Powered by Deep Web Technologies
Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"A Novel Objective for EUV Microscopy and EUV Lithography" Inventors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Novel Objective for EUV Microscopy and EUV Lithography" Inventors A Novel Objective for EUV Microscopy and EUV Lithography" Inventors ..--.. Manfred Bitter, Kenneth Hill, Philip Efthimion. This invention is a new x-ray scheme for stigmatic imaging. The scheme consists of one convex spherically bent crystal and one concave spherically bent crystal. The radii of curvature and Bragg reflecting lattice planes of the two crystals are properly matched to eliminate the astigmatism, so that the conditions for stigmatic imaging are met for a particular wavelength. The magnification is adjustable and solely a function of the two Bragg angles or angles of incidence. Although the choice of Bragg angles is constrained by the availability of crystals, this is not a severe limitation for the imaging of plasmas, since a particular wavelength can be

2

Development of a microfluidic device for patterning multiple species by scanning probe lithography  

E-Print Network [OSTI]

Scanning Probe Lithography (SPL) is a versatile nanofabrication platform that leverages microfluidic “ink” delivery systems with Scanning Probe Microscopy (SPM) for generating surface-patterned chemical functionality on the sub-100 nm length scale...

Rivas Cardona, Juan Alberto

2009-06-02T23:59:59.000Z

3

Top-surface imaging resists for lithography with strongly attenuated radiation  

SciTech Connect (OSTI)

Strong resist photoabsorption at wavelengths below 248 nm necessitates the use of a thin layer imaging (TLI) scheme for microlithography using 193 nm, 157 nm, or 13.4 nm radiation. Previous to this work, a TLI process commonly known as silylated top surface imaging (TSI) was developed by a Sandia/AT and T team for use in extreme ultraviolet lithography (EUVL) at 13.4 nm. Using this bilayer process, 0.13 {micro}m resolution with 87{degree} sidewalls in 0.7 {micro}m of resist was achieved for EUV exposures. New imaging layer polymers, silylation reagents and crosslinkers, and process conditions were screened for improvement in this TSI process with the ultimate goal of demonstrating a resist technology capable of 0.10 {micro}m critical dimension (CD). The results of these attempted improvements to the TSI process are described in this report.

Ray-Chaudhuri, A.; Kubiak, G.; Henderson, C.; Wheeler, D.; Pollagi, T.

1997-09-01T23:59:59.000Z

4

Tomography and High-Resolution Electron Microscopy Study of Surfaces...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tomography and High-Resolution Electron Microscopy Study of Surfaces and Porosity in a Plate-Like ?-Al2O3. Tomography and High-Resolution Electron Microscopy Study of...

5

Maskless lithography  

DOE Patents [OSTI]

The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

Sweatt, William C. (Albuquerque, NM); Stulen, Richard H. (Livermore, CA)

1999-01-01T23:59:59.000Z

6

Maskless lithography  

DOE Patents [OSTI]

The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides. 12 figs.

Sweatt, W.C.; Stulen, R.H.

1999-02-09T23:59:59.000Z

7

Porphyrin-Based Photocatalytic Lithography  

SciTech Connect (OSTI)

Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.

Bearinger, J; Stone, G; Christian, A; Dugan, L; Hiddessen, A; Wu, K J; Wu, L; Hamilton, J; Stockton, C; Hubbell, J

2007-10-15T23:59:59.000Z

8

Absorbance modulation optical lithography  

E-Print Network [OSTI]

In this thesis, the concept of absorbance-modulation optical lithography (AMOL) is described, and the feasibility experimentally verified. AMOL is an implementation of nodal lithography, which is not bounded by the diffraction ...

Tsai, Hsin-Yu Sidney

2007-01-01T23:59:59.000Z

9

In-situ UHV Electron Microscopy of Surfaces  

Science Journals Connector (OSTI)

Recently great progress has been made in surface science due to the development of ultra-high-vacuum (UHV) techniques and related surface-analytical methods like ... (LEED), Auger electron spectroscopy (AES), UHV

Katsumichi Yagi; Kunio Takayanagi; Goro Honjo

1982-01-01T23:59:59.000Z

10

Method for maskless lithography  

DOE Patents [OSTI]

The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

Sweatt, William C. (13027 Arrovo de Vista, Albuquerque, NM 87111); Stulen, Richard H. (5258 Roxanne Ct., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

11

Geochemistry Atomic Force Microscopy | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imaging modes: contact, intermittent contact, phase imaging, magnetic force microscopy, electric force microscopy, surface potential microscopy, scanning capacitance microscopy,...

12

Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces  

SciTech Connect (OSTI)

Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone.

Wagner, Ryan; Raman, Arvind, E-mail: raman@purdue.edu [Birck Nanotechnology Center, 1205 W. State Street, Purdue University, West Lafayette, Indiana 47907 (United States)] [Birck Nanotechnology Center, 1205 W. State Street, Purdue University, West Lafayette, Indiana 47907 (United States); Proksch, Roger, E-mail: Roger.Proksch@oxinst.com [Asylum Research, 6310 Hollister Ave., Santa Barbara, California 93117 (United States)] [Asylum Research, 6310 Hollister Ave., Santa Barbara, California 93117 (United States)

2013-12-23T23:59:59.000Z

13

Contact thermal lithography  

E-Print Network [OSTI]

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

14

Electronic structure of wurtzite II-VI compound semiconductor cleavage surfaces studied by scanning tunneling microscopy  

Science Journals Connector (OSTI)

We report atomically resolved scanning tunneling microscopy (STM) images of cleavage surfaces of wurtzite II-VI compound semiconductors. CdSe(112¯0), CdSe(101¯0), and CdS(101¯0) were investigated. The STM images confirm a 1×1 reconstruction for all surfaces. At negative and positive sample voltages the occupied and empty dangling-bond states above anions and cations, respectively, dominate the contrast of the STM images. No states in the band gap were found. The electronic structure of the surface permits the observation of dopant atoms in subsurface layers and thus also cross-sectional scanning tunneling microscopy studies of point defects and heterostructures.

B. Siemens, C. Domke, Ph. Ebert, and K. Urban

1997-11-15T23:59:59.000Z

15

Plating/Lithography-new  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plating/Lithography Plating/Lithography Manufacturing Technologies The Plating capabilities in the Thin Film, Vacuum and Packaging department include both electroless and electro plating. These processes support Multi-Chip Module, microelectromechanical systems (MEMS), Weapons Systems (Neutron Tubes) and other miscellaneous projects. Photo-processing facilities provide pattern- ing and circuitry on a variety of substrate materials. The department's capabilities include dry film, liquid, and electrophoreti- cally deposited resist application, exposure, development and patterning. Capabilities * Electroplate large areas using cyanide and non-cyanide based chemistries * Routinely plate copper, nickel and gold * Expertise in developing plating process- es for unusual applications and metals

16

Raman Microscopy and Mapping as a Probe for Photodegradation in Surface Relief Gratings Recorded on Layer-by-Layer Films of Congo Red/Polyelectrolyte  

Science Journals Connector (OSTI)

Raman microscopy, mapping, and surface-enhanced Raman scattering techniques have been applied to investigate the degradation of Congo Red (CR) in a surface relief grating (SRG)...

Constantino, C J L; Aroca, R F; He, J -A; Zucolotto, V; Li, L; Oliveira, O N; Kumar, J; Tripathy, S K

2002-01-01T23:59:59.000Z

17

Metrology Sources for EUV Lithography  

Science Journals Connector (OSTI)

Mask inspection and validation are key elements of the EUV lithography infrastructure. Requirements for the light sources to enable these tools will be ...

Home, Steve; Blackborow, Paul; Bensen, Matthew M; Partlow, Matthew J; Gustafson, Deborah; Goldstein, Michael

18

Transparent fluids for 157-nm immersion lithography  

E-Print Network [OSTI]

- gineers. [DOI: 10.1117/1.1637366] Subject terms: 157-nm lithography; immersion fluid; perfluoropolyether

Rollins, Andrew M.

19

Neon Ion Beam Lithography (NIBL)  

E-Print Network [OSTI]

Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. ...

Winston, Donald

20

Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling  

SciTech Connect (OSTI)

Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

Plomp, M; Malkin, A J

2008-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Development of an immersion maskless lithography system  

E-Print Network [OSTI]

As lithography quickly approaches its limits with current technologies, a host of new ideas is being proposed in hopes of pushing lithography to new levels of performance. The work presented in this thesis explores the use ...

Chao, David, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

22

Electronic properties of the Ga vacancy in GaP(110) surfaces determined by scanning tunneling microscopy  

Science Journals Connector (OSTI)

The electronic properties of uncharged Ga monovacancies in GaP(110) surfaces are determined from voltage-dependent scanning tunneling microscopy images. The signatures of localized defect states in the band gap are analyzed and their spatial location is determined. Empty and occupied defect states exist. Depressed dangling bonds in the occupied-state images indicate an inward relaxation of the neighboring P atoms. The results agree with recent theoretical work.

Ph. Ebert and K. Urban

1998-07-15T23:59:59.000Z

23

Scanning tunneling microscopy on unpinned GaN(11¯00) surfaces: Invisibility of valence-band states  

Science Journals Connector (OSTI)

We investigated the origins of the tunnel current in scanning tunneling microscopy (STM) and spectroscopy experiments on GaN(11¯00) surfaces. By calculating the tunnel currents in the presence of a tip-induced band bending for unpinned n-type GaN(11¯00) surfaces, we demonstrate that only conduction-band states are observed at positive and negative voltage polarities independent of the doping concentration. Valence-band states remain undetectable because tunneling out of the electron-accumulation zone in conduction-band states dominates by four orders of magnitude. As a result band-gap sizes cannot be determined by STM on unpinned GaN(11¯00) surfaces. Appropriate band-edge positions and gap sizes can be determined on pinned surfaces.

Ph. Ebert, L. Ivanova, and H. Eisele

2009-08-24T23:59:59.000Z

24

Maskless, reticle-free, lithography  

DOE Patents [OSTI]

A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

Ceglio, N.M.; Markle, D.A.

1997-11-25T23:59:59.000Z

25

Direct determination of exact charge states of surface point defects using scanning tunneling microscopy: As vacancies on GaAs ,,110...  

E-Print Network [OSTI]

microscopy: As vacancies on GaAs ,,110... Kuo-Jen Chao, Arthur R. Smith, and Chih-Kang Shih* Department of the charge state of surface As vacancies on p-type GaAs 110 using scanning tunneling microscopy. This method utilizes the compensation between the local band bending result- ing from the As vacancy and the p

26

Multilayer reflective coatings for extreme-ultraviolet lithography  

SciTech Connect (OSTI)

Multilayer mirror coatings which reflect extreme ultraviolet (EUV) radiation are a key enabling technology for EUV lithography. Mo/Si multilayers with reflectances of 67.5% at 13.4 nm are now routinely achieved and reflectances of 70 2% at 11.4 nm were obtained with MO/Be multilayers. High reflectance is achieved with careful control of substrate quality, layer thicknesses, multilayer materials, interface quality, and surface termination. Reflectance and film stress were found to be stable relative to the requirements for application to EUV lithography. The run-to-run reproducibility of the reflectance peak position was characterized to be better than 0.2%, providing the required wavelength matching among the seven multilayer-coated mirrors used in the present lithography system design. Uniformity of coating was improved to better than 0.5% across 150 mm diameter substrates. These improvements in EUV multilayer mirror technology will enable us to meet the stringent specifications for coating the large optical substrates for our next-generation EUV lithography system.

Montcalm, C., LLNL

1998-03-10T23:59:59.000Z

27

Solvent Immersion Imprint Lithography  

SciTech Connect (OSTI)

The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

2014-06-21T23:59:59.000Z

28

Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy  

SciTech Connect (OSTI)

The adsorption and dissociation of water on a Ru(0001) surface containing a small amount ({le} 3 %) of carbon impurities was studied by scanning tunneling microscopy (STM). Various surface species are formed depending on the temperature. These include molecular H{sub 2}O, H{sub 2}O-C complexes, H, O, OH and CH. Clusters of either pure H{sub 2}O or mixed H{sub 2}O-OH species are also formed. Each of these species produces a characteristic contrast in the STM images and can be identified by experiment and by ab initio total energy calculations coupled with STM image simulations. Manipulation of individual species via excitation of vibrational modes with the tunneling electrons has been used as supporting evidence.

Dept of Materials Science and Engineering UCB; Dept of Applied Science and Technology, UCB; Institut de Ciencia de Materials de Barcelona, Barcelona, Spain; Instituto de Ciencia de Materiales de Madrid, Madrid, Spain; Department of Mechanical Engineering, Yale University; Salmeron, Miquel; Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge I.; Heyde, Markus; Qi, Yabing; Schwarz, Udo D.; Ogletree, D. Frank; Salmeron, Miquel

2008-04-26T23:59:59.000Z

29

EMSL: Capabilities: Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microscopy Microscopy Additional Information Meet the Microscopy Experts Related EMSL User Projects Microscopy Tools are Applied to all Science Themes Watch the Microscopy capability video on EMSL's YouTube channel and read the transcript. Microscopy brochure Quiet Wing brochure EMSL hosts a variety of sophisticated microscopy instruments, including electron microscopes, optical microscopes, scanning probe microscopes, and computer-controlled microscopes for automated particle analysis. These tools are used to image a range of sample types with nanoscale-and even atomic-resolution with applications to surface, environmental, biogeochemical, atmospheric, and biological science. Each state-of-the-art instrument and customized capability is equipped with features for specific

30

Deformation induced changes in surface properties of polymers investigated by scanning force microscopy  

E-Print Network [OSTI]

In this study the possibility of combining commercial Scanning Force Microscopes (SFM) with stretching devices for the investigation of microscopic surface changes during stepwise elongation is investigated. Different types of stretching devices have been developed either for Scanning Platform-SFM or for Stand Alone-SFM. Their suitability for the investigation of deformation induced surface changes is demonstrated. A uniaxially oriented polypropylene film is stretched vertically to its extrusion direction. The reorientation of its microfibrillar structure is investigated and correlated to macroscopic structural changes determined by taking a force-elongation curve. Microtome cuts of natural rubber filled with 15 PHR carbon black are stretched. Changes in topography, local stiffness and adhesive force are simultaneously reported by using a new imaging method called Pulsed Force Mode (PFM).

Sabine Hild; Armin Rosa; Othmar Marti

2013-12-10T23:59:59.000Z

31

Reflective masks for extreme ultraviolet lithography  

SciTech Connect (OSTI)

Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 {mu}m wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

Nguyen, Khanh Bao

1994-05-01T23:59:59.000Z

32

Simulations of friction force microscopy on the KBr(001) surface based on ab initio calculated tip-sample forces  

Science Journals Connector (OSTI)

We report on ab initio-based simulations of friction-force microscopy on the KBr(001) surface at zero and nonzero temperature. To simulate sliding friction, we employ an extended three-dimensional (3D) Prandtl-Tomlinson model. The microscopic part of the tip is modeled by K+- or Br--terminated tips. We use a tip-surface interaction potential, which is calculated within local-density approximation of density-functional theory and supplemented by a long-range van der Waals interaction resulting from the macroscopic part of the tip. Thermal fluctuations are included via random white noise. The loading force acting on the tip enters the Langevin equation of motion separately from all other forces so that it can be changed at will. We analyze friction as a function of loading force, temperature, and mass of the tip and identify regions of these parameters where distinct stick-slip behavior or ultra-low friction occurs. A comparison of our 3D ab initioresults with those obtained using sinusoidal tip-surface forces (1D model) is very revealing. By and large, both approaches yield results in good agreement at T = 0 K. At higher temperatures, however, distinct differences occur. For example, at T = 295 K, the 1D model calculations overestimate the friction hysteresis and energy dissipation, and for positive loading forces they even can yield a different periodicity in the friction-force profile.

Christine Wieferink; Peter Krüger; Johannes Pollmann

2011-06-15T23:59:59.000Z

33

History of extreme ultraviolet lithography  

Science Journals Connector (OSTI)

Extreme ultraviolet lithography (EUVL) technology was proposed and progressed on both hemispheres in the latter part of the 1980s independently. Although this technology is a design using a catoptric system instead of refraction lens and the accuracy of subnanometer is demanded for all component engineering the research and development of Japan and the United States has led to significant breakthroughs in processing and measurement technology over the past 20 years. EUVL is now the most promising next-generation technology for large scale integration fabrication. This article discusses the beginnings of EUVL what advances are needed and future prospects.

Hiroo Kinoshita

2005-01-01T23:59:59.000Z

34

XUV free-electron laser-based projection lithography systems  

SciTech Connect (OSTI)

Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

Newnam, B.E.

1990-01-01T23:59:59.000Z

35

Low-cost method for producing extreme ultraviolet lithography optics  

DOE Patents [OSTI]

Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

Folta, James A. (Livermore, CA); Montcalm, Claude (Fort Collins, CO); Taylor, John S. (Livermore, CA); Spiller, Eberhard A. (Mt. Kisco, NY)

2003-11-21T23:59:59.000Z

36

X-ray lithography using holographic images  

DOE Patents [OSTI]

A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

Howells, Malcolm R. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

1995-01-01T23:59:59.000Z

37

ORC Seminar Series Presents: "Nonlinear laser lithography  

E-Print Network [OSTI]

ORC Seminar Series Presents: "Nonlinear laser lithography: formation of self-authored 50 journal and more than 150 conference papers and he has given more than 100 invited talks. http://www.orc

Anderson, Jim

38

Cryogenic xenon droplets for advanced lithography  

SciTech Connect (OSTI)

A cryogenic xenon droplet production system for use in anadvanced laser plasma source for x-ray lithography has been designed, fabricated, and tested at ORNL. The droplet generator is based on proven (ink jet printer) drop-on-demand.

Gouge, M.J.; Fisher, P.W.

1996-04-01T23:59:59.000Z

39

Development of a laboratory extreme-ultraviolet lithography tool  

SciTech Connect (OSTI)

The development of a laboratory EUV lithography tool based on a laser plasma source, a 10x Schwarzchild camera, and a magnetically levitated wafer stage is presented. Interferometric measurements of the camera aberrations are incorporated into physical-optics simulations to estimate the EUV imaging performance of the camera. Experimental results demonstrate the successful matching of five multilayer reflecting surfaces, coated to specification for a wide range of figure and incidence angle requirements. High-resolution, 10x-reduction images of a reflection mask are shown.

Tichenor, D.A.; Kubiak, G.D.; Malinowski, M.E.; Stulen, R.H.; Haney, S.J.; Berger, K.W.; Nissen, R.P.; Wilkerson, G.A.; Paul, P.H.; Birtola, S.R.; Jin, P.S.; Arling, R.W.; Ray-Chaudhuri, A.K. [Sandia National Labs., Livermore, CA (United States); Sweatt, W.C.; Chow, W.W. [Sandia National Labs., Albuquerque, NM (United States); Bjorkholm, J.E.; Freeman, R.R.; Himel, M.D.; MacDowell, A.A.; Tennant, D.M.; Fetter, L.A.; Wood, O.R. II [AT& T Bell Labs., Holmdel, NJ (United States); Waskiewicz, W.K.; White, D.L.; Windt, D.L. [AT& T Bell Labs., Murray Hill, NJ (United States); Jewell, T.E. [Jewell (T.E.), Boulder, CO (United States)

1994-04-01T23:59:59.000Z

40

Extreme-UV lithography condenser  

DOE Patents [OSTI]

Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

Sweatt, William C. (Albuquerque, NM); Sweeney, Donald W. (San Ramon, CA); Shafer, David (Fairfield, CT); McGuire, James (Pasadena, CA)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Photothermal imaging scanning microscopy  

DOE Patents [OSTI]

Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

2006-07-11T23:59:59.000Z

42

Electronic and structural properties of the InP(1 0 0)(2 × 4) surface studied by core-level photoemission and scanning tunneling microscopy  

Science Journals Connector (OSTI)

The (2 × 4)-reconstructed InP(1 0 0) surfaces have been investigated by scanning tunneling microscopy (STM) and synchrotron-radiation core-level photoelectron spectroscopy. STM observations show that the ?2 model describes the atomic structure of the InP(1 0 0)(2 × 4) surface in a limited range of the surface-preparation conditions, as predicted theoretically but not previously observed. STM results also support the accuracy of the previously found mixed-dimer structure for the InP(1 0 0)(2 × 4) surface under less P-rich conditions. A study of P 2p core-level photoelectron spectra, measured with different surface-sensitivity conditions, demonstrates that P 2p photoemission from the mixed-dimer InP(1 0 0)(2 × 4) surface consists of at least two surface-core-level-shift (SCLS) components which have kinetic energies approximately 0.4 eV higher and 0.3 eV lower than the bulk emission. On the basis of the surface-sensitivity difference between these SCLSs, they are related to the third-layer and top-layer P sites in the mixed-dimer structure, respectively.

P. Laukkanen; J. Pakarinen; M. Ahola-Tuomi; M. Kuzmin; R.E. Perälä; I.J. Väyrynen; A. Tukiainen; V. Rimpiläinen; M. Pessa; M. Adell; J. Sadowski

2006-01-01T23:59:59.000Z

43

Investigating Extreme Ultraviolet Lithography Mask Defects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigating Extreme Ultraviolet Lithography Mask Defects Print Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, scientists at Berkeley Lab worked with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH Berkeley Actinic Inspection Tool (AIT).

44

Investigating Extreme Ultraviolet Lithography Mask Defects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigating Extreme Investigating Extreme Ultraviolet Lithography Mask Defects Investigating Extreme Ultraviolet Lithography Mask Defects Print Wednesday, 28 July 2010 00:00 Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, scientists at Berkeley Lab worked with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH Berkeley Actinic Inspection Tool (AIT).

45

Investigating Extreme Ultraviolet Lithography Mask Defects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigating Extreme Ultraviolet Lithography Mask Defects Print Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, scientists at Berkeley Lab worked with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH Berkeley Actinic Inspection Tool (AIT).

46

Vitreous carbon mask substrate for X-ray lithography  

DOE Patents [OSTI]

The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

2009-10-27T23:59:59.000Z

47

Fabrication and testing of optics for EUV projection lithography  

SciTech Connect (OSTI)

EUV Lithography (EUVL) is a leading candidate as a stepper technology for fabricating the ``0.1 {micro}m generation`` of microelectronic circuits. EUVL is an optical printing technique qualitatively similar to DUV Lithography (DUVL), except that 11-13nm wavelength light is used instead of 193-248nm. The feasibility of creating 0.1{micro}m features has been well-established using small-field EUVL printing tools and development efforts are currently underway to demonstrate that cost-effective production equipment can be engineered to perform full-width ring-field imaging consistent with high wafer throughput rates Ensuring that an industrial supplier base will be available for key components and subsystems is crucial to the success of EUVL. In particular, the projection optics are the heart of the EUVL imaging system, yet they have figure and finish specifications that are beyond the state-of-the-art in optics manufacturing. Thus it is important to demonstrate that industry will be able to fabricate and certify these optics commensurate with EUVL requirements. Indeed, the goal of this paper is to demonstrate that procuring EUVL projection optical substrates is feasible. This conclusion is based on measurements of both commercially-available and developmental substrates. The paper discusses EUVL figure and finish specifications, followed by examples of ultrasmooth and accurate surfaces, and concludes with a discussion of how substrates are measured and evaluated.

Taylor, J. S., LLNL

1998-03-18T23:59:59.000Z

48

Three- to two-dimensional transition in electrostatic screening of point charges at semiconductor surfaces studied by scanning tunneling microscopy  

Science Journals Connector (OSTI)

The electrostatic screening of localized electric charges on semiconductor surfaces is investigated quantitatively by statistically analyzing the spatial distribution of thermally formed positively charged anion surface vacancies on GaAs and InP(110) surfaces. Two screening regimes are found: at low vacancy concentrations the vacancy charges are found to be three-dimensionally screened by bulk charge carriers. The corresponding screening length, which increases strongly with decreasing carrier concentration, is best described by the classical bulk screening length evaluated with a surface dielectric constant. With increasing vacancy concentration at given bulk carrier concentration, a three- to two-dimensional screening transition occurs. At high vacancy concentrations, the screening is found to be governed by charge carriers located in a two-dimensional surface vacancy defect band, which is partially filled due to the vacancy-induced surface band bending.

A. Laubsch, K. Urban, and Ph. Ebert

2009-12-14T23:59:59.000Z

49

Combined short scale roughness and surface dielectric function gradient effects on the determination of tip-sample force in atomic force microscopy  

SciTech Connect (OSTI)

The contribution of tip roughness to the van der Waals force between an atomic force microscopy probe tip and the sample is calculated using the multilayer effective medium model, which allows us to consider the relevant case of roughness characterized by correlation length and amplitude in the nanometer scale. The effect of the surface dielectric function gradient is incorporated in the tip-sample force model. It is concluded that for rms roughness in the few nanometers range the effect of short scale tip roughness is quite significant.

Gusso, André, E-mail: gusso@metal.eeimvr.uff.br [Departamento de Ciências Exatas-EEIMVR, Universidade Federal Fluminense, Volta Redonda, RJ 27255-125 (Brazil)] [Departamento de Ciências Exatas-EEIMVR, Universidade Federal Fluminense, Volta Redonda, RJ 27255-125 (Brazil)

2013-11-11T23:59:59.000Z

50

NANOMETER-SCALE INVESTIGATIONS BY ATOMIC FORCE MICROSCOPY INTO THE EFFECT OF DIFFERENT TREATMENTS ON THE SURFACE STRUCTURE OF HAIR  

E-Print Network [OSTI]

-section through both images (Fig. 4(d)) reveals the correlation, and that the modulation in surface potential associated with the deposits is of the order 70 mV. To test this further, an area of a freshly cleaned (by soaking in ethanol overnight and by rinsing... to determine the adhesion force (the force necessary to pull the cantilever off the surface) and adhesion energy between the tip and the surface area of interest. Force volume spectroscopy on a the bare hair surface and on a deposit as shown in Fig. 4(g) and (h...

Durkan, C.; Wang, N.

2014-09-15T23:59:59.000Z

51

Absence of spin-flip transition at the Cr(001) surface: A combined spin-polarized scanning tunneling microscopy and neutron scattering study  

SciTech Connect (OSTI)

The spin-density wave (SDW) on Cr(001) has been investigated at temperatures between 20-300 K by means of spin-polarized scanning tunneling microscopy (SP-STM). Although neutron-scattering data measured on the same crystal clearly show a spin-flip transition from a transversal (T)-SDW to a longitudinal (L)-SDW at the expected spin-flip (SF) temperature T{sub SF}=123 K, no change was found on the Cr(001) surface with SP-STM. Throughout the entire temperature range the Cr(001) surface maintains a topological antiferromagnetic order with an in-plane magnetization that inverts between adjacent atomically flat terraces separated by monatomic step edges. The experimental results are interpreted by an absence of a spin-flip transition in the near-surface region probably driven by the surface anisotropy. The continuous connection of the surface T-SDW to the bulk L-SDW is accomplished by the formation of a 90 deg. domain wall just below the surface.

Haenke, T.; Krause, S.; Berbil-Bautista, L.; Bode, M.; Wiesendanger, R.; Wagner, V.; Lott, D.; Schreyer, A. [Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, D-38116 Braunschweig (Germany); Institut fuer Werkstoffforschung, GKSS Forschungszentrum, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

2005-05-01T23:59:59.000Z

52

Surface [4 + 2] Cycloaddition Reaction of Thymine on Si(111)7×7 Observed by Scanning Tunneling Microscopy  

Science Journals Connector (OSTI)

WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada ... Simple hydrocarbons(1) with aliphatic chain backbones, alkenes, alkynes, and aromatic molecules without and with heteroatoms(3) have been investigated by a number of experimental methods, including X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), high-resolution electron energy loss spectroscopy (HREELS), and scanning tunneling microscopy (STM) as well as computational methods based on density functional theory (DFT), Moller–Plesset perturbation theory (MP2), and semiempirical techniques. ...

A. Chatterjee; L. Zhang; K. T. Leung

2013-06-21T23:59:59.000Z

53

Correlation between Charge State of Insulating NaCl Surfaces and Ionic Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Force Microscopy Study  

SciTech Connect (OSTI)

In situ ambient pressure X-ray photoelectron spectroscopy (APPES) and scanning force microscopy were used to characterize the surface discharge induced by water layers grown on (001) surfaces of sodium chloride single crystals. The APPES studies show that both kinetic energy (KE) and full width at half-maximum (FWHM) of the Na 2s and Cl 2p core level peaks, monitored as a function of relative humidity (RH), mimic surface conductivity curves measured using scanning force microscopy. The KE position and FWHM of the core level peaks therefore are directly related to the solvation and diffusion of ions at the NaCl(100) surface upon adsorption of water.

Verdaguer, Albert; Jose Segura, Juan; Fraxedas, Jordi; Bluhm, Hendrik; Salmeron, Miquel

2008-09-03T23:59:59.000Z

54

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

55

UNCTIONAL PERFLUOROPOLYETHERS AS NOVEL MATERIALS FOR MICROFLUIDICS AND SOFT LITHOGRAPHY  

E-Print Network [OSTI]

UNCTIONAL PERFLUOROPOLYETHERS AS NOVEL MATERIALS FOR MICROFLUIDICS AND SOFT LITHOGRAPHY Jason P photocurable perfluoropolyethers (PFPEs). PFPEs are a unique class of fluoropolymers that are liquids at room

Carter, Kenneth

56

Formation of the 5×5 reconstruction on cleaved Si(111) surfaces studied by scanning tunneling microscopy  

Science Journals Connector (OSTI)

The transformation of cleaved Si(111)2×1 surfaces into apparent 1×1, 5×5, and 7×7 structures has been studied with the scanning tunneling microscope. Two reaction paths are identified, one proceeding through a disordered adatom arrangement into the 7×7 structure, and the other proceeding directly from 2×1 into the 5×5 structure. Near a nucleation site (step or domain boundary), the first path is favored due to the abundance of adatoms on the surface, and far from a nucleation site the second path dominates.

R. M. Feenstra and M. A. Lutz

1990-09-15T23:59:59.000Z

57

Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning tunneling microscopy study  

SciTech Connect (OSTI)

TiO2(110) surface was successfully prepared in-situ by UHV cleaving of a commercial TiO2 crystal.. STM imaging revealed atomically flat more than 1 ?m wide terraces with (110) orientation separated by steps running in [001] direction, with very low kink density. Atomically resolved STM images show periodicity in the [001] and [ ] directions with the unit cell parameters measured to ~3 Å and 6.5 Å respectively which are closed to the expected values of bulk terminated (1x1) surface.

Bondarchuk, Olexsandr; Lyubinetsky, Igor

2007-11-26T23:59:59.000Z

58

The structures and dynamics of atomic and molecular adsorbates on metal surfaces by scanning tunneling microscopy and low energy electron diffraction  

SciTech Connect (OSTI)

Studies of surface structure and dynamics of atoms and molecules on metal surfaces are presented. My research has focused on understanding the nature of adsorbate-adsorbate and adsorbate-substrate interactions through surface studies of coverage dependency and coadsorption using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The effect of adsorbate coverage on the surface structures of sulfur on Pt(111) and Rh(111) was examined. On Pt(111), sulfur forms p(2x2) at 0.25 ML of sulfur, which transforms into a more compressed ({radical}3x{radical}3)R30{degrees} at 0.33 ML. On both structures, it was found that sulfur adsorbs only in fcc sites. When the coverage of sulfur exceeds 0.33 ML, it formed more complex c({radical}3x7)rect structure with 3 sulfur atoms per unit cell. In this structure, two different adsorption sites for sulfur atoms were observed - two on fcc sites and one on hcp site within the unit cell.

Yoon, Hyungsuk Alexander

1996-12-01T23:59:59.000Z

59

E-Print Network 3.0 - arf immersion lithography Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

immersion lithography using ArF illumination... node; 38-nm node; high-n immersion fluids; ArF immersion lithography; 193-nm immersion ... Source: French, Roger H. -...

60

Surface Geometric Structure of Chemically Modified Silica Studied by Direct Atomic Force Microscopy (AFM) Imaging and Adsorption Method  

Science Journals Connector (OSTI)

The equation to estimate the surface area (m2·g-1) according to the latter method is where NA is Avogadro's constant (mol-1), ? is the adsorbed amount (mL STP·g-1), and P‘ represents the relative pressure at which the monolayer is formed on the unmodified sample. ...

Masayoshi Fuji; Kotoe Machida; Takashi Takei; Tohru Watanabe; Masatoshi Chikazawa

2000-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Scanning tunneling microscopy studies of the surfaces of a-Si:H and a-SiGe:H films  

SciTech Connect (OSTI)

The report contains a detailed description of the experimental complexities encountered in developing scanning tunneling microscope (STM) probing of atomic structure on the surface of freshly-grown hydrogenated-amorphous semiconductors. It also contains a speculative microscopic film-growth model that explains differences between the disorder in CVD grown a-Ge:H versus a-Si:H films. This model is derived from prior results obtained in the chemical analysis of GeH{sub 4} plasmas, combined with surface reaction and thermodynamic considerations. The neutral radical fragments of silane, disilane and germane dissociation in discharges, which dominate the vapor and film-growth reactions, have been deduced from detailed analysis of prior data and are reported. 4 refs., 7 figs.

