Powered by Deep Web Technologies
Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Role of Surface Tension in Nano Imprint Lithography  

Science Conference Proceedings (OSTI)

ROLE OF SURFACE TENSION IN NANO IMPRINT LITHOGRAPHY. Kyle J. Alvine, Yifu Ding, Hyun Wook Ro, Brian Okerburg ...

2

Biomimetic soft lithography on curved nanostructured surfaces  

Science Conference Proceedings (OSTI)

In this paper a nano-molding process using a nature-created master is demonstrated. The eye of night moth Agotis exclamationis having 100nm-scale structures on a curved surface is used as biomimetic master mold from which nanostructures are replicated ... Keywords: Antireflective, Biomimetic, Nanostructures, Replication, Soft lithography

V. Auzelyte; V. Flauraud; V. J. Cadarso; T. Kiefer; J. Brugger

2012-09-01T23:59:59.000Z

3

"A Novel Objective for EUV Microscopy and EUV Lithography" Inventors  

NLE Websites -- All DOE Office Websites (Extended Search)

A Novel Objective for EUV Microscopy and EUV Lithography" Inventors A Novel Objective for EUV Microscopy and EUV Lithography" Inventors ..--.. Manfred Bitter, Kenneth Hill, Philip Efthimion. This invention is a new x-ray scheme for stigmatic imaging. The scheme consists of one convex spherically bent crystal and one concave spherically bent crystal. The radii of curvature and Bragg reflecting lattice planes of the two crystals are properly matched to eliminate the astigmatism, so that the conditions for stigmatic imaging are met for a particular wavelength. The magnification is adjustable and solely a function of the two Bragg angles or angles of incidence. Although the choice of Bragg angles is constrained by the availability of crystals, this is not a severe limitation for the imaging of plasmas, since a particular wavelength can be

4

Investigation of proximity effects in electron microscopy and lithography  

SciTech Connect

A fundamental challenge in lithographic and microscopic techniques employing focused electron beams are so-called proximity effects due to unintended electron emission and scattering in the sample. Herein, we apply a method that allows for visualizing electron induced surface modifications on a SiN substrate covered with a thin native oxide layer by means of iron deposits. Conventional wisdom holds that by using thin membranes proximity effects can be effectively reduced. We demonstrate that, contrary to the expectation, these can be indeed larger on a 200 nm SiN-membrane than on the respective bulk substrate due to charging effects.

Walz, M.-M.; Vollnhals, F.; Rietzler, F.; Schirmer, M.; Steinrueck, H.-P.; Marbach, H.

2012-01-30T23:59:59.000Z

5

Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces  

SciTech Connect

The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

2012-01-01T23:59:59.000Z

6

Top-surface imaging resists for lithography with strongly attenuated radiation  

SciTech Connect

Strong resist photoabsorption at wavelengths below 248 nm necessitates the use of a thin layer imaging (TLI) scheme for microlithography using 193 nm, 157 nm, or 13.4 nm radiation. Previous to this work, a TLI process commonly known as silylated top surface imaging (TSI) was developed by a Sandia/AT and T team for use in extreme ultraviolet lithography (EUVL) at 13.4 nm. Using this bilayer process, 0.13 {micro}m resolution with 87{degree} sidewalls in 0.7 {micro}m of resist was achieved for EUV exposures. New imaging layer polymers, silylation reagents and crosslinkers, and process conditions were screened for improvement in this TSI process with the ultimate goal of demonstrating a resist technology capable of 0.10 {micro}m critical dimension (CD). The results of these attempted improvements to the TSI process are described in this report.

Ray-Chaudhuri, A.; Kubiak, G.; Henderson, C.; Wheeler, D.; Pollagi, T.

1997-09-01T23:59:59.000Z

7

Selective growth experiments on gallium arsenide (100) surfaces patterned using UV-nanoimprint lithography  

Science Conference Proceedings (OSTI)

We describe a nanoimprint lithography (NIL) process and subsequent solid-source molecular beam epitaxy (SSMBE) growth of III-V semiconductors on patterned substrates. In particular, growth of GaAs, GaInAs, and GaInP, and effects of growth temperature ... Keywords: Molecular beam epitaxy, Nanoimprint lithography, Patterned substrates, Selective growth

A. Tukiainen; J. Viheriälä; T. Niemi; T. Rytkönen; J. Kontio; M. Pessa

2006-12-01T23:59:59.000Z

8

Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Microscopy Home Staff Only Microscopy Group Staff InstrumentationCapabilities The Advanced Microscopy Laboratory (AML) Microscopy User Centers: MAUC SHaRE Research Highlights...

9

The use of high glass temperature polymers in the production of transparent, structured surfaces using nanoimprint lithography  

Science Conference Proceedings (OSTI)

Polymers with high glass transition temperatures, fluorinated ethylene propylene copolymer (FEP) and poly(ethylene naphthalate) (PEN), have been used in imprint lithography as a protective support layer and as a secondary mould, to imprint superficial ... Keywords: Embossing, Nanoimprint lithography, Polymer Engineering

Christopher A. Mills; Javier G. Fernandez; Abdelhamid Errachid; Josep Samitier

2008-09-01T23:59:59.000Z

10

VUV lithography  

DOE Patents (OSTI)

Deep uv projection lithography can be performed using an e-beam pumped solid excimer uv source, a mask, and a uv reduction camera. The uv source produces deep uv radiation in the range 1700--1300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The uv reduction camera utilizes multilayer mirrors having high reflectivity at the uv wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 5 figs.

George, E.V.; Oster, Y.; Mundinger, D.C.

1990-01-09T23:59:59.000Z

11

VUV lithography  

DOE Patents (OSTI)

Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.

George, E.V.; Oster, Y.; Mundinger, D.C.

1990-12-25T23:59:59.000Z

12

ATOMIC FORCE LITHOGRAPHY OF NANO/MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING OF AQUEOUS SOLUTIONS  

SciTech Connect

The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

Mendez-Torres, A.; Torres, R.; Lam, P.

2011-07-15T23:59:59.000Z

13

ATOMIC FORCE LITHOGRAPHY OF NANO MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING IN AQUEOUS SOLUTIONS  

SciTech Connect

The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

Torres, R.; Mendez-Torres, A.; Lam, P.

2011-06-09T23:59:59.000Z

14

Contact thermal lithography  

E-Print Network (OSTI)

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

15

COMPLETED: Polymers for Next-Generation Lithography  

Science Conference Proceedings (OSTI)

... Metrology for Immersion Lithography: Next-generation lithography will use an ... edge roughness which causes excess chip power consumption and ...

2012-10-02T23:59:59.000Z

16

Plating/Lithography-new  

NLE Websites -- All DOE Office Websites (Extended Search)

Plating/Lithography Plating/Lithography Manufacturing Technologies The Plating capabilities in the Thin Film, Vacuum and Packaging department include both electroless and electro plating. These processes support Multi-Chip Module, microelectromechanical systems (MEMS), Weapons Systems (Neutron Tubes) and other miscellaneous projects. Photo-processing facilities provide pattern- ing and circuitry on a variety of substrate materials. The department's capabilities include dry film, liquid, and electrophoreti- cally deposited resist application, exposure, development and patterning. Capabilities * Electroplate large areas using cyanide and non-cyanide based chemistries * Routinely plate copper, nickel and gold * Expertise in developing plating process- es for unusual applications and metals

17

Electron caustic lithography  

SciTech Connect

A maskless method of electron beam lithography is described which uses the reflection of an electron beam from an electrostatic mirror to produce caustics in the demagnified image projected onto a resist-coated wafer. By varying the electron optics, e.g. via objective lens defocus, both the morphology and dimensions of the caustic features may be controlled, producing a range of bright and tightly focused projected features. The method is illustrated for line and fold caustics and is complementary to other methods of reflective electron beam lithography.

Kennedy, S. M.; Zheng, C. X.; Tang, W. X.; Paganin, D. M.; Jesson, D. E. [School of Physics, Monash University, Victoria, 3800 (Australia); Fu, J. [Department of Mechanical and Aerospace Engineering, Monash University, Victoria, 3800 (Australia)

2012-06-15T23:59:59.000Z

18

An ice lithography instrument  

SciTech Connect

We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

Han, Anpan [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Chervinsky, John [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Branton, Daniel [Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Golovchenko, J. A. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

2011-06-15T23:59:59.000Z

19

Extreme Ultraviolet Lithography (EUVL) Portfolio  

Abstract Fees; Passivating Overcoat Bilayer for Multilayer Reflective Coatings for Extreme Ultraviolet (EUV) Lithography. 5,958,605. A passivating overcoat bilayer is ...

20

Book Review published by Analysis, 1997: Reflection Electron Microscopy and Spectroscopy for Surface Analysis, By Zhong Lin Wang  

E-Print Network (OSTI)

Book Review published by Analysis, 1997: Reflection Electron Microscopy and Spectroscopy for Surface Analysis, By Zhong Lin Wang Professor John F. Watts University of Surrey The book describes, but the author is considerate enough to define them all in the early pages of his book. The dust-cover notes

Wang, Zhong L.

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A method for in situ measurement of residual layer thickness in nano-imprint lithography  

Science Conference Proceedings (OSTI)

Nanoimprint lithography has the advantages of high throughput, sub-10-nm fabrication process, and low cost. However, residual layer encountered in the imprinting process requires removal through reactive ion etching to maintain pattern fidelity. This ... Keywords: Nanoimprint lithography (NIL), Non-destructive measurement, Residual layer, Surface plasmon resonance (SPR)

Wei-Hsuan Hsu, Hong Hocheng, Jow-Tsong Shy

2013-10-01T23:59:59.000Z

22

Origination of nano- and microstructures on large areas by interference lithography  

Science Conference Proceedings (OSTI)

Many markets require large area surface relief micro- and nanostructures. Important examples are light management structures for display applications or the radiation power management in solar systems. Structuring techniques with both up-scaling and ... Keywords: Display technology, Interference lithography, Nanoimprint lithography, Replication, Solar cells

Andreas J. Wolf; Hubert Hauser; Volker KüBler; Christian Walk; Oliver HöHn; Benedikt BläSi

2012-10-01T23:59:59.000Z

23

Programmable imprint lithography template  

DOE Patents (OSTI)

A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

Cardinale, Gregory F. (Oakland, CA); Talin, Albert A. (Livermore, CA)

2006-10-31T23:59:59.000Z

24

Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy  

SciTech Connect

The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant ({beta}) of 0.52/{angstrom}.

Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L.M.; Salmeron, Miquel

2009-02-06T23:59:59.000Z

25

Decal transfer lithography  

DOE Patents (OSTI)

A method of making a microstructure includes selectively activating a portion of a surface of a silicon-containing elastomer, contacting the activated portion with a substance, and bonding the activated portion and the substance, such that the activated portion of the surface and the substance in contact with the activated portion are irreversibly attached. The selective activation may be accomplished by positioning a mask on the surface of the silicon-containing elastomer, and irradiating the exposed portion with UV radiation.

Nuzzo, Ralph G. (Champaign, IL); Childs, William R. (Champaign, IL); Motala, Michael J. (Champaign, IL); Lee, Keon Jae (Savoy, IL)

2010-02-16T23:59:59.000Z

26

Low Temperature Scanning Force Microscopy of the Si(111)-( 7x7) Surface  

Science Conference Proceedings (OSTI)

A low temperature scanning force microscope (SFM) operating in a dynamic mode in ultrahigh vacuum was used to study the Si(111)-(7x7) surface at 7.2 K. Not only the twelve adatoms but also the six rest atoms of the unit cell are clearly resolved for the first time with SFM. In addition, the first measurements of the short range chemical bonding forces above specific atomic sites are presented. The data are in good agreement with first principles computations and indicate that the nearest atoms in the tip and sample relax significantly when the tip is within a few Angstrom of the surface. (c) 2000 The American Physical Society.

Lantz, M. A. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Hug, H. J. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Schendel, P. J. A. van [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Hoffmann, R. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Martin, S. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Baratoff, A. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Abdurixit, A. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Guentherodt, H.-J. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Gerber, Ch. [IBM Research Division, Zuerich Research Laboratory, Saeumerstrasse 4, CH-8803 Rueschlikon, (Switzerland)

2000-03-20T23:59:59.000Z

27

X-ray lithography source  

SciTech Connect

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

1991-01-01T23:59:59.000Z

28

X-ray lithography source  

DOE Patents (OSTI)

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.

1991-12-31T23:59:59.000Z

29

EMSL: Capabilities: Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Microscopy Microscopy Additional Information Meet the Microscopy Experts Related EMSL User Projects Microscopy Tools are Applied to all Science Themes Watch the Microscopy capability video on EMSL's YouTube channel and read the transcript. Microscopy brochure Quiet Wing brochure EMSL hosts a variety of sophisticated microscopy instruments, including electron microscopes, optical microscopes, scanning probe microscopes, and computer-controlled microscopes for automated particle analysis. These tools are used to image a range of sample types with nanoscale-and even atomic-resolution with applications to surface, environmental, biogeochemical, atmospheric, and biological science. Each state-of-the-art instrument and customized capability is equipped with features for specific

30

Nano-Imprint Lithography: Nanonex NX-2000  

Science Conference Proceedings (OSTI)

Nano-Imprint Lithography: Nanonex NX-2000. Description: ... Nanoscale patterning; Polymer or Sol-gel nano device fabrication; Polymer property study ...

2013-04-20T23:59:59.000Z

31

Reflective masks for extreme ultraviolet lithography  

SciTech Connect

Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 {mu}m wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

Nguyen, Khanh Bao

1994-05-01T23:59:59.000Z

32

XUV free-electron laser-based projection lithography systems  

SciTech Connect

Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

Newnam, B.E.

1990-01-01T23:59:59.000Z

33

Making a Good Impression: Nanoimprint Lithography Tests at ...  

Science Conference Proceedings (OSTI)

Making a Good Impression: Nanoimprint Lithography Tests at NIST. For Immediate Release: April 29, 2008. ...

2012-10-18T23:59:59.000Z

34

Low-cost method for producing extreme ultraviolet lithography optics  

DOE Patents (OSTI)

Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

Folta, James A. (Livermore, CA); Montcalm, Claude (Fort Collins, CO); Taylor, John S. (Livermore, CA); Spiller, Eberhard A. (Mt. Kisco, NY)

2003-11-21T23:59:59.000Z

35

Review of technology for 157-nm lithography  

Science Conference Proceedings (OSTI)

This paper outlines the critical issues facing the implementation of 157-nm lithography as a sub-100-nm technology. The status of the present technology for mask materials, pellicles, optical materials, coatings, and resists is presented.

A. K. Bates; M. Rothschild; T. M. Bloomstein; T. H. Fedynyshyn; R. R. Kunz; V. Liberman; M. Switkes

2001-09-01T23:59:59.000Z

36

NGL comparable to 193-nm lithography in cost, footprint, and power consumption  

Science Conference Proceedings (OSTI)

A comparison of ArF immersion single exposure, double patterning, extreme UV, and multi-e-beam maskless lithography (MEB ML2) systems, is made on their special characteristics, then in footprint, cost, and raw energy consumption. Only the MEB ML2 system ... Keywords: Direct-write lithography, E-beam lithography, EUV lithography, Maskless lithography, Microlithography, Next-generation lithography

Burn J. Lin

2009-04-01T23:59:59.000Z

37

The ending of optical lithography and the prospects of its successors  

Science Conference Proceedings (OSTI)

This presentation starts from recounting the history of optical lithography since its >2@mm days until the sub-100nm era. To increase resolution and keep depth of focus in check, the wavelength has been shortened from 436, to 365, 248, and 193nm, numerical ... Keywords: Direct write lithography, E-beam lithography, EUV lithography, Immersion lithography, Microlithography, Optical lithography

Burn J. Lin

2006-04-01T23:59:59.000Z

38

Extreme-UV lithography condenser  

Science Conference Proceedings (OSTI)

Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

Sweatt, William C. (Albuquerque, NM); Sweeney, Donald W. (San Ramon, CA); Shafer, David (Fairfield, CT); McGuire, James (Pasadena, CA)

2001-01-01T23:59:59.000Z

39

Sub-10-nm lithography with light-ion beams  

E-Print Network (OSTI)

Scanning-electron-beam lithography (SEBL) is the workhorse of nanoscale lithography in part because of the high brightness of the Schottky source of electrons, but also benefiting from decades of incremental innovation and ...

Winston, Donald, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

40

Microscopy Methods  

Science Conference Proceedings (OSTI)

... NIST has worked extensively with microscope manufacturers such as FEI ... Electron microscopy methods have been used to characterize potential ...

2012-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Periodic Materials and Interference Lithography for Photonics ... - TMS  

Science Conference Proceedings (OSTI)

02/28/2011 - Periodic Materials and Interference Lithography for Photonics, ... photonic crystals (electromagnetic wave propagation) and phononic crystals ...

42

Analytical Microscopy  

DOE Green Energy (OSTI)

In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

Not Available

2006-06-01T23:59:59.000Z

43

Investigating Extreme Ultraviolet Lithography Mask Defects  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating Extreme Ultraviolet Lithography Mask Defects Print Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, scientists at Berkeley Lab worked with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH Berkeley Actinic Inspection Tool (AIT).

44

Investigating Extreme Ultraviolet Lithography Mask Defects  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating Extreme Investigating Extreme Ultraviolet Lithography Mask Defects Investigating Extreme Ultraviolet Lithography Mask Defects Print Wednesday, 28 July 2010 00:00 Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, scientists at Berkeley Lab worked with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH Berkeley Actinic Inspection Tool (AIT).

45

Investigating Extreme Ultraviolet Lithography Mask Defects  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating Extreme Ultraviolet Lithography Mask Defects Print Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, scientists at Berkeley Lab worked with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH Berkeley Actinic Inspection Tool (AIT).

46

Direct e-beam lithography of PDMS  

Science Conference Proceedings (OSTI)

In this paper, the viability of directly exposing thin films of liquid poly(dimethylsiloxane) (PDMS) to electron beam (e-beam) irradiation using e-beam lithographic methods for the purpose of creating permanent micro-scale components has been investigated. ... Keywords: Lithography, PDMS, Poly(dimethylsiloxane), e-Beam

J. Bowen; D. Cheneler; A. P. G. Robinson

2012-09-01T23:59:59.000Z

47

Vitreous carbon mask substrate for X-ray lithography  

DOE Patents (OSTI)

The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

2009-10-27T23:59:59.000Z

48

EUV lithography cost of ownership analysis  

SciTech Connect

The cost of fabricating state-of-the-art integrated circuits (ICs) has been increasing and it will likely be economic rather than technical factors that ultimately limit the progress of ICs toward smaller devices. It is estimated that lithography currently accounts for approximately one-third the total cost of fabricating modem ICs({sup 1}). It is expected that this factor will be fairly stable for the forseeable future, and as a result, any lithographic process must be cost-effective before it can be considered for production. Additionally, the capital equipment cost for a new fabrication facility is growing at an exponential rate (2); it will soon require a multibillion dollar investment in capital equipment alone to build a manufacturing facility. In this regard, it is vital that any advanced lithography candidate justify itself on the basis of cost effectiveness. EUV lithography is no exception and close attention to issues of wafer fabrication costs have been a hallmark of its early history. To date, two prior cost analyses have been conducted for EUV lithography (formerly called {open_quotes}Soft X-ray Projection Lithography{close_quotes}). The analysis by Ceglio, et. al., provided a preliminary system design, set performance specifications and identified critical technical issues for cost control. A follow-on analysis by Early, et.al., studied the impact of issues such as step time, stepper overhead, tool utilization, escalating photoresist costs and limited reticle usage on wafer exposure costs. This current study provides updated system designs and specifications and their impact on wafer exposure costs. In addition, it takes a first cut at a preliminary schematic of an EUVL fabrication facility along with an estimate of the capital equipment costs for such a facility.

Hawryluk, A.M.; Ceglio, N.M.

1995-01-19T23:59:59.000Z

49

Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy  

SciTech Connect

Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to the surface in order to minimize the total surface energy. With an understanding of the structural and environmental parameters which govern polymer surface structure, SFG is then used to explore the effects of surface hydrophobicity and solvent polarity on the orientation and ordering of amphiphilic neutral polymers adsorbed at the solid/liquid interface. SFG spectra show that poly(propylene glycol) (PPG) and poly(ethylene glycol) (PEG) adsorb with their hydrophobic moieties preferentially oriented toward hydrophobic polystyrene surfaces. These same moieties, however, disorder when adsorbed onto a hydrophilic silica/water interface. Water is identified as a critical factor for mediating the orientation and ordering of hydrophobic moieties in polymers adsorbed at hydrophobic interfaces. The role of bulk water content and water vapor, as they influence hydrogel surface structure and mechanics, continues to be explored in the next series of experiments. A method was developed to probe the surface viscoelastic properties of hydroxylethyl methacrylate (HEMA) based contact lens materials by analyzing AFM force-distance curves. AFM analysis indicates that the interfacial region is dehydrated, relative to the bulk. Experiments performed on poly(HEMA+MA) (MA = methacrylic acid), a more hydrophilic copolymer with greater bulk water content, show even greater water depletion at the surface. SFG spectra, as well as surface energy arguments, suggest that the more hydrophilic polymer component (such as MA) is not favored at the air interface; this may explain anomalies in water retention at the hydrogel surface. Adsorption of lysozyme onto poly(HEMA+MA) was found to further reduce near-surface viscous behavior, suggesting lower surface water content. Lastly, protein adsorption is studied using a model polymer system of polystyrene covalently bound with a monolayer of bovine serum albumin. SFG results indicate that some amino acid residues in proteins adopt preferred orientations. SFG spectra also show that the phenyl rings of the bare polystyrene substrate in contact with air or

Koffas, Telly Stelianos

2004-05-15T23:59:59.000Z

50

Scanning tunneling microscopy studies of the surfaces of a-Si:H and a-SiGe:H films  

SciTech Connect

The report contains a detailed description of the experimental complexities encountered in developing scanning tunneling microscope (STM) probing of atomic structure on the surface of freshly-grown hydrogenated-amorphous semiconductors. It also contains a speculative microscopic film-growth model that explains differences between the disorder in CVD grown a-Ge:H versus a-Si:H films. This model is derived from prior results obtained in the chemical analysis of GeH{sub 4} plasmas, combined with surface reaction and thermodynamic considerations. The neutral radical fragments of silane, disilane and germane dissociation in discharges, which dominate the vapor and film-growth reactions, have been deduced from detailed analysis of prior data and are reported. 4 refs., 7 figs.

Gallagher, A.; Ostrom, R.; Tannenbaum, D. (National Inst. of Standards and Technology, Boulder, CO (USA))

1991-06-01T23:59:59.000Z

51

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

52

Multilevel interference lithography--fabricating sub-wavelength periodic nanostructures  

E-Print Network (OSTI)

Periodic nanostructures have many exciting applications, including high-energy spectroscopy, patterned magnetic media, photonic crystals, and templates for self-assembly. Interference lithography (IL) is an attractive ...

Chang, Chih-Hao, 1980-

2008-01-01T23:59:59.000Z

53

High-resolution lithography based on selective removal of atoms  

Science Conference Proceedings (OSTI)

A new method of high-resolution lithography based on selective removal of atoms is described. Drawbacks of lift-off lithography in comparison with the method proposed are pointed out and test structures of metal (Mo) stripes with a thickness of 50 nm are obtained.

Domantovskii, A. G.; Gurovich, B. A.; Maslakov, K. I. [Russian Research Centre Kurchatov Institute (Russian Federation)

2006-12-15T23:59:59.000Z

54

Imprint lithography enabling ultra-low loss coaxial interconnects  

Science Conference Proceedings (OSTI)

Processing techniques have been demonstrated to fabricate a novel structure with smooth transitions, metallic shielding, and encapsulated air dielectric layers using sacrificial polymers and the three-dimensional patterning capabilities of imprint lithography. ... Keywords: Air dielectrics, Imprint lithography, Interconnects, Sacrificial polymers

Venmathy Rajarathinam; Nathan Fritz; Sue Ann Bidstrup Allen; Paul A. Kohl

2011-03-01T23:59:59.000Z

55

Electron beam lithography using plasma polymerized hexane as resist  

Science Conference Proceedings (OSTI)

We present electron beam lithography using thin layers of plasma polymerized hexane as resist, as an alternative for conventional spincoated resists. Hexane is chosen due to the possible bioapplications, as well as the relatively simple polymerization ... Keywords: Electron beam lithography, Hexane, Plasma polymerization, Resist

R. H. Pedersen; M. Hamzah; S. Thoms; P. Roach; M. R. Alexander; N. Gadegaard

2010-05-01T23:59:59.000Z

56

Two methods of realising 10nm T-gate lithography  

Science Conference Proceedings (OSTI)

This paper presents two separate methods for the fabrication of 10nm footprint T-gates using a two-step gate process. We examine the limits of lithographic and pattern transfer processes using the exposure of ZEP520A resist by electron beam lithography, ... Keywords: Electron beam lithography, HEMT, ICP, RIE, Reactive ion etching, T-gate

S. Bentley; X. Li; D. A. J. Moran; I. G. Thayne

2009-04-01T23:59:59.000Z

57

Silated acidic copolymers for nanoimprint lithography on flexible plastic substrates  

Science Conference Proceedings (OSTI)

A new silated acidic polymer was developed as the resist for nanoimprint lithography on flexible substrates. This polymer was synthesized from methylmethacrylate, n-butylacrylate, methacrylic acid and 3-[tris(trimethylsiloxy)silyl]propyl methacrylate ... Keywords: Flexible plastic substrate, Nanoimprint lithography, Reactive ion etching resistability, Silated acidic polymer

Wen-chang Liao; Steve Lien-Chung Hsu; Jui-Chen Lin

2007-01-01T23:59:59.000Z

58

Plasma formed ion beam projection lithography system  

DOE Patents (OSTI)

A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

Leung, Ka-Ngo (Hercules, CA); Lee, Yung-Hee Yvette (Berkeley, CA); Ngo, Vinh (San Jose, CA); Zahir, Nastaran (Greenbrae, CA)

2002-01-01T23:59:59.000Z

59

Positron microscopy  

Science Conference Proceedings (OSTI)

The negative work function property that some materials have for positrons make possible the development of positron reemission microscopy (PRM). Because of the low energies with which the positrons are emitted, some unique applications, such as the imaging of defects, can be made. The history of the concept of PRM, and its present state of development will be reviewed. The potential of positron microprobe techniques will be discussed also.

Hulett, L.D. Jr.; Xu, J.

1995-02-01T23:59:59.000Z

60

Refractive Optics for Hard X-ray Transmission Microscopy  

Science Conference Proceedings (OSTI)

For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E. [Institute for Microstructure Technology, Karlsruhe Institute of Technology Kaiserstrasse 12, 76131 Karlsruhe (Germany); Ahrens, G.; Voigt, A. [Microresist Technology, Koepenikerstrasse 325, 12555 Berlin (Germany)

2011-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Silicon Fresnel zone plates for high heat load X-ray microscopy  

Science Conference Proceedings (OSTI)

A technique to produce diffractive X-ray lenses optimized for high heat load applications is demonstrated. The lenses are made from single crystal silicon membranes, which have uniform thermal conductivity and homogeneous thermal expansion. Silicon Fresnel ... Keywords: Electron beam lithography, Fresnel zone plate, Reactive ion etching, X-ray microscopy

J. Vila-Comamala; K. Jefimovs; J. Raabe; B. Kaulich; C. David

2008-05-01T23:59:59.000Z

62

Achieving sub-10-nm resolution using scanning electron beam lithography  

E-Print Network (OSTI)

Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications have driven demand for ...

Cord, Bryan M. (Bryan Michael), 1980-

2009-01-01T23:59:59.000Z

63

Two-dimensional Photonic Crystals Fabricated by Nanoimprint Lithography  

E-Print Network (OSTI)

We report on the process parameters of nanoimprint lithography (NIL) for the fabrication of two-dimensional (2-D) photonic crystals. The nickel mould with 2-D photonic crystal patterns covering the area up to 20mm² is ...

Chen, A.

64

Application of hydrogenation to low-temperature cleaning of the Si(001) surface in the processes of molecular-beam epitaxy: Investigation by scanning tunneling microscopy, reflected high-energy electron diffraction, and high resolution transmission electron microscopy  

Science Conference Proceedings (OSTI)

Structural properties of the clean Si(001) surface obtained as a result of low-temperature (470-650 Degree-Sign C) pre-growth annealings of silicon wafers in a molecular-beam epitaxy chamber have been investigated. To decrease the cleaning temperature, a silicon surface was hydrogenated in the process of a preliminary chemical treatment in HF and NH{sub 4}F aqueous solutions. It has been shown that smooth surfaces composed of wide terraces separated by monoatomic steps can be obtained by dehydrogenation at the temperatures Greater-Than-Or-Equivalent-To 600 Degree-Sign C, whereas clean surfaces obtained at the temperatures clean surfaces on the temperature of hydrogen thermal desorption and the process of the preliminary chemical treatment. The frequency of detachment/attachment of Si dimers from/to the steps and effect of the Ehrlich-Schwoebel barrier on ad-dimer migration across steps have been found to be the most probable factors determining a degree of the resultant surface roughness.

Arapkina, L. V.; Krylova, L. A.; Chizh, K. V.; Chapnin, V. A.; Uvarov, O. V.; Yuryev, V. A. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation)

2012-07-01T23:59:59.000Z

65

Development of a microfluidic device for patterning multiple species by scanning probe lithography  

E-Print Network (OSTI)

Scanning Probe Lithography (SPL) is a versatile nanofabrication platform that leverages microfluidic “ink” delivery systems with Scanning Probe Microscopy (SPM) for generating surface-patterned chemical functionality on the sub-100 nm length scale. One of the prolific SPL techniques is Dip Pen Nanolithography™ (DPN™). High resolution, multiplexed registration and parallel direct-write capabilities make DPN (and other SPL techniques) a power tool for applications that are envisioned in micro/nano-electronics, molecular electronics, catalysis, cryptography (brand protection), combinatorial synthesis (nano-materials discovery and characterization), biological recognition, genomics, and proteomics. One of the greatest challenges for the successful performance of the DPN process is the delivery of multiple inks to the scanning probe tips for nano-patterning. The purpose of the present work is to fabricate a microfluidic ink delivery device (called “Centiwell”) for DPN (and other SPL) applications. The device described in this study maximizes the number of chemical species (inks) for nanofabrication that can be patterned simultaneously by DPN to conform the industrial standards for fluid handling for biochemical assays (e.g., genomic and proteomic). Alternate applications of Centiwell are also feasible for the various envisioned applications of DPN (and other SPL techniques) that were listed above. The Centiwell consists of a two-dimensional array of 96 microwells that are bulk micromachined on a silicon substrate. A thermoelectric module is attached to the back side of the silicon substrate and is used to cool the silicon substrate to temperatures below the dew point. By reducing the temperature of the substrate to below the dew point, water droplets are condensed in the microwell array. Microbeads of a hygroscopic material (e.g., poly-ethylene glycol) are dispensed into the microwells to prevent evaporation of the condensed water. Furthermore, since poly-ethylene glycol (PEG) is water soluble, it forms a solution inside the microwells which is subsequently used as the ink for the DPN process. The delivery of the ink to the scanning probe tip is performed by dipping the tip (or multiple tips in an array) into the microwells containing the PEG solution. This thesis describes the various development steps for the Centiwell. These steps include the mask design, the bulk micromachining processes explored for the micro-fabrication of the microwell array, the thermal design calculations performed for the selection of the commercially available thermoelectric coolers, the techniques explored for the synthesis of the PEG microbeads, and the assembly of all the components for integration into a functional Centiwell. Finally, the successful implementation of the Centiwell for nanolithography of PEG solutions is also demonstrated.

Rivas Cardona, Juan Alberto

2006-08-01T23:59:59.000Z

66

Depth Charge: Using Atomic Force Microscopy to Study ...  

Science Conference Proceedings (OSTI)

... right circumstances, surface science instruments such ... Electric force microscopy can be used to ... superior strength and electrical conductance, added ...

