associated with the superconducting x-ray lithography source. The policy, building systems safety and storage ring systems safety are specifically addressed. (LSP)

  17. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1997-01-01T23:59:59.000Z

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  18. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18T23:59:59.000Z

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  19. Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization

    SciTech Connect (OSTI)

    Heyderman, L.J.; Solak, H.H.; David, C.; Atkinson, D.; Cowburn, R.P.; Nolting, F. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Nanomagnetism Group, Department of Physics, University of Durham, Rochester Building, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom); Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2004-11-22T23:59:59.000Z

    X-ray interference lithography (XIL) was employed in combination with electrodeposition to fabricate arrays of nanoscale nickel dots which are uniform over 40 {mu}m and have periods down to 71 nm. Using extreme-ultraviolet light, XIL has the potential to produce magnetic dot arrays over large areas with periods well below 50 nm, and down to a theoretical limit of 6.5 nm for a 13 nm x-ray wavelength. In the nickel dot arrays, we observed the effect of interdot magnetic stray field interactions. Measuring the hysteresis loops using the magneto-optical Kerr effect, a double switching via the vortex state was observed in the nickel dots with diameters down to 44 nm and large dot separations. As the dot separations are reduced to below around 50 nm a single switching, occurring by collective rotation of the magnetic spins, is favored due to interdot magnetic stray field interactions. This results in magnetic flux closure through several dots which could be visualized with micromagnetic simulations. Further evidence of the stray field interactions was seen in photoemission electron microscopy images, where bands of contrast corresponding to chains of coupled dots were observed.

  20. Ultrafast scanning tunneling microscopy

    SciTech Connect (OSTI)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01T23:59:59.000Z

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  1. Design of superconducting transmission line integrated surface-electrode ion-traps

    E-Print Network [OSTI]

    Meyer, David Thomas

    2011-01-01T23:59:59.000Z

    We fabricated superconducting surface electrode ion traps with integrated microwave coplanar waveguides using direct-write optical lithography and a niobium on sapphire process. We then tested these traps in a closed cycle ...

  2. Computer-Aided Design for Microfluidic Chips Based on Multilayer Soft Lithography

    E-Print Network [OSTI]

    Rajamani, Sriram K.

    Computer-Aided Design for Microfluidic Chips Based on Multilayer Soft Lithography Nada Amin1 Abstract-- Microfluidic chips are emerging as a powerful platform for automating biology experiments automation techniques for microfluidic chips based on multilayer soft lithography. We focus our attention

  3. UV-LED LITHOGRAPHY FOR 3-D HIGH ASPECT RATIO MICROSTRUCTURE PATTERNING

    E-Print Network [OSTI]

    in microfabrication. Table 1 compares the performance of UV-LEDs with a mercury lamp for several key parametersUV-LED LITHOGRAPHY FOR 3-D HIGH ASPECT RATIO MICROSTRUCTURE PATTERNING Jungkwun `JK' Kim*, Seung of Technology, Atlanta, GA, USA ABSTRACT This paper presents a UV lithography method that utilizes a UV-LED

  4. A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b,

    E-Print Network [OSTI]

    A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b, , Zhen He c microfluidic microbial fuel cell (MFC) platform built by soft-lithography tech- niques. The MFC design includes a unique sub-5 lL polydimethylsiloxane soft chamber featuring carbon cloth electrodes and microfluidic

  5. An EUV Fresnel zoneplate mask-imaging microscope for lithography generations reaching 8 nm

    E-Print Network [OSTI]

    An EUV Fresnel zoneplate mask-imaging microscope for lithography generations reaching 8 nm Kenneth lithography design rules. The proposed microscope features an array of user-selectable Fresnel zoneplate-EUV, Fresnel zoneplate microscope, the AIT has been in the vanguard of high-resolution EUV mask imaging

  6. header for SPIE use Fluoropolymers for 157nm Lithography: Optical Properties from VUV

    E-Print Network [OSTI]

    Rollins, Andrew M.

    new radiation damage mechanisms in previously accepted optical materials. For 157 nm pellicles, newheader for SPIE use Fluoropolymers for 157nm Lithography: Optical Properties from VUV Absorbance With the introduction of 157 nm as the next optical lithography wavelength, the need for new pellicle and photoresist

  7. A laser triggered vacuum spark x-ray lithography source

    E-Print Network [OSTI]

    Keating, Richard Allen

    1987-01-01T23:59:59.000Z

    ionized state or the physical processes occurring 15 in a high temperature plasma. There are many advantages to the use of the vacuum spark as an x-ray source; the simplicity of the machine is one. The x-ray output is within the range usable for x-ray... spark apparatus ha- been studied here to determine its applicability to x-ray lithography. A capacitor which stored approximately 3 KJ supplied most of the energy for the plasma. A Nd-YAG laser was used to supply electrons and metallic atoms...

  8. Thermal management of masks for deep x-ray lithography.

    SciTech Connect (OSTI)

    Khounsary, A.; Chojnowski, D.; Mancini, D.C.; Lai, B.; Dejus, R.

    1997-11-18T23:59:59.000Z

    This paper addresses some options and techniques in the thermal management of masks used in deep x-ray lithography. The x-ray masks are thin plates made of low-atomic-number materials on which a patterned thin film of a high-atomic-number metal has been deposited. When they are exposed to an x-ray beam, part of the radiation is transmitted to replicate the pattern on a downstream photoresist, and the remainder is absorbed in the mask in the form of heat. This heat load can cause deformation of the mask and thus image distortion in the lithography process. The mask geometry considered in the present study is 100 mm x 100 mm in area, and about 0.1 to 2 mm thick. The incident radiation is a bending magnet x-ray beam having a footprint of 60 mm x 4 mm at the mask. The mask is scanned vertically about {+-} 30 mm so that a 60 mm x 60 mm area is exposed. the maximum absorbed heat load in the mask is 80 W, which is significantly greater than a few watts encountered in previous systems. In this paper, cooling techniques, substrate material selection, transient and steady state thermal and structural behavior, and other thermo-mechanical aspects of mask design are discussed. It is shown that, while diamond and graphite remain attractive candidates, at present beryllium is a more suitable material for this purpose and, when properly cooled, can provide the necessary dimensional tolerance.

  9. Phase modulated multiphoton microscopy

    E-Print Network [OSTI]

    Karki, Khadga Jung; Pullerits, Tonu

    2015-01-01T23:59:59.000Z

    We show that the modulation of the phases of the laser beams of ultra-short pulses leads to modulation of the two photon fluorescence intensity. The phase modulation technique when used in multi-photon microscopy can improve the signal to noise ratio. The technique can also be used in multiplexing the signals in the frequency domain in multi-focal raster scanning microscopy. As the technique avoids the use of array detectors as well as elaborate spatiotemporal multiplexing schemes it provides a convenient means to multi-focal scanning in axial direction. We show examples of such uses. Similar methodology can be used in other non-linear scanning microscopies, such as second or third harmonic generation microscopy.

  10. Computational microscopy for sample analysis

    E-Print Network [OSTI]

    Ikoma, Hayato

    2014-01-01T23:59:59.000Z

    Computational microscopy is an emerging technology which extends the capabilities of optical microscopy with the help of computation. One of the notable example is super resolution fluorescence microscopy which achieves ...

  11. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M. (2708 Rembrandt Pl., Modesto, CA 95356); Seppala, Lynn G. (7911 Mines Rd., Livermore, CA 94550)

    1991-01-01T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  12. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  13. Critical illumination condenser for x-ray lithography

    DOE Patents [OSTI]

    Cohen, S.J.; Seppala, L.G.

    1998-04-07T23:59:59.000Z

    A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

  14. Nonlinear vibrational microscopy

    DOE Patents [OSTI]

    Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

    2000-01-01T23:59:59.000Z

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  15. Sub-10-nm electron-beam lithography for templated placement of colloidal quantum dots

    E-Print Network [OSTI]

    Manfrinato, Vitor Riseti

    2011-01-01T23:59:59.000Z

    This thesis presents the investigation of resolution limits of electron-beam lithography (EBL) at the sub-10-nm scale. EBL patterning was investigated at low electron energy (2 keV) in a converted scanning electron microscope ...

  16. Real-time spatial-phase-locked electron-beam lithography

    E-Print Network [OSTI]

    Zhang, Feng, 1973-

    2005-01-01T23:59:59.000Z

    The ability of electron-beam lithography (EBL) to create sub-10-nm features with arbitrary geometry makes it a critical tool in many important applications in nanoscale science and technology. The conventional EBL system ...

  17. The development of a prototype Zone-Plate-Array Lithography (ZPAL) system

    E-Print Network [OSTI]

    Patel, Amil Ashok, 1979-

    2004-01-01T23:59:59.000Z

    The research presented in this paper aims to build a Zone-Plate-Array Lithography (ZPAL) prototype tool that will demonstrate the high-resolution, parallel patterning capabilities of the architecture. The experiment will ...

  18. Contact region fidelity, sensitivity, and control in roll-based soft lithography

    E-Print Network [OSTI]

    Petrzelka, Joseph E

    2012-01-01T23:59:59.000Z

    Soft lithography is a printing process that uses small features on an elastomeric stamp to transfer micron and sub-micron patterns to a substrate. Translating this lab scale process to a roll-based manufacturing platform ...

  19. Resolution Limits of Electron-Beam Lithography toward the Atomic Scale

    E-Print Network [OSTI]

    Zhang, Lihua

    We investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope. We achieved 2 nm isolated feature size and 5 nm half-pitch in hydrogen silsesquioxane resist. We also analyzed ...

  20. M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features

    DOE Patents [OSTI]

    Brueck, Steven R.J. (Albuquerque, NM); Chen, Xiaolan (Albuquerque, NM); Zaidi, Saleem (Albuquerque, NM); Devine, Daniel J. (Los Gatos, CA)

    1998-06-02T23:59:59.000Z

    Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

  1. Fundamentals of embossing nanoimprint lithography in polymer substrates.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; King, William P. (University of Illinois, Urbana IL)

    2011-02-01T23:59:59.000Z

    The convergence of micro-/nano-electromechanical systems (MEMS/NEMS) and biomedical industries is creating a need for innovation and discovery around materials, particularly in miniaturized systems that use polymers as the primary substrate. Polymers are ubiquitous in the microelectronics industry and are used as sensing materials, lithography tools, replication molds, microfluidics, nanofluidics, and biomedical devices. This diverse set of operational requirements dictates that the materials employed must possess different properties in order to reduce the cost of production, decrease the scale of devices to the appropriate degree, and generate engineered devices with new functional properties at cost-competitive levels of production. Nanoscale control of polymer deformation at a massive scale would enable breakthroughs in all of the aforementioned applications, but is currently beyond the current capabilities of mass manufacturing. This project was focused on developing a fundamental understanding of how polymers behave under different loads and environments at the nanoscale in terms of performance and fidelity in order to fill the most critical gaps in our current knowledgebase on this topic.

  2. Dark Field Microscopy for Analytical Laboratory Courses

    SciTech Connect (OSTI)

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-06-10T23:59:59.000Z

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

  3. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect (OSTI)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01T23:59:59.000Z

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  4. UV-nanoimprint lithography and large area roll-to-roll texturization with hyperbranched polymer nanocomposites for light-trapping applications$

    E-Print Network [OSTI]

    UV-nanoimprint lithography and large area roll-to-roll texturization with hyperbranched polymer nanoimprint lithography Light-trapping Roll-to-roll Amorphous silicon a b s t r a c t Light-trapping textures were produced in hyperbranched polymer (HBP) silica nanocomposites using a UV-nanoimprint lithography

  5. Spectral multiplexing using quantum dot tagged microspheres with diffusing colloidal probe microscopy

    E-Print Network [OSTI]

    Muthukumar, Shankarapandian

    2009-05-15T23:59:59.000Z

    (TIRM) and Video Microscopy to simultaneously measure multiple particle-surface interactions with nanometer resolution in particle-surface separation. By acquiring the scattered intensity emitted by the particles, the separation distance can...

  6. Extreme ultraviolet lithography: A few more pieces of the puzzle

    SciTech Connect (OSTI)

    Anderson, Christopher N.

    2009-05-20T23:59:59.000Z

    The work described in this dissertation has improved three essential components of extreme ultraviolet (EUV) lithography: exposure tools, photoresist, and metrology. Exposure tools. A field-averaging illumination stage is presented that enables nonuniform, high-coherence sources to be used in applications where highly uniform illumination is required. In an EUV implementation, it is shown that the illuminator achieves a 6.5% peak-to-valley intensity variation across the entire design field of view. In addition, a design for a stand-alone EUV printing tool capable of delivering 15 nm half-pitch sinusoidal fringes with available sources, gratings and nano-positioning stages is presented. It is shown that the proposed design delivers a near zero line-edge-rougness (LER) aerial image, something extremely attractive for the application of resist testing. Photoresist. Two new methods of quantifying the deprotection blur of EUV photoresists are described and experimentally demonstrated. The deprotection blur, LER, and sensitivity parameters of several EUV photoresists are quantified simultaneously as base weight percent, photoacid generator (PAG) weight percent, and post-exposure bake (PEB) temperature are varied. Two surprising results are found: (1) changing base weight percent does not significantly affect the deprotection blur of EUV photoresist, and (2) increasing PAG weight percent can simultaneously reduce LER and E-size in EUV photoresist. The latter result motivates the development of an EUV exposure statistics model that includes the effects of photon shot noise, the PAG spatial distribution, and the changing of the PAG distribution during the exposure. In addition, a shot noise + deprotection blur model is used to show that as deprotection blur becomes large relative to the size of the printed feature, LER reduction from improved counting statistics becomes dominated by an increase in LER due to reduced deprotection contrast. Metrology. Finally, this dissertation describes MOSAIC, a new wavefront metrology that enables complete wavefront recovery from print or aerial image based measurements. This new technique, based on measuring the local focal length of the optic at sampled positions in the pupil, recovers the curvature of the aberration and uses the curvature to recover the aberration itself. In a modeled EUV implementation, MOSAIC is shown to recover the SEMATECH Berkeley MET wavefront with a 4.2% RMS error: a 4% improvement over the reported errors of the original lateral shearing interferometry wavefront measurement.

  7. Energy flow in light-coupling masks for lensless optical lithography

    E-Print Network [OSTI]

    Floreano, Dario

    Energy flow in light-coupling masks for lensless optical lithography Olivier J. F. Martin@zurich.ibm.com Abstract: We illustrate the propagation of light in a new type of coupling mask for lensless optical. Biebuck, B. Michel, O.J.F. Martin and N.B. Piller, "Light-coupling masks: an alternative, lensless

  8. Ice-assisted electron beam lithography of graphene Jules A Gardener1

    E-Print Network [OSTI]

    1 Ice-assisted electron beam lithography of graphene Jules A Gardener1 and Jene A Golovchenko1 with a thin ice layer. The irradiated ice plays a crucial role in the process by providing activated species that locally remove graphene from a silicon dioxide substrate. After patterning the graphene, the ice resist

  9. Flexible CO2 laser system for fundamental research related to an extreme ultraviolet lithography source

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Flexible CO2 laser system for fundamental research related to an extreme ultraviolet lithography 2009; published online 10 December 2009 A CO2 laser system with flexible parameters was developed 1010 W/cm2 . Utilizing this CO2 MOPA laser system, high conversion efficiency from laser to in-band 2

  10. Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography

    SciTech Connect (OSTI)

    Li, S. P.; Lebib, A.; Peyrade, D.; Natali, M.; Chen, Y.; Lew, W. S.; Bland, J. A. C.

    2001-07-01T23:59:59.000Z

    We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified. {copyright} 2001 American Institute of Physics.

  11. Pure Boron-Doped Photodiodes: a Solution for Radiation Detection in EUV Lithography

    E-Print Network [OSTI]

    Technische Universiteit Delft

    Pure Boron-Doped Photodiodes: a Solution for Radiation Detection in EUV Lithography F. Sarubbi, L for radiation detection in the extreme-ultra-violet (EUV) spectral range. Outstanding electrical and optical has triggered a growing interest in UV radiation detection at wavelengths between 10 nm and 200 nm

  12. Fabrication of magnetic microfiltration systems using soft lithography Tao Deng, Mara Prentiss,a)

    E-Print Network [OSTI]

    Prentiss, Mara

    . The combination of microtransfer molding--a soft lithography technique--and electrodeposition generated nickel, Massachusetts 02138 Received 9 August 2001; accepted for publication 9 November 2001 Arrays of nickel posts were field from an external, permanent, neodymium­iron­boron magnet, these nickel posts generated strong

  13. Wafer-Scale Fabrication of Nanofluidic Arrays and Networks Using Nanoimprint Lithography and Lithographically Patterned Nanowire

    E-Print Network [OSTI]

    Wafer-Scale Fabrication of Nanofluidic Arrays and Networks Using Nanoimprint Lithography of nanofluidic channels (up to 1 mm in length) filled with solutions of either fluorescent dye or 20 nm diameter-replica process was also used to create a large two-dimensional network of crossed nanofluidic channels. Large

  14. Toward Optimized Light Utilization in Nanowire Arrays Using Scalable Nanosphere Lithography and Selected Area Growth

    E-Print Network [OSTI]

    Zhou, Chongwu

    can have application in high-throughput and low-cost optoelectronic devices, including solar cellsToward Optimized Light Utilization in Nanowire Arrays Using Scalable Nanosphere Lithography promising results when used to fabricate light emitters6-10 and photovoltaic devices.11-15 The small contact

  15. Room-temperature Si single-electron memory fabricated by nanoimprint lithography

    E-Print Network [OSTI]

    , Haixiong Ge, Christopher Keimel, and Stephen Y. Chou NanoStructure Laboratory, Department of Electrical using nanoimprint lithography NIL . The devices consist of a narrow channel metal­ oxide­semiconductor field-effect transistor and a sub-10-nm storage dot, which is located between the channel and the gate

  16. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

    1995-01-01T23:59:59.000Z

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  17. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16T23:59:59.000Z

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  18. Projection lithography with distortion compensation using reticle chuck contouring

    DOE Patents [OSTI]

    Tichenor, Daniel A. (Castro Valley, CA)

    2001-01-01T23:59:59.000Z

    A chuck for holding a reflective reticle where the chuck has an insulator block with a non-planer surface contoured to cause distortion correction of EUV radiation is provided. Upon being placed on the chuck, a thin, pliable reflective reticle will conform to the contour of the chuck's non-planer surface. When employed in a scanning photolithography system, distortion in the scanned direction is corrected.

  19. Graphene Edge Lithography Guibai Xie, Zhiwen Shi, Rong Yang, Donghua Liu, Wei Yang, Meng Cheng, Duoming Wang, Dongxia Shi,

    E-Print Network [OSTI]

    Zhang, Guangyu

    Graphene Edge Lithography Guibai Xie, Zhiwen Shi, Rong Yang, Donghua Liu, Wei Yang, Meng Cheng: Fabrication of graphene nanostructures is of importance for both investigating their intrinsic physical approach for graphene nanostructures. Compared with conventional lithographic fabrication techniques

  20. Update on the SEMATECH 0.5 NA Extreme-Ultraviolet Lithography (EUVL) Microfield Exposure Tool (MET)

    E-Print Network [OSTI]

    Cummings, Kevin

    2014-01-01T23:59:59.000Z

    eld Exposure Tools with 0.5 NA,” Proc. SPIE TBP (2014) [6]microexposure tool at 0.5 NA for sub-16 nm lithography,&Update on the SEMATECH 0.5 NA Extreme Ultraviolet

  1. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions

    E-Print Network [OSTI]

    Konkola, Paul Thomas, 1973-

    2003-01-01T23:59:59.000Z

    This thesis describes the design and analysis of a system for patterning large-area gratings with nanometer level phase distortions. The novel patterning method, termed scanning beam interference lithography (SBIL), uses ...