Gallagher, A.; Ostrom, R.; Tannenbaum, D. (National Inst. of Standards and Technology, Boulder, CO (USA))

1991-06-01T23:59:59.000Z

62

Maskless Lithography Using Drop-On-Demand Inkjet Printing Method  

E-Print Network [OSTI]

be an attractive alternative approach. A schematic diagram of a maskless lithography system using the DOD inkjet material droplets under computer control. Each droplet takes a ballistic trajectory and lands on a certain and other disposable electronic devices. Thirdly, inkjet printing lithography could handle a wide range

Bokor, Jeffrey

63

Wafer scale patterning by soft UV-nanoimprint lithography  

Science Journals Connector (OSTI)

We present first results on wafer scale patterning within one imprint step only, using Soft UV-Nanoimprint Lithography (UV-NIL). In this process, flexible transparent stamps, fabricated by cast moulding ensure a conformal contact, whereas the usage of ... Keywords: UV-nanoimprint, nanoimprint, patterning on wafer scale, soft lithography

U. Plachetka; M. Bender; A. Fuchs; B. Vratzov; T. Glinsner; F. Lindner; H. Kurz

2004-06-01T23:59:59.000Z

64

Surface-enhanced Raman scattering and atomic force microscopy of brass electrodes in sulfuric acid solution containing benzotriazole and chloride ion  

SciTech Connect (OSTI)

Three different methods were used to roughen brass (Cu/Zn = 67/33) electrodes in 0.5 M H[sub 2]SO[sub 4] containing 1.0 mM benzotriazole (BTAH): (1) polarization at +0.05 V vs. saturated calomel for 5 min; (2) immersion in the above solution for six hours; and (3) oxidation-reduction cycling in the presence of chloride ion. The surfaces prepared by the first two methods exhibited surface-enhanced Raman scattering (SERS) spectra of the polymeric complex [Cu(I)BTA][sub s]. The SERS spectrum obtained from electrodes prepared by the third method is very similar to that of [Cu(I)CIBTAH][sub 4]. Examination of the electrodes by atomic force microscopy (AFM) showed that a large number of grain boundary sites are formed by the roughening processes. This effect is attributed to the loss of zinc, which occurs during corrosion of the mirror-like, polished brass electrode surface in the sulfuric acid solution. 11 refs., 5 figs.

Rubim, J.C.; Kim, J.; Henderson, E.; Cotton, T.M. (Instituto de Quimica da Universidade de Sao Paulo (Brazil) Ames Lab., IA (United States) Iowa State Univ., Ames (United States))

1993-01-01T23:59:59.000Z

65

Fabrication of phosphor micro-grids using proton beam lithography.  

SciTech Connect (OSTI)

A new nuclear microscopy technique called ion photon emission microscopy or IPEM was recently invented. IPEM allows analysis involving single ions, such as ion beam induced charge (IBIC) or single event upset (SEU) imaging using a slightly modified optical microscope. The spatial resolution of IPEM is currently limited to more than 10 {micro}m by the scattering and reflection of ion-induced photons, i.e. light blooming or spreading, in the ionoluminescent phosphor layer. We are developing a 'Microscopic Gridded Phosphor' (also called Black Matrix) where the phosphor nanocrystals are confined within the gaps of a micrometer scale opaque grid, which limits the amount of detrimental light blooming. MeV-energy proton beam lithography is ideally suited to lithographically form masks for the grid because of high aspect ratio, pattern density and sub-micron resolution of this technique. In brief, the fabrication of the grids was made in the following manner: (1) a MeV proton beam focused to 1.5-2 {micro}m directly fabricated a matrix of pillars in a 15 {micro}m thick SU-8 lithographic resist; (2) 7:1 aspect ratio pillars were then formed by developing the proton exposed area; (3) Ni (Au) was electrochemically deposited onto Cu-coated Si from a sulfamate bath (or buffered CN bath); (4) the SU-8 pillars were removed by chemical etching; finally (5) the metal micro-grid was freed from its substrate by etching the underlying Cu layer. Our proposed metal micro-grids promise an order-of-magnitude improvement in the resolution of IPEM.

Rossi, Paolo (University of Padova and INFN, Padova, Italy); Antolak, Arlyn J.; Provencio, Paula Polyak; Doyle, Barney Lee; Malmqvist, Klas (Lund Institute of Technology, Lund, Sweden); Hearne, Sean Joseph; Nilsson, Christer (Lund Institute of Technology, Lund, Sweden); Kristiansson, Per (Lund Institute of Technology, Lund, Sweden); Wegden, Marie (Lund Institute of Technology, Lund, Sweden); Elfman, Mikael (Lund Institute of Technology, Lund, Sweden); Pallon, Jan (Lund Institute of Technology, Lund, Sweden); Auzelyte, Vaida (Lund Institute of Technology, Lund, Sweden)

2005-07-01T23:59:59.000Z

66

Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces  

SciTech Connect (OSTI)

The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of their top planes. Hence, we name them as Pd+(with Pd) and Pd-(without Pd). Based on their planer structure and the step height, it can be said that these two families can be viable surface terminations. However, besides the Pd content, these two sets differ in terms of relative densities of their top planes as well as the gap separating the layer from the nearest atomic plane. The experimental data and other arguments lead to the conclusion that the Pd- family is favored over the Pd+. This has an important implication on the interpretation of local motifs seen in the high resolution STM images. In other words, the dark stars are not formed by cut-Bergmans rather they are formed by cut-Mackays.

Unal, Baris

2008-12-01T23:59:59.000Z

67

Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy  

SciTech Connect (OSTI)

The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.

Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J

2008-05-28T23:59:59.000Z

68

Influence of Surface Preparation on Scanning Kelvin Probe Microscopy and Electron Backscatter Diffraction Analysis of Cross Sections of CdTe/CdS Solar Cells  

SciTech Connect (OSTI)

Electron backscatter diffraction (EBSD) provides information on the crystallographic structure of a sample, while scanning Kelvin probe microscopy (SKPM) provides information on its electrical properties. The advantage of these techniques is their high spatial resolution, which cannot be attained with any other techniques. However, because these techniques analyze the top layers of the sample, surface or cross section features directly influence the results of the measurements, and sample preparation is a main step in the analysis. In this work we investigated different methods to prepare cross sections of CdTe/CdS solar cells for EBSD and SKPM analyses. We observed that procedures used to prepare surfaces for EBSD are not suitable to prepare cross sections, and we were able to develop a process using polishing and ion-beam milling. This process resulted in very good results and allowed us to reveal important aspects of the cross section of the CdTe films. For SKPM, polishing and a light ion-beam milling resulted in cross sections that provided good data. We were able to observe the depletion region on the CdTe film and the p-n junction as well as the interdiffusion layer between CdTe and CdS. However, preparing good-quality cross sections for SKPM is not a reproducible process, and artifacts are often observed.

Moutinho, H. R.; Dhere, R. G.; Jiang, C. S.; Al-Jassim, M. M.

2011-01-01T23:59:59.000Z

69

Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy  

SciTech Connect (OSTI)

To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain. Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.

Billings, Amanda N [ORNL; Siuti, Piro [ORNL; Bible, Amber [University of Tennessee, Knoxville (UTK); Alexandre, Gladys [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

2011-01-01T23:59:59.000Z

70

Structural defects in epitaxial graphene layers synthesized on C-terminated 4H-SiC (0001{sup ¯}) surface—Transmission electron microscopy and density functional theory studies  

SciTech Connect (OSTI)

The principal structural defects in graphene multilayers synthesized on the carbon-terminated face of a 4H-SiC (0001{sup ¯}) substrate were investigated using the high-resolution transmission electron microscopy. The analyzed systems include a wide variety of defected structures such as edge dislocations, rotational multilayers, and grain boundaries. It was shown that graphene layers are composed of grains of the size of several nanometres or larger; they differ in a relative rotation by large angles, close to 30°. The structure of graphene multilayers results from the synthesis on a SiC (0001{sup ¯}) surface, which proceeds via intensive nucleation of new graphene layers that coalesce under various angles creating an immense orientational disorder. Structural defects are associated with a built-in strain resulting from a lattice mismatch between the SiC substrate and the graphene layers. The density functional theory data show that the high-angular disorder of AB stacked bi-layers is not restoring the hexagonal symmetry of the lattice.

Borysiuk, J., E-mail: jolanta.borysiuk@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, Ho?a 69, 00-681 Warsaw (Poland); So?tys, J.; Piechota, J. [Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawi?skiego 5a, 02-106 Warsaw (Poland); Krukowski, S. [Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawi?skiego 5a, 02-106 Warsaw (Poland); Institute of High Pressure Physics, Polish Academy of Sciences, Soko?owska 29/37, 01-142 Warsaw (Poland); Baranowski, J. M. [Faculty of Physics, University of Warsaw, Ho?a 69, 00-681 Warsaw (Poland); Institute of Electronic Materials Technology, Wólczy?ska 133, 01-919 Warsaw (Poland); St?pniewski, R. [Faculty of Physics, University of Warsaw, Ho?a 69, 00-681 Warsaw (Poland)

2014-02-07T23:59:59.000Z

71

Reusable plasmonic substrates fabricated by interference lithography: a platform for  

E-Print Network [OSTI]

Reusable plasmonic substrates fabricated by interference lithography: a platform for systematic between electromagnetic and chemical enhancement, the development of standardized and recyclable SERS open a powerful platform within an analytical tool and in particular for systematic SERS studies

Dalang, Robert C.

72

Case studies on lithography-friendly vlsi circuit layout  

E-Print Network [OSTI]

lithography-friendly. In this work, we intend to implement these modifications as a series of perturbations on the initial layout generated by the CAD tool for the circuit. To implement these changes we first calculate the feature variations offline...

Shah, Pratik Jitendra

2009-05-15T23:59:59.000Z

73

Achieving sub-10-nm resolution using scanning electron beam lithography  

E-Print Network [OSTI]

Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications have driven demand for ...

Cord, Bryan M. (Bryan Michael), 1980-

2009-01-01T23:59:59.000Z

74

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy  

E-Print Network [OSTI]

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy Carolyn A. SuttonCarolyn A. Sutton PH 464PH 464 #12;OverviewOverview The OpticalThe Optical MicroscopeMicroscopy 4 Pi Microscopy4 Pi Microscopy Optical Microscope for Metallography #12;Optical Microscope: OriginsOptical

La Rosa, Andres H.

75

Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale  

E-Print Network [OSTI]

Exploring the resolution limit of electron-beam lithography is of great interest both scientifically and technologically. However, when electron-beam lithography approaches its resolution limit, imaging and metrology of ...

Duan, Huigao

76

E-Print Network 3.0 - aperture lithography ppal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Electrical and Computer Engineering, University of Connecticut Collection: Engineering 26 Immersion fluids for lithography: refractive index measurement using...

77

Argonne CNM Highlight: Block copolymer lithography approach to nanoscale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Block copolymer lithography approach to nanoscale self-assembly Block copolymer lithography approach to nanoscale self-assembly hybrid organic-organomemtalliic block copolymer thin film cast on a silicon nitride membrane substrate This image created by Seth Darling and Nathan Ramanathan was selected for the September 2009 cover of Materials Today. Block copolymer lithography represents a promising next-generation alternative to traditional top-down methodologies. The figure shows an optical micrograph of a hybrid organic-organometallic block copolymer thin film cast on a silicon nitride membrane substrate, which reveals thickness-induced coloring effects reminiscent of art glass. This polymer self-assembles into an ordered nanoscale cylindrical morphology, the orientation of which can be controlled with film thickness. Cylinders

78

Thermal oxidation as a simple method to increase resolution in nanoimprint lithography  

Science Journals Connector (OSTI)

We introduce a simple thermal oxidation technique for decreasing feature sizes of nanoimprint lithography (NIL) masters. During oxidation, the dimensions of negative features are reduced (e.g., gaps become narrower), and the dimensions of positive features ... Keywords: Electron beam lithography, Master fabrication, Nanoimprint lithography, Resolution, Thermal oxidation

Andrew P. Bonifas; Richard L. McCreery; Kenneth D. Harris

2011-11-01T23:59:59.000Z

79

True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy  

SciTech Connect (OSTI)

Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5?nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6?nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

2014-09-15T23:59:59.000Z

80

Ultratech Develops an Improved Lithography Tool for LED Wafer Manufacturing  

Broader source: Energy.gov [DOE]

Ultratech modified an existing lithography tool used for semiconductor manufacturing to better meet the cost and performance targets of the high-brightness LED manufacturing industry. The goal was to make the equipment compatible with the wide range of substrate diameters and thicknesses prevalent in the industry while reducing the capital cost and the overall cost of ownership (COO).

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Digital microfluidics using soft lithography{ John Paul Urbanski,a  

E-Print Network [OSTI]

Digital microfluidics using soft lithography{ John Paul Urbanski,a William Thies,b Christopher published as an Advance Article on the web 29th November 2005 DOI: 10.1039/b510127a Although microfluidic software to drive the pumps, valves, and electrodes used to manipulate fluids in microfluidic devices

Amarasinghe, Saman

82

Photonic crystal fibre-based light source for STED lithography  

SciTech Connect (OSTI)

A light source having a relative noise level in the order of 10{sup -6} and sufficient stability for application in STED lithography has been obtained using the generation of Cherenkov peaks in a supercontinuum spectrum. (laser applications and other topics in quantum electronics)

Glubokov, D A; Sychev, V V; Vitukhnovsky, Alexey G; Korol'kov, A E

2013-06-30T23:59:59.000Z

83

Condenser for extreme-UV lithography with discharge source  

DOE Patents [OSTI]

Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

Sweatt, William C. (Albuquerque, NM); Kubiak, Glenn D. (Livermore, CA)

2001-01-01T23:59:59.000Z

84

Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System  

SciTech Connect (OSTI)

The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3{delta} CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator.

Jiang, Ximan

2006-05-18T23:59:59.000Z

85

Development of compact extreme ultraviolet interferometry for on-line test of lithography cameras  

SciTech Connect (OSTI)

Extreme ultraviolet lithography (EUVL) is a candidate technology for the microelectronics industry with design rules for 0.1 {micro}m features and beyond. When characterizing an extreme ultraviolet (EUV) lithographic optical system, visible light interferometry is limited to measuring wavefront aberration caused by surface figure error while failing to measure wavefront errors induced by the multilayer coatings. This fact has generated interest in developing interferometry at an EUV camera`s operational wavelength (at-wavelength testing), which is typically around 13 nm. While a laser plasma source (LPS) is being developed as a lithography production source, it has generally been considered that only an undulator located at a synchrotron facility can provide the necessary laser-like point source for EUV interferometry. Although an undulator-based approach has been successfully demonstrated, it would be advantageous to test a camera in its operational configuration. The authors are developing the latter approach by utilizing extended source size schemes to provide usable flux throughput. A slit or a grating mounted in front of the source can provide the necessary spatial coherence for Ronchi interferometry. The usable source size is limited only by the well-corrected field of view of the camera under test. The development of this interferometer will be presented.

Ray-Chaudhuri, A.K.; Nissen, R.P.; Krenz, K.D.; Stulen, R.H. [Sandia National Labs., Livermore, CA (United States); Sweatt, W.C.; Warren, M.E.; Wendt, J.R.; Kravitz, S.H. [Sandia National Labs., Albuquerque, NM (United States); Bjorkholm, J.E. [AT and T Bell Labs., Holmdel, NJ (United States)

1998-12-31T23:59:59.000Z

86

Nano-imprinting lithography of P(VDF–TrFE–CFE) for flexible freestanding MEMS devices  

Science Journals Connector (OSTI)

Thermoplastic nano-imprinting lithography (T-NIL) has been used for the first time as a method of creating freestanding smooth and patterned membranes of micron scale thickness using poly (vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) [P(VDF–TrFE–CFE)]. PVDF and its copolymers and terpolymers cannot be processed using classical lithography techniques because it is incompatible with most solvents and photoresist developers. In this work, patterning at micron scale resolution and creating freestanding layers is facilitated by means of a hydrophobic dodecyltrichlorosilane layer deposited on the silicon (Si) prior to imprinting. This surface treatment reduces the adhesion between the polymer and Si substrate or stamp, aiding with mould release. A sacrificial layer beneath a spin-coated layer of P(VDF–TrFE–CFE) is presented as an alternative method of creating freestanding membranes. The latter method was used in conjunction with exploiting the thermoplastic properties of P(VDF–TrFE–CFE) during T-NIL to improve the quality of the patterned freestanding layers. The cured membrane thicknesses ranged from 0.4–5.8 ?m with diameters of centimeters order of magnitude. The processes presented here comprise a basis for integrating P(VDF–TrFE–CFE) as an active material in three dimensional electro-active polymeric microelectromechanical system (MEMS) devices.

Jenny Shklovsky; Leeya Engel; Yelena Sverdlov; Yosi Shacham-Diamand; Slava Krylov

2012-01-01T23:59:59.000Z

87

Monolithic Integrations of Slanted Silicon Nanostructures on 3D Microstructures and Their Application to Surface Enhanced Raman Spectroscopy  

E-Print Network [OSTI]

We demonstrated fabrication of black silicon with slanted nanocone array on both planar and 3D micro and meso scale structures produced by a high-throughput lithography-free oblique-angle plasma etching process. Nanocones with gradual change in height were created on the same piece of silicon. The relation between the slanted angle of nanocones and incident angle of directional plasma is experimentally investigated. In order to demonstrate the monolithic integration of nanostructures on micro and meso scale non-planar surfaces, nanocone forest is fabricated on non-planar silicon surfaces in various morphologies such as silicon atomic force microscopy (AFM) tips and pyramidal pits. By integrating nanocones on inverse silicon micro-pyramid array devices, we further improved the surface enhanced Raman scattering (SERS) enhancement property of this optimized commercial SERS substrate by several folds even when using 66% less noble metal coating. We investigated the length gradient dependence and asymmetric proper...

Xu, Zhida

2014-01-01T23:59:59.000Z

88

Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces: High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies  

E-Print Network [OSTI]

bimetallic nanoparticle catalysts is studied in Chapter 8.and Pt-based bimetallic nanoparticle catalysts, in order toseek the influence of catalyst surface structure on

Zhu, Zhongwei

2014-01-01T23:59:59.000Z

89

The use of atomic force microscopy (AFM) to study the surface topography of commercial fluid cracking catalysts (FCCs) and pillared interlayered clay (PILC) catalysts  

Science Journals Connector (OSTI)

An atomic force microscope operating in contact or Tapping ModeTM has been used to study the surface morphology, nanostructure, clay plates packing and conformation while providing nanometer-scale features of \\{FCCs\\} surfaces not readily accessible by other microscopic techniques. Contact mode micrometer-scale (15?m x 15?m) AFM images have revealed that the topography and molecular organization of the surface of several commercial \\{FCCs\\} are fairly heterogenous in nature, frequently containing discontinuities represented by deep trenches, valleys and crater-like openings with micrometer dimensions. Surfaces are in general, composed of short stacks of plates with voids or pores between these stacks resulting from materials occlusion between plates, from missing plates, missing stacks of plates and from misaligned stacks of plates. Gross structural differences between fresh and equilibrium FCCs, were not observed. However surfaces of equilibrium \\{FCCs\\} may contain debris possibly representing NiO and V2O5 deposits, in agreement with chemical analysis. Not all equilibrium microspheres contain surface debris. Thus AFM images allow the distinction of old and young FCC fractions in equilibrium FCC samples. Coke deposits during gas oil cracking at MAT conditions, are imaged as raised surface features representing molecules or cluster of molecules. Contact-mode AFM images of pillared interlayered clays (PILCs) cracking catalysts having alumina clusters as the structure supporting pillars, represent the catalyst surface as a collection of white spots in an hexagonal arrangements having nearest neighbor and lateral distances in agreement with the repeat distances of the clay siloxane layer; evidenced of surface alumina debris was not observed an all the extraframework alumina introduced by the pillaring reaction is located in the clay interlamellar space. After exposure for 5h to 100% steam at 760° C and 1 atm, the structural parameters of the surface disappear when the PILC was prepared using montmorillonite and were retained when the PILC was prepared from rectorite. Thus \\{PILCs\\} collapse is the result of the clay (single) silicate layer hydrothermal instability and it occurs irrespective of the hydrothermal stability of the pillars used. In contrast to FCCs, coke deposition from gas oil cracking at MAT conditions, form on the surface of pillared rectorites a layer geometrically similar to graphite that can be easily removed by heating in air at 600°C without affecting the PILC's structure or cracking activity.

Mario L. Occelli; Scot A.C. Gould

2004-01-01T23:59:59.000Z

90

Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography  

DOE Patents [OSTI]

A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

2001-01-01T23:59:59.000Z

91

Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography  

DOE Patents [OSTI]

A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

2002-01-01T23:59:59.000Z

92

Study of hard disk and slider surfaces using X-ray photoemission electron microscopy and near-edge X-ray absorption fine structure spectroscopy  

SciTech Connect (OSTI)

X-ray Photo Emission Electron Microscopy (X-PEEM) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy were applied to study the properties of amorphous hard carbon overcoats on disks and sliders, and the properties of the lubricant. The modification of lubricants after performing thermal desorption studies was measured by NEXAFS, and the results are compared to the thermal desorption data. The study of lubricant degradation in wear tracks is described. Sliders were investigated before and after wear test, and the modification of the slider coating as well as the transfer of lubricant to the slider was studied. The studies show that the lubricant is altered chemically during the wear. Fluorine is removed and carboxyl groups are formed.

Anders, S.; Stammler, T. [Lawrence Berkeley National lab., CA (United States). Advanced Light Source Div.; Bhatia, C.S. [SSD/IBM, San Jose, CA (United States); Stoehr, J. [IBM Research Div., San Jose, CA (United States). Almaden Research Center; Fong, W.; Chen, C.Y.; Bogy, D.B. [Univ. of California, Berkeley, CA (United States)

1998-04-01T23:59:59.000Z

93

Large-Area Zone Plate Fabrication with Optical Lithography  

SciTech Connect (OSTI)

Zone plates as condenser optics for x-ray microscopes offer simple optical designs for both illumination and spectral resolution when used as a linear monochromator. However, due to the long write times for electron beam lithography, both the availability and the size of zone plates for condensers have been limited. Since the resolution provided by the linear monochromator scales almost linearly with the diameter of the zone plate, the full potential for zone plate monochromators as illumination systems for x-ray microscopes has not been achieved. For example, the 10-mm-diameter zone plate has demonstrated a spectral resolution of E/{Delta}E = 700[1], but with a 26-mm-diameter zone plate, the calculated spectral resolution is higher than E/{Delta}E = 3000. These large-area zone plates are possible to fabricate with the leading edge semiconductor lithography tools such as those available at the College of Nanoscale Science and Engineering at the University at Albany. One of the lithography tools available is the ASML TWINSCAN XT: 1950i with 37-nm resolution [2]. A single 300-mm wafer can contain more than 60 fields, each with a large area condenser, and the throughput of the tool can be more than one wafer every minute.

Denbeaux, G. [College of Nanoscale Science and Engineering, University at Albany, 255 Fuller Road, Albany, NY 12203 (United States)

2011-09-09T23:59:59.000Z

94

E-Print Network 3.0 - atom localization lithography Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atomic Force Microscope Kumar et al... Lithography Parameters Using an ... Source: Yang, Eui-Hyeok - Department of Mechanical Engineering, Stevens Institute of Technology...

95

Nodal photolithography : lithography via far-field optical nodes in the resist  

E-Print Network [OSTI]

In this thesis, I investigate one approach - stimulated emission depletion - to surmounting the diffraction limitation of optical lithography. This approach uses farfield optical nodes to orchestrate reversible, saturable ...

Winston, Donald, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

96

Resolution limits and process latitude of comformable contact nano-lithography  

E-Print Network [OSTI]

Conformable Contact Lithography enables researchers to attain high-resolution lithographic patterning at manageable cost. This thesis characterizes the minimum resolvable feature size and process latitude of Conformable ...

Fucetola, Corey Patrick

2007-01-01T23:59:59.000Z

97

Patterning Organic Electronics Based on Nanoimprint Lithography  

E-Print Network [OSTI]

Figure 3. 2. The fabrication process of OMESFETs with a self-aligned gate electrode. (a) Spin-coat an imprinting resist (PMMA or Teflon) on the Au/Cr surface. (b) Thermally imprint the resist. (c) Remove...-AF film. (d) Remove the Teflon-AF residue layer by oxygen RIE. (e) Spin-coat the PMMA solution on Teflon-AF. (f) Remove the PMMA residue layer by oxygen RIE. (g) Dissolve Teflon-AF by FC-72...

Lo, Yi-Chen

2014-04-25T23:59:59.000Z

98

Molecular Studies of Surfaces under Reaction Conditions; Sum Frequency Generation Vibrational Spectroscopy, Scanning Tunneling Microscopy and Ambient Pressure X-Ray Photoelectron Spectroscopy  

SciTech Connect (OSTI)

Instruments developed in our laboratory permit the atomic and molecular level study of NPs under reaction conditions (SFG, ambient pressure XPS and high pressure STM). These studies indicate continuous restructuring of the metal substrate and the adsorbate molecules, changes of oxidation states with NP size and surface composition variations of bimetallic NPs with changes of reactant molecules.

Somorjai, G.A.

2009-11-11T23:59:59.000Z

99

Structure, defects, and impurities at the rutile TiO2(011)-(2 1) surface: A scanning tunneling microscopy study  

E-Print Network [OSTI]

Available online 21 July 2006 Abstract The titanium dioxide rutile (011) (equivalent to (101)) surface boundaries 1. Introduction Titanium dioxide is a versatile material that finds appli- cations in a wide range) structure are active adsorption sites. Segregation of calcium impurities from the bulk results in an ordered

Diebold, Ulrike

100

Vacancy migration, adatom motion, a.nd atomic bistability on the GaAs(110) surface studied by scanning tunneling microscopy  

E-Print Network [OSTI]

Vacancy migration, adatom motion, a.nd atomic bistability on the GaAs(110) surface studied temperature are reported. The slow dynamic behavior of vacancies and As adatoms can be resolved within a time scale of about one minute, The vacancies and As adatoms are observed to move preferably along the [110

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

X-ray lithography using holographic images  

DOE Patents [OSTI]

Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

Howells, M.S.; Jacobsen, C.

1997-03-18T23:59:59.000Z

102

X-ray lithography using holographic images  

DOE Patents [OSTI]

Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

1997-01-01T23:59:59.000Z

103

Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy  

SciTech Connect (OSTI)

Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H2, O2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8, results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.

McIntyre, B.J.

1994-05-01T23:59:59.000Z

104

Nanoimprint lithography with a soft roller and focused UV light for flexible substrates  

Science Journals Connector (OSTI)

This paper presents a nanoimprint lithography system for flexible substrates. With this system, a flexible substrate is pressed on a stamp with a low pressing load, a narrow contact area, and a focused ultraviolet (UV) light. The system efficiently transfers ... Keywords: Flexible substrate, Nanoimprint lithography, Roller, Ultraviolet light

Hyungjun Lim; Geehong Kim; Kee-Bong Choi; Mira Jeong; Jihyeong Ryu; Jaejong Lee

2012-10-01T23:59:59.000Z

105

A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b,  

E-Print Network [OSTI]

A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b, , Zhen He c microfluidic microbial fuel cell (MFC) platform built by soft-lithography tech- niques. The MFC design includes a unique sub-5 lL polydimethylsiloxane soft chamber featuring carbon cloth electrodes and microfluidic

106

Single-molecule transistor fabrication by self-aligned lithography and in situ molecular assembly  

E-Print Network [OSTI]

Single-molecule transistor fabrication by self-aligned lithography and in situ molecular assembly J of single-molecule transistors by self-aligned lithography and in situ molecular assembly. Ultrathin metal fabrication of electrodes that can be bridged by a single molecule remains a significant challenge

Hone, James

107

Quantum lithography with classical light: Generation of arbitrary patterns  

E-Print Network [OSTI]

Quantum lithography with classical light: Generation of arbitrary patterns Qingqing Sun,1,2 Philip R. Hemmer,3 and M. Suhail Zubairy1,2 1Department of Physics and Institute of Quantum Studies, Texas A&M University, College Station, Texas 77843..., Phys. Rev. Lett. 85, 2733 #1;2000#2;. #3;7#4; S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature #1;Lon- don#2; 412, 697 #1;2001#2;. #3;8#4; M. D?Angelo, M. V. Chekhova, and Y. Shih, Phys. Rev. Lett. 87, 013602 #1;2001#2;. #3;9#4; A. Pe?er, B...

Sun, Qingqing; Hemmer, Philip R.; Zubairy, M. Suhail

2007-01-01T23:59:59.000Z

108

Critical illumination condenser for extreme ultraviolet projection lithography  

SciTech Connect (OSTI)

A condenser system couples a radiation source to an imaging system. The authors have designed a critical illumination condenser system which meets the technical challenges of extreme ultraviolet projection lithography based on a ring field imaging system and a laser produced plasma source. The optical system, a three spherical mirror optical design, is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. This type of condenser optical design is sufficiently versatile to be employed with two distinct systems, one from Lawrence Livermore National Laboratory and one from AT and T/Sandia.

Cohen, S.J.; Seppala, L.G.

1995-03-02T23:59:59.000Z

109

Influence of Surface Preparation on Scanning Kelvin Probe Microscopy and Electron Backscatter Diffraction Analysis of Cross Sections of CdTe/CdS Solar Cells: Preprint  

SciTech Connect (OSTI)

In this work we investigated different methods to prepare cross sections of CdTe/CdS solar cells for EBSD and SKPM analyses. We observed that procedures used to prepare surfaces for EBSD are not suitable to prepare cross sections, and we were able to develop a process using polishing and ion-beam milling. This process resulted in very good results and allowed us to reveal important aspects of the cross section of the CdTe film. For SKPM, polishing and a light ion-beam milling resulted in cross sections that provided good data. We were able to observe the depletion region on the CdTe film and the p-n junction as well as the interdiffusion layer between CdTe and CdS. However, preparing good-quality cross sections for SKPM is not a reproducible process, and artifacts are often observed.

Moutinho, H. R.; Dhere, R. G.; Jiang, C. S.; Al-Jassim, M. M.

2011-06-01T23:59:59.000Z

110

The New X-Ray Lithography Beamline BL1 At DELTA  

SciTech Connect (OSTI)

Lithography using synchrotron radiation in the x-ray regime provides a powerful method to produce mechanical components of sub-millimeter size with a very good quality for microtechnological applications. In recent years the demand for x-ray lithography beamtime for industrial production of microparts increased rapidly resulting in the development of new experimental endstations at synchrotron radiation sources dedicated for the production of micromechanical devices. We present in this work the layout of the new x-ray lithography beamline BL1 at the synchrotron radiation source DELTA in Dortmund and discuss first results of exposure tests.

Lietz, D.; Paulus, M.; Sternemann, C.; Berges, U.; Hippert, B.; Tolan, M. [Fakultaet Physik / DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227 Dortmund (Germany)

2010-06-23T23:59:59.000Z

111

Critical illumination condenser for x-ray lithography  

DOE Patents [OSTI]

A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

Cohen, S.J.; Seppala, L.G.

1998-04-07T23:59:59.000Z

112

Plasma focus x?ray source for lithography  

Science Journals Connector (OSTI)

A bright and reliable x?ray source for lithography has been developed using plasma focus.Discharge with constant pressure gas one of the features of plasma focus makes the x?ray source system simple and lengthens lifetime. A fine ceramicinsulator made of alumina in place of a conventional Pyrex glass insulator improves system reliability. The system operates for more than 105discharges without maintenance. The lifetime of the system is ten times longer than that of a conventional plasma focusdevice. The resolution of a pattern printed by multishot exposure depends not only on the diameter of pinched plasma but also on the variation of source position. A new spherical electrode surrounding the plasma?focusing space is added to stabilize the location of the spot on the axis by eddy currents which exert the Lorentz force on the plasma. The spot position deviation has become negligibly small as compared with the pinched plasma diameter. The x?ray source size for neon is 1 mm in diameter and 10 mm in length. Consequently 0.4??m fine pattern has been printed with this source. Neon radiates intense x rays in opposite voltage polarity to that of a conventional plasma focus. Polarity inversion enables a very thin beryllium window to be located on the axis with the assistance of magnetic deflector and plasma stop. An x?ray intensity of 5 mJ/cm2/shot 25 cm from the source with an irradiance of 10 mW/cm2 at the 2?Hz repetition rate has been obtained. The plasma focus is a promising x?ray source for lithography from the viewpoint of intensity resolution and lifetime.

Yasuo Kato; Isao Ochiai; Yoshio Watanabe; Seiichi Murayama

1988-01-01T23:59:59.000Z

113

X-ray lithography induced radiation damage in CMOS and bipolar devices  

Science Journals Connector (OSTI)

Radiation effects from a synchroton x-ray lithography source on the performance degradation and long term reliability of high performance self-aligned bipolar devices and deep sub-micron CMOS devices are studi...

L. K. Wang

114

High Excitation Efficiency of Channel Plasmon Polaritons in Tailored, UV-Lithography-Defined V-Grooves  

Science Journals Connector (OSTI)

We demonstrate >50% conversion of light to V-groove channel plasmon-polaritons (CPPs) via compact waveguide-termination mirrors. Devices are fabricated using UV-lithography and...

Smith, Cameron L; Thilsted, Anil H; Garcia-Ortiz, Cesar E; Radko, Ilya P; Marie, Rodolphe; Jeppesen, Claus; Vannahme, Christoph; Bozhevolnyi, Sergey I; Kristensen, Anders

115

Modeling the point-spread function in helium-ion lithography  

E-Print Network [OSTI]

We present here a hybrid approach to modeling helium-ion lithography that combines the power and ease-of-use of the Stopping and Range of Ions in Matter (SRIM) software with the results of recent work simulating secondary ...

Winston, Donald

116

Nanometer-precision electron-beam lithography with applications in integrated optics  

E-Print Network [OSTI]

Scanning electron-beam lithography (SEBL) provides sub-10-nm resolution and arbitrary-pattern generation; however, SEBL's pattern-placement accuracy remains inadequate for future integrated-circuits and integrated-optical ...