2010-10-05T23:59:59.000Z

67

Design and prototype : a manufacturing system for the soft lithography technique  

E-Print Network (OSTI)

Ever since 1998 when the term "soft lithography" was first created, soft lithography techniques have drawn close attention of the academia and the industry. Micro contact printing is by far the most widely used soft ...

Cao, Arthur Y. (Arthur Yao)

2006-01-01T23:59:59.000Z

68

157-nm lithography with high numerical aperture lens for sub-70 nm node  

Science Conference Proceedings (OSTI)

For sub-70 nm semiconductor devices, 157 nm lithography using F2 lasers is one of the most important technologies. Several candidates for critical components of 157 nm lithography, such as the exposure tool, resist materials and processing ... Keywords: 157 nm lithography, F2 laser, fluoropolymer resist, phase-shifting mask

Toshiro Itani; Wataru Wakamiya; Julian Cashmore; Malcolm Gower

2003-06-01T23:59:59.000Z

69

Argonne CNM Highlight: Block copolymer lithography approach to nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Block copolymer lithography approach to nanoscale self-assembly Block copolymer lithography approach to nanoscale self-assembly hybrid organic-organomemtalliic block copolymer thin film cast on a silicon nitride membrane substrate This image created by Seth Darling and Nathan Ramanathan was selected for the September 2009 cover of Materials Today. Block copolymer lithography represents a promising next-generation alternative to traditional top-down methodologies. The figure shows an optical micrograph of a hybrid organic-organometallic block copolymer thin film cast on a silicon nitride membrane substrate, which reveals thickness-induced coloring effects reminiscent of art glass. This polymer self-assembles into an ordered nanoscale cylindrical morphology, the orientation of which can be controlled with film thickness. Cylinders

70

Short Course Agricultural Microscopy  

Science Conference Proceedings (OSTI)

Short Course in Agricultural Microscopy. Fargo North Dakota held June 13-16 2011. Sponsored by the Agricultural Microscopy Division of AOCS and the Great Plains Institute of Food Safety. Short Course Agricultural Microscopy Short Courses ...

71

Nanoimprint Lithography for Functional Polymer Patterning  

E-Print Network (OSTI)

Organic semiconductors have generated huge interested in recent years for low-cost and flexible electronics. Current and future device applications for semiconducting polymers include light-emitting diodes, thin-film transistors, photovoltaic cells, chemical and biological sensors, photodetectors, lasers, and memories. The performance of conjugated polymer devices depends on two major factors: the chain conformation in polymer film and the device architecture. Highly ordered chain structure usually leads to much improved performance by enhancing interchain interaction to facilitate carrier transport. The goal of this research is to improve the performance of organic devices with the nanoimprint lithography. The work begins with the controlling of polymer chain orientation in patterned nanostructures through nanoimprint mold design and process parameter manipulation, and studying the effect of chain ordering on material properties. After that, step-and-repeat thermal nanoimprint technique for large-scale continuous manufacturing of conjugated polymer nanostructures is developed. The actual chain orientation of molecular groups in polymer micro- and nanostructures patterning by nanoimprint is complicated. However, this information is crucial for intelligently controlling the electrical and photophysical properties of conjugated polymers by nanoimprint. Systematic investigation of polymer chain configuration by Raman spectroscopy is carried out to understand how nanoimprint process parameters, such as mold pattern size, temperature, and polymer molecular weight, affects polymer chain configuration. The results indicate that chain orientation in nanoimprinted polymer micro- and nanostructures is highly related to the nanoimprint temperature and the dimensions of the mold structures. The ability to create nanoscale polymer micro- and nanostructures and manipulate their internal chain conformation establishes an original experimental platform that enables studying the properties of functional polymers at the micro- and nanoscale and understanding their fundamental structure-property relationships. In addition to the impact on basic research, the techniques developed in this work are important in applied research and development. Large-area conjugated polymer micro- and nanostructures can be easily fabricated by thermal step-and-repeat nanoimprint for organic flat-panel displays, organic circuits and organic solar panels. The ability to manipulate chain orientation through nanoimprint presents a new route to fine-tune the electrical and photophysical properties of conjugated polymers, which can lead to improved performance for all organic electronics. The techniques developed here also allow for easy incorporation of other micro- and nanoscale soft functional polymers in miniaturized devices and systems for new applications in electronics, photonics, sensors and bioengineering.

Cui, Dehu

2011-12-01T23:59:59.000Z

72

Agricultural Microscopy Division Of Interest  

Science Conference Proceedings (OSTI)

Agricultural Microscopy, Reports, Journals, Websites Agricultural Microscopy Division Of Interest Agricultural Microscopy agri-food sector agricultural Agricultural Microscopy analytical aocs articles biotechnology courses detergents division divisions f

73

Lithography scaling issues associated with III-V MOSFETs  

Science Conference Proceedings (OSTI)

In this work we investigate fabrication issues associated with scaling down the gate length and source drain contact separation of a III-V MOSFET. We used high resolution electron-beam lithography and lift-off for gate and ohmic contact patterning to ... Keywords: E-beam, GaAs, Lift-off, MOSFET, PMMA, Resist thickness variation

O. Ignatova; S. Thoms; W. Jansen; D. S. Macintyre; I. Thayne

2010-05-01T23:59:59.000Z

74

Contact Guidance Based on the Nanostructures Fabricated by Nanoimprint Lithography  

Science Conference Proceedings (OSTI)

Contact Guidance is an important phenomenon in the bio field. However it is complex and time-consuming to fabricate the micro/nano morphology used to guide cell growth behavior. Nover method of employing nanoimprint lithography to mass-produce nanostructures ...

Hongwen Sun; Jingquan Liu

2009-12-01T23:59:59.000Z

75

Condenser for extreme-UV lithography with discharge source  

DOE Patents (OSTI)

Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

Sweatt, William C. (Albuquerque, NM); Kubiak, Glenn D. (Livermore, CA)

2001-01-01T23:59:59.000Z

76

Photonic crystal fibre-based light source for STED lithography  

SciTech Connect

A light source having a relative noise level in the order of 10{sup -6} and sufficient stability for application in STED lithography has been obtained using the generation of Cherenkov peaks in a supercontinuum spectrum. (laser applications and other topics in quantum electronics)

Glubokov, D A; Sychev, V V; Vitukhnovsky, Alexey G; Korol'kov, A E

2013-06-30T23:59:59.000Z

77

NIST: Ultraviolet Photoemission Electron Microscopy  

Science Conference Proceedings (OSTI)

Ultraviolet Photoemission Electron Microscopy. Summary: Ultraviolet photoemission electron microscopy is used to study ...

2012-11-19T23:59:59.000Z

78

Real-time scanning tunneling microscopy observations of the oxidation of a Ti/Pt(111)-(2x2) surface alloy using O{sub 2} and NO{sub 2}  

SciTech Connect

The authors have used scanning tunneling microscopy (STM), low energy electron diffraction (LEED), and Auger electron spectroscopy (AES) to study the nascent oxidation of an ordered Ti/Pt(111)-(2x2) surface alloy exposed to oxygen (O{sub 2}) or nitrogen dioxide (NO{sub 2}) under ultrahigh vacuum conditions. The Ti/Pt(111)-(2x2) surface alloy was formed by depositing an ultrathin Ti film on Pt(111) and annealing to 1050 K. This produces an alloy film in which the surface layer is pure Pt and the second layer contains Ti atoms in a (2x2) structure, which causes the pattern observed by STM and LEED. Real-time imaging of the surface at 300 K was carried out by continuously scanning with the STM while either O{sub 2} or NO{sub 2} was introduced into the chamber. O{sub 2} exposures did not cause any gross structural changes; however oxygen was detected on the surface afterward using AES. Annealing this surface to 950 K resulted in the formation of an ordered TiO{sub x} overlayer as characterized by both LEED and STM. In contrast, NO{sub 2} exposures caused definite changes in the surface morphology at 300 K, and the root-mean-square roughness increased from 3.5 to 7.1 A after a large NO{sub 2} exposure. No ordered structures were produced by this treatment, but annealing the surface to 950 K formed an ordered pattern in LEED and corresponding clear, well-resolved structures in STM images. We account for these observations on the disruption or reconstruction of the Ti/Pt(111)-(2x2) surface alloy by arguments recalling that Ti oxidation is an activated process. The energetic barrier to TiO{sub x} formation cannot be surmounted at room temperature at low oxygen coverages, and annealing the surface was necessary to initiate this reaction. However, the higher oxygen coverages obtained using the more reactive oxidant NO{sub 2} lowered the chemical potential in the system sufficiently to overcome the activation barrier to extract Ti from the alloy at room temperature and form a disordered TiO{sub x} film. These results illustrate the importance of the surface oxygen coverage in nucleating the room temperature oxidation of the Pt-Ti surface alloys and further show the ability of NO{sub 2} in ultrahigh vacuum studies for probing the chemistry that will occur at higher O{sub 2} pressure.

Hsieh Shuchen; Liu, G. F.; Koel, Bruce E. [Center for Nanoscience and Nanotechnology, Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015-3172 (United States)

2008-09-15T23:59:59.000Z

79

Agricultural Microscopy Division  

Science Conference Proceedings (OSTI)

The Agricultural Microscopy Division advances visual imaging in discerning the quality and content of ingredients and finished products of the feed, fertilizer, seed, and agri-food sectors. Agricultural Microscopy Division Divisions achievement ag

80

MML Microscopy Facility  

Science Conference Proceedings (OSTI)

The MML Electron Microscopy Facility consists of three transmission electron microscopes (TEM), three scanning electron microscopes (SEM), a ...

2013-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Diffractive element in extreme-UV lithography condenser  

DOE Patents (OSTI)

Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

Sweatt, William C. (Albuquerque, NM); Ray-Chaudhuri, Avijit (Livermore, CA)

2001-01-01T23:59:59.000Z

82

Diffractive element in extreme-UV lithography condenser  

DOE Patents (OSTI)

Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

Sweatt, William C. (Albuquerque, NM); Ray-Chaudhurl, Avijit K. (Livermore, CA)

2000-01-01T23:59:59.000Z

83

Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography  

DOE Patents (OSTI)

A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

2002-01-01T23:59:59.000Z

84

Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography  

DOE Patents (OSTI)

A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

2001-01-01T23:59:59.000Z

85

Sub-5keV electron-beam lithography in hydrogen silsesquioxane resist  

Science Conference Proceedings (OSTI)

We fabricated 9-30nm half-pitch nested Ls and 13-15nm half-pitch dot arrays, using 2keV electron-beam lithography with hydrogen silsesquioxane (HSQ) as the resist. All structures with 15nm half-pitch and above were fully resolved. We observed that the ... Keywords: High resolution, Hydrogen silsesquioxane, Low-energy electron-beam lithography, Low-voltage electron-beam lithography, Proximity effect

Vitor R. Manfrinato; Lin Lee Cheong; Huigao Duan; Donald Winston; Henry I. Smith; Karl K. Berggren

2011-10-01T23:59:59.000Z

86

Large-Area Zone Plate Fabrication with Optical Lithography  

Science Conference Proceedings (OSTI)

Zone plates as condenser optics for x-ray microscopes offer simple optical designs for both illumination and spectral resolution when used as a linear monochromator. However, due to the long write times for electron beam lithography, both the availability and the size of zone plates for condensers have been limited. Since the resolution provided by the linear monochromator scales almost linearly with the diameter of the zone plate, the full potential for zone plate monochromators as illumination systems for x-ray microscopes has not been achieved. For example, the 10-mm-diameter zone plate has demonstrated a spectral resolution of E/{Delta}E = 700[1], but with a 26-mm-diameter zone plate, the calculated spectral resolution is higher than E/{Delta}E = 3000. These large-area zone plates are possible to fabricate with the leading edge semiconductor lithography tools such as those available at the College of Nanoscale Science and Engineering at the University at Albany. One of the lithography tools available is the ASML TWINSCAN XT: 1950i with 37-nm resolution [2]. A single 300-mm wafer can contain more than 60 fields, each with a large area condenser, and the throughput of the tool can be more than one wafer every minute.

Denbeaux, G. [College of Nanoscale Science and Engineering, University at Albany, 255 Fuller Road, Albany, NY 12203 (United States)

2011-09-09T23:59:59.000Z

87

Low Cost Lithography Tool for High Brightness LED Manufacturing  

Science Conference Proceedings (OSTI)

The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

Andrew Hawryluk; Emily True

2012-06-30T23:59:59.000Z

88

Immersion nanoimprint lithography using perfluoroalkyl liquid  

Science Conference Proceedings (OSTI)

When an attempt is made to thermal-imprint on a thin film of thermoplastic coated on a hard-surface, e.g., an Si wafer, very often the amount of the fluidic resin is not found to be enough. In such cases any air trapped between the mold pattern, and ... Keywords: Bubble defect, Hot embossing, Immersion, Nanoimprint, PMMA, Perfluorotributylamine

Harutaka Mekaru; Hiroshi Hiroshima

2012-09-01T23:59:59.000Z

89

Superconducting x-ray lithography source Phase 1 (XLS) safety analysis report  

SciTech Connect

This paper discusses safety aspects associated with the superconducting x-ray lithography source. The policy, building systems safety and storage ring systems safety are specifically addressed. (LSP)

Blumberg, L. (ed.)

1990-07-01T23:59:59.000Z

90

Resolution limits and process latitude of comformable contact nano-lithography  

E-Print Network (OSTI)

Conformable Contact Lithography enables researchers to attain high-resolution lithographic patterning at manageable cost. This thesis characterizes the minimum resolvable feature size and process latitude of Conformable ...

Fucetola, Corey Patrick

2007-01-01T23:59:59.000Z

91

Influence of Surface Preparation on Scanning Kelvin Probe Microscopy and Electron Backscatter Diffraction Analysis of Cross Sections of CdTe/CdS Solar Cells: Preprint  

DOE Green Energy (OSTI)

In this work we investigated different methods to prepare cross sections of CdTe/CdS solar cells for EBSD and SKPM analyses. We observed that procedures used to prepare surfaces for EBSD are not suitable to prepare cross sections, and we were able to develop a process using polishing and ion-beam milling. This process resulted in very good results and allowed us to reveal important aspects of the cross section of the CdTe film. For SKPM, polishing and a light ion-beam milling resulted in cross sections that provided good data. We were able to observe the depletion region on the CdTe film and the p-n junction as well as the interdiffusion layer between CdTe and CdS. However, preparing good-quality cross sections for SKPM is not a reproducible process, and artifacts are often observed.

Moutinho, H. R.; Dhere, R. G.; Jiang, C. S.; Al-Jassim, M. M.

2011-06-01T23:59:59.000Z

92

Metrology Electron Microscopy  

Science Conference Proceedings (OSTI)

Metrology Electron Microscopy. Technical Contact: Joseph (Joe) Fu. 301-975-3795. Figure 1. SRM 484f Sample and its Micrograph. ...

2011-10-28T23:59:59.000Z

93

BNL | CFN: Electron Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

and chemistry at the atomic scale is crucial to modern materials science and nanotechnology. Advanced electron microscopy can provide the fundamental knowledge that will...

94

High resolution and high density ion beam lithography employing HSQ resist  

Science Conference Proceedings (OSTI)

In the early stages of focused ion beam (FIB) development, ion beam lithography (IBL) employing organic resists showed potential advantages over electron beam lithography (EBL) (most notably less proximity effects and higher sensitivity [1,2]). However, ... Keywords: FIB, HSQ, IBL, LMIS, Nano patterning, Resist

L. Bruchhaus; S. Bauerdick; L. Peto; U. Barth; A. Rudzinski; J. Mussmann; J. Klingfus; J. Gierak; H. HöVel

2012-09-01T23:59:59.000Z

95

High resolution e-beam lithography using a thin titanium layer to promote resist adhesion  

Science Conference Proceedings (OSTI)

This paper describes improvements in high resolution large area e-beam lithography when a thin titanium layer is applied to substrates prior to the application of resist. The technique is particularly useful when there is a requirement to pattern long ... Keywords: Lithography, Resist adhesi

D. S. Macintyre; I. Young; A. Glidle; X. Cao; J. M. R. Weaver; S. Thoms

2006-04-01T23:59:59.000Z

96

High density phase change data on flexible substrates by thermal curing type nanoimprint lithography  

Science Conference Proceedings (OSTI)

In this study, high density phase change nano-pillar device (Tera-bit per inch^2 data density) was fabricated on flexible substrates by thermal curing type nanoimprint lithography with high throughput at a relatively low temperature (120^oC). Phase change ... Keywords: Flexible nano-device, Nanoimprint lithography, Phase change memory, Phase change nano-pillar device, Tera-bit record

Sung-Hoon Hong; Jun-Ho Jeong; Kang-In Kim; Heon Lee

2011-08-01T23:59:59.000Z

97

Time efficient fabrication of ultra large scale nano dot arrays using electron beam lithography  

Science Conference Proceedings (OSTI)

An astonishingly simple yet versatile alternative method for the creation of ultra large scale nano dot arrays [1-3] utilising the fact that exposure in electron beam lithography (EBL) is performed by addressing single pixels with defined distances is ... Keywords: Electron beam lithography, Nano dot, Patterning, Photonic crystal, Plasmonics

Jochen Grebing; JüRgen FaíBender; Artur Erbe

2012-09-01T23:59:59.000Z

98

Design of superconducting transmission line integrated surface-electrode ion-traps  

E-Print Network (OSTI)

We fabricated superconducting surface electrode ion traps with integrated microwave coplanar waveguides using direct-write optical lithography and a niobium on sapphire process. We then tested these traps in a closed cycle ...

Meyer, David Thomas

2011-01-01T23:59:59.000Z

99

Nonlinear vibrational microscopy  

SciTech Connect

The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

2000-01-01T23:59:59.000Z

100

Swords to plowshares: Shock wave applications to advanced lithography  

SciTech Connect

Extreme UltraViolet Lithography (EUVL) seeks to apply radiation in a wavelength region centered near 13 nm to produce microcircuits having features sizes 0.1 micron or less. A critical requirement for the commercial application of this technology is the development of an economical, compact source of this radiation which is suitable for lithographic applications. A good candidate is a laser-plasma source, which is generated by the interaction of an intermediate intensity laser pulse (up to 10{sup 12} W/cm{sup 2}) with a metallic target. While such a source has radiative characteristics which satisfy the needs of an EUVL source, the debris generated during the laser-target interaction strikes at the economy of the source. Here, the authors review the use of concepts and computer modeling, originally developed for hypervelocity impact analysis, to study this problem.

Trucano, T.G.; Grady, D.E.; Kubiak, G.D.; Kipp, M.E.; Olson, R.E.; Farnsworth, A.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Critical illumination condenser for x-ray lithography  

DOE Patents (OSTI)

A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

Cohen, Simon J. (Pleasanton, CA); Seppala, Lynn G. (Livermore, CA)

1998-01-01T23:59:59.000Z

102

Critical illumination condenser for x-ray lithography  

DOE Patents (OSTI)

A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

Cohen, S.J.; Seppala, L.G.

1998-04-07T23:59:59.000Z

103

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

SAMM SAMM EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Sub-Ã…ngstrom Microscopy and Microanalysis Facility In order to meet the scientific challenges of the future, the EMC has built a new state-of-the-art laboratory space for advanced electron microscopy. The new building has been designed to provide next- generation science with an operating environment that cannot be attained by renovating existing facilities. The EMC staff learned as much as possible from similar efforts around the world, including the SuperSTEM building at Daresbury, the Triebenberg Special Laboratory, the AML at Oak Ridge National Laboratory, the new NIST building, and various facilities for nanoscience.

104

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Acknowledgment Acknowledgment EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Acknowledgment Please acknowledge your use of the EMC in your publications and presentations with the following acknowledgment statement: The electron microscopy was accomplished at the Electron Microscopy Center at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC.

105

Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry  

Science Conference Proceedings (OSTI)

This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

Marcuse, W.

1987-01-01T23:59:59.000Z

106

Sequential Infiltration Synthesis Advances Lithography (IN-10-017, 10-106)  

Lithography is widely used for defining patterns with high spatial resolution. In most applications of this technique, a thin-film polymeric resist material coating the substrate is patterned using light, electrons, or self-assembly. This resist film ...

107

Contact region fidelity, sensitivity, and control in roll-based soft lithography  

E-Print Network (OSTI)

Soft lithography is a printing process that uses small features on an elastomeric stamp to transfer micron and sub-micron patterns to a substrate. Translating this lab scale process to a roll-based manufacturing platform ...

Petrzelka, Joseph E

2012-01-01T23:59:59.000Z

108

Ultra-high precision scanning beam interference lithography and its application : spatial frequency multiplication  

E-Print Network (OSTI)

Scanning beam interference lithography (SBIL) is a technique developed at MIT in 2003. The SBIL system, referred to as the Nanoruler, could fabricate grating patterns with around ten-nanometer phase repeatability. There ...

Zhao, Yong, 1980-

2008-01-01T23:59:59.000Z

109

Advanced 0.3-NA EUV lithography capabilities at the ALS  

E-Print Network (OSTI)

micro-exposure capabilities at the ALS using the 0.3-NA METEUV Microexposures at the ALS using the 0.3-NA MET Optic,”EUV lithography capabilities at the ALS Patrick Naulleau 1 ,

2005-01-01T23:59:59.000Z

110

A Study on Carbon-Nanotube Local Oxidation Lithography Using an Atomic Force Microscope  

Science Conference Proceedings (OSTI)

In this paper, nanoscale anodic oxidation lithography using an atomic force microscope (AFM) is systematically studied on carbon nanotubes (CNTs). Trends between the produced feature size and the corresponding process parameters, such as applied voltage, ...

K. Kumar; O. Sul; S. Strauf; D. S. Choi; F. Fisher; M. G. Prasad; E. Yang

2011-07-01T23:59:59.000Z

111

Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography  

Science Conference Proceedings (OSTI)

We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified.

S. P. Li; A. Lebib; D. Peyrade; M. Natali; Y. Chen; W. S. Lew; J. A. C. Bland

2001-01-01T23:59:59.000Z

112

Real-time spatial-phase-locked electron-beam lithography  

E-Print Network (OSTI)

The ability of electron-beam lithography (EBL) to create sub-10-nm features with arbitrary geometry makes it a critical tool in many important applications in nanoscale science and technology. The conventional EBL system ...

Zhang, Feng, 1973-

2005-01-01T23:59:59.000Z

113

Neural network characterization of scanning electron microscopy  

Science Conference Proceedings (OSTI)

A scanning electron microscope (SEM) is a sophisticated equipment employed for fine imaging of processed film surfaces. In this study, a prediction model of scanning electron microscopy was constructed by using a generalized regression neural network ... Keywords: generalized regression neural network, genetic algorithm, model, scanning electron microscope, statistical experiment

Sanghee Kwon; Donghwan Kim; Byungwhan Kim

2008-07-01T23:59:59.000Z

114

M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features  

DOE Patents (OSTI)

Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

Brueck, Steven R.J. (Albuquerque, NM); Chen, Xiaolan (Albuquerque, NM); Zaidi, Saleem (Albuquerque, NM); Devine, Daniel J. (Los Gatos, CA)

1998-06-02T23:59:59.000Z

115

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites

Laboratory Laboratory Electron Microscopy Center Argonne Home > EMC > EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

116

Agricultural Microscopy Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryAgricultural Microscopy Division2013 Members72 Members as of October 1, 2013Ajbani, RutviInstitute of Chemical TechnologyMumbai, MH, IndiaAlonso, CarmenPuerto Rico Dept ofAgricultureDorado, Puerto RicoArmbrust, KevinLoui

117

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

An Office of Science User Facility An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

118

Electron Microscopy Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Electron Microscopy Lab Electron Microscopy Lab Focusing on the study of microstructures with electron and ion beam instruments, including crystallographic and chemical techniques. April 12, 2012 Transmission electron microscope Rob Dickerson examines a multiphase oxide scale using the FEI Titan 80-300 transmission electron microscope. Contact Rob Dickerson (505) 667-6337 Email Rod McCabe (505) 606-1649 Email Pat Dickerson (505) 665-3036 Email Tom Wynn (505) 665-6861 Email Dedicated to the characterization of materials through imaging, chemical, and crystallographic analyses of material microstructures in support of Basic Energy Science, Laboratory Directed Research and Development, DoD, DOE, Work for Others, nuclear energy, and weapons programs. Go to full website »

119

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Training EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers User Training Prior Training in Electron Microscopy: People who wish to operate TEMs must have at least one college-level course in TEM with a lab component or previous TEM experience. The college course can't be one in which TEM was just one of many topics. For researchers who lack academic training and/or practical experience in electron microscopy, we suggest the short courses in TEM at the Hooke College of Applied Sciences, and the hands-on TEM courses at Northwestern University or the University of Chicago or Northern Illinois University.

120

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The mission of the Electron Microscopy Center (EMC) is to: Conduct materials research using advanced microstructural characterization methods; Maintain unique resources and facilities for scientific research for the both the Argonne National Laboratory and national scientific community. Develop and expand the frontiers of microanalysis by fostering the evolution of synergistic state-of-the-art resources in instrumentation, techniques and scientific expertise; The staff members of the EMC carry out their own research as well as participate in collaborative programs with other scientists at Argonne National Laboratory as well as researchers, educators and students worldwide. The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff perform collaborative research with members of other Divisions at Argonne National Laboratory and with collaborators from universities and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fundamentals of embossing nanoimprint lithography in polymer substrates.  

Science Conference Proceedings (OSTI)

The convergence of micro-/nano-electromechanical systems (MEMS/NEMS) and biomedical industries is creating a need for innovation and discovery around materials, particularly in miniaturized systems that use polymers as the primary substrate. Polymers are ubiquitous in the microelectronics industry and are used as sensing materials, lithography tools, replication molds, microfluidics, nanofluidics, and biomedical devices. This diverse set of operational requirements dictates that the materials employed must possess different properties in order to reduce the cost of production, decrease the scale of devices to the appropriate degree, and generate engineered devices with new functional properties at cost-competitive levels of production. Nanoscale control of polymer deformation at a massive scale would enable breakthroughs in all of the aforementioned applications, but is currently beyond the current capabilities of mass manufacturing. This project was focused on developing a fundamental understanding of how polymers behave under different loads and environments at the nanoscale in terms of performance and fidelity in order to fill the most critical gaps in our current knowledgebase on this topic.

Simmons, Blake Alexander; King, William P. (University of Illinois, Urbana IL)

2011-02-01T23:59:59.000Z

122

Novel Microscopy Techniques  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Atomic Imaging of Surface and Bulk with an Aberration Corrected Scanning Electron Microscope: Yimei Zhu1; 1Brookhaven National ...

123

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

position: 1.5 mm Users' research interests (examples): Radiation effects (fissionfusion reactor materials), radioactive waste storage, ion-beam processing (surface...

124

Agricultural Microscopy Newsletter March 11  

Science Conference Proceedings (OSTI)

AOCS Agricultural Microscopy Division Newsletter March 2011 Greetings from the Chairperson The Agricultural Microscopy Division would like to take this opportunity to express our sincere sympathy to the family and friends of George Liepa who rece

125

Recent Advances in Electron Microscopy, Spectral Imaging, and ...  

Science Conference Proceedings (OSTI)

... such as adhesion performance, corrosion resistance, electrical and magnetic ... and surface analysis techniques for probing the composition and structure of ... microscopy and energy dispersive X-ray spectroscopy (FESEM/STEM/EDS); ...

126

Advanced Developments in Electron Microscopy  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Advanced Developments in Electron Microscopy. Sponsorship, MS&T ...

127

Adhesion effect of interface layers on pattern fabrication with GeSbTe as laser thermal lithography film  

Science Conference Proceedings (OSTI)

Adhesion of pattern structures is a very important issue in laser thermal lithography. In this paper, Si"3N"4 and ZnS-SiO"2 were investigated as interface layers to improve patterns' adhesion to substrate on pattern fabrication with Ge"2Sb"2Te"5 as laser ... Keywords: Adhesion, GeSbTe, Interface layers, Thermal lithography, Thin films, Wet etching

Changmeng Deng; Yongyou Geng; Yiqun Wu; Yang Wang; Jinsong Wei

2013-03-01T23:59:59.000Z

128

Optimization of a short-range proximity effect correction algorithm in e-beam lithography using GPGPUs  

Science Conference Proceedings (OSTI)

The e-beam lithography is used to provide high resolution circuit patterning for circuit fabrication processes. However, due to electron scattering in resist and substrate it occurs an undesired exposure of regions which are adjacent to the actual exposed ... Keywords: GPGPUs, PEC, e-beam lithography, proximity effect correction, short-range proximity effect

Max Schneider; Nikola Belic; Christoph Sambale; Ulrich Hofmann; Dietmar Fey

2012-09-01T23:59:59.000Z

129

Fabrication of nano-hole array patterns on transparent conducting oxide layer using thermally curable nanoimprint lithography  

Science Conference Proceedings (OSTI)

A two-dimensional, periodic array of nano-sized holes was fabricated in an indium tin oxide (ITO) layer, deposited onto a glass substrate with nanoimprint lithography. As a result of a thermally curing imprint process, hole array patterns with a diameter ... Keywords: Indium tin oxide (ITO), Nanoimprint lithography (NIL), Patterned transparent electrode, Photonic crystals, Transparent conducting oxide (TCO) layer

Kyeong-Jae Byeon; Seon-Yong Hwang; Heon Lee

2008-05-01T23:59:59.000Z

130

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Becoming a User Becoming a User EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Procedure to Become a User at the EMC 1. Summary All users have to fulfill certain requirements before access to the EMC can be granted. The following list provides short descriptions of the requirements. Details can be found on this page and via the relevant links at the left. Register for access to Argonne's scientific user facilities (or update your user registration information).

131

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Submit an EMC Proposal Submit an EMC Proposal EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Submit an EMC Proposal EMC Proposal Submission Deadline Dates for FY2014: November 1, 2013 March 7, 2014 July 11, 2014 Is your proposal a multi-facility proposal? In other words, do you intend to submit proposals to EMC and APS or CNM for your research project? If your answer is "yes," go now to the Proposal Gateway.

132

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

EMC Users Committee EMC Users Committee EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers EMC Users Committee An EMC Users Committee has been organized to enhance communication between the user community and the EMC. While the EMC relies on and encourages strong interaction among its users and between its staff and users, the Users Committee provides an additional formal mechanism for user input into EMC planning and operations to ensure that users' needs and concerns are addressed.

133

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

End-of-Proposal Report End-of-Proposal Report EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÃ…MM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers End-of-Proposal Report In accordance with the User Agreement, please provide the EMC with the following information when your proposal expires (one year after its acceptance date or when the experiments end, whichever is sooner). A research summary/progress report using these two templates:

134

Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography  

SciTech Connect

Current challenges in the development of efficient laser produced plasma sources for the next generation extreme ultraviolet lithography (EUVL) are increasing EUV power and maximizing lifetime and therefore, reducing cost of devices. Mass-limited targets such as small tin droplets are considered among the best choices for cleaner operation of the optical system because of lower mass of atomic debris produced by the laser beam. The small diameter of droplets, however, decreases the conversion efficiency (CE) of EUV photons emission, especially in the case of CO{sub 2} laser, where laser wavelength has high reflectivity from the tin surface. We investigated ways of improving CE in mass-limited targets. We considered in our modeling various possible target phases and lasers configurations: from solid/liquid droplets subjected to laser beam energy with different intensities and laser wavelength to dual-beam lasers, i.e., a pre-pulse followed by a main pulse with adjusted delay time in between. We studied the dependence of vapor expansion rate, which can be produced as a result of droplet heating by pre-pulse laser energy, on target configuration, size, and laser beam parameters. As a consequence, we studied the influence of these conditions and parameters on the CE and debris mass accumulation. For better understanding and more accurate modeling of all physical processes occurred during various phases of laser beam/target interactions, plasma plume formation and evolution, EUV photons emission and collection, we have implemented in our heights package state-of-the art models and methods, verified, and benchmarked against laboratory experiments in our CMUXE center as well as various worldwide experimental results.