  2. An Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study of Pattern Formation and Molecule Ordering under a Variety of Interactions

    E-Print Network [OSTI]

    Zhu, Yeming

    2013-01-01T23:59:59.000Z

    Chen, Introduction to Scanning Tunneling Microscopy, Oxfordvoltages to search the scanning area on the surface. Threecontrol system for scanning tun- neling microscope (STM)

  3. Extreme-UV lithography vacuum chamber zone seal

    DOE Patents [OSTI]

    Haney, Steven J. (Tracy, CA); Herron, Donald Joe (Manteca, CA); Klebanoff, Leonard E. (San Ramon, CA); Replogle, William C. (Livermore, CA)

    2003-04-15T23:59:59.000Z

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  4. Extreme-UV lithography vacuum chamber zone seal

    DOE Patents [OSTI]

    Haney, Steven J. (Tracy, CA); Herron, Donald Joe (Manteca, CA); Klebanoff, Leonard E. (San Ramon, CA); Replogle, William C. (Livermore, CA)

    2003-04-08T23:59:59.000Z

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  5. Extreme-UV lithography vacuum chamber zone seal

    DOE Patents [OSTI]

    Haney, Steven J. (Tracy, CA); Herron, Donald Joe (Manteca, CA); Klebanoff, Leonard E. (San Ramon, CA); Replogle, William C. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  6. Sandia National Laboratories: scanning probe microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  7. Sandia National Laboratories: scanning tunneling microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  8. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

  9. DOI: 10.1002/adma.200800742 Scanning Photoemission Microscopy of

    E-Print Network [OSTI]

    Kim, Sehun

    DOI: 10.1002/adma.200800742 Scanning Photoemission Microscopy of Graphene Sheets on SiO2** By Ki in extracting individual sheets of carbon atoms (graphene) from graphite crystals, graphene has been attracted metals or molecules.[4­6] In addition, the modification of graphene surfaces using a direct chemical

  10. Instrument Series: Microscopy Ultra-High Vacuum, Low-

    E-Print Network [OSTI]

    Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM range of surface analytical techniques at low temperature ­ enables ultra-violet/X-ray photoelectron

  11. Preparation of Samples for Light Microscopy Simple Wax Seal

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    Preparation of Samples for Light Microscopy Simple Wax Seal Materials - Slide - Cover Slip - Paraffin Wax Candle - Pasteur Pipette (suggested size 5 3/4 inch) - Matches Preparation of the Slide - You may want to protect the work surface from melted wax. We use a sheet of aluminum foil taped

  12. Low thermal distortion extreme-UV lithography reticle

    DOE Patents [OSTI]

    Gianoulakis, Steven E. (Albuquerque, NM); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  13. Low thermal distortion extreme-UV lithography reticle

    DOE Patents [OSTI]

    Gianoulakis, Steven E. (Albuquerque, NM); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  14. Low thermal distortion Extreme-UV lithography reticle and method

    DOE Patents [OSTI]

    Gianoulakis, Steven E. (Albuquerque, NM); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  15. Variable temperature electrochemical strain microscopy of Sm-doped ceria

    SciTech Connect (OSTI)

    Jesse, Stephen [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Kalinin, Sergei V [ORNL; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Yang, Nan [ORNL; Doria, Sandra [ORNL; Tebano, Antonello [ORNL

    2013-01-01T23:59:59.000Z

    Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

  16. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect (OSTI)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07T23:59:59.000Z

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  17. Achieving clean epitaxial graphene surfaces suitable for device applications by improved lithographic process

    SciTech Connect (OSTI)

    Nath, A., E-mail: anath@gmu.edu; Rao, M. V. [George Mason University, 4400 University Dr., Fairfax, Virginia 22030 (United States); Koehler, A. D.; Jernigan, G. G.; Wheeler, V. D.; Hite, J. K.; Hernández, S. C.; Robinson, Z. R.; Myers-Ward, R. L.; Eddy, C. R.; Gaskill, D. K. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, D.C. 20375 (United States); Garces, N. Y. [Sotera Defense Solutions, 2200 Defense Hwy. Suite 405, Crofton, Maryland 21114 (United States)

    2014-06-02T23:59:59.000Z

    It is well-known that the performance of graphene electronic devices is often limited by extrinsic scattering related to resist residue from transfer, lithography, and other processes. Here, we report a polymer-assisted fabrication procedure that produces a clean graphene surface following device fabrication by a standard lithography process. The effectiveness of this improved lithography process is demonstrated by examining the temperature dependence of epitaxial graphene-metal contact resistance using the transfer length method for Ti/Au (10?nm/50?nm) metallization. The Landauer-Buttiker model was used to explain carrier transport at the graphene-metal interface as a function of temperature. At room temperature, a contact resistance of 140 ?-?m was obtained after a thermal anneal at 523?K for 2?hr under vacuum, which is comparable to state-of-the-art values.

  18. Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes

    SciTech Connect (OSTI)

    Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng [Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300 Taiwan (China); Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China)

    2010-07-15T23:59:59.000Z

    This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

  19. Half-harmonic Kelvin probe force microscopy with transfer function correction

    SciTech Connect (OSTI)

    Guo, Senli [ORNL] [ORNL; Jesse, Stephen [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    An approach for surface potential imaging based on half-harmonic band excitation (BE) in Kelvin probe force microscopy is demonstrated. Using linear and half-harmonic BE enables quantitative correction of the cantilever transfer function. Half-harmonic band excitation Kelvin probe force microscopy (HBE KPFM) thus allows quantitative separation of surface potential and topographic contributions to the signal, obviating the primary sources of topographic cross-talk. HBE KPFM imaging and voltage spectroscopy methods are illustrated for several model systems.

  20. Development of a cost effective surface-patterned transparent conductive coating as top-contact of light emitting diodes

    SciTech Connect (OSTI)

    Haldar, Arpita [Department of Applied Optics and Photonics, University of Calcutta, Kolkata-700009 (India); Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Bera, Susanta; Jana, Sunirmal, E-mail: sjana@cgcri.res.in, E-mail: srirajib@yahoo.com [Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Bhattacharya, Kallol; Chakraborty, Rajib, E-mail: sjana@cgcri.res.in, E-mail: srirajib@yahoo.com [Department of Applied Optics and Photonics, University of Calcutta, Kolkata-700009 (India)

    2014-05-21T23:59:59.000Z

    Sol-gel process has been used to form indium zinc oxide films using an optimized combination of zinc to indium concentration in the precursor solutions. Different structures, like one (1D) and two-dimensional (2D) gratings and diffractive optical elements (DOEs) in the form of Fresnel lens are fabricated on the film surface of proposed top metal contact of LED by imprint soft lithography technique. These structures can enhance the LED's light extraction efficiency (LEE) or can shape the output beam pattern, respectively. Several characterizations are done to analyze the material and structural properties of the films. The presence of 1D and 2D gratings as well as DOEs is confirmed from field emission scanning electron and atomic force microscopes analyses. Although, X-ray diffraction shows amorphous nature of the film, but transmission electron microscopy study shows that it is nano crystalline in nature having fine particles (?8?nm) of hexagonal ZnO. Shrinkage behaviour of gratings as a function of curing temperature is explained by Fourier transform infra-red spectra and thermo gravimetric-differential thermal analysis. The visible transmission and sheet resistance of the sample are found comparable to tin doped indium oxide (ITO). Therefore, the film can compete as low cost substitute of ITO as top metal contact of LEDs.

  1. Wafer chamber having a gas curtain for extreme-UV lithography

    DOE Patents [OSTI]

    Kanouff, Michael P. (Livermore, CA); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.

  2. Diffraction spectral filter for use in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Tichenor, Daniel A. (Castro Valley, CA); Bernardez, Luis J. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A condenser system for generating a beam of radiation includes a source of radiation light that generates a continuous spectrum of radiation light; a condenser comprising one or more first optical elements for collecting radiation from the source of radiation light and for generating a beam of radiation; and a diffractive spectral filter for separating first radiation light having a particular wavelength from the continuous spectrum of radiation light. Cooling devices can be employed to remove heat generated. The condenser system can be used with a ringfield camera in projection lithography.

  3. Fabrication of high-T sub c Josephson effect devices by natural lithography

    SciTech Connect (OSTI)

    Dozier, W.D.; Daly, K.P.; Hu, R.; Platt, C.E.; Wire, M.S. (TRW Space and Technology Group, Redondo Beach, CA (United States))

    1991-03-01T23:59:59.000Z

    This paper reports on deposited thin films of YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) on LaAlO{sub 3} substrates previously textured with submicron which features by the use of natural lithography (the use of monolayers of polystyrene microspheres as lithographic masks). This weakens the superconducting properties due to reduced connectivity in the film. Devices fabricated using localized textured regions have shown Josephson coupling. Weak links have shown Shapiro steps at the expected voltage intervals. Magnetic field induced modulation in the detected RF voltage with the geometrically correct periodicity has been observed in RF SQUIDs over a limited temperature range.

  4. Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography

    E-Print Network [OSTI]

    Trompoukis, Christos; Depauw, Valérie; Gordon, Ivan; Poortmans, Jef; 10.1063/1.4749810.

    2012-01-01T23:59:59.000Z

    We report on the fabrication of two-dimensional periodic photonic nanostructures by nanoimprint lithography and dry etching, and their integration into a 1-{\\mu}m-thin mono-crystalline silicon solar cell. Thanks to the periodic nanopatterning, a better in-coupling and trapping of light is achieved, resulting in an absorption enhancement. The proposed light trapping mechanism can be explained as the superposition of a graded index effect and of the diffraction of light inside the photoactive layer. The absorption enhancement is translated into a 23% increase in short-circuit current, as compared to the benchmark cell, resulting in an increase in energy-conversion efficiency.

  5. Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies

    SciTech Connect (OSTI)

    Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Ievlev, Anton [ORNL] [ORNL; Balke, Nina [ORNL] [ORNL; Maksymovych, Petro [ORNL] [ORNL; Tselev, Alexander [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

  6. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30T23:59:59.000Z

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  7. RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Gilchrist, James F.

    RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY Department of Materials Science. #12;Job Description (for website) Job Title: Research Engineer in Advanced Analytical Electron or an engineering discipline and four years of demonstrated experience in electron microscopy. Requirements

  8. Electron Microscopy | Center for Functional Nanomaterials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Atomic-resolution imaging of internal materials structure with scanning transmission and transmission electron microscopy Spectroscopic characterization with...

  9. Scanning probe microscopy: Sulfate minerals in scales and cements

    SciTech Connect (OSTI)

    Hall, C. [Schlumberger Cambridge Research (United Kingdom)

    1995-11-01T23:59:59.000Z

    The principles of scanning probe microscopy (SPM) are illustrated with examples from oilfield mineralogy, particularly emphasizing sulfate minerals involved in scale formation and cement hydration chemistry. The topography of the (010) cleavage surface of gypsum observed by atomic force microscopy shows atomically flat terraces separated by shallow steps often only one unit cell high. SPM allows direct observation of processes on mineral surfaces while they are in contact with solutions. The dissolution etching and crystal growth of gypsum and barite are discussed and rates of step migration estimated. The orientation of steps is related to the crystallographic axes. The action of phosphonate crystal growth inhibitor on gypsum and of a chelating scale solvent on barite are also shown. The multiphase microstructure of an oilwell cement clinker is described in relation to its hydration chemistry in contact with water and its reaction with sulfate ions.

  10. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction

    SciTech Connect (OSTI)

    Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

    2011-06-06T23:59:59.000Z

    Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

  11. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect (OSTI)

    Musket, R G

    2005-10-14T23:59:59.000Z

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8}/cm{sup 2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nm < SEM hole diameter < {approx}100 nm), the energy deposition calculated for the incident ion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  12. Complete information acquisition in scanning probe microscopy

    SciTech Connect (OSTI)

    Belianinov, Alex [ORNL; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL

    2015-01-01T23:59:59.000Z

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  13. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E; Parvin, Bahram

    2013-10-01T23:59:59.000Z

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  14. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Mill Valley, CA)

    2011-05-24T23:59:59.000Z

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  15. PATENT/DISCLOSURE LIST (1) A. Bindal, "Sidewall Lithography for Growing Horizontal Carbon Nano Tubes and a

    E-Print Network [OSTI]

    Eirinaki, Magdalini

    Tubes and a Process Flow for Complementary Carbon Nano Tube Field Effect Transistor (CCFET) FabricationPATENT/DISCLOSURE LIST (1) A. Bindal, "Sidewall Lithography for Growing Horizontal Carbon Nano for Manufacturing Nano-Interconnects and Catalyst Islands for Growing Carbon Nano Tubes", provisional patent

  16. Polymer sphere lithography for solid oxide fuel cells: a route to functional, well-defined electrode structures

    E-Print Network [OSTI]

    Polymer sphere lithography for solid oxide fuel cells: a route to functional, well. Introduction Dramatic breakthroughs in the materials, particularly electrode materials, for solid oxide fuel cells (SOFCs) have been reported in recent years.1­3 Fundamental understanding of the electro- catalytic

  17. Fabrication of planar quantum magnetic disk structure using electron beam lithography, reactive ion etching, and chemical mechanical polishing

    E-Print Network [OSTI]

    Fabrication of planar quantum magnetic disk structure using electron beam lithography, reactive ion, Department of Electrical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 Received 2 June's size and location, and reactive ion etching was used to form an SiO2 template. Nickel electroplating

  18. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

  19. Scanning Tunneling Microscopy currents on locally disordered graphene

    E-Print Network [OSTI]

    Tsai, Shan-Wen; Peres, Nuno M. R.; Santos, J. E.; Ribeiro, R. M.

    2009-01-01T23:59:59.000Z

    Scanning Tunneling Microscopy currents on locally disorderedcharacteristic curves of Scanning Tunneling Microscopy (STM)for the calculation of Scanning Tunneling Microscopy (STM)

  20. Surface Science Letters Scanning tunneling microscopy of gold clusters on

    E-Print Network [OSTI]

    Goodman, Wayne

    ; Catalysis There are many fundamental and applied reasons for studying the stability of deposited junctions and active elements. In catalysis, deactivation of the active metal component is di- rectly

  1. Characterization of Dynamic Surface Processes by Atomic Force Microscopy

    E-Print Network [OSTI]

    Shao, Jingru

    2014-01-01T23:59:59.000Z

    hydrogen terminated as synthesized but may slowly become oxidized to oxygen termi- nated under long time storage

  2. Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy,

    E-Print Network [OSTI]

    Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, 75205 Paris Cedex 13, France ABSTRACT: Imaging localized plasmon modes in noble- metal nanoparticles-loss spectroscopy (EELS) to study localized surface plasmons on individual gold nanodecahedra. By exciting surface

  3. Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Stearns, Daniel G. (Los Altos, CA); Sweeney, Donald W. (San Ramon, CA); Mirkarimi, Paul B. (Sunol, CA)

    2004-11-23T23:59:59.000Z

    A method is provided for repairing defects in a multilayer coating layered onto a reticle blank used in an extreme ultraviolet lithography (EUVL) system. Using high lateral spatial resolution, energy is deposited in the multilayer coating in the vicinity of the defect. This can be accomplished using a focused electron beam, focused ion beam or a focused electromagnetic radiation. The absorbed energy will cause a structural modification of the film, producing a localized change in the film thickness. The change in film thickness can be controlled with sub-nanometer accuracy by adjusting the energy dose. The lateral spatial resolution of the thickness modification is controlled by the localization of the energy deposition. The film thickness is adjusted locally to correct the perturbation of the reflected field. For example, when the structural modification is a localized film contraction, the repair of a defect consists of flattening a mound or spreading out the sides of a depression.

  4. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization...

  5. Analyzing the status of oxide surface photochemical reactivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photochemical reactivity Released: July 28, 2013 Invited review shows power of scanning tunneling microscopy to understand and control the surface photochemistry of oxide...

  6. Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy

    DOE Patents [OSTI]

    Thomas, Clarence E. (Knoxville, TN); Baylor, Larry R. (Farragut, TN); Voelkl, Edgar (Oak Ridge, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Whealton, John H. (Oak Ridge, TN); Whitson, John C. (Clinton, TN); Wilgen, John B. (Oak Ridge, TN)

    2002-12-24T23:59:59.000Z

    Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  7. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    SciTech Connect (OSTI)

    Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

    2013-12-15T23:59:59.000Z

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  8. Spectroscopic imaging in electron microscopy

    SciTech Connect (OSTI)

    Pennycook, Stephen J [ORNL; Colliex, C. [Universite Paris Sud, Orsay, France

    2012-01-01T23:59:59.000Z

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  9. Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography

    E-Print Network [OSTI]

    New Mexico, University of

    of New Mexico, Albuquerque, New Mexico 87106 Will Conley Freescale Semiconductor Assignee known from oil-immersion optical microscopy. Through the use of immersion media, such as deionized water

  10. In-situ scanning probe microscopy of electrodeposited nickel.

    SciTech Connect (OSTI)

    Kelly, James J.; Dibble, Dean C.

    2004-10-01T23:59:59.000Z

    The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.

  11. Fast scanning two-photon microscopy

    E-Print Network [OSTI]

    Chang, Jeremy T

    2010-01-01T23:59:59.000Z

    Fast scanning two-photon microscopy coupled with the use light activated ion channels provides the basis for fast imaging and stimulation in the characterization of in vivo neural networks. A two-photon microscope capable ...

  12. Introduction to Scanning Microwave Microscopy Mode

    E-Print Network [OSTI]

    Anlage, Steven

    Wenhai Han Introduction to Scanning Microwave Microscopy Mode Application Note Introduction Mapping through" and meanwhile achieve sufficient sensitivity and resolution. With the invention of scanning been developed to probe materials properties. These include scanning near-field to scanning microwave

  13. Scanning Transmission Electron Microscopy for Nanostructure

    E-Print Network [OSTI]

    Pennycook, Steve

    152 6 Scanning Transmission Electron Microscopy for Nanostructure Characterization S. J. Pennycook. Introduction The scanning transmission electron microscope (STEM) is an invaluable tool atom. The STEM works on the same principle as the normal scanning electron microscope (SEM), by forming

  14. Scanning Transmission Electron Microscopy Investigations of Complex...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of...

  15. Specific adhesion of peptides on semiconductor surfaces in experiment and simulation

    E-Print Network [OSTI]

    Bachmann, Michael

    with distilled water and drying in air, sample surfaces have been investigated by atomic-force microscopy (AFM phases of peptides on inorganic semiconductor surfaces. The peptide-covered surface fraction can differ

  16. In-situ Transmission Electron Microscopy and Spectroscopy Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and In-situ Transmission Electron Microscopy and Spectroscopy Studies of...

  17. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

  18. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

  19. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization Catalyst...

  20. ORNL microscopy pencils patterns in polymers at the nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (865) 574-7308 ORNL microscopy pencils patterns in polymers at the nanoscale Oak Ridge National Laboratory researchers used atomic force microscopy to draw nanoscale patterns in a...

  1. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials Investigations of electrode interface and architecture...

  2. Environmental cell assembly for use in for use in spectroscopy and microscopy applications

    DOE Patents [OSTI]

    Stowe, Ashley Clinton; Smyrl, Norman; Hallman, Jr., Russell L.

    2014-09-02T23:59:59.000Z

    An environmental cell assembly for use in microscopy and spectroscopy applications, including: an environmentally sealed body assembly configured to selectively hold and contain a sample; a plurality of ports manufactured into one or more surfaces of the body assembly for one or more of evacuating the body assembly and injecting a gas into or removing a gas from the body assembly; a port manufactured into a surface of the body assembly for receiving a translating stage configured to move the sample within the body assembly; and a port manufactured into a surface of the body assembly for receiving one or more lenses utilized in a microscopy or spectroscopy application; wherein the one or more lenses are disposed adjacent the sample without intervening structures disposed there between. The cell assembly also includes a port manufactured into a surface of the body assembly for retaining a window and providing visualization of the sample.

  3. Defect production in tungsten: A comparison between field-ion microscopy and molecular-dynamics simulations

    E-Print Network [OSTI]

    Nordlund, Kai

    Defect production in tungsten: A comparison between field-ion microscopy and molecular defect production efficiencies obtained by FIM are a consequence of a surface effect, which greatly enhances defect production compared to that in the crystal interior. Comparison of clustering of vacancies

  4. Image Scanning Microscopy Claus B. Muller and Jorg Enderlein*

    E-Print Network [OSTI]

    Enderlein, Jörg

    Image Scanning Microscopy Claus B. Mu¨ller and Jo¨rg Enderlein* III. Institute of Physics, Georg microscopy technique is introduced, image scanning microscopy (ISM), which combines conventional confocal-laser scanning microscopy with fast wide-field CCD detection. The technique allows for doubling the lateral

  5. Potential applications of microscopy for steam coal

    SciTech Connect (OSTI)

    DeVanney, K.F.; Clarkson, R.J.

    1995-08-01T23:59:59.000Z

    Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

  6. Surface Topography Quantification by Integral and Feature-related Parameters

    E-Print Network [OSTI]

    Smid, Michiel

    Surface Topography Quantification by Integral and Feature-related Parameters Quantifizieren von microscopy, the topography of brittle fracture surfaces and wire- eroded surfaces was quantified. The globalÈche, Topometrie 1 Introduction Surface topographies contain information about their gen- eration processes

  7. Polymer Filler Aging and Failure Studied by Lateral Force Microscopy

    SciTech Connect (OSTI)

    Ratto, T; Saab, A P

    2009-05-27T23:59:59.000Z

    In the present work, we study, via force microscopy, the basic physical interactions of a single bead of silica filler with a PDMS matrix both before and after exposure to gamma radiation. Our goal was to confirm our results from last year, and to explore force microscopy as a means of obtaining particle-scale polymer/filler interactions suitable for use as empirical inputs to a computational model consisting of an ensemble of silica beads embedded in a PDMS matrix. Through careful calibration of a conventional atomic force microscope, we obtained both normal and lateral force data that was fitted to yield adhesion, surface shear modulus, and friction of a 1 {micro}m silica bead in contact with PDMS layers of various thickness. Comparison of these terms before and after gamma exposure indicated that initially, radiation exposure lead to softening of the PDMS, but eventually resulted in stiffening. Simultaneously, adhesion between the polymer and silica decreased. This could indicate a serious failure path for filled PDMS exposed to radiation, whereby stiffening of the bulk polymer leads to loss of compressive elastic behavior, while a decrease in polymer filler adhesion results in an increased likelihood of stress failure under load. In addition to further testing of radiation damaged polymers, we also performed FEA modeling of silica beads in a silicone matrix using the shear modulus and adhesion values isolated from the force microscopy experiments as model inputs. The resulting simulation indicated that as a polymer stiffens due to impinging radiation, it also undergoes weakening of adhesion to the filler. The implication is that radiation induces a compound failure mode in filled polymer systems.

  8. The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

    SciTech Connect (OSTI)

    Orme, C A; Giocondi, J L

    2007-04-16T23:59:59.000Z

    Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth.

  9. Spatial resolution in vector potential photoelectron microscopy

    SciTech Connect (OSTI)

    Browning, R. [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)] [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)

    2014-03-15T23:59:59.000Z

    The experimental spatial resolution of vector potential photoelectron microscopy is found to be much higher than expected because of the cancellation of one of the expected contributions to the point spread function. We present a new calculation of the spatial resolution with support from finite element ray tracing, and experimental results.