Hastings, Jeffrey Todd, 1975-

2003-01-01T23:59:59.000Z

117

Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography  

E-Print Network [OSTI]

The authors, demonstrated that 4.5-nm-half-pitch structures could be achieved using electron-beam lithography, followed by salty development. They also hypothesized a development mechanism for hydrogen silsesquioxane, ...

Berggren, Karl K.

118

Contact region fidelity, sensitivity, and control in roll-based soft lithography  

E-Print Network [OSTI]

Soft lithography is a printing process that uses small features on an elastomeric stamp to transfer micron and sub-micron patterns to a substrate. Translating this lab scale process to a roll-based manufacturing platform ...

Petrzelka, Joseph E

2012-01-01T23:59:59.000Z

119

Modeling of multiple-optical-axis pattern-integrated interference lithography systems.  

E-Print Network [OSTI]

??The image quality and collimation in a multiple-optical-axis pattern-integrated interference lithography system are evaluated for an elementary optical system composed of single-element lenses. Image quality… (more)

Sedivy, Donald E.

2014-01-01T23:59:59.000Z

120

High resolution, high speed ultrahigh vacuum microscopy  

SciTech Connect (OSTI)

The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, low-energy electron diffraction, temperature programmed desorption, high-resolution electron energy-loss and Fourier-transform infrared spectroscopies, and others. Material systems ranging from atomic layers of metals and semiconductors to biology related depositions are being investigated. In the case of biological materials, however, strict limitations to high-resolution applications are imposed by electron radiation damage considerations.

Poppa, Helmut [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nonlinear vibrational microscopy  

DOE Patents [OSTI]

The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

2000-01-01T23:59:59.000Z

122

Materials Applications of Photoelectron Emission Microscopy....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications of Photoelectron Emission Microscopy. Materials Applications of Photoelectron Emission Microscopy. Abstract: Photoelectron emission microscopy (PEEM) is a versatile...

123

Soft Lithography Using Acryloxy Perfluoropolyether Composite Tu T. Truong, Rongsheng Lin, Seokwoo Jeon, Hee Hyun Lee, Joana Maria,  

E-Print Network [OSTI]

Soft Lithography Using Acryloxy Perfluoropolyether Composite Stamps Tu T. Truong, Rongsheng Lin composite patterning elements that use a commercially available acryloxy perfluoropolyether (a

Rogers, John A.

124

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acknowledgment Acknowledgment EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Acknowledgment Please acknowledge your use of the EMC in your publications and presentations with the following acknowledgment statement: The electron microscopy was accomplished at the Electron Microscopy Center at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC.

125

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SAMM SAMM EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Sub-Ã…ngstrom Microscopy and Microanalysis Facility In order to meet the scientific challenges of the future, the EMC has built a new state-of-the-art laboratory space for advanced electron microscopy. The new building has been designed to provide next- generation science with an operating environment that cannot be attained by renovating existing facilities. The EMC staff learned as much as possible from similar efforts around the world, including the SuperSTEM building at Daresbury, the Triebenberg Special Laboratory, the AML at Oak Ridge National Laboratory, the new NIST building, and various facilities for nanoscience.

126

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

Laboratory Laboratory Electron Microscopy Center Argonne Home > EMC > EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

127

Microscopy. I: A Review  

Science Journals Connector (OSTI)

...indicates the spindle to be an orienting force through which a co-ordinated con tractile...asoT,E. M. and M@&soN,C. W. Handbook of Chemi cal Microscopy. Vol. 1. 1st...498 "586,1950. 164. NAORA, H. Fundamental Studies on the Determination of Desoxypentose-Nucleic...

Robert C. Mellors

1953-02-01T23:59:59.000Z

128

Formation of Hierarchical Nanoparticle Pattern Arrays Using Colloidal Lithography and Two-Step Self-Assembly: Microspheres  

E-Print Network [OSTI]

Formation of Hierarchical Nanoparticle Pattern Arrays Using Colloidal Lithography and Two-Step Self of hierarchical nanoparticle arrays and film patterns using a novel combination of colloidal lithography (CL), two-step self-assembly, and reactive-ion etching (RIE). In this approach, a uniform nanoparticle film (15-50 nm

New Mexico, University of

129

Synchrotron radiation sources and condensers for projection x-ray lithography  

SciTech Connect (OSTI)

The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130[Angstrom] photons for production line projection x-ray lithography is possible.

Murphy, J.B.; MacDowell, A.A. (Brookhaven National Lab., Upton, NY (United States)); White, D.L. (AT and T Bell Labs., Murray Hill, NJ (United States)); Wood, O.R. II (AT and T Bell Labs., Holmdel, NJ (United States))

1992-01-01T23:59:59.000Z

130

Synchrotron radiation sources and condensers for projection x-ray lithography  

SciTech Connect (OSTI)

The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130{Angstrom} photons for production line projection x-ray lithography is possible.

Murphy, J.B.; MacDowell, A.A. [Brookhaven National Lab., Upton, NY (United States); White, D.L. [AT and T Bell Labs., Murray Hill, NJ (United States); Wood, O.R. II [AT and T Bell Labs., Holmdel, NJ (United States)

1992-11-01T23:59:59.000Z

131

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Office of Science User Facility An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

132

Electron Microscopy Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities » Facilities » Electron Microscopy Lab Electron Microscopy Lab Focusing on the study of microstructures with electron and ion beam instruments, including crystallographic and chemical techniques. April 12, 2012 Transmission electron microscope Rob Dickerson examines a multiphase oxide scale using the FEI Titan 80-300 transmission electron microscope. Contact Rob Dickerson (505) 667-6337 Email Rod McCabe (505) 606-1649 Email Pat Dickerson (505) 665-3036 Email Tom Wynn (505) 665-6861 Email Dedicated to the characterization of materials through imaging, chemical, and crystallographic analyses of material microstructures in support of Basic Energy Science, Laboratory Directed Research and Development, DoD, DOE, Work for Others, nuclear energy, and weapons programs. Go to full website »

133

Dynamic Transmission Electron Microscopy  

SciTech Connect (OSTI)

Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

2012-10-12T23:59:59.000Z

134

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training Training EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers User Training Prior Training in Electron Microscopy: People who wish to operate TEMs must have at least one college-level course in TEM with a lab component or previous TEM experience. The college course can't be one in which TEM was just one of many topics. For researchers who lack academic training and/or practical experience in electron microscopy, we suggest the short courses in TEM at the Hooke College of Applied Sciences, and the hands-on TEM courses at Northwestern University or the University of Chicago or Northern Illinois University.

135

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The mission of the Electron Microscopy Center (EMC) is to: Conduct materials research using advanced microstructural characterization methods; Maintain unique resources and facilities for scientific research for the both the Argonne National Laboratory and national scientific community. Develop and expand the frontiers of microanalysis by fostering the evolution of synergistic state-of-the-art resources in instrumentation, techniques and scientific expertise; The staff members of the EMC carry out their own research as well as participate in collaborative programs with other scientists at Argonne National Laboratory as well as researchers, educators and students worldwide. The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff perform collaborative research with members of other Divisions at Argonne National Laboratory and with collaborators from universities and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

136

Proton Beam Lithography at the University of Surrey's Ion Beam Centre , I. Gomez-Morilla  

E-Print Network [OSTI]

the Ion Scan software developed by the National University of Singapore [4]. Simulations with the SRIM in photosensitive glass [3]. This technique has clear advantages in comparison with electron beam lithography and X energy protons have a long range and a low lateral spread making them ideal for exposing thick resist

Webb, Roger P.

137

Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography  

E-Print Network [OSTI]

Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography Michael D. Austin pitch and feature sizes of these applications. Thus, presently, re- searchers have been largely pitch over a large area, its applications in nanogap metal contacts, and a study of fabrication yields

138

Reduction imaging with soft x rays for projection lithography A. A. MacDowell  

E-Print Network [OSTI]

experiments with a 20X reduction Schwarzschild optic produced features as small as 50 nm. It is considered multilayer coated mirrors to image soft x rays at/or near the diffraction limit on to resist coated wafers with projection x-ray lithography. This paper will describe our experimental work using a Schwarzschild camera

Bokor, Jeffrey

139

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Submit an EMC Proposal Submit an EMC Proposal EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Submit an EMC Proposal EMC Proposal Submission Deadline Dates for FY2014: November 1, 2013 March 7, 2014 July 11, 2014 Is your proposal a multi-facility proposal? In other words, do you intend to submit proposals to EMC and APS or CNM for your research project? If your answer is "yes," go now to the Proposal Gateway.

140

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EMC Users Committee EMC Users Committee EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers EMC Users Committee An EMC Users Committee has been organized to enhance communication between the user community and the EMC. While the EMC relies on and encourages strong interaction among its users and between its staff and users, the Users Committee provides an additional formal mechanism for user input into EMC planning and operations to ensure that users' needs and concerns are addressed.

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

End-of-Proposal Report End-of-Proposal Report EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers End-of-Proposal Report In accordance with the User Agreement, please provide the EMC with the following information when your proposal expires (one year after its acceptance date or when the experiments end, whichever is sooner). A research summary/progress report using these two templates:

142

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Becoming a User Becoming a User EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Procedure to Become a User at the EMC 1. Summary All users have to fulfill certain requirements before access to the EMC can be granted. The following list provides short descriptions of the requirements. Details can be found on this page and via the relevant links at the left. Register for access to Argonne's scientific user facilities (or update your user registration information).

143

Microfield exposure tool enables advances in EUV lithography development  

SciTech Connect (OSTI)

With demonstrated resist resolution of 20 nm half pitch, the SEMATECH Berkeley BUV microfield exposure tool continues to push crucial advances in the areas of BUY resists and masks. The ever progressing shrink in computer chip feature sizes has been fueled over the years by a continual reduction in the wavelength of light used to pattern the chips. Recently, this trend has been threatened by unavailability of lens materials suitable for wavelengths shorter than 193 nm. To circumvent this roadblock, a reflective technology utilizing a significantly shorter extreme ultraviolet (EUV) wavelength (13.5 nm) has been under development for the past decade. The dramatic wavelength shrink was required to compensate for optical design limitations intrinsic in mirror-based systems compared to refractive lens systems. With this significant reduction in wavelength comes a variety of new challenges including developing sources of adequate power, photoresists with suitable resolution, sensitivity, and line-edge roughness characteristics, as well as the fabrication of reflection masks with zero defects. While source development can proceed in the absence of available exposure tools, in order for progress to be made in the areas of resists and masks it is crucial to have access to advanced exposure tools with resolutions equal to or better than that expected from initial production tools. These advanced development tools, however, need not be full field tools. Also, implementing such tools at synchrotron facilities allows them to be developed independent of the availability of reliable stand-alone BUY sources. One such tool is the SEMATECH Berkeley microfield exposure tool (MET). The most unique attribute of the SEMA TECH Berkeley MET is its use of a custom-coherence illuminator made possible by its implementation on a synchrotron beamline. With only conventional illumination and conventional binary masks, the resolution limit of the 0.3-NA optic is approximately 25 nm, however, with EUV not expected in production before the 22-nm half pitch node even finer resolution capabilities are now required from development tools. The SEMATECH Berkeley MET's custom-coherence illuminator allows it to be used with aggressive modified illumination enabling kJ factors as low as 0.25. Noting that the lithographic resolution of an exposure tool is defined as k{sub 1}{lambda}/NA, yielding an ultimate resolution limit of 11 nm. To achieve sub-20-nm aerial-image resolution while avoiding forbidden pitches on Manhattan-geometry features with the centrally-obscured MET optic, a 45-degree oriented dipole pupil fill is used. Figure 1 shows the computed aerial-image contrast as a function of half pitch for a dipole pupil fill optimized to print down to the 19-nm half pitch level. This is achieved with relatively uniform performance at larger dimensions. Using this illumination, printing down to the 20-nm half pitch level has been demonstrated in chemically amplified resists as shown in Fig. 2. The SEMATECH Berkeley MET tool plays a crucial role in the advancement of EUV resists. The unique programmable coherence properties of this tool enable it to achieve higher resolution than other EUV projection tools. As presented here, over the past year the tool has been used to demonstrate resist resolutions of 20 half pitch. Although not discussed here, because the Berkeley MET tool is a true projection lithography tool, it also plays a crucial role in advanced EUV mask research. Examples of the work done in this area include defect printability, mask architecture, and phase shift masks.

Naulleau, Patrick

2009-09-07T23:59:59.000Z

144

Surface Imaging Using UHV-CTEM  

Science Journals Connector (OSTI)

......review-article Review Surface Imaging Using UHV-CTEM Katsumichi Yagi Physics Department...conventional transmission electron microscopies (UHV-CTEM) is reviewed. Techniques for routine...surface dynamic processes. surface imaging|UHV-CTEM|surface structure| Review / Electron......

Katsumichi Yagi

1995-10-01T23:59:59.000Z

145

Introduction to Photoelectron Emission Microscopy: Principles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction to Photoelectron Emission Microscopy: Principles and Applications. Introduction to Photoelectron Emission Microscopy: Principles and Applications. Abstract: In the...

146

Chapter 11 - Light sheet microscopy  

Science Journals Connector (OSTI)

Abstract This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail.

Michael Weber; Michaela Mickoleit; Jan Huisken

2014-01-01T23:59:59.000Z

147

Sub-10-nm half-pitch electron-beam lithography by using poly(methyl methacrylate) as a negative resist  

E-Print Network [OSTI]

Developing high-resolution resists and processes for electron-beam lithography is of great importance for high-density magnetic storage, integrated circuits, and nanoelectronic and nanophotonic devices. Until now, hydrogen ...

Berggren, Karl K.

148

Graphene Edge Lithography Guibai Xie, Zhiwen Shi, Rong Yang, Donghua Liu, Wei Yang, Meng Cheng, Duoming Wang, Dongxia Shi,  

E-Print Network [OSTI]

Graphene Edge Lithography Guibai Xie, Zhiwen Shi, Rong Yang, Donghua Liu, Wei Yang, Meng Cheng: Fabrication of graphene nanostructures is of importance for both investigating their intrinsic physical approach for graphene nanostructures. Compared with conventional lithographic fabrication techniques

Zhang, Guangyu

149

2D and 3D periodic templates through holographic interference lithography : photonic and phononic crystals and biomimetic microlens arrays  

E-Print Network [OSTI]

In this thesis a simple technique for controlling structure via holographic interference lithography was established and implemented. Access to various space groups including such important structures as the level set ...

Ullal, Chaitanya K. (Chaitanya Kishore)

2005-01-01T23:59:59.000Z

150

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Information for EMC Users General Information for EMC Users The Electron Microscopy Center (EMC) is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory. It is one of three scientific user facilities for electron beam microcharacterization and one of several National User Facilities located at Argonne National Laboratory. As a scientific user facility, the EMC supports user-accessible instruments (Resources) for high spatial resolution microanalysis, field imaging, nanoscale structural characterization, nanoscale fabrication and manipulation, and unique in situ studies of materials under the influence of ion-beam irradiation. These capabilities are used in a diverse variety of research areas to address grand challenge scientific questions encompassing, for example, energy-related studies, biology, astrophysics, archaeology, superconductivity, nanotechnology, environmental engineering, tribology, and ferroelectricity. The research is performed both by users and by EMC staff. While many users work independently, the most challenging research activities require extensive contributions from EMC staff.

151

Chemical Effect of Dry and Wet Cleaning of the Ru Protective Layer of the Extreme ultraviolet (EUV) Lithography Reflector  

SciTech Connect (OSTI)

The authors report the chemical influence of cleaning of the Ru capping layer on the extreme ultraviolet (EUV) reflector surface. The cleaning of EUV reflector to remove the contamination particles has two requirements: to prevent corrosion and etching of the reflector surface and to maintain the reflectivity functionality of the reflector after the corrosive cleaning processes. Two main approaches for EUV reflector cleaning, wet chemical treatments [sulfuric acid and hydrogen peroxide mixture (SPM), ozonated water, and ozonated hydrogen peroxide] and dry cleaning (oxygen plasma and UV/ozone treatment), were tested. The changes in surface morphology and roughness were characterized using scanning electron microscopy and atomic force microscopy, while the surface etching and change of oxidation states were probed with x-ray photoelectron spectroscopy. Significant surface oxidation of the Ru capping layer was observed after oxygen plasma and UV/ozone treatment, while the oxidation is unnoticeable after SPM treatment. Based on these surface studies, the authors found that SPM treatment exhibits the minimal corrosive interactions with Ru capping layer. They address the molecular mechanism of corrosive gas and liquid-phase chemical interaction with the surface of Ru capping layer on the EUV reflector.

Belau, Leonid; Park, Jeong Y.; Liang, Ted; Seo, Hyungtak; Somorjai, Gabor A.

2009-04-10T23:59:59.000Z

152

The Crystal Structure of a Coxsackievirus B3-RD Variant and a Refined 9-Angstrom Cryo-Electron Microscopy Reconstruction of the Virus Complexed with Decay-Accelerating Factor (DAF) Provide a New Footprint of DAF on the Virus Surface  

Science Journals Connector (OSTI)

...features with the fitted crystal structure of the virus...from the newly solved crystal structure of the RD variant...the virus surface as a bent cylinder crossing in...graph describing the spherical average distribution...map calculated from the crystal structure (white) was...

Joshua D. Yoder; Javier O. Cifuente; Jieyan Pan; Jeffrey M. Bergelson; Susan Hafenstein

2012-09-12T23:59:59.000Z

153

Coal Combustion Fly Ash Characterization: Electron Spectroscopy for Chemical Analysis, Energy Dispersive X-ray Analysis, and Scanning Electron Microscopy  

Science Journals Connector (OSTI)

The surface and bulk properties of five samples of fly ash have been examined by electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM) and energy...

Rothenberg, S J; Denee, P; Holloway, P

1980-01-01T23:59:59.000Z

154

Directly correlated transmission electron microscopy and atom...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary Directly correlated transmission electron microscopy...

155

Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography  

SciTech Connect (OSTI)

The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

2014-07-07T23:59:59.000Z

156

Resist trimming technique in CF4/O2 high-density plasmas for sub-0.1 µm MOSFET fabrication using 248-nm lithography  

Science Journals Connector (OSTI)

Resist trimming process using CF4/O2 has been developed for sub-0.1 µm polysilicon gate patterning using conventional 248-nm lithography. This process allows the successful fabrication of 80-nm MOS devices. The trimming step ... Keywords: 248-nm lithography, CF4/O2, critical dimension (CD), polycrystalline silicon (polysilicon), polysilicon gate, resist trimming

Chian-Yuh Sin; Bing-Hung Chen; W. L. Loh; J. Yu; P. Yelehanka; L. Chan

2003-04-01T23:59:59.000Z

157

Vacuum 82 (2008) 872879 Surface erosion and modification by energetic ions  

E-Print Network [OSTI]

Vacuum 82 (2008) 872­879 Surface erosion and modification by energetic ions Z. Insepova,�, JV accelerators, fission and fusion reactors, and in the development of extreme ultra-violet lithography devices vacuum breakdown of rf-cavities. GCIB can also mitigate Q-slope drop in superconducting Nb

Harilal, S. S.

158

Achieving clean epitaxial graphene surfaces suitable for device applications by improved lithographic process  

SciTech Connect (OSTI)

It is well-known that the performance of graphene electronic devices is often limited by extrinsic scattering related to resist residue from transfer, lithography, and other processes. Here, we report a polymer-assisted fabrication procedure that produces a clean graphene surface following device fabrication by a standard lithography process. The effectiveness of this improved lithography process is demonstrated by examining the temperature dependence of epitaxial graphene-metal contact resistance using the transfer length method for Ti/Au (10?nm/50?nm) metallization. The Landauer-Buttiker model was used to explain carrier transport at the graphene-metal interface as a function of temperature. At room temperature, a contact resistance of 140 ?-?m was obtained after a thermal anneal at 523?K for 2?hr under vacuum, which is comparable to state-of-the-art values.

Nath, A., E-mail: anath@gmu.edu; Rao, M. V. [George Mason University, 4400 University Dr., Fairfax, Virginia 22030 (United States); Koehler, A. D.; Jernigan, G. G.; Wheeler, V. D.; Hite, J. K.; Hernández, S. C.; Robinson, Z. R.; Myers-Ward, R. L.; Eddy, C. R.; Gaskill, D. K. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, D.C. 20375 (United States); Garces, N. Y. [Sotera Defense Solutions, 2200 Defense Hwy. Suite 405, Crofton, Maryland 21114 (United States)

2014-06-02T23:59:59.000Z

159

Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography  

E-Print Network [OSTI]

We report on the fabrication of two-dimensional periodic photonic nanostructures by nanoimprint lithography and dry etching, and their integration into a 1-{\\mu}m-thin mono-crystalline silicon solar cell. Thanks to the periodic nanopatterning, a better in-coupling and trapping of light is achieved, resulting in an absorption enhancement. The proposed light trapping mechanism can be explained as the superposition of a graded index effect and of the diffraction of light inside the photoactive layer. The absorption enhancement is translated into a 23% increase in short-circuit current, as compared to the benchmark cell, resulting in an increase in energy-conversion efficiency.

Trompoukis, Christos; Depauw, Valérie; Gordon, Ivan; Poortmans, Jef; 10.1063/1.4749810.

2012-01-01T23:59:59.000Z

160

Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial  

SciTech Connect (OSTI)

We present an approach for extremely fast, wafer-scale fabrication of chiral starfish metamaterials based on electron beam- and on-edge lithography. A millimeter sized array of both the planar chiral and the true 3D chiral starfish is realized, and their chiroptical performances are compared by circular dichroism measurements. We find optical activity in the visible and near-infrared spectral range, where the 3D starfish clearly outperforms the planar design by almost 2 orders of magnitude, though fabrication efforts are only moderately increased. The presented approach is capable of bridging the gap between high performance optical chiral metamaterials and industrial production by nanoimprint technology.

Dietrich, K., E-mail: dietrich.kay@uni-jena.de; Menzel, C.; Lehr, D.; Puffky, O.; Pertsch, T.; Tünnermann, A.; Kley, E.-B. [Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Hübner, U. [Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena (Germany)

2014-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Atom Nano-lithography with Multi-layer Light Masks: Particle Optics Analysis  

E-Print Network [OSTI]

We study the focusing of atoms by multiple layers of standing light waves in the context of atom lithography. In particular, atomic localization by a double-layer light mask is examined using the optimal squeezing approach. Operation of the focusing setup is analyzed both in the paraxial approximation and in the regime of nonlinear spatial squeezing for the thin-thin as well as thin-thick atom lens combinations. It is shown that the optimized double light mask may considerably reduce the imaging problems, improve the quality of focusing and enhance the contrast ratio of the deposited structures.

R. Arun; I. Sh. Averbukh; T. Pfau

2005-03-22T23:59:59.000Z

162

A Comparison of Photoresist Resolution Metrics using 193 nm and EUV Lithography  

SciTech Connect (OSTI)

Image blur due to chemical amplification represents a fundamental limit to photoresist performance and manifests itself in many aspects of lithographic performance. Substantial progress has been made in linking image blur with simple resolution metrics using EUV lithography. In this presentation, they examine performance of 193 nm resist and EUV resist systems using modulation transfer function, corner rounding, and other resolution metrics. In particular, they focus on cross-comparisons in which selected EUV and 193 nm resist are evaluated using both EUV and 193 nm lithography. Simulation methods linking 193 nm and EUV performance will be described as well. Results from simulation indicate that image blur in current generation 193 nm photoresists is comparable to that of many EUV resists, but that ultra-low diffusion materials designs used in very high resolution EUV resists can result in substantially lower blur. In addition to detailing correlations between EUV and 193 nm experimental methods, they discuss their utility in assessing performance needs of future generation photoresists.

Jones, Juanita; Pathak, Piyush; Wallow, Thomas; LaFontaine, Bruno; Deng, Yunfei; Kim, Ryoung-han; Kye, Jongwook; Levinson, Harry; Naulleau, Patrick; Anderson, Chris

2007-08-20T23:59:59.000Z

163

Wafer and reticle positioning system for the Extreme Ultraviolet Lithography Engineering Test Stand  

SciTech Connect (OSTI)

This paper is an overview of the wafer and reticle positioning system of the Extreme Ultraviolet Lithography (EUVL) Engineering Test Stand (ETS). EUVL represents one of the most promising technologies for supporting the integrated circuit (IC) industry's lithography needs for critical features below 100nm. EUVL research and development includes development of capabilities for demonstrating key EUV technologies. The ETS is under development at the EUV Virtual National Laboratory, to demonstrate EUV full-field imaging and provide data that supports production-tool development. The stages and their associated metrology operated in a vacuum environment and must meet stringent outgassing specifications. A tight tolerance is placed on the stage tracking performance to minimize image distortion and provide high position repeatability. The wafer must track the reticle with less than {+-}3nm of position error and jitter must not exceed 10nm rms. To meet these performance requirements, magnetically levitated positioning stages utilizing a system of sophisticated control electronics will be used. System modeling and experimentation have contributed to the development of the positioning system and results indicate that desired ETS performance is achievable.

WRONOSKY,JOHN B.; SMITH,TONY G.; CRAIG,MARCUS J.; STURGIS,BEVERLY R.; DARNOLD,JOEL R.; WERLING,DAVID K.; KINCY,MARK A.; TICHENOR,DANIEL A.; WILLIAMS,MARK E.; BISCHOFF,PAUL

2000-01-27T23:59:59.000Z

164

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect (OSTI)

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

165

Characterisation of ‘Hadley’ grains by confocal microscopy  

Science Journals Connector (OSTI)

This work forms part of an exploratory study to investigate the use of fluorescent laser scanning confocal microscopy (LSCM) for imaging pores and voids in hardened mortar and concrete. The study has revealed the suitability of the technique for the characterisation of hollow shell (Hadley) hydration grains (these are grains that contain a void within the original boundary of the cement grain). It was found that Hadley grains could be imaged using fluorescent light techniques, subsequent to their impregnation by epoxy resin doped with a fluorescent dye. Prior to this work, it was not clear whether hollow grains were impregnated due to connections with capillary pores, or if they had been impregnated due to connections with damage caused during surface preparation (i.e. micro-cracks or deep surface scratches). However using the 3D LSCM imaging technique it was observed that connections between Hadley grains and hardened cement paste (HCP) capillary pores did exist, in different forms, at depths well below the surface providing ‘conduits’ along which resin was able to flow and impregnate the hollow grains. Other aspects of imaging Hadley grains are also described, such as the sectioning of ‘tips’ of larger grains often taken as separate smaller pores or grains in 2D images.

M.K. Head; H.S. Wong; N.R. Buenfeld

2006-01-01T23:59:59.000Z

166

Development of a cost effective surface-patterned transparent conductive coating as top-contact of light emitting diodes  

SciTech Connect (OSTI)

Sol-gel process has been used to form indium zinc oxide films using an optimized combination of zinc to indium concentration in the precursor solutions. Different structures, like one (1D) and two-dimensional (2D) gratings and diffractive optical elements (DOEs) in the form of Fresnel lens are fabricated on the film surface of proposed top metal contact of LED by imprint soft lithography technique. These structures can enhance the LED's light extraction efficiency (LEE) or can shape the output beam pattern, respectively. Several characterizations are done to analyze the material and structural properties of the films. The presence of 1D and 2D gratings as well as DOEs is confirmed from field emission scanning electron and atomic force microscopes analyses. Although, X-ray diffraction shows amorphous nature of the film, but transmission electron microscopy study shows that it is nano crystalline in nature having fine particles (?8?nm) of hexagonal ZnO. Shrinkage behaviour of gratings as a function of curing temperature is explained by Fourier transform infra-red spectra and thermo gravimetric-differential thermal analysis. The visible transmission and sheet resistance of the sample are found comparable to tin doped indium oxide (ITO). Therefore, the film can compete as low cost substitute of ITO as top metal contact of LEDs.

Haldar, Arpita [Department of Applied Optics and Photonics, University of Calcutta, Kolkata-700009 (India); Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Bera, Susanta; Jana, Sunirmal, E-mail: sjana@cgcri.res.in, E-mail: srirajib@yahoo.com [Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Bhattacharya, Kallol; Chakraborty, Rajib, E-mail: sjana@cgcri.res.in, E-mail: srirajib@yahoo.com [Department of Applied Optics and Photonics, University of Calcutta, Kolkata-700009 (India)

2014-05-21T23:59:59.000Z

167

Fully scaled 0.5 ?m MOS cicuits by synchroton X-ray lithography: Resist systems and line width control  

Science Journals Connector (OSTI)

To test the line width control of typical resist systems in x-ray lithography, we have developed and utilized x-ray resist processes for all levels in the fabrication of NMOS and CMOS devices with 0.5 ?m ground rules. Results from line width control studies will be discussed along with the process latitude from the resist systems.

D. Seeger; K. Kwietniak; D. Crockatt; A. Wilson; J. Warlaumont

1989-01-01T23:59:59.000Z

168

Fabrication of large area 100 nm pitch grating by spatial frequency doubling and nanoimprint lithography for subwavelength  

E-Print Network [OSTI]

Fabrication of large area 100 nm pitch grating by spatial frequency doubling and nanoimprint nm pitch gratings over a large area 10 cm2 using a simple, low-cost, fast process. This method doubling and 2 pattern replication using nanoimprint lithography. The form birefringence of a 100 nm pitch

169

Dynamic imaging with electron microscopy  

ScienceCinema (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-05-30T23:59:59.000Z

170

Dynamic imaging with electron microscopy  

SciTech Connect (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-02-20T23:59:59.000Z

171

Surface Localization Determinants of Borrelia burgdorferi Lipoproteins  

E-Print Network [OSTI]

these virulence factors reach the spirochetal surface. We observed in previous studies that monomeric red fluorescent protein 1 (mRFP1) fused to specifically mutated outer surface protein A (OspA) lipopeptides could be detected by epifluorescence microscopy...

Kumru, Ozan

2011-02-25T23:59:59.000Z

172

Organic solvent-free water-developable sugar resist material derived from biomass in green lithography  

Science Journals Connector (OSTI)

Abstract We have demonstrated an organic solvent-free water-developable branched sugar resist material derived from biomass for its use in green electron beam lithography. This emphasizes the use of plant products instead of conventionally used tetramethylammonium hydroxide and organic solvents. The rationally designed water-developable branched sugar resist material developed in this study can be patterned with an excellent sensitivity of 7 ?C/cm2 and a resolution of 50–200 nm lines. In addition, it indicated sufficient thermal stability at ?180 °C, acceptable CF4 etch selectivity with a hardmask material, 42–53% rate of chemical reaction of acryloyl groups affected by the tacticity of branched sugar chain polymers, and developable in pure water at 23 °C for 60 s.

Satoshi Takei; Akihiro Oshima; Takumi Ichikawa; Atsushi Sekiguchi; Miki Kashiwakura; Takahiro Kozawa; Seiichi Tagawa; Tomoko G. Oyama; Syoji Ito; Hiroshi Miyasaka

2014-01-01T23:59:59.000Z

173

Study of nano imprinting using soft lithography on Krafty glue and PVDF polymer thin films  

SciTech Connect (OSTI)

The present work reveals soft lithography strategy based on self assembly and replica molding for carrying out micro and nanofabrication. It provides a convenient, effective and very low cost method for the formation and manufacturing of micro and nano structures. Al-layer of compact disc (sony CD-R) used as a stamp with patterned relief structures to generate patterns and structures with pattern size of 100nm height, 1.7 ?m wide. In literature, PDMS (Polydimethylsiloxane) solution is widely used to get negative copy of the Al-layer. In this work, we have used inexpensive white glue (Polyvinylacetate + water), 15gm (?5) and PVDF (Polyvinylidene difluoride) spin coated films and successfully transferred the nano patterns of Al layer on to white glue and PVDF films.

Sankar, M. S. Ravi, E-mail: rameshg.phy@pondiuni.edu; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu [Department of Physics, Pondicherry University, R. V. Nagar, Kalapet, Puducherry - 605014 (India)

2014-04-24T23:59:59.000Z

174

Fabrication and performance of nanoscale ultra-smooth programmeddefects for EUV Lithography  

SciTech Connect (OSTI)

We have developed processes for producing ultra-smooth nanoscale programmed substrate defects that have applications in areas such as thin film growth, EUV lithography, and defect inspection. Particle, line, pit, and scratch defects on the substrates between 40 and 140 nm wide 50 to 90 nm high have been successfully produced using e-beam lithograpy and plasma etching in both Silicon and Hydrosilsequioxane films. These programmed defect substrates have several advantages over those produced previously using gold nanoparticles or polystyrene latex spheres--most notably, the ability to precisely locate features and produce recessed as well as bump type features in ultra-smooth films. These programmed defects were used to develop techniques for film defect mitigation and results are discussed.

Olynick, D.L.; Salmassi, F.; Liddle, J.A.; Mirkarimi, P.B.; Spiller, E.; Baker, S.L.; Robinson, J.

2005-02-01T23:59:59.000Z

175

Gd plasma source modeling at 6.7 nm for future lithography  

SciTech Connect (OSTI)

Plasmas containing gadolinium have been proposed as sources for next generation lithography at 6.x nm. To determine the optimum plasma conditions, atomic structure calculations have been performed for Gd{sup 11+} to Gd{sup 27+} ions which showed that n = 4 - n = 4 resonance transitions overlap in the 6.5-7.0 nm region. Plasma modeling calculations, assuming collisional-radiative equilibrium, predict that the optimum temperature for an optically thin plasma is close to 110 eV and that maximum intensity occurs at 6.76 nm under these conditions. The close agreement between simulated and experimental spectra from laser and discharge produced plasmas indicates the validity of our approach.