Sizyuk, T.; Hassanein, A. [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-08-15T23:59:59.000Z

135

Agricultural Microscopy Division Newsletter September 2013  

Science Conference Proceedings (OSTI)

Read the latest news from the Agricultural Microscopy division. Agricultural Microscopy Division Newsletter September 2013 Agricultural Microscopy Division Newsletter September 2013 ...

136

NCEM National Center for Electron Microscopy: Links  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory, Center for Materials Research Brookhaven National Laboratory, Electron Microscopy Program Sites of Interest to the Microscopy Community The Microscopy...

137

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

General Information for EMC Users General Information for EMC Users The Electron Microscopy Center (EMC) is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory. It is one of three scientific user facilities for electron beam microcharacterization and one of several National User Facilities located at Argonne National Laboratory. As a scientific user facility, the EMC supports user-accessible instruments (Resources) for high spatial resolution microanalysis, field imaging, nanoscale structural characterization, nanoscale fabrication and manipulation, and unique in situ studies of materials under the influence of ion-beam irradiation. These capabilities are used in a diverse variety of research areas to address grand challenge scientific questions encompassing, for example, energy-related studies, biology, astrophysics, archaeology, superconductivity, nanotechnology, environmental engineering, tribology, and ferroelectricity. The research is performed both by users and by EMC staff. While many users work independently, the most challenging research activities require extensive contributions from EMC staff.

138

Ultrafast scanning probe microscopy  

DOE Patents (OSTI)

An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

1995-01-01T23:59:59.000Z

139

Ultrafast scanning probe microscopy  

DOE Patents (OSTI)

An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

1995-05-16T23:59:59.000Z

140

Electron beam lithography at 10keV using an epoxy based high resolution negative resist  

Science Conference Proceedings (OSTI)

The behaviour of a new epoxy based resist (mr-EBL 6000.1 XP) as a negative resist for e-beam lithography is presented. We demonstrate that it is possible to define sub-100nm patterns when irradiating thin (120nm) layers of resist with a 10keV electron ... Keywords: EBL, Nanopatterning, Negative resist, Polymer technology

C. Martin; G. Rius; A. Llobera; A. Voigt; G. Gruetzner; F. Pérez-Murano

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography  

Science Conference Proceedings (OSTI)

We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified. {copyright} 2001 American Institute of Physics.

Li, S. P.; Lebib, A.; Peyrade, D.; Natali, M.; Chen, Y.; Lew, W. S.; Bland, J. A. C.

2001-07-01T23:59:59.000Z

142

Automatic detection of photoresist residual layer in lithography using a neural classification approach  

Science Conference Proceedings (OSTI)

Photolithography is a fundamental process in the semiconductor industry and it is considered as the key element towards extreme nanoscale integration. In this technique, a polymer photo sensitive mask with the desired patterns is created on the substrate ... Keywords: Ellipsometry, Lithography, Neural network, Nondestructive testing

Issam Gereige; StéPhane Robert; Jessica Eid

2012-09-01T23:59:59.000Z

143

The role of plasma evolution and photon transport in optimizing future advanced lithography sources  

E-Print Network (OSTI)

The role of plasma evolution and photon transport in optimizing future advanced lithography sources and plasma, ioniza- tion, plasma radiation, and details of photon transport in these media. We studied, photons generation, and their transport and distribution. One of the most important processes

Harilal, S. S.

144

Investigation on LIGA-like process based on multilevel imprint lithography  

Science Conference Proceedings (OSTI)

A low-cost quasi-LIGA process is proposed, in which, instead of using thick resist technique, micro-structure with large structural height is achieved by multilevel imprinting and through-mask plating. To achieve precise alignment between individual ... Keywords: Imprint lithography, LIGA-like, Layered fabrication, Microstructure

Quandai Wang; Yugang Duan; Yucheng Ding; Bingheng Lu; Jiawei Xiang; Lianfa Yang

2009-01-01T23:59:59.000Z

145

Open-loop Band excitation Kelvin Probe Force Microscopy  

Science Conference Proceedings (OSTI)

A multidimensional scanning probe microscopy approach for quantitative, cross-talk free mapping of surface electrostatic properties is demonstrated. Open-loop band excitation Kelvin probe force microscopy (OL BE KPFM) probes the full response-frequency-potential surface at each pixel at standard imaging rates. The subsequent analysis reconstructs work function, tip surface capacitance gradient and resonant frequency maps, obviating feedback-related artifacts. OL BE KPFM imaging is demonstrated for several materials systems with topographic, potential and combined contrast. This approach combines the features of both frequency and amplitude KPFM and allows complete decoupling of topographic and voltage contributions to the KPFM signal.

Guo, Senli [ORNL; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL

2012-01-01T23:59:59.000Z

146

Vector potential photoelectron microscopy  

SciTech Connect

A new class of electron microscope has been developed for the chemical microanalysis of a wide range of real world samples using photoelectron spectroscopy. Highly structured, three-dimensional samples, such as fiber mats and fracture surfaces can be imaged, as well as insulators and magnetic materials. The new microscope uses the vector potential field from a solenoid magnet as a spatial reference for imaging. A prototype instrument has demonstrated imaging of uncoated silk, magnetic steel wool, and micron-sized single strand tungsten wires.

Browning, R. [R. Browning Consultants, 14 John Street, Shoreham, New York 11786 (United States)

2011-10-15T23:59:59.000Z

147

Microfield exposure tool enables advances in EUV lithography development  

SciTech Connect

With demonstrated resist resolution of 20 nm half pitch, the SEMATECH Berkeley BUV microfield exposure tool continues to push crucial advances in the areas of BUY resists and masks. The ever progressing shrink in computer chip feature sizes has been fueled over the years by a continual reduction in the wavelength of light used to pattern the chips. Recently, this trend has been threatened by unavailability of lens materials suitable for wavelengths shorter than 193 nm. To circumvent this roadblock, a reflective technology utilizing a significantly shorter extreme ultraviolet (EUV) wavelength (13.5 nm) has been under development for the past decade. The dramatic wavelength shrink was required to compensate for optical design limitations intrinsic in mirror-based systems compared to refractive lens systems. With this significant reduction in wavelength comes a variety of new challenges including developing sources of adequate power, photoresists with suitable resolution, sensitivity, and line-edge roughness characteristics, as well as the fabrication of reflection masks with zero defects. While source development can proceed in the absence of available exposure tools, in order for progress to be made in the areas of resists and masks it is crucial to have access to advanced exposure tools with resolutions equal to or better than that expected from initial production tools. These advanced development tools, however, need not be full field tools. Also, implementing such tools at synchrotron facilities allows them to be developed independent of the availability of reliable stand-alone BUY sources. One such tool is the SEMATECH Berkeley microfield exposure tool (MET). The most unique attribute of the SEMA TECH Berkeley MET is its use of a custom-coherence illuminator made possible by its implementation on a synchrotron beamline. With only conventional illumination and conventional binary masks, the resolution limit of the 0.3-NA optic is approximately 25 nm, however, with EUV not expected in production before the 22-nm half pitch node even finer resolution capabilities are now required from development tools. The SEMATECH Berkeley MET's custom-coherence illuminator allows it to be used with aggressive modified illumination enabling kJ factors as low as 0.25. Noting that the lithographic resolution of an exposure tool is defined as k{sub 1}{lambda}/NA, yielding an ultimate resolution limit of 11 nm. To achieve sub-20-nm aerial-image resolution while avoiding forbidden pitches on Manhattan-geometry features with the centrally-obscured MET optic, a 45-degree oriented dipole pupil fill is used. Figure 1 shows the computed aerial-image contrast as a function of half pitch for a dipole pupil fill optimized to print down to the 19-nm half pitch level. This is achieved with relatively uniform performance at larger dimensions. Using this illumination, printing down to the 20-nm half pitch level has been demonstrated in chemically amplified resists as shown in Fig. 2. The SEMATECH Berkeley MET tool plays a crucial role in the advancement of EUV resists. The unique programmable coherence properties of this tool enable it to achieve higher resolution than other EUV projection tools. As presented here, over the past year the tool has been used to demonstrate resist resolutions of 20 half pitch. Although not discussed here, because the Berkeley MET tool is a true projection lithography tool, it also plays a crucial role in advanced EUV mask research. Examples of the work done in this area include defect printability, mask architecture, and phase shift masks.

Naulleau, Patrick

2009-09-07T23:59:59.000Z

148

Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions  

E-Print Network (OSTI)

This thesis describes the design and analysis of a system for patterning large-area gratings with nanometer level phase distortions. The novel patterning method, termed scanning beam interference lithography (SBIL), uses ...

Konkola, Paul Thomas, 1973-

2003-01-01T23:59:59.000Z

149

Electron Microscopy Study of Tin Whisker Growth  

Science Conference Proceedings (OSTI)

The growth of tin whiskers formed on sputtered tin layers deposited on brass was studied using electron microscopy. The occurrence of whiskers appeared to be largely independent of the macroscopic stress state in the film; rather it was microscopic compressive stresses arising from the formation of an intermetallic phase that appeared to be the necessary precursor. Whisker morphology was a result of whether nucleation had occurred on single grains or on multiple grains. In the latter case, the whiskers had a fluted or striated surface. The formation of whiskers on electron transparent samples was demonstrated. These samples showed the whiskers were monocrystalline and defect free, and that the growth direction could be determined.

Norton, Murray G. (Washington State University); Lebret, Joel (8392)

2003-03-30T23:59:59.000Z

150

Graphene formation on metal surfaces investigated by in-situ scanning tunneling microscopy This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

manufacturing high-quality graphene has remained a challenge. To date, most of the high-quality graphene of the original area. The growth of graphene stopped after the whole island had become two layers high. Image size density deriving from equilibrium with the graphene islands on the surface. The point where the black line

Frenken, J.W.M.

151

Focused ion beam patterned Fe thin films A study by selective area Stokes polarimetry and soft x-Ray microscopy  

Science Conference Proceedings (OSTI)

We demonstrate the potential to modify the magnetic behavior and structural properties of ferromagnetic thin films using focused ion beam 'direct-write' lithography. Patterns inspired by the split-ring resonators often used as components in meta-materials were defined upon 15 nm Fe films using a 30 keV Ga{sup +} focused ion beam at a dose of 2 x 10{sup 16} ions cm{sup -2}. Structural, chemical and magnetic changes to the Fe were studied using transmission soft X-ray microscopy at the ALS, Berkeley CA. X-ray absorption spectra showed a 23% reduction in the thickness of the film in the Ga irradiated areas, but no chemical change to the Fe was evident. X-ray images of the magnetic reversal process show domain wall pinning around the implanted areas, resulting in an overall increase in the coercivity of the film. Transmission electron microscopy showed significant grain growth in the implanted regions.

Cook, P. J.; Shen, T. H.; Grundy, P. J.; Im, M.-Y.; Fischer, P.; Morton, S. A.; Kilcoyne, A. L. D.

2010-11-14T23:59:59.000Z

152

The Measurement of MTFs in X-ray Microscopy Using Diffractograms  

Science Conference Proceedings (OSTI)

A novel method to characterize the optical performance of a high-resolution transmission x-ray microscope is presented. It makes use of test patterns that consist of random arrays of sub-resolution holes in a thin metal film, and so approximate to white-noise input signals for the microscope. The test patterns have been fabricated by electron-beam lithography at length scales appropriate for the resolution available in x-ray microscopy, so that diffractograms produced from the image data can be directly interpreted in terms of the contrast transfer function of the optical system. Results of this method are shown for both brightfield and differential phase contrast imaging.

Morrison, G. R. [King's College London, Dept. of Physics, Strand, London WC2R 2LS (United Kingdom); Charalambous, P. S. [ZonePlates Ltd, 8 South Way, Claverings Industrial Estate, London N9 0AB (United Kingdom); Gianoncelli, A.; Kaulich, B. [Sincrotrone Trieste S.C.p.A., S.S. 14, km 163.5 in Area Science Park, 34149 Trieste (Italy)

2011-09-09T23:59:59.000Z

153

Feed Microscopy Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Feed Microscopy using microscopic examination of animal feed samples and AAFCO terminology. Feed Microscopy Laboratory Proficiency Testing Program Agricultural Microscopy agri-food sector agricultural Agricultural Micr

154

Commissioning of soft and deep X-ray lithography beamline on Indus-2  

Science Conference Proceedings (OSTI)

Soft and Deep x-ray lithography (SDXRL) beamline is commissioned on Indus-2. The beamline can be operated between 1.5 to 20 keV and in white beam mode. Beamline consists of two x-ray mirrors, slits, Be-windows, beam diagnostics and filters assemblies and radiation safety systems. A custom built X-ray scanner is used to create 3-D high aspect ratio micro structures. The paper reports the commissioning results of this beamline.

Dhamgaye, V. P.; Sankar, B. Gowri; Garg, C. K.; Lodha, G. S. [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

2012-06-05T23:59:59.000Z

155

The use of Surface Enhanced Raman Spectroscopy (SERS) for biomedical applications  

E-Print Network (OSTI)

Recent advances in nanotechnology and the biotechnology revolution have created an immense opportunity for the use of noble metal nanoparticles as Surface Enhanced Raman Spectroscopy (SERS) substrates for biological sensing and diagnostics. This is because SERS enhances the intensity of the Raman scattered signal from an analyte by orders of 106 or more. This dissertation deals with the different aspects involved in the application of SERS for biosensing. It discusses initial studies performed using traditional chemically reduced silver colloidal nanoparticles for the SERS detection of a myriad of proteins and nucleic acids. It examines ways to circumvent the inherent aggregation problems associated with colloidal nanoparticles that frequently lead to poor data reproducibility. The different methods examined to create robust SERS substrates include the creation of thermally evaporated silver island films on microscope glass slides, using the technique of Nanosphere Lithography (NSL) to create hexagonally close packed periodic particle arrays of silver nanoparticles on glass substrates as well as the use of optically tunable gold nanoshell films on glass substrates. The three different types of SERS surfaces are characterized using UV-Vis absorption spectroscopy, Electron Microscopy (EM), Atomic Force Microscopy (AFM) as well as SERS using the model Raman active molecule trans-1,2-bis(4-pyridyl)ethylene (BPE). Also discussed is ongoing work in the initial stages of the development of a SERS based biosensor using gold nanoshell films for the direct detection of b-amyloid, the causative agent for Alzheimer's disease. Lastly, the use of gold nanoshells as SERS substrates for the intracellular detection of various biomolecules within mouse fibroblast cells in cell culture is discussed. The dissertation puts into perspective how this study can represent the first steps in the development of a robust gold nanoshell based SERS biosensor that can improve the ability to monitor biological processes in real time, thus providing new avenues for designing systems for the early diagnosis of diseases.

Chowdhury, Mustafa Habib

2005-12-01T23:59:59.000Z

156

Electron microscopy of ceramic superconductors  

SciTech Connect

The critical current Jc is at least as important as Tc (transition temperature) for applications in superconducting materials. Jc is strongly dependent on microstructure and, in consequence, electron microscopy will continue to be important in the development of practical ceramic superconductors. We will review the progress that has been made over the past year or so in studying the superconductors by electron microscopy techniques of all kinds--conventional, high resolution, analytical, etc. A thorough review is impossible but a bibliography is available, as well as two special issues of Journals. 25 refs., 9 figs.

Mitchell, T.E.; Roy, T.

1988-01-01T23:59:59.000Z

157

Electron Microscopy of Carbon Nanotube Composites  

Science Conference Proceedings (OSTI)

Electron Microscopy of Carbon Nanotube Composites. Summary: Carbon nanomaterials such as carbon nanotubes (CNTs ...

2013-07-01T23:59:59.000Z

158

Microscopy for STEM Educators - SPIE Conference 2012  

Science Conference Proceedings (OSTI)

SPIE Conference 2012. SPIE Conference 2012. ... Microscopy for STEM Educators - SPIE Conference 2012. Sound interesting? ...

2012-05-09T23:59:59.000Z

159

Materials Applications of Photoelectron Emission Microscopy  

SciTech Connect

Photoelectron emission microscopy (PEEM) is a versatile technique that can image a variety of materials including metals, semiconductors and even insulators. Under favorable conditions the most advanced aberration corrected instruments have a spatial resolution approaching 2 nm. Although PEEM cannot compete with transmission or scanning electron microscopies for ultimate resolution, the technique is much more gentle and has the unique advantage of imaging structure as well as electronic and magnetic states on the nanoscale. Since the image contrast is derived from spatial variations in electron photoemission intensity, PEEM is ideal for interrogating both static and dynamic electronic properties of complex nanostructured materials. PEEM can be performed using a variety of photoexcitation sources including synchrotron emission, femtosecond laser pulses and conventional UV lamp emission. Each source has advantages, for example, fs laser excitation enables time-resolved imaging for study of ultrafast dynamics of surface intermediate states while tunable synchrotron sources allow chemically specific excitation. Even more detail can be extracted from energy resolved PEEM. Here, we review the key principles and contrast mechanisms of PEEM and briefly summarize materials applications of PEEM with examples of a thermally-induced structural phase transformation in barium titanate, inter-diffusion between thin metal copper and ruthenium layers, and multiphoton imaging of polystyrene nanoparticles on a silver coated substrate.

Xiong, Gang; Shao, Rui; Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.; Cai, Mingdong; Duchene, J.; Wang, J. Y.; Wei, Wei

2010-12-30T23:59:59.000Z

160

Fabrication and characterization of sub-500nm channel organic field effect transistor using UV nanoimprint lithography with cheap Si-mold  

Science Conference Proceedings (OSTI)

P-type poly (3-hexylthiophene) (P3HT) organic field effect transistors (OFETs) with channel length down to 500nm were fabricated. The gold source and drain electrodes were patterned using UV-based nanoimprint lithography and a lift-off process. To reduce ... Keywords: Lift-off process, Opaque Si-mold, Organic transistor, Short channel effect, UV-nanoimprint lithography

Lichao Teng; Robert Kirchner; Matthias PlöTner; Alexander TüRke; Andreas Jahn; Jian He; Falk Hagemann; Wolf-Joachim Fischer

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optical Microscopy Information at NIST  

Science Conference Proceedings (OSTI)

... Improving Performance of a Solar Fuel Catalyst. ... Path for Tracking Fluorescent Nanoparticles Using a ... Surface and Nanostructure Metrology Group. ...

2010-10-05T23:59:59.000Z

162

Variable temperature electrochemical strain microscopy of Sm-doped ceria  

Science Conference Proceedings (OSTI)

Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

Jesse, Stephen [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Kalinin, Sergei V [ORNL; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Yang, Nan [ORNL; Doria, Sandra [ORNL; Tebano, Antonello [ORNL

2013-01-01T23:59:59.000Z

163

Diffraction spectral filter for use in extreme-UV lithography condenser  

Science Conference Proceedings (OSTI)

A condenser system for generating a beam of radiation includes a source of radiation light that generates a continuous spectrum of radiation light; a condenser comprising one or more first optical elements for collecting radiation from the source of radiation light and for generating a beam of radiation; and a diffractive spectral filter for separating first radiation light having a particular wavelength from the continuous spectrum of radiation light. Cooling devices can be employed to remove heat generated. The condenser system can be used with a ringfield camera in projection lithography.

Sweatt, William C. (Albuquerque, NM); Tichenor, Daniel A. (Castro Valley, CA); Bernardez, Luis J. (Livermore, CA)

2002-01-01T23:59:59.000Z

164

Atom Nano-lithography with Multi-layer Light Masks: Particle Optics Analysis  

E-Print Network (OSTI)

We study the focusing of atoms by multiple layers of standing light waves in the context of atom lithography. In particular, atomic localization by a double-layer light mask is examined using the optimal squeezing approach. Operation of the focusing setup is analyzed both in the paraxial approximation and in the regime of nonlinear spatial squeezing for the thin-thin as well as thin-thick atom lens combinations. It is shown that the optimized double light mask may considerably reduce the imaging problems, improve the quality of focusing and enhance the contrast ratio of the deposited structures.

R. Arun; I. Sh. Averbukh; T. Pfau

2005-03-22T23:59:59.000Z

165

Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes  

SciTech Connect

This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng [Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300 Taiwan (China); Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China)

2010-07-15T23:59:59.000Z

166

Effect of Roughness as Determined by Atomic Force Microscopy on the Wetting Properties of PTFE Thin  

E-Print Network (OSTI)

Effect of Roughness as Determined by Atomic Force Microscopy on the Wetting Properties of PTFE Thin Engineering College of Mines and Earth Sciences University of Utah Salt Lake City, Utah 84112 and G. YAMAUCHI films has been investigated using atomic force microscopy (AFM) and contact angle goniometry. Surface

Drelich, Jaroslaw W.

167

Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction  

SciTech Connect

Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

2011-06-06T23:59:59.000Z

168

Visual-servoing optical microscopy  

DOE Patents (OSTI)

The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Mill Valley, CA)

2011-05-24T23:59:59.000Z

169

Visual-servoing optical microscopy  

DOE Patents (OSTI)

The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Hercules, CA)

2009-06-09T23:59:59.000Z

170

High Resolution Transmission Microscopy Characterization of an ...  

Science Conference Proceedings (OSTI)

High Resolution Transmission Microscopy Characterization of an Oxide ... Line Dislocation Dynamics Simulation of fundamental dislocation properties in ...

171

Microscopy Technique Could Help Computer Industry ...  

Science Conference Proceedings (OSTI)

Microscopy Technique Could Help Computer Industry Develop 3-D Components. From NIST Tech Beat: June 25, 2013. ...

2013-06-25T23:59:59.000Z

172

Transmission Electron Microscopy Studies on Lithium Battery ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Energy Nanomaterials. Presentation Title, Transmission Electron Microscopy ...

173

Scanning magnetoresistance microscopy of atom chips  

Science Conference Proceedings (OSTI)

Surface based geometries of microfabricated wires or patterned magnetic films can be used to magnetically trap and manipulate ultracold neutral atoms or Bose-Einstein condensates. We investigate the magnetic properties of such atom chips using a scanning magnetoresistive (MR) microscope with high spatial resolution and high field sensitivity. By comparing MR scans of a permanent magnetic atom chip to field profiles obtained using ultracold atoms, we show that MR sensors are ideally suited to observe small variations of the magnetic field caused by imperfections in the wires or magnetic materials which ultimately lead to fragmentation of ultracold atom clouds. Measurements are also provided for the magnetic field produced by a thin current-carrying wire with small geometric modulations along the edge. Comparisons of our measurements with a full numeric calculation of the current flow in the wire and the subsequent magnetic field show excellent agreement. Our results highlight the use of scanning MR microscopy as a convenient and powerful technique for precisely characterizing the magnetic fields produced near the surface of atom chips.

Volk, M.; Whitlock, S.; Wolff, C. H.; Hall, B. V.; Sidorov, A. I. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

2008-02-15T23:59:59.000Z

174

Design and fabrication of densely integrated silicon quantum dots using a VLSI compatible hydrogen silsesquioxane electron beam lithography process  

Science Conference Proceedings (OSTI)

Hydrogen silsesquioxane (HSQ) is a high resolution negative-tone electron beam resist allowing for direct transfer of nanostructures into silicon-on-insulator. Using this resist for electron beam lithography, we fabricate high density lithographically ... Keywords: Electron beam resist, HSQ, High-resolution, Nanolithography, SET, SOI

Y. P. Lin; M. K. Husain; F. M. Alkhalil; N. Lambert; J. Perez-Barraza; Y. Tsuchiya; A. J. Ferguson; H. M. H. Chong; H. Mizuta

2012-10-01T23:59:59.000Z

175

Near-Field Microscopy Through a SiC Superlens  

E-Print Network (OSTI)

Near-Field Microscopy Through a SiC Superlens Thomas Taubner,1 * Dmitriy Korobkin,2 Yaroslav of the slab (4­6). In our experiment, we placed a SiC superlens (7) between the scan- ning probe tip-crystalline SiC membrane coated on both sides with 220-nm-thick SiO2 layers (7). The two surfaces of the sandwich

Shvets, Gennady

176

EUV lithography  

Science Conference Proceedings (OSTI)

... This animation shows how the researchers measure contamination that results when EUV photons (green and purple lines) strike a photoresist on ...

2011-12-08T23:59:59.000Z

177

Quantum lithography  

Science Conference Proceedings (OSTI)

The edge definition and the interior filling of pattern features are commonly performed using the same exposing beam regardless of the feature size. Separating the two processes

Nadim I. Maluf; R. Fabian W. Pease

1991-01-01T23:59:59.000Z

178

Transmission Electron Microscopy Study of InN Nanorods  

E-Print Network (OSTI)

Transmission Electron Microscopy Study of InN Nanorods Z.epitaxy and studied by transmission electron microscopy,establish their quality. Transmission electron microscopy (

Liliental-Weber, Z.; Li, X.; Kryliouk, Olga; Park, H.J.; Mangum, J.; Anderson, T.

2008-01-01T23:59:59.000Z

179

UV Spectra of Amino Acid Immobilized at Nanoparticles Formation through Nanosphere Lithography (NSL) by Plasma Treatment  

Science Conference Proceedings (OSTI)

The modifying of nanospheres structures by plasma treatments to the fabricated nanoparticles arrays by Nanosphere Lithography (NSL) techniques to create Periodic Particles Arrays (PPAs) with different size, shape and orientation. Spectra of amino acid that immobilized to the nanoparticles arrays under Ultra Violet (UV) spectrums were studied. The PPAs with different sizes, shapes and orientation were fabricated by plasma treatment of 5 sec, 7 sec and 10 sec to the Polystyrene Nanosphere (PSN). Plasma treatment will effect to the PSN including etching part of the PSN to produce a much bigger channel to the single layer template of the PSN. Metal was deposited at interstitial sites between of the polymer balls and later removed by dissolving them in organic solvent, leaving a hexagonal pattern of metal structures at the interstitial sites. The nanoparticles immobilized with the standard amino acid, which later investigated under UV spectrums. The spectrums shows the possibilities use as biosensor devices.

Mohamad, Farizan [Microelectronic and Nanotechnology-Shamsuddin Research Centre, Faculty of Electrical and Electronic Engineering (Malaysia); Agam, Mohd Arif [Microelectronic and Nanotechnology-Shamsuddin Research Centre, Faculty of Science, Arts and Heritage, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat (Malaysia); Nur, Hadi [Microelectronic and Nanotechnology-Shamsuddin Research Centre, Faculty Sciences, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 Skudai (Malaysia)

2011-05-25T23:59:59.000Z

180

Performance of the Phase 1 superconducting x-ray lithography source (SXLS) at BNL  

SciTech Connect

The Phase I SXLS electron storage ring has a circumference of 8.5 meters, it uses conventional dipole magnets, B {le} 1.1 T and p = 60 cm, and it is capable of operating in the range of 50--250 MeV. It is the forerunner of the Phase II SXLS ring which will operate at 700 MeV and will make use of superconducting dipoles, B{sub o} = 3.87 Tesla, as a source of {lambda}{sub c} = 10 angstrom x-rays for proximity printing lithography. The Phase I storage ring has been successfully commissioned; stored currents in excess of one ampere have been achieved. A report on the performance of the machine is presented.

Murphy, J.B.; Biscardi, R.; Halama, H.; Heese, R.; Kramer, S.; Nawrocky, R. [Brookhaven National Lab., Upton, NY (United States); Krishnaswamy, J. [Grumman Aerospace Corp., Bethpage, NY (United States)

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Performance of the Phase 1 superconducting x-ray lithography source (SXLS) at BNL  

Science Conference Proceedings (OSTI)

The Phase I SXLS electron storage ring has a circumference of 8.5 meters, it uses conventional dipole magnets, B {le} 1.1 T and p = 60 cm, and it is capable of operating in the range of 50--250 MeV. It is the forerunner of the Phase II SXLS ring which will operate at 700 MeV and will make use of superconducting dipoles, B{sub o} = 3.87 Tesla, as a source of {lambda}{sub c} = 10 angstrom x-rays for proximity printing lithography. The Phase I storage ring has been successfully commissioned; stored currents in excess of one ampere have been achieved. A report on the performance of the machine is presented.

Murphy, J.B.; Biscardi, R.; Halama, H.; Heese, R.; Kramer, S.; Nawrocky, R. (Brookhaven National Lab., Upton, NY (United States)); Krishnaswamy, J. (Grumman Aerospace Corp., Bethpage, NY (United States))

1992-01-01T23:59:59.000Z

182

Soft magnetic lithography and giant magnetoresistance in superconducting/ferromagnetic hybrids.  

Science Conference Proceedings (OSTI)

We demonstrate an approach to create a tunable pinning potential in a superconducting/ferromagnetic (SC/FM) hybrid, allowing the switching of their electronic properties through the application of a small magnetic field. Using direct magneto-optical imaging, macroscopic transport, and magnetic measurements, we show that the alignment of stripe domains in the ferromagnet provides a remarkable directionality for the superconducting vortex motion. An analysis of the anisotropic flux motion demonstrates a substantial critical current anisotropy in the superconductor. The possibility of aligning stable lattices of stripe domains in select directions using in-plane magnetic fields allows the realization of soft magnetic lithography for efficient manipulation of supercurrent flow in SC/FM bilayers. Furthermore, in our samples we observed a pronounced magnetoresistance effect yielding 4 orders of magnitude resistivity change in a few millitesla in-plane field.

Vlasko-Vlasov, V.; Welp, U.; Imre, A.; Rosenmann, D.; Pearson, J.; Kwok, W. K.

2008-01-01T23:59:59.000Z

183

Beamline and exposure station for deep x-ray lithography at the Advanced Photon Source  

Science Conference Proceedings (OSTI)

APS is a third-generation synchrotron radiation source. With an x-ray energy of 19.5 keV and highly collimated beam ( 1 mm) using deep x-ray lithography (DXRL). The 2-BM beamline was constructed and will be used for DXRL at APS. Selection of appropriate x-ray energy range is done through a variable-angle mirror and various filters in the beamline. At the exposure station, the beam size will be 100(H) x 5(V) mm{sup 2}. Uniform exposure will be achieved by a high-speed (100 mm/sec) vertical scanner, which allows precise angular ({approximately}0.1 mrad) and positional (conicals and other profiles. For 1-mm-thick PMMA, a 100 x 25 mm{sup 2} area can be fully exposed in about 1/2 hr, while even 10-mm-thick PMMA will require only 2-3 hours.

Lai, B.; Mancini, D.C.; Yun, W.; Gluskin, E.

1996-12-31T23:59:59.000Z

184

Interaction of Epithelial Cells with Surfaces and Surfaces Decorated by Molecules  

E-Print Network (OSTI)

A detailed understanding of the interface between living cells and substrate materials is of rising importance in many fields of medicine, biology and biotechnology. Cells at interfaces often form epithelia. The physical barrier that they form is one of their main functions. It is governed by the properties of the networks forming the cytoskeleton systems and by cell-to-cell contacts. Different substrates with varying surface properties modify the migration velocity of the cells. On the one hand one can change the materials composition. Organic and inorganic materials induce differing migration velocities in the same cell system. Within the same class of materials, a change of the surface stiffness or of the surface energy modifies the migration velocity, too. For our cell adhesion studies a variety of different, homogeneous substrates were used (polymers, bio-polymers, metals, oxides). In addition, an effective lithographic method, Polymer Blend Lithography (PBL), is reported, to produce patterned Self-Assembled Monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. This we achieve without the use of conventional lithography like e-beam or UV lithography, only by using self-organization. These surfaces are decorated with a Teflon-like and with an amino-functionalized molecular layer. The resulting pattern is a copy of a previously created self-organized polymer pattern, featuring a scalable lateral domain size in the sub-micron range down below 100 nanometers. The resulting monolayer pattern features a high chemical and biofunctional contrast with feature sizes in the range of cell adhesion complexes like e.g. focal adhesion points.