  10. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09T23:59:59.000Z

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  11. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ciovati, Gianluigi; Baldwin, Charles; Cheng, Guangfeng; Flood, Roger; Jordan, Kevin; Kneisel, Peter; Morrone, Michael; Nemes, George; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

    2012-03-16T23:59:59.000Z

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  12. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect (OSTI)

    Yuen, Chad [Ames Laboratory

    2012-10-26T23:59:59.000Z

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  13. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

    2002-09-24T23:59:59.000Z

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  14. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09T23:59:59.000Z

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  15. Ice-assisted electron beam lithography of graphene This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Ice-assisted electron beam lithography of graphene This article has been downloaded from IOPscience PUBLISHING NANOTECHNOLOGY Nanotechnology 23 (2012) 185302 (6pp) doi:10.1088/0957-4484/23/18/185302 Ice demonstrate that a low energy focused electron beam can locally pattern graphene coated with a thin ice layer

  16. Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion

    E-Print Network [OSTI]

    resolution electron beam lithography and reactive ion etching P. B. Fischer and S. Y. Chou University of Minnesota Department of Electrical Engineering, Minneapolis, Minnesota 554~3 (Received 29 July 1992 and chlorine based reactive ion etching. These nanoscale Si features can be further reduced to 10 nm using

  17. Fabrication of Sub-10-nm Silicon Nanowire Arrays by Size Reduction Lithography Yang-Kyu Choi, Ji Zhu,, Jeff Grunes,, Jeffrey Bokor, and Gabor. A. Somorjai*,,

    E-Print Network [OSTI]

    Bokor, Jeffrey

    systems. Introduction The fabrication of nanoscale patterns with dimensions of 10 nm or less has been and space dimensions" from polysilicon (polycrystalline silicon) and a metal oxide by etching one et al. carried out what they called "spacer lithography" to produce electronic devices in silicon

  18. Surface forces: Surface roughness in theory and experiment

    SciTech Connect (OSTI)

    Parsons, Drew F., E-mail: Drew.Parsons@anu.edu.au; Walsh, Rick B.; Craig, Vincent S. J. [Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)] [Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-28T23:59:59.000Z

    A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height. A roughness-averaged force is determined by taking an average of the classic flat-surface force, weighing all possible separation distances against the probability distributions of surface heights. Second the model adds a repulsive contact force due to the elastic contact of asperities. We derive a simple analytic expression for the contact force. The general impact of roughness is to amplify the long range behaviour of noncontact (DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces. The model therefore provides a means of distinguishing between “true zero,” where the separation between the average centres of each surface is zero, and “apparent zero,” defined by the onset of the repulsive contact wall. A normal distribution may be assumed for the surface probability distribution, characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the probability distribution may be defined by the histogram of heights measured by AFM. Both methods of treating surface roughness are compared against the classic smooth surface calculation and experimental AFM measurement.

  19. Single particle microscopy with nanometer resolution

    E-Print Network [OSTI]

    Georg Jacob; Karin Groot-Berning; Sebastian Wolf; Stefan Ulm; Luc Couturier; Ulrich G. Poschinger; Ferdinand Schmidt-Kaler; Kilian Singer

    2014-05-26T23:59:59.000Z

    We experimentally demonstrate nanoscopic transmission microscopy relying on a deterministic single particle source. This increases the signal-to-noise ratio with respect to conventional microscopy methods, which employ Poissonian particle sources. We use laser-cooled ions extracted from a Paul trap, and demonstrate remote imaging of transmissive objects with a resolution of 8.6 $\\pm$ 2.0nm and a minimum two-sample deviation of the beam position of 1.5nm. Detector dark counts can be suppressed by 6 orders of magnitudes through gating by the extraction event. The deterministic nature of our source enables an information-gain driven approach to imaging. We demonstrate this by performing efficient beam characterization based on a Bayes experiment design method.

  20. Frontiers of in situ electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01T23:59:59.000Z

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore »this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  1. Scanning electron microscopy of cold gases

    E-Print Network [OSTI]

    Santra, Bodhaditya

    2015-01-01T23:59:59.000Z

    Ultracold quantum gases offer unique possibilities to study interacting many-body quantum systems. Probing and manipulating such systems with ever increasing degree of control requires novel experimental techniques. Scanning electron microscopy is a high resolution technique which can be used for in situ imaging, single site addressing in optical lattices and precision density engineering. Here, we review recent advances and achievements obtained with this technique and discuss future perspectives.

  2. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

  3. Flash Scanning Electron Microscopy Raphael Sznitman, Aurelien Lucchi, Marco Cantoni,

    E-Print Network [OSTI]

    Dalang, Robert C.

    Flash Scanning Electron Microscopy Raphael Sznitman, Aurelien Lucchi, Marco Cantoni, Graham Knott. Scanning Electron Microscopy (SEM) is an invaluable tool for biologists and neuroscientists to study brain earlier methods, we explicitly balance the conflicting requirements of spending enough time scanning

  4. Video-rate Scanning Confocal Microscopy and Microendoscopy

    E-Print Network [OSTI]

    Nichols, Alexander J.

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, ...

  5. Quantitative imaging of living cells by deep ultraviolet microscopy

    E-Print Network [OSTI]

    Zeskind, Benjamin J

    2006-01-01T23:59:59.000Z

    Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

  6. New Developments in Transmission Electron Microscopy for Nanotechnology**

    E-Print Network [OSTI]

    Wang, Zhong L.

    New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

  7. High aspect ratio x-ray waveguide channels fabricated by e-beam lithography and wafer bonding

    SciTech Connect (OSTI)

    Neubauer, H.; Hoffmann, S.; Kanbach, M.; Haber, J.; Kalbfleisch, S.; Krüger, S. P.; Salditt, T., E-mail: tsaldit@gwdg.de [Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2014-06-07T23:59:59.000Z

    We report on the fabrication and characterization of hard x-ray waveguide channels manufactured by e-beam lithography, reactive ion etching and wafer bonding. The guiding layer consists of air or vacuum and the cladding material of silicon, which is favorable in view of minimizing absorption losses. The specifications for waveguide channels which have to be met in the hard x-ray range to achieve a suitable beam confinement in two orthogonal directions are extremely demanding. First, high aspect ratios up to 10{sup 6} have to be achieved between lateral structure size and length of the guides. Second, the channels have to be deeply embedded in material to warrant the guiding of the desired modes while absorbing all other (radiative) modes in the cladding material. We give a detailed report on device fabrication with the respective protocols and parameter optimization, the inspection and the optical characterization.

  8. Chemically-selective imaging of brain structures with CARS microscopy

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Chemically-selective imaging of brain structures with CARS microscopy Conor L. Evans1§ , Xiaoyin Xu anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy

  9. Ultrahigh density ferroelectric storage and lithography by high order ferroic switching

    DOE Patents [OSTI]

    Kalinin, Sergei V. (Knoxville, TN); Baddorf, Arthur P. (Knoxville, TN); Lee, Ho Nyung (Oak Ridge, TN); Shin, Junsoo (Knoxville, TN); Gruverman, Alexei L. (Raleigh, NC); Karapetian, Edgar (Malden, MA); Kachanov, Mark (Arlington, MA)

    2007-11-06T23:59:59.000Z

    A method for switching the direction of polarization in a relatively small domain in a thin-film ferroelectric material whose direction of polarization is oriented normal to the surface of the material involves a step of moving an electrically-chargeable tip into contact with the surface of the ferroelectric material so that the direction of polarization in a region adjacent the tip becomes oriented in a preselected direction relative to the surface of the ferroelectric material. The tip is then pressed against the surface of the ferroelectric material so that the direction of polarization of the ferroelectric material within the area of the ferroelectric material in contact with the tip is reversed under the combined effect of the compressive influence of the tip and electric bias.

  10. Direct measurements of ensemble particle and surface interactions on homogeneous and patterned substrates

    E-Print Network [OSTI]

    Wu, Hung-Jen

    2006-08-16T23:59:59.000Z

    in colloidal ensembles levitated above macroscopic surfaces. TIRM and VM are well established optical microscopy techniques for measuring normal and lateral colloidal excursions near macroscopic planar surfaces. The interactions between particle-particle...

  11. Enhanced electrostatic discrimination of proteins on nanoparticle-coated surfaces

    E-Print Network [OSTI]

    Dubin, Paul D.

    Enhanced electrostatic discrimination of proteins on nanoparticle-coated surfaces Yisheng Xu gold nanoparticle (GNP) modified surface was investigated by atomic force microscopy (AFM) and surface-membrane ultraltration,6 and polyelectrolyte-induced phase separation.7 In recent years, nanoparticles (NP) modied

  12. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect (OSTI)

    Marchuk, Kyle

    2013-05-15T23:59:59.000Z

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  13. Surface figure control for coated optics

    DOE Patents [OSTI]

    Ray-Chaudhuri, Avijit K. (Livermore, CA); Spence, Paul A. (Pleasanton, CA); Kanouff, Michael P. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  14. Fast electron microscopy via compressive sensing

    DOE Patents [OSTI]

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09T23:59:59.000Z

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  15. New Microscopy Patent Awarded | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNewIdeasofNew Microscopy Patent

  16. Microscopy image segmentation tool: Robust image data analysis

    SciTech Connect (OSTI)

    Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)] [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2014-03-15T23:59:59.000Z

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  17. An In Situ Study of the Martensitic Transformation in Shape Memory Alloys Using Photoemission Electron Microscopy

    SciTech Connect (OSTI)

    Cai, Mingdong; Langford, Stephen C.; Dickinson, J. T.; Xiong, Gang; Droubay, Timothy C.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2007-04-15T23:59:59.000Z

    Thermally-induced martensitic phase transformations in polycrystalline CuZnAl and thin-film NiTiCu shape memory alloys were probed using photoemission electron microscopy (PEEM). Ultra-violet photoelectron spectroscopy shows a reversible change in the apparent work function during transformation, presumably due to the contrasting surface electronic structures of the martensite and austenite phases. In situ PEEM images provide information on the spatial distribution of these phases and the evolution of the surface microstructure during transformation. PEEM offers considerable potential for improving our understanding of martensitic transformations in shape memory alloys in real time.

  18. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect (OSTI)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01T23:59:59.000Z

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

  19. Biomass Surface Characterization Laboratory

    E-Print Network [OSTI]

    the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

  20. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal...

  1. Investigation of wettability by NMR microscopy and spin-lattice relaxation

    SciTech Connect (OSTI)

    Doughty, D.A.; Tomutsa, Liviu

    1993-11-01T23:59:59.000Z

    The wettability of reservoir rock has an important impact on the efficiency of oil recovery processes and the distribution of oil and water within the reservoir. One of the potentially useful tools for wettability measurements is nuclear magnetic resonance (NMR) and spin-lattice relaxation. More recently using NMR microscopy NIPER has developed the capability of imaging one- and two-phase fluid systems in reservoir rock at resolutions to 25 microns. Effects seen in the images of fluids within the pore space of rocks near the rock grain surfaces hinted at the possibility of using NMR microscopy to map the wettability variations at grain sites within the pore space. Investigations were begun using NMR microscopy and spin-lattice relaxation time measurements on rock/fluid systems and on well-defined fractional wet model systems to study these effects. Relaxation data has been modelled using the stretched exponential relationship recently introduced. Comparisons of the NMR microscopy results of the model system with the rock results indicate that the observed effects probably do not reflect actual wettability variations within the pore space. The results of the relaxation time measurements reveal that even in the simple model studied, the behavior of two phases is somewhat ambiguous and much more complex and requires more study.

  2. Method and apparatus for detecting the presence and thickness of carbon and oxide layers on EUV reflective surfaces

    DOE Patents [OSTI]

    Malinowski, Michael E.

    2005-01-25T23:59:59.000Z

    The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.

  3. Introduction to Photoelectron Emission Microscopy: Principles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We surmise that this is due to the highly-selective excitation of surface localized plasmon of silver. To illustrate the utility of PEEM, we also describe an in-situ...

  4. Instrument Series: Microscopy Aberration-Corrected

    E-Print Network [OSTI]

    , and material defects Chemistry ­ understanding particle surface interactions, atomic-level structure-tilt Crystallographic and Tomographic Analysis Ì Silicon-Lithium [Si(Li)] X-ray EDS Ì Cryogenic Imaging Capability Ì

  5. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    SciTech Connect (OSTI)

    Liu Kesong; Li Zhou [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang Weihua [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang Lei [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-12-26T23:59:59.000Z

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  6. Distance dependence of the phase signal in eddy current microscopy

    E-Print Network [OSTI]

    Roll, Tino; Fischer, Ulrich; Schleberger, Marika

    2008-01-01T23:59:59.000Z

    Atomic force microscopy using a magnetic tip is a promising tool for investigating conductivity on the nano-scale. By the oscillating magnetic tip eddy currents are induced in the conducting parts of the sample which can be detected in the phase signal of the cantilever. However, the origin of the phase signal is still controversial because theoretical calculations using a monopole appoximation for taking the electromagnetic forces acting on the tip into account yield an effect which is too small by more than two orders of magnitude. In order to determine the origin of the signal we used especially prepared gold nano patterns embedded in a non-conducting polycarbonate matrix and measured the distance dependence of the phase signal. Our data clearly shows that the interacting forces are long ranged and therefore, are likely due to the electromagnetic interaction between the magnetic tip and the conducting parts of the surface. Due to the long range character of the interaction a change in conductivity of $\\Del...

  7. In-Situ Transmission Electron Microscopy Probing of Native Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial...

  8. NATIONAL CENTRE FOR SENSOR RESEARCH (NCSR) Research Engineer Fluorescence Microscopy

    E-Print Network [OSTI]

    Humphrys, Mark

    manuals, prepare standard operating procedures and ensure documentation is maintained. · Manage online projects. · Undertake the commissioning and maintenance of microscopy equipment. · Collate operations

  9. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials In-situ characterization and diagnostics of mechanical degradation in electrodes...

  10. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20T23:59:59.000Z

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  11. Self-Aligned Colloidal Lithography for Controllable and Tuneable Plasmonic Nanogaps

    E-Print Network [OSTI]

    Ding, Tao; Herrmann, Lars O.; de Nijs, Bart; Benz, Felix; Baumberg, Jeremy J.

    2014-12-15T23:59:59.000Z

    –9 ] with controlled interparticle separations. Light-driven mutual electromagnetic coupling between coherent surface charge oscillations in the NPs then creates intense local electric fi elds in the gaps between the particles. [ 10 ] The magnitude of these fi elds... d) clearly shows the Au NPs on the fl at Si wafer with a shadow region below. After evaporating a layer of 30 nm Au (voltage: small 2014, DOI: 10.1002/smll.201402639 This is an open access article under the terms of the Creative Commons...

  12. Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning tunneling microscopy study. Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning tunneling...

  13. Scanning electron microscopy of intestinal villous structures

    E-Print Network [OSTI]

    Boyer, Edmond

    briefly in running water for 30 minutes and were dehydrated through graded ethanol series (1 hour each in 50, 70, 80, 95 and 100 %). Dehydrated specimens were dried in a carbon dioxide critical point drier to avoid exposure of the specimens to any surface tension forces when drying. The dried specimens were

  14. Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy

    E-Print Network [OSTI]

    Simon Carpentier; Mario S. Rodrigues; Luca Costa; Miguel V. Vitorino; Elisabeth Charlaix; Joel Chevrier

    2015-03-18T23:59:59.000Z

    Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which explains this behavior.

  15. Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy

    E-Print Network [OSTI]

    Carpentier, Simon; Costa, Luca; Vitorino, Miguel V; Charlaix, Elisabeth; Chevrier, Joel

    2015-01-01T23:59:59.000Z

    Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which expla...

  16. Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells

    E-Print Network [OSTI]

    Bernal, Javier

    - mentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy fluorescence microscopy; k-means cluster; image segmentation; cell edge; bivariate simi- larity index NUMEROUSComparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells Alden A. Dima,1

  17. High-temperature piezoresponse force microscopy B. Bhatia,1

    E-Print Network [OSTI]

    King, William P.

    High-temperature piezoresponse force microscopy B. Bhatia,1 J. Karthik,2 D. G. Cahill,1,2 L. W September 2011; published online 24 October 2011) We report high temperature piezoresponse force microscopy resistive heater allows local temperature control up to 1000 C with minimal electrostatic interactions

  18. Photoacoustic microscopy of tyrosinase reporter gene in vivo

    E-Print Network [OSTI]

    Wang, Lihong

    Photoacoustic microscopy of tyrosinase reporter gene in vivo Arie Krumholz Sarah J. Van microscopy of tyrosinase reporter gene in vivo Arie Krumholz,a Sarah J. VanVickle-Chavez,b Junjie Yao for tyrosinase, the primary enzyme responsible for expression of melanin in melanogenic cells. Optical res

  19. Investigation of fly ash carbon by thermal analysis and optical microscopy

    SciTech Connect (OSTI)

    Hill, R. [Boral Material Technologies Inc., San Antonio, TX (United States)] [Boral Material Technologies Inc., San Antonio, TX (United States); Rathbone, R.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research] [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1998-10-01T23:59:59.000Z

    A previous study investigated various fly ashes that had comparable loss on ignition values, but significant differences with respect to air entrainment performance. Thermal analysis data suggested that a poorly performing fly ash, with respect to air entrainment, contained a higher proportion of carbon that gasifies (oxidizes) at comparatively low temperatures. A relatively high abundance of isotropic carbon was identified in the poor-performing ash using optical microscopy. The present investigation examined a larger collection of fly ash samples to determine if thermal analysis could be used as a prognostic tool for fly ash performance. An attempt was made to correlate mortar air and foam index values for each sample with differential thermal analysis (DTA) data. Optical microscopy and BET surface area analysis were used as supportive techniques. No clear relationship could be established with the thermal or optical methods, although fly ash performance did correlate well with BET surface area. A low temperature component of the DTA exotherms was considered to be a function of inorganic catalytic species that reside on the carbon surface and lower the ignition temperature.

  20. 1996, Journal of Microscopy 181, 225-237 (and vol 182, p 240.) Multimodal microscopy by digital image processing

    E-Print Network [OSTI]

    Stone, J. V.

    , Blakistone and Kyryk 1990 compared applications of polarised light, bright eld, DIC and scanning electron microscopy SEM in the paper industry. Fluorescence microscopy adds further possible imaging modes to light. 1 #12;1 Introduction Di erent imaging modes with the light microscope convey complementary infor

  1. Infrared transparent frequency selective surface based on metallic meshes

    SciTech Connect (OSTI)

    Yu, Miao [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China) [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Xu, Nianxi; Liu, Hai; Gao, Jinsong, E-mail: gaojs@ciomp.ac.cn [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)] [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)

    2014-02-15T23:59:59.000Z

    This paper presents an infrared transparent frequency selective surface (ITFSS) based on metallic meshes. In this ITFSS structure, periodic cross-slot units are integrated on square metallic meshes empowered by coating and UV-lithography. A matching condition is proposed to avoid the distortion of units. Experimental results show that this ITFSS possesses a good transmittance of 80% in the infrared band of 3–5 ?m, and also a stable band-pass behavior at the resonance frequency of 36.4 GHz with transmittance of ?0.56 dB. Theoretical simulations about the ITFSS diffractive characteristics and frequency responses are also investigated. The novel ITFSS will attract renewed interest and be exploited for applications in various fields.

  2. Probing graphene defects and estimating graphene quality with optical microscopy

    SciTech Connect (OSTI)

    Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

    2014-01-27T23:59:59.000Z

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

  3. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    SciTech Connect (OSTI)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14T23:59:59.000Z

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing ?s time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few ?m{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular benefit of UFM and related methods for nanoscale mapping of stiff materials.

  4. Carmichael's Concise Review Microscopy is Only Skin Deep

    E-Print Network [OSTI]

    Heller, Eric

    Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

  5. advanced microscopy techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Syllabus MSE 581: Advanced Electron Microscopy Course description: Present the theory of...

  6. advanced electron microscopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Syllabus MSE 581: Advanced Electron Microscopy Course description: Present the theory of...

  7. Scanning Tunneling Microscopy and Theoretical Study of Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Theoretical Study of Water Adsorption on Fe3O4: Implications for Catalysis. Scanning Tunneling Microscopy and Theoretical Study of Water Adsorption on Fe3O4: Implications...

  8. Optical fiber based ultrashort pulse multispectral nonlinear optical microscopy

    E-Print Network [OSTI]

    Larson, Adam Michael

    2009-05-15T23:59:59.000Z

    Nonlinear optical microscopy (NLOM) utilizing femtosecond laser pulses is well suited for imaging living tissues. This work reports on the design and development of an optical fiber based multispectral NLOM developed around a laser generating...

  9. Target-specific contrast agents for magnetic resonance microscopy

    E-Print Network [OSTI]

    Hepler Blackwell, Megan Leticia

    2007-01-01T23:59:59.000Z

    High-resolution ex vivo magnetic resonance microscopy (MRM) can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. The goal ...

  10. Doppler optical coherence microscopy for studies of cochlear mechanics

    E-Print Network [OSTI]

    Hong, Stanley S.

    The possibility of measuring subnanometer motions with micron scale spatial resolution in the intact mammalian cochlea using Doppler optical coherence microscopy (DOCM) is demonstrated. A novel DOCM system is described ...

  11. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys. Rev. Lett. 107, 033904 (2011). Web: http:prl.aps.orgpdfPRLv107i3e033904...

  12. Modulated microwave microscopy and probes used therewith

    DOE Patents [OSTI]

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11T23:59:59.000Z

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  13. Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis

    E-Print Network [OSTI]

    Kang, Jeon Woong

    We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed ...

  14. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect (OSTI)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01T23:59:59.000Z

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  15. Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function

    SciTech Connect (OSTI)

    Tung, Ryan C., E-mail: ryan.tung@nist.gov; Killgore, Jason P.; Hurley, Donna C. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2014-06-14T23:59:59.000Z

    We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

  16. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect (OSTI)

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01T23:59:59.000Z

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

  17. Determination and Characterization of Ice Propagation Mechanisms on Surfaces Undergoing Dropwise Condensation

    E-Print Network [OSTI]

    Dooley, Jeffrey B.