Li Bowen; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Higashiguchi, Takeshi; Yugami, Noboru [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kanagawa, Saitama 332-0012 (Japan); Otsuka, Takamitsu [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Research Institute of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-0072 (Japan)

2011-12-05T23:59:59.000Z

176

Surface contamination effects on resistance of gold nanowires  

SciTech Connect (OSTI)

Gold nanowires were patterned with e-beam lithography and fabricated with a gold film deposited by e-beam evaporation. The resistances of these wires were measured and found to be nonlinear with respect to surface area/volume. With x-ray photoelectron spectroscopy analysis, carbon and oxygen contaminants in the forms of C, C-O-C, and C=O were found adsorbed on the gold surface. This contamination adsorbed on the surface may lead to increased resistance of nanowires.

Lilley, Carmen M.; Huang, Qiaojian [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street (MC 251), Chicago, Illinois 60607 (United States)

2006-11-13T23:59:59.000Z

177

Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy  

DOE Patents [OSTI]

Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

Thomas, Clarence E. (Knoxville, TN); Baylor, Larry R. (Farragut, TN); Voelkl, Edgar (Oak Ridge, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Whealton, John H. (Oak Ridge, TN); Whitson, John C. (Clinton, TN); Wilgen, John B. (Oak Ridge, TN)

2002-12-24T23:59:59.000Z

178

Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography  

E-Print Network [OSTI]

of New Mexico, Albuquerque, New Mexico 87106 Will Conley Freescale Semiconductor Assignee known from oil-immersion optical microscopy. Through the use of immersion media, such as deionized water

New Mexico, University of

179

Electron Microscopy | Center for Functional Nanomaterials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscopy Facility Electron Microscopy Facility Electron Microscopy This facility consists of four top-of-the line transmission electron microscopes, two of which are highly specialized instruments capable of extreme levels of resolution, achieved through spherical aberration correction. The facility is also equipped with extensive sample-preparation capabilities. The scientific interests of the staff focus on understanding the microscopic origin of the physical and chemical behavior of materials, with specific emphasis on in-situ studies of materials in native, functional environments. Capabilities Atomic-resolution imaging of internal materials structure with scanning transmission and transmission electron microscopy Spectroscopic characterization with energy dispersive x-ray

180

Microscopy charges ahead | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microscopy charges ahead By Jared Sagoff * May 28, 2014 Tweet EmailPrint ARGONNE, Ill. - Ferroelectric materials - substances in which there is a slight and reversible shift of...

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Synthesis and structure of Al clusters supported on TiO2,,110...: A scanning tunneling microscopy study  

E-Print Network [OSTI]

Synthesis and structure of Al clusters supported on TiO2,,110...: A scanning tunneling microscopy, Texas 77843-3255 Received 14 October 1997; accepted 6 April 1998 Al clusters supported on TiO2(110) have been investigated using scanning tunneling microscopy. Al interacts strongly with the TiO2(110) surface

Goodman, Wayne

182

Large-solid-angle illuminators for extreme ultraviolet lithography with laser plasmas  

SciTech Connect (OSTI)

Laser Plasma Sources (LPSS) of extreme ultraviolet radiation are an attractive alternative to synchrotron radiation sources for extreme ultraviolet lithography (EUVL) due to their modularity, brightness, and modest size and cost. To fully exploit the extreme ultraviolet power emitted by such sources, it is necessary to capture the largest possible fraction of the source emission half-sphere while simultaneously optimizing the illumination stationarity and uniformity on the object mask. In this LDRD project, laser plasma source illumination systems for EUVL have been designed and then theoretically and experimentally characterized. Ellipsoidal condensers have been found to be simple yet extremely efficient condensers for small-field EUVL imaging systems. The effects of aberrations in such condensers on extreme ultraviolet (EUV) imaging have been studied with physical optics modeling. Lastly, the design of an efficient large-solid-angle condenser has been completed. It collects 50% of the available laser plasma source power at 14 nm and delivers it properly to the object mask in a wide-arc-field camera.

Kubiak, G.D.; Tichenor, D.A. [Sandia National Labs., Livermore, CA (United States); Sweatt, W.C.; Chow, W.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-06-01T23:59:59.000Z

183

Polythiophene-based charge dissipation layer for electron beam lithography of zinc oxide and gallium nitride  

Science Journals Connector (OSTI)

The ability of thin polythiophene layers to dissipate accumulated charge in the electron beam lithography (EBL) of wide bandgap semiconductors such as zinc oxide and gallium nitride is demonstrated. A quick and inexpensive processing method is demonstrated for EBL exposure of dense and high-resolution patterns in a hydrogen silsesquioxane (HSQ) negative-tone resistdeposited on bulk ZnO samples and with GaN/AlN on sapphire substrates. For the former experimental results are given for three different cases: where no charge dissipation layer was used as well as cases where 40-nm-thick Al and 100-nm-thick conductive polymer layers were used on the top of the HSQ resist. For the latter material EBL exposure was investigated for pure HSQ and for HSQ with a thin conductive polymer layer on top. Based on the scanning electron microscope observations of the resulting photonic crystal(PhC) pattern conventional Al and the proposed polymer approach were compared. Good agreement between these results is reported while the new method considerably simplifies sample processing. Spin-coatable conducting polymer may be easily removed due to its solubility in water which makes it a perfect solution for the processing of amphoteric oxide samples i.e. zinc oxide. Gallium nitride processing also benefits from polymer dissipation layer usage due to extended exposure range and the avoidance of dense pattern overexposure in HSQ.

R. Dylewicz; S. Lis; R. M. De La Rue; F. Rahman

2010-01-01T23:59:59.000Z

184

Nonlinear Dark-Field Microscopy Hayk Harutyunyan,  

E-Print Network [OSTI]

/20/2010 Published on Web: 11/16/2010 FIGURE 1. Illustration of the nonlinear dark-field imaging method. Two incidentNonlinear Dark-Field Microscopy Hayk Harutyunyan, Stefano Palomba, Jan Renger, Romain Quidant Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large

Novotny, Lukas

185

Scanning Probe Microscopy Studies of Carbon Nanotubes  

E-Print Network [OSTI]

Scanning Probe Microscopy Studies of Carbon Nanotubes Teri Wang Odom1 , Jason H. Hafner1 relationship between Single-Walled Carbon Nanotube (SWNT) atomic structure and electronic properties, (2, properties and application of carbon nanotube probe microscopy tips to ultrahigh resolution and chemically

Odom, Teri W.

186

Faculty Position in Materials Electron Microscopy  

E-Print Network [OSTI]

Faculty Position in Materials Electron Microscopy at the Ecole Polytechnique Fédérale de Lausanne in electron microscopy of materials within its Institute of Materials. We seek exceptional individuals who community. Top-level applications are invited from candidates at the cutting edge of electron microscopic

Candea, George

187

Multiphoton microscopy with near infrared contrast  

E-Print Network [OSTI]

Multiphoton microscopy with near infrared contrast agents Siavash Yazdanfar,a, * Chulmin Joo,a Chun limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared NIR fluorescent Engineers. DOI: 10.1117/1.3420209 Keywords: two-photon microscopy; ultrafast fiber lasers; near-infrared

Larson-Prior, Linda

188

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Specimen Preparation Specimen Preparation Preparation of samples with large transparent areas and flat surfaces is a key element of electron microscopy. In particular, the interpretation of lattice or holographic images is often limited by the sample's geometry and surface roughness. These parameters are largely determined by a particular sample preparation procedure. The increasing demand for microscopes with a spatial resolution of better than 1Ã… increases the need for improved sample preparation techniques. A substantial effort at NCEM is devoted to the development of reliable and specialized thinning techniques. Current programs explore the application of chemicals to shape the surfaces of thin films, the use of nanospheres for observation of small particles, and the

189

Field-ion microscopy observation of single-walled carbon  

Science Journals Connector (OSTI)

Field-ion microscopy (FIM), a tool for surface analysis with atomic resolution, has been employed to observe the end structure of single-walled carbon nanotubes (SWCNTs). FIM images revealed the existence of open SWCNT ends. Amorphous carbon atoms were also observed to occur around SWCNTs and traditional field evaporation failed to remove them. Heat treatment was found to be efficacious in altering the end structures of SWCNT bundles. Carbon and oxygen atoms released from heated tungsten filament are believed to be responsible for the decoration imposed on the SWCNT ends.

Zhang Zhao-Xiang; Zhang Geng-Min; Du Min; Jin Xin-Xi; Hou Shi-Min; Sun Jian-Ping; Gu Zhen-Nan; Zhao Xing-Yu; Liu Wei-Min; Wu Jin-Lei; Xue Zeng-Quan

2002-01-01T23:59:59.000Z

190

The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy  

E-Print Network [OSTI]

Measurements of the Casimir force require the elimination of electrostatic interactions between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential (SP) of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne Amplitude Modulated Kelvin Probe Force Microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to Amplitude Modulated Kelvin Probe Force Microscopy (AM-KPFM). We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

Joseph L. Garrett; David Somers; Jeremy N. Munday

2014-09-17T23:59:59.000Z

191

Spectroscopy and atomic force microscopy of biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectroscopy Spectroscopy and atomic force microscopy of biomass L. Tetard a,b , A. Passian a,b,n , R.H. Farahi a , U.C. Kalluri c , B.H. Davison c , T. Thundat a,b a Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA b Department of Physics, University of Tennessee, Knoxville, TN 37996, USA c Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA a r t i c l e i n f o Keywords: Atomic force microscopy Spectroscopy Plant cells Biomass Nanomechanics a b s t r a c t Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass

192

Fast scanning two-photon microscopy  

E-Print Network [OSTI]

Fast scanning two-photon microscopy coupled with the use light activated ion channels provides the basis for fast imaging and stimulation in the characterization of in vivo neural networks. A two-photon microscope capable ...

Chang, Jeremy T

2010-01-01T23:59:59.000Z

193

Dark Field Microscopy for Analytical Laboratory Courses  

Science Journals Connector (OSTI)

An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence ...

Ashley E. Augspurger; Anthony S. Stender; Kyle Marchuk; Thomas J. Greenbowe; Ning Fang

2014-05-01T23:59:59.000Z

194

Photon tunnelling microscopy of polyethylene single crystals  

E-Print Network [OSTI]

Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

Srinivasarao, Mohan

195

Subwavelength optical microscopy in the far field  

E-Print Network [OSTI]

We present a procedure for subwavelength optical microscopy. The identical atoms are distributed on a plane and shined with a standing wave. We rotate the plane to different angles and record the resonant fluorescence spectra in the far field, from...

Sun, Qingqing; Al-Amri, M.; Scully, Marlan O.; Zubairy, M. Suhail.

2011-01-01T23:59:59.000Z

196

Atomic Force and Scanning Electron Microscopy of Atmospheric Particles  

E-Print Network [OSTI]

conducted so as to characterize atmospheric aerosols from anthropogenic (pollution) and natural (sea saltAtomic Force and Scanning Electron Microscopy of Atmospheric Particles ZAHAVA BARKAY,1 * AMIT 69978, Israel KEY WORDS atmospheric aerosols; atomic force microscopy; scanning electron microscopy

Shapira, Yoram

197

Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction  

Science Journals Connector (OSTI)

Patches of white etching layers on rail surfaces were investigated using sophisticated techniques like cross-sectional transmission electron microscopy (XTEM) and synchroton X-ray diffraction. Optical microscopy failed to resolve the microstructure, but in the TEM submicron grains with high dislocation densities and occasional twins, which are characteristic features of high carbon martensite, were observed. The martensitic structure was confirmed by evaluation of synchroton X-ray diffraction line profiles. The latter technique also allowed to determine dislocation densities of the order of 1012 cm?2 and residual compressive stresses of about 200 MPa.

W. Österle; H. Rooch; A. Pyzalla; L. Wang

2001-01-01T23:59:59.000Z

198

Quantum States of Light Produced by a High-Gain Optical Parametric Amplifier for Use in Quantum Lithography  

E-Print Network [OSTI]

We present a theoretical analysis of the properties of an unseeded optical parametic amplifier (OPA) used as the source of entangled photons for applications in quantum lithography. We first study the dependence of the excitation rate of a two-photon absorber on the intensity of the light leaving the OPA. We find that the rate depends linearly on intensity only for output beams so weak that they contain fewer than one photon per mode. We also study the use of an N-photon absorber for arbitrary N as the recording medium to be used with such a light source. We find that the contrast of the interference pattern and the sharpness of the fringe maxima tend to increase with increasing values of N, but that the density of fringes and thus the limiting resolution does not increase with N. We conclude that the output of an unseeded OPA exciting an N-photon absorber provides an attractive system in which to perform quantum lithography.

Girish S. Agarwal; Kam Wai Chan; Robert W. Boyd; Hugo Cable; Jonathan P. Dowling

2006-08-22T23:59:59.000Z

199

In-situ Transmission Electron Microscopy and Spectroscopy Studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and In-situ Transmission Electron Microscopy and Spectroscopy Studies of...

200

Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...  

Broader source: Energy.gov (indexed) [DOE]

Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-High Resolution Electron Microscopy for Catalyst Characterization 2011 DOE Hydrogen and Fuel Cells...

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...  

Broader source: Energy.gov (indexed) [DOE]

high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

202

Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...  

Broader source: Energy.gov (indexed) [DOE]

High Resolution Electron Microscopy for Catalyst Characterization Ultra-High Resolution Electron Microscopy for Catalyst Characterization 2010 DOE Vehicle Technologies and Hydrogen...

203

Low-temperature scanning tunneling microscopy and transport measurements on adsorbate-induced two-dimensional electron systems  

SciTech Connect (OSTI)

We have performed not only magnetotransport measurements on two-dimensional electron systems (2DESs) formed at the cleaved surfaces of p-InAs but also observations of the surface morphology of the adsorbate atoms, which induced the 2DES at the surfaces of narrow band-gap semiconductors, with use of a scanning tunneling microscopy. The electron density of the 2DESs is compared to the atomic density of the isolated Ag adatoms on InAs surfaces.

Masutomi, Ryuichi; Triyama, Naotaka; Okamoto, Tohru [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2013-12-04T23:59:59.000Z

204

Environmental cell assembly for use in for use in spectroscopy and microscopy applications  

SciTech Connect (OSTI)

An environmental cell assembly for use in microscopy and spectroscopy applications, including: an environmentally sealed body assembly configured to selectively hold and contain a sample; a plurality of ports manufactured into one or more surfaces of the body assembly for one or more of evacuating the body assembly and injecting a gas into or removing a gas from the body assembly; a port manufactured into a surface of the body assembly for receiving a translating stage configured to move the sample within the body assembly; and a port manufactured into a surface of the body assembly for receiving one or more lenses utilized in a microscopy or spectroscopy application; wherein the one or more lenses are disposed adjacent the sample without intervening structures disposed there between. The cell assembly also includes a port manufactured into a surface of the body assembly for retaining a window and providing visualization of the sample.

Stowe, Ashley Clinton; Smyrl, Norman; Hallman, Jr., Russell L.

2014-09-02T23:59:59.000Z

205

Scanning photo-induced impedance microscopy*/an impedance based imaging technique  

E-Print Network [OSTI]

Scanning photo-induced impedance microscopy*/an impedance based imaging technique Steffi Krause a technique, scanning photo-induced impedance micro- scopy (SPIM), suitable for the imaging of the complex Photoelectrochemistry has been used widely to study photo-thermally induced current changes at metal surfaces

Moritz, Werner

206

Development of novel two-photon microscopy for living brain and neuron  

Science Journals Connector (OSTI)

......novel two-photon microscopy for living brain and neuron Tomomi Nemoto 1 2 3 To whom...vital information on neural activity for brain function, even in light of its limitation...a several hundred micrometers from the brain surface. To break the limit of this penetration......

Tomomi Nemoto

2014-11-01T23:59:59.000Z

207

Examination of the cu/si(111) 5×5 structure by scanning tunneling microscopy  

Science Journals Connector (OSTI)

The incommensurate 5×5 Cu/Si(111) structure has been examined by scanning tunneling microscopy. Images show that the surface structure is not well described as a hexagonal copper layer modulated at the Si(111) periodicity. Rather, the surface breaks up into 5×5 subunits which pack at spacings varying from 5 to 7 lattice constants, implying that substrate-adsorbate interactions dominate lateral interactions within the Cu adlayer.

R. J. Wilson; S. Chiang; F. Salvan

1988-12-15T23:59:59.000Z

208

Investigations into Protein-Surface Interactions via Atomic Force Microscopy and Surface Plasmon Resonance  

E-Print Network [OSTI]

.7.1. Fibrinogen 126 2.7.2. ATPase 127 2.7.2.1. Recombinant ATPase Preparation 127 2.7.2.2. Modifications to F1-ATPase 128 2.7.2.3. Protocol for Buffers and Dilutions 129 2.8. Summary 133 2.9. References 134 CHAPTER THREE: Fibrinogen Adsorption... Adsorption to a) Mica and b) Graphite with 1.0 nm height scale. 164 Figure 3.5: AFM height images (a & c 2.00 ?m x 2.00 ?m or b & d 1.00 ?m x 1.00 ?m) of 0.1 ?g/mL Fibrinogen Adsorption to Graphite with 5.0 nm height scales at pH 7 buffer (a-b) and p...

Settle, Jenifer Kaye

2012-08-31T23:59:59.000Z

209

SURFACE CHARACTERIZATION OF PAN-BASED CARBON FIBERS USING XPS, SIMS, AND AFM  

E-Print Network [OSTI]

SURFACE CHARACTERIZATION OF PAN-BASED CARBON FIBERS USING XPS, SIMS, AND AFM by Kris Anne Battleson on Carbon Fiber Surfaces.....................................17 Atomic Force Microscopy on Carbon Fiber Surfaces.....................................21 Numerical Methods...........................................................................

210

Drop Impact and Rebound Dynamics on an Inclined Superhydrophobic Surface  

Science Journals Connector (OSTI)

The ability of the superhydrophobic surface in promoting drop rebound has significant applications in areas such as anti-icing and fouling on aircraft, power lines, and wind turbines and has prompted researchers to create an array of synthetic superhydrophobic surfaces using fabrication methods such as surface etching techniques (plasma, laser, chemical), lithography (photolithography, electron beam, X-ray), electrochemical deposition processes, spray casting, as well as electrospinning techniques. ... For example, ice accretion on a wind turbine blade as well as on an aircraft wing typically involves impact and freezing of supercooled liquid droplets on those surfaces at subzero environmental temperatures. ... By varying laser fluence, micro-texture morphol. of the wafers could be reproduced and well controlled. ...

Yong Han Yeong; James Burton; Eric Loth; Ilker S. Bayer

2014-09-12T23:59:59.000Z

211

Spatial resolution in vector potential photoelectron microscopy  

SciTech Connect (OSTI)

The experimental spatial resolution of vector potential photoelectron microscopy is found to be much higher than expected because of the cancellation of one of the expected contributions to the point spread function. We present a new calculation of the spatial resolution with support from finite element ray tracing, and experimental results.

Browning, R. [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)] [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)

2014-03-15T23:59:59.000Z

212

Physical sectioning in 3D biological microscopy  

E-Print Network [OSTI]

developed in the Brain Networks Laboratory at Texas A&M University, has been used for the purpose of this study. However, the modes of characterizing chatter and its measurement are equally applicable to all current variants of 3D biological microscopy using...

Guntupalli, Jyothi Swaroop

2008-10-10T23:59:59.000Z

213

Physical sectioning in 3D biological microscopy  

E-Print Network [OSTI]

developed in the Brain Networks Laboratory at Texas A&M University, has been used for the purpose of this study. However, the modes of characterizing chatter and its measurement are equally applicable to all current variants of 3D biological microscopy using...

Guntupalli, Jyothi Swaroop

2009-05-15T23:59:59.000Z

214

Feature Article NEXAFS microscopy and resonant scattering  

E-Print Network [OSTI]

and conven- tional electron, X-ray and neutron scattering. We provide an overview of these synchrotron based and derivative struc- tures, ranging from spectroscopy to mechanical analysis and neutron scattering [9,10]. SomeFeature Article NEXAFS microscopy and resonant scattering: Composition and orientation probed

Hitchcock, Adam P.

215

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPLEEM SPLEEM Publications Imaging Spin Reorientation Transitions in Consecutive Atomic Co layers, Farid El Gabaly, Silvia Gallego, M. Carmen Munoz, Laszlo Szunyogh, Peter Weinberger, Kevin F. McCarty, Christof Klein, Andreas K. Schmid, Juan de la Figuera, submitted Direct imaging of spin-reorientation transitions in ultra-thin Ni films by spin-polarized low-energy electron microscopy, C. Klein, A. K. Schmid, R. Ramchal, and M. Farle, submitted Controlling the kinetic order of spin-reorientation transitions in Ni/Cu(100) films by tuning the substrate step-structure, C. Klein, R. Ramchal, A.K. Schmid, M. Farle, submitted Self-organization and magnetic domain microstructure of Fe nanowire arrays, N. Rougemaille and A.K. Schmid, submitted Self-Assembled Nanofold Network Formation on Layered Crystal Surfaces

216

Advanced Photon Source | Combining Scanning Probe Microscopy and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS APS SXSPM News Researchers from NSLS-II visit SXSPM team at Argonne (November 27, 2013) Cummings presents invited talk at magnetism meeting (November 11, 2013) Invited talk at ACSIN-12 & ICSPM21 in Japan (November 11, 2013) Nanoscience Seminar presented at Tokyo University (November 01, 2013) Scientists study old photos for new solutions to corrosion (October 21, 2013) More News Featured Image Recent Publications Kangkang Wang, Daniel Rosenmann, Martin Holt, Robert Winarski, Saw-Wai Hla, and Volker Rose, "An easy-to-implement filter for separating photo-excited signals from topography in scanning tunneling microscopy", Rev. Sci. Instrum. 84, 063704 (2013). More SXSPM Publications Upcoming Presentations V. Rose, 41st Conference on the Physics and Chemistry of Surfaces and Interfaces (PCSI-41) (Invited Speaker)

217

Calibration of fluorescence resonance energy transfer in microscopy  

DOE Patents [OSTI]

Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

2002-09-24T23:59:59.000Z

218

Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications  

Science Journals Connector (OSTI)

...1997b ). Other methods of functionalized surface production for colloid immobilization...patterning offers one method of combating...an alternative method of producing...nanotopographies. The production of regular arrays...is exposed to hydrogen gas plasma...

2007-01-01T23:59:59.000Z

219

Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy  

DOE Patents [OSTI]

An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

2013-07-09T23:59:59.000Z

220

E-Print Network 3.0 - alloys surface enhanced Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

piston alloys at elevated temperature Summary: C. Optical microscopy of sectioned fracture surfaces for alloy A indicated that at low values of DK... and illustrates how the...

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

New Developments in Transmission Electron Microscopy for Nanotechnology**  

E-Print Network [OSTI]

New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

Wang, Zhong L.

222

Quantitative imaging of living cells by deep ultraviolet microscopy  

E-Print Network [OSTI]

Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

Zeskind, Benjamin J

2006-01-01T23:59:59.000Z

223

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

224

At-wavelength interferometry for extreme ultraviolet lithography Edita Tejnil,a)  

E-Print Network [OSTI]

was implemented to characterize the aberrations of a 10 Schwarzschild multilayer-coated reflective optical system with imaging performed with the 10 Schwarzschild optic on an extreme ultraviolet exposure tool. © 1997 American by the figure of mirror surfaces and by multilayer coating properties.1 Common-path techniques, such as point

Bokor, Jeffrey

225

Surface Characterization and Functionalization of Carbon Nanofibers  

SciTech Connect (OSTI)

Carbon nanofibers are high-aspect ratio graphitic materials that have been investigated for numerous applications due to their unique physical properties such as high strength, low density, metallic conductivity, tunable morphology, chemical and environmental stability, as well as compatibility with organochemical modification. Surface studies are extremely important for nanomaterials because not only is the surface structurally and chemically quite different from the bulk, but its properties tend to dominate at the nanoscale due to the drastically increased surface-to-volume ratio. This review surveys recent developments in surface analysis techniques used to characterize the surface structure and chemistry of carbon nanofibers and related carbon materials. These techniques include scanning probe microscopy, infrared and electron spectroscopy, electron microscopy, ion spectrometry, temperature programmed desorption and atom probe analysis. In addition, this article evaluates the methods used to modify the surface of carbon nanofibers in order to enhance their functionality to perform across an exceedingly diverse application space.

Klein, Kate L [ORNL; Melechko, Anatoli Vasilievich [ORNL; McKnight, Timothy E [ORNL; Retterer, Scott T [ORNL; Rack, Philip D [ORNL; Fowlkes, Jason Davidson [ORNL; Joy, David Charles [ORNL; Simpson, Michael L [ORNL

2008-01-01T23:59:59.000Z

226

TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS  

E-Print Network [OSTI]

377 TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS H. STRUNK Max'importance croissante du durcissement de la solution solide. Abstract. 2014 Transmission electron microscopy (TEM Abstracts 7j66 - 7 I' 1. Introduction. - It is only some years ago that transmission electron microscopy

Boyer, Edmond

227

In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)  

SciTech Connect (OSTI)

Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth [1] of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film [2]. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy.

Al-Mahboob A.; Vescovo, E.; Sadowski, J.T.

2013-08-18T23:59:59.000Z

228

Fast electron microscopy via compressive sensing  

DOE Patents [OSTI]

Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

2014-12-09T23:59:59.000Z

229

Argonne CNM: X-Ray Microscopy Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

230

X-ray optics for scanning fluorescence microscopy and other applications  

SciTech Connect (OSTI)

Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 {mu}m, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu K{alpha}. At higher energies such as Ag K{alpha}, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection.

Ryon, R.W. [Lawrence Livermore National Lab., CA (United States); Warburton, W.K. [X-Ray Instrumentation Associates, Menlo Park, CA (United States)

1992-05-01T23:59:59.000Z

231

Tuning extreme ultraviolet emission for optimum coupling with multilayer mirrors for future lithography through control of ionic charge states  

SciTech Connect (OSTI)

We report on the identification of the optimum plasma conditions for a laser-produced plasma source for efficient coupling with multilayer mirrors at 6.x nm for beyond extreme ultraviolet lithography. A small shift to lower energies of the peak emission for Nd:YAG laser-produced gadolinium plasmas was observed with increasing laser power density. Charge-defined emission spectra were observed in electron beam ion trap (EBIT) studies and the charge states responsible identified by use of the flexible atomic code (FAC). The EBIT spectra displayed a larger systematic shift of the peak wavelength of intense emission at 6.x nm to longer wavelengths with increasing ionic charge. This combination of spectra enabled the key ion stage to be confirmed as Gd{sup 18+}, over a range of laser power densities, with contributions from Gd{sup 17+} and Gd{sup 19+} responsible for the slight shift to longer wavelengths in the laser-plasma spectra. The FAC calculation also identified the origin of observed out-of-band emission and the charge states responsible.

Ohashi, Hayato, E-mail: ohashi@cc.utsunomiya-u.ac.jp; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei; Kawasaki, Masato [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Kanehara, Tatsuhiko; Aida, Yuya; Nakamura, Nobuyuki [Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585 (Japan); Torii, Shuichi; Makimura, Tetsuya [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan)

2014-01-21T23:59:59.000Z

232

Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application  

SciTech Connect (OSTI)

The progress in development of commercial system for next generation EUV lithography requires, among other factors, significant improvement in EUV photon sources such as discharge produced plasma (DPP) and laser produced plasma (LPP) devices. There are still many uncertainties in determining the optimum device since there are many parameters for the suitable and efficient energy source and target configuration and size. Complex devices with trigger lasers in DPP or with pre-pulsing in LPP provide wide area for optimization in regards to conversion efficiency (CE) and components lifetime. We considered in our analysis a promising LPP source configuration using 10-30 {mu}m tin droplet targets, and predicted conditions for the most efficient EUV radiation output and collection as well as calculating photons source location and size. We optimized several parameters of dual-beam lasers and their relationship to target size. We used our HEIGHTS comprehensive and integrated full 3D simulation package to study and optimize LPP processes with various target sizes to maximize the CE of the system.

Sizyuk, T.; Hassanein, A. [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-08-01T23:59:59.000Z

233

Studies of heterogeneity properties of selected high-temperature superconductor surfaces  

Science Journals Connector (OSTI)

Nitrogen adsorption measured at 77 K was used to characterize the surface heterogeneity of high-temperature superconductor surfaces. Properties relating to adsorption and porosity ... microscopy (AFM) for a serie...

P. Staszczuk; D. Sternik; G. W. Ch?dzy?ski…

2006-09-01T23:59:59.000Z

234

Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy  

SciTech Connect (OSTI)

This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

Tittmann, B. R. [Penn State; Xi, X. [Penn State

2014-09-01T23:59:59.000Z

235

Atom chip microscopy: A novel probe for strongly correlated materials  

SciTech Connect (OSTI)

Improved measurements of strongly correlated systems will enable the predicative design of the next generation of supermaterials. In this program, we are harnessing recent advances in the quantum manipulation of ultracold atomic gases to expand our ability to probe these technologically important materials in heretofore unexplored regions of temperature, resolution, and sensitivity parameter space. We are working to demonstrate the use of atom chips to enable single-shot, large area detection of magnetic flux at the 10^-7 flux quantum level and below. By harnessing the extreme sensitivity of atomic clocks and Bose-Einstein condensates (BECs) to external perturbations, the cryogenic atom chip technology developed here will provide a magnetic flux detection capability that surpasses other techniques---such as scanning SQUIDs---by a factor of 10--1000. We are testing the utility of this technique by using rubidium BECs to image the magnetic fields emanating from charge transport and magnetic domain percolation in strongly correlated materials as they undergo temperature-tuned metal--to--insulator phase transitions. Cryogenic atom chip microscopy introduces three very important features to the toolbox of high-resolution, strongly correlated material microscopy: simultaneous detection of magnetic and electric fields (down to the sub-single electron charge level); no invasive large magnetic fields or gradients; simultaneous micro- and macroscopic spatial resolution; freedom from 1/f flicker noise at low frequencies; and, perhaps most importantly, the complete decoupling of probe and sample temperatures. The first of these features will play an important role in studying the interplay between magnetic and electric domain structure. The last two are crucial for low frequency magnetic noise detection in, e.g., the cuprate pseudogap region and for precision measurements of transport in the high temperature, technologically relevant regime inaccessible to other techniques based on superconducting scanning probes. In periods 1--3 of this grant, which we now close at the University of Illinois at Urbana-Champaign and restart at Stanford University where our new lab is being built, we have demonstrated the ability to rapidly create Rb BECs and trap them within microns of a surface ina cryostat. Period 4 of this grant, to be performed at Stanford, will demonstrate the feasibility of using atom chips with a BEC to image transport features on a cryogenically cooled surface. Successful demonstration, in future funding cycles, will lead directly to the use of system for studies of transport in exotic and technologically relevant materials such as cuprate superconductors and topological insulators.

Lev, Benjamin L

2011-11-03T23:59:59.000Z

236

Magnetic spectroscopy and microscopy of functional materials  

E-Print Network [OSTI]

apparatus employed to expose UHV-clean surfaces for poly- orMn 0.6 Si ?lms fabricated by UHV sputtering [51]. However,In an ultra-high vacuum (UHV) chamber with good base

Jenkins, C.A.

2012-01-01T23:59:59.000Z

237

Sorption of cadmium on humic acid: Mechanistic and kinetic studies with atomic force microscopy and X-ray  

E-Print Network [OSTI]

Sorption of cadmium on humic acid: Mechanistic and kinetic studies with atomic force microscopy, Upton, New York 593-5000 USA. Liu, C., Frenkel, A. I., Vairavamurthy, A. and Huang, P. M. 2001. Sorption of Cd sorption by HAs, especially those pertaining to the surface features and structure of the Cd

Frenkel, Anatoly

238

NCEM National Center for Electron Microscopy: Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Staff Staff Scientific Technical / Admin. Postdoctoral and Visitors Uli Dahmen, Head Jane Cavlina / Administrator Abhay Gautam Christian Kisielowski John Turner Helmut Poppa Andrew Minor ChengYu Song Frances Allen Andreas Schmid Marissa Libbee Tamara Radetic Peter Ercius Karen Bustillo Haimei Zheng Jim Ciston Alpha N'Diaye Colin Ophus Gong Chen Burak Ozdol Velimir Radmilovic Sara Kiani Hua Guo Christian Liebscher Josh Kacher Chris Nelson Xiuguang Jin Qian Yu Mary Scott Search the LBNL directory services page for other LBNL staff. Scientific Staff Uli Dahmen udahmen@lbl.gov (510) 486-4627 Ulrich Dahmen is Director of the National Center for Electron Microscopy. His current research interests include embedded nanostructures and interfaces in materials. Embedded nanostructures. Size- and shape-dependence of structural phase

239

Investigation of wettability by NMR microscopy and spin-lattice relaxation  

SciTech Connect (OSTI)

The wettability of reservoir rock has an important impact on the efficiency of oil recovery processes and the distribution of oil and water within the reservoir. One of the potentially useful tools for wettability measurements is nuclear magnetic resonance (NMR) and spin-lattice relaxation. More recently using NMR microscopy NIPER has developed the capability of imaging one- and two-phase fluid systems in reservoir rock at resolutions to 25 microns. Effects seen in the images of fluids within the pore space of rocks near the rock grain surfaces hinted at the possibility of using NMR microscopy to map the wettability variations at grain sites within the pore space. Investigations were begun using NMR microscopy and spin-lattice relaxation time measurements on rock/fluid systems and on well-defined fractional wet model systems to study these effects. Relaxation data has been modelled using the stretched exponential relationship recently introduced. Comparisons of the NMR microscopy results of the model system with the rock results indicate that the observed effects probably do not reflect actual wettability variations within the pore space. The results of the relaxation time measurements reveal that even in the simple model studied, the behavior of two phases is somewhat ambiguous and much more complex and requires more study.