Daniele Martini; Othmar Marti; Michael Beil; T. Paust; C. Huang; M. Moosmann; J. Jin; T. Heiler; R. Gröger; Thomas Schimmel; Stefan Walheim

2013-03-02T23:59:59.000Z

185

Observation of Localized Corrosion of Ni-Based Alloys Using Coupled Orientation Imaging Microscopy and Atomic Force Microscopy  

DOE Green Energy (OSTI)

We present a method for assessing the relative vulnerabilities of distinct classes of grain boundaries to localized corrosion. Orientation imaging microscopy provides a spatial map which identifies and classifies grain boundaries at a metal surface. Once the microstructure of a region of a sample surface has been characterized, a sample can be exposed to repeated cycles of exposure to a corrosive environment alternating with topographic measurement by an atomic force microscope in the same region in which the microstructure had been mapped. When this procedure is applied to Ni and Ni-based alloys, we observe enhanced attack at random grain boundaries relative to special boundaries and twins in a variety of environments.

Bedrossian, P.J.

1999-11-24T23:59:59.000Z

186

Spectroscopic imaging in electron microscopy  

Science Conference Proceedings (OSTI)

In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

Pennycook, Stephen J [ORNL; Colliex, C. [Universite Paris Sud, Orsay, France

2012-01-01T23:59:59.000Z

187

Electron Microscopy | Center for Functional Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Facility Electron Microscopy Facility Electron Microscopy This facility consists of four top-of-the line transmission electron microscopes, two of which are highly specialized instruments capable of extreme levels of resolution, achieved through spherical aberration correction. The facility is also equipped with extensive sample-preparation capabilities. The scientific interests of the staff focus on understanding the microscopic origin of the physical and chemical behavior of materials, with specific emphasis on in-situ studies of materials in native, functional environments. Capabilities Atomic-resolution imaging of internal materials structure with scanning transmission and transmission electron microscopy Spectroscopic characterization with energy dispersive x-ray

188

Frontiers of In Situ Transmission Electron Microscopy  

Science Conference Proceedings (OSTI)

... significance and versatility of in situ transmission electron microscopy (TEM) has ... applied stimulus is observed as it happens inside the microscope. ...

2013-05-29T23:59:59.000Z

189

Maximizing fluorescence collection efficiency in multiphoton microscopy  

E-Print Network (OSTI)

-depth limit in two-photon microscopy," J. Opt. Soc. Am. A 23(12), 3139­3149 (2006). 9. D. Kobat, M. E. Durst

Levene, Michael J.

190

Grand Opening Slated for Electron Microscopy Facility  

Science Conference Proceedings (OSTI)

4 days ago ... The Ohio State University Center for Electron Microscopy and Analysis ... There are also two X-ray diffractometer (XRD) systems, facilities for ...

191

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

Specimen Preparation Specimen Preparation Preparation of samples with large transparent areas and flat surfaces is a key element of electron microscopy. In particular, the interpretation of lattice or holographic images is often limited by the sample's geometry and surface roughness. These parameters are largely determined by a particular sample preparation procedure. The increasing demand for microscopes with a spatial resolution of better than 1Ã… increases the need for improved sample preparation techniques. A substantial effort at NCEM is devoted to the development of reliable and specialized thinning techniques. Current programs explore the application of chemicals to shape the surfaces of thin films, the use of nanospheres for observation of small particles, and the

192

Beamline and exposure station for deep x-ray lithography at the Advanced Photon Source  

SciTech Connect

APS is a third-generation synchrotron radiation source. With an x-ray energy of 19.5 keV and highly collimated beam (<0.1 mrad), APS is well suited for producing high-aspect-ratio microstructures in thick resist films (> 1 mm) using deep x-ray lithography (DXRL). The 2-BM beamline was constructed and will be used for DXRL at APS. Selection of appropriate x-ray energy range is done through a variable-angle mirror and various filters in the beamline. At the exposure station, the beam size will be 100(H) x 5(V) mm{sup 2}. Uniform exposure will be achieved by a high-speed (100 mm/sec) vertical scanner, which allows precise angular ({approximately}0.1 mrad) and positional (< 1 {mu}m) control of the sample, allowing full use of the highly collimated beam for lateral accuracy and control of sidewall slopes during exposure of thick resists, as well as generation of conicals and other profiles. For 1-mm-thick PMMA, a 100 x 25 mm{sup 2} area can be fully exposed in about 1/2 hr, while even 10-mm-thick PMMA will require only 2-3 hours.

Lai, B.; Mancini, D.C.; Yun, W.; Gluskin, E.

1996-12-31T23:59:59.000Z

193

Sixth International Conference on X-ray Microscopy  

SciTech Connect

More than 180 participants from around the world crowded the Clark Kerr Campus of the University of California, Berkeley, from August 1-6, 1999 for the Sixth International Conference on X-Ray Microscopy (XRM99). Held every three years since 1983, the XRM conferences have become the primary international forum for the presentation and discussion of advances in high-spatial-resolution x-ray imaging and applications (including the use of x-ray spectroscopic and analytical techniques) in biological and medical sciences, environmental and soil sciences, and materials and surface sciences.

Robinson, Arthur L.

1999-08-23T23:59:59.000Z

194

Spectroscopy and atomic force microscopy of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy Spectroscopy and atomic force microscopy of biomass L. Tetard a,b , A. Passian a,b,n , R.H. Farahi a , U.C. Kalluri c , B.H. Davison c , T. Thundat a,b a Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA b Department of Physics, University of Tennessee, Knoxville, TN 37996, USA c Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA a r t i c l e i n f o Keywords: Atomic force microscopy Spectroscopy Plant cells Biomass Nanomechanics a b s t r a c t Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass

195

Scanning Transmission Electron Microscopy Investigations of Complex...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of...

196

Advanced Photon Source | Combining Scanning Probe Microscopy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications | SXSPM Related Book Chapters V. Rose, J.W. Freeland, S.K. Streiffer, "New Capabilities at the Interface of X-rays and Scanning Tunneling Microscopy", in Scanning...

197

Scanning probe microscopy in the superconductor industry  

SciTech Connect

High-temperature superconductivity and scanning probe microscopy (SPM) have much in common. Both revolutionized their scientific fields and earned Nobel prizes for the original researchers. Both represent small-scale table-top research. Finally, both have emerged from research laboratories into growing industries. Applications of scanning probe microscopy to the superconductor industry range from the straightforward to the exotic. The superior three-dimensional resolution of scanning probe microscopes makes them ideal for routine topographic imaging and profilometry of substrates and thin films. On the other hand, the more esoteric applications of SPM include spectroscopic investigations of various electromagnetic properties of superconductors above and below the critical temperature.

Howland, R.S.; Kirk, M.D. (Park Scientific Instruments (US))

1991-01-01T23:59:59.000Z

198

Surface-Plasmon Enhanced Transparent Electrodes in Organic Photovoltaics  

Science Conference Proceedings (OSTI)

Random silver nanohole films were created through colloidal lithography techniques and metal vapor deposition. The transparent electrodes were characterized by uv-visible spectroscopy and incorporated into an organic solar cell. The test cells were evaluated for solar power-conversion efficiency and incident photon-to-current conversion efficiency. The incident photon-to-current conversion efficiency spectra displayed evidence that a nanohole film with 92 nm diameter holes induces surface-plasmon-enhanced photoconversion. The nanohole silver films demonstrate a promising route to removing the indium tin oxide transparent electrode that is ubiquitous in organic optoelectronics.

Reilly III, T. H.; van de Lagemaat, J.; Tenent, R. C.; Morfa, A. J.; Rowlen, K. L.

2008-01-01T23:59:59.000Z

199

Electron Microscopy (EM, TEM, SEM, STEM) Information at ...  

Science Conference Proceedings (OSTI)

... Electron holography. Electron Microscopy of Carbon Nanotube Composites. Environmental Scanning Electron Microscope. ...

2010-10-05T23:59:59.000Z

200

Potential contributions of noncontact atomic force microscopy for the future Casimir force measurements  

E-Print Network (OSTI)

Surface electric noise, i.e., the non-uniform distribution of charges and potentials on a surface, poses a great experimental challenge in modern precision force measurements. Such a challenge is encountered in a number of different experimental circumstances. The scientists employing atomic force microscopy (AFM) have long focused their efforts to understand the surface-related noise issues via variants of AFM techniques, such as Kelvin probe force microscopy or electric force microscopy. Recently, the physicists investigating quantum vacuum fluctuation phenomena between two closely-spaced objects have also begun to collect experimental evidence indicating a presence of surface effects neglected in their previous analyses. It now appears that the two seemingly disparate science communities are encountering effects rooted in the same surface phenomena. In this report, we suggest specific experimental tasks to be performed in the near future that are crucial not only for fostering needed collaborations between the two communities, but also for providing valuable data on the surface effects in order to draw the most realistic conclusion about the actual contribution of the Casimir force (or van der Waals force) between a pair of real materials.

W. J. Kim; U. D. Schwarz

2010-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Photon Source | Combining Scanning Probe Microscopy and  

NLE Websites -- All DOE Office Websites (Extended Search)

APS APS SXSPM News Researchers from NSLS-II visit SXSPM team at Argonne (November 27, 2013) Cummings presents invited talk at magnetism meeting (November 11, 2013) Invited talk at ACSIN-12 & ICSPM21 in Japan (November 11, 2013) Nanoscience Seminar presented at Tokyo University (November 01, 2013) Scientists study old photos for new solutions to corrosion (October 21, 2013) More News Featured Image Recent Publications Kangkang Wang, Daniel Rosenmann, Martin Holt, Robert Winarski, Saw-Wai Hla, and Volker Rose, "An easy-to-implement filter for separating photo-excited signals from topography in scanning tunneling microscopy", Rev. Sci. Instrum. 84, 063704 (2013). More SXSPM Publications Upcoming Presentations V. Rose, 41st Conference on the Physics and Chemistry of Surfaces and Interfaces (PCSI-41) (Invited Speaker)

202

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

SPLEEM SPLEEM Publications Imaging Spin Reorientation Transitions in Consecutive Atomic Co layers, Farid El Gabaly, Silvia Gallego, M. Carmen Munoz, Laszlo Szunyogh, Peter Weinberger, Kevin F. McCarty, Christof Klein, Andreas K. Schmid, Juan de la Figuera, submitted Direct imaging of spin-reorientation transitions in ultra-thin Ni films by spin-polarized low-energy electron microscopy, C. Klein, A. K. Schmid, R. Ramchal, and M. Farle, submitted Controlling the kinetic order of spin-reorientation transitions in Ni/Cu(100) films by tuning the substrate step-structure, C. Klein, R. Ramchal, A.K. Schmid, M. Farle, submitted Self-organization and magnetic domain microstructure of Fe nanowire arrays, N. Rougemaille and A.K. Schmid, submitted Self-Assembled Nanofold Network Formation on Layered Crystal Surfaces

203

Calibration of fluorescence resonance energy transfer in microscopy  

DOE Patents (OSTI)

Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

2002-09-24T23:59:59.000Z

204

Combined use of hard X-ray phase contrast imaging and X-ray fluorescence microscopy for sub-cellular metal quantification  

E-Print Network (OSTI)

Combined use of hard X-ray phase contrast imaging and X-ray fluorescence microscopy for subSurface Science Laboratory at the European Synchrotron Radiation Facility, Grenoble, France Abstract Hard X of the details of cells are undetectable in hard X-ray microscopy due to the weak absorption contrast between

Paris-Sud XI, Université de

205

Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy  

DOE Patents (OSTI)

An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

2013-07-09T23:59:59.000Z

206

Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals  

E-Print Network (OSTI)

Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

Ian B. Burgess; Joanna Aizenberg; Marko Loncar

2012-11-29T23:59:59.000Z

207

Quantitative imaging of living cells by deep ultraviolet microscopy  

E-Print Network (OSTI)

Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

Zeskind, Benjamin J

2006-01-01T23:59:59.000Z

208

Public Safety and Security in Analytical Microscopy Group  

Science Conference Proceedings (OSTI)

Public Safety and Security in Analytical Microscopy Group. Summary: Reliable standards are needed to test, maintain, and ...

2012-10-02T23:59:59.000Z

209

Electron and X-Ray Microscopy: Structural Characterization of ...  

Science Conference Proceedings (OSTI)

Oct 28, 2009 ... Recent Advances in Structural Characterization of Materials: Electron and X-Ray Microscopy: Structural Characterization of Nanoscale ...

210

Opportunities for Multimodal CARS Microscopy in Materials Science  

Science Conference Proceedings (OSTI)

Symposium, Optical and X-ray Imaging Techniques for Material Characterization. Presentation Title, Opportunities for Multimodal CARS Microscopy in Materials ...

211

Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells  

E-Print Network (OSTI)

Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells Alden A. Dima,1 Mary C. Brady,1 Hai C. Tang,1 Anne L. Plant2 * Abstract The analysis of fluorescence microscopy fluorescence microscopy; k-means cluster; image segmentation; cell edge; bivariate simi- larity index NUMEROUS

Bernal, Javier

212

Surfaces of Intermetallics: Quasicrystals and Beyond  

Science Conference Proceedings (OSTI)

The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

Yuen, Chad [Ames Laboratory

2012-10-26T23:59:59.000Z

213

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

214

In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)  

SciTech Connect

Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth [1] of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film [2]. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy.

Al-Mahboob A.; Vescovo, E.; Sadowski, J.T.

2013-08-18T23:59:59.000Z

215

Transmission electron microscopy analysis of corroded metal waste forms.  

SciTech Connect

This report documents the results of analyses with transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (ED) of samples of metallic waste form (MWF) materials that had been subjected to various corrosion tests. The objective of the TEM analyses was to characterize the composition and microstructure of surface alteration products which, when combined with other test results, can be used to determine the matrix corrosion mechanism. The examination of test samples generated over several years has resulted in refinements to the TEM sample preparation methods developed to preserve the orientation of surface alteration layers and the underlying base metal. The preservation of microstructural spatial relationships provides valuable insight for determining the matrix corrosion mechanism and for developing models to calculate radionuclide release in repository performance models. The TEM results presented in this report show that oxide layers are formed over the exposed steel and intermetallic phases of the MWF during corrosion in aqueous solutions and humid air at elevated temperatures. An amorphous non-stoichiometric ZrO{sub 2} layer forms at the exposed surfaces of the intermetallic phases, and several nonstoichiometric Fe-O layers form over the steel phases in the MWF. These oxide layers adhere strongly to the underlying metal, and may be overlain by one or more crystalline Fe-O phases that probably precipitated from solution. The layer compositions are consistent with a corrosion mechanism of oxidative dissolution of the steel and intermetallic phases. The layers formed on the steel and intermetallic phases form a continuous layer over the exposed waste form, although vertical splits in the layer and corrosion in pits and crevices were seen in some samples. Additional tests and analyses are needed to verify that these layers passivate the underlying metals and if passivation can break down as the MWF corrodes. The importance of localized corrosion should also be determined.

Dietz, N. L.

2005-04-15T23:59:59.000Z

216

NCEM National Center for Electron Microscopy: SPLEEM  

NLE Websites -- All DOE Office Websites (Extended Search)

SPLEEM The Spin-Polarized Low-Energy Electron Microscope is a unique low-voltage electron microscope for the study of surfaces and interfaces. The instrument is very sensitive to...

217

NCEM National Center for Electron Microscopy: Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Staff Staff Scientific Technical / Admin. Postdoctoral and Visitors Uli Dahmen, Head Jane Cavlina / Administrator Abhay Gautam Christian Kisielowski John Turner Helmut Poppa Andrew Minor ChengYu Song Frances Allen Andreas Schmid Marissa Libbee Tamara Radetic Peter Ercius Karen Bustillo Haimei Zheng Jim Ciston Alpha N'Diaye Colin Ophus Gong Chen Burak Ozdol Velimir Radmilovic Sara Kiani Hua Guo Christian Liebscher Josh Kacher Chris Nelson Xiuguang Jin Qian Yu Mary Scott Search the LBNL directory services page for other LBNL staff. Scientific Staff Uli Dahmen udahmen@lbl.gov (510) 486-4627 Ulrich Dahmen is Director of the National Center for Electron Microscopy. His current research interests include embedded nanostructures and interfaces in materials. Embedded nanostructures. Size- and shape-dependence of structural phase

218

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm - 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: "microlayer" disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

219

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm – 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: “microlayer” disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

220

Loss tangent imaging: Theory and simulations of repulsive-mode tapping atomic force microscopy  

Science Conference Proceedings (OSTI)

An expression for loss tangent measurement of a surface in amplitude modulation atomic force microscopy is derived using only the cantilever phase and the normalized cantilever amplitude. This provides a direct measurement of substrate compositional information that only requires tuning of the cantilever resonance to provide quantitative information. Furthermore, the loss tangent expression incorporates both the lost and stored energy into one term that represents a fundamental interpretation of the phase signal in amplitude modulation imaging. Numerical solutions of a cantilever tip interacting with a simple Voigt modeled surface agree with the derived loss tangent to within a few percent.

Proksch, Roger [Asylum Research, Santa Barbara, California 93117 (United States); Yablon, Dalia G. [ExxonMobil Research and Engineering, Annandale, New Jersey (United States)

2012-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.  

SciTech Connect

We describe the fabrication of silicon three dimensional photonic crystals using polymer templates defined by a single step, two-photon exposure through a layer of photopolymer with relief molded on its surface. The resulting crystals exhibit high structural quality over large areas, displaying geometries consistent with calculation. Spectroscopic measurements of transmission and reflection through the silicon and polymer structures reveal excellent optical properties, approaching properties predicted by simulations that assume ideal layouts.

Wiltzius, P. (University of Illinois, Urbana-Champaign, Illinois); Braun, P. V. (University of Illinois, Urbana-Champaign, Illinois); Liao, H. (University of Illinois, Urbana-Champaign, Illinois); Brzezinski, A. (University of Illinois, Urbana-Champaign, Illinois); Chen, Y. C. (University of Illinois, Urbana-Champaign, Illinois); Nelson, E. (University of Illinois, Urbana-Champaign, Illinois); Shir, D. (University of Illinois, Urbana-Champaign, Illinois); Rogers, J. A. (University of Illinois, Urbana-Champaign, Illinois); Bogart, Katherine Huderle Andersen

2008-08-01T23:59:59.000Z

222

Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application  

SciTech Connect

The progress in development of commercial system for next generation EUV lithography requires, among other factors, significant improvement in EUV photon sources such as discharge produced plasma (DPP) and laser produced plasma (LPP) devices. There are still many uncertainties in determining the optimum device since there are many parameters for the suitable and efficient energy source and target configuration and size. Complex devices with trigger lasers in DPP or with pre-pulsing in LPP provide wide area for optimization in regards to conversion efficiency (CE) and components lifetime. We considered in our analysis a promising LPP source configuration using 10-30 {mu}m tin droplet targets, and predicted conditions for the most efficient EUV radiation output and collection as well as calculating photons source location and size. We optimized several parameters of dual-beam lasers and their relationship to target size. We used our HEIGHTS comprehensive and integrated full 3D simulation package to study and optimize LPP processes with various target sizes to maximize the CE of the system.

Sizyuk, T.; Hassanein, A. [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-08-01T23:59:59.000Z

223

Investigation of wettability by NMR microscopy and spin-lattice relaxation  

Science Conference Proceedings (OSTI)

The wettability of reservoir rock has an important impact on the efficiency of oil recovery processes and the distribution of oil and water within the reservoir. One of the potentially useful tools for wettability measurements is nuclear magnetic resonance (NMR) and spin-lattice relaxation. More recently using NMR microscopy NIPER has developed the capability of imaging one- and two-phase fluid systems in reservoir rock at resolutions to 25 microns. Effects seen in the images of fluids within the pore space of rocks near the rock grain surfaces hinted at the possibility of using NMR microscopy to map the wettability variations at grain sites within the pore space. Investigations were begun using NMR microscopy and spin-lattice relaxation time measurements on rock/fluid systems and on well-defined fractional wet model systems to study these effects. Relaxation data has been modelled using the stretched exponential relationship recently introduced. Comparisons of the NMR microscopy results of the model system with the rock results indicate that the observed effects probably do not reflect actual wettability variations within the pore space. The results of the relaxation time measurements reveal that even in the simple model studied, the behavior of two phases is somewhat ambiguous and much more complex and requires more study.

Doughty, D.A.; Tomutsa, Liviu

1993-11-01T23:59:59.000Z

224

Demonstration of Ballistic Electron Emission Microscopy / Spectroscopy on the Au/Si (001) system  

E-Print Network (OSTI)

The Ballistic Electron Emission Microscopy (BEEM) capabilities of a Scanning Tunneling Microscope (STM) have been verified. BEEM is used to analyze the characteristics of buried energy barriers and was developed as an extension of scanning tunneling microscopy; hence, the analytical capabilities of BEEM are on a manometer scale. To use BEEM, low-noise Au/Si (001) Schottky diodes have been fabricated. The diodes were macroscopically tested for their electrical properties using conventional current-voltage (I-V) techniques. The same diodes were then placed in an ultra-high vacuum STM system and analyzed with BEEM. The ballistic electron emission microscopy and scanning tunneling microscopy showed some correlation with the topography of the evaporated gold surface. The barrier heights of the diodes were extracted from the ballistic electron emission spectroscopy with the use of a simple one dimensional BEEM current model. Comparison between the barrier heights obtained with BEEM and conventional I-V techniques showed the localized barrier heights to be higher than the macroscopic barrier heights.

Drummond, Mary Alyssa

1997-01-01T23:59:59.000Z

225

A flow cell for electron microscopy imaging of specimen in ...  

A flow cell for electron microscopy imaging of specimen in liquid or gas. Note: The technology described above is an early stage opportunity. ...

226

Ultrasonic-Based Mode-Synthesizing Atomic Force Microscopy  

In a single run and without damaging the sample, ORNL’s mode-synthesizingatomic force microscopy (MSAFM), along with mode-synthesizing sensing, ...

227

NCEM National Center for Electron Microscopy: NCEM Fellowship  

NLE Websites -- All DOE Office Websites (Extended Search)

Visiting Scientist Program Visiting Scientist Program The National Center for Electron Microscopy (NCEM) offers a program that gives participants the opportunity to conduct...

228

NCEM National Center for Electron Microscopy: Workshops and Seminars  

NLE Websites -- All DOE Office Websites (Extended Search)

Upcoming Seminars Thursday, October 3, 2013 at 11am Matthew Mecklenburg Center for Electron Microscopy and MicroAnalysis, University of Southern California 2D crystals are...

229

Optical Microscopy and Spectroscopy for Material Characterization II  

Science Conference Proceedings (OSTI)

Oct 30, 2013 ... By measuring the phase of the SHG, it provides information about the relative ... We combined interferometry to SHG microscopy to retrieve the ...

230

Characterization of Battery Cycling by In-Situ Microscopy  

Science Conference Proceedings (OSTI)

Presentation Title, Characterization of Battery Cycling by In-Situ Microscopy ... of lithium ion batteries provides an important route to reducing the lifetime costs of ...

231

High Energy Diffraction Microscopy at the Advanced Photon Source ...  

Science Conference Proceedings (OSTI)

The APS 1-ID beamline is dedicated to high-energy diffraction and the status of the ... High Energy Diffraction Microscopy at the Advanced Photon Source 1-ID ...

232

In Situ Transmission Electron Microscopy Studies of Size  

Science Conference Proceedings (OSTI)

Using in situ transmission electron microscopy (TEM) nanocompression testing, we ... Ab Initio DFT Modeling of the Dislocation and Its Mobility in TiN Ceramic.

233

Determining Mechanical Properties of Carbon Microcoils Using Lateral Force Microscopy  

Science Conference Proceedings (OSTI)

Mechanical properties of amorphous carbon microcoil (CMC) synthesized by thermal chemical vapor deposition method were examined in compression and tension tests, using the lateral force mode of atomic force microscope (AFM). The AFM cantilever tip was ... Keywords: Atomic force microscopy (AFM), atomic force microscopy, carbon microcoil, shear modulus, spring constant

Neng-Kai Chang; Shuo-Hung Chang

2008-03-01T23:59:59.000Z

234

Feasibility and limitation of track studies using atomic force microscopy  

E-Print Network (OSTI)

Feasibility and limitation of track studies using atomic force microscopy D. Nikezic, J.P.Y. Ho, C.W.Y. Yip, V.S.Y. Koo, K.N. Yu * Department of Physics and Materials Science, City University of Hong Kong July 2002 Abstract Atomic force microscopy (AFM) has been employed to investigate characteristics

Yu, K.N.

235

Imaging Small Molecules by Scanning Probe Microscopy Shirley Chiang  

E-Print Network (OSTI)

1 Imaging Small Molecules by Scanning Probe Microscopy Shirley Chiang Department of Physics. Ohtani, R.J. Wilson, S. Chiang, and C.M. Mate, "Scanning Tunneling Microscopy Observations of Benzene. V.M. Hallmark, S. Chiang, J.F. Rabolt, J.D. Swalen, and R.J. Wilson, "Observation of Atomic

Chiang, Shirley

236

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

Science Conference Proceedings (OSTI)

Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

2011-01-20T23:59:59.000Z

237

Modulated microwave microscopy and probes used therewith  

Science Conference Proceedings (OSTI)

A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

2012-09-11T23:59:59.000Z

238

Ion-induced electron emission microscopy  

DOE Patents (OSTI)

An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

Doyle, Barney L. (Albuquerque, NM); Vizkelethy, Gyorgy (Albuquerque, NM); Weller, Robert A. (Brentwood, TN)

2001-01-01T23:59:59.000Z

239

Plasmonic Field Enhancement of Individual Nanoparticles by Correlated Scanning and Photoemission Electron Microscopy  

SciTech Connect

We present results of a combined two-photon photoemission and scanning electron microscopy investigation to determine the electromagnetic enhancement factors of silver-coated spherical nanoparticles deposited on an atomically flat mica substrate. Femtosecond laser excitation, of the nanoparticles, produces intense photoemission, attributed to near-resonant excitation of localized surface plasmons. Enhancement factors are determined by comparing the respective two-photon photoemission yield measured for equal areas between single nanoparticles to that of the surrounding flat surface. For s-polarized, 400 nm (~ 3.1 eV) femtosecond radiation a distribution of enhancement factors are found with a large percentage (77%) of the nanoparticles falling within a median range. A correlated scanning electron microscopy analysis demonstrated that the nanoparticles typifying the median of the distribution were characterized by ideal spherical shapes and defect-free morphologies. The single largest enhancement factors were in contrast produced by a very small percentage (8%) of the total, for which evidence of silver defect anomalies were found that contributed to the overall structure of the nanoparticle. Comparisons are made between the experimentally measured enhancement factors and previously reported theoretical predictions of the localized surface plasmon near-field intensities for isolated nanometer-sized silver spheres.

Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

2011-01-21T23:59:59.000Z

240

Surface Soil  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Soil Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal Laboratory operations. April 12, 2012 Farm soil sampling Two LANL environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Measurements are compared to samples from the regional sites and compared to averages over time to see if there are changes in concentrations. Monitoring surface soil LANL has monitored surface soils since the early 1970s. Institutional surface soil samples are collected from 17 on-site, 11 perimeter, and six regional (background) locations every three years.

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High-spatial-resolution Raman microscopy of stress in shallow-trench-isolated Si structures  

Science Conference Proceedings (OSTI)

Stress in single and periodic shallow-trench-isolated Si structures was examined by 364 nm excitation confocal resonance Raman microscopy, laser penetration being restricted to the near-surface region. Using a 1.3 numerical aperture microobjective lens with a theoretical {approx}140 nm spatial resolution, the authors show that the configuration with both incident and scattered lights polarized parallel to each other and perpendicular to Si stripes is favorable for stress detection in the middle of the stripes, suppressing contributions from their edges. The stresses located in different areas of the structures were identified and analyzed.

Poborchii, Vladimir; Tada, Tetsuya; Kanayama, Toshihiko [MIRAI, Advanced Semiconductor Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, Higashi, Tsukuba 305-8562 (Japan)

2006-12-04T23:59:59.000Z

242

Structure and Reactions of Carbon and Hydrogen on Ru(0001): A Scanning Tunneling Microscopy Study  

DOE Green Energy (OSTI)

The interaction between carbon and hydrogen atoms on a Ru(0001) surface was studied using scanning tunneling microscopy (STM), Density Functional Theory (DFT) and STM image calculations. Formation of CH species by reaction between adsorbed H and C was observed to occur readily at 100 K. When the coverage of H increased new complexes of the form CH+nH (n = 1, 2 and 3) were observed. These complexes, never observed before, might be precursors for further hydrogenation reactions. DFT analysis reveals that a considerable energy barrier exists for the CH+H {yields} CH{sub 2} reaction.

Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge; Salmeron, Miquel

2008-09-09T23:59:59.000Z

243

Surface Soil  

NLE Websites -- All DOE Office Websites (Extended Search)

operations Why we sample surface soil Soil sampling is performed to: Determine radionuclide and chemical concentrations in soil and compare these results to regional...

244

NCEM National Center for Electron Microscopy: Becoming an NCEM User  

NLE Websites -- All DOE Office Websites (Extended Search)

New Research New Research Gallery Microscopy Links Becoming an NCEM User Step 1: Submit a proposal Step 2: Before you begin your research Step 3: Instrument qualification Step 4: Accessing NCEM facilities and performing research Step 1: Submit a proposal Deadlines for new proposals are March 15, June 15, September 15, December 15. Access to NCEM facilities is granted to researchers whose proposals are accepted by the NCEM proposal review committee. NCEM users are expected to have a strong background in transmission electron microscopy, and submitted proposals should include evidence of prior electron microscopy experience by the intended operator. Researchers who do not have sufficient experience in electron microscopy may be able to use NCEM facilities through a collaborative project.

245

NCEM National Center for Electron Microscopy: Contact NCEM  

NLE Websites -- All DOE Office Websites (Extended Search)

General Contact Jane Cavlina National Center for Electron Microscopy, MS 72-150 Lawrence Berkeley National Laboratory Berkeley, CA 94720 Tel.: (510) 486-6036 Fax: (510) 486-5888...

246

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

247

Target-specific contrast agents for magnetic resonance microscopy  

E-Print Network (OSTI)

High-resolution ex vivo magnetic resonance microscopy (MRM) can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. The goal ...

Hepler Blackwell, Megan Leticia

2007-01-01T23:59:59.000Z

248

Estimating Geometric Dislocation Densities in Polycrystalline Materialsfrom Orientation Imaging Microscopy  

Science Conference Proceedings (OSTI)

Herein we consider polycrystalline materials which can be taken as statistically homogeneous and whose grains can be adequately modeled as rigid-plastic. Our objective is to obtain, from orientation imaging microscopy (OIM), estimates of geometrically necessary dislocation (GND) densities.

Man, Chi-Sing [University of Kentucky; Gao, Xiang [University of Kentucky; Godefroy, Scott [University of Kentucky; Kenik, Edward A [ORNL

2010-01-01T23:59:59.000Z

249

Monitoring charge storage processes in nanoscale oxides using electrochemical scanning probe microscopy.  

Science Conference Proceedings (OSTI)

Advances in electrochemical energy storage science require the development of new or the refinement of existing in situ probes that can be used to establish structure - activity relationships for technologically relevant materials. The drive to develop reversible, high capacity electrodes from nanoscale building blocks creates an additional requirement for high spatial resolution probes to yield information of local structural, compositional, and electronic property changes as a function of the storage state of a material. In this paper, we describe a method for deconstructing a lithium ion battery positive electrode into its basic constituents of ion insertion host particles and a carbon current collector. This model system is then probed in an electrochemical environment using a combination of atomic force microscopy and tunneling spectroscopy to correlate local activity with morphological and electronic configurational changes. Cubic spinel Li{sub 1+x}Mn{sub 2-x}O{sub 4} nanoparticles are grown on graphite surfaces using vacuum deposition methods. The structure and composition of these particles are determined using transmission electron microscopy and Auger microprobe analysis. The response of these particles to initial de-lithiation, along with subsequent electrochemical cycling, is tracked using scanning probe microscopy techniques in polar aprotic electrolytes (lithium hexafluorophosphate in ethylene carbonate:diethylcarbonate). The relationship between nanoparticle size and reversible ion insertion activity will be a specific focus of this paper.