    2011-08-08T23:59:59.000Z

    The mechanisms responsible for ice propagation on surfaces undergoing dropwise condensation have been determined and characterized. Based on experimental data acquired non-invasively with high speed quantitative microscopy, the freezing process...

  18. Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter

    E-Print Network [OSTI]

    Kimura, Hikari

    2010-01-01T23:59:59.000Z

    Title Josephson scanning tunneling microscopy – a local andthe sample using a novel scanning tunneling microscope (STM)discussed. I. INTRODUCTION Scanning tunneling microscopy (

  19. Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source. Soft X-Ray Microscopy and Spectroscopy at the Molecular...

  20. Swept source optical coherence microscopy for pathological assessment of cancerous tissues

    E-Print Network [OSTI]

    Ahsen, Osman Oguz

    2013-01-01T23:59:59.000Z

    Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable ...

  1. On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste

    SciTech Connect (OSTI)

    Trtik, Pavel, E-mail: pavel.trtik@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland); Kaufmann, Josef [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland); Volz, Udo [Bruker Nano GmbH, Mannheim (Germany)

    2012-01-15T23:59:59.000Z

    A surface of epoxy-impregnated hardened cement paste was investigated using a novel atomic force microscopy (AFM) imaging mode that allows for the quantitative mapping of the local elastic modulus. The analyzed surface was previously prepared using focussed ion beam milling. The same surface was also characterized by electron microscopy and energy-dispersive X-ray spectroscopy. We demonstrate the capability of this quantitative nanomechanical mapping to provide information on the local distribution of the elastic modulus (from about 1 to about 100 GPa) with a spatial resolution in the range of decananometers, that corresponds to that of low-keV back-scattered electron imaging. Despite some surface roughness which affects the measured nanomechanical properties it is shown that topography, adhesion and Young's modulus can be clearly distinguished. The quantitative mapping of the local elastic modulus is able to discriminate between phases in the cement paste microstructure that cannot be distinguished from the corresponding back-scattered electron images.

  2. Surface Science Letters Self-assembled growth of ordered Ge nanoclusters on

    E-Print Network [OSTI]

    Gao, Hongjun

    Surface Science Letters Self-assembled growth of ordered Ge nanoclusters on the Si(1 1 1)-(7 Â 7-assembled growth of submonolayer Ge on the Si(1 1 1)-(7 Â 7) surface grown by solid phase epitaxy has been studied using scanning tunneling microscopy. Ordered Ge nanoclusters on the surface are formed by the deposition

  3. Study of the Effects of Surface Morphology and Droplet Growth Dynamics on Condensation Heat Transfer

    E-Print Network [OSTI]

    Yao, Chun-Wei

    2014-04-23T23:59:59.000Z

    system 2 on Sample 3 (50??m micropillar spacing hybrid surface) ............................................................................................... 66 Figure 24. Environmental scanning electron microscopy (ESEM) time- sequence images... tension gradients to promote and induce a droplet removal mechanism. They concluded that their gradient surface exhibited a higher heat transfer coefficient than a hydrophobic silane based surface. More recently, environmental scanning electron...

  4. Growth of individual carbon nanotubes on an array of TiN/Ni nanodots patterned by e-beam lithography and defined by dry etching for field emission application.

    E-Print Network [OSTI]

    Boyer, Edmond

    or nanoimprint lithography 11 with lift-off. After realizing holes in a resin layer, a TiN film (acting is critical in particular for sputtered layers. Moreover, the deposited TiN film contains carbon and oxygen was employed to etch hal-00880711,version1-8Nov2013 #12;Ni and TiN layers. Following the stripping of HSQ

  5. Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 3) : a scanning tunneling microscopy study.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 × 3) : a scanning tunneling of the atomic and electronic structure of graphene monolayer islands on the 6H-SiC(0001)(3×3) (SiC(3×3)) surface reconstruction using scanning tunneling microscopy (STM) and spectroscopy (STS). The orientation of the graphene

  6. Programmable surfaces

    E-Print Network [OSTI]

    Sun, Amy (Amy Teh-Yu)

    2012-01-01T23:59:59.000Z

    Robotic vehicles walk on legs, roll on wheels, are pulled by tracks, pushed by propellers, lifted by wings, and steered by rudders. All of these systems share the common character of momentum transport across their surfaces. ...

  7. Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores

    E-Print Network [OSTI]

    Beauboeuf, Daniel P

    2010-01-01T23:59:59.000Z

    There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

  8. Sub-surface characterization and three dimensional profiling of semiconductors by magnetic resonance force microscopy

    SciTech Connect (OSTI)

    Hammel, P.C.; Moore, G.; Roukes, M.; Zhenyong Zhang

    1996-10-01T23:59:59.000Z

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project successfully developed a magnetic resonance force microscope (MRFM) instrument to mechanically detect magnetic resonance signals. This technique provides an intrinsically subsurface, chemical-species-specific probe of structure, constituent density and other properties of materials. As in conventional magnetic resonance imaging (MRI), an applied magnetic field gradient selects a well defined volume of the sample for study. However mechanical detection allows much greater sensitivity, and this in turn allows the reduction of the size of the minimum resolvable volume. This requires building an instrument designed to achieve nanometer-scale resolution at buried semiconductor interfaces. High-resolution, three-dimensional depth profiling of semiconductors is critical in the development and fabrication of semiconductor devices. Currently, there is no capability for direct, high-resolution observation and characterization of dopant density, and other critical features of semiconductors. The successful development of MRFM in conjunction with modifications to improve resolution will enable for the first time detailed structural and electronic studies in doped semiconductors and multilayered nanoelectronic devices, greatly accelerating the current pace of research and development.

  9. Surface characterization of cross-linked elastomers by shear modulation force microscopy

    E-Print Network [OSTI]

    Colby, Ralph H.

    (isobutylene-co-4-methylstyrene) (BIMS) is a synthetic terpolymer which can be stoichiometrically cross-linked by N agreement with rubber elasticity theory was obtained in both cases. The SMFM was then used to monitor), a synthetic terpolymer of isobutylene (IB), paramethylstyrene (PMS), and parabromomethylstyrene (Br

  10. Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomolecules 

    E-Print Network [OSTI]

    Everett, William Neil

    2009-05-15T23:59:59.000Z

    Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase...

  11. Confocal microscopy studies of colloidal assembly on microfabricated physically templated surfaces

    E-Print Network [OSTI]

    Sharma, Sumit

    2005-02-17T23:59:59.000Z

    deposition, and glass micro machining. Various stages of the process were optimized while selecting reactive ion etch (RIE) and nickel etch mask with a suitable etch recipe for microfabrication of patterns on thin multi-component glass coverslips. Pattern...

  12. Confocal microscopy studies of colloidal assembly on microfabricated physically templated surfaces 

    E-Print Network [OSTI]

    Sharma, Sumit

    2005-02-17T23:59:59.000Z

    deposition, and glass micro machining. Various stages of the process were optimized while selecting reactive ion etch (RIE) and nickel etch mask with a suitable etch recipe for microfabrication of patterns on thin multi-component glass coverslips. Pattern...

  13. Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomolecules

    E-Print Network [OSTI]

    Everett, William Neil

    2009-05-15T23:59:59.000Z

    Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase...

  14. Advances in Lithography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AAAdvancedof

  15. Domain switching by electron beam irradiation of Z{sup +}-polar surface in Mg-doped lithium niobate

    SciTech Connect (OSTI)

    Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Chezganov, D. S.; Smirnov, M. M.; Alikin, D. O.; Neradovskiy, M. M.; Kuznetsov, D. K. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2014-08-04T23:59:59.000Z

    The appearance of the static domains with depth above 200??m in the bulk of MgO-doped lithium niobate single crystals as a result of focused electron beam irradiation of Z{sup +}-polar surface was demonstrated. The created domain patterns were visualized by high-resolution methods including piezoresponse force microscopy, scanning electron microscopy, and confocal Raman microscopy. The main stages of the domain structure formation were revealed and explained in terms of the original model.

  16. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    SciTech Connect (OSTI)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01T23:59:59.000Z

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  17. Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy

    SciTech Connect (OSTI)

    Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

    2011-02-01T23:59:59.000Z

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  18. Atom probe field ion microscopy and related topics: A bibliography 1992

    SciTech Connect (OSTI)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01T23:59:59.000Z

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  19. 3D rotational diffusion microrheology using 2D video microscopy

    E-Print Network [OSTI]

    Rémy Colin; Minhao Yan; Loudjy Chevry; Jean-François Berret; Bérengère Abou

    2012-01-05T23:59:59.000Z

    We propose a simple way to perform three-dimensional (3D) rotational microrheology using two-dimensional (2D) video microscopy. The 3D rotational brownian motion of micrometric wires in a viscous fluid is deduced from their projection on the focal plane of an optical microscope objective. The rotational diffusion coefficient of the wires of length between 1-100 \\mu m is extracted, as well as their diameter distribution in good agreement with electron microscopy measurements. This is a promising way to characterize soft visco-elastic materials, and probe the dimensions of anisotropic objects.

  20. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrialSupportingAlbedo at theSurface Soil Surface Soil

  1. Application of a Theory for Generation of Soft X-Ray by Storage Rings and Its Use For X-Ray Lithography

    SciTech Connect (OSTI)

    Minkov, D. [21st Century COE SLLS (Japan); Yamada, H. [21st Century COE SLLS (Japan); Ritsumeikan University (Japan); PPL Co. Ltd., 1-1-1 Nojihigashi, Kusatsu City, Shiga 525-8577 (Japan); Toyosugi, N.; Morita, M. [PPL Co. Ltd., 1-1-1 Nojihigashi, Kusatsu City, Shiga 525-8577 (Japan); Yamaguchi, T. [Ritsumeikan University (Japan)

    2007-01-19T23:59:59.000Z

    A theory has been developed for generation of soft X-ray transition radiation (TR) by storage ring synchrotrons. It takes into consideration that the dielectric constant of the TR target material is a complex number, utilizes an explicit expression for the number of passes of an injected electron through the target, and describes more precisely the absorption of TR in the target. Such TR can be used for performing X-ray lithography (XRL), and therefore a formula is included for the sensitivity of the photoresist used in XRL. TR targets for XRL can be optimized, based on finding a maximum of the resist sensitivity. Application of this theory to optimization of Mg target shows that a target containing only one Mg foil, with a thickness of about 245 nm is the best Mg target, for performing XRL by our storage ring synchrotron MIRRORCLE-20SX.

  2. AiR surface: AiR surface 1

    E-Print Network [OSTI]

    Tanaka, Jiro

    AiR surface: 1 PDA AiR surface 1 1: AiR surface () () 2 [1] [2] 3 AiR surface AiR surface surface surface surface 3.1 surface [3]( 3 ) surface 3.2 surface surface AiR surface 4 AiR surface surface AiR surface: Virtual Touch Panel

  3. Detection of Percolating Paths in PMMA/CB Segregated Network Composites Using Electrostatic Force Microscopy and Conductive Atomic Force Microscopy

    SciTech Connect (OSTI)

    Waddell, J. [Georgia Institute of Technology; Ou, R. [Georgia Institute of Technology; Gupta, S. [Georgia Institute of Technology; Parker, A. [Georgia Institute of Technology; Gerhardt, Dr. Rosario [Georgia Institute of Technology; Seal, Katyayani [ORNL; Kalinin, Sergei V [ORNL; Baddorf, Arthur P [ORNL

    2009-01-01T23:59:59.000Z

    Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.

  4. In Situ Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy

    SciTech Connect (OSTI)

    Xiong, Gang; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.; Cai, Mingdong; Langford, Stephen C.; Dickinson, J T.

    2006-02-27T23:59:59.000Z

    Photoemission electron microscopy, in conjunction with photoemission spectroscopy, reflectivity, and surface roughness measurements, is used to study the thermally-induced martensitic transformation in a CuZnAI shape memory alloy. Real-time phase transformation is observed as a nearly instantaneous change of photoelectron intensity, accompanied by microstructural deformation and displacement due to the shape memory effect. The difference in the photoelectron intensity before and after the phase transformation is attributed to the concomitant change of work function as measured by photoelectron spectroscopy. Photoemission electron microscopy is shown to be a valuable new technique facilitating the study of phase transformations in shape memory alloys, and provides real-time information on microstructural changes and phase-dependent electronic properties.

  5. Scanning electron microscopy imaging of hydraulic cement microstructure

    E-Print Network [OSTI]

    Bentz, Dale P.

    Scanning electron microscopy imaging of hydraulic cement microstructure by Paul Stutzman Building Reprinted from Cement and Concrete Composites, Vol. 26, No. 8, 957-966 pp., November 2004. NOTE: This paper;Available online at www.sciencedirect.com SCIENCE@OIRECT@ Cement & Concrete CompositesELSEVIER Cement

  6. A national facility for biological cryo-electron microscopy

    SciTech Connect (OSTI)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk [Birkbeck College, Malet Street, London WC1E 7HX (United Kingdom); Grünewald, Kay [University of Oxford, Oxford OX3 7BN (United Kingdom); Stuart, David I. [University of Oxford, Oxford OX3 7BN (United Kingdom); Diamond Light Source, Didcot OX11 0DE (United Kingdom); Birkbeck College, Malet Street, London WC1E 7HX (United Kingdom)

    2015-01-01T23:59:59.000Z

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  7. Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals

    E-Print Network [OSTI]

    Boyer, Edmond

    the material undergoes a phase transition. Herein, we show that thermotropic phase transitions in 4-Cyano-41 Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals A. Nicholas G-objects in various environments. It uses a photo-induced change in the refractive index of the environment. Taking

  8. Radio-frequency scanning tunnelling microscopy U. Kemiktarak1

    E-Print Network [OSTI]

    LETTERS Radio-frequency scanning tunnelling microscopy U. Kemiktarak1 , T. Ndukum3 , K. C. Schwab3 measurementsinmesoscopicelectronicsandmechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM available from nanoscale optical and electrical displacement detection tech- niques, and the radio

  9. POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1

    E-Print Network [OSTI]

    Peters, Achim

    1 POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1 , V. SEMET1 and N. GARCIA2 1 exploited in a compact low-energy electron microscope: the Fresnel Projection Microscope. Images size of the sources. The result is a high-resolution, low-energy electron microscope, the "Fresnel

  10. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    E-Print Network [OSTI]

    Rosen, Joseph

    Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy Gary, Israel 4 rosen@ee.bgu.ac.il *gbrooker@jhu.edu Abstract: Fresnel Incoherent Correlation Holography (FINCH. Rosen and G. Brooker, "Digital spatially incoherent Fresnel holography," Opt. Lett. 32(8), 912­914 (2007

  11. absorption spectroscopic microscopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption spectroscopic microscopy First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Confocal light...

  12. MIUR-Cofin 2002 project Si-based photonic crystals

    E-Print Network [OSTI]

    deposition techniques, lithography (electron-beam, X-ray and nanoimprint), wet and dry etching, sedimentation of the photonic band dispersion by variable-angle reflectance from the sample surface and by phase-sensitive Mach and in photonic cavities; · modelling of near-field optical microscopy. #12;Torino Politecnico - PECVD growth

  13. Lithography-free sub-100nm nanocone array antireflection layer for low-cost silicon solar cell

    E-Print Network [OSTI]

    Xu, Zhida

    2014-01-01T23:59:59.000Z

    High density and uniformity sub-100nm surface oxidized silicon nanocone forest structure is created and integrated onto the existing texturization microstructures on photovoltaic device surface by a one-step high throughput plasma enhanced texturization method. We suppressed the broadband optical reflection on chemically textured grade-B silicon solar cells for up to 70.25% through this nanomanufacturing method. The performance of the solar cell is improved with the short circuit current increased by 7.1%, fill factor increased by 7.0%, conversion efficiency increased by 14.66%. Our method demonstrates the potential to improve the photovoltaic device performance with low cost high and throughput nanomanufacturing technology.

  14. Biological imaging by soft x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shapiro, D. [Stony Brook Univ., Stony Brook, NY (United States); Thibault, P. [Cornell Univ., Ithaca, NY (United States); Beetz, T. [Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab., Upton, NY (United States). Center for Functional Nanomaterials; Elser, V. [Cornell Univ., Ithaca, NY (United States); Howells, M. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Jacobsen, C. [Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab., Upton, NY (United States). Center for Functional Nanomaterials; Kirz, J. [Stony Brook Univ., Stony Brook, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Lima, E. [Stony Brook Univ., Stony Brook, NY (United States); Miao, H. [Stony Brook Univ., Stony Brook, NY (United States); Neiman, A. M. [State Univ. of New York at Stony Brook, NY (United States); Sayre, D. [Stony Brook Univ., Stony Brook, NY (United States)

    2005-10-25T23:59:59.000Z

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  15. Microfabricated high-bandpass foucault aperture for electron microscopy

    DOE Patents [OSTI]

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26T23:59:59.000Z

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  16. Biological Imaging by Soft X-ray Diffraction Microscopy

    SciTech Connect (OSTI)

    Shapiro,D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; et al.

    2005-01-01T23:59:59.000Z

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  17. Scanning acoustic microscopy for mapping the microstructure of soft materials

    E-Print Network [OSTI]

    N. G. Parker; M. J. W. Povey

    2009-04-30T23:59:59.000Z

    Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

  18. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy Illuminates Energy Storage

  19. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy Illuminates Energy

  20. Surface treated polypropylene (PP) fibres for reinforced concrete

    SciTech Connect (OSTI)

    López-Buendía, Angel M., E-mail: buendia@uv.es [AIDICO Technological Institute of Construction, Benjamin Franklin 17, 46380 Paterna, Valencia (Spain); Romero-Sánchez, María Dolores [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)] [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain); Climent, Verónica [Lafarge Cementos, Polígono Sepes, Isaac Newton s/n, 46500 Sagunto, Valencia (Spain)] [Lafarge Cementos, Polígono Sepes, Isaac Newton s/n, 46500 Sagunto, Valencia (Spain); Guillem, Celia [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)] [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)

    2013-12-15T23:59:59.000Z

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  1. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect (OSTI)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India)] [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany)] [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India)] [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)] [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10T23:59:59.000Z

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  2. Failure Surface Analysis of Polyimide/Titanium Notched Coating Adhesion Specimens

    SciTech Connect (OSTI)

    GIUNTA,RACHEL K.; KANDER,RONALD G.

    2000-12-18T23:59:59.000Z

    Adhesively bonded joints of LaRC{trademark} PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to be penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From x-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium substrate, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.

  3. Surface Science 415 (1998) 2936 Structural studies of sulfur-passivated GaAs (100)

    E-Print Network [OSTI]

    Zhang, Yanchao

    1998-01-01T23:59:59.000Z

    . Keywords: Atomic force microscopy; Gallium arsenide; Low-energy electron diffraction; Roughness; SulfurSurface Science 415 (1998) 29­36 Structural studies of sulfur-passivated GaAs (100) surfaces Abstract We present the results of Auger electron spectroscopy (AES), low-energy electron diffraction (LEED

  4. Surface Science Letters Synthesis of well-ordered ultra-thin titanium oxide films

    E-Print Network [OSTI]

    Goodman, Wayne

    Surface Science Letters Synthesis of well-ordered ultra-thin titanium oxide films on Mo(112) M microscopy (STM); X-ray photoelectron spectroscopy (XPS); Titanium oxide; Surface structure, morphology oxide systems, titanium dioxide has served as the prototypical reducible 0039-6028/$ - see front matter

  5. Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications

    E-Print Network [OSTI]

    Boudoux, Caroline

    2007-01-01T23:59:59.000Z

    Spectrally encoded confocal microscopy (SECM) is a technique that facilitates the incorporation of confocal microscopy into small, portable clinical instruments. This would allow in vivo evaluation of cellular and sub-cellular ...

  6. High throughput 3D optical microscopy : from image cytometry to endomicroscopy

    E-Print Network [OSTI]

    Choi, Heejin

    2014-01-01T23:59:59.000Z

    Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

  7. Cellular resolution ex vivo imaging of gastrointestinal tissues with coherence microscopy

    E-Print Network [OSTI]

    Fujimoto, James G.

    Optical coherence microscopy (OCM) combines confocal microscopy and optical coherence tomography (OCT) to improve imaging depth and contrast, enabling cellular imaging in human tissues. We aim to investigate OCM for ex ...

  8. Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a

    E-Print Network [OSTI]

    Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a , S.N. Renfrow a,b , G. Vizkelethy a,1 Abstract Alternatives to traditional nuclear microprobe analysis (NMA) emerged two years ago with the invention of ion electron emission microscopy (IEEM). With nuclear emission microscopy (NEM) the ion beam

  9. Scanning Force Microscopy Studies on Molecular Packing and Friction Anisotropy in Thin Films of

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Scanning Force Microscopy Studies on Molecular Packing and Friction Anisotropy in Thin Films in bulk, was studied using differential scanning calorimetry, optical microscopy, magic angle solid were investigated at the molecular level by a combination of multimode scanning force microscopy (SFM

  10. Scanning microscopy using a short-focal-length Fresnel zone plate

    E-Print Network [OSTI]

    Scanning microscopy using a short-focal-length Fresnel zone plate Ethan Schonbrun,* Winnie N. Ye demonstrate a form of scanning microscopy using a short-focal-length Fresnel zone plate and a low-NA relay. In this scheme, parallel scanning microscopy using a Fresnel zone-plate array would require only a single spatial

  11. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    SciTech Connect (OSTI)

    Bietti, Sergio, E-mail: sergio.bietti@mater.unimib.it; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano [L–NESS and Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, I–20125 Milano (Italy); Fedorov, Alexey [L–NESS and CNR–IFN, via Anzani 42, I-22100 Como (Italy)

    2014-09-21T23:59:59.000Z

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D{sub 0}?=?0.53(×2.1±1) cm{sup 2} s{sup ?1} that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  12. Photoemission Electron Microscopy of a Plasmonic Silver Nanoparticle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near-fields resulting from femtosecond (fs) laser excitation of localized surface plasmon oscillations in the triangular core-shell structure. We demonstrate that the...