Doughty, D.A.; Tomutsa, Liviu

1993-11-01T23:59:59.000Z

240

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

242

Surface premelting  

Science Journals Connector (OSTI)

The most important results obtained in the theory of surface premelting of crystals are briefly discussed on the basis of the vibration-positional model, the quasiliquid layer model, the surface roughness model, and in the case of ice, the model of the oriented dipoles at the surface. A review of the existing experimental results on surface premelting is presented, these results being obtained by investigating the crystal morphology, the polar diagram of the specific surface energy, the surface self-diffusion, the thermal emissivity, as well as upon application of LEED, NMR, Rutherford backscattering at proton channeling and ellipsometry. The agreement between theoretical and experimental data is discussed.

D. Nenow

1984-01-01T23:59:59.000Z

243

Surface nanobubbles: Seeing is believing  

E-Print Network [OSTI]

The existence of surface nanobubbles has been previously suggested using various experimental techniques, including attenuated total reflection spectroscopy, quartz crystal microbalance, neutron reflectometry, and x-ray reflectivity, but all of these techniques provide a sole number to quantify the existence of gas over (usually) hundreds of square microns. Thus `nanobubbles' are indistinguishable from a `uniform gassy layer' between surface and liquid. Atomic force microscopy, on the other hand, does show the existence of surface nanobubbles, but the highly intrusive nature of the technique means that a uniform gassy layer could break down into nanobubbles \\textit{due to} the motion of the microscope's probe. Here we demonstrate \\textit{optical} visualisation of surface nanobubbles, thus validating their individual existence non-intrusively.

Karpitschka, Stefan; Seddon, James R T; Zandvliet, Harold J W; Lohse, Detlef; Riegler, Hans

2012-01-01T23:59:59.000Z

244

Surface nanobubbles: Seeing is believing  

E-Print Network [OSTI]

The existence of surface nanobubbles has been previously suggested using various experimental techniques, including attenuated total reflection spectroscopy, quartz crystal microbalance, neutron reflectometry, and x-ray reflectivity, but all of these techniques provide a sole number to quantify the existence of gas over (usually) hundreds of square microns. Thus `nanobubbles' are indistinguishable from a `uniform gassy layer' between surface and liquid. Atomic force microscopy, on the other hand, does show the existence of surface nanobubbles, but the highly intrusive nature of the technique means that a uniform gassy layer could break down into nanobubbles \\textit{due to} the motion of the microscope's probe. Here we demonstrate \\textit{optical} visualisation of surface nanobubbles, thus validating their individual existence non-intrusively.

Stefan Karpitschka; Erik Dietrich; James R. T. Seddon; Harold J. W. Zandvliet; Detlef Lohse; Hans Riegler

2012-04-17T23:59:59.000Z

245

The nanostructure and microstructure of steels: Electrochemical Tafel behaviour and atomic force microscopy  

Science Journals Connector (OSTI)

The influence of chemical composition and heat treatment on a low-carbon steel, chromium steel and high speed steel has been examined by polarisation curves and electrochemical parameters deduced from the Tafel plots. The electrochemical corrosion resistance, which is small between the as-received steels become greater after heat treatment, following the order: carbon steel < chromium steel ? high speed steel. To explain these differences, the nano- and microstructure of the steels has been characterized by the ex situ techniques of atomic force microscopy and optical microscopy, before and after surface etching with Nital (a solution of 5% HNO3 in ethanol). This causes preferential attack of the ferrite phases showing the carbide phases more clearly. From these nanostructural studies it was possible to better understand why the passive films formed on chromium steel and high speed steel have superior protective properties to those formed on carbon steel.

Valéria A. Alves; Ana M. Chiorcea Paquim; Albano Cavaleiro; Christopher M.A. Brett

2005-01-01T23:59:59.000Z

246

STUDIES OF DENGUE FEVER VIRUS BY ELECTRON MICROSCOPY  

Science Journals Connector (OSTI)

...MICROSCOPY Reginald L. Reagan A. L. Brueckner Live Stock Sanitary Service Laboratory...MICROSCOPY REGINALD L. REAGAN AND A. L. BRUECKNER Live Stock Sanitary Service Laboratory...material 233 REGINALD L. REAGAN AND A. L. BRUECKNER Figure 1. Dengue fever virus (mouse...

Reginald L. Reagan; A. L. Brueckner

1952-08-01T23:59:59.000Z

247

Solvent-mediated repair and patterning of surfaces by AFM  

SciTech Connect (OSTI)

A tip-based approach to shaping surfaces of soluble materials with nanometer-scale control is reported. The proposed method can be used, for example, to eliminate defects and inhomogeneities in surface shape, repair mechanical or laser-induced damage to surfaces, or perform 3D lithography on the length scale of an AFM tip. The phenomenon that enables smoothing and repair of surfaces is based on the transport of material from regions of high- to low-curvature within the solution meniscus formed in a solvent-containing atmosphere between the surface in question and an AFM tip scanned over the surface. Using in situ AFM measurements of the kinetics of surface remodeling on KDP (KH{sub 2}PO{sub 4}) crystals in humid air, we show that redistribution of solute material during relaxation of grooves and mounds is driven by a reduction in surface free energy as described by the Gibbs-Thomson law. We find that the perturbation from a flat interface evolves according to the diffusion equation where the effective diffusivity is determined by the product of the surface stiffness and the step kinetic coefficient. We also show that, surprisingly, if the tip is instead scanned over or kept stationary above an atomically flat area of the surface, a convex structure is formed with a diameter that is controlled by the dimensions of the meniscus, indicating that the presence of the tip and meniscus reduces the substrate chemical potential beneath that of the free surface. This allows one to create nanometer-scale 3D structures of arbitrary shape without the removal of substrate material or the use of extrinsic masks or chemical compounds. Potential applications of these tip-based phenomena are discussed.

Elhadj, S; Chernov, A; De Yoreo, J

2007-10-30T23:59:59.000Z

248

Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning tunneling microscopy study. Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning tunneling...

249

An Atomistic View on Fundamental Transport Processes on Metal Surfaces  

SciTech Connect (OSTI)

In this lecture I present an introduction to the time-resolved observation of atomic transport processes on metal surfaces using scanning tunneling microscopy video sequences. The experimental data is analyzed using scaling law concepts known from statistical thermodynamics. I will present studies from metal surfaces in vacuum as well as in electrolyte.

Giesen, Margret [Forschungzentrum Juelich, Institute for Bio- and Nanosystems IBN 4, D 52425 Juelich (Germany)

2007-06-14T23:59:59.000Z

250

Surface Soil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface Soil Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal Laboratory operations. April 12, 2012 Farm soil sampling Two LANL environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Measurements are compared to samples from the regional sites and compared to averages over time to see if there are changes in concentrations. Monitoring surface soil LANL has monitored surface soils since the early 1970s. Institutional surface soil samples are collected from 17 on-site, 11 perimeter, and six regional (background) locations every three years.

251

Atomic-force-microscopy observations of tracks induced by swift Kr ions in mica  

Science Journals Connector (OSTI)

For the first time, latent tracks induced by swift Kr ions have been directly observed in mica. These tracks are imaged by atomic-force microscopy as hollows which are associated with softer areas in the mica surface. The track core is formed by disordered mica. The mean diameter of the observed hollows increases with the electronic stopping power of the ions. The track shape along the ion path is deduced from the analysis of both the number of the tracks per unit area and their diameter distribution. These observations are the first images of nanometric changes of elastic properties.

F. Thibaudau; J. Cousty; E. Balanzat; S. Bouffard

1991-09-16T23:59:59.000Z

252

Microstructure development in particulate coatings examined with high-resolution cryogenic scanning electron microscopy  

SciTech Connect (OSTI)

The authors used cryogenic scanning electron microscopy to examine the early stages of latex film formation. They visualized the influence of ionic strength and extent of carboxylation in latex-calcium carbonate formulations and in latex-only formulations. Results demonstrated that latex particles deposited on calcium carbonate surfaces creating a suspension of carboxylic acid-stabilized calcium carbonate particles. Images of consolidation fronts showed that variation of ionic strength and extent of carboxylation dramatically changes the way latex particles consolidate and form films.

Sheehan, J.G.; Davis, H.T.; Scriven, L.E. [Univ. of Minnesota, Minneapolis, MN (United States); Takamura, Koichi [BASF Corp., Charlotte, NC (United States)

1993-12-01T23:59:59.000Z

253

Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers  

Science Journals Connector (OSTI)

The determination of the dynamic spring constant (k d ) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed the non-destructive fast and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum.83 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k eff the dynamic one k d ) and the calculated (k d 1) are in good agreement within less than 10% error.

2014-01-01T23:59:59.000Z

254

Growth of individual carbon nanotubes on an array of TiN/Ni nanodots patterned by e-beam lithography and defined by dry etching for field emission application.  

E-Print Network [OSTI]

: Individual vertically aligned carbon nanotubes, Electron-beam lithography, Dry etching, Field emission and uniform electronic emission, cathodes based on vertically aligned carbon nanotubes (VACNTs) are patternedGrowth of individual carbon nanotubes on an array of TiN/Ni nanodots patterned by e

Boyer, Edmond

255

Probing graphene defects and estimating graphene quality with optical microscopy  

SciTech Connect (OSTI)

We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

2014-01-27T23:59:59.000Z

256

Switchable Hydrophobic-Hydrophilic Surfaces  

SciTech Connect (OSTI)

Tethered films of poly n-isopropylacrylamide (PNIPAM) films have been developed as materials that can be used to switch the chemistry of a surface in response to thermal activation. In water, PNIPAM exhibits a thermally-activated phase transition that is accompanied by significant changes in polymer volume, water contact angle, and protein adsorption characteristics. New synthesis routes have been developed to prepare PNIPAM films via in-situ polymerization on self-assembled monolayers. Swelling transitions in tethered films have been characterized using a wide range of techniques including surface plasmon resonance, attenuated total reflectance infrared spectroscopy, interfacial force microscopy, neutron reflectivity, and theoretical modeling. PNIPAM films have been deployed in integrated microfluidic systems. Switchable PNIPAM films have been investigated for a range of fluidic applications including fluid pumping via surface energy switching and switchable protein traps for pre-concentrating and separating proteins on microfluidic chips.

BUNKER, BRUCE C.; HUBER, DALE L.; KENT, MICHAEL S.; YIM, HYUN; CURRO, JOHN G.; LOPEZ, GABRIEL P.; KUSHMERICK, JAMES G.; MANGINELL, RONALD P.; MENDEZ, SERGIO

2002-12-01T23:59:59.000Z

257

Modulated microwave microscopy and probes used therewith  

DOE Patents [OSTI]

A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

2012-09-11T23:59:59.000Z

258

Ion-induced electron emission microscopy  

DOE Patents [OSTI]

An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

Doyle, Barney L. (Albuquerque, NM); Vizkelethy, Gyorgy (Albuquerque, NM); Weller, Robert A. (Brentwood, TN)

2001-01-01T23:59:59.000Z

259

NCEM National Center for Electron Microscopy: Becoming an NCEM User  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Research New Research Gallery Microscopy Links Becoming an NCEM User Step 1: Submit a proposal Step 2: Before you begin your research Step 3: Instrument qualification Step 4: Accessing NCEM facilities and performing research Step 1: Submit a proposal Deadlines for new proposals are March 15, June 15, September 15, December 15. Access to NCEM facilities is granted to researchers whose proposals are accepted by the NCEM proposal review committee. NCEM users are expected to have a strong background in transmission electron microscopy, and submitted proposals should include evidence of prior electron microscopy experience by the intended operator. Researchers who do not have sufficient experience in electron microscopy may be able to use NCEM facilities through a collaborative project.

260

Electron microscopy and microanalysis Two transmission electron microscopes  

E-Print Network [OSTI]

Electron microscopy and microanalysis Two transmission electron microscopes (TEM) and three scanning electron micro- scopes (SEM) are operated by the De- partment. Attachments for TEM include energy dispersive X-ray spectrometer (EDS), scanning transmission attachment, serial electron energy loss

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sub-Kelvin scanning tunneling microscopy on magnetic molecules.  

E-Print Network [OSTI]

??Magnetic molecules have attracted lots interest. In this work, an ultra-stable and low noise scanning tunneling microscopy operating at 400 mK using He-3 (930 mK… (more)

Zhang, Lei

2012-01-01T23:59:59.000Z

262

Measuring Shear Stress in Microfluidics using Traction Force Microscopy  

Science Journals Connector (OSTI)

Traction force microscopy is a previously-developed method to measure shear forces exerted by biological cells on substrates to which they are adhered (Dembo, 1999). The technique determines the shear stress a...

Bryant Mueller

2011-01-01T23:59:59.000Z

263

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

264

Doppler optical coherence microscopy for studies of cochlear mechanics  

E-Print Network [OSTI]

The possibility of measuring subnanometer motions with micron scale spatial resolution in the intact mammalian cochlea using Doppler optical coherence microscopy (DOCM) is demonstrated. A novel DOCM system is described ...

Hong, Stanley S.

265

Fast live simultaneous multiwavelength four-dimensional optical microscopy  

Science Journals Connector (OSTI)

...between excitation power and sensitivity...throughput of both systems. Most modern microscopy systems have excellent...connected to a power source (Bioptechs...Pawley JB ( 2006 ) Handbook of Biological Confocal...image sequence restoration . IEEE T Pattern...

Peter M. Carlton; Jérôme Boulanger; Charles Kervrann; Jean-Baptiste Sibarita; Jean Salamero; Susannah Gordon-Messer; Debra Bressan; James E. Haber; Sebastian Haase; Lin Shao; Lukman Winoto; Atsushi Matsuda; Peter Kner; Satoru Uzawa; Mats Gustafsson; Zvi Kam; David A. Agard; John W. Sedat

2010-01-01T23:59:59.000Z

266

Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission  

Science Journals Connector (OSTI)

...intracavity frequency doubler. This system partly converted the Ti:Sapphire...the focused time-averaged power. The axial...processing. Computational image restoration can in addition improve...light. 1 Pawley J ( 1995 ) Handbook of Biological Confocal Microscopy...

Thomas A. Klar; Stefan Jakobs; Marcus Dyba; Alexander Egner; Stefan W. Hell

2000-01-01T23:59:59.000Z

267

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

268

Carmichael's Concise Review Microscopy is Only Skin Deep  

E-Print Network [OSTI]

Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

Heller, Eric

269

Nanoimprint Lithography | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instrument ID: 34143 Availability: 10 hours a day, 5 days a week Quick Specs Science Contact Science Highlights Publications Custodians Ryan Kelly (509) 371-6525 ryan.kelly...

270

Surface structure of cleaved (001) USb2 single crystal surface  

SciTech Connect (OSTI)

We have achieved what we believe to be the first atomic resolution scanning tunneling microscopy (STM) images for a uranium compound USb2 taken at room temperature. The a, b, and c lattice parameters in the images confirm that the tetragonal USb2 crystals cleave on the (001) basal plane as expected. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the density of states measured by STM. Since the spacing between Sb atoms and between U atoms is the same, STM topography alone cannot unambiguously identify the surface atom species.

Chen, Shao-ping [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

271

Toward single cell traction microscopy within 3D collagen matrices  

SciTech Connect (OSTI)

Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

2013-10-01T23:59:59.000Z

272

Los Alamos: MST-MTM: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscopy Laboratory, MST-6 Electron Microscopy Laboratory, MST-6 MST-6 Home Home In the MSL FEI Tecnai F30 Analytical TEM/STEM JEOL 6300FXV High Resolution SEM JEOL 3000F High Resolution Transmission Electron Microscope Philips XL30 F Scanning Electron Microscope & Orientation Imaging System Phillips CM30 Transmission Electron Microscope In the Sigma Building JEOL 840 EPMA with Wavelength Dispersive Spectroscopy FEI Strata DB235 FIB/SEM FEI XL30 Environmental Scanning Electron Microscope & Orientation Imaging System CONTACTS Bob Field 665.3938 Pat Dickerson 665.3036 Rob Dickerson 667.6337 Rod McCabe 606.1649 The Electron Microscopy Laboratory's Capabilities The Electron Microscopy Laboratory's Capabilities The Electron Microscopy Laboratory (EML) is part of MST-6, the Materials Technology - Metallurgy Group within the Materials Science and Technology Division at Los Alamos National Laboratory. It is a facility dedicated to the characterization of materials primarily through imaging, chemical, and crystallographic analyses of material microstructures with several electron and ion beam instruments. Accessory characterization techniques and equipment include energy dispersive x-ray analysis (EDS), wavelength dispersive x-ray analysis (WDS), electron backscatter diffraction (EBSD) and orientation imaging microscopy (OIM), and electron energy loss spectroscopy (EELS).

273

Adsorption of Glucose Oxidase onto Plasma-Polymerized Film Characterized by Atomic Force Microscopy, Quartz Crystal Microbalance, and Electrochemical Measurement  

Science Journals Connector (OSTI)

Adsorption of glucose oxidase (GOD) onto plasma-polymerized thin films (PPF) with nanoscale thickness was characterized by atomic force microscopy (AFM), quartz crystal microbalance (QCM), and electrochemical measurements. ... The electrophoretic mobility (u) of polystyrene particles at the PPF surfaces was measured, and the mobility obtained was converted into a zeta potential using the Smoluchowski equation, ? = 4??u/?, where ? is the viscosity of the solution and ? is the dielectric constant of the solvent. ...

Hitoshi Muguruma; Yoshihiro Kase; Naoya Murata; Kazunari Matsumura

2006-12-07T23:59:59.000Z

274

Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function  

SciTech Connect (OSTI)

We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

Tung, Ryan C., E-mail: ryan.tung@nist.gov; Killgore, Jason P.; Hurley, Donna C. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

2014-06-14T23:59:59.000Z

275

Atomic Force Microscopy and Kelvin Probe Force Microscopy Evidence of Local Structural Inhomogeneity and Nonuniform Dopant Distribution in Conducting Polybithiophene  

Science Journals Connector (OSTI)

Atomic Force Microscopy and Kelvin Probe Force Microscopy Evidence of Local Structural Inhomogeneity and Nonuniform Dopant Distribution in Conducting Polybithiophene ... The fundamental difference between polymer grains and grain peripheral areas demonstrated by KFM was also supported by in situ contact-mode AFM data taken with the as-grown polymer film. ... (1)?Pekker, S.; Janossy, A. In Handbook of Conducting Polymers; Skotheim, T. A., Ed.; Marcel Dekker:? New York, 1986; Vol. ...

Oleg A. Semenikhin; Lei Jiang; Tomokazu Iyoda; Kazuhito Hashimoto; Akira Fujishima

1996-11-28T23:59:59.000Z

276

A new approach to nuclear microscopy: The ion-electron emission microscope  

SciTech Connect (OSTI)

A new multidimensional high lateral resolution ion beam analysis technique, Ion-Electron Emission Microscopy or IEEM is described. Using MeV energy ions, IEEM is shown to be capable of Ion Beam Induced Charge Collection (IBICC) measurements in semiconductors. IEEM should also be capable of microscopically and multidimensionally mapping the surface and bulk composition of solids. As such, IIEM has nearly identical capabilities as traditional nuclear microprobe analysis, with the advantage that the ion beam does not have to be focused. The technique is based on determining the position where an individual ion enters the surface of the sample by projection secondary electron emission microscopy. The x-y origination point of a secondary electron, and hence the impact coordinates of the corresponding incident ion, is recorded with a position sensitive detector connected to a standard photoemission electron microscope (PEEM). These signals are then used to establish coincidence with IBICC, atomic, or nuclear reaction induced ion beam analysis signals simultaneously caused by the incident ion.

Doyle, B.L.; Vizkelethy, G.; Walsh, D.S. [Sandia National Labs., Albuquerque, NM (United States); Senftinger, B. [Staib Instrumente GmbH, Langenbach (Germany); Mellon, M. [Quantar Technologies Inc., Santa Cruz, CA (United States)

1998-11-01T23:59:59.000Z

277

Reflection Electron Microscopy and Spectroscopy for Surface Analysis Georgia Institute of Technology  

E-Print Network [OSTI]

.4 Fourier transformation 1.5 Scattering factor and charge density function 1.6 Single scattering theory 1 Historical background Scope of the book Chapter 1. Kinematical electron diffraction 1.1 Electron wavelength 1.7 Reciprocal space and reciprocal lattice vector 1.8 Bragg's law and Ewald sphere 1.9 Abbe's imaging theory 1

Wang, Zhong L.

278

Confocal microscopy studies of colloidal assembly on microfabricated physically templated surfaces  

E-Print Network [OSTI]

.2.1 Materials................................................................................. 52 4.2.2 Substrate preparation procedure ............................................. 53 4.2.3 PMMA machining... substrates.................................................... 74 5.3.2 Imaging of PMMA substrates................................................ 79 5.4 Conclusions...

Sharma, Sumit

2005-02-17T23:59:59.000Z

279

Viscous Nature of the Bond between Adhering Bacteria and Substratum Surfaces Probed by Atomic Force Microscopy  

Science Journals Connector (OSTI)

University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands ... *Address: Henny C. van der Mei Department of Biomedical Engineering, FB40 University Medical Center Groningen Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. ... This study was entirely funded by the University Medical Center Groningen, Groningen, The Netherlands. ...

Yun Chen; Henny C. van der Mei; Henk J. Busscher; Willem Norde

2014-03-03T23:59:59.000Z

280

Scanning tunneling microscopy investigation of the TiO2 anatase ,,101... surface Wilhelm Hebenstreit,1  

E-Print Network [OSTI]

of tunneling sites in STM. Titanium dioxide (TiO2) is a versatile material that finds uses as a promoter. Fourfold-coordinated Ti atoms at step edges are preferred adsorption sites and allow the identification

Diebold, Ulrike

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores  

E-Print Network [OSTI]

There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

Beauboeuf, Daniel P

2010-01-01T23:59:59.000Z

282

Programmable surfaces  

E-Print Network [OSTI]

Robotic vehicles walk on legs, roll on wheels, are pulled by tracks, pushed by propellers, lifted by wings, and steered by rudders. All of these systems share the common character of momentum transport across their surfaces. ...

Sun, Amy (Amy Teh-Yu)

2012-01-01T23:59:59.000Z

283

E-Print Network 3.0 - advanced microscopy techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

microscopy techniques and their practice in relationship to materials structure characterization... of Microscopy", Edited by P.W. Hawkes and J.C.H. Spence, Springer, 2006 (An...

284

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source. Soft X-Ray Microscopy and Spectroscopy at the Molecular...

285

Scanning-tunneling-microscopy studies of disilane adsorption and pyrolytic growth on Si(100)-(2x1)  

SciTech Connect (OSTI)

Scanning tunneling microscopy has been employed to study the adsorption of disilane (Si{sub 2}H{sub 6}) and pyrolytic growth on Si(100)-(2{times}1) at various temperatures. Room-temperature exposures result in a random distribution of dissociation fragments on the surface. Formation of anisotropic monohydride islands and denuded zones as well as island coarsening is observed at higher temperatures. The results are strikingly similar to those reported for growth by molecular-beam epitaxy using pure Si, even though different surface reactions are involved in these two growth processes.

Lin, D.; Hirschorn, E.S.; Chiang, T. (Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)); Tsu, R.; Lubben, D.; Greene, J.E. (Department of Materials Science, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States) Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States))

1992-02-15T23:59:59.000Z

286

Determination and Characterization of Ice Propagation Mechanisms on Surfaces Undergoing Dropwise Condensation  

E-Print Network [OSTI]

The mechanisms responsible for ice propagation on surfaces undergoing dropwise condensation have been determined and characterized. Based on experimental data acquired non-invasively with high speed quantitative microscopy, the freezing process...

Dooley, Jeffrey B.

2011-08-08T23:59:59.000Z

287

Dynamics of Flagellum- and Pilus-Mediated Association of Pseudomonas aeruginosa with Contact Lens Surfaces  

Science Journals Connector (OSTI)

...lenses surfaces before and after wear using atomic force microscopy...initial event in sorption of marine bacteria to surfaces. J. Gen...associated with contact lens wear. Invest. Ophthalmol. Vis...Influence of day and night wear on surface properties of silicone...

Victoria B. Tran; Suzanne M. J. Fleiszig; David J. Evans; Clayton J. Radke

2011-04-15T23:59:59.000Z

288

Surface Plasmon mediated near-field imaging and optical addressing in nanoscience  

E-Print Network [OSTI]

We present an overview of recent progress in plasmonics. We focus our study on the observation and excitation of surface plasmon polaritons (SPPs) with optical near-field microscopy. We discuss in particular recent applications of photon scanning tunnelling microscope (PSTM) for imaging of SPP propagating in metal and dielectric wave guides. We show how near-field scanning optical microscopy (NSOM) can be used to optically and actively address remotely nano-objects such as quantum dots. Additionally we compare results obtained with near-field microscopy to those obtained with other optical far-field methods of analysis such as leakage radiation microscopy (LRM).

Drezet, A; Krenn, J R; Brun, M; Huant, S

2007-01-01T23:59:59.000Z

289

Scanning Transmission Electron Microscopy Investigations of Complex Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scanning Transmission Electron Microscopy Investigations of Complex Oxides Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of Chemistry, University of South Carolina High-Angle-Annular-Dark-Field/Scanning Transmission Electron Microscopy (HAADF/STEM) is a technique uniquely suited for detailed studies of the structure and composition of complex oxides. The HAADF detector collects electrons which have interact inelastically with the potentials of the atoms in the specimen and therefore resembles the better known Z2 (Z is atomic number) Rutherford scattering. One class of important catalysts consists of bronzes based on pentagonal {Mo6O21} building units; these include Mo5O14 and Mo17O47. In the last 20 years, new materials doped with

290

Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy  

SciTech Connect (OSTI)

Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

2011-02-01T23:59:59.000Z

291

Reducing Photobleaching in STED Microscopy with Higher Scanning Speed  

E-Print Network [OSTI]

Photobleaching is a major limitation of super-resolution STED microscopy. We show that the photobleaching rate in STED microscopy is slowed down by scanning with a higher linear speed, enabled by the large field of view in our custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching is more remarkable at higher levels of depletion laser irradiance. With a depletion irradiance of 0.4 GW/cm$^2$ (time average), we were able to slow down the photobleaching of the Atto 647N dye by 80% with 8-fold faster scanning. Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data qualitatively agree with a theoretical model. Our results encourage further increasing linear scanning speed for photobleaching reduction in STED microscopy.

Wu, Yong

2014-01-01T23:59:59.000Z

292

Generative Models for Super-Resolution Single Molecule Microscopy Images of Biological Structures  

E-Print Network [OSTI]

an information bridge between super-resolution microscopy and structural biology by using generative models

Matsuda, Noboru

293

Atom probe field ion microscopy and related topics: A bibliography 1992  

SciTech Connect (OSTI)

This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

Russell, K.F.; Godfrey, R.D.; Miller, M.K.

1993-12-01T23:59:59.000Z

294

Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy  

SciTech Connect (OSTI)

Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness d{sub g}—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM) combined with image analysis as well as by atomic force microscopy (AFM). The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for d{sub g} were obtained by SEM with image analysis and by AFM.

Lansåker, Pia C., E-mail: pia.lansaker@angstrom.uu.se; Niklasson, Gunnar A.; Granqvist, Claes G. [Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-751 21 Uppsala (Sweden); Hallén, Anders [Royal Institute of Technology, KTH-ICT, Elektrum 229, Kista, SE-164 40 Stockholm (Sweden)

2014-10-15T23:59:59.000Z

295

Ecological and agricultural applications of synchrotron IR microscopy  

E-Print Network [OSTI]

Ecological and agricultural applications of synchrotron IR microscopy T.K. Raab a,*, J.P. Vogel b factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes to pro- liferate when environmental conditions and re- sources are optimum. Cellulose, an abundant

296

Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals  

E-Print Network [OSTI]

the material undergoes a phase transition. Herein, we show that thermotropic phase transitions in 4-Cyano-41 Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals A. Nicholas G-objects in various environments. It uses a photo-induced change in the refractive index of the environment. Taking

Boyer, Edmond

297

Sample heating in near-field scanning optical microscopy  

E-Print Network [OSTI]

Heating near the aperture of aluminumcoated,fiber opticnear-field scanning optical microscopy probes was studied as a function of input and output powers. Using the shear-force feedback method, near-field probes were positioned nanometers above a...

Erickson, Elizabeth S.; Dunn, Robert C.

2005-10-05T23:59:59.000Z

298

Nanometric depth resolution from multi-focal images in microscopy  

Science Journals Connector (OSTI)

...that have been stored in a computer, but it is noted that using...interdisciplinary Bridging the Gaps grant from the UK Engineering and...Physics, SUPA/IIS, School of Engineering and Physical...instrumentation Image Processing, Computer-Assisted methods Microscopy...

2011-01-01T23:59:59.000Z

299

ABSTRACTS IN REPORTS CONCERNING ELECTRON MICROSCOPY PUBLISHED IN JAPAN:  

Science Journals Connector (OSTI)

......Thoracic Lymphatics of Living Rabbits and Sites of Escape of Car- bon Particles from the Vessels: Fumihiko KATO (First Dept...deafness. Using light and elect- ron microscopy he studied the defective organ of Corti in Shaker-1 mouse, one strain of congeni......

ABSTRACTS

1967-01-01T23:59:59.000Z

300

Image processing pipeline for synchrotron-radiation-based tomographic microscopy  

Science Journals Connector (OSTI)

A software environment has been developed for processing and reconstructing online the large amount of data generated at TOMCAT, a synchrotron-radiation-based tomographic microscopy beamline of the Swiss Light Source at Paul Scherrer Institute, Switzerland. It has been designed to minimize user interaction and maximize the reconstruction speed and therefore optimize beam time usage.

Hintermüller, C.

2010-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Detection of protein conformation defects from fluorescence microscopy images  

Science Journals Connector (OSTI)

A diagnostic method for protein conformational diseases (PCD) from microscopy images is proposed when such conformational conflicts involve muscular intranuclear inclusions (INIs) indicative of oculopharyngeal muscular dystrophy (OPMD), one variety of ... Keywords: Computer-aided diagnosis, Histogram, Microscopic images, Pattern classification, Protein conformational diseases, Texture analysis

Peifang Guo; Prabir Bhattacharya

2013-09-01T23:59:59.000Z

302

Laser scanning third-harmonic-generation microscopy in biology  

E-Print Network [OSTI]

. Denk, J. H. Stricker and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). 3. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel and W. W. Webb, "Measuring-214 (1996). 6. R. Hellwarth and P. Christensen, "Nonlinear optical microscopic examination of structure

Silberberg, Yaron

303

Slow positron annihilation spectroscopy and electron microscopy of electron beam evaporated cobalt and nickel silicides  

SciTech Connect (OSTI)

Metal silicide thin films on single-crystal silicon substrates are the subject of much research, due to their applications as electrical contacts and interconnects, diffusion barriers, low resistance gates, and field-assisted positron moderators, among others. Defects within the silicide layer and/or at the silicide/silicon interface are detrimental to device performance, since they can act as traps for charge carriers, as well as positrons. Pinholes penetrating the film are another detriment particularly for cobalt silicide films, since they allow electrons to permeate the film, rather than travel ballistically, in addition to greatly increasing surface area for recombination events. A series of epitaxial cobalt and nickel silicide thin films, deposited via electron-beam evaporation and annealed at various temperatures, have been grown on single-crystal silicon (111) substrates, in an effort to establish a relationship between deposition and processing parameters and film quality. The films have been analyzed by transmission and scanning electron microscopy, sputter depth profile Auger, and slow positron annihilation spectroscopy. The latter has been shown to both correlate and complement the traditional electron microscopy results.

Frost, R.L.; DeWald, A.B. (Georgia Institute of Technology, Atlanta, Georgia 30332 (USA)); Zaluzec, M.; Rigsbee, J.M. (University of Illinois, Urbana, Illinois 61801 (USA)); Nielsen, B.; Lynn, K.G. (Brookhaven National Laboratory, Upton, New York 11973 (USA))

1990-07-01T23:59:59.000Z

304

Characterization of polysilicon films by Raman spectroscopy and transmission electron microscopy: A comparative study  

SciTech Connect (OSTI)

Samples of chemically-vapor-deposited micrometer and sub-micrometer-thick films of polysilicon were analyzed by transmission electron microscopy (TEM) in cross-section and by Raman spectroscopy with illumination at their surface. TEM and Raman spectroscopy both find varying amounts of polycrystalline and amorphous silicon in the wafers. Raman spectra obtained using blue, green and red excitation wavelengths to vary the Raman sampling depth are compared with TEM cross-sections of these films. Films showing crystalline columnar structures in their TEM micrographs have Raman spectra with a band near 497 cm{sup {minus}1} in addition to the dominant polycrystalline silicon band (521 cm{sup {minus}1}). The TEM micrographs of these films have numerous faulted regions and fringes indicative of nanometer-scale silicon structures, which are believed to correspond to the 497cm{sup {minus}1} Raman band.

Tallant, D.R.; Headley, T.J.; Medernach, J.W. [Sandia National Labs., Albuquerque, NM (United States); Geyling, F. [SEMATECH, Austin, TX (United States)

1993-11-12T23:59:59.000Z

305

Near-field microwave microscopy of high-? oxides grown on graphene with an organic seeding layer  

SciTech Connect (OSTI)

Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100?nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

Tselev, Alexander, E-mail: tseleva@ornl.gov; Kalinin, Sergei V. [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States)] [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States); Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)] [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Marks, Tobin J.; Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States) [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

2013-12-09T23:59:59.000Z

306

Quantitative determination of local potential values in inhomogeneously doped semiconductors by scanning tunneling microscopy  

Science Journals Connector (OSTI)

Local potential changes arising from nanoscale three-dimensional spatial fluctuations in the dopant distribution in Zn-doped GaAs were investigated quantitatively by scanning tunneling microscopy and spectroscopy at (110) cleavage surfaces. Tunneling spectra measured in areas with different local doping concentration show apparent shifts of the valence band edge and apparent changes of the band gap. A quantitative analysis, combined with band bending and tunnel current simulations, demonstrates that these effects arise from tip-induced band bending that modulates the real potential changes. It is illustrated how exact potential changes between locally high and low doped areas can be determined. It is found that the local potential fluctuations in three-dimensionally doped semiconductors are approximately one order of magnitude smaller that those observed in two-dimensionally doped semiconductors.