Zavadil, Kevin Robert; Lu, Ping; Huang, Jian Yu

2010-11-01T23:59:59.000Z

250

Los Alamos: MST-MTM: EML: Electron Microscopy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Laboratory, MST-6 Electron Microscopy Laboratory, MST-6 MST-6 Home Home In the MSL FEI Tecnai F30 Analytical TEM/STEM JEOL 6300FXV High Resolution SEM JEOL 3000F High Resolution Transmission Electron Microscope Philips XL30 F Scanning Electron Microscope & Orientation Imaging System Phillips CM30 Transmission Electron Microscope In the Sigma Building JEOL 840 EPMA with Wavelength Dispersive Spectroscopy FEI Strata DB235 FIB/SEM FEI XL30 Environmental Scanning Electron Microscope & Orientation Imaging System CONTACTS Bob Field 665.3938 Pat Dickerson 665.3036 Rob Dickerson 667.6337 Rod McCabe 606.1649 The Electron Microscopy Laboratory's Capabilities The Electron Microscopy Laboratory's Capabilities The Electron Microscopy Laboratory (EML) is part of MST-6, the Materials Technology - Metallurgy Group within the Materials Science and Technology Division at Los Alamos National Laboratory. It is a facility dedicated to the characterization of materials primarily through imaging, chemical, and crystallographic analyses of material microstructures with several electron and ion beam instruments. Accessory characterization techniques and equipment include energy dispersive x-ray analysis (EDS), wavelength dispersive x-ray analysis (WDS), electron backscatter diffraction (EBSD) and orientation imaging microscopy (OIM), and electron energy loss spectroscopy (EELS).

251

Imaging doped silicon test structures using low energy electron microscopy.  

SciTech Connect

This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

2010-01-01T23:59:59.000Z

252

X-ray spectro-microscopy of complex materials and surfaces  

Science Conference Proceedings (OSTI)

The detailed understanding of complex materials used in information technology requires the use of state-of-the-art experimental techniques that provide information on the electronic and magnetic properties of the materials. The increasing miniaturization ...

J. Stöhr; S. Anders

2000-07-01T23:59:59.000Z

253

Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores  

E-Print Network (OSTI)

There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

Beauboeuf, Daniel P

2010-01-01T23:59:59.000Z

254

Three-dimensional structure of human chromatin accessibility complex hCHRAC by electron microscopy  

SciTech Connect

ATP-dependent chromatin remodeling complexes modulate the dynamic assembly and remodeling of chromatin involved in DNA transcription, replication, and repair. There is little structural detail known about these important multiple-subunit enzymes that catalyze chromatin remodeling processes. Here we report a three-dimensional structure of the human chromatin accessibility complex, hCHRAC, using single particle reconstruction by negative stain electron microscopy. This structure shows an asymmetric 15 x 10 x 12 nm disk shape with several lobes protruding out of its surfaces. Based on the factors of larger contact area, smaller steric hindrance, and direct involvement of hCHRAC in interactions with the nucleosome, we propose that four lobes on one side form a multiple-site contact surface 10 nm in diameter for nucleosome binding. This work provides the first determination of the three-dimensional structure of the ISWI-family of chromatin remodeling complexes.

Hu, M.; Hainfeld, J.; Zhang, Y.-B.; Qian, L.; Brinas, R. P.; Kuznetsova, L.

2008-12-01T23:59:59.000Z

255

Surface Integrity  

Science Conference Proceedings (OSTI)

...inclusions introduced Plastically deformed debris as a result of grinding Voids, pits, burrs, or foreign material inclusions in surface Metallurgical Transformation of phases Grain size and distribution Precipitate size and distribution Foreign inclusions in material Twinning Recrystallization...

256

Programmable surfaces  

E-Print Network (OSTI)

Robotic vehicles walk on legs, roll on wheels, are pulled by tracks, pushed by propellers, lifted by wings, and steered by rudders. All of these systems share the common character of momentum transport across their surfaces. ...

Sun, Amy (Amy Teh-Yu)

2012-01-01T23:59:59.000Z

257

Swept source optical coherence microscopy for pathological assessment of cancerous tissues  

E-Print Network (OSTI)

Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable ...

Ahsen, Osman Oguz

2013-01-01T23:59:59.000Z

258

Surface Analysis  

DOE Green Energy (OSTI)

In the Surface Analysis group, within the National Center for Photovoltaic's Measurements and Characterization Division, we use surface analytical techniques help to determine the chemical, elemental, and molecular composition, and electronic structure of material surfaces and interfaces. The properties of the surface and outer few micrometers of a material often control the electrical, chemical, or mechanical properties of that material--hence, this region is of extreme importance. Our techniques use ions, electrons, and X-ray or ultraviolet photons in high vacuum to probe surfaces and interfaces of a material. We map the elemental and chemical composition of specimens, study impurities and grain boundaries, gather bonding and chemical-state information, measure surface electronic properties, and perform depth profiles to determine doping and elemental distributions. We have analyzed a wide range of materials, including photovoltaics, microelectronics, polymers, and biological specimens. We work collaboratively with you to solve materials- and device-related R&D problems. This sheet describes our major technique capabilities.

Not Available

2006-06-01T23:59:59.000Z

259

Metrology for Nanoimprint Lithography  

Science Conference Proceedings (OSTI)

... Intense R&D activities are currently centered on CMOS logic devices, bit patterned data storage media, high brightness LEDs, patterned biological ...

2013-07-23T23:59:59.000Z

260

Scanning transmission electron microscopy of gate stacks with HfO2 dielectrics and TiN electrodes  

E-Print Network (OSTI)

Scanning transmission electron microscopy of gate stacksEELS) in scanning transmission electron microscopy were usedWe use scanning transmission electron microscopy (STEM)

Agustin, Melody P.; Fonseca, Leo R. C.; Hooker, Jacob C.; Stemmer, Susanne

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Scanning Transmission Electron Microscopy Investigations of Complex Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

Scanning Transmission Electron Microscopy Investigations of Complex Oxides Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of Chemistry, University of South Carolina High-Angle-Annular-Dark-Field/Scanning Transmission Electron Microscopy (HAADF/STEM) is a technique uniquely suited for detailed studies of the structure and composition of complex oxides. The HAADF detector collects electrons which have interact inelastically with the potentials of the atoms in the specimen and therefore resembles the better known Z2 (Z is atomic number) Rutherford scattering. One class of important catalysts consists of bronzes based on pentagonal {Mo6O21} building units; these include Mo5O14 and Mo17O47. In the last 20 years, new materials doped with

262

Open Source Scanning Probe Microscopy Control Software package GXSM  

SciTech Connect

GXSM is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected to an instrument, it is operating many different flavors of SPM, e.g., scanning tunneling microscopy and atomic force microscopy or, in general, two-dimensional multichannel data acquisition instruments. The GXSM core can handle different data types, e.g., integer and floating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor subsystem runs the feedback loop, generates the scanning signals, and acquires the data during SPM measurements. The programmable GXSM vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy or tip formation. The GXSM software is released under the GNU general public license and can be obtained via the internet.

Zahl, P.; Wagner, T.; Moller, R.; Klust, A.

2010-05-01T23:59:59.000Z

263

Scanning-tunneling-microscopy studies of disilane adsorption and pyrolytic growth on Si(100)-(2x1)  

SciTech Connect

Scanning tunneling microscopy has been employed to study the adsorption of disilane (Si{sub 2}H{sub 6}) and pyrolytic growth on Si(100)-(2{times}1) at various temperatures. Room-temperature exposures result in a random distribution of dissociation fragments on the surface. Formation of anisotropic monohydride islands and denuded zones as well as island coarsening is observed at higher temperatures. The results are strikingly similar to those reported for growth by molecular-beam epitaxy using pure Si, even though different surface reactions are involved in these two growth processes.

Lin, D.; Hirschorn, E.S.; Chiang, T. (Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)); Tsu, R.; Lubben, D.; Greene, J.E. (Department of Materials Science, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States) Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States))

1992-02-15T23:59:59.000Z

264

Highly uniform step and terrace structures on SiC(0001) surfaces  

Science Conference Proceedings (OSTI)

Highly uniform step and termination structures on 4H- and 6H-SiC(0001) surfaces have been prepared via moderate annealing in disilane. Atomic force microscopy and dark-field low-energy electron microscopy imaging indicate single-phase terminations separated ...

J. Sun; J. B. Hannon; R. M. Tromp; K. Pohl

2011-07-01T23:59:59.000Z

265

An atomic view of surface diffusion on metal surfaces  

SciTech Connect

Investigations of surface diffusion and cluster nucleation by field ion microscopy have provided a considerable amount of physical insight concerning the fundamental interactions that control dynamical processes on surfaces. The investigations rely not only on the FIM`s ability to resolve and track individual atoms on a surface, but also its ability to manipulate the number of adatoms and the size of clusters by the process of field desorption. Results of the investigations are surprising. Whereas metal atom diffusion was once thought to be a simple hopping process, FIM experiments have revealed new mechanisms for atom transport. Whereas cluster nucleation was once thought to be an aggregation process dependent only upon pairwise interactions between atoms, FIM investigations have shown that long-range and many body interactions can make non-negligible contributions to the overall process. By providing a brief overview of the experimental methods used in FIM surface diffusion studies and discussing a few selected applications, I hope to have conveyed some of the rich history as well as the current excitement associated with FIM investigations of dynamical processes on surfaces.

Kellogg, G.L.

1994-08-01T23:59:59.000Z

266

Phase Contrast Microscopy with Soft and Hard X-rays  

E-Print Network (OSTI)

Calibration ­ Uses up part of dynamic range · Solution: ­ Soft x-rays: Back side Illumination ­ Hard xPhase Contrast Microscopy with Soft and Hard X-rays Using a Segmented Detector Benjamin Hornberger ­ Phase Contrast 101 · A Segmented Detector for Hard X-ray Microprobes ­ Segmented Silicon Chip ­ Charge

Homes, Christopher C.

267

Effect of Surface Roughness of 45S Bioactive Glass on the ...  

Science Conference Proceedings (OSTI)

Their adhesion and proliferation are determined by fluorescent microscopy. ... Improving the Resistance of Ceramic Surfaces to Biofilm Formation ... Sol-Gel Synthesis of Bio-Active Nanoporous Sodium Zirconate Coated on 316L Stainless

268

Scanning tunneling microscopy studies on the structure and stability of model catalysts  

E-Print Network (OSTI)

An atomic level understanding of the structure and stability of model catalysts is essential for surface science studies in heterogeneous catalysis. Scanning tunneling microscopy (STM) can operate both in UHV and under realistic pressure conditions with a wide temperature span while providing atomic resolution images. Taking advantage of the ability of STM, our research focuses on 1) investigating the structure and stability of supported Au catalysts, especially under CO oxidation conditions, and 2) synthesizing and characterizing a series of alloy model catalysts for future model catalytic studies. In our study, Au clusters supported on TiO2(110) have been used to model supported Au catalysts. Our STM studies in UHV reveal surface structures of TiO2(110) and show undercoordinated Ti cations play a critical role in the nucleation and stabilization of Au clusters on TiO2(110). Exposing the TiO2(110) surface to water vapor causes the formation of surface hydroxyl groups and subsequently alters the growth kinetics of Au clusters on TiO2(110). STM studies on Au/TiO2(110) during CO oxidation demonstrate the real surface of a working catalyst. Au clusters supported on TiO2(110) sinter rapidly during CO oxidation, but are mostly stable in the single component reactant gas, either CO or O2. The sintering kinetics of supported Au clusters has been measured during CO oxidation and gives an activation energy, which supports the mechanism of CO oxidation induced sintering. CO oxidation was also found to accelerate the surface diffusion of Rh(110). Our results show a direct correlation between the reaction rate of CO oxidation and the diffusion rate of surface metal atoms. Synthesis of alloy model catalysts have also been attempted in our study with their structures successfully characterized. Planar Au-Pd alloy films has been prepared on a Rh(100) surface with surface Au and Pd atoms distinguished by STM. The growth of Au-Ag alloy clusters have been studied by in-situ STM on a cluster-to-cluster basis. Moreover, the atomic structure of a solution-prepared Ru3Sn3 cluster has been resolved on an ultra-thin silica film surface. The atomic structure and adsorption sites of the ultrathin silica film have also been well characterized in our study.

Yang, Fan

2007-12-01T23:59:59.000Z

269

Relative free energies of Si surfaces  

Science Conference Proceedings (OSTI)

Cavities are formed by ion implanting (001) Si with He and annealing at 800?°C to enlarge and to remove the He. Subsequent annealing at 600?°C results in cavities with well?defined facets as seen in [110] cross section with transmission electron microscopy. The most frequently observed facets are {111} planes. A rounded surface is seen about the [001] direction of all cavities

D. M. Follstaedt

1993-01-01T23:59:59.000Z

270

Instrument Series: Microscopy Ultra-High Vacuum, Variable- Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

phase transitions, chemisorption, diffusion, and desorption Surface characterization of advanced materials - studying elemental and compound semiconductors, layered materials...

271

NCEM National Center for Electron Microscopy: About NCEM  

NLE Websites -- All DOE Office Websites (Extended Search)

NCEM NCEM The National Center for Electron Microscopy (NCEM) is one of the world's foremost centers for electron microscopy and microcharacterization. It is an Office of Science User Facility operated for the U.S. Department of Energy by Lawrence Berkeley National Laboratory. Located adjacent to the University of California, Berkeley, NCEM was established in 1983 to maintain a forefront research center for electron-optical characterization of materials with state-of-the-art instrumentation and expertise. As a national user facility, NCEM is open to scientists from universities, government and industrial laboratories. The center provides cutting-edge instrumentation, techniques and expertise for advanced electron beam microcharacterization of materials at high spatial

272

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

273

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

274

Exploring nanomagnetism with soft x-ray microscopy  

SciTech Connect

Magnetic soft X-ray microscopy images magnetism in nanoscale systems with a spatial resolution down to 15nm provided by state-of-the-art Fresnel zone plate optics. X-ray magnetic circular dichroism (X-MCD) is used as element-specific magnetic contrast mechanism similar to photoemission electron microscopy (PEEM), however, with volume sensitivity and the ability to record the images in varying applied magnetic fields which allows to study magnetization reversal processes at fundamental length scales. Utilizing a stroboscopic pump-probe scheme one can investigate fast spin dynamics with a time resolution down to 70 ps which gives access to precessional and relaxation phenomena as well as spin torque driven domain wall dynamics in nanoscale systems. Current developments in zone plate optics aim for a spatial resolution towards 10nm and at next generation X-ray sources a time resolution in the fsec regime can be envisioned.

Fischer, P.; Kim, D.-H.; Mesler, B.L.; Chao, W.; Sakdinawat,A.E.; Anderson, E.H.

2006-10-30T23:59:59.000Z

275

X-ray Microscopy and Imaging (XSD-XMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging (XMI) Imaging (XMI) About XMI Science and Research Beamlines Highlights Software and Tools Intranet Search APS... Argonne Home > Advanced Photon Source > Contacts FAQs Beamlines News Publications APS Email Portal APS Intranet APS Phonebook APS Quick Links for Users APS Safety and Training Welcome to the X-ray Microscopy and Imaging group (XMI)! X-ray Microscopy and Imaging is part of the X-ray Science Division at the Advanced Photon Source. We develop and support a diverse and multidisciplinary user research program at Sectors 2 and 32 of the APS, with the overall goal to image and study materials structures at spatial and temporal resolutions that are most scientifically relevant to the cutting-edge advances in materials, biological, environmental, and biomedical sciences. To achieve this goal, we actively engage in various research activities including

276

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

277

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

278

CFN Operations and Safety Awareness (COSA) Checklist Electron Microscopy Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Facility Electron Microscopy Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

279

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

280

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

282

Characterization of polysilicon films by Raman spectroscopy and transmission electron microscopy: A comparative study  

SciTech Connect

Samples of chemically-vapor-deposited micrometer and sub-micrometer-thick films of polysilicon were analyzed by transmission electron microscopy (TEM) in cross-section and by Raman spectroscopy with illumination at their surface. TEM and Raman spectroscopy both find varying amounts of polycrystalline and amorphous silicon in the wafers. Raman spectra obtained using blue, green and red excitation wavelengths to vary the Raman sampling depth are compared with TEM cross-sections of these films. Films showing crystalline columnar structures in their TEM micrographs have Raman spectra with a band near 497 cm{sup {minus}1} in addition to the dominant polycrystalline silicon band (521 cm{sup {minus}1}). The TEM micrographs of these films have numerous faulted regions and fringes indicative of nanometer-scale silicon structures, which are believed to correspond to the 497cm{sup {minus}1} Raman band.

Tallant, D.R.; Headley, T.J.; Medernach, J.W. [Sandia National Labs., Albuquerque, NM (United States); Geyling, F. [SEMATECH, Austin, TX (United States)

1993-11-12T23:59:59.000Z

283

Using Scanning Acoustic Microscopy to Study Subsurface Defects ...  

Science Conference Proceedings (OSTI)

... surface (found during periodic inspections during the course of the experiments). ... Scanning—A Review," Proceedings of the IEEE, 67 (8) (August 1979), pp.

284

Sandia National Labs: PCNSC: Departments: Surface and Interface Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Carlos Gutierrez Carlos Gutierrez Manager Resources Department Folder 01114 Sharepoint Visit Our Labs Grest Group Nanorheology Research (514 KB PDF) Interfacial Force Microscopy Group (701 KB PDF) Research Image Gallery (3,698 KB PDF) Surface Imaging Laboratory Technology - Metals for tomorrow Tina Nenoff Departments Surface and Interface Sciences The Surface and Interface Sciences Department is engaged in a diverse portfolio of leading-edge research projects related to the understanding

285

Sub-Angstrom electron microscopy for sub-Angstrom nano-metrology  

E-Print Network (OSTI)

Microscopy for Sub-Ångstrom Nano-Metrology Michael A. O’Microscopy for Sub-Ångstrom Nano-Metrology Michael A. O’what we build. Because nano-devices operate on the level of

O'Keefe, Michael A.; Allard, Lawrence F.

2004-01-01T23:59:59.000Z

286

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

E-Print Network (OSTI)

G. R. et al. Scanning transmission X-ray microscopy: A newwith the scanning transmission X-ray microscope at BESSY II.T. et al. Scanning transmission X-ray microscopy imaging of

Moffet, Ryan C.

2011-01-01T23:59:59.000Z

287

UNIVERSITY OF CALIFORNIA, SANTA CRUZ Life Sciences Microscopy Center Facilities Manager  

E-Print Network (OSTI)

analysis; instrument maintenance and technical support; usage management; maintaining the facility web site or training in a higher-education environment; expertise in both light microscopy and electron microscopy

California at Santa Cruz, University of

288

Electron Microscopy Study of the LiFEPO4 to FePo4 Phase Transition  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Study of the LiFEPO4 to FePo4 Phase Transition Title Electron Microscopy Study of the LiFEPO4 to FePo4 Phase Transition Publication Type Journal Article Year of...

289

Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications  

E-Print Network (OSTI)

Spectrally encoded confocal microscopy (SECM) is a technique that facilitates the incorporation of confocal microscopy into small, portable clinical instruments. This would allow in vivo evaluation of cellular and sub-cellular ...

Boudoux, Caroline

2007-01-01T23:59:59.000Z

290

Study of Lignocellulosic Material Degradation with CARS Microscopy  

DOE Green Energy (OSTI)

The program of research undertaken by our Harvard group, in collaboration with Dr. Ding at the National Renewable Energy Laboratory (NREL) in Golden, CO, seeks to introduce, validate and apply a new analytical technique to study the conversion of lignocellulosic biomass into ethanol. This conversion process has been the subject of intense interest over the past few years because of its potential to provide a clean, renewable source of energy to meet increasing global demand. During the funding period, we have clearly demonstrated visualization of lignin and cellulose using intrinsic vibrational contrast with simulated Raman scattering (SRS) microscopy, developed at Harvard. Our approach offers high spatial resolution and time resolution that is sufficient to capture the kinetics of a pre?treatment process. This is reflected by the publications listed below, as well as the use of SRS microscopy at NREL as a routine analysis tool for research on lignocellulosic biomass. In our original proposal, we envisioned moving to near?field CARS imaging in order to perform chemical mapping at the nanoscale. However, given the dramatic progress made by our group in SRS imaging, we concentrated our efforts on using multi?component SRS (lignin, cellulose, lipid, water, protein, deuterated metabolites, etc.) to quantitatively understand the spatially dispersed kinetics in a variety of plant samples under a variety of conditions. In addition, we built a next generation laser system based on fiber laser technology that allowed rugged and portable instrumentation for SRS microscopy. We also pursued new imaging approaches to improve the acquisition speed of SRS imaging of lignocellulose without sacrificing signal?to?noise ratio. This allowed us to image larger volumes of tissue with higher time resolution to get a more comprehensive picture of the heterogeneity of this chemical process from the submicron up to the centimeter scale.

Xie, Xiaoliang Sunney; Ding, Shi-You

2013-09-30T23:59:59.000Z

291

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

292

Investigation of short-range surface forces to develop self-organizing devices by Steven M. Tobias.  

E-Print Network (OSTI)

Force spectra from atomic force microscopy were used to verify surface energy components of indium tin oxide and mesocarbon microbeads. These materials were selected based on spectroscopic and thermodynamic parameters to ...

Tobias, Steven M., 1980-

2005-01-01T23:59:59.000Z

293

Thin-section microscopy of decayed crystalline marble from the garden sculptures of Schoenbrunn Palace in Vienna  

SciTech Connect

Sterzing marble, a crystalline white marble used in the late-Baroque garden sculptures of Schoenbrunn Palace in Vienna, was studied by means of thin-section and scanning electron microscopy in order to obtain a better understanding of its surface decay caused by atmospheric weathering. Following the classification of distinct phenomena of deterioration by visual on-site inspection, the microstructural features including surface erosion, micro-cracking, soiling, black crust formation, and microbiological infestation are exemplified by microscopical images and are briefly discussed. The results proved useful for evaluating and understanding the various types of marble decay for creating a safer basis for establishing the procedural principles aimed at conservation and maintenance of the sculptures.

Weber, J. [Institute of Art and Technology, Conservation Sciences, University of Applied Arts Vienna. A-1013 Vienna, Salzgries 14/1 (Austria)], E-mail: johannes.weber@uni-ak.ac.at; Beseler, S. [Institute of Conservation and Restoration, University of Applied Arts Vienna A-1013 Vienna, Salzgries 14/4 (Austria); Sterflinger, K. [Institute for Applied Microbiology, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna A-1190 Vienna, Muthgasse 18 (Austria)

2007-11-15T23:59:59.000Z

294

Advanced Photon Source | Combining Scanning Probe Microscopy and  

NLE Websites -- All DOE Office Websites (Extended Search)

27.2013 27.2013 Researchers from NSLS-II visit SXSPM team at Argonne Synchrotron x-ray scanning tunneling microscopy will soon also be developed at the National Synchrotron Light Source (NSLS-II) at Brookhaven National Laboratory (BNL). In order to establish collaboration between the two National Laboratories, Drs. Evgeny Nazaretski and Hui Yan fom BNL visited Argonne to learn more about recent progress made in the SXSPM project. During the 2-day visit the teams discussed mutual scientific goals and strategies to achieve them. NSLS-II will be a new state-of-the-art, medium-energy electron storage ring at BNL designed to deliver high intensity and brightness. Construction of the NSLS-II's ring building began in March 2009. The new facility will begin operating in 2014

295

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

CM 200 FEG CM 200 FEG AEME The Philips CM200/FEG is a versatile instrument that is designed for analysis of the physical, chemical and magnetic microstructure at high spatial resolution. In addition to high resolution imaging capability, the machine is optimized for analytical electron microscopy and Lorentz imaging, under normal as well as dynamic conditions of variable temperature (77K - 1250K) and applied magnetic fields. Spatially resolved compositional analysis by X-ray emission spectroscopy (Z > 5), local electronic structure measurements by electron energy-loss spectroscopy (Z > 2), convergent beam electron diffraction for three-dimensional structure information, and energy-filtered imaging at the nanometer scale are some of the techniques available on this instrument. In addition, a TEM differential phase

296

Advanced Photon Source | Combining Scanning Probe Microscopy and  

NLE Websites -- All DOE Office Websites (Extended Search)

01.2013 01.2013 Nanoscience Seminar presented at Tokyo University On November 1, 2013, Volker Rose was invited to present the Nanoscience Seminar at the Institute of Solid State Physics (ISSP) of the University of Tokyo. In his seminar he discussed the physical principles of Synchrotron X-ray Scanning Tunneling Microscopy (SXSTM) as well as the recent progress made by his team at the Advanced Photon Source. He was invited by Prof. Yukio Hasegawa, who himself conducts SXSTM experiment at the Photon Factory in Tsukuba, Japan. The ISSP serves as the central laboratory of materials science in Japan equipped with state-of-art facilities. It was relocated to the new campus in Kashiwa of the University of Tokyo in 2000 after the 43 years of activities at the Roppongi campus in downtown Tokyo. Here ISSP is focusing

297

In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry  

Science Conference Proceedings (OSTI)

Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

2011-10-31T23:59:59.000Z

298

Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory  

Science Conference Proceedings (OSTI)

The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron microscopy techniques in strongly correlated electron systems and nanostructured materials. As a first step, with the support of Materials Science Division, Office of Basic Energy Science, US Department of Energy, and the New York State Office of Science, Technology, and Academic Research, recently we acquired three aberration-corrected electron microscopes from the three major microscope manufacturers, i.e., JEOL, Hitachi, and FEI. The Hitachi HD2700C is equipped with a probe corrector, the FEI Titan 80-300 has an imaging corrector, while the JEOL2200MCO has both. All the correctors are of the dual-hexapole type, designed and manufactured by CEOS GmbH based on the design due to Rose and Haider [3, 18]. All these three are one-of-a-kind in the US, designed for specialized capabilities in characterizing nanoscale structure. In this chapter, we review the performance of these state-of-the art instruments and the new challenges associated with the improved spatial resolution, including the environment requirements of the laboratory that hosts these instruments. Although each instrument we describe here has its own strengths and drawbacks, it is not our intention to rank them in terms of their performance, especially their spatial resolution in imaging.

Zhu,Y.; Wall, J.

2008-04-01T23:59:59.000Z

299

Handheld and low-cost digital holographic microscopy  

E-Print Network (OSTI)

This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

2012-01-01T23:59:59.000Z

300

High resolution transmission electron microscopy of melamine-formaldehyde aerogels and silica aerogels  

Science Conference Proceedings (OSTI)

The goal of the high resolution transmission electron microscopy (HRTEM) was to image the structure of two tetramethyl orthosilicate (TMOS) and two melamine-formaldehyde (MF) aerogels at the single polymer chain level{sup 1,2}. With this level of structural resolution we hoped to interrelate each aerogel's structure with its physical properties and its method of synthesis. Conventional single-step base catalysed TMOS aerogels show strings of spheroidal particles linked together with minimal necking. The spheroidal particles range from 86--132 {Angstrom} and average 113{plus minus}10 {Angstrom} in diameter{sup 2}. In contrast the TMOS aerogels reported on here were made by a two step method. After extended silica chains are grown in solution under acidic conditions with a substoichiometric amount of water, the reaction is stopped and the methanol hydrolysed from TMOS is removed. Then base catalysis and additional water are added to cause gel formation is a nonalcoholic solvent. The MF aerogels were prepared for HRTEM by fracturing them on a stereo microscope stage with razor knife so that fractured pieces with smooth flat surfaces could be selected for platinum-carbon replication. The two silica (TMOS) aerogels were both transparent and difficult to see. These aerogels were fractured on a stereo microscope stage with tweezers. 6 refs., 4 figs.

Ruben, G.C. (Dartmouth Coll., Hanover, NH (United States). Dept. of Biological Sciences)

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films  

Science Conference Proceedings (OSTI)

A recently developed technique, electrochemical strain microscopy (ESM), utilizes the strong coupling between ionic current and anisotropic volumetric chemical expansion of lithium-ion electrode materials to dynamically probe the sub-one-hundred? nm inter-facial kinetic intercalation properties. A numerical technique based on the finite element method was developed to analyze the underlying physics that govern the ESM signal generation and establish relations to battery performance. The performed analysis demonstrates that the diffusion path within a thin film is tortuous and the extent of lithium diffusion into the electrode is dependent on the SPM-tip-imposed overpotential frequency. The detected surface actuation gives rise to the development of an electromechanical hysteresis loop whose shape is dependent on grain size and overpotential frequency. Shape and tilting angle of the loop are classified into low and high frequency regimes, separated by a transition frequency which is also a function of lithium diffusivity and grain size, f{sub T} = D//{sup 2}. Research shows that the crystallographic orientation of the surface actuated grain has a significant impact on the shape of the loop. The polycrystalline crystallographic orientation of the grains induces a diffusion path network in the electrode which impacts on the mechanical reliability of the battery. Simulations demonstrate that continuous battery cycling results in a cumulative capacity loss as a result of the hysteric non-reversible lithium intercalation. Furthermore, results suggest that ESM has the capability to infer the local out-of-plane lithium diffusivity and the out-of-plane contribution to Vegard tensor.

Chung, Ding-wen [Purdue University; Balke, Nina [ORNL; Kalinin, Sergei V [ORNL; Garcia, R. Edwin [Purdue University

2011-01-01T23:59:59.000Z

302

TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS  

DOE Green Energy (OSTI)

A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similar in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.

Tosten, M; Michael Morgan, M

2008-12-12T23:59:59.000Z

303

Surface Treatment of Carbon Fibers by Continuous Gaseous System  

SciTech Connect

The mechanical performance of carbon fiber-polymer composites strongly depends on interfacial adhesion, which is function of types of carbon fiber, surface chemistry, physical and chemical interactions, and mechanical interlocking. Untreated and unsized high strength carbon fibers were oxidized by continuous thermochemical and atmospheric plasma treatment. Surface properties were investigated before and after treatment (chemistry, topography), as well as their mechanical properties. X-ray photoelectron spectroscopy revealed a significant increase of the oxygen atomic content from 3% to around 20% and the analysis of the carbon peak showed that carboxylic acid functionalities and hydroxyl groups were generated. An observation of the fiber surface by scanning electron microscopy and atomic force microscopy did not show any dramatic change of the fiber morphology and surface topography. A Raman spectroscopy analysis exhibited that the weak boundary layers and debris remaining at the surface of untreated fibers were removed. No significant damage of the mechanical properties (tensile strength) was noticed. The influence of the changes of the surface properties on interfacial adhesion of carbon fiber-epoxy and -vinyl ester matrix was evaluated using 90 flexural and short beam shear tests with unidirectional coupons. A significant increase of the 90 flexural and short beam shear strength showed that the interfacial adhesion between carbon fibers and epoxy resins was improved. The observation of the fracture profile by scanning electron microcopy confirmed those results, as the rupture of the coupons after surface treatment was more cohesive.

Vautard, Frederic [ORNL; Paulauskas, Felix L [ORNL; Naskar, Amit K [ORNL; Warren, Charles David [ORNL; Meyer III, Harry M [ORNL; Ozcan, Soydan [ORNL

2011-01-01T23:59:59.000Z

304

Scanning tunneling optical resonance microscopy applied to indium arsenide quantum dot structures.  

E-Print Network (OSTI)

??The technique of Scanning Tunneling Optical Resonance Microscopy (STORM) has been investigated for use on nanostructures. It has been demonstrated as a viable technique to… (more)

Byrnes, Daniel P.

2008-01-01T23:59:59.000Z

305

Electron and Scanning Probe Microscopies | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron and Scanning Probe Microscopies Electron and Scanning Probe Microscopies Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Electron and Scanning Probe Microscopies Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports basic research in condensed matter physics and materials physics using electron scattering and microscopy and scanning probe techniques. The research includes experiments and theory to understand the atomic, electronic, and magnetic structures of materials.

306

Complete Urban Surface Temperatures  

Science Conference Proceedings (OSTI)

An observation program using ground and airborne thermal infrared radiometers is used to estimate the surface temperature of urban areas, taking into account the total active surface area. The authors call this the complete urban surface ...