  13. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect (OSTI)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15T23:59:59.000Z

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  14. Confocal Microscopy for Modeling Electron Microbeam Irradiation of Skin

    SciTech Connect (OSTI)

    Miller, John H.; Chrisler, William B.; Wang, Xihai; Sowa, Marianne B.

    2011-08-01T23:59:59.000Z

    For radiation exposures employing targeted sources such as particle microbeams, the deposition of energy and dose will depend on the spatial heterogeneity of the spample. Although cell structural variations are relatively minor for two-dimensional cell cultures, they can vary significantly for fully differential tissues. Employing high-resolution confocal microscopy, we have determined the spatial distribution, size, and shape of epidermal kerantinocyte nuclei for the full-thickness EpiDerm skin model (MatTek, Ashland, VA). Application of these data to claculate the microdosimetry and microdistribution of energy deposition by an electron microbeam is discussed.

  15. Phase modulation mode of scanning ion conductance microscopy

    SciTech Connect (OSTI)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04T23:59:59.000Z

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  16. DeepView: A collaborative framework for distributed microscopy

    SciTech Connect (OSTI)

    Parvin, B.; Taylor, J.; Cong, G.

    1998-08-10T23:59:59.000Z

    This paper outlines the motivation, requirements, and architecture of a collaborative framework for distributed virtual microscopy. In this context, the requirements are specified in terms of (1) functionality, (2) scalability, (3) interactivity, and (4) safety and security. Functionality refers to what and how an instrument does something. Scalability refers to the number of instruments, vendor-specific desktop workstations, analysis programs, and collaborators that can be accessed. Interactivity refers to how well the system can be steered either for static or dynamic experiments. Safety and security refers to safe operation of an instrument coupled with user authentication, privacy, and integrity of data communication. To meet these requirements, we introduce three types of services in the architecture: Instrument Services (IS), Exchange Services (ES), and Computational Services (CS). These services may reside on any host in the distributed system. The IS provide an abstraction for manipulating different types of microscopes; the ES provide common services that are required between different resources; and the CS provide analytical capabilities for data analysis and simulation. These services are brought together through CORBA and its enabling services, e.g., Event Services, Time Services, Naming Services, and Security Services. Two unique applications have been introduced into the CS for analyzing scientific images either for instrument control or recovery of a model for objects of interest. These include: in-situ electron microscopy and recovery of 3D shape from holographic microscopy. The first application provides a near real-time processing of the video-stream for on-line quantitative analysis and the use of that information for closed-loop servo control. The second application reconstructs a 3D representation of an inclusion (a crystal structure in a matrix) from multiple views through holographic electron microscopy. These application require steering external stimuli or computational parameters for a particular result. In a sense, ''computational instruments'' (symmetric multiprocessors) interact closely with data generated from ''experimental instruments'' (unique microscopes) to conduct new experiments and bring new functionalities to these instruments. Both of these features exploit high-performance computing and low-latency networks to bring novel functionalities to unique scientific imaging instruments.

  17. Entanglement-assisted electron microscopy based on a flux qubit

    SciTech Connect (OSTI)

    Okamoto, Hiroshi, E-mail: okamoto@akita-pu.ac.jp [Department of Electronics and Information Systems, Akita Prefectural University, Yurihonjo 015-0055 (Japan); Nagatani, Yukinori [National Institute for Physiological Sciences, Okazaki 444-8787 (Japan)

    2014-02-10T23:59:59.000Z

    A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

  18. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved Justification Memoranda byRecord-Setting Microscopy

  19. Surface Energy,Surface Energy, Surface Tension & Shape of CrystalsSurface Tension & Shape of Crystals

    E-Print Network [OSTI]

    Subramaniam, Anandh

    Surface Energy,Surface Energy, Surface Tension & Shape of CrystalsSurface Tension & Shape of shapes of crystals are important: (i) growth shape and (ii) equilibrium shape Surface/interface energy surfaces. The joining of two phases creates an interface. (Two orientations of the same crystalline phase

  20. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01T23:59:59.000Z

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  1. Frontiers of in situ electron microscopy

    SciTech Connect (OSTI)

    Zheng, Haimei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, Shirley Ying [Univ. of California-San Diego, San Diego, CA (United States)

    2015-01-01T23:59:59.000Z

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by in this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.

  2. Collaborative Computational Project for Electron cryo-Microscopy

    SciTech Connect (OSTI)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01T23:59:59.000Z

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  3. Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R [ORNL; Baggetto, Loic [ORNL; Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL; More, Karren Leslie [ORNL

    2012-01-01T23:59:59.000Z

    Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to an external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].

  4. Non-contact atomic-level interfacial force microscopy

    SciTech Connect (OSTI)

    Houston, J.E.; Fleming, J.G.

    1997-02-01T23:59:59.000Z

    The scanning force microscopies (notably the Atomic Force Microscope--AFM), because of their applicability to nearly all materials, are presently the most widely used of the scanning-probe techniques. However, the AFM uses a deflection sensor to measure sample/probe forces which suffers from an inherent mechanical instability that occurs when the rate of change of the force with respect to the interfacial separation becomes equal to the spring constant of the deflecting member. This instability dramatically limits the breadth of applicability of AFM-type techniques to materials problems. In the course of implementing a DOE sponsored basic research program in interfacial adhesion, a self-balancing force sensor concept has been developed and incorporated into an Interfacial Force Microscopy (IFM) system by Sandia scientists. This sensor eliminates the instability problem and greatly enhances the applicability of the scanning force-probe technique to a broader range of materials and materials parameters. The impact of this Sandia development was recognized in 1993 by a Department of Energy award for potential impact on DOE programs and by an R and D 100 award for one of the most important new products of 1994. However, in its present stage of development, the IFM is strictly a research-level tool and a CRADA was initiated in order to bring this sensor technology into wide-spread availability by making it accessible in the form of a commercial instrument. The present report described the goals, approach and results of this CRADA effort.

  5. Comparison of Graphene Formation on C-face and Si-face SiC {0001} Surfaces Luxmi, N. Srivastava, Guowei He, and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Comparison of Graphene Formation on C-face and Si-face SiC {0001} Surfaces Luxmi, N. Srivastava of graphene formed on the ( 1000 ) surface (the C-face) and the (0001) surface (the Si-face) of Si) and low-energy electron microscopy (LEEM). The graphene forms due to preferential sublimation of Si from

  6. Electron microscopy and microanalysis Two transmission electron microscopes

    E-Print Network [OSTI]

    distribution (laser scatter- ing) q Powder surface area by gas adsorption (BET) Commercially Available of a failed austenitic stainless steel tube. The failure type is identified as a fatigue failure, due

  7. Formation of Ti-B surface alloys by excimer laser mixing

    SciTech Connect (OSTI)

    Jervis, T.R.; Nastasi, M.; Hirvonen, J.P.; Zocco, T.G.

    1990-01-01T23:59:59.000Z

    We have formed a surface Ti-B alloy by excimer laser mixing of a single B layer on a Ti-6Al-4V alloy substrate. Rutherford backscattering spectroscopy indicates a uniform B:Ti ratio of approximately 0.7 in the surface layer. A Boron layer 60 nm thick resulted in an alloy layer approximately 200 nm thick. There is little indication, by either Auger electron spectroscopy or nuclear reaction analysis, of substantial oxygen incorporation in the surface alloy despite the fact that the processing was done in air. Transmission electron microscopy of the surface alloy shows a completely amorphous surface layer underlain by a martensitic structure.

  8. NEAR-IR TWO PHOTON MICROSCOPY IMAGING OF SILICA NANOPARTICLES FUNCTIONALIZED WITH ISOLATED SENSITIZED Yb(III) CENTERS

    SciTech Connect (OSTI)

    Lapadula, Giuseppe; Bourdolle, Adrien; Allouche, Florian; Conley, Matthew P.; Maron, Laurent; Lukens, Wayne W.; Guyot, Yannick; Andraud, Chantal; Brasselet, Sophie; Copé; ret, Christophe; Maury, Olivier; Andersen, Richard A.

    2013-01-12T23:59:59.000Z

    Bright nano objects emitting in the near infrared with a maximal cross section of 41.4 x 103 GM (Goppert Mayer), were prepared by implanting ca. 180 4,4 diethylaminostyryl 2,2 bipyridine (DEAS) Yb(III) complexes on the surface of 12 nm silica nanoparticles. The surface complexes ([DEAS Ln SiO2], Ln =Y,Yb) were characterized using IR, solid state NMR, UV Vis, EXAFS spectroscopies in combination with the preparation and characterization of similar molecular analogues by analytical techniques (IR, solution NMR, UV Vis, X ray crystallography) as well as DFT calculations. Starting from the partial dehydroxylation of the silica at 700 C on high vacuum having 0.8 OH.nm 2, the grafting of Ln(N(SiMe3)2)3 generate ?SiO Ln(N(SiMe3)2)2, which upon thermal step and coordination of the DEAS chromophore yields (?SiO)3Ln(DEAS). Surface and molecular analogues display similar properties, in terms of DEAS binding constants absorption maxima and luminescence properties (intense emission band assigned to a ligand centered CT fluorescence and life time) in the solid state, consistent with the molecular nature of the surface species. The densely functionalized nanoparticles can be dispersed via ultra-sonication in small ca. 15-20 nm aggregates (1 to 6 elementary particles) that were detected using two photon microscopy imaging at 720 nm excitation, making them promising nano objects for bio imaging.

  9. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect (OSTI)

    Dahmen, Tim [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; Baudoin, Jean-Pierre G [ORNL] [ORNL; Lupini, Andrew R [ORNL] [ORNL; Kubel, Christian [Karlsruhe Institute of Technology, Leopoldshafen, Germany] [Karlsruhe Institute of Technology, Leopoldshafen, Germany; Slusallek, Phillip [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; De Jonge, Niels [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  10. Cryo diffraction microscopy: Ice conditions and finite supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miao, H; Downing, K; Huang, X; Kirz, J; Marchesini, S; Nelson, J; Shapiro, D; Steinbrener, J; Stewart, A; Jacobsen, C

    2009-09-01T23:59:59.000Z

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore »using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  11. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect (OSTI)

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14T23:59:59.000Z

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  12. Cryo diffraction microscopy: Ice conditions and finite supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miao, H; Downing, K; Huang, X; Kirz, J; Marchesini, S; Nelson, J; Shapiro, D; Steinbrener, J; Stewart, A; Jacobsen, C

    2009-09-01T23:59:59.000Z

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

  13. Photoionization microscopy in terms of local frame transformation theory

    E-Print Network [OSTI]

    P. Giannakeas; F. Robicheaux; Chris H. Greene

    2014-10-27T23:59:59.000Z

    Two-photon ionization of an alkali-metal atom in the presence of a uniform electric field is investigated using a standardized form of local frame transformation and generalized quantum defect theory. The relevant long-range quantum defect parameters in the combined Coulombic plus Stark potential is calculated with eigenchannel R-matrix theory applied in the downstream parabolic coordinate $\\eta$. The present formulation permits us to express the corresponding microscopy observables in terms of the local frame transformation, and it gives a critical test of the accuracy of the Harmin-Fano theory permitting a scholastic investigation of the claims presented in Zhao {\\it et al.} [Phys. Rev. A 86, 053413 (2012)].

  14. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Zhu,Y.; Wall, J.

    2008-04-01T23:59:59.000Z

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron microscopy techniques in strongly correlated electron systems and nanostructured materials. As a first step, with the support of Materials Science Division, Office of Basic Energy Science, US Department of Energy, and the New York State Office of Science, Technology, and Academic Research, recently we acquired three aberration-corrected electron microscopes from the three major microscope manufacturers, i.e., JEOL, Hitachi, and FEI. The Hitachi HD2700C is equipped with a probe corrector, the FEI Titan 80-300 has an imaging corrector, while the JEOL2200MCO has both. All the correctors are of the dual-hexapole type, designed and manufactured by CEOS GmbH based on the design due to Rose and Haider [3, 18]. All these three are one-of-a-kind in the US, designed for specialized capabilities in characterizing nanoscale structure. In this chapter, we review the performance of these state-of-the art instruments and the new challenges associated with the improved spatial resolution, including the environment requirements of the laboratory that hosts these instruments. Although each instrument we describe here has its own strengths and drawbacks, it is not our intention to rank them in terms of their performance, especially their spatial resolution in imaging.

  15. Integrated fiducial sample mount and software for correlated microscopy

    SciTech Connect (OSTI)

    Timothy R McJunkin; Jill R. Scott; Tammy L. Trowbridge; Karen E. Wright

    2014-02-01T23:59:59.000Z

    A novel design sample mount with integrated fiducials and software for assisting operators in easily and efficiently locating points of interest established in previous analytical sessions is described. The sample holder and software were evaluated with experiments to demonstrate the utility and ease of finding the same points of interest in two different microscopy instruments. Also, numerical analysis of expected errors in determining the same position with errors unbiased by a human operator was performed. Based on the results, issues related to acquiring reproducibility and best practices for using the sample mount and software were identified. Overall, the sample mount methodology allows data to be efficiently and easily collected on different instruments for the same sample location.

  16. Handheld and low-cost digital holographic microscopy

    E-Print Network [OSTI]

    Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-01-01T23:59:59.000Z

    This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

  17. Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

    2011-05-26T23:59:59.000Z

    We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

  18. Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip

    E-Print Network [OSTI]

    Kimura, H.

    2010-01-01T23:59:59.000Z

    Title) Scanning Josephson Tunneling Microscopy of Singlea conventional superconducting scanning tunneling microscopeabstract} (Body) Remarkable scanning tunneling microscopy (

  19. Surface tension and contact with soft elastic solids

    E-Print Network [OSTI]

    Robert W. Style; Callen Hyland; Rostislav Boltyanskiy; John S. Wettlaufer; Eric R. Dufresne

    2013-10-11T23:59:59.000Z

    Johnson-Kendall-Robert (JKR) theory is the basis of modern contact mechanics. It describes how two deformable objects adhere together, driven by adhesion energy and opposed by elasticity. However, it does not include solid surface tension, which also opposes adhesion by acting to flatten the surface of soft solids. We tested JKR theory to see if solid surface tension affects indentation behaviour. Using confocal microscopy, we characterised the indentation of glass particles into soft, silicone substrates. While JKR theory held for particles larger than a critical, elastocapillary lengthscale, it failed for smaller particles. Instead, adhesion of small particles mimicked the adsorption of particles at a fluid interface, with a size-independent contact angle between the undeformed surface and the particle given by a generalised version of Young's law. A simple theory quantitatively captures this behaviour, and explains how solid surface tension dominates elasticity for small-scale indentation of soft materials.

  20. Corrosion protection of ENIG surface finishing using electrochemical methods

    SciTech Connect (OSTI)

    Bui, Q.V.; Nam, N.D.; Choi, D.H.; Lee, J.B.; Lee, C.Y. [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of)] [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of); Kar, A. [National Metallurgical Laboratory (CSIR), Jamshedpur 831007 (India)] [National Metallurgical Laboratory (CSIR), Jamshedpur 831007 (India); Kim, J.G. [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of)] [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of); Jung, S.B., E-mail: sbjung@skku.ac.kr [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of)

    2010-03-15T23:59:59.000Z

    Four types of thin film coating were carried out on copper for electronic materials by the electroless plating method at a pH range from 3 to 9. The coating performance was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization testing in a 3.5 wt.% NaCl solution. In addition, atomic force microscopy and X-ray diffraction were also used to analyze the coating surfaces. The electrochemical behavior of the coatings was improved using the electroless nickel plating solution of pH 5. The electroless nickel/immersion gold on the copper substrate exhibited high protective efficiency, charge transfer resistance and very low porosity, indicating an increase in corrosion resistance. Atomic force microscopy and X-ray diffraction analyses confirmed the surface uniformity and the formation of the crystalline-refined NiP {l_brace}1 2 2{r_brace} phase at pH 5.

  1. Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO{sub 2} nanoparticles

    SciTech Connect (OSTI)

    Zaki, Mohamed I., E-mail: mizaki@link.net [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt); Mekhemer, Gamal A.H.; Fouad, Nasr E. [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt)] [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt); Jagadale, Tushar C. [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)] [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); Ogale, Satishchandra B., E-mail: sb.ogale@ncl.res.in [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)

    2010-10-15T23:59:59.000Z

    The surface properties of sol-gel synthesized anatase titania (TiO{sub 2}) nanoparticles are probed by sorptiometry, infrared absorption spectroscopy, UV-vis diffuse reflectance spectroscopy and high resolution transmission electron microscopy. The results reveal strong correlations of the surface area, porosity, pyridine adsorption capacity and strength, and catalytic methylbutynol decomposition activity.

  2. Atom probe field ion microscopy and related topics: A bibliography 1989

    SciTech Connect (OSTI)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01T23:59:59.000Z

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

  3. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect (OSTI)

    Corradini, Michael; Sridharan, Kumar

    2012-11-26T23:59:59.000Z

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  4. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    SciTech Connect (OSTI)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15T23:59:59.000Z

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  5. High resolution transmission electron microscopy of melamine-formaldehyde aerogels and silica aerogels

    SciTech Connect (OSTI)

    Ruben, G.C. (Dartmouth Coll., Hanover, NH (United States). Dept. of Biological Sciences)

    1991-09-01T23:59:59.000Z

    The goal of the high resolution transmission electron microscopy (HRTEM) was to image the structure of two tetramethyl orthosilicate (TMOS) and two melamine-formaldehyde (MF) aerogels at the single polymer chain level{sup 1,2}. With this level of structural resolution we hoped to interrelate each aerogel's structure with its physical properties and its method of synthesis. Conventional single-step base catalysed TMOS aerogels show strings of spheroidal particles linked together with minimal necking. The spheroidal particles range from 86--132 {Angstrom} and average 113{plus minus}10 {Angstrom} in diameter{sup 2}. In contrast the TMOS aerogels reported on here were made by a two step method. After extended silica chains are grown in solution under acidic conditions with a substoichiometric amount of water, the reaction is stopped and the methanol hydrolysed from TMOS is removed. Then base catalysis and additional water are added to cause gel formation is a nonalcoholic solvent. The MF aerogels were prepared for HRTEM by fracturing them on a stereo microscope stage with razor knife so that fractured pieces with smooth flat surfaces could be selected for platinum-carbon replication. The two silica (TMOS) aerogels were both transparent and difficult to see. These aerogels were fractured on a stereo microscope stage with tweezers. 6 refs., 4 figs.

  6. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect (OSTI)

    Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

    2014-04-15T23:59:59.000Z

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  7. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    SciTech Connect (OSTI)

    Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan)] [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)] [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2012-01-27T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  8. Transmission electron microscopy of whiskers and hillocks formed on Al films deposited onto a glass

    SciTech Connect (OSTI)

    Saka, H.; Fujino, S.; Kuroda, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-01 (Japan); Tsujimoto, K.; Tsuji, S. [Display Technology, IBM Japan, Ltd., Shimotsuruma, Yamato, Kanagawa 242 (Japan); Takatsuji, H. [Display Technology, IBM Japan, Ltd., Ichimiyake, Yasu-gun, Shiga 520-23 (Japan)

    1998-01-05T23:59:59.000Z

    Whiskers and hillocks formed on an Al film deposited onto a glass substrate have been observed by means of a variety of transmission electron microscopy technique.

  9. Scanning X-ray Microscopy Investigations into the Electron Beam Exposure Mechanism of Hydrogen Silsesquioxane Resists

    E-Print Network [OSTI]

    Olynick, Deirdre L.; Tivanski, Alexei V.; Gilles, Mary K.; Tyliszczak, Tolek; Salmassi, Farhad; Liddle, J. Alexander

    2006-01-01T23:59:59.000Z

    Scanning X-ray Microscopy Investigations into the Electronchemistry is investigated by Scanning Transmission X-raythe area exposed. 15 Recently, scanning transmission x-ray

  10. Combined electron microscopy and spectroscopy characterization of as-received, acid purified, and oxidized HiPCO single-wall carbon nanotubes

    SciTech Connect (OSTI)

    Rosario-Castro, Belinda I.; Contes, Enid J. [University of Puerto Rico, Rio Piedras Campus, Department of Chemistry, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); University of Puerto Rico, Rio Piedras Campus, Center for Advanced Nanoscale Materials, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); Lebron-Colon, Marisabel; Meador, Michael A. [NASA John H. Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135 (United States); Sanchez-Pomales, Germarie [University of Puerto Rico, Rio Piedras Campus, Department of Chemistry, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); University of Puerto Rico, Rio Piedras Campus, Center for Advanced Nanoscale Materials, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); Cabrera, Carlos R., E-mail: carlos.cabrera2@upr.edu [University of Puerto Rico, Rio Piedras Campus, Department of Chemistry, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); University of Puerto Rico, Rio Piedras Campus, Center for Advanced Nanoscale Materials, PO Box 23346, San Juan, 00931-3346 (Puerto Rico)

    2009-12-15T23:59:59.000Z

    Single-wall carbon nanotubes (SWCNTs) are very important materials due to their combination of unique structure, dimension, strength, chemical stability, and electronic properties. Nevertheless, SWCNTs from commercial sources usually contain several impurities, which are usually removed by a purification process that includes reflux in acids and strong oxidation. This strong chemical procedure may alter the nanotube properties and it is thus important to control the extent of functionalization and oxidation during the purification procedure. In this report, we provide a comprehensive study of the structure and physical composition of SWCNTs during each step of the purification process. Techniques such as Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Infrared spectroscopy were used to track the SWCNTs structure, in terms of length and diameter distribution, and surface chemical modifications during each purification stage.