P. H. Weidlich, R. E. Dunin-Borkowski, and Ph. Ebert

2011-08-29T23:59:59.000Z

307

Sandia National Labs: PCNSC: Departments: Surface and Interface Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Carlos Gutierrez Carlos Gutierrez Manager Resources Department Folder 01114 Sharepoint Visit Our Labs Grest Group Nanorheology Research (514 KB PDF) Interfacial Force Microscopy Group (701 KB PDF) Research Image Gallery (3,698 KB PDF) Surface Imaging Laboratory Technology - Metals for tomorrow Tina Nenoff Departments Surface and Interface Sciences The Surface and Interface Sciences Department is engaged in a diverse portfolio of leading-edge research projects related to the understanding

308

X-ray Microscopy and Imaging (XSD-XMI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Imaging (XMI) Imaging (XMI) About XMI Science and Research Beamlines Highlights Software and Tools Intranet Search APS... Argonne Home > Advanced Photon Source > Contacts FAQs Beamlines News Publications APS Email Portal APS Intranet APS Phonebook APS Quick Links for Users APS Safety and Training Welcome to the X-ray Microscopy and Imaging group (XMI)! X-ray Microscopy and Imaging is part of the X-ray Science Division at the Advanced Photon Source. We develop and support a diverse and multidisciplinary user research program at Sectors 2 and 32 of the APS, with the overall goal to image and study materials structures at spatial and temporal resolutions that are most scientifically relevant to the cutting-edge advances in materials, biological, environmental, and biomedical sciences. To achieve this goal, we actively engage in various research activities including

309

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

310

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

311

CFN Operations and Safety Awareness (COSA) Checklist Electron Microscopy Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscopy Facility Electron Microscopy Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

312

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

313

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

314

NCEM National Center for Electron Microscopy: About NCEM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NCEM NCEM The National Center for Electron Microscopy (NCEM) is one of the world's foremost centers for electron microscopy and microcharacterization. It is an Office of Science User Facility operated for the U.S. Department of Energy by Lawrence Berkeley National Laboratory. Located adjacent to the University of California, Berkeley, NCEM was established in 1983 to maintain a forefront research center for electron-optical characterization of materials with state-of-the-art instrumentation and expertise. As a national user facility, NCEM is open to scientists from universities, government and industrial laboratories. The center provides cutting-edge instrumentation, techniques and expertise for advanced electron beam microcharacterization of materials at high spatial

315

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

316

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

317

Simulating realistic imaging conditions for in situ liquid microscopy  

SciTech Connect (OSTI)

In situ transmission electron microscopy enables the imaging of biological cells, macromolecular protein complexes, nanoparticles, and other systems in a near-native environment. In order to improve interpretation of image contrast features and also predict ideal imaging conditions ahead of time, new virtual electron microscopic techniques are needed. A technique for virtual fluid-stage high-angle annular dark-field scanning transmission electron microscopy with the multislice method is presented that enables the virtual imaging of model fluid-stage systems composed of millions of atoms. The virtual technique is exemplified by simulating images of PbS nanoparticles under different imaging conditions and the results agree with previous experimental findings. General insight is obtained on the influence of the effects of fluid path length, membrane thickness, nanoparticle position, defocus and other microscope parameters on attainable image quality.

Welch, David A.; Faller, Roland; Evans, James E.; Browning, Nigel D.

2013-12-01T23:59:59.000Z

318

Acoustic microscopy for characterization of high?temperature superconducting tape  

Science Journals Connector (OSTI)

Although material scientists constantly discover superconducting compounds with higher critical temperatures (T c ’s) manufacturing of the high?temperature superconductors(HTS) remains a problem and long lengths (>1 mile) have yet to be produced. In an effort to produce long length superconductors manufacturing steps for HTS tape production have been critically looked at to find their effects in producing tape with the desired characteristics. In support of determining superconducting tapecharacteristics acoustic microscopy offers the potential for internal microstructural material characterization. This research will ultimately support in?process monitoring of HTSmanufacturing as part of an advanced sensing system to determine the presence of defects and/or the effects of process variables on the HTS tape. This presentation will overview scanning acoustic microscopy and present images of HTS tape at several frequencies ranging from 50 to 500 MHz. The results clearly demonstrate the feasibility of determining the Ag/ceramic interface location and the general integrity of the constituents.

Chiaki Miyasaka; Chris Cobucci; Bernhard Tittmann

1997-01-01T23:59:59.000Z

319

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

320

Single molecule microscopy in 3D cell cultures and tissues  

Science Journals Connector (OSTI)

Abstract From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

Florian M. Lauer; Elke Kaemmerer; Tobias Meckel

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cross-Linked ZnO nanowalls immobilized onto bamboo surface and their use as recyclable photocatalysts  

Science Journals Connector (OSTI)

A novel recyclable photocatalyst was fabricated by hydrothermal method to immobilize the cross-linked ZnO nanowalls on the bamboo surface. The resultant samples were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), ...

Chunde Jin, Jingpeng Li, Jin Wang, Shenjie Han, Zhe Wang, Qingfeng Sun

2014-01-01T23:59:59.000Z

322

Roughening of a Si(100) surface induced by the adsorption of oxygen near the solid-oxide nucleation threshold  

Science Journals Connector (OSTI)

An investigation of the processes on a Si(100) surface interacting with oxygen near the solid-oxide nucleation threshold using x-ray photoelectron spectroscopy and atomic-force microscopy is described. The nuclea...

V. D. Borman; Yu. Yu. Lebedinskii…

1998-07-01T23:59:59.000Z

323

Investigation of short-range surface forces to develop self-organizing devices by Steven M. Tobias.  

E-Print Network [OSTI]

Force spectra from atomic force microscopy were used to verify surface energy components of indium tin oxide and mesocarbon microbeads. These materials were selected based on spectroscopic and thermodynamic parameters to ...

Tobias, Steven M., 1980-

2005-01-01T23:59:59.000Z

324

Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy  

SciTech Connect (OSTI)

The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn; Zhong, Jun, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)] [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)

2013-12-16T23:59:59.000Z

325

Atom probe field ion microscopy and related topics: A bibliography 1991  

SciTech Connect (OSTI)

This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory.

Russell, K.F.; Miller, M.K.

1993-01-01T23:59:59.000Z

326

Cellular resolution ex vivo imaging of gastrointestinal tissues with coherence microscopy  

E-Print Network [OSTI]

Optical coherence microscopy (OCM) combines confocal microscopy and optical coherence tomography (OCT) to improve imaging depth and contrast, enabling cellular imaging in human tissues. We aim to investigate OCM for ex ...

Fujimoto, James G.

327

Comparison between direct methods for determination of microbial cell volume: electron microscopy and electronic particle sizing.  

Science Journals Connector (OSTI)

...than those processed for electronic particle sizing, reflecting...Electron Microscopy and Electronic Particle Sizing E. MONTESINOS...ofMicrobiology and Institute for Fundamental Biology, Autonomous University...transmission electron microscopy and electronic particle sizing. Statistically...

E Montesinos; I Esteve; R Guerrero

1983-05-01T23:59:59.000Z

328

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00...

329

Towards automatic cell identi cation in DIC microscopy , C.A. Glasbey2y  

E-Print Network [OSTI]

1998. Journal of Microscopy, 192, 186-193. #12;a b c Figure 1: DIC microscope images: a Chlorella algal

Stone, J. V.

330

Atomic structure of the high-temperature O/W(001)-(2×1) surface  

Science Journals Connector (OSTI)

The surface reconstruction of the W(001) surface in the presence of oxygen has been studied by scanning tunneling microscopy. A two-domain (2×1) structure with domain size ?30 Å was observed after the oxygen-covered surface was annealed at >1000 °C for <1 min. Tunneling microscopy and spectroscopy results support the missing-row model for the (2×1) structure; the preferred location for adsorbed oxygen is either the threefold-hollow site or a site on top of a W atom in the second layer.

J. A. Meyer; Y. Kuk; P. J. Estrup; P. J. Silverman

1991-10-15T23:59:59.000Z

331

ELSEVIER Surface Science 329 (1995) 255-268 Predicting STM images of molecular adsorbates  

E-Print Network [OSTI]

ELSEVIER Surface Science 329 (1995) 255-268 Predicting STM images of molecular adsorbates V of a simple computational method for predicting scanning tunneling microscopy images for molecules adsorbed onto metal surfaces. Development of the technique is described, including adsorbate geometry selection

Chiang, Shirley

332

Z .Thin Solid Films 391 2001 143 148 Submicrosecond range surface heating and temperature  

E-Print Network [OSTI]

Z .Thin Solid Films 391 2001 143 148 Submicrosecond range surface heating and temperature; accepted 22 March 2001 Abstract A method for submicrosecond heating of sensor surfaces and simultaneous as well as photo thermal and scanning force microscopy measurements were performed to optimize the heating

Moritz, Werner

333

Structural observation of Pd silicide islands on Si (111) surfaces with UHV-TEM/STM  

Science Journals Connector (OSTI)

......silicide islands on Si (111) surfaces with UHV-TEMSTM Miyoko Tanaka Masaki Takeguchi...microscopyscanning tunnelling microscopy (UHV-TEMSTM) combined system to clarify the...silicide islands on Si (111) surfaces with UHV-TEM/STM Miyoko Tanaka * , Masaki Takeguchi......

Miyoko Tanaka; Masaki Takeguchi; Hidehiro Yasuda; Kazuo Furuya

2002-03-01T23:59:59.000Z

334

Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a  

E-Print Network [OSTI]

Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a , S.N. Renfrow a,b , G. Vizkelethy a,1 Abstract Alternatives to traditional nuclear microprobe analysis (NMA) emerged two years ago with the invention of ion electron emission microscopy (IEEM). With nuclear emission microscopy (NEM) the ion beam

335

Electron Microscopy of Myosin Molecules from Muscle and Non-Muscle Sources  

Science Journals Connector (OSTI)

...1976 research-article Electron Microscopy of Myosin...Muscle and Non-Muscle Sources A. Elliott G. Offer...give the two heads). Electron microscopy of myosin...muscle and non-muscle sources. | Journal Article...Chickens Microscopy, Electron Muscle Proteins Myosins...

1976-01-01T23:59:59.000Z

336

Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy  

SciTech Connect (OSTI)

We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

2007-11-01T23:59:59.000Z

337

Optimization of neon soft X-rays emission from 200 J fast miniature dense plasma focus device: A potential source for soft X-ray lithography  

Science Journals Connector (OSTI)

Abstract The neon soft X-ray (SXR) emission characteristics of a Fast Miniature Plasma Focus (FMPF-3) device have been investigated. The FMPF-3 device used for our experiment is of sub-kilojoule energy capacity, which is an order of magnitude lesser than the other well established plasma focus devices. The influence of different geometrical parameters of the anode and the pressure of the filling gas on the SXR emission was investigated to optimize the neon SXR yield and thereby make it a potential source for X-ray lithography. The SXR signal, solely from the desired, characteristic spectral range (900–1600) eV was selectively extracted and acquired using appropriate X-ray absorption filters on diode X-ray spectrometer. It was found that the neon SXR emission from 17 mm long cylindrical anode, which produced best neutron yields, was rather poor, in a very narrow pressure range and that too at low operating pressure. With decrease in the length of cylindrical anode, the optimum operating pressure shifts to higher pressure side, the working pressure range widens and the SXR yield also increases until the anode length is reduced to 12 mm, after which, the SXR yield and working pressure range start to degrade. The highest neon SXR yield of 1.1 J/shot, corresponding to a wall plug efficiency of 0.57%, was obtained for 12 mm long cylindrical anode. The tapered anodes with different length were also designed and tested, but they did not show any significant improvement in neon SXR yield.

S.M.P. Kalaiselvi; T.L. Tan; A. Talebitaher; P. Lee; R.S. Rawat

2013-01-01T23:59:59.000Z

338

Cryogenic X-Ray Diffraction Microscopy for Biological Samples  

Science Journals Connector (OSTI)

X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

Enju Lima; Lutz Wiegart; Petra Pernot; Malcolm Howells; Joanna Timmins; Federico Zontone; Anders Madsen

2009-11-05T23:59:59.000Z

339

Cryogenic X-ray Diffraction Microscopy for Biological Samples  

SciTech Connect (OSTI)

X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

2011-12-31T23:59:59.000Z

340

Single Molecule Emission Characteristics in Near-Field Microscopy  

Science Journals Connector (OSTI)

In near-field scanning optical microscopy (NSOM), the measured fluorescence lifetime of a single dye molecule can be shortened or lengthened, sensitively dependent on the relative position between the molecule and aluminum coated fiber tip. The modified lifetimes and other emission characteristics are simulated by solving Maxwell equations with the finite-difference time-domain (FDTD) method. The 2D computation reveals insight into the lifetime behaviors and provides guidance for nonperturbative spectroscopic measurements with NSOM. This new methodology is capable of predicting molecular emission properties in front of a metal/dielectric interface of arbitrary geometry.

Randy X. Bian; Robert C. Dunn; X. Sunney Xie; P. T. Leung

1995-12-25T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Surface Treatment by Laser  

Science Journals Connector (OSTI)

By this treatment, new hardenings of the surface can occur; the surface is higher alloyed by remelting, or layers...

2014-01-01T23:59:59.000Z

342

Surface Energy,Surface Energy, Surface Tension & Shape of CrystalsSurface Tension & Shape of Crystals  

E-Print Network [OSTI]

Surface Energy,Surface Energy, Surface Tension & Shape of CrystalsSurface Tension & Shape of shapes of crystals are important: (i) growth shape and (ii) equilibrium shape Surface/interface energy surfaces. The joining of two phases creates an interface. (Two orientations of the same crystalline phase

Subramaniam, Anandh

343

Ionization of Rydberg atoms at metallic surfaces: Influence of stray fields  

SciTech Connect (OSTI)

The ionization of xenon Rydberg atoms at metallic surfaces is examined. The data show that, when the effects of stray electric 'patch' fields present on the surface are taken into account, ionization is well described by a simple over-the-barrier model. The patch fields are determined from direct measurements of the potential variations across the target surfaces using Kelvin probe force microscopy. Monte Carlo techniques are used to model the atom-surface interaction. The results confirm the important role that patch fields can play during Rydberg atom-surface interactions and suggest that such interactions can provide a sensitive probe of stray fields at surfaces.

Pu, Y.; Neufeld, D. D.; Dunning, F. B. [Department of Physics and Astronomy and the Rice Quantum Institute, Rice University MS61, Houston, Texas 77005-1892 (United States)

2010-04-15T23:59:59.000Z

344

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

345

Dynamic recrystallization in friction surfaced austenitic stainless steel coatings  

SciTech Connect (OSTI)

Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

2012-12-15T23:59:59.000Z

346

Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness  

SciTech Connect (OSTI)

Previously, Lau (one of the authors) pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD) on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

Lau, W. S., E-mail: liuweicheng@zju.edu.cn; Wan, X.; Xu, Y.; Wong, H. [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China)] [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Zhang, J. [Zhejiang University, Department of Materials Science and Engineering, No. 38 Zheda Road, Hangzhou 310027 (China)] [Zhejiang University, Department of Materials Science and Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Luo, J. K. [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China) [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5 AB (United Kingdom)

2014-02-15T23:59:59.000Z

347

Theory of correlated hops in surface diffusion  

Science Journals Connector (OSTI)

Scanning tunneling microscopy observations of long hops in the diffusion of Pb atoms on Ge surfaces are explained by the model of a Brownian particle in a periodic potential. The classical turnover theory for barrier crossing predicts a large correlated hopping probability in the underdamped limit, consistent with experiment and in agreement with simulations. The corresponding quantum theory predicts that in the underdamped limit the rate is dominated by tunneling. This causes the quantum correlated hopping probability to vanish in this limit and may be thought of as a new form of quantum localization.

Eli Pollak, Joel Bader, B. J. Berne, and Peter Talkner

1993-05-24T23:59:59.000Z

348

Handbook of Surface and Colloid Chemistry Edited by K. S. Birdi. CRC Press:? Boca Raton, FL. 1998. $139.95. 738 pp. ISBN 0-8493-9459-7.  

Science Journals Connector (OSTI)

Handbook of Surface and Colloid Chemistry Edited by K. S. Birdi. ... The book does an excellent job in reviewing the fundamental principles of colloid chemistry. ... The final chapter covers scanning tunneling microscopy and atomic force microscopy techniques, certainly falling within the scope of providing some of the most recent characterization techniques of colloid chemistry. ...

Jean-Claude Bradley

1999-07-29T23:59:59.000Z

349

Initial stages of the autocatalytic oxidation of the InAs(0 0 1)-(4 2)/c(8 2) surface by molecular oxygen  

E-Print Network [OSTI]

by molecular oxygen Jonathon B. Clemens a , Sarah R. Bishop a , Darby L. Feldwinn a,1 , Ravi Droopad b,2 simulations Scanning tunneling microscopy Chemisorption Oxidation Indium arsenide Oxygen Semi conducting) surface by molecular oxygen (O2) were studied using scanning tunneling microscopy (STM) and density

Kummel, Andrew C.

350

Advanced Photon Source | Combining Scanning Probe Microscopy and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

01.2013 01.2013 Nanoscience Seminar presented at Tokyo University On November 1, 2013, Volker Rose was invited to present the Nanoscience Seminar at the Institute of Solid State Physics (ISSP) of the University of Tokyo. In his seminar he discussed the physical principles of Synchrotron X-ray Scanning Tunneling Microscopy (SXSTM) as well as the recent progress made by his team at the Advanced Photon Source. He was invited by Prof. Yukio Hasegawa, who himself conducts SXSTM experiment at the Photon Factory in Tsukuba, Japan. The ISSP serves as the central laboratory of materials science in Japan equipped with state-of-art facilities. It was relocated to the new campus in Kashiwa of the University of Tokyo in 2000 after the 43 years of activities at the Roppongi campus in downtown Tokyo. Here ISSP is focusing

351

Advanced Photon Source | Combining Scanning Probe Microscopy and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

27.2013 27.2013 Researchers from NSLS-II visit SXSPM team at Argonne Synchrotron x-ray scanning tunneling microscopy will soon also be developed at the National Synchrotron Light Source (NSLS-II) at Brookhaven National Laboratory (BNL). In order to establish collaboration between the two National Laboratories, Drs. Evgeny Nazaretski and Hui Yan fom BNL visited Argonne to learn more about recent progress made in the SXSPM project. During the 2-day visit the teams discussed mutual scientific goals and strategies to achieve them. NSLS-II will be a new state-of-the-art, medium-energy electron storage ring at BNL designed to deliver high intensity and brightness. Construction of the NSLS-II's ring building began in March 2009. The new facility will begin operating in 2014

352

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CM 200 FEG CM 200 FEG AEME The Philips CM200/FEG is a versatile instrument that is designed for analysis of the physical, chemical and magnetic microstructure at high spatial resolution. In addition to high resolution imaging capability, the machine is optimized for analytical electron microscopy and Lorentz imaging, under normal as well as dynamic conditions of variable temperature (77K - 1250K) and applied magnetic fields. Spatially resolved compositional analysis by X-ray emission spectroscopy (Z > 5), local electronic structure measurements by electron energy-loss spectroscopy (Z > 2), convergent beam electron diffraction for three-dimensional structure information, and energy-filtered imaging at the nanometer scale are some of the techniques available on this instrument. In addition, a TEM differential phase

353

Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series  

SciTech Connect (OSTI)

In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

Dahmen, Tim [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; Baudoin, Jean-Pierre G [ORNL] [ORNL; Lupini, Andrew R [ORNL] [ORNL; Kubel, Christian [Karlsruhe Institute of Technology, Leopoldshafen, Germany] [Karlsruhe Institute of Technology, Leopoldshafen, Germany; Slusallek, Phillip [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; De Jonge, Niels [ORNL] [ORNL

2014-01-01T23:59:59.000Z

354

In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry  

SciTech Connect (OSTI)

Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

2011-10-31T23:59:59.000Z

355

Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory  

SciTech Connect (OSTI)

The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron microscopy techniques in strongly correlated electron systems and nanostructured materials. As a first step, with the support of Materials Science Division, Office of Basic Energy Science, US Department of Energy, and the New York State Office of Science, Technology, and Academic Research, recently we acquired three aberration-corrected electron microscopes from the three major microscope manufacturers, i.e., JEOL, Hitachi, and FEI. The Hitachi HD2700C is equipped with a probe corrector, the FEI Titan 80-300 has an imaging corrector, while the JEOL2200MCO has both. All the correctors are of the dual-hexapole type, designed and manufactured by CEOS GmbH based on the design due to Rose and Haider [3, 18]. All these three are one-of-a-kind in the US, designed for specialized capabilities in characterizing nanoscale structure. In this chapter, we review the performance of these state-of-the art instruments and the new challenges associated with the improved spatial resolution, including the environment requirements of the laboratory that hosts these instruments. Although each instrument we describe here has its own strengths and drawbacks, it is not our intention to rank them in terms of their performance, especially their spatial resolution in imaging.

Zhu,Y.; Wall, J.

2008-04-01T23:59:59.000Z

356

Integrated fiducial sample mount and software for correlated microscopy  

SciTech Connect (OSTI)

A novel design sample mount with integrated fiducials and software for assisting operators in easily and efficiently locating points of interest established in previous analytical sessions is described. The sample holder and software were evaluated with experiments to demonstrate the utility and ease of finding the same points of interest in two different microscopy instruments. Also, numerical analysis of expected errors in determining the same position with errors unbiased by a human operator was performed. Based on the results, issues related to acquiring reproducibility and best practices for using the sample mount and software were identified. Overall, the sample mount methodology allows data to be efficiently and easily collected on different instruments for the same sample location.

Timothy R McJunkin; Jill R. Scott; Tammy L. Trowbridge; Karen E. Wright

2014-02-01T23:59:59.000Z

357

Three-Dimensional Critical Behavior with 2D, 1D, and 0D Dimensionality Crossover: Surface and Edge Specific Heats  

Science Journals Connector (OSTI)

The critical behavior at a second order phase transition is characterized by the divergence of the correlation length ?. We have studied the superfluid transition of He4 in a series of experimental cells in which this divergence of ? is modified due to finite-size confinement. In particular, the design of these cells is such that the smallest dimension is kept the same, 1????m, but the geometry is such that one obtains crossover to dimensionality of 2, 1, and 0. This corresponds to films, channels, and boxes filled with helium. We measure the specific heat and compare these results with theoretical expectations. We identify surface and line specific heat contributions by analyzing the deviation of the specific heat from its behavior in the thermodynamic limit. The design of these cells is made possible by a combination of silicon lithography and direct wafer bonding.

M. O. Kimball; K. P. Mooney; F. M. Gasparini

2004-03-19T23:59:59.000Z

358

NEAR-IR TWO PHOTON MICROSCOPY IMAGING OF SILICA NANOPARTICLES FUNCTIONALIZED WITH ISOLATED SENSITIZED Yb(III) CENTERS  

SciTech Connect (OSTI)

Bright nano objects emitting in the near infrared with a maximal cross section of 41.4 x 103 GM (Goppert Mayer), were prepared by implanting ca. 180 4,4 diethylaminostyryl 2,2 bipyridine (DEAS) Yb(III) complexes on the surface of 12 nm silica nanoparticles. The surface complexes ([DEAS Ln SiO2], Ln =Y,Yb) were characterized using IR, solid state NMR, UV Vis, EXAFS spectroscopies in combination with the preparation and characterization of similar molecular analogues by analytical techniques (IR, solution NMR, UV Vis, X ray crystallography) as well as DFT calculations. Starting from the partial dehydroxylation of the silica at 700 C on high vacuum having 0.8 OH.nm 2, the grafting of Ln(N(SiMe3)2)3 generate ?SiO Ln(N(SiMe3)2)2, which upon thermal step and coordination of the DEAS chromophore yields (?SiO)3Ln(DEAS). Surface and molecular analogues display similar properties, in terms of DEAS binding constants absorption maxima and luminescence properties (intense emission band assigned to a ligand centered CT fluorescence and life time) in the solid state, consistent with the molecular nature of the surface species. The densely functionalized nanoparticles can be dispersed via ultra-sonication in small ca. 15-20 nm aggregates (1 to 6 elementary particles) that were detected using two photon microscopy imaging at 720 nm excitation, making them promising nano objects for bio imaging.

Lapadula, Giuseppe; Bourdolle, Adrien; Allouche, Florian; Conley, Matthew P.; Maron, Laurent; Lukens, Wayne W.; Guyot, Yannick; Andraud, Chantal; Brasselet, Sophie; Copé; ret, Christophe; Maury, Olivier; Andersen, Richard A.

2013-01-12T23:59:59.000Z

359

Scanning tunneling microscopy study of the Eu-induced Ge(111)-(3×2)?(3×4) reconstruction  

Science Journals Connector (OSTI)

Eu-induced (3×2) reconstruction of the Ge(111) surface has been investigated by scanning tunneling microscopy (STM). The empty-state STM images show the chainlike atomic structure that is similar to those of the metal-induced Si(111)-(3×2) surfaces with an adsorbate coverage of 1?6 monolayer (ML). The filled-state STM images combined with the empty-state images at the low bias voltage reveal that the Ge arrangement of Eu?Ge(111)-(3×2) can be well interpreted in terms of the honeycomb chain-channel (HCC) model with the characteristic Ge?Ge double bond and slightly modified Ge honeycomb chains which are similar to those of the 1?6-ML HCC structure of Si(111)-(3×2). In addition, the Eu?Ge(111)-(3×2) surface is found to have a local ×4 periodicity along Eu chains, which can be explained, based on the analysis of STM line profiles, with two nonequivalent adsorption sites occupied by the Eu atoms in the empty channels of the HCC structure. The structural modifications of the Ge honeycomb chains as well as the origin of the ×2 and ×4 chains of Eu atoms in the HCC structure on the Eu?Ge(111) surface are discussed.

M. Kuzmin; P. Laukkanen; R. E. Perälä; I. J. Väyrynen

2006-03-23T23:59:59.000Z

360

Chemical, Electronic and Nanostructure Dynamics on Sr(Ti[subscript 1 - x]FE[subscript x])O[subscript 3] Thin-Film Surfaces at High Temperatures  

E-Print Network [OSTI]

The surface structure, chemical composition and electronic structure of Sr(Ti1-xFex)O3 under different temperatures and oxygen pressures were studied by Scanning Tunneling Microscopy / Spectroscopy (STM/S) and X-ray ...

Chen, Yan

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Comparison of Graphene Formation on C-face and Si-face SiC {0001} Surfaces Luxmi, N. Srivastava, Guowei He, and R. M. Feenstra  

E-Print Network [OSTI]

1 Comparison of Graphene Formation on C-face and Si-face SiC {0001} Surfaces Luxmi, N. Srivastava of graphene formed on the ( 1000 ) surface (the C-face) and the (0001) surface (the Si-face) of Si) and low-energy electron microscopy (LEEM). The graphene forms due to preferential sublimation of Si from

Feenstra, Randall

362

Morphology change of oxygen-restructured TiO2,,110... surfaces by UHV annealing: Formation of a low-temperature ,,12... structure  

E-Print Network [OSTI]

Morphology change of oxygen-restructured TiO2,,110... surfaces by UHV annealing: Formation of a low microscopy images of the strands are consistent with the added- Ti2O3-row model. UHV annealing of oxygen. Restructured surfaces are annealed in ul- trahigh vacuum UHV at temperatures between 620 and 830 K. The surface

Diebold, Ulrike

363

6230 surface treatment [n  

Science Journals Connector (OSTI)

constr. (Surfacing of manufactured stone products, metals, wood,...Specific term for surface treatment of stones with hammer and chisel tooling); syn. surfacing [n] (2);s tratamiento [m] de superfici...

2010-01-01T23:59:59.000Z

364

Formation of Ti-B surface alloys by excimer laser mixing  

SciTech Connect (OSTI)

We have formed a surface Ti-B alloy by excimer laser mixing of a single B layer on a Ti-6Al-4V alloy substrate. Rutherford backscattering spectroscopy indicates a uniform B:Ti ratio of approximately 0.7 in the surface layer. A Boron layer 60 nm thick resulted in an alloy layer approximately 200 nm thick. There is little indication, by either Auger electron spectroscopy or nuclear reaction analysis, of substantial oxygen incorporation in the surface alloy despite the fact that the processing was done in air. Transmission electron microscopy of the surface alloy shows a completely amorphous surface layer underlain by a martensitic structure.

Jervis, T.R.; Nastasi, M.; Hirvonen, J.P.; Zocco, T.G.

1990-01-01T23:59:59.000Z

365

Electric force microscopy of semiconductors: Theory of cantilever frequency fluctuations and noncontact friction  

SciTech Connect (OSTI)

An electric force microscope employs a charged atomic force microscope probe in vacuum to measure fluctuating electric forces above the sample surface generated by dynamics of molecules and charge carriers. We present a theoretical description of two observables in electric force microscopy of a semiconductor: the spectral density of cantilever frequency fluctuations (jitter), which are associated with low-frequency dynamics in the sample, and the coefficient of noncontact friction, induced by higher-frequency motions. The treatment is classical-mechanical, based on linear response theory and classical electrodynamics of diffusing charges in a dielectric continuum. Calculations of frequency jitter explain the absence of contributions from carrier dynamics to previous measurements of an organic field effect transistor. Calculations of noncontact friction predict decreasing friction with increasing carrier density through the suppression of carrier density fluctuations by intercarrier Coulomb interactions. The predicted carrier density dependence of the friction coefficient is consistent with measurements of the dopant density dependence of noncontact friction over Si. Our calculations predict that in contrast to the measurement of cantilever frequency jitter, a noncontact friction measurement over an organic semiconductor could show appreciable contributions from charge carriers.

Lekkala, Swapna; Marohn, John A.; Loring, Roger F., E-mail: roger.loring@cornell.edu [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

2013-11-14T23:59:59.000Z

366

surface science | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface science surface science Leads No leads are available at this time. Metal-Insulator Photocathode Heterojunction for Directed Electron Emission. Abstract: New photocathode...

367

Surface tension and contact with soft elastic solids  

E-Print Network [OSTI]

Johnson-Kendall-Robert (JKR) theory is the basis of modern contact mechanics. It describes how two deformable objects adhere together, driven by adhesion energy and opposed by elasticity. However, it does not include solid surface tension, which also opposes adhesion by acting to flatten the surface of soft solids. We tested JKR theory to see if solid surface tension affects indentation behaviour. Using confocal microscopy, we characterised the indentation of glass particles into soft, silicone substrates. While JKR theory held for particles larger than a critical, elastocapillary lengthscale, it failed for smaller particles. Instead, adhesion of small particles mimicked the adsorption of particles at a fluid interface, with a size-independent contact angle between the undeformed surface and the particle given by a generalised version of Young's law. A simple theory quantitatively captures this behaviour, and explains how solid surface tension dominates elasticity for small-scale indentation of soft materials.

Robert W. Style; Callen Hyland; Rostislav Boltyanskiy; John S. Wettlaufer; Eric R. Dufresne

2013-10-11T23:59:59.000Z

368

Predicting the stability of surface phases of molybdenum selenides  

SciTech Connect (OSTI)

The selenization of molybdenum might become an important step in the production of nanostructures based on the layered compound MoSe{sub 2}. It is already technologically relevant for the production of thin film chalcopyrite solar cells. However, the control of the process is still very poor, due to the lack of basic knowledge of the surface thermodynamics of the system. Here, we present a theoretical study on the stability of surface adlayers of Se on the Mo(110) surface, predicting surface patterns and their stability range in terms of temperature and selenium partial pressure. Our results, based on density functional theory, show that the attainable Se coverages range from 1/4 to 3/4 of a monolayer for systems in equilibrium with a gas formed of Se molecules. We provide simulated scanning tunneling microscopy images to help the experimental characterization of adsorbed surface patterns.

Roma, Guido [Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität, D-55128, Mainz (Germany); CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191, Gif sur Yvette (France); Ghorbani, Elaheh [Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität, D-55128, Mainz (Germany); IBM Mainz (Germany); Mirhosseini, Hossein; Kühne, Thomas D. [Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität, D-55128, Mainz (Germany); Kiss, Janos; Felser, Claudia [Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität, D-55128, Mainz (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany)

2014-02-10T23:59:59.000Z

369

Observation of buried interfaces with low energy electron microscopy  

Science Journals Connector (OSTI)

In this Letter we show that a coherent low energy electron beam (<100 eV) can be used to obtain real space images of structures and defects buried deep below the surface of the sample. The elastic strain fields of such buried structures, extending to the free surface, are found to give rise to localized phase shifts in the reflected electron waves, resulting in excellent image contrast under slight objective lens defocus conditions. We can now image the formation and evolution of buried interfaces and defects in situ, and in real time. Because of the very low electron energies used, this imaging method is nondestructive.

R. M. Tromp, A. W. Denier van der Gon, F. K. LeGoues, and M. C. Reuter

1993-11-15T23:59:59.000Z

370

Thermal calibration of photodiode sensitivity for atomic force microscopy  

SciTech Connect (OSTI)

The photodiode sensitivity in the atomic force microscope is calibrated by relating the voltage noise to the thermal fluctuations of the cantilever angle. The method accounts for the ratio of the thermal fluctuations measured in the fundamental vibration mode to the total, and also for the tilt and extended tip of the cantilever. The method is noncontact and is suitable for soft or deformable surfaces where the constant compliance method cannot be used. For hard surfaces, the method can also be used to calibrate the cantilever spring constant.