J. A. Voogt; T. R. Oke

1997-09-01T23:59:59.000Z

307

Illustrating surfaces in volume  

Science Conference Proceedings (OSTI)

This paper presents a novel framework for illustrating surfaces in a volume. Surfaces are illustrated by drawing only feature lines, such as silhouettes, valleys, ridges, and surface hatching strokes, and are embedded in volume renderings. This framework ...

Xiaoru Yuan; Baoquan Chen

2004-05-01T23:59:59.000Z

308

Surface Properties of Biomaterials  

Science Conference Proceedings (OSTI)

Mar 29, 2011 ... Surface charge and surface energy measurements ... The Multiple Uses of Carbon Nanotubes in Regenerative Medicine · The Role of Bacterial ...

309

An early frog embryo,imaged at high-reso-lution using surface imaging microscopy,a  

E-Print Network (OSTI)

on electric cars, oil and gas exploration, nanomechanics for biological structures, and space exploration

310

Transmission electron microscopy characterization of electrically stressed AlGaN/GaN high electron mobility transistor devices  

Science Conference Proceedings (OSTI)

A set of AlGaN/GaN high electron mobility transistor devices has been investigated using step-stress testing, and representative samples of undegraded, source-side-degraded, and drain-side-degraded devices were examined using electron microscopy and microanalysis. An unstressed reference sample was also examined. All tested devices and their corresponding transmission electron microscopy samples originated from the same wafer and thus received nominally identical processing. Step-stressing was performed on each device and the corresponding current voltage characteristics were generated. Degradation in electrical performance, specifically greatly increased gate leakage current, was shown to be correlated with the presence of crystal defects near the gate edges. However, the drain-side-degraded device showed a surface pit on the source side, and another region of the same device showed no evidence of damage. Moreover, significant metal diffusion into the barrier layer from the gate contacts was also observed, as well as thin amorphous oxide layers below the gate metal contacts, even in the unstressed sample. Overall, these observations emphasize that gate-edge defects provide only a partial explanation for device failure.

Johnson, Michael [Arizona State University; Cullen, David A [ORNL; Liu, Lu [University of Florida; Kang, Tsung Sheng [University of Florida, Gainesville; Ren, F. [University of Florida; Chang, C. Y. [University of Florida; Pearton, S. J. [University of Florida; Jang, Soohwan [University of Florida, Gainesville; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Smith, David J [Arizona State University

2012-01-01T23:59:59.000Z

311

SRF Cavity Surface Topography Characterization Using Replica Techniques  

Science Conference Proceedings (OSTI)

To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

C. Xu, M.J. Kelley, C.E. Reece

2012-07-01T23:59:59.000Z

312

A stochastic kinematic model of class averaging in single-particle electron microscopy  

Science Conference Proceedings (OSTI)

Single-particle electron microscopy is an experimental technique that is used to determine the three-dimensional (3D) structure of biological macromolecules and the complexes that they form. In general, image processing techniques and reconstruction ... Keywords: Class average, convolution, image alignment, single-particle electron microscopy

Wooram Park; Charles R Midgett; Dean R Madden; Gregory S Chirikjian

2011-05-01T23:59:59.000Z

313

Serial Section Registration of Axonal Confocal Microscopy Datasets for Long-Range Neural Circuit Reconstruction  

E-Print Network (OSTI)

of fluorescence con- focal microscopy. We are targeting neurons in a 12 mm-deep re- gion of interest and work, immunohistochemically stained, and placed on its own microscope slide for fluorescence confocal imaging. view). The histological techniques used to image neurons of interest in fluorescence confocal microscopy impose digital

Paiva, António R. C.

314

Batch fabrication of cantilever array aperture probes for scanning near-field optical microscopy  

Science Conference Proceedings (OSTI)

We have developed a novel batch fabrication process for cantilever array aperture probes used in scanning near-field optical microscopy (SNOM). The array probes, consisting of 16 parallel cantilevers with each tip having an identical aperture, are proposed ... Keywords: Cantilever probes, Nanofabrication, Scanning near-field optical microscopy (SNOM)

Y. Zhang; K. E. Docherty; J. M. R. Weaver

2010-05-01T23:59:59.000Z

315

Phase Contrast Microscopy with Soft and Hard X-rays Using a Segmented  

E-Print Network (OSTI)

Phase Contrast Microscopy with Soft and Hard X-rays Using a Segmented Detector A Dissertation Contrast Microscopy with Soft and Hard X-rays Using a Segmented Detector by Benjamin Hornberger Doctor. In the hard x-ray range (multi-keV), the main focus lies on trace ele- ment mapping by x-ray fluorescence

316

Computer aided surface representation  

Science Conference Proceedings (OSTI)

The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

Barnhill, R.E.

1990-02-19T23:59:59.000Z

317

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the  

NLE Websites -- All DOE Office Websites (Extended Search)

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the Nanoscale Scientists studying osteoporosis and other skeletal diseases are interested in the 3D structure of bone and its responses to conditions such as weightlessness, radiation (of particular interest to astronauts) and vitamin D deficiency. The current gold standard, micro-computed tomography (micro-CT), provides 3D images of trabeculae, the small interior struts of bone tissue, and electron microscopy can provide nanometer resolution of thin tissue slices. Hard X-ray transmission microscopy has provided the first 3D view of bone structure within individual trabeculae on the nanoscale. figure 1 Figure 1 Micro-CT (left) shows trabecular structure inside of bone. Transmission X-ray microscopy (TXM; center and right) can reveal localized details of osteocyte lacunae and their processes.

318

Novel Protein Crystal Growth Electrochemical Cell For Applications in X-ray Diffraction and Atomic Force Microscopy  

Science Conference Proceedings (OSTI)

A new crystal growth cell based on transparent indium tin oxide (ITO) glass-electrodes for electrochemically assisted protein crystallization allows for reduced nucleation and crystal quality enhancement. The crystallization behavior of lysozyme and ferritin was monitored as a function of the electric current applied to the growth cell. The X-ray diffraction analysis showed that for specific currents, the crystal quality is substantially improved. No conformational changes were observed in the 3D crystallographic structures determined for crystals grown under different electric current regimes. Finally, the strong crystal adhesion on the surface of ITO electrode because of the electroadhesion allows a sufficiently strong fixing of the protein crystals, to undergo atomic force microscopy investigations in a fluid cell.

G Gil-Alvaradejo; R Ruiz-Arellano; C Owen; A Rodriguez-Romero; E Rudino-Pinera; M Antwi; V Stojanoff; A Moreno

2011-12-31T23:59:59.000Z

319

Microscopy and spectroscopy of lithium nickel oxide based particles used in high-power lithium-ion cells.  

DOE Green Energy (OSTI)

Structural and electronic investigations were conducted on lithium nickel oxide-based particles used in positive electrodes of 18650-type high-power Li-ion cells. K-edge X-ray absorption spectroscopy (XAS) revealed trivalent Ni and Co ions in the bulk LiNi{sub 0.8}Co{sub 0.2}O{sub 2} powder used to prepare the high power electrode laminates. Using oxygen K-edge XAS, high resolution electron microscopy, nanoprobe diffraction, and electron energy-loss spectroscopy, we identified a <5 nm thick modified layer on the surface of the oxide particles, which results from the loss of Ni and Li ordering in the layered R{bar 3}m structure. This structural change was accompanied by oxygen loss and a lowering of the Ni- and Co-oxidation states in the surface layer. Growth of this surface layer may contribute to the impedance rise observed during accelerated aging of these Li-ion cells.

Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.; Kropf, A. J.; Fischer, D.; McBreen, J.; Petrov, I.; Amine, K.; Chemical Engineering; Univ. of Illinois; BNL; NIST

2003-11-01T23:59:59.000Z

320

Growth mechanism and surface atomic structure of AgInSe{sub 2}  

Science Conference Proceedings (OSTI)

The growth of (112)A-oriented AgInSe{sub 2} on GaAs (111)A and its surface reconstruction were studied by scanning tunneling microscopy, atomic force microscopy, and other techniques. Films were grown by a sputtering and evaporation method. Topographic STM images reveal that the film grew by atomic incorporation into surface steps resulting from screw dislocations on the surface. The screw dislocation density was {approx}10{sup 10} cm{sup 2}. Atomically resolved images also show that the surface atomic arrangement appears to be similar to that of the bulk, with a spacing of 0.35-0.41 nm. There is no observable reconstruction, which is unexpected for a polar semiconductor surface.

Pena Martin, Pamela; Rockett, Angus A.; Lyding, Joseph [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering and the Beckman Institute, University of Illinois at Urbana-Champaign, 405 N. Matthews St., Urbana, Illinois 61801 (United States)

2012-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

In Situ Transmission Electron Microscopy Characterization of Nanomaterials  

E-Print Network (OSTI)

With the recent development of in situ transmission electron microscopy (TEM) characterization techniques, the real time study of property-structure correlations in nanomaterials becomes possible. This dissertation reports the direct observations of deformation behavior of Al2O3-ZrO2-MgAl2O4 (AZM) bulk ceramic nanocomposites, strengthening mechanism of twins in YBa2Cu3O7-x (YBCO) thin film, work hardening event in nanocrystalline nickel and deformation of 2wt% Al doped ZnO (AZO) thin film with nanorod structures using the in situ TEM nanoindentation tool. The combined in situ movies with quantitative loading-unloading curves reveal the deformation mechanism of the above nanomaterial systems. At room temperature, in situ dynamic deformation studies show that the AZM nanocomposites undergo the deformation mainly through the grain-boundary sliding and rotation of small grains, i.e., ZrO2 grains, and some of the large grains, i.e., MgAl2O4 grains. We observed both plastic and elastic deformations in different sample regions in these multi-phase ceramic nanocomposites at room temperature. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of YBCO films from the directions perpendicular and parallel to the twin interfaces. Hardness measured perpendicular to twin interfaces is ~50% and 40% higher than that measured parallel to twin interfaces, by ex situ and in situ, respectively. By using an in situ nanoindentation tool inside TEM, dynamic work hardening event in nanocrystalline nickel was directly observed. During stain hardening stage, abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin boundaries. Two major mechanisms were identified during interactions between L-C locks and twin boundaries. Quantitative nanoindentation experiments recorded during in situ experiments show an increase of yield strength from 1.64 to 2.29 GPa during multiple loading-unloading cycles. In situ TEM nanoindentation has been conducted to explore the size dependent deformation behavior of two different types (type I: ~ 0.51 of width/length ratio and type II: ~ 088 ratio) of AZO nanorods. During the indentation on type I nanord structure, annihilation of defects has been observed which is caused by limitation of the defect activities by relatively small size of the width. On the other hand, type II nanorod shows dislocation activities which enhanced the grain rotation under the external force applied on more isotropic direction through type II nanorod.

Lee, Joon Hwan 1977-

2012-12-01T23:59:59.000Z

322

A survey of fractured SrTiO{sub 3} surfaces : from the micro-meter to nano-meter scale.  

Science Conference Proceedings (OSTI)

Cross-sectional scanning tunneling microscopy was utilized to study fractured perovskite oxide surfaces. It was found that for the non-cleavable perovskite oxide, SrTiO{sub 3}, atomically flat terraces could be routinely created with a controlled fracturing procedure. Optical, scanning electron and scanning tunneling microscopies, and a profilometer were used to obtain information from submillimeter to submicrometer scales of the fractured surface topography.

Chien, T. Y.; Guisinger, N. P.; Freeland, J. W. (Center for Nanoscale Materials); ( XSD)

2010-01-01T23:59:59.000Z

323

Modification of fracture surfaces by dissolution. Part II  

DOE Green Energy (OSTI)

This study focuses upon how and to what extent dissolution related fluid/rock interactions modify the morphology and roughness of surfaces on Sioux Quartzite. Dissolution experiments consisted of reacting small discs of Sioux Quartzite in sealed gold capsules containing either distilled water or 0.05 N to 4.0 N aqueous solutions of Na/sub 2/CO/sub 3/. Samples were reacted at 200/sup 0/C and 20 to 30 MPa fluid pressures for 2 to 5 days. Two markedly different starting surface textures were used: polished, optically flat surfaces and tensile fracture surfaces. An exploratory experiment also was performed to assess the occurrence of a pressure solution phenomenon on a polished quartzite surface at contact regions of indenting quartz sand grains. Scanning electron microscopy studies indicate progressive increases in the amount of dissolution produced significant changes of surface roughness for both initial surface textures. Surface roughness increased measurably, with the initially polished surfaces exhibiting the more dramatic changes. The pressure solution experiments did not produce definite results, but several surface features are suggestive of dissolution enhancement at load carrying contacts. 9 refs., 10 figs.

Johnson, B.

1983-01-01T23:59:59.000Z

324

Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems  

SciTech Connect

The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

2011-01-01T23:59:59.000Z

325

NanoFab Equipment - Lithography  

Science Conference Proceedings (OSTI)

... Image sensors, photovoltaic devices and bio-chips. Laser Pattern Generator: Heidelberg DWL 2000. The system uses a ...

2013-09-30T23:59:59.000Z

326

Lithography for Advanced Supercomputing Devices  

Science Conference Proceedings (OSTI)

... REFERENCE ExaScale computing study: technology challenges in achieving exascale systems (DARPA/IPTO, 2008). KEY NANOFAB PROCESS ...

2013-01-19T23:59:59.000Z

327

Extreme-UV lithography system  

DOE Patents (OSTI)

A photolithography system that employs a condenser that includes a series of aspheric mirrors on one side of a small, incoherent source of radiation producing a series of beams is provided. Each aspheric mirror images the quasi point source into a curved line segment. A relatively small arc of the ring image is needed by the camera; all of the beams are so manipulated that they all fall onto this same arc needed by the camera. Also, all of the beams are aimed through the camera's virtual entrance pupil. The condenser includes a correcting mirror for reshaping a beam segment which improves the overall system efficiency. The condenser efficiently fills the larger radius ringfield created by today's advanced camera designs. The system further includes (i) means for adjusting the intensity profile at the camera's entrance pupil or (ii) means for partially shielding the illumination imaging onto the mask or wafer. The adjusting means can, for example, change at least one of: (i) partial coherence of the photolithography system, (ii) mask image illumination uniformity on the wafer or (iii) centroid position of the illumination flux in the entrance pupil. A particularly preferred adjusting means includes at least one vignetting mask that covers at least a portion of the at least two substantially equal radial segments of the parent aspheric mirror.

Replogle, William C. (Livermore, CA); Sweatt, William C. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

328

Rechargeable Batteries, Photochromics, Electrochemical Lithography...  

NLE Websites -- All DOE Office Websites (Extended Search)

employed to explore in detail fundamental interfacial processes. Using current-sensing atomic forcemicroscopy (CSAFM), small variations in the electronic conductance of battery...

329

EUV Lithography: New Metrology Challenges  

Science Conference Proceedings (OSTI)

... Photo of SEMATECH/Berkeley MET Optics Courtesy: John Taylor, LLNL 220 mm ... Wavefront Reference Source Data Courtesy of John Taylor, LLNL ...

330

Adsorbate structures and catalytic reactions studied in the torrpressure range by scanning tunneling microscopy  

DOE Green Energy (OSTI)

High-pressure, high-temperature scanning tunneling microscopy (HPHTSTM) was used to study adsorbate structures and reactions on single crystal model catalytic systems. Studies of the automobile catalytic converter reaction [CO + NO {yields} 1/2 N{sub 2} + CO{sub 2}] on Rh(111) and ethylene hydrogenation [C{sub 2}H{sub 4} + H{sub 2} {yields} C{sub 2}H{sub 6}] on Rh(111) and Pt(111) elucidated information on adsorbate structures in equilibrium with high-pressure gas and the relationship of atomic and molecular mobility to chemistry. STM studies of NO on Rh(111) showed that adsorbed NO forms two high-pressure structures, with the phase transformation from the (2 x 2) structure to the (3 x 3) structure occurring at 0.03 Torr. The (3 x 3) structure only exists when the surface is in equilibrium with the gas phase. The heat of adsorption of this new structure was determined by measuring the pressures and temperatures at which both (2 x 2) and (3 x 3) structures coexisted. The energy barrier between the two structures was calculated by observing the time necessary for the phase transformation to take place. High-pressure STM studies of the coadsorption of CO and NO on Rh(111) showed that CO and NO form a mixed (2 x 2) structure at low NO partial pressures. By comparing surface and gas compositions, the adsorption energy difference between topsite CO and NO was calculated. Occasionally there is exchange between top-site CO and NO, for which we have described a mechanism for. At high NO partial pressures, NO segregates into islands, where the phase transformation to the (3 x 3) structure occurs. The reaction of CO and NO on Rh(111) was monitored by mass spectrometry (MS) and HPHTSTM. From MS studies the apparent activation energy of the catalytic converter reaction was calculated and compared to theory. STM showed that under high-temperature reaction conditions, surface metal atoms become mobile. Ethylene hydrogenation and its poisoning by CO was also studied by STM on Rh(111) and Pt(111). Poisoning was found to coincide with decreased adsorbate mobility. Under ethylene hydrogenation conditions, no order is detected by STM at 300 K, as hydrogen and ethylidyne, the surface species formed by gas-phase ethylene, are too mobile. When CO is introduced, the reaction stops, and ordered structures appear on the surface. For Rh(111), the structure is predominantly a mixed c(4 x 2), though there are some areas of (2 x 2). For Pt(111), the structure is hexagonal and resembles the Moire pattern seen when Pt(111) is exposed to pure CO. From these studies it is concluded that CO poisons by stopping adsorbate mobility. This lack of adsorbate mobility prevents the adsorption of ethylene from the gas phase by hindering the creation of adsorption sites.

Hwang, Kevin Shao-Lin

2003-05-23T23:59:59.000Z

331

Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning  

NLE Websites -- All DOE Office Websites (Extended Search)

Low- Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM, is the preeminent system dedicated to surface chemistry and physics at low temperatures down to 5 K. Operating at low temperatures provides high mechanical stability, superior vacuum conditions, and negligible drift for long-term experiments. With thermal diffusion being entirely suppressed, stable imaging becomes possible even for weakly bound species. The system is primarily used for probing single-site chemical reactivity, while the combination with a hyperthermal molecular beam allows the study of important chemical processes at energies corresponding to the operational temperatures well beyond typical UHV studies. The LT SPM provides

332

Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report  

SciTech Connect

A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

1994-10-01T23:59:59.000Z

333

Surface Chemical Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Chemical Dynamics Surface Chemical Dynamics The goal of the Surface Chemical Dynamics Program is to elucidate the underlying physical processes that determine the products (selectivity) and yield (efficiency) of chemical transformations relevant to energy-related chemistry on catalytic and nanostructured surfaces. Achieving this end requires understanding the evolution of the reactant-molecule/surface complex as molecules adsorb, bonds dissociate, surface species diffuse, new bonds form and products desorb. The pathways and time scales of these processes are ultimately determined by a multidimensional potential energy surface that is a function of the geometric and electronic structures of the surface and the reactant, product, intermediate and transition-state molecular and atomic species.

334

Biomaterial Surfaces II  

Science Conference Proceedings (OSTI)

Biofilm produced by microbes is a structure formed on material surface containing water ... In this work, both dense and porous silica and niobium oxide coatings were ... environments and their surface and interfacial breakdown was examined.

335

Nanoscale Surface Modifications I  

Science Conference Proceedings (OSTI)

... with a microwave plasma chemical vapor deposition technique utilizing methane/hydrogen/nitrogen chemistry. The surface modifications are characterized by ...

336

Surface Processing & Mechanics Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Directory Staff Ceramic Machining Composites Coatings Powder Metallurgy Thermodynamics Tribology Related Links HTML Comments Welcome to the Surface Processing &...

337

Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting  

E-Print Network (OSTI)

Stokes Raman scattering (CARS) microscopy," Proc Natl Acadenables separation of CARS microscopy data from multiphoton-overlap of the F and E-CARS signals. Due to traveling an

2008-01-01T23:59:59.000Z

338

Development of high-speed two-photon microscopy for biological and medical applications  

E-Print Network (OSTI)

Two-photon microscopy (TPM) is one of the most powerful microscopic technologies for in-vivo 3D tissue imaging up to a few hundred micrometers. It has been finding important applications in neuronal imaging, tumor physiology ...

Kim, Ki Hean

2005-01-01T23:59:59.000Z

339

High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe  

E-Print Network (OSTI)

Optical coherence microscopy (OCM) is a promising technique for high resolution cellular imaging in human tissues. An OCM system for high-speed en face cellular resolution imaging was developed at 1060 nm wavelength at ...

Aguirre, Aaron Dominic

340

Schmahl, Kirz Receive Compton Award for Contributions to X-ray Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Schmahl, Kirz Received Compton Award for Contributions to X-ray Microscopy Schmahl, Kirz Received Compton Award for Contributions to X-ray Microscopy Image of Compton Award The Advanced Photon Source (APS) and APS Users Organization (APSUO) are very pleased to announce that the 2005 Arthur H. Compton Award was given to Günter Schmahl and Janos Kirz for pioneering and developing the field of x-ray microscopy using Fresnel zone plates. Because of their leadership over the last 30 years, x-ray microscopy has evolved into a powerful method for the study of nanoscale structures and phenomena in many areas of science. Their achievements have opened up productive research avenues in biology, polymers, electronic nanostructures, magnetic materials, meteoritics, and environmental sciences. " Günter Schmahl and Janos Kirz have created a

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Analytical Electron Microscopy examination of uranium contamination at the DOE Fernald operation site  

SciTech Connect

Analytical Electron Microscopy (AEM) has been used to identify uranium-bearing phases present in contaminated soils from the DOE Fernald operation site. A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and AEM was used in isolating and characterizing uranium-rich regions of the contaminated soils. Soil samples were prepared for transmission electron microscopy (TEM) by ultramicrotomy using an embedding resin previously employed for aquatic colloids and biological samples. This preparation method allowed direct comparison between SEM and TEM images. At the macroscopic level much of the uranium appears to be associated with clays in the soils; however, electron beam analysis revealed that the uranium is present as discrete phases, including iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Only low levels of uranium were actually within the clay minerals. The distribution of uranium phases was inhomogeneous at the submicron level.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1993-02-01T23:59:59.000Z

342

Development of multiplexing strategies for electron and super-resolution optical microscopy/  

E-Print Network (OSTI)

The aim of this work is to increase the multiplexing capabilities of electron and super resolution optical microscopy. This will be done through the development of molecular-scale barcodes that can be resolved in one of ...

Tillberg, Paul W

2013-01-01T23:59:59.000Z

343

Biological image restoration in optical-sectioning microscopy using prototype image constraints  

Science Conference Proceedings (OSTI)

The deconvolution of images obtained by means of optical-sectioning widefield fluorescence microscopy, is a relevant problem in biological applications. Several methods have been proposed in the last few years, with different degrees of success, to improve ...

M. R. P. Homem; N. D. A. Mascarenhas; L. F. Costa; C. Preza

2002-12-01T23:59:59.000Z

344

Method for detecting cancer in a single cell using mitochondrial correlation microscopy  

SciTech Connect

A method for distinguishing a normal cell from an abnormal cell, such as, for example a cancer cell or diseased cell, of the same tissue type using mitochondrial correlation microscopy.

Gourley, Paul L. (Albuquerque, NM)

2012-03-06T23:59:59.000Z

345

Super-resolution wide-field optical microscopy by use of Evanescent standing waves  

E-Print Network (OSTI)

The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Optical fluorescence microscopy is an essential tool for investigations in many disciplines ...

Chung, Euiheon

2007-01-01T23:59:59.000Z

346

Surface Temperature of IGUs  

NLE Websites -- All DOE Office Websites (Extended Search)

117 117 Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements Brent T. Griffith, Daniel Türler, and Dariush Arasteh Building Technologies Program Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 USA Fax: 510-486-6046, email: D_Arasteh@lbl.gov Abstract Data are presented for the distribution of surface temperatures on the warm-side surface of seven different insulated glazing units. Surface temperatures are measured using infrared thermography and an external referencing technique. This technique allows detailed mapping of surface temperatures that is non-intrusive. The glazings were placed between warm and cold environmental chambers that were operated at conditions

347

Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis  

Science Conference Proceedings (OSTI)

State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 {mu}m in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program 'SARINA,' which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

Wirtz, Tom; Fleming, Yves; Gerard, Mathieu [Department 'Science and Analysis of Materials' (SAM), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Gysin, Urs; Glatzel, Thilo; Meyer, Ernst [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Wegmann, Urs [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Maier, Urs [Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Odriozola, Aitziber Herrero; Uehli, Daniel [SPECS Zurich GmbH, Technoparkstr. 1, CH-8005 Zuerich (Switzerland)

2012-06-15T23:59:59.000Z

348

Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions  

Science Conference Proceedings (OSTI)

The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

2008-09-01T23:59:59.000Z

349

Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses  

SciTech Connect

Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m{sup {minus}1} for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction.

Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

1993-12-31T23:59:59.000Z

350

Nano structuring of GaAs(100) surface using low energy ion irradiation  

SciTech Connect

Nanostructuring of semi insulating GaAs (100) has been observed after irradiation of 50 keV Ar{sup +} ion beam in a wide angular range of 0 deg. to 60 deg. with respect to surface normal. Atomic Force Microscopy (AFM) analysis shows the formation of nano dots at smaller angle of irradiation. At higher angle of irradiation, self organized ripples were developed on the surface. The rms roughness estimated from the AFM analysis shows exponential growth with angle of irradiation. In the high frequency regime, PSD analysis suggests that surface morphology of the irradiated samples is governed by the surface diffusion and mass transport dominated processes.

Kumar, Tanuj; Khan, S. A.; Verma, S.; Kanjilal, D. [Inter-university Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067 (India)

2012-06-05T23:59:59.000Z

351

Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment  

E-Print Network (OSTI)

Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment N. Srivastavaa , Guowei-face, graphene, interface structure, low energy electron microscopy, disilane Abstract. The formation of epitaxial graphene on SiC( 1000 ) in a disilane environment is studied. The higher graphitization

Feenstra, Randall

352

Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface  

Science Conference Proceedings (OSTI)

This work reports on the formation of Au nanoclusters and on their evolution in nanoring structures on indium-tin-oxide surface by sputtering deposition and annealing processes. The quantification of the characteristics of the nanorings (surface density, depth, height, and width) is performed by atomic force microscopy. The possibility to control these characteristics by tuning annealing temperature and time is demonstrated establishing relations which allow to set the process parameters to obtain nanostructures of desired morphological properties for various technological applications.

Ruffino, F.; Simone, F.; Grimaldi, M. G. [Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS CNR-IMM, via S. Sofia 64, 95123 Catania (Italy); Crupi, I. [MATIS CNR-IMM, via S. Sofia 64, 95123 Catania (Italy)

2011-01-10T23:59:59.000Z

353

ARM - Measurement - Surface condition  

NLE Websites -- All DOE Office Websites (Extended Search)

condition condition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface condition State of the surface, including vegetation, land use, surface type, roughness, and such; often provided in model output. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments NAV : Navigational Location and Attitude SURFLOG : SGP Surface Conditions Observations by Site Technicians S-TABLE : Stabilized Platform MET : Surface Meteorological Instrumentation

354

Surface modification to waveguides  

DOE Patents (OSTI)

A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

Timberlake, John R. (Allentown, NJ); Ruzic, David N. (Kendall Park, NJ); Moore, Richard L. (Princeton, NJ); Cohen, Samuel A. (Pennington, NJ); Manos, Dennis M. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

355

Surface modification to waveguides  

DOE Patents (OSTI)

A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

1982-06-16T23:59:59.000Z

356

Beneath the Surface.  

E-Print Network (OSTI)

??Beneath the Surface is a collection of seven individual literary nonfiction essays. Five of the essays are personal essays, and three come from the author's… (more)

Dienes, Susanna

2007-01-01T23:59:59.000Z

357

Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides  

SciTech Connect

Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

2011-04-20T23:59:59.000Z

358

Precision surface machining  

DOE Patents (OSTI)

Precision finishing apparatus utilizing line contact polishing to produce optical quality parts. A rotatable cylinder is horizontally disposed above a workpiece which is mounted on a rotatable, and horizontally and vertically adjustable chuck. Predetermined surfaces can be cut into the surface of the cylinder to produce figures of revolution, such as aspheres,, when the workpiece is being rotated.

Lazazzera, V.J.; Schmell, R.A.

1991-03-06T23:59:59.000Z

359

Tritium Surface Contamination  

SciTech Connect

Glovebox wipe surveys were conducted to correlate surface tritium contamination with atmospheric tritium levels. Surface contamination was examined as a function of tritium concentration and of tritium form, HT/T2 and HTO. The relationship between atmospheric HTO concentration and cleanup time was also investigated.

Sienkiewicz, Charles J.

1985-04-01T23:59:59.000Z

360

Solar absorption surface panel  

DOE Patents (OSTI)

A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

Santala, Teuvo J. (Attleboro, MA)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Morphable Surface Models  

Science Conference Proceedings (OSTI)

We describe a novel automatic technique for finding a dense correspondence between a pair of n-dimensional surfaces with arbitrary topologies. This method employs a different formulation than previous correspondence algorithms (such as optical ... Keywords: computer vision, correspondence, learning, morphable models, surface matching

Christian R. Shelton

2000-06-01T23:59:59.000Z

362

AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES  

Science Conference Proceedings (OSTI)

Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

2008-06-10T23:59:59.000Z

363

Full-field Transmission X-ray Microscopy | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

BL6-2c / Transmission X-ray Microscopy BL6-2c / Transmission X-ray Microscopy Home Researchers Publications Science Highlights Department of Energy Office of Science Search form Search Search TXM Search Full-field Transmission X-ray Microscopy Capabilities Full-field TXM is an excellent method to examine nanoscale heterogeneties in many materials, including complex hierarchical systems such as catalysts, fuel cells and battery electrodes, and biological and environmental samples, at 30 nm resolution.The transmission X-ray microscope (TXM) on beam line 6-2c at SSRL is capable of 2D imaging and tomography, as well as spectroscopic imaging for 2D and 3D elemental mapping and chemical mapping over tens of microns (up to mm in 2D). The field of view (FOV) is 30 microns, but mosaic images can be collected to

364

Influence of Polarization Setting on Gold Nanorod Signal at Nonplasmonic Wavelengths Under Differential Interference Contrast Microscopy  

SciTech Connect

Researchers rely on a variety of microscopic techniques for observing and tracking anisotropic nanoparticles in real time experiments. This technical note focuses on the optical behavior exhibited by gold nanorods at nonplasmonic wavelengths under differential interference contrast microscopy (DIC). Intense diffraction patterns appear at nonplasmonic wavelengths, and the behavior of these patterns can be altered by adjusting the surrounding medium or the polarizer setting. Such patterns are absent when linear and crossed polarizations are utilized. Making polarization adjustments is important in DIC microscopy, because it affects bias retardation and image contrast. The nonplasmonic diffraction bands that were observed could potentially be exploited for rotational tracking, but more importantly, researchers should exhibit care in selecting a nanorod sample and the polarization setting when working with DIC microscopy.

Stender, Anthony S.; Augspurgert, Ashley E.; Wang, Gufeng: Fang, Ning

2012-05-31T23:59:59.000Z

365

Visualizing Macromolecular Complexes with In Situ Liquid Scanning Transmission Electron Microscopy  

SciTech Connect

A central focus of biological research is understanding the structure/function relationship of macromolecular protein complexes. Yet conventional transmission electron microscopy techniques are limited to static observations. Here we present the first direct images of purified macromolecular protein complexes using in situ liquid scanning transmission electron microscopy. Our results establish the capability of this technique for visualizing the interface between biology and nanotechnology with high fidelity while also probing the interactions of biomolecules within solution. This method represents an important advancement towards allowing future high-resolution observations of biological processes and conformational dynamics in real-time.

Evans, James E.; Jungjohann, K. L.; Wong, Peony C. K.; Chiu, Po-Lin; Dutrow, Gavin H.; Arslan, Ilke; Browning, Nigel D.