  11. Thermal calibration of photodiode sensitivity for atomic force microscopy

    SciTech Connect (OSTI)

    Attard, Phil; Pettersson, Torbjoern; Rutland, Mark W. [School of Chemistry F11, University of Sydney, NSW 2006 Australia (Australia); Department of Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden and Institute for Surface Chemistry, Box 5607, SE-114 86 Stockholm (Sweden)

    2006-11-15T23:59:59.000Z

    The photodiode sensitivity in the atomic force microscope is calibrated by relating the voltage noise to the thermal fluctuations of the cantilever angle. The method accounts for the ratio of the thermal fluctuations measured in the fundamental vibration mode to the total, and also for the tilt and extended tip of the cantilever. The method is noncontact and is suitable for soft or deformable surfaces where the constant compliance method cannot be used. For hard surfaces, the method can also be used to calibrate the cantilever spring constant.

  12. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01T23:59:59.000Z

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  13. Polarization-Modulated Second Harmonic Generation Microscopy in Collagen

    SciTech Connect (OSTI)

    Stoller, P C

    2002-09-30T23:59:59.000Z

    Collagen is a key structural protein in the body; several pathological conditions lead to changes in collagen. Among imaging modalities that can be used in vivo, second harmonic generation (SHG) microscopy has a key advantage: it provides {approx}1 {micro}m resolution information about collagen structure as a function of depth. A new technique--polarization-modulated SHG--is presented: it permits simultaneous measurement of collagen orientation, of a lower bound on the magnitude of the second order nonlinear susceptibility tensor, and of the ratio of the two independent elements in this tensor. It is applied to characterizing SHG in collagen and to determining effects of biologically relevant changes in collagen structure. The magnitude of the second harmonic signal in two dimensional images varies with position even in structurally homogeneous tissue; this phenomenon is due to interference between second harmonic light generated by neighboring fibrils, which are randomly oriented parallel or anti-parallel to each other. Studies in which focal spot size was varied indicated that regions where fibrils are co-oriented are less than {approx}1.5 {micro}m in diameter. A quartz reference was used to determine the spot size as well as a lower limit (d{sub xxx} > 0.3 pm/V) for the magnitude of the second order nonlinear susceptibility. The ratio of the two independent tensor elements ranged between d{sub XYY}/d{sub XXX} = 0.60 and 0.75. SHG magnitude alone was not useful for identifying structural anomalies in collagenous tissue. Instead, changes in the polarization dependence of SHG were used to analyze biologically relevant perturbations in collagen structure. Changes in polarization dependence were observed in dehydrated samples, but not in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable SHG signal. Collagen orientation was measured in thin samples of several different tissues in transmission mode as well as at different depths (up to 200 {micro}m) in thick samples in reflection mode; birefringence had no effect on the measurement. These studies showed that SHG microscopy was capable of detecting pathophysiological changes in collagen structure, suggesting that this technique has potential clinical applications.

  14. Application of fluorescence microscopy to coal-derived resid characterization

    SciTech Connect (OSTI)

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

    1991-01-01T23:59:59.000Z

    This study evaluates the usefulness of a fluorescence microscopy methodology to analyze coal-derived resids and interpret the data in the light of liquefaction processing conditions, process response, the inferred resid reactivity, and in relation to results of other analytical data. The fluorescence technique utilized has been widely applied to coal and kerogen characterization, albeit with some modifications, but is novel in its application to the characterization of coal liquids. Fluorescence is the emission of light energy which occurs when electrons, having been excited to a higher energy orbital, return to their lower energy ground state. The majority of organic molecules that fluoresce are those with conjugated double bonds (chromophores), such as aromatics, characterized by pi-electrons less strongly bound within the molecule than sigma electrons, that can be excited to anti-bonding pi-orbitals. Increasing the extent of pi-bond conjugation (i.e. larger molecular size) generally imparts a shift in absorption and emission spectra to longer wavelengths. Resid fluorescence largely depends on the concentration and degree of conjugation of aromatic chromophores in the high molecular weight liquids, possibly with ancillary effects from oxygen functionalities. In this context, fluorescence analysis of liquefaction resids can potentially evaluate process performance, since direct liquefaction processes endeavor to break down the macromolecular structure of coal, and reduce the molecular weight of polycondensed aromatics through hydrogenation, the opening of ring structures, and heteroatom removal.

  15. Application of fluorescence microscopy to coal-derived resid characterization

    SciTech Connect (OSTI)

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

    1991-12-31T23:59:59.000Z

    This study evaluates the usefulness of a fluorescence microscopy methodology to analyze coal-derived resids and interpret the data in the light of liquefaction processing conditions, process response, the inferred resid reactivity, and in relation to results of other analytical data. The fluorescence technique utilized has been widely applied to coal and kerogen characterization, albeit with some modifications, but is novel in its application to the characterization of coal liquids. Fluorescence is the emission of light energy which occurs when electrons, having been excited to a higher energy orbital, return to their lower energy ground state. The majority of organic molecules that fluoresce are those with conjugated double bonds (chromophores), such as aromatics, characterized by pi-electrons less strongly bound within the molecule than sigma electrons, that can be excited to anti-bonding pi-orbitals. Increasing the extent of pi-bond conjugation (i.e. larger molecular size) generally imparts a shift in absorption and emission spectra to longer wavelengths. Resid fluorescence largely depends on the concentration and degree of conjugation of aromatic chromophores in the high molecular weight liquids, possibly with ancillary effects from oxygen functionalities. In this context, fluorescence analysis of liquefaction resids can potentially evaluate process performance, since direct liquefaction processes endeavor to break down the macromolecular structure of coal, and reduce the molecular weight of polycondensed aromatics through hydrogenation, the opening of ring structures, and heteroatom removal.

  16. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  17. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Kalinin, Sergei V. (Knoxville, TN) [Knoxville, TN

    2010-08-17T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  18. TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS

    SciTech Connect (OSTI)

    Tosten, M; Michael Morgan, M

    2008-12-12T23:59:59.000Z

    A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similar in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.

  19. Microrheological Studies of Regenerated Silk Fibroin Solution by Video Microscopy

    E-Print Network [OSTI]

    Raghu A; Somashekar R; Sharath Ananthamurthy

    2007-02-01T23:59:59.000Z

    We have carried out studies on the rheological properties of regenerated silk fibroin (RSF) solution using video microscopy. The degummed silk from the Bombyx mori silkworm was used to prepare RSF solution by dissolving it in calcium nitrate tetrahydrate-methanol solvent. Measurements were carried out by tracking the position of an embedded micron-sized polystyrene bead within the RSF solution through video imaging. The time dependent mean squared displacement (MSD) of the bead in solution and hence, the complex shear modulus of this solution was calculated from the bead's position information. An optical tweezer was used to transport and locate the bead at any desired site within the micro-volume of the sample, to facilitate the subsequent free-bead video analysis. We present here the results of rheological measurements of the silk polymer network in solution over a frequency range, whose upper limit is the frame capture rate of our camera, at full resolution. By examining the distribution of MSD of beads at different locations within the sample volume, we demonstrate that this probe technique enables us to detect local inhomogeneties at micrometer length scales, not detectable either by a rheometer or from diffusing wave spectroscopy.

  20. Quantitative high dynamic range beam profiling for fluorescence microscopy

    SciTech Connect (OSTI)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D. [Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-15T23:59:59.000Z

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  1. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    SciTech Connect (OSTI)

    Janssens, K.; Adams, F. [Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry; Rivers, M.L.; Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1992-10-01T23:59:59.000Z

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  2. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    SciTech Connect (OSTI)

    Janssens, K.; Adams, F. (Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry); Rivers, M.L.; Jones, K.W. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01T23:59:59.000Z

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  3. X-ray diffraction, optical microscopy, and microhardness studies of gas nitrided titanium alloys and titanium aluminide

    SciTech Connect (OSTI)

    Sha, W. [Metals Research Group, School of Planning, Architecture and Civil Engineering, The Queen's University of Belfast, Belfast BT7 1NN (United Kingdom)], E-mail: w.sha@qub.ac.uk; Haji Mat Don, M.A.; Mohamed, A.; Wu, X.; Siliang, B. [Metals Research Group, School of Planning, Architecture and Civil Engineering, The Queen's University of Belfast, Belfast BT7 1NN (United Kingdom); Zhecheva, A. [Sifco Applied Surface Concepts (UK) Ltd., Division of Sifco Industries, Inc., European Headquarters, 38 Walkers Road, Moons Moat North, Redditch, Worcestershire B98 9HD (United Kingdom)

    2008-03-15T23:59:59.000Z

    Thermochemical surface gas nitriding of {beta}21s, Timetal 205 and a Ti-Al alloy was conducted using differential scanning calorimeter equipment, in nominally pure nitrogen at 850 deg. C and 950 deg. C ({beta}21s), 730 deg. C and 830 deg. C (Timetal 205), and 950 deg. C and 1050 deg. C (Ti-Al) for 1 h, 3 h and 5 h. X-ray diffraction analyses showed new phases formed in the nitrided layer, depending on the alloy and the time and the temperature of nitriding. Microstructures were analyzed using optical microscopy. Cross-sectional microhardness profiles of cross-sectional samples after nitriding were obtained using a Knoop indenter.

  4. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy

    SciTech Connect (OSTI)

    Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Zelenovskiy, P. S. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2014-08-14T23:59:59.000Z

    The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3) nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.

  5. Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

  6. Scanning transmission x-ray microscopy of isolated multiwall carbon A. Felten,a

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Scanning transmission x-ray microscopy of isolated multiwall carbon nanotubes A. Felten,a H. Hody September 2006 Scanning transmission x-ray microscopy STXM has been used to study isolated carbon nanotubes- cations including biological and chemical sensors, nanoelec- tronic devices, tips for scanning probe

  7. Scanning photovoltage microscopy of potential modulations in carbon Marcus Freitag,a

    E-Print Network [OSTI]

    Liu, Jie

    Scanning photovoltage microscopy of potential modulations in carbon nanotubes Marcus Freitag to understand their role in ac- tive devices. Here we use scanning photovoltage microscopy to probe the built. Scanning the laser laterally produces a moving potential step that is capable of inducing a photovoltage

  8. Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method

    E-Print Network [OSTI]

    Texas at Austin. University of

    Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method G and quality factor of the tip oscillations was used to control the scanning near-field optical microscope SNOM0021-8979 00 04017-2 I. INTRODUCTION Scanning near-field optical microscopy SNOM is in- creasingly

  9. NEAR-FIELD SCANNING MICROWAVE MICROSCOPY: MEASURING LOCAL MICROWAVE PROPERTIES AND ELECTRIC FIELD DISTRIBUTIONS

    E-Print Network [OSTI]

    Anlage, Steven

    WEIF-49 NEAR-FIELD SCANNING MICROWAVE MICROSCOPY: MEASURING LOCAL MICROWAVE PROPERTIES AND ELECTRIC>;ics, University of Maryland, College Park, MD 2OY@-4lll, USA Abstract We describe the near-field scanning methods of scanning probe microscopy have been developed. Generally spea- king one can divide

  10. Near-Field Scanning Optical Microscopy of Temperature-and Thickness-Dependent Morphology and

    E-Print Network [OSTI]

    Buratto, Steve

    Near-Field Scanning Optical Microscopy of Temperature- and Thickness-Dependent Morphology 21, 2000 We use near-field scanning optical microscopy (NSOM) to probe the local optical spectroscopy with bulk techniques such as differ- ential scanning calorimetry (DSC) and X-ray diffractom- etry

  11. ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE-EDGE SCANNING MICROSCOPY

    E-Print Network [OSTI]

    Keyser, John

    ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis Science #12;ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis) ______________________________ ______________________________ Ergun Akleman Valerie Taylor (Member) (Head of Department) December 2003 Major Subject: Computer Science

  12. High spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a)

    E-Print Network [OSTI]

    a total optical power proportional to its absolute temperature to the fourth power. An object that hasHigh spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a) S. A. Thorne, M. G increasing lens technique to subsurface thermal emission microscopy of Si integrated circuits. We achieve

  13. Asbestos, polarized light microscopy, PLM, The Clean Air Act mandates a specific analytical

    E-Print Network [OSTI]

    Ahmad, Sajjad

    75 KEY WORDS Asbestos, polarized light microscopy, PLM, NESHAP ABSTRACT The Clean Air Act of the polarized light microscopy (PLM) test method that re moved the compositing of layers and effectively sought within the sample. In 1994 and again in 1995, the EPA recommended that the 1993 PLM method be used

  14. A Method for Measuring Cerebral Blood Volume of Mouse using Multiphoton Laser Scanning Microscopy

    E-Print Network [OSTI]

    Vial, Jean-Claude

    A Method for Measuring Cerebral Blood Volume of Mouse using Multiphoton Laser Scanning Microscopy P Joseph Fourier,Grenoble, France ABSTRACT Knowledge of the volume of blood per unit volume of brain tissue-photon laser scanning microscopy to obtain the local blood volume in the cortex of the anesthetized mouse. We

  15. Technical note: Characterizing individual milk fat globules with holographic video microscopy

    E-Print Network [OSTI]

    Grier, David

    Technical note: Characterizing individual milk fat globules with holographic video microscopy Fook representation of holographic video microscopy. The sample scatters light from a collimated laser beam. Both to a video camera, which records their interference as a hologram. A typical example of one fat droplet

  16. Size effects in bimetallic nickelgold nanowires: Insight from atomic force microscopy nanoindentation

    E-Print Network [OSTI]

    Sansoz, Frederic

    Size effects in bimetallic nickel­gold nanowires: Insight from atomic force microscopy the local plastic behavior and hardness properties of electrodeposited bimetallic Ni­Au NWs ranging from 60 rights reserved. Keywords: Atomic force microscopy (AFM); Nanowire; Nickel; Gold; Nanoindentation 1

  17. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    SciTech Connect (OSTI)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-04-05T23:59:59.000Z

    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  18. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si

    SciTech Connect (OSTI)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-09-30T23:59:59.000Z

    Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ?50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

  19. Graphene thickness dependent adhesion force and its correlation to surface roughness

    SciTech Connect (OSTI)

    Pourzand, Hoorad [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Tabib-Azar, Massood, E-mail: azar.m@utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2014-04-28T23:59:59.000Z

    In this paper, adhesion force of graphene layers on 300?nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesion force measurement results.

  20. Surface and ultrastructural characterization of raw and pretreated switchgrass Bryon S. Donohoe a

    E-Print Network [OSTI]

    California at Riverside, University of

    and economic data on leading pretreatments applied to both corn stover (Eggeman and Elander, 2005; KimSurface and ultrastructural characterization of raw and pretreated switchgrass Bryon S. Donohoe: Pretreatment Enzymatic hydrolysis Biomass Switchgrass Microscopy a b s t r a c t The US Department of Energy

  1. Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment

    E-Print Network [OSTI]

    Feenstra, Randall

    Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment N. Srivastavaa , Guowei-face, graphene, interface structure, low energy electron microscopy, disilane Abstract. The formation of epitaxial graphene on SiC( 1000 ) in a disilane environment is studied. The higher graphitization

  2. Fluorinated silica microchannel surfaces

    DOE Patents [OSTI]

    Kirby, Brian J.; Shepodd, Timothy Jon

    2005-03-15T23:59:59.000Z

    A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.

  3. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors

    SciTech Connect (OSTI)

    Fukumoto, Keiki, E-mail: fukumoto.k.ab@m.titech.ac.jp; Yamada, Yuki; Matsuki, Takashi; Koshihara, Shin-ya [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan); Japan Science and Technology Agency JST-CREST, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Onda, Ken [Interactive Research Center of Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Japan Science and Technology Agency JST-PRESTO, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Mukuta, Tatsuhiko; Tanaka, Sei-ichi [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-08-15T23:59:59.000Z

    We constructed an instrument for time-resolved photoemission electron microscopy (TR-PEEM) utilizing femtosecond (fs) laser pulses to visualize the dynamics of photogenerated electrons in semiconductors on ultrasmall and ultrafast scales. The spatial distribution of the excited electrons and their relaxation and/or recombination processes were imaged by the proposed TR-PEEM method with a spatial resolution about 100 nm and an ultrafast temporal resolution defined by the cross-correlation of the fs laser pulses (240 fs). A direct observation of the dynamical behavior of electrons on higher resistivity samples, such as semiconductors, by TR-PEEM has still been facing difficulties because of space and/or sample charging effects originating from the high photon flux of the ultrashort pulsed laser utilized for the photoemission process. Here, a regenerative amplified fs laser with a widely tunable repetition rate has been utilized, and with careful optimization of laser parameters, such as fluence and repetition rate, and consideration for carrier lifetimes, the electron dynamics in semiconductors were visualized. For demonstrating our newly developed TR-PEEM method, the photogenerated carrier lifetimes around a nanoscale defect on a GaAs surface were observed. The obtained lifetimes were on a sub-picosecond time scale, which is much shorter than the lifetimes of carriers observed in the non-defective surrounding regions. Our findings are consistent with the fact that structural defects induce mid-gap states in the forbidden band, and that the electrons captured in these states promptly relax into the ground state.

  4. Structure of native oligomeric Sprouty2 by electron microscopy and its property of electroconductivity

    SciTech Connect (OSTI)

    Chen, Feng-Jung [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China) [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Lee, Kuan-Wei; Lai, Chun-Chieh [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China)] [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Lee, Sue-Ping [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China)] [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China); Shen, Hsiao-Hsuian [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China)] [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Tsai, Shu-Ping [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China)] [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China); Liu, Bang-Hung [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China)] [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Wang, Ling-Mei [Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China)] [Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Liou, Gunn-Guang, E-mail: bogun@nhri.org.tw [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China) [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2013-09-27T23:59:59.000Z

    Highlights: •Spry2 self-assembles into distinct oligomeric forms. •Self-interaction of Spry2 is detected with a high kinetic affinity in vitro. •The 3D structure of oligomeric Spry2 likes as a donut shape with two lip-cover parts. •Spry2 contains silicon and iron. •Spry2 has a potential to serve as a biological material conductor. -- Abstract: Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16 nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.

  5. Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis

    SciTech Connect (OSTI)

    Wirtz, Tom; Fleming, Yves; Gerard, Mathieu [Department 'Science and Analysis of Materials' (SAM), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Gysin, Urs; Glatzel, Thilo; Meyer, Ernst [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Wegmann, Urs [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Maier, Urs [Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Odriozola, Aitziber Herrero; Uehli, Daniel [SPECS Zurich GmbH, Technoparkstr. 1, CH-8005 Zuerich (Switzerland)

    2012-06-15T23:59:59.000Z

    State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 {mu}m in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program 'SARINA,' which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

  6. Transmission electron microscopy of undermined passive films on stainless steel

    SciTech Connect (OSTI)

    Isaacs, H.S.; Zhu, Y.; Sabatini, R.L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science; Ryan, M.P. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    1999-06-01T23:59:59.000Z

    A study has been made of the passive film remaining over pits on stainless steel using a high resolution transmission electron microscope. Type 305 stainless steel was passivated in a borate buffer solution and pitted in ferric chloride. Passive films formed at 0.2 V relative to a saturated calomel electrode were found to be amorphous. Films formed at higher potentials showed only broad diffraction rings. The passive film was found to cover a remnant lacy structure formed over pits passivated at 0.8 V. The metallic strands of the lace were roughly hemitubular in shape with the curved surface facing the center of the pit.

  7. Dynamic scanning probe microscopy of adsorbed molecules on graphite

    E-Print Network [OSTI]

    N. Berdunov; A. J. Pollard; P. H. Beton

    2009-01-08T23:59:59.000Z

    We have used a combined dynamic scanning tunneling and atomic force microscope to study the organisation of weakly bound adsorbed molecules on a graphite substrate. Specifically we have acquired images of islands of the perylene derivative molecules. These weakly bound molecules may be imaged in dynamic STM, in which the probe is oscillated above the surface. We show that molecular resolution may be readily attained and that a similar mode of imaging may be realised using conventional STM arrangement. We also show, using tunnelling spectroscopy, the presence of an energy gap for the adsorbed molecules confirming a weak molecule-substrate interaction.

  8. Solvent Immersion Imprint Lithography. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally...

  9. Breaking the Diffraction Barrier in Fluorescence Microscopy by Optical Shelving Stefan Bretschneider, Christian Eggeling, and Stefan W. Hell*

    E-Print Network [OSTI]

    Weeks, Eric R.

    Breaking the Diffraction Barrier in Fluorescence Microscopy by Optical Shelving Stefan the breaking of the diffraction resolution barrier in far-field fluorescence microscopy by transiently shelving barrier by shelving the fluorophore in a metastable dark state, thereby effectively depleting

  10. Alpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force microscopy

    E-Print Network [OSTI]

    -differential-interference-contrast microscopy; Scanning force microscopy; Natural radiation damage 1. Introduction Alpha-recoil tracks (ARTsAlpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force

  11. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    SciTech Connect (OSTI)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01T23:59:59.000Z

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

  12. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01T23:59:59.000Z

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  13. Atom probe field ion microscopy and related topics: A bibliography 1990

    SciTech Connect (OSTI)

    Russell, K.F.; Miller, M.K.

    1991-12-01T23:59:59.000Z

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

  14. Characterization of Sidewall and Planar Surfaces of Electroformed LIGA Parts

    SciTech Connect (OSTI)

    PRASAD,SOMURI V.; HALL,AARON C.; DUGGER,MICHAEL T.