Attard, Phil; Pettersson, Torbjoern; Rutland, Mark W. [School of Chemistry F11, University of Sydney, NSW 2006 Australia (Australia); Department of Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden and Institute for Surface Chemistry, Box 5607, SE-114 86 Stockholm (Sweden)

2006-11-15T23:59:59.000Z

371

Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy  

SciTech Connect (OSTI)

Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

Grigg, D.A.; Russell, P.E.; Dow, T.A.

1988-12-01T23:59:59.000Z

372

E-Print Network 3.0 - analytical electron microscopy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director Rutgers Research Showcase Summary: Electron Microscopy Nuclear Magnetic Resonance Spectroscopy X-Ray Diffraction Facility (XRD) Micro-Analytical... for...

373

Cell Division Stage in C. elegans Imaged Using Third Harmonic Generation Microscopy  

Science Journals Connector (OSTI)

C. elegans embryogenesis, at the cell division stage, was imaged using third harmonic generation microscopy employing ultrashort pulsed lasers at 1028nm and 1550nm. This technique...

Aviles-Espinosa, Rodrigo; Tserevelakis, G J; Santos, Susana I c o; Filippidis, G; Krmpot, A J; Vlachos, M; Tavernarakis, N; Brodschelm, A; Kaenders, W; Artigas, David; Loza-Alvarez, Pablo

374

Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae Haematococcus Pluvialis  

Science Journals Connector (OSTI)

We consider multi-modal four-wave mixing microscopies to be ideal tools for the in vivo study of carotenoid distributions within the important biofuel microalgae Haematococcus...

Barlow, Aaron M; Slepkov, Aaron D; Ridsdale, Andrew; McGinn, Patrick J; Stolow, Albert

2014-01-01T23:59:59.000Z

375

Pixel super-resolution in serial time-encoded amplified microscopy (STEAM)  

Science Journals Connector (OSTI)

We propose pixel super-resolution serial time-encoded amplified microscopy (STEAM) for achieves high speed and high-resolution imaging - relaxing the stringent requirement on the...

Wong, Terence T W; Chan, Antony; Wong, Kenneth K Y; Tsia, Kevin K

376

Coherence-Controlled Holographic Microscopy for Coherence-Gated Quantitative Phase Imaging  

Science Journals Connector (OSTI)

We show that the use of incoherent illumination in coherence-controlled holographic microscopy (CCHM) enables coherence-gated quantitative phase imaging of objects through turbid...

Slaby, Tomas; Kolman, Pavel; Dostal, Zbynek; Antos, Martin; Lostak, Martin; Krizova, Aneta; Collakova, Jana; Kollarova, Vera; Slaba, Michala; Vesely, Pavel; Chmelik, Radim

377

E-Print Network 3.0 - absorption spectroscopic microscopy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

version of scanning near-field optical microscopy (SNOM). The tunable infrared radiation... the l 3.5 mm, CH vibrational stretch mode absorption band. ... Source:...

378

Data Reduction Enables Massive Data Handling in Super-resolution Localization Microscopy  

Science Journals Connector (OSTI)

Massive data handling is the major challenge in super-resolution localization microscopy. Here we present a data reduction approach to solve this challenge. This approach enables the...

Ma, Hongqiang; Zeng, Shaoqun; Huang, Zhen-li

379

Electron and Scanning Probe Microscopies | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron and Scanning Probe Microscopies Electron and Scanning Probe Microscopies Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Electron and Scanning Probe Microscopies Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports basic research in condensed matter physics and materials physics using electron scattering and microscopy and scanning probe techniques. The research includes experiments and theory to understand the atomic, electronic, and magnetic structures of materials.

380

Improved LWR Cladding Performance by EPD Surface Modification Technique  

SciTech Connect (OSTI)

This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

Michael Corradini; Kumar Sridharan

2012-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self-assembled monolayer  

E-Print Network [OSTI]

AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self force microscopy; Friction; Self-assembly; Surface thermodynamics (including phase transitions); Growth are of utmost current interest. In many practical appli- cations films of incompatible mixtures are pre- pared

Zbigniew, Postawa

382

ABSTRACTS IN REPORTS CONCERNING ELECTRON MICROSCOPY PUBLISHED IN JAPAN:  

Science Journals Connector (OSTI)

......dehydration. It is thought that the foam cells are playing the main role...electrode is ap- plied through an insulated coaxial cable whose exterior surface is kept at...is supplied through an insulating cable to the 10 stage ac- celerator in......

ABSTRACTS

1967-01-01T23:59:59.000Z

383

Band excitation method applicable to scanning probe microscopy  

DOE Patents [OSTI]

Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

Jesse, Stephen; Kalinin, Sergei V

2013-05-28T23:59:59.000Z

384

Detection of protein conformation defects from fluorescence microscopy images  

Science Journals Connector (OSTI)

Abstract A diagnostic method for protein conformational diseases (PCD) from microscopy images is proposed when such conformational conflicts involve muscular intranuclear inclusions (INIs) indicative of oculopharyngeal muscular dystrophy (OPMD), one variety of PCD. The method combines two techniques: (1) the Histogram Region of Interest Fixed by Thresholds (HRIFT) is designed to capture the color information of \\{INIs\\} for basic feature extraction; (2) an automated feature synthesis, based on the HRIFT features, is designed to identify OPMD by means of Genetic Programming and the Expectation Maximization algorithm (GP-EM) for classification improvement. With variations in size, shape, and background structure, a total of 600 microscopic images are analyzed for the binary classes of healthy and sick conditions of OPMD. The integrated technique of the approach reveals a sensitivity of 0.9 and an area of 0.961 under the receiver operating characteristic (ROC) at a specificity of 0.95. Furthermore, significant improvements in classification accuracy and computational time are demonstrated by comparison with other methods.

Peifang Guo; Prabir Bhattacharya

2013-01-01T23:59:59.000Z

385

Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy  

SciTech Connect (OSTI)

Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

Augspurger, Ashley E. [Ames Laboratory; Stender, Anthony S. [Ames Laboratory; Han, Rui [Ames Laboratory; Fang, Ning [Ames Laboratory

2013-12-30T23:59:59.000Z

386

Extreme-UV lithography system  

DOE Patents [OSTI]

A photolithography system that employs a condenser that includes a series of aspheric mirrors on one side of a small, incoherent source of radiation producing a series of beams is provided. Each aspheric mirror images the quasi point source into a curved line segment. A relatively small arc of the ring image is needed by the camera; all of the beams are so manipulated that they all fall onto this same arc needed by the camera. Also, all of the beams are aimed through the camera's virtual entrance pupil. The condenser includes a correcting mirror for reshaping a beam segment which improves the overall system efficiency. The condenser efficiently fills the larger radius ringfield created by today's advanced camera designs. The system further includes (i) means for adjusting the intensity profile at the camera's entrance pupil or (ii) means for partially shielding the illumination imaging onto the mask or wafer. The adjusting means can, for example, change at least one of: (i) partial coherence of the photolithography system, (ii) mask image illumination uniformity on the wafer or (iii) centroid position of the illumination flux in the entrance pupil. A particularly preferred adjusting means includes at least one vignetting mask that covers at least a portion of the at least two substantially equal radial segments of the parent aspheric mirror.

Replogle, William C. (Livermore, CA); Sweatt, William C. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

387

Effect of surface treatments on radiation buildup in steam generators  

SciTech Connect (OSTI)

A study of the effect of surface preparation on the radiation buildup of steam generator materials of construction was conducted. The tests consisted of exposing treated manway seal plates to primary reactor coolant during the second through the fifth fuel cycle of the Chinon B1 pressurized water reactor. The pretreatments included: mechanical polishing, electropolishing (either on the as received surface or on a surface which had been previously mechanically polished), and passivation via the RCT (laboratory) process or the Framatome (in situ) process. Radioactivity buildup was determined at the end of each fuel cycle. A selected number of the seal plates were removed from the steam generators after each exposure cycle for destructive examinations. The electropolished surfaces exhibited a significantly lower radioactive buildup rate; an average factor of five less buildup compared to an as-received surface. Passivation of the electropolished surface, especially via the RCT process, reduced the buildup rate still further by a factor of two over the electropolished-only surface. Examination of the surfaces by profilometry, scanning electron microscopy, etc., after exposure indicated no detrimental effects on the surface characteristics attributable to the surface treatments. A program has now been instituted to electropolish the steam generator channel heads of all new reactors in France, as well as the steam generators intended for replacement in existing plants. 1 ref., 5 figs., 10 tabs.

Not Available

1991-11-01T23:59:59.000Z

388

An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air  

E-Print Network [OSTI]

. © 2006 Elsevier B.V. All rights reserved. Keywords: Silicon; MEMS; Wear; Electron microscopy 1An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air D.H. Alsem a,b,c,, E.A. Stach d , M.T. Dugger e , M. Enachescu b , R.O. Ritchie a,b a Department of Materials

Ritchie, Robert

389

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology  

E-Print Network [OSTI]

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

Xie, Xiaoliang Sunney

390

SUBMOLECULAR IMAGING OF EPITAXIALLY CRYSTALLIZED HELICAL POLYOLEFINS BY ATOMIC FORCE MICROSCOPY  

E-Print Network [OSTI]

Digital Instruments, Inc., Santa Barbara, Cal. USA. Images were taken with an A­type scan head (max. scan microscopy EM and electron diffraction ED. AFM pictures with high resolution could be obtained when using polypropylene has been determined by electron microscopy EM and electron diffraction ED: chain conformation

Peters, Achim

391

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE-EDGE SCANNING MICROSCOPY  

E-Print Network [OSTI]

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis Science #12;ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis) ______________________________ ______________________________ Ergun Akleman Valerie Taylor (Member) (Head of Department) December 2003 Major Subject: Computer Science

Keyser, John

392

Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices  

E-Print Network [OSTI]

Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene; accepted 24 July 2007; published online 15 August 2007 Raman microscopy of graphene was carried out over-band frequencies extracted from Raman spectra of the single-layer graphene are - 1.6±0.2 10-2 cm-1 /K and - 3

393

Real-Space Identification of Intermolecular Bonding with Atomic Force Microscopy  

Science Journals Connector (OSTI)

...Atomic Force Microscopy 10.1126/science.1242603 Jun Zhang Pengcheng Chen Bingkai Yuan Wei Ji Zhihai Cheng Xiaohui Qiu 1Key Laboratory...Intermolecular Bonding with Atomic Force Microscopy Jun Zhang, Pengcheng Chen, Bingkai Yuan, Wei Ji, Zhihai Cheng, Xiaohui Qiu...

Jun Zhang; Pengcheng Chen; Bingkai Yuan; Wei Ji; Zhihai Cheng; Xiaohui Qiu

2013-11-01T23:59:59.000Z

394

Fabrication of curved-line nanostructures on membranes for transmission electron microscopy investigations of domain walls  

E-Print Network [OSTI]

Fabrication of curved-line nanostructures on membranes for transmission electron microscopy, Cambridge CB2 3QZ, United Kingdom Available online 28 February 2006 Abstract We have fabricated curved-line ferromagnetic nanostructures on membranes for transmission electron microscopy investigations of the equilibrium

Dunin-Borkowski, Rafal E.

395

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell Xiaojing Huang,1  

E-Print Network [OSTI]

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell Xiaojing Huang,1 Johanna Nelson,1 eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezingV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25

Mohseni, Hooman

396

Structure of the Si(100)-(2×2)In surface  

Science Journals Connector (OSTI)

The question of whether the Si(100)-(2×2)In reconstruction consists of orthogonal or parallel In ad-dimers was answered by performing studies, using scanning tunneling microscopy and impact-collision ion-scattering spectrometry (ICISS), on low coverages of In adsorbed on a vicinal Si(100) surface. The formation of a predominantly single domain of the (2×2) phase on the vicinal surface allowed us to use the ICISS experiments to distinguish between the orthogonal and parallel ad-dimer geometries. Our results strongly support the model involving the parallel ad-dimer, in agreement with previous theoretical predictions.

B. E. Steele; Lian Li; J. L. Stevens; I. S. T. Tsong

1993-04-15T23:59:59.000Z

397

Surface morphology and magnetic anisotropy in (Ga,Mn)As  

E-Print Network [OSTI]

Atomic Force Microscopy and Grazing incidence X-ray diffraction measurements have revealed the presence of ripples aligned along the $[1\\bar{1}0]$ direction on the surface of (Ga,Mn)As layers grown on GaAs(001) substrates and buffer layers, with periodicity of about 50 nm in all samples that have been studied. These samples show the strong symmetry breaking uniaxial magnetic anisotropy normally observed in such materials. We observe a clear correlation between the amplitude of the surface ripples and the strength of the uniaxial magnetic anisotropy component suggesting that these ripples might be the source of such anisotropy.

S. Piano; X. Marti; A. W. Rushforth; K. W. Edmonds; R. P. Campion; O. Caha; T. U. Schulli; V. Holy; B. L. Gallagher

2010-10-01T23:59:59.000Z

398

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the Nanoscale Scientists studying osteoporosis and other skeletal diseases are interested in the 3D structure of bone and its responses to conditions such as weightlessness, radiation (of particular interest to astronauts) and vitamin D deficiency. The current gold standard, micro-computed tomography (micro-CT), provides 3D images of trabeculae, the small interior struts of bone tissue, and electron microscopy can provide nanometer resolution of thin tissue slices. Hard X-ray transmission microscopy has provided the first 3D view of bone structure within individual trabeculae on the nanoscale. figure 1 Figure 1 Micro-CT (left) shows trabecular structure inside of bone. Transmission X-ray microscopy (TXM; center and right) can reveal localized details of osteocyte lacunae and their processes.

399

Computer aided surface representation  

SciTech Connect (OSTI)

The aims of this research are the creation of new surface forms and the determination of geometric and physical properties of surfaces. The full sweep from constructive mathematics through the implementation of algorithms and the interactive computer graphics display of surfaces is utilized. Both three-dimensional and multi- dimensional surfaces are considered. Particular emphasis is given to the scientific computing solution of Department of Energy problems. The methods that we have developed and that we are proposing to develop allow applications such as: Producing smooth contour maps from measured data, such as weather maps. Modeling the heat distribution inside a furnace from sample measurements. Terrain modeling based on satellite pictures. The investigation of new surface forms includes the topics of triangular interpolants, multivariate interpolation, surfaces defined on surfaces and monotone and/or convex surfaces. The geometric and physical properties considered include contours, the intersection of surfaces, curvatures as a interrogation tool, and numerical integration.

Barnhill, R E

1987-11-01T23:59:59.000Z

400

Mapping of Proteomic Composition on the Surfaces of Bacillus Spores by Atomic Force Microscopy-Based Immunolabeling  

Science Journals Connector (OSTI)

We acknowledge Terrance Leighton, Katherine Wheeler, and Olivia Mooren for providing us with antibodies and assisting in the development of immunolabeling protocols, and Sue Martin for providing us with B. anthracis spore preparations. ... Plomp, Marco; Leighton, Terrance J.; Wheeler, Katherine E.; Malkin, Alexander J. ... Plomp, Marco; Leighton, Terrance J.; Wheeler, Katherine E.; Malkin, Alexander J. ...

Marco Plomp; Alexander J. Malkin

2008-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A scanning electron microscopy study of diseased root surfaces conditioned with EDTA gel plus Cetavlon after scaling and root planing  

Science Journals Connector (OSTI)

......analysis The results from the semi-quantitative analysis were evaluated using a nonparametric analysis of variance (Kruskal-Wallis test) followed by a Dunn's post test to compare all pairs of data. Results In control groups 1 and 3, which......

Walter Martins Júnior; Andiara De Rossi; Ricardo Samih Georges Abi Rached; Marcos Antonio Rossi

2011-04-01T23:59:59.000Z

402

Surface Roughening in Formed Al Sheets for Automative Applications. Final Report  

SciTech Connect (OSTI)

New experimental and analytical tools for characterizing various types of forming-induced surface roughening have been developed and used to study the evolution of surface roughening in 6000 series aluminum sheets in the T4 condition. Particular attention was focused on the evolution of the ''diamond defect,'' which often requires a subsequent mechanical surface treatment to achieve an acceptable surface finish. Testing was primarily done in plane strain tension and samples evaluated at various strain levels up to and including the forming limit. Characterization techniques included optical and scanning electron microscopy, white light phase shift interferometry, and orientation imaging microscopy. Roughening patterns were observed to communicate through the sheet thickness, e.g., peaks on one side correspond to peaks on the other; valleys to valleys. At the grain or grain cluster scale, roughening was found to be governed by the Schmid rather than the Taylor factor.

Piehler, Henry R.

2003-07-23T23:59:59.000Z

403

A Transmission Electron Microscopy Study of Presolar Hibonite  

Science Journals Connector (OSTI)

We report isotopic and microstructural data on five presolar hibonite grains (KH1, KH2, KH6, KH15, and KH21) identified in an acid residue of the Krymka LL3.1 ordinary chondrite. Isotopic measurements by secondary ion mass spectrometry (SIMS) verified a presolar circumstellar origin for the grains. Transmission electron microscopy (TEM) examination of the crystal structure and chemistry of the grains was enabled by in situ sectioning and lift-out with a focused-ion-beam scanning-electron microscope (FIB-SEM). Comparisons of isotopic compositions with models indicate that four of the five grains formed in low-mass stars that evolved through the red giant/asymptotic giant branches (RGBs/AGBs), whereas one grain formed in the ejecta of a Type II supernova. Selected-area electron-diffraction patterns show that all grains are single crystals of hibonite. Some grains contain minor structural perturbations (stacking faults) and small spreads in orientation that can be attributed to a combination of growth defects and mechanical processing by grain-grain collisions. The similar structure of the supernova grain to those from RGB/AGB stars indicates a similarity in the formation conditions. Radiation damage (e.g., point defects), if present, occurs below our detection limit. Of the five grains we studied, only one has the pure hibonite composition of CaAl12O19. All others contain minor amounts of Mg, Si, Ti, and Fe. The microstructural data are generally consistent with theoretical predictions, which constrain the circumstellar condensation temperature to a range of 1480-1743 K, assuming a corresponding total gas pressure between 1 ? 10–6 and 1 ? 10–3 atm. The TEM data were also used to develop a calibration for SIMS determination of Ti contents in oxide grains. Grains with extreme 18O depletions, indicating deep mixing has occurred in their parent AGB stars, are slightly Ti enriched compared with grains from stars without deep mixing, most likely reflecting differences in grain condensation conditions.

Thomas J. Zega; Conel M. O'D. Alexander; Larry R. Nittler; Rhonda M. Stroud

2011-01-01T23:59:59.000Z

404

Terahertz imaging of sub-wavelength particles with Zenneck surface waves  

SciTech Connect (OSTI)

Impact of sub-wavelength-size dielectric particles on Zenneck surface waves on planar metallic antennas is investigated at terahertz (THz) frequencies with THz near-field probe microscopy. Perturbations of the surface waves show the particle presence, despite its sub-wavelength size. The experimental configuration, which utilizes excitation of surface waves at metallic edges, is suitable for THz imaging of dielectric sub-wavelength size objects. As a proof of concept, the effects of a small strontium titanate rectangular particle and a titanium dioxide sphere on the surface field of a bow-tie antenna are experimentally detected and verified using full-wave simulations.

Navarro-Cía, M., E-mail: m.navarro@imperial.ac.uk [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom); Centre for Plasmonics and Metamaterials, Imperial College London, London SW7 2AZ (United Kingdom); Centre for Terahertz Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Natrella, M.; Graham, C.; Renaud, C. C.; Seeds, A. J.; Mitrofanov, O., E-mail: o.mitrofanov@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Dominec, F.; Kužel, P., E-mail: kuzelp@fzu.cz [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Delagnes, J. C.; Mounaix, P., E-mail: p.mounaix@loma.u-bordeaux1.fr [LOMA, Bordeaux 1 University, CNRS UMR 4798, 351 cours de la Libération, 33405 Talence (France)

2013-11-25T23:59:59.000Z

405

Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings  

SciTech Connect (OSTI)

In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng, E-mail: wy3121685@163.com; Zhou, Zhi Ping [Department of Microelectronics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 (China)] [Department of Microelectronics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 (China)

2014-03-15T23:59:59.000Z

406

Surface crystallization of akermanite in a MgO?CaO?SiO2?P2O5 glass  

Science Journals Connector (OSTI)

The surface crystallization of akermanite (2CaO·MgO·2SiO2) in a MgO?CaO?SiO2?P2O5 glass was investigated by X- diffraction and scanning electron microscopy. An anomalous texture behavior of akermanite on the sample surface was observed. This phenomenon was attributed to the rapid crystallization of apatite (Ca10P6O25) on the sample surface.

Jiin-Jyh Shyu; Jenn-Ming Wu

1991-01-01T23:59:59.000Z

407

Surface Chemical Dynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface Chemical Dynamics Surface Chemical Dynamics The goal of the Surface Chemical Dynamics Program is to elucidate the underlying physical processes that determine the products (selectivity) and yield (efficiency) of chemical transformations relevant to energy-related chemistry on catalytic and nanostructured surfaces. Achieving this end requires understanding the evolution of the reactant-molecule/surface complex as molecules adsorb, bonds dissociate, surface species diffuse, new bonds form and products desorb. The pathways and time scales of these processes are ultimately determined by a multidimensional potential energy surface that is a function of the geometric and electronic structures of the surface and the reactant, product, intermediate and transition-state molecular and atomic species.

408

surface chemistry | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface chemistry surface chemistry Leads No leads are available at this time. FeSSZ-13 as an NH3-SCR Catalyst: A Reaction Kinetics and FTIRMössbauer Spectroscopic Study....

409

Dynamics of Flagellum- and Pilus-Mediated Association of Pseudomonas aeruginosa with Contact Lens Surfaces  

Science Journals Connector (OSTI)

...REFERENCES 1. Arora, S. K. , B. W. Ritchings, E. C. Almira...including high dk continuous wear silicone hydrogels: a new and...lenses surfaces before and after wear using atomic force microscopy...associated with contact lens wear. Invest. Ophthalmol. Vis...

Victoria B. Tran; Suzanne M. J. Fleiszig; David J. Evans; Clayton J. Radke

2011-04-15T23:59:59.000Z

410

Geckoprinting: assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays  

Science Journals Connector (OSTI)

...7.72 1.24 mN, in mean s.d.), there is no continuous decrease...2400, Keithley). Figure-5 d shows a schematic illustration...Research Foundation of Korea (NRF) grant funded by the Korea government...toes from the glass surface. (d) Optical microscopy image of...

2014-01-01T23:59:59.000Z

411

Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment  

E-Print Network [OSTI]

Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment N. Srivastavaa , Guowei-face, graphene, interface structure, low energy electron microscopy, disilane Abstract. The formation of epitaxial graphene on SiC( 1000 ) in a disilane environment is studied. The higher graphitization

Feenstra, Randall

412

Surface Functionalization of Silver Nanoparticles: Novel Applications for Insect Vector Control  

Science Journals Connector (OSTI)

Electron microscopy grids were glow-discharged using PELCO easiGlow (Ted Pella, Inc., Redding, CA) to make the grid surface hydrophilic. ... Sylvestre, J. P.; Poulin, S.; Kabashin, A. V.; Sacher, E.; Meunier, M.; Luong, J. H. T. J. Phys. ...

Aishwarya Sooresh; Hyeogsun Kwon; Robert Taylor; Patricia Pietrantonio; Michelle Pine; Christie M. Sayes

2011-09-28T23:59:59.000Z

413

Accurate Single Molecule FRET Efficiency Determination for Surface Immobilized DNA Using Maximum Likelihood Calculated Lifetimes  

E-Print Network [OSTI]

Accurate Single Molecule FRET Efficiency Determination for Surface Immobilized DNA Using MaximumVed: October 4, 2006; In Final Form: January 12, 2007 Single molecule fluorescent lifetime trajectories directly measured using time-tagged single-photon counting and scanning confocal microscopy. A modified

414

Observation of Al surface during sputter-cleaning and annealing procedures under UHV-REM  

Science Journals Connector (OSTI)

......sputter-cleaning and annealing procedures under UHV-REM Tomoki Akita Takanori Nagata Yoshihide...sputter-cleaning and annealing were observed using UHV-reflection electron microscopy (REM...areas and steps were effectively defined. UHV-REM|ion gun|Al-surface|sputter......

Tomoki Akita; Takanori Nagata; Yoshihide Kimura; Yoshizo Takai; Ryuichi Shimizu

1998-01-01T23:59:59.000Z

415

Surface Science 411 (1998) 137153 Intrinsic defects on a TiO  

E-Print Network [OSTI]

(UHV). After annealing to 1100 K in UHV, a (1�1) surface with a terrace width of ~100 A° is obtained defects) in the bridging oxygen rows are created by the high-temperature anneal in UHV. In STM images]. and annealed to ~1100 K in UHV. We first discussRecently, Scanning Tunneling Microscopy the overall morph

Diebold, Ulrike

416

SURFACE TENSION DRIVEN CONVECTION  

E-Print Network [OSTI]

SURFACE TENSION DRIVEN CONVECTION DIJKSTRA, SENGUL, WANG INTRODUCTION LINEAR THEORY MAIN THEOREMS CONCLUDING REMARKS DYNAMIC TRANSITIONS OF SURFACE TENSION DRIVEN CONVECTION H.Dijkstra T. Sengul S. Wang #12;SURFACE TENSION DRIVEN CONVECTION DIJKSTRA, SENGUL, WANG INTRODUCTION LINEAR THEORY MAIN THEOREMS

Wang, Shouhong

417

Ion Surface Engineering  

E-Print Network [OSTI]

Ion Surface Engineering Southwest Research Institute® San Antonio, Texas surfaceengineering.swri.com #12;he ion surface engineering program at Southwest Research Institute (SwRI® ) is dedicated, and the Defense Advanced Research Projects Agency. SwRI's ion surface engineering activities include: s Thin

Chapman, Clark R.

418

Two-dimensional Vortex Behavior in Highly Underdoped YBa2Cu3O6 x Observed by Scanning Hall Probe Microscopy  

SciTech Connect (OSTI)

We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+x} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Iota}{sub 0}) through the sample surface. The sub-{Iota}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.

Guikema, J.W.

2010-02-22T23:59:59.000Z

419

Two-dimensional Vortex Behavior in Highly Underdoped YBa_2Cu_3O_{6+x} Observed byScanning Hall Probe Microscopy  

SciTech Connect (OSTI)

We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+z} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Phi}{sub 0}) through the sample surface. The sub-{Phi}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.

Guikema, J.W.; Bluhm, Hendrik; /Stanford U., Appl. Phys. Dept.; Bonn, D.A.; Liang, Ruixing; Hardy, W.N.; /British Columbia U.; Moler, K.A.; /Stanford U., Appl. Phys. Dept.

2008-04-22T23:59:59.000Z

420

Dissolution Kinetics, Step and Surface Morphology of Magnesite (104) Surfaces in Acidic Aqueous Solution at 60 °C by Atomic Force Microscopy under Defined Hydrodynamic Conditions  

Science Journals Connector (OSTI)

Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, and Geoscience and Environmental Technology Division, Lawrence Livermore National Laboratory, L-202, Livermore, California 94550 ... For an environmentally important example, soil specimens in the Vadose Zone at the Hanford, Washington (USA) radioactive waste storage facility have been found to contain calcium carbonate as a ubiquitous mineralogical component. ... 4,5 The strategy involves the dissolution of alkaline earth silicate minerals in aquifers coupled with the precipitation of alkaline earth and other carbonates during and following the injection of CO2 into the subsurface environment. ...

Steven R. Higgins; Lawrence H. Boram; Carrick M. Eggleston; Barry A. Coles; Richard G. Compton; Kevin G. Knauss

2002-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Atom probe field ion microscopy and related topics: A bibliography 1990  

SciTech Connect (OSTI)

This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

Russell, K.F.; Miller, M.K.

1991-12-01T23:59:59.000Z

422

Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report  

SciTech Connect (OSTI)

A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

1994-10-01T23:59:59.000Z

423

UHV high-resolution electron microscopy and chemical analysis of room-temperature Au deposition on Si(001)-2×1  

Science Journals Connector (OSTI)

Investigations of Au on Si(001) have suggested that room-temperature deposition of Au on a clean Si surface results in an interfacial reaction and the formation of a gold-silicide. However, these investigations typically lack direct information about the surface morphology or the exact structure at the interface. Utilizing the capabilities of a surface chemical analysis system attached to a Hitachi UHV H-9000 microscope, a layer plus island growth mode has been observed by high-resolution electron microscopy showing multiply twinned small particles on the surface. The presence of small particles for various coverages has been correlated with the shifts seen in the Si 2p and Au 4f binding energies as well as the peak splitting in the Si LVV Auger transition. Our chemical data are consistent with observed shifts in the binding energies of small metal clusters deposited on various substrates, and with the published data for this surface. In addition, the results are consistent with our previous studies of Ag on Si(001), and indicate the growth morphology plays a crucial role in understanding spectroscopic information as well as its correlation to the structure and chemical state of the interface and surface morphology.

E. Landree, D. Grozea, C. Collazo-Davila, and L. D. Marks

1997-03-15T23:59:59.000Z

424

Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave mixing microscopy  

E-Print Network [OSTI]

microscopy with topological defects in a smectic A LC material. The image contrast originates from- tering CARS polarized microscopy has been applied to LC studies.2,3,5 This method is label-free and can

Lim, Sang-Hyun

425

Surface Temperature of IGUs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

117 117 Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements Brent T. Griffith, Daniel Türler, and Dariush Arasteh Building Technologies Program Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 USA Fax: 510-486-6046, email: D_Arasteh@lbl.gov Abstract Data are presented for the distribution of surface temperatures on the warm-side surface of seven different insulated glazing units. Surface temperatures are measured using infrared thermography and an external referencing technique. This technique allows detailed mapping of surface temperatures that is non-intrusive. The glazings were placed between warm and cold environmental chambers that were operated at conditions

426

Surface cleanliness measurement procedure  

DOE Patents [OSTI]

A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

Schroder, Mark Stewart (Hendersonville, NC); Woodmansee, Donald Ernest (Simpsonville, SC); Beadie, Douglas Frank (Greenville, SC)

2002-01-01T23:59:59.000Z

427

Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low- Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM, is the preeminent system dedicated to surface chemistry and physics at low temperatures down to 5 K. Operating at low temperatures provides high mechanical stability, superior vacuum conditions, and negligible drift for long-term experiments. With thermal diffusion being entirely suppressed, stable imaging becomes possible even for weakly bound species. The system is primarily used for probing single-site chemical reactivity, while the combination with a hyperthermal molecular beam allows the study of important chemical processes at energies corresponding to the operational temperatures well beyond typical UHV studies. The LT SPM provides

428

GR via Characteristic Surfaces  

E-Print Network [OSTI]

We reformulate the Einstein equations as equations for families of surfaces on a four-manifold. These surfaces eventually become characteristic surfaces for an Einstein metric (with or without sources). In particular they are formulated in terms of two functions on R4xS2, i.e. the sphere bundle over space-time, - one of the functions playing the role of a conformal factor for a family of associated conformal metrics, the other function describing an S2's worth of surfaces at each space-time point. It is from these families of surfaces themselves that the conformal metric - conformal to an Einstein metric - is constructed; the conformal factor turns them into Einstein metrics. The surfaces are null surfaces with respect to this metric.

Simonetta Frittelli; Carlos Kozameh; Ted Newman

1995-02-11T23:59:59.000Z

429

Colour centres and nanostructures on the surface of laser crystals  

SciTech Connect (OSTI)

This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assess changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10{sup -10} to 10{sup -7} m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Me{sup n+} : [O{sup 2-}]{sub k} clusters. (interaction of laser radiation with matter. laser plasma)

Kulagin, N A [Firma SIFA Ukraine - Germany Joint Venture, ul. Shekspira 6-48, 61045 Kharkiv (Ukraine)

2012-11-30T23:59:59.000Z

430

Quantitative Mapping of 4?-Iododeoxyrubicin in Metastatic Squamous Cell Carcinoma by Secondary Ion Mass Spectrometry (SIMS) Microscopy  

Science Journals Connector (OSTI)

...Carcinoma by Secondary Ion Mass Spectrometry (SIMS) Microscopy 1 1 This work was supported...cellcarcinoma by secondary ion mass spectrometry (SIMS) microscopy. | Secondary ion mass spectrometry...Carcinoma by Secondary Ion Mass Spectrometry (SIMS) Microscopy1 Philippe Fragu,2 Jerzy...

Philippe Fragu; Jerzy Klijanienko; Daniel Gandia; Sylvain Halpern; Jean-Pierre Armand

1992-02-15T23:59:59.000Z

431

Observation of dynamic water microadsorption on Au surface  

SciTech Connect (OSTI)

Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12??m{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

2014-05-15T23:59:59.000Z

432

Schmahl, Kirz Receive Compton Award for Contributions to X-ray Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Schmahl, Kirz Received Compton Award for Contributions to X-ray Microscopy Schmahl, Kirz Received Compton Award for Contributions to X-ray Microscopy Image of Compton Award The Advanced Photon Source (APS) and APS Users Organization (APSUO) are very pleased to announce that the 2005 Arthur H. Compton Award was given to Günter Schmahl and Janos Kirz for pioneering and developing the field of x-ray microscopy using Fresnel zone plates. Because of their leadership over the last 30 years, x-ray microscopy has evolved into a powerful method for the study of nanoscale structures and phenomena in many areas of science. Their achievements have opened up productive research avenues in biology, polymers, electronic nanostructures, magnetic materials, meteoritics, and environmental sciences. " Günter Schmahl and Janos Kirz have created a

433

Method of detecting cancer in a single cell using mitochondrial correlation microscopy  

DOE Patents [OSTI]

A method for distinguishing a normal cell from an abnormal cell, such as, for example a cancer cell or diseased cell, of the same tissue type using mitochondrial correlation microscopy.