2012-11-01T23:59:59.000Z

366

Single-spin measurements for quantum computation using magnetic resonance force microscopy  

SciTech Connect

The quantum theory of a singlespin measurements using a magnetic resonance force microscopy is presented. We use an oscillating cantilever-driven adiabatic reversals technique. The frequency shift of the cantilever vibrations is estimated. We show that the frequency shift causes the formation of the Schroedinger cat state for the cantilever. The interaction between the cantilever and the environment quickly destroys the coherence between the two cantilever trajectories. It is shown that using partial adiabatic reversals one can obtain a significant increase in the frequency shift. We discuss the possibility of sub-magneton spin density detection in molecules using magnetic resonance force microscopy.

Berman, G. P. (Gennady P.); Borgonovi, F.; Rinkevicius, Z.; Tsifrinovich, V. I. (Vladimir I.)

2004-01-01T23:59:59.000Z

367

Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy  

Science Conference Proceedings (OSTI)

Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

Mccall, Monnikue M; Fischer, Peter

2008-05-01T23:59:59.000Z

368

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Title Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Publication Type Journal Article Year of Publication 2011 Authors Xun, Shidi, Xiangyun Song, Michael E. Grass, Daniel K. Roseguo, Z. Liu, Vincent S. Battaglia, and Gao Li Journal Electrochemical Solid-State Letters Volume 14 Start Page A61 Issue 5 Pagination A61-A63 Date Published 02/2001 Keywords Electrochemistry, elemental semiconductors, etching, lithium, nanoparticles, secondary cells, silicon, thermal analysis, transmission electron microscopy, X-ray photoelectron spectra Abstract This study characterizes the native oxide layer of Si nanoparticles and evaluates its effect on their performance for Li-ion batteries. x-ray photoelectron spectroscopy and transmission electron microscopy were applied to identify the chemical state and morphology of the native oxide layer. Elemental and thermogravimetric analysis were used to estimate the oxide content for the Si samples. Hydrofluoric acid was used to reduce the oxide layer. A correlation between etching time and oxide content was established. The initial electrochemical performances indicate that the reversible capacity of etched Si nanoparticles was enhanced significantly compared with that of the as-received Si sample.

369

Adhesion of Spores of Bacillus thuringiensis on a Planar Surface  

SciTech Connect

Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

370

ARM - Measurement - Surface albedo  

NLE Websites -- All DOE Office Websites (Extended Search)

albedo albedo ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface albedo The fraction of incoming solar radiation at a surface (i.e. land, cloud top) that is effectively reflected by that surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer External Instruments ETA : Eta Model Runs ECMWFDIAG : European Centre for Medium Range Weather Forecasts Diagnostic Analyses ECMWF : European Centre for Medium Range Weather Forecasts Model

371

Entropy and surfaceness  

E-Print Network (OSTI)

The layer of the Earth's atmosphere which contains clouds and weather systems is a thin thermoregulatory surface. It maintains an exact energy budget between the Earth and the Sun. Recent work in theoretical physics is ...

Casper, James Kyle

1997-01-01T23:59:59.000Z

372

Bespoke Materials Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Bespoke Materials Surfaces Bespoke Materials Surfaces Background The Department of Energy (DOE) has established performance and efficiency goals for power generation systems which will improve the ability of the U.S. energy sector to produce electricity efficiently with less impact to the environment. Power systems showing the most promise for reaching these goals require corrosion resistance alloys able to perform at very high pressures and temperatures. Increasing both the

373

Surface studies of hydrogen etched 3C-SiC(001) on Si(001)  

Science Conference Proceedings (OSTI)

The morphology and structure of 3C-SiC(001) surfaces, grown on Si(001) and prepared via hydrogen etching, are studied using atomic force microscopy (AFM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). On the etched samples, flat surfaces with large terraces and atomic steps are revealed by AFM. In ultrahigh vacuum a sharp LEED pattern with an approximate (5x1) periodicity is observed. AES studies reveal a ''bulklike'' composition up to the near surface region and indicate that an overlayer consisting of a weakly bound silicon oxide monolayer is present.

Coletti, C.; Frewin, C. L.; Saddow, S. E.; Hetzel, M.; Virojanadara, C.; Starke, U. [Electrical Engineering Department, University of South Florida, Tampa, Florida 33620 (United States); Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany)

2007-08-06T23:59:59.000Z

374

Aspects of surface generation in orthogonal ultraprecision machining  

SciTech Connect

The depth of the plastically deformed layer at the workpiece surface which resulted in the orthogonal ultraprecision machining of Cu over the range of uncut chip thicknesses of 0.01-10 {mu}m was investigated. Two tools with the same nominal geometry but with differing edge geometries were used to machine both Te-Cu and fine grain Cu. Tool edge geometries were characterized by atomic force microscopy, taking into account the AFM cantilever tip radius. Magnitudes of the measured depths appear to be consistent with values reported in the literature and those arrived at by simple analyses.

Lucca, D.A.; Seo, Y.W. [Oklahoma State Univ., Stillwater, OK (United States). School of Mechanical and Aerospace Engineering; Rhorer, R.L. [Los Alamos National Lab., NM (United States)

1994-10-01T23:59:59.000Z

375

Visualizing fusion of pseudotyped HIV-1 particles in real time by live cell microscopy  

E-Print Network (OSTI)

. Results We generated human immunodeficiency virus-1 (HIV-1) particles pseudotyped with the envelope (Env) protein of ecotropic murine leukemia virus eMLV to study retrovirus entry at the plasma membrane using live-cell microscopy. This Env protein mediates...

Koch, Peter; Lampe, Marko; Godinez, William J; Muller, Barbara; Rohr, Karl; Kraeusslich, Hans-Georg; Lehmann, Maik J

2009-09-18T23:59:59.000Z

376

Asbestos, polarized light microscopy, PLM, The Clean Air Act mandates a specific analytical  

E-Print Network (OSTI)

the sample analyzed separately, and the layer data combined to yield an estimate of the asbestos con tent75 KEY WORDS Asbestos, polarized light microscopy, PLM, NESHAP ABSTRACT The Clean Air Act the asbestos National Emissions Standard for Hazardous Air Pollutants (NESHAP). The method re quires

Ahmad, Sajjad

377

Microscopic Analysis of Agriculture Products, 4th EditionChapter 1 Methods of Agricultural Microscopy  

Science Conference Proceedings (OSTI)

Microscopic Analysis of Agriculture Products, 4th Edition Chapter 1 Methods of Agricultural Microscopy Methods and Analyses eChapters Methods - Analyses Books 97C1C49A76ADD9BFEBDE5FF95381F911 Press Downloadable pdf...

378

Microscopic Analysis of Agriculture Products, 4th EditionChapter 6 Fertilizer Microscopy  

Science Conference Proceedings (OSTI)

Microscopic Analysis of Agriculture Products, 4th Edition Chapter 6 Fertilizer Microscopy Methods and Analyses eChapters Methods - Analyses Books AOCS 8C45832E2AA310DD11A6FEA4BDB93C6B Press Downloadable pdf...

379

Nano-mineralogy studies by advanced electron microscopy Chi Ma and George R. Rossman  

E-Print Network (OSTI)

Nano-mineralogy studies by advanced electron microscopy Chi Ma and George R. Rossman Division and planetary materials easier and faster down to nano-scales. Small but new minerals with important geological significance are being discovered. Nano-features are being discovered in many common minerals and gems, which

Ma, Chi

380

Fiber-Optic Stethoscope: A Cardiac Monitoring and Gating System for Magnetic Resonance Microscopy  

E-Print Network (OSTI)

Fiber-Optic Stethoscope: A Cardiac Monitoring and Gating System for Magnetic Resonance Microscopy monitoring and gating purposes. The fiber-optic stethoscope system offers a novel approach to measuring) small enough for use on rats and mice. METHODS Fiber-Optic Stethoscope System Design As shown in the MR

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High-Speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy  

E-Print Network (OSTI)

that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical allowed the transcriptional regulation of fat cell differentiation to be elucidated.4,5 In recent years

Cheng, Ji-Xin

382

Investigating physical and chemical changes in high-k gate stacks using nanoanalytical electron microscopy  

Science Conference Proceedings (OSTI)

The thermal budget involved in processing high-k gate stacks can cause undesirable physical and chemical changes which limit device performance. The transmission electron microscope and associated analytical techniques provide a way of investigating ... Keywords: Electron energy loss near edge structure, Electron energy loss spectroscopy, High-k dielectrics, Nanoanalytical electron microscopy

A. J. Craven; M. MacKenzie; D. W. McComb; F. T. Docherty

2005-06-01T23:59:59.000Z

383

Development of New Methods in Scanning Probe Microscopy for Lignocellulosic Biomass Characterization  

E-Print Network (OSTI)

Methods Development of New Methods in Scanning Probe Microscopy for Lignocellulosic Biomass implicated in recalcitrance is important for utili- zation of lignocellulosic biomass in the world new technologies to explore the ultrastructure of biomass at nanoscale.4 Mode-synthesizing atomic

384

Electrical passivation and chemical functionalization of SiC surfaces by chlorine termination  

SciTech Connect

We have developed a straightforward plasma-based method which yields chlorine-terminated n-type 6H-SiC surfaces. Atomic force microscopy shows that the surface roughness is not affected by the plasma processing. Additionally, x-ray photoelectron spectroscopy reveals a significant reduction in oxygen, and a corresponding rise of chlorine core level intensities, following halogen termination. Contact potential difference and surface photovoltage measurements show formation of negative surface dipoles and approximately flat band surface potentials after chlorine termination of (0001) n-type 6H-SiC (built-in voltage V{sub bi}<20 meV). Starting from halogenated surfaces, we demonstrate both ultraviolet light-induced and thermally-induced functionalization with alkene-derived self-assembled organic monolayers.

Schoell, S. J.; Howgate, J.; Hoeb, M.; Auernhammer, M.; Garrido, J. A.; Stutzmann, M.; Brandt, M. S.; Sharp, I. D. [Walter Schottky Institut and Physik Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching (Germany)

2011-05-02T23:59:59.000Z

385

Effect of Surface Sublayer on Surface Skin Temperature and Fluxes  

Science Conference Proceedings (OSTI)

The surface sublayer is the layer of air adjacent to the surface where the transfer of momentum and heat by molecular motion becomes important. Equations are derived to incorporate this surface sublayer (or the variable ratio of the roughness ...

Xubin Zeng; Robert E. Dickinson

1998-04-01T23:59:59.000Z

386

Nanometer-scale striped surface terminations on fractured SrTiO{sub 3} surfaces.  

SciTech Connect

Using cross-sectional scanning tunneling microscopy on in situ fractured SrTiO{sub 3}, one of the most commonly used substrates for the growth of complex oxide thin films and superlattices, atomically smooth terraces have been observed on (001) surfaces. Furthermore, it was discovered that fracturing this material at room temperature results in the formation of stripe patterned domains having characteristic widths ({approx}10 to {approx}20 nm) of alternating surface terminations that extend over a long range. Spatial characterization utilizing spectroscopy techniques revealed a strong contrast in the electronic structure of the two domains. Combining these results with topographic data, we are able to assign both TiO{sub 2} and SrO terminations to their respective domains. The results of this experiment reveal that fracturing this material leads to reproducibly flat surfaces that can be characterized at the atomic-scale and suggest that this technique can be utilized for the study of technologically relevant complex oxide interfaces.

Guisinger, N. P.; Santos, T. S.; Guest, J. R.; Chien, T.-Y; Bhattacharya, A.; Freeland, J. W.; Bode, M.

2009-12-01T23:59:59.000Z

387

BSA 08-21: Calibration Test Surface for Surface Profilometers  

Describes a test tool that can be used to calibrate surface profilometers. Surface profilometers are basic metrology tools used to characterize high ...

388

Effects of Surface Roughness and Surface Energy on Ice Adhesion ...  

Science Conference Proceedings (OSTI)

Ice adheres to steel surfaces when the environment temperature is low. In many cases, ice formation on surfaces is unwanted; therefore, anti-icing techniques ...

389

Structural, chemical, and electronic state on La[subscript 0.7]Sr[subscript 0.3]MnO[subscript 3] dense thin-film surfaces at high temperature - Surface segregation  

E-Print Network (OSTI)

The evolution of the surface topographic and electronic structure and chemical state of the La0.7Sr0.3MnO3 (LSMO) thin films were probed using Scanning Tunneling microscopy and X-ray photoelectron spectroscopy to identify ...

Jalili, Helia

390

Dual surface interferometer  

DOE Patents (OSTI)

A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

Pardue, R.M.; Williams, R.R.

1980-09-12T23:59:59.000Z

391

Dual surface interferometer  

DOE Patents (OSTI)

A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

Pardue, Robert M. (Knoxville, TN); Williams, Richard R. (Oak Ridge, TN)

1982-01-01T23:59:59.000Z

392

Surface controlled blade stabilizer  

DOE Patents (OSTI)

Drill string stabilizer apparatus, controllable to expand and retract entirely from the surface by control of drill string pressure, wherein increase of drill string pressure from the surface closes a valve to create a piston means which is moved down by drill string pressure to expand the stabilizer blades, said valve being opened and the piston moving upward upon reduction of drill string pressure to retract the stabilizer blades. Upward and downward movements of the piston and an actuator sleeve therebelow are controlled by a barrel cam acting between the housing and the actuator sleeve.

Russell, Larry R. (6025 Edgemor, Suite C, Houston, TX 77081)

1983-01-01T23:59:59.000Z

393

CDIAC Surface Wind Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Wind CDIAC Climate Holdings Containing Surface Wind Data Global Data Sets Data Set Name Investigators Data TypeFormat Period of Record Extended Edited Synoptic Cloud...

394

Surface Engineering and Biological Interactions  

Science Conference Proceedings (OSTI)

Mar 1, 2011... the translational applications of hPSCs in regenerative medicine. ... Surface Free Energy Modification of Titania for Bioactive Surfaces: Kyle ...

395

Surface Properties of Biomaterials III  

Science Conference Proceedings (OSTI)

Calcium Phosphate Composite Coating for Surface Mediated Non-Viral Gene ... Dependency of Cell Attachment and Proliferation on the Surface Roughness of ...

396

Characterizing electrocatalytic surfaces: Electrochemical and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing electrocatalytic surfaces: Electrochemical and NMR studies of methanol and carbon monoxide on PtC Title Characterizing electrocatalytic surfaces: Electrochemical...

397

Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle  

E-Print Network (OSTI)

Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light) and atomic force microscopy (AFM) experiments have been carried out on aerogels at dierent steps of densi

Demouchy, Sylvie

398

Blocking response surface designs  

Science Conference Proceedings (OSTI)

The design of experiments involving more than one blocking factor and quantitative explanatory variables is discussed, the focus being on two key aspects of blocked response surface designs: optimality and orthogonality. First, conditions for orthogonally ... Keywords: D-optimality, Exchange algorithm, Fixed blocks, Orthogonality, Random blocks

P. Goos; A. N. Donev

2006-11-01T23:59:59.000Z

399

Decontaminating metal surfaces  

DOE Patents (OSTI)

Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g.,>600 g/l of NaNO.sub.3, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH<6.

Childs, Everett L. (Boulder, CO)

1984-11-06T23:59:59.000Z

400

Decontaminating metal surfaces  

DOE Patents (OSTI)

Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g., >600 g/1 of NaNO/sub 3/, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH < 6.

Childs, E.L.

1984-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Water-Mediated Proton Hopping on an Iron Oxide Surface  

Science Conference Proceedings (OSTI)

The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociation is a key step in proton diffusion.

Merte, L. R.; Peng, Guowen; Bechstein, Ralf; Rieboldt, Felix; Farberow, Carrie A.; Grabow, Lars C.; Kudernatsch, Wilhelmine; Wendt, Stefen; Laegsgaard, E.; Mavrikakis, Manos; Besenbacher, Fleming

2012-05-18T23:59:59.000Z

402

Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites  

SciTech Connect

High strength carbon fibers were surface treated by a continuous gas phase thermo-chemical surface treatment. The surface and the mechanical properties of the fibers were investigated before and after treatment and compared to the properties obtained with a conventional industrial electro-chemical surface treatment. An increase of the oxygen atomic content from 3 % to 20 % with a preferential generation of carboxylic acid functionalities and hydroxyl groups was highlighted after the thermo-chemical surface treatment, compared to an oxygen atomic content of 7 % and a wide variety of oxygen moieties with the electro-chemical surface treatment. The tensile strength of the fibers increased slightly after the thermo-chemical surface treatment and remained the same after the electro-chemical surface treatment. Short beam shear and 90 flexural tests of composites revealed that the improvement of interfacial adhesion with a vinyl ester matrix was limited, revealing that oxidation of the carbon fiber surface alone cannot tremendously improve the mechanical properties of carbon fiber-vinyl ester composites. Atomic force microscopy showed that the creation of roughness with both surface treatments at a nanometric scale. Although the surface is slightly rougher after the electro-chemical surface treatment and is expected to lead to higher adhesion due to mechanical interlocking between the fiber surface and the matrix, the effect of covalent bonding coming from the high concentration of chemical groups on the surface results in higher adhesion strength, as obtained with the thermo-chemical surface treatment.

Vautard, Frederic [ORNL; Ozcan, Soydan [ORNL; Meyer III, Harry M [ORNL

2012-01-01T23:59:59.000Z

403

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

404

Application of scanning mid-IR-laser microscopy for characterization of semiconductor materials for photovoltaics  

E-Print Network (OSTI)

The scanning mid-IR-laser microscopy was previously demonstrated as an effective tool for characterization of different semiconductor crystals. Now the technique has been successfully applied for the investigation of CZ SixGe1-x -- a promising material for photovoltaics - and multicrystalline silicon for solar cells. In addition, this technique was shown to be appropriate for imaging of polishing-induced defects as well as such huge defects as "pin holes". Besides, previously unexplained "anomalous" (cubic power) dependence of signal of the scanning mid-IR-laser microscope in the optical-beam-induced light scattering mode on the photoexcitation power obtained for mechanically polished samples has now been attributed to the excess carrier scattering on charged linear defects, likely dislocation lines. The conclusion is made in the article that the scanning mid-IR-laser microscopy may serve as very effective tool for defect investigations in materials for modern photovoltaics.

Kalinushkin, V P; Yuryev, V A; 10.1016/S0927-0248(00)00076-3

2011-01-01T23:59:59.000Z

405

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

406

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00 Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

407

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

408

Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer  

SciTech Connect

Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics.

Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Wen, Han [Imaging Physics Laboratory, Biophysics and Biochemistry Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892 (United States); Morgan, Nicole Y. [Intramural Research Programs, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892 (United States)

2013-04-15T23:59:59.000Z

409

Atomic-scale properties of semiconductor heterostructures probed by scanning tunneling microscopy  

SciTech Connect

The engineering of advanced semiconductor heterostructure materials and devices requires a detailed understanding of, and control over, the structure and properties of semiconductor materials and devices at the atomic to nanometer scale. Cross-sectional scanning tunneling microscopy has emerged as a unique and powerful method to characterize structural morphology and electronic properties in semiconductor epitaxial layers and device structures at these length scales. The basic experimental techniques in cross-sectional scanning tunneling microscopy are described, and some representative applications to semiconductor heterostructure characterization drawn from recent investigations in the authors laboratory are discussed. Specifically, they describe some recent studies of InP/InAsP and InAsP/InAsSb heterostructures in which nanoscale compositional clustering has been observed and analyzed.

Yu, E.T.; Zuo, S.L.; Bi, W.G.; Tu, C.W. [Univ. of California, San Diego, La Jolla, CA (United States). Dept. of Electrical and Computer Engineering; Biefeld, R.M.; Allerman, A.A. [Sandia National Labs., Albuquerque, NM (United States)

1998-05-01T23:59:59.000Z

410

Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism  

SciTech Connect

A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.

Xie, Xiaoliang Sunney (Lexington, MA); Freudiger, Christian (Boston, MA); Min, Wei (Cambridge, MA)

2011-09-27T23:59:59.000Z

411

Method for imaging liquid and dielectric materials with scanning polarization force microscopy  

DOE Patents (OSTI)

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

Hu, Jun (Berkeley, CA); Ogletree, D. Frank (El Cerrito, CA); Salmeron, Miguel (El Cerrito, CA); Xiao, Xudong (Kowloon, CN)

1999-01-01T23:59:59.000Z

412

Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy  

DOE Patents (OSTI)

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

1998-04-28T23:59:59.000Z

413

Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy  

SciTech Connect

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

Hu, Jun (Berkeley, CA); Ogletree, D. Frank (El Cerrito, CA); Salmeron, Miguel (El Cerrito, CA); Xiao, Xudong (Kowloon, CN)

1998-01-01T23:59:59.000Z

414

Method for imaging liquid and dielectric materials with scanning polarization force microscopy  

DOE Patents (OSTI)

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

1999-03-09T23:59:59.000Z

415

Spatially-Resolved Studies of Grain-Boundary Effects in Polycrystalline Solar Cells Using Micro-Photoluminescence and Near-Field Microscopy  

DOE Green Energy (OSTI)

Photoluminescence and photocurrent spectroscopies combined with diffraction-limited and sub- diffraction-limited spatial resolution are achieved via micro-photoluminescence (m-PL) and near-field microscopy (NSOM). These methods are used to examine the photo-response of individual grain boundaries in thin-film, polycrystalline solar cells at room and cryogenic temperatures. A systematic m-PL study of the effect of CdCl2-treatment on recombination in CdTe/CdS solar cell structures of varying thickness directly reveals the grain-boundary and surface passivation action of this important post-growth processing step. We achieve 50nm (l/10) spatial resolution in near-field Optical Beam Induced Current imaging (n-OBIC) of polycrystalline silicon solar cells using NSOM, at varying stages of silicon nitride grain-boundary passivation, and measure lateral variations in photo-response of CdTe/CdS solar cells with subwavelength spatial resolution.

Smith, S.; Dhere, R.; Gessert, T.; Stradins, P.; Mascarenhas, A.

2005-01-01T23:59:59.000Z

416

Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies  

SciTech Connect

The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

2007-06-14T23:59:59.000Z

417

Reaction of Si(111) Surface with Saturated Hydrocarbon  

SciTech Connect

Reaction of Si(111) surface with saturated hydrocarbon such as methane (CH{sub 4}) and ethane (C{sub 2}H{sub 6}) was carried out in a gas source molecular beam epitaxy (GSMBE). After carbonization, structures formed on the surface were observed by in situ reflection high-energy electron diffraction (RHEED). Structures transition formed on the surface were 7x7, {delta}-7x7, 1x1, and SiC structures. In the case of CH{sub 4}, the Si surfaces were carbonized at 800 deg. C for 120 min (7.2x10{sup 4} L) with a W-filament of 2800 deg. C, and SiC layers were obtained. In the case of C{sub 2}H{sub 6}, the mixture of 7x7 and SiC structure was observed. Decomposition of hydrocarbon was characterized in quadrupole mass spectroscopy (QMS) measurements. An atomic force microscopy (AFM) image of the mixture of 7x7 and SiC shows a wandering shape. Whereas, the SiC layer shows a regular step. This result seems to be related to the different in the amount of CH{sub 3} molecules on the surface.

Suryana, Risa [Department of Physics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Nakahara, Hitoshi; Saito, Yahachi [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ichimiya, Ayahiko [Department of Mathematical and Physical Science, Faculty of Science, Japan Women's University Mejirodai 2-8-1, Tokyo 112-8681 (Japan)

2011-12-10T23:59:59.000Z

418

National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991  

Science Conference Proceedings (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. [eds.

1992-04-01T23:59:59.000Z

419

National Synchrotron Light Source annual report 1991  

Science Conference Proceedings (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. (eds.)

1992-04-01T23:59:59.000Z

420

Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures  

SciTech Connect

Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.

Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Scanning transmission x-ray microscopy: A new ``looking glass`` into coal chemical structure  

SciTech Connect

This paper reports the use of scanning transmission x-ray microscopy to spatially map the chemistry of aromatic and aliphatic carbon functionalities in coal to a resolution of less than 0.1 {mu}m. Localized x-ray absorption spectroscopy recorded at the carbon K absorption edge was also used to facilitate analysis of variations in fundamental chemistry at maceral interfaces and within maceral boundaries.

Botto, R.E.; Cody, G.D.

1994-02-01T23:59:59.000Z

422

Analysis of replication factories in human cells by super-resolution light microscopy  

E-Print Network (OSTI)

against two key components, PCNA and RPA. RPA is a heterotrimeric single stranded DNA (ssDNA)-binding protein that associates with the template strands produced at replication forks by the action of the replicative helicase. It is important for strand... in these STED images, cannot be detected if the confocal mode is used (table 1), demon- strating that the increase in resolution obtained with STED microscopy can give better insight into biological processes in vivo. the replicative helicase is not inhibited...

Cseresnyes, Zoltan; Schwarz, Ulf; Green, Catherine M

2009-12-16T23:59:59.000Z

423

CARS polarized microscopy of three-dimensional director structures in liquid crystals  

E-Print Network (OSTI)

We demonstrate three-dimensional vibrational imaging of director structures in liquid crystals using coherent anti-Stokes Raman scattering (CARS) polarized microscopy. Spatial mapping of the structures is based on sensitivity of a polarized CARS signal to orientation of anisotropic molecules in liquid crystals. As an example, we study structures in a smectic material and demonstrate that single-scan CARS and two-photon fluorescence images of molecular orientation patterns are consistent with each other and with the structure model.

Kachynski, A V; Prasad, P N; Smalyukh, I I

2007-01-01T23:59:59.000Z

424

CARS polarized microscopy of three-dimensional director structures in liquid crystals  

E-Print Network (OSTI)

We demonstrate three-dimensional vibrational imaging of director structures in liquid crystals using coherent anti-Stokes Raman scattering (CARS) polarized microscopy. Spatial mapping of the structures is based on sensitivity of a polarized CARS signal to orientation of anisotropic molecules in liquid crystals. As an example, we study structures in a smectic material and demonstrate that single-scan CARS and two-photon fluorescence images of molecular orientation patterns are consistent with each other and with the structure model.

A. V. Kachynski; A. N. Kuzmin; P. N. Prasad; I. I. Smalyukh

2007-10-18T23:59:59.000Z

425

A facile electron microscopy method for measuring precipitate volume fractions in AlCuMg alloys  

SciTech Connect

Precipitate volume fraction is an important parameter to estimate the strength of precipitation-hardened metals. In this study, a facile method was applied to measure the precipitate volume fractions in an age-hardened AlCuMg alloy. In this method, the precipitate volume fraction values can be obtained by multiplying the volume precipitate number densities with the averaged precipitate volumes, which can be easily measured in scanning electron microscopy and transmission electron microscopy, respectively. Compared with the conventional method, in which the specimen thickness has to be measured in transmission electron microscopy, the method proposed in this study is more facile to perform. - Highlights: Black-Right-Pointing-Pointer We have proposed a facile method to measure precipitate volume fractions for precipitation-hardened metals. Black-Right-Pointing-Pointer This technique works well for the square-shaped {theta} Prime -phase nano-precipitates in 2xxx aluminum alloys. Black-Right-Pointing-Pointer Interesting is that the proposed method is easy for materials scientists and engineers to perform.

Zhao, X.Q.; Shi, M.J.; Chen, J.H., E-mail: jhchen123@hnu.edu.cn; Wang, S.B.; Liu, C.H.; Wu, C.L.

2012-07-15T23:59:59.000Z

426

Characterization of Ce-Pd(111) and Ce-Pd(110) surface alloys  

SciTech Connect

Cerium-palladium surface alloys have been studied by x-ray and ultraviolet photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and photoemission electron microscopy. Desorption of CO has been studied by temperature programed desorption spectroscopy. Thin layers of Ce were deposited on Pd(111) and Pd(110) single crystal substrates to form surface alloys upon annealing to 1000 K. An enrichment of Pd at the surface is observed and the work functions of the surface alloys are found to be 0.2-0.6 eV less than the value for the bare Pd substrate, which are substantially larger than the values for the as-deposited Ce-Pd samples. Several different LEED patterns were observed depending on the annealing temperature. The estimated Ce valence from XPS was found to be in the range from 3.16 to 3.22 for the surface alloys after annealing.

Tollefsen, H.; Berstad, L. J.; Raaen, S. [Physics Department, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway)

2007-09-15T23:59:59.000Z

427

Surface Properties of Biomaterials IV  

Science Conference Proceedings (OSTI)

... and surface energy measurements • Degradation of resorbable biomaterials ... Development of Regenerative Biomaterials to Promote Bone Regeneration.

428

Surface decontamination compositions and methods  

DOE Patents (OSTI)

Clay-based compositions capable of absorbing contaminants from surfaces or objects having surface faces may be applied to a surface and later removed, the removed clay-based compositions absorbing at least a portion of the contaminant from the surface or object to which it was applied.

Wright; Karen E. (Idaho Falls, ID); Cooper, David C. (Idaho Falls, ID); Peterman, Dean R. (Idaho Falls, ID); Demmer, Ricky L. (Idaho Falls, ID); Tripp, Julia L. (Pocatello, ID); Hull, Laurence C. (Idaho Falls, ID)

2011-03-29T23:59:59.000Z

429

Smart, passive sun facing surfaces  

DOE Patents (OSTI)

An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position. 17 figs.

Hively, L.M.

1996-04-30T23:59:59.000Z

430

Smart, passive sun facing surfaces  

DOE Patents (OSTI)

An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position.

Hively, Lee M. (Knoxville, TN)

1996-01-01T23:59:59.000Z

431

Minimal surfaces and multifunctionality  

E-Print Network (OSTI)

Triply periodic minimal surfaces are objects of great interest to physical scientists, biologists and mathematicians. It has recently been shown that triply periodic two-phase bicontinuous composites with interfaces that are the Schwartz primitive (P) and diamond (D) minimal surfaces are not only geometrically extremal but extremal for simultaneous transport of heat and electricity. More importantly, here we further establish the multifunctionality of such two-phase systems by showing that they are also extremal when a competition is set up between the effective bulk modulus and the electrical (or thermal) conductivity of the composite. The implications of our findings for materials science and biology, which provides the ultimate multifunctional materials, are discussed.

S. Torquato; A. Donev

2004-01-01T23:59:59.000Z

432

Pocked surface neutron detector  

DOE Patents (OSTI)

The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

2003-04-08T23:59:59.000Z

433

Surface profiling interferometer  

DOE Patents (OSTI)

The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

Takacs, Peter Z. (P.O. Box 385, Upton, NY 11973); Qian, Shi-Nan (Hefei Synchrotron Radiation Laboratory, University of Science and, Hefei, Anhui, CN)

1989-01-01T23:59:59.000Z

434

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics  

SciTech Connect

During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

Doyle, F.M.

1992-01-01T23:59:59.000Z

435

Slow positron beam techniques for solids and surfaces. Fifth international workshop  

Science Conference Proceedings (OSTI)

These proceedings represent the contributions of leading scientists in the study of solids and surfaces using positron beams as probes. The papers presented at the workshop covered a range of topics including positron beam techniques, positron microscopy, defect depth profiling, Low Energy Positron Diffraction (LEPD), etc. There were sixty nine papers presented at the workshop, out of these, nine have been abstracted for the Energy Science and Technology database. (AIP)

Ottewitte, E. (ed.) (Idaho National Engineering Laboratory (United States)); Weiss, A.H. (ed.) (Physics Department, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States))

1994-01-01T23:59:59.000Z

436

Argonne CNM News: Structural Consequences of Nanolithography  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Consequences of Nanolithography Structural Consequences of Nanolithography Ferroelectric domains written by PFM Ferroelectric domains written by PFM exhibit a subtle structural distortion that can be directly observed using hard X-ray nanodiffraction microscopy. Nanolithography effect on structure Modeling shows that the writing process induces a structural electromechanical response to unscreened charges at surfaces and interfaces, altering the local free energy of written ferroelectric domains. Users from the University of Wisconsin-Madison and the Center for Nanophase Materials Science, working with the X-Ray Microscopy Group, have discovered structural effects accompanying the nanoscale lithography of ferroelectric polarization domains. The results shed new light on the physics of

437

Surface science analysis of GaAs photocathodes following sustained electron beam delivery  

DOE Green Energy (OSTI)

Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

2012-06-01T23:59:59.000Z

438

Nanoscale Surface Topography to Guide Bone Growth  

Science Conference Proceedings (OSTI)

... As seen in the fluorescence microscopy images, cells align with the gradient at the high end of the taper (left), and orient randomly on the low end ...