    2000-10-01T23:59:59.000Z

    The nature of surfaces and the way they interact with each other during sliding contact can have a direct bearing on the performance of a microelectromechanical (MEMS) device. Therefore, a study was undertaken to characterize the surfaces of LIGA fabricated Ni and Cu components. Sidewall and planar surfaces were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface roughness was quantified using the AFM. Post-processing (e.g. lapping, removal of polymer film) can profoundly influence the morphology of LIGA components. Edge rounding and smearing of ductile materials during lapping can result in undesirable sidewall morphologies. By judicious selection of AFM scan sizes, the native roughness ({approximately}10 nm RMS) can be distinguished from that arising due to post processing, e.g. scratches, debris, polymer films. While certain processing effects on morphology such as those due to lapping or release etch can be controlled, the true side wall morphology appears to be governed by the morphology of the polymer mold or by the electroforming process itself, and may be much less amenable to modification.

  15. Fresnel versus Kummer surfaces

    E-Print Network [OSTI]

    Peinke, Joachim

    Fresnel versus Kummer surfaces Alberto Favaro & Friedrich W. Hehl Outline Linear media Linear media-you. Fresnel versus Kummer surfaces: geometrical optics in dispersionless linear (meta)materials and vacuum, 19­23 November 2012 Email: favaro@thp.uni-koeln.de #12;Fresnel versus Kummer surfaces Alberto Favaro

  16. SURFACE TENSION DRIVEN CONVECTION

    E-Print Network [OSTI]

    Wang, Shouhong

    SURFACE TENSION DRIVEN CONVECTION DIJKSTRA, SENGUL, WANG INTRODUCTION LINEAR THEORY MAIN THEOREMS CONCLUDING REMARKS DYNAMIC TRANSITIONS OF SURFACE TENSION DRIVEN CONVECTION H.Dijkstra T. Sengul S. Wang #12;SURFACE TENSION DRIVEN CONVECTION DIJKSTRA, SENGUL, WANG INTRODUCTION LINEAR THEORY MAIN THEOREMS

  17. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    SciTech Connect (OSTI)

    Zech, E. S.; Chang, A. S.; Martin, A. J.; Canniff, J. C.; Millunchick, J. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Lin, Y. H. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)

    2013-08-19T23:59:59.000Z

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  18. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    SciTech Connect (OSTI)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-04-20T23:59:59.000Z

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  19. Observation of dynamic water microadsorption on Au surface

    SciTech Connect (OSTI)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15T23:59:59.000Z

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12??m{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  20. C implantation and surface degradation of InGaP

    SciTech Connect (OSTI)

    Vartuli, C.B.; Abernathy, C.R.; Pearton, S.J. [Univ. of Florida, Gainesville, FL (United States); Zolper, J.C.; Howard, A.J. [Sandia National Lab., Albuquerque, NM (United States)

    1996-10-01T23:59:59.000Z

    C ions were implanted alone, or with either N, Al, Ar, or P co-implants, into In{sub 0.51}Ga{sub 0.49}P at does between 5x10{sup 12}-5x10{sup 14} cm{sup -2} and the electrical activation was measured for annealing temperatures between 650-1000{degree}C. Capless proximity annealing preserves the surface to 900{degree}C, as measured by atomic force microscopy and scanning electron microscopy. The acceptor activation percentages are low (20%) in all cases. This is consistent with a model in which C has a strong tendency for self-compensation in InGaP. 28 refs., 7 figs.

  1. Surface cleanliness measurement procedure

    DOE Patents [OSTI]

    Schroder, Mark Stewart (Hendersonville, NC); Woodmansee, Donald Ernest (Simpsonville, SC); Beadie, Douglas Frank (Greenville, SC)

    2002-01-01T23:59:59.000Z

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  2. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    SciTech Connect (OSTI)

    Zhang, Yun

    2008-12-18T23:59:59.000Z

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with the firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification mainly used a fluorescence method; CL detection is limited because of the difficulty to introduce enough D-luciferin molecules. Since dehydration could easily cause proper size holes in bacterial cell membranes and facilitate D-luciferin diffusion, we used this method and recorded CL from individual cells each hour after induction. The CL light intensity from each individual cell was integrated and gene expression levels of two strain types were compared. Based on our calculation, the overall sensitivity of our system is already approaching the single enzyme level. The median enzyme number inside a single bacterium from the higher expression strain after 2 hours induction was quantified to be about 550 molecules. Finally we imaged ATP release from astrocyte cells. Upon mechanical stimulation, astrocyte cells respond by increasing intracellular Ca{sup 2+} level and releasing ATP to extracellular spaces as signaling molecules. The ATP release imaged by direct CL imaging using free firefly luciferase and D-luciferin outside cells reflects the transient release as well as rapid ATP diffusion. Therefore ATP release detection at the cell surface is critical to study the ATP release mechanism and signaling propagation pathway. We realized this cell surface localized ATP release imaging detection by immobilizing firefly luciferase to streptavidin beads that attached to the cell surface via streptavidin-biotin interactions. Both intracellular Ca{sup 2+} propagation wave and extracellular ATP propagation wave at the cell surface were recorded with fluorescence and CL respectively. The results imply that at close distances from the stimulation center (<120 {micro}m) extracellular ATP pathway is faster, while at long distances (>120 {micro}m) intracellular Ca{sup 2+} signaling through gap junctions seems more effective.

  3. Calibration of measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy using a contact detection method

    SciTech Connect (OSTI)

    Liu Zhen; Jeong, Younkoo; Menq, Chia-Hsiang [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2013-02-15T23:59:59.000Z

    An accurate experimental method is proposed for on-spot calibration of the measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy. One of the key techniques devised for this method is a reliable contact detection mechanism that detects the tip-surface contact instantly. At the contact instant, the oscillation amplitude of the tip deflection, converted to that of the deflection signal in laser reading through the measurement sensitivity, exactly equals to the distance between the sample surface and the cantilever base position. Therefore, the proposed method utilizes the recorded oscillation amplitude of the deflection signal and the base position of the cantilever at the contact instant for the measurement sensitivity calibration. Experimental apparatus along with various signal processing and control modules was realized to enable automatic and rapid acquisition of multiple sets of data, with which the calibration of a single dynamic mode could be completed in less than 1 s to suppress the effect of thermal drift and measurement noise. Calibration of the measurement sensitivities of the first and second dynamic modes of three micro-cantilevers having distinct geometries was successfully demonstrated. The dependence of the measurement sensitivity on laser spot location was also experimentally investigated. Finally, an experiment was performed to validate the calibrated measurement sensitivity of the second dynamic mode of a micro-cantilever.

  4. Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses

    SciTech Connect (OSTI)

    Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

    1993-12-31T23:59:59.000Z

    Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m{sup {minus}1} for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction.

  5. Investigations of laser-induced damages in fused silica optics using x-ray laser interferometric microscopy

    SciTech Connect (OSTI)

    Margarone, D.; Rus, B.; Kozlova, M.; Nejdl, J.; Mocek, T.; Homer, P.; Polan, J.; Stupka, M. [Department of X-ray Lasers/PALS Centre, Institute of Physics of the ASCR, 18221 Prague 8 (Czech Republic); Cassou, K.; Kazamias, S.; Lagron, J. C.; Ros, D. [LIXAM, Universite Paris-Sud, 91405 Orsay (France); Danson, C.; Hawkes, S. [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom)

    2010-05-15T23:59:59.000Z

    A novel x-ray laser (XRL) application, aimed at understanding the microscopic effects involved in formation of laser-induced damage in optical materials exposed to high-power sub-ns laser pulses, is presented. Standard fused silica substrates with permanent damage threshold below 20 J/cm{sup 2}, when irradiated by 438 nm laser pulses, were probed in situ by a neonlike zinc XRL at 21.2 nm. The probing beamline employed a double Lloyd's mirror x-ray interferometer, used in conjunction with an imaging mirror to achieve magnification of {approx}8. In conjunction with an array of in situ optical diagnostics, the main question addressed is whether the damage on the rear surface of the beamsplitter is transient or permanent. The second issue, examined by both the x-ray interferometric microscopy and the optical diagnostics, is whether a local rear-surface modification is associated with nonlinear effects such as self-focusing or filamentation of the damaging laser beam in the bulk.

  6. Improving the delivery and efficacy of molecular medicine via extracellular matrix modulation : insights from intravital microscopy

    E-Print Network [OSTI]

    McKee, Trevor David

    2005-01-01T23:59:59.000Z

    The extracellular matrix of tumors is a major barrier to the delivery of molecular medicine. We used fluorescence recovery after photobleaching combined with intravital microscopy to quantitate the transport properties of ...

  7. CellVisualizer : exploring hierarchical, multi-dimensional data with applications to high-throughput microscopy

    E-Print Network [OSTI]

    Kang, InHan

    2006-01-01T23:59:59.000Z

    In this thesis, we present a system for visualizing hierarchical, multi-dimensional, memory-intensive datasets. Specifically, we designed an interactive system to visualize data collected by high-throughput microscopy and ...

  8. Supervised Machine Learning Algorithms for Early Detection of Oral Epithelial Cancer Using Fluorescence Lifetime Imaging Microscopy

    E-Print Network [OSTI]

    Lee, Joohyung

    2014-08-06T23:59:59.000Z

    In this study, the clinical potential of the endogenous multispectral Fluorescence lifetime imaging microscopy (FLIM) was investigated to objectively detect oral cancer. To this end, in vivo FLIM imaging was performed on a hamster cheek pouch model...

  9. FLUID DISTRIBUTION IN PROGRESSIVE PULMONARY EDEMA: A LOW TEMPERATURE SCANNING ELECTRON MICROSCOPY STUDY

    E-Print Network [OSTI]

    Hook, Greogry R.

    2013-01-01T23:59:59.000Z

    extchanging function of the lung. Circulation 46: 390-408,electron microscopy of the lungs. Annals. Med. Sect. Pol.Bioengineering Aspects of the Lung, edited by J. B. West,

  10. Experimenting Liver Fibrosis Diagnostic by Two Photon Excitation Microscopy and Bag-of-Features Image Classification

    E-Print Network [OSTI]

    Stanciu, Stefan G.

    The accurate staging of liver fibrosis is of paramount importance to determine the state of disease progression, therapy responses, and to optimize disease treatment strategies. Non-linear optical microscopy techniques ...

  11. The Application of Fluorescence Lifetime Imaging Microscopy to Quantitatively Map Mixing and Temperature in Microfluidic Systems 

    E-Print Network [OSTI]

    Graham, Emmelyn M

    2008-01-01T23:59:59.000Z

    The technique of Fluorescence Lifetime Imaging Microscopy (FLIM) has been employed to quantitatively and spatially map the fluid composition and temperature within microfluidic systems. A molecular probe with a ...

  12. Thermal and Optical Characterization of Photonic Integrated Circuits by Thermoreflectance Microscopy

    E-Print Network [OSTI]

    Hudgings, Janice A.

    We report high resolution, non-invasive, thermal and optical characterization of semiconductor optical amplifiers (SOAs) and SOA-based photonic integrated circuits (PICs) using thermoreflectance microscopy. Chip-scale ...

  13. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy

    E-Print Network [OSTI]

    Deerinck, Thomas J

    Electron microscopy (EM) is the standard method for imaging cellular structures with nanometer resolution, but existing genetic tags are inactive in most cellular compartments[superscript 1] or require light and can be ...

  14. Analytical Electron Microscopy examination of uranium contamination at the DOE Fernald operation site

    SciTech Connect (OSTI)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1993-02-01T23:59:59.000Z

    Analytical Electron Microscopy (AEM) has been used to identify uranium-bearing phases present in contaminated soils from the DOE Fernald operation site. A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and AEM was used in isolating and characterizing uranium-rich regions of the contaminated soils. Soil samples were prepared for transmission electron microscopy (TEM) by ultramicrotomy using an embedding resin previously employed for aquatic colloids and biological samples. This preparation method allowed direct comparison between SEM and TEM images. At the macroscopic level much of the uranium appears to be associated with clays in the soils; however, electron beam analysis revealed that the uranium is present as discrete phases, including iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Only low levels of uranium were actually within the clay minerals. The distribution of uranium phases was inhomogeneous at the submicron level.

  15. Industrial Affiliates Day 2006, April 21, 2006 ULTRAFAST NONLINEAR OPTICAL MICROSCOPY

    E-Print Network [OSTI]

    Van Stryland, Eric

    of studies, including photochemical reactions, molecular dynamics, micropharmacology and optical memory. History of Two-Photon Molecular Excitation 1905 First Conception: A. Einstein: Creation and Conversion for data storage. Combined with fluorescence microscopy, multiphoton excitation (MPE) provides 3D

  16. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20T23:59:59.000Z

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore »freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  17. Super-resolution wide-field optical microscopy by use of Evanescent standing waves

    E-Print Network [OSTI]

    Chung, Euiheon

    2007-01-01T23:59:59.000Z

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Optical fluorescence microscopy is an essential tool for investigations in many disciplines ...

  18. Development of high-speed two-photon microscopy for biological and medical applications

    E-Print Network [OSTI]

    Kim, Ki Hean

    2005-01-01T23:59:59.000Z

    Two-photon microscopy (TPM) is one of the most powerful microscopic technologies for in-vivo 3D tissue imaging up to a few hundred micrometers. It has been finding important applications in neuronal imaging, tumor physiology ...

  19. Demonstration of Ballistic Electron Emission Microscopy / Spectroscopy on the Au/Si (001) system

    E-Print Network [OSTI]

    Drummond, Mary Alyssa

    1997-01-01T23:59:59.000Z

    The Ballistic Electron Emission Microscopy (BEEM) capabilities of a Scanning Tunneling Microscope (STM) have been verified. BEEM is used to analyze the characteristics of buried energy barriers and was developed as an extension of scanning tunneling...

  20. Design and implementation of a fiber optic doppler optical coherence microscopy system for cochlear imaging

    E-Print Network [OSTI]

    Williams, Logan P

    2014-01-01T23:59:59.000Z

    In this thesis, the design and implementation of a fiber optic Doppler optical coherence microscopy (FO-DOCM) system for cochlear imaging applications is presented. The use of a fiber optic design significantly reduces ...

  1. MARKOV CHAIN MONTE CARLO FOR AUTOMATED TRACKING OF GENEALOGY IN MICROSCOPY VIDEOS

    E-Print Network [OSTI]

    MARKOV CHAIN MONTE CARLO FOR AUTOMATED TRACKING OF GENEALOGY IN MICROSCOPY VIDEOS KATHLEEN CHAMPION of the nuclei in the images and their genealogies. Evan Tice '09 has already developed some code that aims

  2. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna [Stony Brook Univ., Stony Brook, NY (United States); Huang, Xiaojing [Stony Brook Univ., Stony Brook, NY (United States); Steinbrener, Jan [Stony Brook Univ., Stony Brook, NY (United States); Shapiro, David [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Kirz, Janos [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Marchesini, Stephano [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Neiman, Aaron M. [Northwestern Univ., Evanston, IL (United States); Turner, Joshua J. [Stony Brook Univ., Stony Brook, NY (United States); Jacobsen, Chris [Stony Brook Univ., Stony Brook, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source

    2010-04-20T23:59:59.000Z

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  3. Reconstruction of 3D Neuronal Structures from Densely Packed Electron Microscopy Data Stacks 

    E-Print Network [OSTI]

    Yang, Huei-Fang

    2012-10-19T23:59:59.000Z

    The goal of fully decoding how the brain works requires a detailed wiring diagram of the brain network that reveals the complete connectivity matrix. Recent advances in high-throughput 3D electron microscopy (EM) image ...

  4. Method of detecting cancer in a single cell using mitochondrial correlation microscopy

    DOE Patents [OSTI]

    Gourley, Paul L

    2013-06-25T23:59:59.000Z

    A method for distinguishing a normal cell from an abnormal cell, such as, for example a cancer cell or diseased cell, of the same tissue type using mitochondrial correlation microscopy.

  5. Method for detecting cancer in a single cell using mitochondrial correlation microscopy

    DOE Patents [OSTI]

    Gourley, Paul L. (Albuquerque, NM)

    2012-03-06T23:59:59.000Z

    A method for distinguishing a normal cell from an abnormal cell, such as, for example a cancer cell or diseased cell, of the same tissue type using mitochondrial correlation microscopy.

  6. Shack-Hartmann wavefront-sensor-based adaptive optics system for microscopy

    E-Print Network [OSTI]

    So, Peter T. C.

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the ...

  7. Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience

    E-Print Network [OSTI]

    Rupprecht, Peter; Groessl, Florian; Haubensak, Wulf E; Vaziri, Alipasha

    2015-01-01T23:59:59.000Z

    A number of questions in systems biology such as understanding how dynamics of neuronal networks are related to brain function require the ability to capture the functional dynamics of large cellular populations at high speed. Recently, this has driven the development of a number of parallel and high speed imaging techniques such as light-sculpting microscopy, which has been used to capture neuronal dynamics at the whole brain and single cell level in small model organism. However, the broader applicability of light-sculpting microscopy is limited by the size of volumes for which high speed imaging can be obtained and scattering in brain tissue. Here, we present strategies for optimizing the present tradeoffs in light-sculpting microscopy. Various scanning modalities in light-sculpting microscopy are theoretically and experimentally evaluated, and strategies to maximize the obtainable volume speeds, and depth penetration in brain tissue using different laser systems are provided. Design-choices, important par...

  8. Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Fisher, Frank

    Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

  9. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    SciTech Connect (OSTI)

    Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Mc Endoo, S.; Cleveland, J.P.; Jarvis, S.P. [Centre for Research on Adaptive Nanodevices and Nanostructures (CRANN), University of Dublin, Trinity College, Dublin 2 (Ireland); Asylum Research, 6310 Hollister Ave, Santa Barbara, California 93117 (United States); Department of Mathematics and Statistics, University of Melbourne Victoria, 3010 (Australia); Centre for Research on Adaptive Nanodevices and Nanostructures (CRANN), University of Dublin, Trinity College, Dublin 2 (Ireland); Asylum Research, 6310 Hollister Ave, Santa Barbara, California 93117 (United States); Centre for Research on Adaptive Nanodevices and Nanostructures (CRANN), University of Dublin, Trinity College, Dublin 2 (Ireland)

    2006-01-15T23:59:59.000Z

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  10. Scanning probe microscopy of nucleic acids and thin organic films

    E-Print Network [OSTI]

    Marat Olegovich Gallyamov

    2011-04-24T23:59:59.000Z

    We developed the models and algorithms to describe two main artefacts of AFM: (i) broadening effect and (ii) decreased heights of profiles for individual objects adsorbed on a hard substrate. It was shown how to measure elastic properties of a single adsorbed microobject. From the viewpoint of contact deformation theory we analysed mechanism of AFM visualisation of an atomic (molecular) structure of a flat surface. We tested technique of immobilisation on a substrate for free single-stranded RNA molecules in an extended state. Using AFM we visualised stages of processes of RNA release from protein coat of tobacco mosaic virus particles. The asymmetry of this process regarding two ends of a macromolecule was confirmed. The dynamics of compaction for DNA T4 molecules was traced using AFM in real time regime. The partially compacted macromolecules were clearly resolved. We detected that the partially compacted structures consisted of toroidal parts formed by different macromolecular strands. The real geometry of the compacted structures was reconstructed on the basis of systematic AFM measurements. That allowed us to calculate the amount of molecules combining each condensed DNA particle. We demonstrated clear benefits of horizontal deposition method for formation of LB films. Using AFM we achieved molecular resolution for some thin film coating and detected lattice parameters with the precision determined by the errors within a few percent. We demonstrated that the structure of the film is determined by the concurrence of several factors: by the closest packing principle for hydrocarbon tails, by the values of surface areas of polar heads at water subphase as well as by the substrate influence.

  11. Development of the Ultrashort Pulse Nonlinear Optical Microscopy Spectral Imaging System

    E-Print Network [OSTI]

    Lee, Anthony Chien-der

    2012-10-19T23:59:59.000Z

    DEVELOPMENT OF THE ULTRASHORT PULSE NONLINEAR OPTICAL MICROSCOPY SPECTRAL IMAGING SYSTEM A Dissertation by ANTHONY CHIEN-DER LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... Anthony Chien-der Lee DEVELOPMENT OF THE ULTRASHORT PULSE NONLINEAR OPTICAL MICROSCOPY SPECTRAL IMAGING SYSTEM A Dissertation by ANTHONY CHIEN-DER LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial...

  12. Acquisition and reconstruction of brain tissue using knife-edge scanning microscopy

    E-Print Network [OSTI]

    Mayerich, David Matthew

    2004-09-30T23:59:59.000Z

    ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis by DAVID MATTHEW MAYERICH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2003 Major Subject: Computer Science ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis by DAVID MATTHEW MAYERICH Submitted to Texas...

  13. Isolation methods and electron microscopy of the Internal Cork Virus of sweet potatoes

    E-Print Network [OSTI]

    Pickens, Edgar Eugene

    1967-01-01T23:59:59.000Z

    ISOLATION METHODS AND ELECTRON MICROSCOPY OF THE INTERNAL CORK VIRUS OF SWEET POTATOES A Thesis By Edgar Eugene Pickens Submitted to the Graduate College of the Texas A8cM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1967 Major Subject Biochemistry ISOLATION METHODS AND ELECTRON MICROSCOPY OF THE INTERNAL CORK VIRUS OF SWEET POTATOES A Thesis Edgar Eugene Pickens Approved as to style and content by: (Cnairman of Committee) (Head wf...