Gourley, Paul L

2013-06-25T23:59:59.000Z

434

Method for detecting cancer in a single cell using mitochondrial correlation microscopy  

DOE Patents [OSTI]

A method for distinguishing a normal cell from an abnormal cell, such as, for example a cancer cell or diseased cell, of the same tissue type using mitochondrial correlation microscopy.

Gourley, Paul L. (Albuquerque, NM)

2012-03-06T23:59:59.000Z

435

Development of the Ultrashort Pulse Nonlinear Optical Microscopy Spectral Imaging System  

E-Print Network [OSTI]

by broadband sub-10-fs pulses. This dissertation will discuss the development of two spectral imaging systems using the principles of nonlinear optical microscopy for pixel-by-pixel spectral segmentation of multiple fluorescent spectra. The first spectral...

Lee, Anthony Chien-der

2012-10-19T23:59:59.000Z

436

Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience  

E-Print Network [OSTI]

A number of questions in systems biology such as understanding how dynamics of neuronal networks are related to brain function require the ability to capture the functional dynamics of large cellular populations at high speed. Recently, this has driven the development of a number of parallel and high speed imaging techniques such as light-sculpting microscopy, which has been used to capture neuronal dynamics at the whole brain and single cell level in small model organism. However, the broader applicability of light-sculpting microscopy is limited by the size of volumes for which high speed imaging can be obtained and scattering in brain tissue. Here, we present strategies for optimizing the present tradeoffs in light-sculpting microscopy. Various scanning modalities in light-sculpting microscopy are theoretically and experimentally evaluated, and strategies to maximize the obtainable volume speeds, and depth penetration in brain tissue using different laser systems are provided. Design-choices, important par...

Rupprecht, Peter; Groessl, Florian; Haubensak, Wulf E; Vaziri, Alipasha

2015-01-01T23:59:59.000Z

437

Potential Distribution in Functionalized Graphene Devices Probed by Kelvin Probe Force Microscopy  

E-Print Network [OSTI]

graphene sheet (FGS) [1] can be utilized in sensor technology, batteries and supercapacitors becausePotential Distribution in Functionalized Graphene Devices Probed by Kelvin Probe Force Microscopy Institute of Physics. Related Articles Ferromagnetic fluctuation in doped armchair graphene nanoribbons J

Aksay, Ilhan A.

438

Recent advances in electron imaging, image interpretation and applications: environmental scanning electron microscopy  

Science Journals Connector (OSTI)

...A treatment of the physics governing this phenomenon...electron microscopy, the physics of which provides much...Varaprasad, L. H. 1991 Handbook of optical constants...ed.) 1991 CRC handbook of chemistry and physics. Boca Raton, FL...

2003-01-01T23:59:59.000Z

439

Assessment of LED fluorescence microscopy for the diagnosis of Plasmodium falciparum infections in Gabon  

Science Journals Connector (OSTI)

LedFM and conventional fluorescence microscopy (uvFM) were compared to LM in 210 samples from patients with history of fever in the last 24 hours admitted to the Albert Schweitzer Hospital in Lambaréné, Gabon.

Dominic Lenz; Peter G Kremsner; Bertrand Lell; Barbara Biallas…

2011-07-01T23:59:59.000Z

440

Coherent Anti-Stokes Raman Scattering (CARS) Microscopy for Three-Dimensional Flow Characterization in Microfluidics  

Science Journals Connector (OSTI)

The diffusion of mixing species inside of microchannels, as measured by CARS microscopy, is related to the flow field for the purpose of resolving non-symmetric velocity profiles.

Schafer, Dawn N; Squier, Jeff; Müller, Michiel; Bonn, Mischa; Van Maarseveen, Jan

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A New Cubic B-C-N Compound Revealed by High-Resolution Analytical Electron Microscopy  

Science Journals Connector (OSTI)

......nitride by electron energy-loss spectroscopy...Egerton RF: Electron energy loss spectroscopy...electron microscope. New York and London: Plenum...electron microscopy. New York: Plenum Press...system by electron energy loss spectroscopy......

Yoshio Bando; Satoshi Nakano; Keiji Kurashima

1996-04-01T23:59:59.000Z

442

High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe  

E-Print Network [OSTI]

Optical coherence microscopy (OCM) is a promising technique for high resolution cellular imaging in human tissues. An OCM system for high-speed en face cellular resolution imaging was developed at 1060 nm wavelength at ...

Aguirre, Aaron Dominic

443

Demonstration of Ballistic Electron Emission Microscopy / Spectroscopy on the Au/Si (001) system  

E-Print Network [OSTI]

microscopy; hence, the analytical capabilities of BEEM are on a manometer scale. To use BEEM, low-noise Au/Si (001) Schottky diodes have been fabricated. The diodes were macroscopically tested for their electrical properties using conventional current...

Drummond, Mary Alyssa

2012-06-07T23:59:59.000Z

444

Date: Thursday May 23, 2013 Program: UHV Helium Ion Microscopy HR  

E-Print Network [OSTI]

Date: Thursday May 23, 2013 Program: UHV Helium Ion Microscopy HR Speakers: Gregor Hlawacek Helium selected investigations performed with the UTwente UHV-HIM in the last few years. The actual challenge, why

Twente, Universiteit

445

Morphological properties of pillared layered materials investigated by electron microscopy technique  

E-Print Network [OSTI]

Scanning electron microscopy was used to investigate morphological features of a diverse range of pillared layered materials. Pillared layered zirconium phosphates, zirconium polyimine phosphonates and anion exchanger derivatives, zinc...

Navas de Mascianglioli, Margarit

2012-06-07T23:59:59.000Z

446

Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses  

SciTech Connect (OSTI)

Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m{sup {minus}1} for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction.

Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

1993-12-31T23:59:59.000Z

447

Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides  

SciTech Connect (OSTI)

Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

2011-04-20T23:59:59.000Z

448

Surface Impedance in the Surface Superconducting State  

Science Journals Connector (OSTI)

To enable a simple calculation of the microwave surface resistance, the surface superconducting state is approximated by a model in which a layer of uniform order parameter is considered superposed on the normal bulk. Appropriate values for the order parameter and thickness of this layer were chosen with the use of the numerical solutions of the Ginsburg-Landau equations by Fink and Kessinger. A Gorter-Casimir temperature dependence was used for the order parameter and the Maki temperature dependence for ?. Our experiments on Pb-In alloys at frequencies of 9.5, 23, and 55 Gc/sec are in good agreement with the calculations.

Allen Rothwarf; Jonathan I. Gittleman; Bruce Rosenblum

1967-03-10T23:59:59.000Z

449

Tools for Surface Analysis | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface analysis methods. Guides to surface analysis methods (see below) - (XPS, AES, SIMS, etc.) Data useful for surface analysis (see below) - (binding energies, sputter rates...

450

Development of a surface conductivity measurement system for ultrahigh vacuum transmission electron microscope  

SciTech Connect (OSTI)

The surface conductivity measurement system using a micro-four-point probe (M4PP) had been developed for the ultrahigh vacuum transmission electron microscope (UHV-TEM). Since the current distribution in the sample crystals during the current voltage measurement by the M4PP is localized within the depth of several micrometers from the surface, the system is sensitive to the surface conductivity, which is related with the surface superstructure. It was installed in the main chamber of the TEM and the surface conductivity can be measured in situ. The surface structures were observed by reflection electron microscopy and diffraction (REM-RHEED). REM-RHEED enables us to observe the surface superstructures and their structure defects such as surface atomic steps and domain boundaries of the surface superstructure. Thus the effects of the defects on the surface conductivity can be investigated. In the present paper we present the surface conductivity measurement system and its application to the Si(111)-{radical}(3)x{radical}(3)-Ag surface prepared on the Si(111) vicinal surfaces. The result clearly showed that the surface conductivity was affected by step configuration.

Minoda, H. [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Hatano, K.; Yazawa, H. [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

2009-11-15T23:59:59.000Z

451

ARM - Measurement - Surface condition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

condition condition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface condition State of the surface, including vegetation, land use, surface type, roughness, and such; often provided in model output. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments NAV : Navigational Location and Attitude SURFLOG : SGP Surface Conditions Observations by Site Technicians S-TABLE : Stabilized Platform MET : Surface Meteorological Instrumentation

452

Surface Water Quality Standards  

E-Print Network [OSTI]

SURFACE WATER QUALITY STANDARDS AAs part of the ongoing program to manage Texaswater quality, the Texas Commission onEnvironmental Quality (TCEQ) is currently review- ing the Texas Surface Water Quality Standards, including the standards... for contact recreation use. Preliminary public comment plus input from the Surface Water Quality Standards Advisory Work Group have provided guidance on options available for revising the standards, said Jim Davenport, leader of the TCEQ Water Quality...

Wythe, Kathy

2007-01-01T23:59:59.000Z

453

Surface modification to waveguides  

DOE Patents [OSTI]

A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

Timberlake, John R. (Allentown, NJ); Ruzic, David N. (Kendall Park, NJ); Moore, Richard L. (Princeton, NJ); Cohen, Samuel A. (Pennington, NJ); Manos, Dennis M. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

454

Experimental study of the relationship between temperature and adhesive forces for low-alloyed steel, stainless steel, and titanium using atomic force microscopy in ultrahigh vacuum  

Science Journals Connector (OSTI)

Dry sliding contact between metallic surfaces is often associated with high surfacetemperatures due to frictional heating and adhesive wear resulting in high friction and severe surface damage. In the present research the dependence of adhesive forces on temperature for commercial low-alloyed steel stainless steel and pure titanium was investigated in ultrahigh vacuum at elevated temperatures using atomic force microscopy. It was found that adhesive forces increased as the temperature increased. Room-temperature values of adhesive forces decreased in the order Ti stainless steel and low-alloyed steel which agreed with the values of the electron work function measured by a Kelvin probe. The findings correlate well with results observed for the same materials using conventional macroscopic tribotesters.

A. Gåård; P. Krakhmalev; J. Bergström; J. Hirvonen Grytzelius; H. M. Zhang

2008-01-01T23:59:59.000Z

455

Kicked surface muon beams  

Science Journals Connector (OSTI)

The possibility of splitting a surface muon beam into three separate components using an ... and could be very effectively used to provide muons to time differential ?SR experiments.

J. L. Beveridge

1992-01-01T23:59:59.000Z

456

EMSL - ion surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surfaces en Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol. http:www.emsl.pnl.govemslwebpublicationsphysical-properties-ambient-and-laborato...

457

EMSL - surface chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface-chemistry en FeSSZ-13 as an NH3-SCR Catalyst: A Reaction Kinetics and FTIRMössbauer Spectroscopic Study. http:www.emsl.pnl.govemslwebpublications...

458

Surface modification of polymeric materials by cold atmospheric plasma jet  

Science Journals Connector (OSTI)

Abstract In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source – the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

K.G. Kostov; T.M.C. Nishime; A.H.R. Castro; A. Toth; L.R.O. Hein

2014-01-01T23:59:59.000Z

459

AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES  

SciTech Connect (OSTI)

Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

2008-06-10T23:59:59.000Z

460

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Title Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Publication Type Journal Article Year of Publication 2011 Authors Xun, Shidi, Xiangyun Song, Michael E. Grass, Daniel K. Roseguo, Z. Liu, Vincent S. Battaglia, and Gao Li Journal Electrochemical Solid-State Letters Volume 14 Start Page A61 Issue 5 Pagination A61-A63 Date Published 02/2001 Keywords Electrochemistry, elemental semiconductors, etching, lithium, nanoparticles, secondary cells, silicon, thermal analysis, transmission electron microscopy, X-ray photoelectron spectra Abstract This study characterizes the native oxide layer of Si nanoparticles and evaluates its effect on their performance for Li-ion batteries. x-ray photoelectron spectroscopy and transmission electron microscopy were applied to identify the chemical state and morphology of the native oxide layer. Elemental and thermogravimetric analysis were used to estimate the oxide content for the Si samples. Hydrofluoric acid was used to reduce the oxide layer. A correlation between etching time and oxide content was established. The initial electrochemical performances indicate that the reversible capacity of etched Si nanoparticles was enhanced significantly compared with that of the as-received Si sample.

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Bonding and reactivity of clean and chemically-modified semiconductor surfaces probed with STM  

SciTech Connect (OSTI)

Scanning tunneling microscopy has been used to directly study the interrelationships between chemical composition, chemical reactivity, electronic structure, and surface morphology at the atomic level on clean and chemically-modified semiconductor surfaces. Our work has focused recently on understanding the atomic-level interactions of dopants such as phosphorus and boron on the Si(001) surface, and the influence of these atoms on other chemical reactions such as the thermal decomposition of disilane to grow epitaxial silicon. Using STM to study how these atoms modify the surface in combination with tunneling spectroscopy to reveal the occupied and unoccupied molecular orbitals of these structures provides direct insight into the nature of chemical bonding on these surfaces. This talk will discuss the application of STM to understand chemical bonding at silicon surfaces.

Hamers, R.J. [Univ. of Wisconsin, Madison, WI (United States)

1995-12-01T23:59:59.000Z

462

de Sitter Extremal Surfaces  

E-Print Network [OSTI]

We study extremal surfaces in de Sitter space in the Poincare slicing in the upper patch, anchored on spatial subregions at the future boundary ${\\cal I}^+$, restricted to constant boundary Euclidean time slices (focussing on strip subregions). We find real extremal surfaces of minimal area as the boundaries of past lightcone wedges of the subregions in question: these are null surfaces with vanishing area. We find also complex extremal surfaces as complex extrema of the area functional, and the area is not always real-valued. In $dS_4$ the area is real and has some structural resemblance with entanglement entropy in a dual $CFT_3$. There are parallels with analytic continuation from the Ryu-Takayanagi expressions for holographic entanglement entropy in $AdS$. We also discuss extremal surfaces in the $dS$ black brane and the de Sitter "bluewall" studied previously. The $dS_4$ black brane complex surfaces exhibit a real finite cutoff-independent extensive piece. In the bluewall geometry, there are real surface...

Narayan, K

2015-01-01T23:59:59.000Z

463

Full-field Transmission X-ray Microscopy | Stanford Synchrotron Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BL6-2c / Transmission X-ray Microscopy BL6-2c / Transmission X-ray Microscopy Home Researchers Publications Science Highlights Department of Energy Office of Science Search form Search Search TXM Search Full-field Transmission X-ray Microscopy Capabilities Full-field TXM is an excellent method to examine nanoscale heterogeneties in many materials, including complex hierarchical systems such as catalysts, fuel cells and battery electrodes, and biological and environmental samples, at 30 nm resolution.The transmission X-ray microscope (TXM) on beam line 6-2c at SSRL is capable of 2D imaging and tomography, as well as spectroscopic imaging for 2D and 3D elemental mapping and chemical mapping over tens of microns (up to mm in 2D). The field of view (FOV) is 30 microns, but mosaic images can be collected to

464

A surface science investigation of silicon carbide: Oxidation, crystal growth and surface structural analysis  

SciTech Connect (OSTI)

For the semiconductor SiC to fulfill its potential as an electronic material, methods must be developed to produce insulating surface oxide layers in a reproducible fashion. Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS) were used to investigate the oxidation of single crystal {alpha}-SiC over a wide temperature and O{sub 2} pressure range. The {alpha}-SiC surface becomes graphitic at high temperatures and low O{sub 2} pressures due to Si and SiO sublimation from the surface. Amorphous SiO{sub 2} surface layers from on {alpha}-SiC at elevated O{sub 2} pressures and temperatures. Both the graphitization and oxidation of {alpha}-SiC appears to be enhanced by surface roughness. Chemical vapor deposition (CVD) is currently the preferred method of producing single crystal SiC, although the method is slow and prone to contamination. We have attempted to produce SiC films at lower temperatures and higher deposition rates using plasma enhanced CVD with CH{sub 3}SiH{sub 3}. Scanning AES, XPS and scanning electron microscopy (SEM) were utilized to study the composition and morphology of the deposited Si{sub x}C{sub y}H{sub z} films as a function of substrate temperature, plasma power and ion flux bombardment of the film during deposition. High energy ion bombardment during deposition was found to increase film density and substrate adhesion while simultaneously reducing hydrogen and oxygen incorporation in the film. Under all deposition conditions the Si{sub x}C{sub y}H{sub z} films were found to be amorphous, with the ion bombarded films showing promise as hard protective coatings. Studies with LEED and AES have shown that {beta}-SiC (100) exhibits multiple surface reconstructions, depending on the surface composition. These surface reconstructions possess substantially different surface reactivities at elevated temperatures, which can complicate the fabrication of metal on SiC junctions.

Powers, J.M.

1991-11-01T23:59:59.000Z

465

Structural, chemical, and electronic state on La[subscript 0.7]Sr[subscript 0.3]MnO[subscript 3] dense thin-film surfaces at high temperature - Surface segregation  

E-Print Network [OSTI]

The evolution of the surface topographic and electronic structure and chemical state of the La0.7Sr0.3MnO3 (LSMO) thin films were probed using Scanning Tunneling microscopy and X-ray photoelectron spectroscopy to identify ...

Jalili, Helia

466

Scanning tunneling microscopy and spectroscopy of Bi-Sr-Ca-Cu-O 2:2:1:2 high-temperature superconductors  

Science Journals Connector (OSTI)

We have used scanning tunneling microscopy and spectroscopy to investigate the surface-topographic and electronic properties of Bi-Sr-Ca-Cu-O 2:2:1:2 compounds. Even though there are two atoms (Bi and O) per lattice point, only one corrugation maximum per lattice point is observed. Polarity-dependent images show that the corrugations of the images taken at opposite polarities are in phase. We discuss possible explanations for this observation of in-phase corrugations at opposite polarities. Spectroscopic data were obtained at both high and low sample biases. Our data show that the density of surface electronic states near the Fermi level is about 3–4 orders of magnitude smaller than that of a typical metal. These states are only detectable when the stabilization voltage of the tunnel junction is low (<1.5 V). The conductivity near zero bias is extremely nonlinear, consistent with a nonmetallic surface layer. Vacuum resonant tunneling studies show that at these low-bias voltages the tip-to-sample distance is very small (?3–6 Å). This small tip-to-sample distance implies that the conductivity we detect near zero bias might result from the underlying CuO layer. We find evidence of bias-field penetration into the sample, implying that the surface density of states near the Fermi level is too small to screen out the electric field.

C. K. Shih; R. M. Feenstra; G. V. Chandrashekhar

1991-04-01T23:59:59.000Z

467

One-dimensional supramolecular surface structures: 1,4-diisocyanobenzene on Au(111) surfaces  

SciTech Connect (OSTI)

One-dimensional supramolecular structures formed by adsorbing low coverages of 1,4-diisocyanobenzene on Au(111) at room temperature are obtained and imaged by scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. The structures originate from step edges or surface defects and arrange predominantly in a straight fashion on the substrate terraces along the h110i directions. They are proposed to consist of alternating units of 1,4-diisocyanobenzene molecules and gold atoms with a unit cell in registry with the substrate corresponding to four times the lattice interatomic distance. Their long 1-D chains and high thermal stability offer the potential to use them as conductors in nanoelectronic applications.

Boscoboinik, Jorge [University of Wisconsin, Milwaukee; Calaza, Florencia C [ORNL; Habeeb, Zeesham [University of Wisconsin, Milwaukee; Bennett, Dennis [University of Wisconsin, Milwaukee; Stacchiola, Dario [Michigan Technological University; Purino, Martin [Universidad de La Laguna, Tenerife-Canary Islands, Spain; Tysoe, Wilfred [University of Wisconsin, Milwaukee

2010-01-01T23:59:59.000Z

468

Surfaces and roughening  

Science Journals Connector (OSTI)

Some recent results in the application of statistical mechanics to surfaces are discussed. Only exactly soluable models are described. First, we consider phase separation below the critical temperature in unia...

D. B. Abraham

1984-03-01T23:59:59.000Z

469

Entropy and surfaceness  

E-Print Network [OSTI]

The layer of the Earth's atmosphere which contains clouds and weather systems is a thin thermoregulatory surface. It maintains an exact energy budget between the Earth and the Sun. Recent work in theoretical physics is ...

Casper, James Kyle

1997-01-01T23:59:59.000Z

470

Structured surfaces for hemocompatibility  

E-Print Network [OSTI]

The rise of micro- and nano-technologies has brought to light intriguing examples of scale-driven performance in a diverse array of fields. The quest to create highly hydrophobic surfaces is one such field. The application ...

Schrauth, Anthony J

2005-01-01T23:59:59.000Z

471

Designing biomimetic antifouling surfaces  

Science Journals Connector (OSTI)

...extreme environment where wave-swept rocky coasts place substantial hydrodynamic forces...2000) have been studied and modelled for flat surfaces using two- and three-dimensional...to biocorrosion, resulting in increased safety and financial concerns (Busalmen et al...

2010-01-01T23:59:59.000Z

472

ARM - Measurement - Surface albedo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

albedo albedo ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface albedo The fraction of incoming solar radiation at a surface (i.e. land, cloud top) that is effectively reflected by that surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer External Instruments ETA : Eta Model Runs ECMWFDIAG : European Centre for Medium Range Weather Forecasts Diagnostic Analyses ECMWF : European Centre for Medium Range Weather Forecasts Model

473

Molecular Beam Epitaxy on Gas Cluster Ion Beam Prepared GaSb Substrates: Towards Improved Surfaces and Interfaces  

SciTech Connect (OSTI)

A key problem in producing mid-infrared optoelectronic and low-power electronic devices in the GaSb material system is the lack of substrates with appropriate surfaces for epitaxial growth. Chemical mechanical polishing (CMP) of GaSb results in surface damage accompanied by tenacious oxides that do not easily desorb. To overcome this, we have developed a process using gas cluster ion beams (GCIB) to remove surface damage and produce engineered surface oxides. In this paper, we present surface modification results on GaSb substrates using O2-, CF4/O2-, and HBr-GCIB processes. X-ray photoelectron spectroscopy of GCIB produced surface layers showed the presence of mixed Ga- and Sb-oxides, with mostly Ga-oxides at the interface, desorbing at temperatures ranging 530°C to 560°C. Cross-sectional transmission electron microscopy of molecular beam epitaxy grown GaSb/AlGaSb layers showed that GCIB surfaces yielded smooth defect free substrate to epi transitions as compared to CMP surfaces. Furthermore, HBr-GCIB surfaces exhibited neither dislocation layers nor discernable interfaces, indicating complete oxide desorbtion prior to epigrowth on a clean single crystal template. Atomic force microscopy of GCIB epilayers exhibited smooth surfaces with characteristic step-terrace formations comprising monatomic steps and wide terraces. The HBr-GCIB process can be easily adapted to a large scale manufacturing process for epi-ready GaSb.

Krishnaswami, Kannan; Shivashankar, Vangala; Dauplaise, Helen; Allen, Lisa; Dallas, Gordon; Bakken, Daniel; Bliss, David; Goodhue, William

2008-04-01T23:59:59.000Z

474

Visualizing Macromolecular Complexes with In Situ Liquid Scanning Transmission Electron Microscopy  

SciTech Connect (OSTI)

A central focus of biological research is understanding the structure/function relationship of macromolecular protein complexes. Yet conventional transmission electron microscopy techniques are limited to static observations. Here we present the first direct images of purified macromolecular protein complexes using in situ liquid scanning transmission electron microscopy. Our results establish the capability of this technique for visualizing the interface between biology and nanotechnology with high fidelity while also probing the interactions of biomolecules within solution. This method represents an important advancement towards allowing future high-resolution observations of biological processes and conformational dynamics in real-time.

Evans, James E.; Jungjohann, K. L.; Wong, Peony C. K.; Chiu, Po-Lin; Dutrow, Gavin H.; Arslan, Ilke; Browning, Nigel D.

2012-11-01T23:59:59.000Z

475

Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM)  

SciTech Connect (OSTI)

Scanning Transmission X-ray Microscopy (STXM) and Transmission Electron Microscopy (TEM) were combined to characterize various samples of geomicrobiological interest down to the nanometer scale. An approach based on energy-filtered imaging was used to examine microbe-mineral interactions and the resulting biominerals, as well as biosignatures in simplified laboratory samples. This approach was then applied to natural samples, including natural biofilms entombed in calcium carbonate precipitates and bioweathered silicates and facilitated location of bacterial cells and provided unique insights about their biogeochemical interactions with minerals at the 30-40 nm scale.

Benzerara, K.; /Paris U., VI-VII, LMCP; Tyliszczak, T.; /LBNL, ALS; Brown, G.E., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

2007-01-03T23:59:59.000Z

476

X-ray Phase Imaging Microscopy using a Fresnel Zone Plate and a Transmission Grating  

SciTech Connect (OSTI)

We report on a hard X-ray phase imaging microscopy (a phase-difference microscopy) that consists of an objective and a transmission grating. The simple optical system provides a quantitative phase image, and does not need a wave field mostly coherent on the objective. Our method has a spatial resolution almost same as that of the absorption contrast microscope image obtained by removing the grating. We demonstrate how our approach provides a phase image from experimentally obtained images. Our approach is attractive for easily appending a quantitative phase-sensitive mode to normal X-ray microscopes, and has potentially broad applications in biology and material sciences.

Yashiro, Wataru; Momose, Atsushi [Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8561 (Japan); Takeuchi, Akihisa; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 (Japan)

2010-06-23T23:59:59.000Z

477

Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser  

SciTech Connect (OSTI)

Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

Phillips, Mark C.; Bernacki, Bruce E.

2012-12-26T23:59:59.000Z

478

Bespoke Materials Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bespoke Materials Surfaces Bespoke Materials Surfaces Background The Department of Energy (DOE) has established performance and efficiency goals for power generation systems which will improve the ability of the U.S. energy sector to produce electricity efficiently with less impact to the environment. Power systems showing the most promise for reaching these goals require corrosion resistance alloys able to perform at very high pressures and temperatures. Increasing both the

479

Small-Angle X-Ray Scattering for Imaging of Surface Layers on Intact Bacteria in the Native Environment  

Science Journals Connector (OSTI)

...primary particles or not? J. Colloid. Interface Sci. 194 :311-318. 25. Sinko K...of crystalline catalase as an internal standard of length in electron microscopy. J...Wu, and RM Glaeser. 1986. Three-dimensional structure of the surface layer protein...

Gerhard Sekot; David Schuster; Paul Messner; Dietmar Pum; Herwig Peterlik; Christina Schäffer

2013-03-15T23:59:59.000Z

480

Nonchemical surface treatment for aluminum alloys. Final report, 1 April--1 September 1996  

SciTech Connect (OSTI)

The state-of-the-art chemical surface treatments for adhesive bonding of aluminum alloys, such as phosphoric acid anodizing (PAA) are the basis of the present high-strength and durable adhesive bonds. Because of increasingly strict regulations on the use of wet chemicals, the Materials Directorate at Wright Laboratories initiated a research program to develop alternative nonchemical techniques that do not produce waste and are not detrimental to health and environment. This report describes the development of a nonchemical process, based on ion beam enhanced deposition (IBED). The process consists of various steps, the major ones being grit blasting with 50 micrometers Al{sub 2}O{sub 3} grit and deposition of (proportional to)-Al{sub 2}O{sub 3} with IBED. The resulting surface is dense and corrosion resistant, and provides an excellent basis for adhesive bonding. Strength and durability studies on peel and wedge type specimens is equivalent to that of anodized specimens. Surface analytical studies, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) , and Atomic Force Microscopy (AFM), as well as electrochemical studies were used to characterize the surface and determine the mechanism of adhesion.

Koch, G.H.; Todd, G.L.; Deutchman, A.; Partyka, R.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Direct Probing of Charge Injection and Polarization-Controlled Ionic Mobility on Ferroelectric LiNbO3 Surfaces  

SciTech Connect (OSTI)

Mapping surface potential with time-resolved Kelvin Probe Force Microscopy (tr-KPFM) in LiNbO3 periodically-poled single crystal revealed activation of the surface ionic subsystem. Electric fields higher than certain threshold value but lower than the switching field induce injection of charge from the biased electrode, formation of an active region in its vicinity and uneven distribution of screening charge on the opposite ferroelectric domains. Tr-KPFM technique allows investigating these phenomena in details.

Strelcov, Evgheni [ORNL] [ORNL; Ievlev, Dr. Anton [Ural State University, Russia] [Ural State University, Russia; Jesse, Stephen [ORNL] [ORNL; Kravchenko, Ivan I [ORNL] [ORNL; Shur, V.Y. [Institute of Physics and Applied Mathematics, Ural State University] [Institute of Physics and Applied Mathematics, Ural State University; Kalinin, Sergei V [ORNL] [ORNL

2014-01-01T23:59:59.000Z

482

Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition  

SciTech Connect (OSTI)

Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.

Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro [Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2011-11-15T23:59:59.000Z

483

Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy  

SciTech Connect (OSTI)

Highlights: ? The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ? Dominant mechanism of growth structure at 490 °C is island-layer type. ? TiC{sub x} nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ? Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ? This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.

Shanaghi, Ali, E-mail: alishanaghi@gmail.com [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of)] [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of); Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir [Surface Engineering Laboratory, Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of)] [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

2012-09-15T23:59:59.000Z

484

A minute-continuous-wave-stabilized picosecond supercontinuum source for ultrafast serial time-encoded amplified microscopy (STEAM)  

Science Journals Connector (OSTI)

A stabilized picosecond supercontinuum source, by a minute continuous-wave trigger, is utilized to improve the ultrafast imaging quality of serial time-encoded amplified microscopy...

Zhang, Chi; Qiu, Yi; Xu, Jianbing; Wong, Kenneth K Y; Tsia, Kevin K

485

In Situ, Real-Time Characterization of Silicide Nanostructure Coarsening Dynamics by Photo-Electron Emission Microscopy.  

E-Print Network [OSTI]

??Photo-electron emission microscopy (PEEM) was used to observe the growth and coarsening dynamics of transition metal (TM) silicide and rare earth (RE) silicide nanostructures on… (more)

Zeman, Matthew Casimir

2007-01-01T23:59:59.000Z

486

National Synchrotron Light Source annual report 1991  

SciTech Connect (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. (eds.)

1992-04-01T23:59:59.000Z

487

National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. [eds.

1992-04-01T23:59:59.000Z

488

Surface Water Quality Standards (Kansas)  

Broader source: Energy.gov [DOE]

This act states regulations for the quality of surface water in the state. It also states designated uses of classified surface waters, surface water quality criteria and an antidegradation policy...

489

Surface Water Management Areas (Virginia)  

Broader source: Energy.gov [DOE]

This legislation establishes surface water management areas, geographically defined surface water areas in which the State Water Control Board has deemed the levels or supply of surface water to be...

490

A method for the alignment of heterogeneous macromolecules from electron microscopy  

E-Print Network [OSTI]

dataset. Ã? 2009 Published by Elsevier Inc. 1. Introduction Single-particle electron microscopy (EM and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA b Physical Biosciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA a r t i c l e i n f o Article history: Received 13

491

Single-Molecule Microscopy Studies of Electric-Field Poling in Chromophore-Polymer Composite Materials  

E-Print Network [OSTI]

Single-Molecule Microscopy Studies of Electric-Field Poling in Chromophore-Polymer Composite electrooptic devices based on chromophore-polymer composite materials is to improve chromophore ordering of susceptibility.16 Chromophore-polymer composite materials lack inherent non- centrosymmetry, which is required

Reid, Philip J.

492

Rumen microbial degradation of modified lignin plants observed by electron microscopy  

E-Print Network [OSTI]

Rumen microbial degradation of modified lignin plants observed by electron microscopy C Mign6, E-Genès-Champanelle, France The microbial degradation of modified lignin tobacco (Samson variety) plants (homozygous line 40 to the corresponding cinnamyl alcohols which are the direct monomeric precursors of the lignin. Only the stems were

Paris-Sud XI, Université de

493

Noncovalent Cross-Linking of Casein by Epigallocatechin Gallate Characterized by Single Molecule Force Microscopy  

E-Print Network [OSTI]

force microscopy; astrin- gency; compaction INTRODUCTION Green tea contains a large amount is produced from green tea by fermentation, which oxidizes many of the tea polyphenols into higher molecular, Sheffield S3 7RH, United Kingdom Interaction of the tea polyphenol epigallocatechin gallate (EGCG

Williamson, Mike P.

494

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons  

E-Print Network [OSTI]

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons ABSTRACT A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video

Tsien, Roger Y.

495

Digitized Video Fluorescence Microscopy Studies of Adriamycin Interaction with Single P388 Leukemic Cells  

Science Journals Connector (OSTI)

...Articles Tumor Biology Using Computerized Video Time Lapse for Quantifying Cell Death of...multiple fields for 5-6 days by computerized video time lapse microscopy to quantify the lethal...cells (4-5 h). By using computerized video time lapse to follow individual cells...

Saul Yanovich and Robert N. Taub

1982-09-01T23:59:59.000Z

496

Bioelectrical SPMs (G. Gomila, UB-IBEC) Bioelectric Scanning Probe Microscopies  

E-Print Network [OSTI]

-ups: Micropippete based electrodes Measurements of cell membrane ion transport on single cells 2. Scanning Ion (SNOM),Scanning Tunneling Microscope (STM), Scanning Ion Conductance Microscope (SICM), Scanning Conductance Microscopy #12;7 Bioelectrical SPMs (G. Gomila, UB-IBEC) Single ion channels recordings Average

Ritort, Felix

497

Thermal calibration of photodiode sensitivity for atomic force microscopy Phil Attarda  

E-Print Network [OSTI]

Thermal calibration of photodiode sensitivity for atomic force microscopy Phil Attarda School 21 November 2006 The photodiode sensitivity i