  14. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect (OSTI)

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01T23:59:59.000Z

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  15. An in-vivo study of electrical charge distribution on the bacterial cell wall by Atomic Force Microscopy in vibrating force mode

    E-Print Network [OSTI]

    Christian Marliere; Samia Dhahri

    2015-04-13T23:59:59.000Z

    We report an in-vivo electromechanical Atomic Force Microscopy (AFM) study of charge distribution on the cell wall of Gram plus Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, in physiological conditions. The method presented in this paper relies on a detailed study of AFM approach-retract curves giving the variation of the interaction force versus distance between tip and sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, as bacterial surface charge, was proved to be feasible at a spatial resolution better than few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (higher than 10nm) the repulsive contact zone. The variations of surface stress come from modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both tip and sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid-liquid interface particularly in high-molarity electrolytes when compared to technics focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in-situ biological electrical surface processes involved in numerous practical and fundamental problems as bacterial adhesion, biofilm formation, microbial fuel cell, etc.

  16. AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES

    SciTech Connect (OSTI)

    Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

    2008-06-10T23:59:59.000Z

    Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

  17. Surface nonlinear optics

    SciTech Connect (OSTI)

    Shen, Y.R.; Chen, C.K.; de Castro, A.R.B.

    1980-01-01T23:59:59.000Z

    Surface electromagnetic waves are waves propagating along the interface of two media. Their existence was predicted by Sommerfield in 1909. In recent years, interesting applications have been found in the study of overlayers and molecular adsorption on surfaces, in probing of phase transitions, and in measurements of refractive indices. In the laboratory, the nonlinear interaction of surface electromagnetic waves were studied. The preliminary results of this recent venture in this area are presented.

  18. Surface modification to waveguides

    DOE Patents [OSTI]

    Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

    1982-06-16T23:59:59.000Z

    A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  19. Running surface couplings

    E-Print Network [OSTI]

    S. D. Odintsov; A. Wipf

    1995-06-19T23:59:59.000Z

    We discuss the renormalization group improved effective action and running surface couplings in curved spacetime with boundary. Using scalar self-interacting theory as an example, we study the influence of the boundary effects to effective equations of motion in spherical cap and the relevance of surface running couplings to quantum cosmology and symmetry breaking phenomenon. Running surface couplings in the asymptotically free SU(2) gauge theory are found.

  20. Terahertz surface plasmon polaritons on a semiconductor surface structured with

    E-Print Network [OSTI]

    Murphy, Thomas E.

    Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-doped silicon surface, using anisotropic wet-etching of crystalline silicon, thereby forming a plasmonic surfaces. © 2013 Optical Society of America OCIS codes: (240.6680) Surface plasmons; (240.6690) Surface

  1. Reconstructing Surfaces and Functions on Surfaces from

    E-Print Network [OSTI]

    Texas at Austin, University of

    part is a common problem in Reverse Engineering. The part might be scannedwith a device like the laser-engineeringprocesses are nowadays commonplace in the manufacturing industry. For example, a company that manufactures mechanical object and measure the location of points on its surface. Mechanical probes, used in the manufacturing

  2. Application of Surface Analysis Methods to Nanomaterials: Summaryof ISO/TC 201 Technical Report: ISO 14187:2011 -Surface Chemical Analysis- Characterization of Nanomaterials

    SciTech Connect (OSTI)

    Baer, Donald R.

    2012-09-01T23:59:59.000Z

    ISO Technical Report (TR) 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials using surface-analysis tools. In addition, both general issues and challenges associated with characterising nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometres, the distinctions among 'bulk', 'surface' and 'particle' analysis blur. This Technical Report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that are in the domain of ISO/TC 201 including Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed.

  3. Concrete Pavement Surface Characteristics

    E-Print Network [OSTI]

    , Broom, Belt, Carpet) Shot Peened Exposed Aggregate Porous (Pervious) Concrete Milled HMA and SurfaceImproving Concrete Pavement Surface Characteristics Pooled Fund TPF-5(139) National Concrete do with this knowledge? #12;Better Design and Construction Practices for Texturing Concrete Pavement

  4. The use of Surface Enhanced Raman Spectroscopy (SERS) for biomedical applications

    E-Print Network [OSTI]

    Chowdhury, Mustafa Habib

    2007-04-25T23:59:59.000Z

    to poor data reproducibility. The different methods examined to create robust SERS substrates include the creation of thermally evaporated silver island films on microscope glass slides, using the technique of Nanosphere Lithography (NSL) to create...

  5. Characterization of multilayer nitride coatings by electron microscopy and modulus mapping

    SciTech Connect (OSTI)

    Pemmasani, Sai Pramod [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Rajulapati, Koteswararao V. [School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Ramakrishna, M.; Valleti, Krishna [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Gundakaram, Ravi C., E-mail: ravi.gundakaram@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Joshi, Shrikant V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India)

    2013-07-15T23:59:59.000Z

    This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: • Microstructure of a triple layer nitride coating studied at multiple length scales. • Phases identified by EDS, EBSD and SAED (TEM). • Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. • Modulus mapping identified moduli variation even in a nani-multilayer architecture.

  6. Structural contribution to the roughness of supersmooth crystal surface

    SciTech Connect (OSTI)

    Butashin, A. V.; Muslimov, A. E., E-mail: amuslimov@mail.ru; Kanevsky, V. M.; Deryabin, A. N.; Pavlov, V. A.; Asadchikov, V. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-05-15T23:59:59.000Z

    Technological advances in processing crystals (Si, sapphire {alpha}-Al{sub 2}O{sub 3}, SiC, GaN, LiNbO{sub 3}, SrTiO{sub 3}, etc.) of substrate materials and X-ray optics elements make it possible to obtain supersmooth surfaces with a periodicity characteristic of the crystal structure. These periodic structures are formed by atomically smooth terraces and steps of nano- and subnanometer sizes, respectively. A model surface with such nanostructures is proposed, and the relations between its roughness parameters and the height of atomic steps are determined. The roughness parameters calculated from these relations almost coincide with the experimental atomic force microscopy (AFM) data obtained from 1 Multiplication-Sign 1 and 10 Multiplication-Sign 10 {mu}m areas on the surface of sapphire plates with steps. The minimum roughness parameters for vicinal crystal surfaces, which are due to the structural contribution, are calculated based on the approach proposed. A comparative analysis of the relief and roughness parameters of sapphire plate surfaces with different degrees of polishing is performed. A size effect is established: the relief height distribution changes from stochastic to regular with a decrease in the surface roughness.

  7. Surface Science Letters Deposition of metal clusters on single-layer graphene/Ru(0001): Factors that govern

    E-Print Network [OSTI]

    Goodman, Wayne

    Surface Science Letters Deposition of metal clusters on single-layer graphene/Ru(0001): Factors Keywords: Graphene Ru(0001) STM Metal nanoclusters Au film Fabrication of nanoclusters on a substrate of metal on graphene have been studied by scanning tunneling microscopy (STM) based on different behaviors

  8. Sink property of metallic glass free surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16T23:59:59.000Z

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more »For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less

  9. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Rodriguez, Brian J [ORNL; Jesse, Stephen [ORNL; Karapetian, Edgar [ORNL; Mirman, B [Suffolk University, Boston; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine

    2007-01-01T23:59:59.000Z

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  10. The application of Graphene as a sample support in Transmission Electron Microscopy

    E-Print Network [OSTI]

    Pantelic, R S; Kaiser, U; Stahlberg, H

    2012-01-01T23:59:59.000Z

    Transmission electron microscopy has witnessed rampant development and surging point resolution over the past few years. The improved imaging performance of modern electron microscopes shifts the bottleneck for image contrast and resolution to sample preparation. Hence, it is increasingly being realized that the full potential of electron microscopy will only be realized with the optimization of current sample preparation techniques. Perhaps the most recognized issues are background signal and noise contributed by sample supports, sample charging and instability. Graphene provides supports of single atom thickness, extreme physical stability, periodic structure, and ballistic electrical conductivity. As an increasing number of applications adapting graphene to their benefit emerge, we discuss the unique capabilities afforded by the use of graphene as a sample support for electron microscopy.

  11. Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces

    SciTech Connect (OSTI)

    Uçar, A.; Çopuro?lu, M.; Suzer, S., E-mail: suzer@fen.bilkent.edu.tr [Department of Chemistry, Bilkent University, 06800 Ankara (Turkey); Baykara, M. Z. [Department of Mechanical Engineering, Bilkent University, 06800 Ankara (Turkey); Ar?kan, O. [Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey)

    2014-10-28T23:59:59.000Z

    We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (?0.5°) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45° before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO{sub 2} surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100° were obtained.

  12. Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study

    E-Print Network [OSTI]

    Fan, Shanhui

    optical microscopy NSOM imaging to simultaneously obtain both the eigenfield distribution and the band

  13. Surface alloying of immiscible metals induced by surface state shift

    E-Print Network [OSTI]

    Che, Jingguang

    , and topography; Silver; Gold; Copper; Tungsten; Molybdenum 1. Introduction Surface alloying has been a subjectSurface alloying of immiscible metals induced by surface state shift X.K. Shu, P. Jiang, J.G. Che) surface to form the substitutional surface alloys, despite the fact that they do not like to form alloy

  14. Enhanced surface hydrophobicity by coupling of surface polarity and topography

    E-Print Network [OSTI]

    Enhanced surface hydrophobicity by coupling of surface polarity and topography Nicolas organization and contact angle. We show that when the topography and polarity of the surface act in concert- ciated that the topography of a surface is important in deter- mining the degree of surface

  15. Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser

    SciTech Connect (OSTI)

    Phillips, Mark C.; Bernacki, Bruce E.

    2012-12-26T23:59:59.000Z

    Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

  16. Electron microscopy of phase and structural transformations in soft magnetic nanocrystalline Fe-Zr-N films

    SciTech Connect (OSTI)

    Zhigalina, O. M., E-mail: zhigal@ns.crys.ras.ru; Khmelenin, D. N. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Sheftel', E. N.; Usmanova, G. Sh. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation)] [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Vasil'ev, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Carlsson, A. [FEI Company (Netherlands)] [FEI Company (Netherlands)

    2013-03-15T23:59:59.000Z

    The effect of deposition conditions (film thickness) on the structure of soft magnetic Fe{sub 80-78}Zr{sub 10}N{sub 10-12} films formed by reactive magnetron deposition on a heat-resistant glass substrate has been investigated by analytical transmission electron microscopy, high-resolution electron microscopy, and diffraction analysis. The processes of evolution of the phase and structural state of films and the film-substrate interface upon annealing in the temperature range of 200-650 Degree-Sign C have been analyzed taking into account the thermodynamic, kinetic, and structural factors and the specific features of the nanocrystalline state.

  17. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    SciTech Connect (OSTI)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08T23:59:59.000Z

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  18. Entropy and surfaceness

    E-Print Network [OSTI]

    Casper, James Kyle

    1997-01-01T23:59:59.000Z

    The layer of the Earth's atmosphere which contains clouds and weather systems is a thin thermoregulatory surface. It maintains an exact energy budget between the Earth and the Sun. Recent work in theoretical physics is ...

  19. A surface ionization source 

    E-Print Network [OSTI]

    Buzatu, Daniel J.

    1995-01-01T23:59:59.000Z

    The main part of the work described herein is the development and testing of a surface ionization source for use on a collinear fast beam laser spectroscopy apparatus. A description of the previously existing fast beam apparatus is given...

  20. SURFACE NONLINEAR OPTICS

    E-Print Network [OSTI]

    Shen, Y.R.

    2010-01-01T23:59:59.000Z

    B. de Castro, and Y. R. Shen, Optics Lett. i, 393 See, for3, 1980 SURFACE NONLINEAR OPTICS Y.R. Shen, C.K. Chen, andde Janiero SURFRACE NONLINEAR OPTICS Y. R. Shen, C. K. Chen,

  1. Asteroid Surface Geophysics

    E-Print Network [OSTI]

    Murdoch, Naomi; Schwartz, Stephen R; Miyamoto, Hideaki

    2015-01-01T23:59:59.000Z

    The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique micro-gravity environment that these bodies posses, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesised through detailed spacecraft observations and have been further studied using theoretical, numerical and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging towards a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that...

  2. Surface wave interferometry 

    E-Print Network [OSTI]

    Halliday, David Fraser

    2009-01-01T23:59:59.000Z

    This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...

  3. A surface ionization source

    E-Print Network [OSTI]

    Buzatu, Daniel J.

    1995-01-01T23:59:59.000Z

    The main part of the work described herein is the development and testing of a surface ionization source for use on a collinear fast beam laser spectroscopy apparatus. A description of the previously existing fast beam apparatus is given...

  4. Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy

    SciTech Connect (OSTI)

    Shanaghi, Ali, E-mail: alishanaghi@gmail.com [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of)] [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of); Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir [Surface Engineering Laboratory, Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of)] [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2012-09-15T23:59:59.000Z

    Highlights: ? The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ? Dominant mechanism of growth structure at 490 °C is island-layer type. ? TiC{sub x} nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ? Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ? This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.

  5. Frequency-modulated atomic force microscopy operation by imaging at the frequency shift minimum: The dip-df mode

    SciTech Connect (OSTI)

    Rode, Sebastian; Schreiber, Martin; Kühnle, Angelika; Rahe, Philipp, E-mail: rahe@uni-mainz.de [Institut für Physikalische Chemie, Fachbereich Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55099 Mainz (Germany)] [Institut für Physikalische Chemie, Fachbereich Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55099 Mainz (Germany)

    2014-04-15T23:59:59.000Z

    In frequency modulated non-contact atomic force microscopy, the change of the cantilever frequency (?f) is used as the input signal for the topography feedback loop. Around the ?f(z) minimum, however, stable feedback operation is challenging using a standard proportional-integral-derivative (PID) feedback design due to the change of sign in the slope. When operated under liquid conditions, it is furthermore difficult to address the attractive interaction regime due to its often moderate peakedness. Additionally, the ?f signal level changes severely with time in this environment due to drift of the cantilever frequency f{sub 0} and, thus, requires constant adjustment. Here, we present an approach overcoming these obstacles by using the derivative of ?f with respect to z as the input signal for the topography feedback loop. Rather than regulating the absolute value to a preset setpoint, the slope of the ?f with respect to z is regulated to zero. This new measurement mode not only makes the minimum of the ?f(z) curve directly accessible, but it also benefits from greatly increased operation stability due to its immunity against f{sub 0} drift. We present isosurfaces of the ?f minimum acquired on the calcite CaCO{sub 3}(101{sup ¯}4) surface in liquid environment, demonstrating the capability of our method to image in the attractive tip-sample interaction regime.

  6. Characterization of one-dimensional molecular chains of 4,4'-biphenyl diisocyanide on Au(111) by scanning tunneling microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Jing [Univ. of Stony Brook, Stony Brook, NY (United States); White, Michael G. [Univ. of Stony Brook, Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Yan [Brookhaven National Lab. (BNL), Upton, NY (United States); Zahl, Percy [Brookhaven National Lab. (BNL), Upton, NY (United States); Sutter, Peter [Brookhaven National Lab. (BNL), Upton, NY (United States); Stacchiola, Dario J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-14T23:59:59.000Z

    The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy (STM). When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [110] direction of the Au(111) substrate, but exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free –NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions

  7. Characterization of one-dimensional molecular chains of 4,4'-biphenyl diisocyanide on Au(111) by scanning tunneling microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Jing; White, Michael G.; Li, Yan; Zahl, Percy; Sutter, Peter; Stacchiola, Dario J.

    2015-03-14T23:59:59.000Z

    The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy (STM). When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [110] direction of the Au(111) substrate, butmore »exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free –NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions« less

  8. 2005The Royal Microscopical Society Journal of Microscopy,Vol. 219, Pt 2 August 2005, pp. 4349

    E-Print Network [OSTI]

    Agard, David

    resolutions, practical limitations, such as avoiding radiation damage, as well as 3D optical microscopy specimens. Introduction The conventional wisdom in modern structural

  9. Experimental evidence of slippage breakdown for a superhydrophobic surface in a microfluidic device

    E-Print Network [OSTI]

    Guido Bolognesi; Cecile Cottin-Bizonne; Christophe Pirat

    2014-06-12T23:59:59.000Z

    A full characterization of the water flow past a silicon superhydrophobic surface with longitudinal micro-grooves enclosed in a microfluidic device is presented. Fluorescence microscopy images of the flow seeded with fluorescent passive tracers were digitally processed to measure both the velocity field and the position and shape of the liquid-air interfaces at the superhydrophobic surface. The simultaneous access to the meniscus and velocity profiles allows us to put under a strict test the no-shear boundary condition at the liquid-air interface. Surprisingly, our measurements show that air pockets in the surface cavities can sustain non-zero interfacial shear stresses, thereby hampering the friction reduction capabilities of the surface. The effects of the meniscus position and shape as well as of the liquid-air interfacial friction on the surface performances are separately assessed and quantified.

  10. Surface transport properties of Fe-based superconductors: The influence of degradation and inhomogeneity

    SciTech Connect (OSTI)

    Plecenik, T.; Gregor, M.; Sobota, R.; Truchly, M.; Satrapinskyy, L.; Kus, P.; Plecenik, A. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia)] [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Kurth, F.; Holzapfel, B.; Iida, K. [Institute for Metallic Materials, IFW Dresden, P. O. Box 270116, D-01171 Dresden (Germany)] [Institute for Metallic Materials, IFW Dresden, P. O. Box 270116, D-01171 Dresden (Germany)

    2013-07-29T23:59:59.000Z

    Surface properties of Co-doped BaFe{sub 2}As{sub 2} epitaxial superconducting thin films were inspected by X-ray photoelectron spectroscopy, scanning spreading resistance microscopy (SSRM), and point contact spectroscopy (PCS). It has been shown that surface of Fe-based superconductors degrades rapidly if being exposed to air, what results in suppression of gap-like structure on PCS spectra. Moreover, SSRM measurements revealed inhomogeneous surface conductivity, what is consistent with strong dependence of PCS spectra on contact position. Presented results suggest that fresh surface and small probing area should be assured for surface sensitive measurements like PCS to obtain intrinsic properties of Fe-based superconductors.

  11. Experimental evidence of slippage breakdown for a superhydrophobic surface in a microfluidic device

    E-Print Network [OSTI]

    Bolognesi, Guido; Pirat, Christophe

    2014-01-01T23:59:59.000Z

    A full characterization of the water flow past a silicon superhydrophobic surface with longitudinal micro-grooves enclosed in a microfluidic device is presented. Fluorescence microscopy images of the flow seeded with fluorescent passive tracers were digitally processed to measure both the velocity field and the position and shape of the liquid-air interfaces at the superhydrophobic surface. The simultaneous access to the meniscus and velocity profiles allows us to put under a strict test the no-shear boundary condition at the liquid-air interface. Surprisingly, our measurements show that air pockets in the surface cavities can sustain non-zero interfacial shear stresses, thereby hampering the friction reduction capabilities of the surface. The effects of the meniscus position and shape as well as of the liquid-air interfacial friction on the surface performances are separately assessed and quantified.

  12. Observation of Changes in Bacterial Cell Morphology Using Tapping Mode Atomic Force Microscopy

    E-Print Network [OSTI]

    sodium salt (MOPS) buffer (as a control), and the surface topography of the cells was examined after. Topographic images, phase images, traces of surface topography, and analyses of surface roughness were the topography of the cell was altered by the different treatments. The surface roughness was quantified in terms

  13. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    E-Print Network [OSTI]

    Kafka, K R P; Li, H; Yi, A; Cheng, J; Chowdhury, E A

    2015-01-01T23:59:59.000Z

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form sequentially outward from the groove edge, with the first one forming after 50 ps. A 1-D analytical model of electron heating and surface plasmon polariton (SPP) excitation induced by the interaction of incoming laser pulse with the groove edge qualitatively explains the time-evloution of LIPSS formation.

  14. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    SciTech Connect (OSTI)

    Schwarz, Udo [Yale University

    2014-12-10T23:59:59.000Z

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3D-AFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  15. National Synchrotron Light Source annual report 1991

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.M. (eds.)

    1992-04-01T23:59:59.000Z

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  16. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.M. [eds.

    1992-04-01T23:59:59.000Z

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  17. Nano-mineralogy studies by advanced electron microscopy Chi Ma and George R. Rossman

    E-Print Network [OSTI]

    Ma, Chi

    Nano-mineralogy studies by advanced electron microscopy Chi Ma and George R. Rossman Division and planetary materials easier and faster down to nano-scales. Small but new minerals with important geological significance are being discovered. Nano-features are being discovered in many common minerals and gems, which

  18. Ventilation-Synchronous Magnetic Resonance Microscopy of Pulmonary Structure and Ventilation in

    E-Print Network [OSTI]

    Ventilation-Synchronous Magnetic Resonance Microscopy of Pulmonary Structure and Ventilation helium (3 He) gas to acquire images that dem- onstrate pulmonary vasculature and ventilated airways of these structures relative to the less vascular surrounding tissues. A constant- flow ventilator was developed

  19. Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission Electron Microscopy

    E-Print Network [OSTI]

    Bao, Xinhe

    Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission of graphene on Ru(0001) was investigated by photoemission electron microscopy (PEEM) and scanning tunneling, we show that graphene overlayers with sizes ranging from nanometers to sub-millimeters have been

  20. Fiber-Optic Stethoscope: A Cardiac Monitoring and Gating System for Magnetic Resonance Microscopy

    E-Print Network [OSTI]

    Fiber-Optic Stethoscope: A Cardiac Monitoring and Gating System for Magnetic Resonance Microscopy monitoring and gating purposes. The fiber-optic stethoscope system offers a novel approach to measuring cardiac activity that, unlike the ECG, is immune to electromagnetic effects. The fiber-optic stethoscope