2013-01-24T23:59:59.000Z

439

Surface and Microscopic Characterization of Manufactured ...  

Science Conference Proceedings (OSTI)

Advances in Characterization of Graphene-related Nanomaterials Using Atomic ... Current state of atomic force microscopy (AFM) imaging of graphene and its ...

440

Novel Approaches to Soft X-ray Spectroscopy: Scanning TransmissionX-ray Microscopy and Ambient Pressure X-Ray PhotoelectronSpectroscopy  

Science Conference Proceedings (OSTI)

This workshop focused on novel spectroscopies at Beamlines 11.0.2, 5.3.2 and 9.3.2 at the ALS. The workshop brought together users from a wide range of fields to highlight recent experimental and technical developments both in scanning transmission X-ray spectroscopy (STXM) and ambient pressure photoelectron spectroscopy (APPES). The morning session featured talks on experiments involving new developments at the STXM, while the afternoon session was devoted to those using APXPS. In the morning session, Tolek Tyliszczak discussed the improved detector developments at the STXM, such as an avalanche photodiode detector and fluorescence and electron detection, as well as the continued development of in situ cells for heating, gas flow, and electrochemical cells. Of these, only the avalanche photodiode in combination with a novel multichannel photon-counting system is in routine use in time-resolved studies. Bartel Van Waeyenberge (Ghent University) presented results of magnetic imaging with a time resolution of 70-100 ps combined with a lateral resolution of 20-40 nm performed with the STXM (Beamline 11.0.2). As a complement to the time-domain ''pump-and-probe'' measurements, they developed a frequency-domain ''sine-excitation'' technique in order to study specific eigenmodes of these ferromagnetic patterns with high spatial resolution. This new approach was used to study the gyrotropic vortex motions in micron-sized ferromagnetic patterns. Adam Hitchcock (McMaster University) presented the development, in collaboration with Daniel Guay (INRS, Varennes) and Sherry Zhang, of the apparatus and techniques for applying STXM to in-situ studies of electrochemistry, in particular electrochromism in polyaniline. In addition, substantial progress was reported on a joint project to develop substrates and methods for chemically selective lithography of multilayer polymer systems. Selective patterns, such as that displayed in the figure, can now be written efficiently with the bend magnet STXM on Beamline 5.3.2. Yves Acremann (SSRL) discussed time and spatially resolved X-ray magnetic circular dichroism (XMCD) experiments on spin transfer devices at the STXM (Beamline 11.0.2). These elegant experiments explore time resolved measurements of the magnetization dynamics within a 100 x 150 nm sample influenced by a spin-polarized current. This experiment shows that the magnetization in these magnetic nanostructures are not uniform, as they are influenced by the Oersted field of the charge current needed to generate the spin current. The implementation of a novel multichannel photon counting system in combination with an avalanche photon detector decreased the data-acquisition time by a factor of 10, owing to its ability to resolve the structure of multi bunch mode. Gordon E. Brown, Jr. (Stanford University and SSRL) described ''Applications of STXM to Microbial Bioweathering and Biomineralization''. In the interaction of bacteria with ferrihydrite nanoparticles, microenvironments that were very different than the bulk material were observed, showing that bulk thermodynamics may not be useful for predicting micro phases. Gordon also presented work showing that iron nanoparticles are attracted to the negatively charged bacteria and form a coating that reduces iron oxide minerals. The afternoon session started with presentations by Simon Mun and Hendrik Bluhm, who discussed the current status and the future plans for the two APPES end-stations at the ALS, which are located at Beamlines 9.3.2 and 11.0.2, respectively. In both end-stations, samples can be measured in gaseous environments at pressures of up to several Torr, which makes possible the investigation of numerous phenomena, in particular in the fields of atmospheric and environmental science as well as heterogeneous catalysis. Specific examples of the application of APPES were shown in the following presentations. John Hemminger (University of California, Irvine) reported on APPES investigations at Beamlines 9.3.2 and 11.0.2 of the interaction of alkali halide surfaces with water. The m

Bluhm, Hendrik; Gilles, Mary K.; Mun, Simon B.; Tyliszczak, Tolek

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

TREATMENT OF URANIUM SURFACES  

DOE Patents (OSTI)

An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

Slunder, C.J.

1959-02-01T23:59:59.000Z

442

Carbon Surface Layers on a High-Rate LiFePO4  

DOE Green Energy (OSTI)

Transmission electron microscopy (TEM) was used to image particles of a high-rate LiFePO4 sample containing a small amount of in situ carbon. The particle morphology is highly irregular, with a wide size distribution. Nevertheless, coatings, varying from about 5-10 nm in thickness, could readily be detected on surfaces of particles as well as on edges of agglomerates. Elemental mapping using Energy Filtered TEM (EFTEM) indicates that these very thin surface layers are composed of carbon. These observations have important implications for the design of high-rate LiFePO4 materials in which, ideally, a minimal amount of carbon coating is used.

Gabrisch, Heike; Wilcox, James D.; Doeff, Marca M.

2005-09-06T23:59:59.000Z

443

In situ control of As dimer orientation on Ge(100) surfaces  

Science Conference Proceedings (OSTI)

We investigated the preparation of single domain Ge(100):As surfaces in a metal-organic vapor phase epitaxy reactor. In situ reflection anisotropy spectra (RAS) of vicinal substrates change when arsenic is supplied either by tertiarybutylarsine or by background As{sub 4} during annealing. Low energy electron diffraction shows mutually perpendicular orientations of dimers, scanning tunneling microscopy reveals distinct differences in the step structure, and x-ray photoelectron spectroscopy confirms differences in the As coverage of the Ge(100):As samples. Their RAS signals consist of contributions related to As dimer orientation and to step structure, enabling precise in situ control over preparation of single domain Ge(100):As surfaces.

Brueckner, Sebastian; Doescher, Henning [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Technische Universitaet Ilmenau, Institut fuer Physik, Postfach 10 05 65, 98684 Ilmenau (Germany); Supplie, Oliver; Luczak, Johannes [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Barrigon, Enrique; Rey-Stolle, Ignacio [Instituto de Energia Solar, Universidad Politecnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Kleinschmidt, Peter [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); CiS Forschungsinstitut fuer Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Strasse 14, 99099 Erfurt (Germany); Hannappel, Thomas [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Technische Universitaet Ilmenau, Institut fuer Physik, Postfach 10 05 65, 98684 Ilmenau (Germany); CiS Forschungsinstitut fuer Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Strasse 14, 99099 Erfurt (Germany)

2012-09-17T23:59:59.000Z

444

Surface enhanced Raman scattering of aged graphene: Effects of annealing in vacuum  

SciTech Connect

In this paper, we report a simple method to recover the surface enhanced Raman scattering activity of aged graphene. The Raman signals of Rhodamine molecules absorbed on aged graphene are dramatically increased after vacuum annealing and comparable to those on fresh graphene. Atomic force microscopy measurements indicate that residues on aged graphene surface can efficiently be removed by vacuum annealing, which makes target molecule closely contact with graphene. We also find that the hole doping in graphene will facilitate charge transfer between graphene and molecule. These results confirm the strong Raman enhancement of target molecule absorbed on graphene is due to the charge transfer mechanism.

Wang Yingying; Li Aizhi; Qu Shiliang [Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Ni Zhenhua; Zafar, Zainab; Qiu Teng [Department of Physics, Southeast University, Nanjing 211189 (China); Zhang Yan; Ni Zhonghua [Jiangsu Key Laboratory for Design and Fabrication of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Yu Ting; Shen Zexiang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

2011-12-05T23:59:59.000Z

445

Test surfaces useful for calibration of surface profilometers  

SciTech Connect

The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

2013-12-31T23:59:59.000Z

446

Enhanced surface hydrophobicity by coupling of surface polarity and topography  

E-Print Network (OSTI)

of the City University of New York, Brooklyn, NY 11210-2889; bDepartment of Chemical Engineering, Princeton) and microscopic (surface atomic polarity) characteristics for water in contact with a model solid surface based on the structure of silica. We vary both the magnitude and direction of the solid surface polarity at the atomic

447

Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance  

SciTech Connect

The effect of surface working operations on the microstructure, electrochemical behavior and stress corrosion cracking resistance of 304L stainless steel (SS) was investigated in this study. The material was subjected to (a) solution annealing (b) machining and (c) grinding operations. Microstructural characterization was done using stereo microscopy and electron back scattered diffraction (EBSD) technique. The electrochemical nature of the surfaces in machined, ground and solution annealed condition were studied using potentiodynamic polarization and scanning electrochemical microscopy (SECM) in borate buffer solution. The stress corrosion cracking resistance of 304L SS in different conditions was studied by exposing the samples to boiling MgCl{sub 2} environment. Results revealed that the heavy plastic deformation and residual stresses present near the surface due to machining and grinding operations make 304L SS electrochemically more active and susceptible to stress corrosion cracking. Ground sample showed highest magnitude of current density in the passive potential range followed by machined and solution annealed 304L SS. Micro-electrochemical studies established that surface working promotes localized corrosion along the surface asperities which could lead to crack initiation. - Highlights: Black-Right-Pointing-Pointer Machining/grinding produce extensive grain fragmentation near the surface of 304L SS. Black-Right-Pointing-Pointer Machining/grinding result in martensitic transformation near the surface of 304L SS. Black-Right-Pointing-Pointer Machining/grinding drastically reduce the SCC resistance of 304L SS in chloride. Black-Right-Pointing-Pointer Machining/grinding make the surface of 304L SS electrochemically much more active. Black-Right-Pointing-Pointer SECM study reveal that preferential dissolution takes place along surface asperities.

Acharyya, S.G., E-mail: swati364@gmail.com [Materials Science Division, Bhabha Atomic Research Center, Mumbai (India); Khandelwal, A. [Visvesvaraya National Institute of Technology, Nagpur (India)] [Visvesvaraya National Institute of Technology, Nagpur (India); Kain, V. [Materials Science Division, Bhabha Atomic Research Center, Mumbai (India)] [Materials Science Division, Bhabha Atomic Research Center, Mumbai (India); Kumar, A.; Samajdar, I. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai (India)] [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai (India)

2012-10-15T23:59:59.000Z

448

Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy  

DOE Green Energy (OSTI)

Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL)

2010-10-19T23:59:59.000Z

449

SUPER HARD SURFACED POLYMERS  

SciTech Connect

High energy ion beam surface treatments were applied to a selected group of polymers. Of the six materials in the present study, four were thermoplastics (polycarbonate, polyethylene, polyethylene terephthalate, and polystyrene) and two were thermosets (epoxy and polyimide). The particular epoxy evaluated in this work is one of the resins used in formulating fiber reinforced composites for military helicopter blades. Measures of mechanical properties of the near surface regions were obtained by nanoindentation hardness and pin on disk wear. Attempts were also made to measure erosion resistance by particle impact. All materials were hardness tested. Pristine materials were very soft, having values in the range of approximately 0.1 to 0.5 GPa. Ion beam treatment increased hardness by up to 50 times compared to untreated materials. For reference, all materials were hardened to values higher than those typical of stainless steels. Wear tests were carried out on three of the materials, PET, PI and epoxy. On the ion beam treated epoxy no wear could be detected, whereas the untreated material showed significant wear.

Mansur, Louis K [ORNL; Bhattacharya, R [UES, Incorporated, Dayton, OH; Blau, Peter Julian [ORNL; Clemons, Art [ORNL; Eberle, Cliff [ORNL; Evans, H B [UES, Incorporated, Dayton, OH; Janke, Christopher James [ORNL; Jolly, Brian C [ORNL; Lee, E H [Consultant, Milpitas, CA; Leonard, Keith J [ORNL; Trejo, Rosa M [ORNL; Rivard, John D [ORNL

2010-01-01T23:59:59.000Z

450

Principal Component Analysis of Spectroscopic Imaging Data in Scanning Probe Microscopy  

SciTech Connect

The approach for data analysis in band excitation family of scanning probe microscopies based on principal component analysis (PCA) is explored. PCA utilizes the similarity between spectra within the image to select the relevant response components. For small signal variations within the image, the PCA components coincide with the results of deconvolution using simple harmonic oscillator model. For strong signal variations, the PCA allows effective approach to rapidly process, de-noise and compress the data. The extension of PCA for correlation function analysis is demonstrated. The prospects of PCA as a universal tool for data analysis and representation in multidimensional SPMs are discussed.

Jesse, Stephen [ORNL; Kalinin, Sergei V [ORNL

2009-01-01T23:59:59.000Z

451

Robust atomic resolution imaging of light elements using scanning transmission electron microscopy  

SciTech Connect

We show that an annular detector placed within the bright field cone in scanning transmission electron microscopy allows direct imaging of light elements in crystals. In contrast to common high angle annular dark field imaging, both light and heavy atom columns are visible simultaneously. In contrast to common bright field imaging, the images are directly and robustly interpretable over a large range of thicknesses. We demonstrate this through systematic simulations and present a simple physical model to obtain some insight into the scattering dynamics.

Findlay, S. D. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Sawada, H.; Okunishi, E.; Kondo, Y. [JEOL Ltd., Tokyo 196-8558 (Japan); Yamamoto, T. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

2009-11-09T23:59:59.000Z

452

Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays  

SciTech Connect

We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

2010-10-29T23:59:59.000Z

453

Imaging of lateral spin valves with soft x-ray microscopy  

SciTech Connect

We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L{sub 3} absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-rays at the Co and Cu L{sub 3} absorption edges.

Mosendz, O.; Mihajlovic, G.; Pearson, J. E.; Fischer, P.; Im, M.-Y.; Bader, S. D.; Hoffmann, A.

2009-05-01T23:59:59.000Z

454

Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits  

DOE Patents (OSTI)

A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

Campbell, Ann. N. (13170-B Central SE #188, Albuquerque, NM 87123); Anderson, Richard E. (2800 Tennessee NE, Albuquerque, NM 87110); Cole, Jr., Edward I. (2116 White Cloud NE, Albuquerque, NM 87112)

1995-01-01T23:59:59.000Z

455

Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy  

Science Conference Proceedings (OSTI)

To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

2009-06-05T23:59:59.000Z

456

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene  

E-Print Network (OSTI)

We demonstrate high resolution scanning fluorescence resonance energy transfer 10 microscopy between a single nitrogen-vacancy center as donor and graphene as acceptor. 11 Images with few nanometer resolution of single and multilayer graphene structures were 12 attained. An energy transfer efficiency of 30% at distances of 10nm between a single 13 defect and graphene was measured. Further the energy transfer distance dependence of 14 the nitrogen-vacancy center to graphene was measured to show the predicted d-4 15 dependence. Our studies pave the way towards a diamond defect center based versatile 16 single emitter scanning microscope.

J. Tisler; T. Oeckinghaus; R. Stöhr; R. Kolesov; F. Reinhard; J. Wrachtrup

2013-01-02T23:59:59.000Z

457

Studying The Kinetics Of Crystalline Silicon Nanoparticle Lithiation With In-Situ Transmission Electron Microscopy  

Science Conference Proceedings (OSTI)

Silicon is an attractive high-capacity anode material for Li-ion batteries, but a comprehensive understanding of the massive ~300% volume change and fracture during lithiation/delithiation is necessary to reliably employ Si anodes. Here, in-situ transmission electron microscopy (TEM) of the lithiation of crystalline Si nanoparticles reveals that the reaction slows down as it progresses into the particle interior. Analysis suggests that this behavior is due to the influence of mechanical stress at the reaction front on the driving force for the reaction. These experiments give insight into the factors controlling the kinetics of this unique reaction.

Mcdowell, Matthew T.; Ryu, Ill; Lee, Seokwoo; Wang, Chong M.; Nix, William D.; Cui, Yi

2012-11-27T23:59:59.000Z

458

Four-dimensional visualization of single and multiple laser filaments using in-line holographic microscopy  

Science Conference Proceedings (OSTI)

It is shown, both through simulations and experiments, that the in-line holographic microscopy technique can be used to retrieve very small refractive-index perturbations caused during the filamentation of ultrashort laser pulses. This technique provides the possibility of having spatially and temporally (four dimensions) resolved measurements of refractive-index changes, down to 10{sup -4}, from objects with diameters as small as 10 {mu}m. Moreover, we demonstrate the power of the technique in discriminating multiple filaments in a precise quantitative way.

Abdollahpour, Daryoush [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, P.O. Box 1527, GR-71110 Heraklion (Greece); Physics Department, University of Crete, GR-71003 Heraklion (Greece); Papazoglou, Dimitrios G.; Tzortzakis, Stelios [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, P.O. Box 1527, GR-71110 Heraklion (Greece); Materials Science and Technology Department, University of Crete, GR-71003 Heraklion (Greece)

2011-11-15T23:59:59.000Z

459

Tracking of cell population from time lapse and end point confocal microscopy images with multiple hypothesis Kalman smoothing filters  

E-Print Network (OSTI)

This paper describes an automated visual tracking system combining time-lapse and end-point confocal microscopy to aid the interpretations of cell behaviors and interactions, with the focus on understanding the sprouting ...

Ong, Lee-Ling S.

460

TITLE: Environmental Electron Microscopy Study of the Nucleation and Growth of Si and Ge AUTHORS: Stephan Hofmann  

E-Print Network (OSTI)

transmission electron microscopy study of Si nanowire nucleation from Pd [1] and Ni under disilane exposure advances by lateral propagation of ledges, driven by catalytic dissociation of disilane and coupled Pd

Dunin-Borkowski, Rafal E.

Note: This page contains sample records for the topic "microscopy lithography surface" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Surface and Nanostructure Metrology Group  

Science Conference Proceedings (OSTI)

... The Surface and Nanostructure Metrology Group in the Semiconductor & Dimensional Metrology Division of the Physical Measurement Laboratory ...

2013-06-24T23:59:59.000Z

462

Chemical enhancement of surface deposition  

DOE Patents (OSTI)

A method and apparatus are disclosed for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector. 16 figs.

Patch, K.D.; Morgan, D.T.

1997-07-29T23:59:59.000Z

463

Chemical enhancement of surface deposition  

DOE Patents (OSTI)

A method and apparatus for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector.

Patch, Keith D. (Lexington, MA); Morgan, Dean T. (Sudbury, MA)

1997-07-29T23:59:59.000Z

464

Surface Geometric and Electronic Structures of BaFe2As2(001)  

SciTech Connect

BaFe{sub 2}As{sub 2} exhibits properties that are characteristic of the parent compounds of the newly discovered iron (Fe)-based high-T{sub c} superconductors. By combining real-space imaging of scanning tunneling microscopy and spectroscopy (STM+STS) with momentum-space quantitative low-energy electron diffraction (LEED), we have identified the surface plane of cleaved BaFe{sub 2}As{sub 2} crystals as the As terminated Fe-As layer - the plane where superconductivity occurs. LEED and STM+STS data on the BaFe{sub 2}As{sub 2}(001) surface indicate an ordered arsenic (As) terminated metallic surface without reconstruction or lattice distortion. It is surprising that STM images the different Fe-As orbitals associated with the orthorhombic structure, but not the As atoms in the surface plane.

Nascimento, V. B. [University of Tennessee, Knoxville (UTK); Li, Ang [University of Houston, Houston; Jayasundara, Dilushan [University of Houston, Houston; Xuan, Yi [University of Houston, Houston; O'Neal, Jared [University of Houston, Houston; Pan, Shuheng [University of Houston, Houston; Chien, T. Y. [University of Tennessee, Knoxville (UTK); Hu, Biao [University of Tennessee, Knoxville (UTK); He, X. B. [Louisiana State University; Li, Guorong [University of Tennessee, Knoxville (UTK); Sefat, A. S. [Oak Ridge National Laboratory (ORNL); McGuire, Michael A [ORNL; Sales, Brian C [ORNL; Mandrus, David [ORNL; Pan, Minghu [ORNL; Zhang, Jiandi [Louisiana State University; Jin, R. [Louisiana State University; Plummer, E. Ward [Louisiana State University

2009-01-01T23:59:59.000Z

465

Optical manipulation of ultrafast electron and nuclear motion on metal surfaces  

SciTech Connect

We study the unoccupied electronic structure and dynamics of chemisorbed atoms and molecules on metal surfaces by time resolved two-photon photoemission (TR-2PP). spectroscopy, low temperature scanning tunneling microscopy (LT-STM), and theory. Our research concerns simple atomic adsorbates such as alkali and alkaline earth atoms, which provide fundamentally important models for adsorbate-surface interactions, and more complex adsorbates such as fullerenes on noble metals, which illustrate emergent interfacial properties that derive from intrinsic molecular attributes, and moleculemolecule and molecule-surface interactions. Our goal is to understand how these interactions contribute to formation of the interfacial electronic structure, and how thus formed electronic properties affect interfacial phenomena of importance to energy transduction and storage. Moreover, we explore how the interfacial electronic excitation drives dynamical phenomena such as charge transfer and surface femtochemistry.

Petek, Hrvoje

2009-12-02T23:59:59.000Z

466

Analytical electron microscopy characterization of Fernald soils. Annual report, October 1993--September 1994  

SciTech Connect

A combination of backscattered electron imaging and analytical electron microscopy (AEM) with electron diffraction have been used to determine the physical and chemical properties of uranium contamination in soils from the Fernald Environmental Management Project in Ohio. The information gained from these studies has been used in the development and testing of remediation technologies. Most chemical washing techniques have been reasonably effective with uranyl [U(VI)] phases, but U(IV) phases have proven difficult to remove from the soils. Carbonate leaching in an oxygen environment (heap leaching) has removed some of the U(IV) phases, and it appears to be the most effective technique developed in the program. The uranium metaphosphate, which was found exclusively at an incinerator site, has not been removed by any of the chemical methods. We suggest that a physical extraction procedure (either a magnetic separation or aqueous biphasic process) be used to remove this phase. Analytical electron microscopy has also been used to determine the effect of the chemical agents on the uranium phases. It has also been used to examine soils from the Portsmouth site in Ohio. The contamination there took the form of uranium oxide and uranium calcium oxide phases. Technology transfer efforts over FY 1994 have led to industry-sponsored projects involving soil characterization.

Buck, E.C.; Brown, N.R.; Dietz, N.L.

1995-03-01T23:59:59.000Z

467

Global structual optimizations of surface systems with a genetic algorithm  

SciTech Connect

Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al{sub n} (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of {radical}3 x {radical}3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.

Chuang, Feng-Chuan

2005-05-01T23:59:59.000Z

468

SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION  

SciTech Connect

This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force microscopy (AFM) also provided evidence that confirmed the adsorption of the surfactants onto the coal surface. The luminescence measurements showed that the coal and solid surfactants luminescence weakly. No statistically significant influence was observed that resulted from the action of the surfactants or surfactant-molybdenum catalyst. Interestingly, the liquefaction results produced data that indicated the use of surfactants did not significantly improve the liquefaction activity of the coal as had initially been hypothesized. The UV-adsorption tests provided evidence that suggest that this may have been due to oversaturation. Detailed discussions of the results and recommendations for future work are provided.

Dr. Yaw D. Yeboah

1999-09-01T23:59:59.000Z

469

AFM CHARACTERIZATION OF RAMAN LASER INDUCED DAMAGE ON CDZNTECRYSTAL SURFACES  

Science Conference Proceedings (OSTI)

High quality CdZnTe (or CZT) crystals have the potential for use in room temperature gamma-ray and X-ray spectrometers. Over the last decade, the methods for growing high quality CZT have improved the quality of the produced crystals however there are material features that can influence the performance of these materials as radiation detectors. The presence of structural heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), and secondary phases (SPs) can have an impact on the detector performance. There is considerable need for reliable and reproducible characterization methods for the measurement of crystal quality. With improvements in material characterization and synthesis, these crystals may become suitable for widespread use in gamma radiation detection. Characterization techniques currently utilized to test for quality and/or to predict performance of the crystal as a gamma-ray detector include infrared (IR) transmission imaging, synchrotron X-ray topography, photoluminescence spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In some cases, damage caused by characterization methods can have deleterious effects on the crystal performance. The availability of non-destructive analysis techniques is essential to validate a crystal's quality and its ability to be used for either qualitative or quantitative gamma-ray or X-ray detection. The work presented herein discusses the damage that occurs during characterization of the CZT surface by a laser during Raman spectroscopy, even at minimal laser powers. Previous Raman studies have shown that the localized annealing from tightly focused, low powered lasers results in areas of higher Te concentration on the CZT surface. This type of laser damage on the surface resulted in decreased detector performance which was most likely due to increased leakage current caused by areas of higher Te concentration. In this study, AFM was used to characterize the extent of damage to the CZT crystal surface following exposure to a Raman laser. AFM data reveal localized surface damage and increased conductivity in the areas exposed to the Raman laser beam.

Teague, L.; Duff, M.

2008-10-07T23:59:59.000Z

470

Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging  

E-Print Network (OSTI)

and fractionation of corn stover by ammonia recyclethe enzymic hydrolysis of corn stover. Biomass Bioenergyafter steam pretreatment of corn stover with or without the

Zhang, Mengmeng; Chen, Guojun; Kumar, Rajeev; Xu, Bingqian

2013-01-01T23:59:59.000Z

471

Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging  

E-Print Network (OSTI)

Biochem J 2. Solomon BD: Biofuels and sustainability. Ecolplants and enzymes for biofuels production. Science 2007,of lignocellulose. Biofuels Bioprod Biorefin 2012, 11. Yang

Zhang, Mengmeng; Chen, Guojun; Kumar, Rajeev; Xu, Bingqian

2013-01-01T23:59:59.000Z

472

Scanning tunneling microscopy reveals LiMnAs is a room temperature anti-ferromagnetic semiconductor  

SciTech Connect

We performed scanning tunneling microscopy and spectroscopy on a LiMnAs(001) thin film epitaxially grown on an InAs(001) substrate by molecular beam epitaxy. While the in situ cleavage exposed only the InAs(110) non-polar planes, the cleavage continued into the LiMnAs thin layer across several facets. We combined both topography and current mappings to confirm that the facets correspond to LiMnAs. By spectroscopy we show that LiMnAs has a band gap. The band gap evidenced in this study, combined with the known Neel temperature well above room temperature, confirms that LiMnAs is a promising candidate for exploring the concepts of high temperature semiconductor spintronics based on antiferromagnets.

Wijnheijmer, A. P.; Koenraad, P. M. [COBRA Inter-University Research Institute, Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven (Netherlands); Marti, X. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Institute of Physics ASCR, v.v.i., Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); Holy, V. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Cukr, M.; Novak, V. [Institute of Physics ASCR, v.v.i., Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); Jungwirth, T. [Institute of Physics ASCR, v.v.i., Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

2012-03-12T23:59:59.000Z

473

Identify Molecular Structural Features of Biomass Recalcitrance Using Nondestructive Microscopy and Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify Molecular Structural Features of Biomass Recalcitrance Using Non- Identify Molecular Structural Features of Biomass Recalcitrance Using Non- destructive Microscopy and Spectroscopy Shi-You Ding 1 , Mike Himmel 1 , Sunney X. Xie 2 1 National Renewable Energy Laboratory, Golden, CO 2 Harvard University, Cambridge, MA Lignocellulosic biomass has long been recognized as a potential sustainable source of mixed sugars for fermentation to fuels and other bio-based products. However, the chemical and enzymatic conversion processes developed during the past 80 years are inefficient and expensive. The inefficiency of these processes is in part due to the lack of knowledge about the structure of biomass itself; the plant cell wall is indeed a complex nano-composite material at the molecular and nanoscales. Current processing strategies have been derived empirically, with

474

Elemental and magnetic sensitive imaging using x-ray excited luminescence microscopy  

Science Conference Proceedings (OSTI)

We demonstrate the potential of x-ray excited luminescence microscopy for full-field elemental and magnetic sensitive imaging using a commercially available optical microscope, mounted on preexisting synchrotron radiation (SR) beamline end stations. The principal components of the instrument will be described. Bench top measurements indicate that a resolution of 1 {mu}m or better is possible; this value was degraded in practice due to vibrations and/or drift in the end station and associated manipulator. X-ray energy dependent measurements performed on model solar cell materials and lithographically patterned magnetic thin film structures reveal clear elemental and magnetic signatures. The merits of the apparatus will be discussed in terms of conventional SR imaging techniques.

Rosenberg, R. A.; Zohar, S.; Keavney, D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Divan, R.; Rosenmann, D. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Mascarenhas, A.; Steiner, M. A. [National Renewable Energy Lab, Golden, Colorado 80401 (United States)

2012-07-15T23:59:59.000Z

475

Hydrogen adsorption on Ru(001) studied by Scanning TunnelingMicroscopy  

SciTech Connect

The adsorption of hydrogen on Ru(001) was studied by scanning tunneling microscopy at temperatures around 50 K. Hydrogen was found to adsorb dissociatively forming different ordered structures as a function of coverage. In order of increasing coverage {theta} in monolayers (ML) these were ({radical}3 x {radical}3)r30{sup o} at {theta} = 0.3 ML; (2 x 1) at {theta} = 0.50 ML, (2 x 2)-3H at {theta} = 0.75, and (1 x 1) at {theta} = 1.00. Some of these structures were observed to coexist at intermediate coverage values. Close to saturation of 1 ML, H-vacancies (unoccupied three fold fcc hollow Ru sites) were observed either as single entities or forming transient aggregations. These vacancies diffuse and aggregate to form active sites for the dissociative adsorption of hydrogen.

Tatarkhanov, Mous; Rose, Franck; Fomin, Evgeny; Ogletree, D.Frank; Salmeron, Miquel

2008-01-18T23:59:59.000Z

476

Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device  

Science Conference Proceedings (OSTI)

A high-speed direct electron detection system is introduced to the field of transmission electron microscopy and applied to strain measurements in semiconductor nanostructures. In particular, a focused electron probe with a diameter of 0.5 nm was scanned over a fourfold quantum layer stack with alternating compressive and tensile strain and diffracted discs have been recorded on a scintillator-free direct electron detector with a frame time of 1 ms. We show that the applied algorithms can accurately detect Bragg beam positions despite a significant point spread each 300 kV electron causes during detection on the scintillator-free camera. For millisecond exposures, we find that strain can be measured with a precision of 1.3 Multiplication-Sign 10{sup -3}, enabling, e.g., strain mapping in a 100 Multiplication-Sign 100 nm{sup 2} region with 0.5 nm resolution in 40 s.

Mueller, Knut; Rosenauer, Andreas [Institut fuer Festkoerperphysik, Universitaet Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Ryll, Henning; Ordavo, Ivan; Ihle, Sebastian; Soltau, Heike [PNSensor GmbH, Roemerstrasse 28, 80803 Muenchen (Germany); Strueder, Lothar [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Volz, Kerstin [Materials Science Center and Faculty of Physics, Philipps Universitaet Marburg, Hans-Meerwein-Strasse, 35032 Marburg (Germany); Zweck, Josef [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, 93040 Regensburg (Germany)

2012-11-19T23:59:59.000Z

477

In situ transmission electron microscopy observation of silver oxidation in ionized/atomic gas.  

Science Conference Proceedings (OSTI)

The interaction between silver and ionized and atomic gas was observed directly by in situ transmission electron microscopy with an environmental cell for the first time. The electron beam provides dual functions as the source of both gas ionization and imaging. The concentration of ionized gas was tuned via adjusting the current density of the electron beam. Oxidation of the silver is observed in situ, indicating the presence of ionized and/or atomic oxygen. The evolution of microstructure and phase constituents was characterized. Then the oxidation rate was measured, and the relationships among grain size, mass transport rate, and electron flux were characterized. The role of the electron beam is discussed, and the results are rationalized with respect to ex situ results from the literature.

Sun, L.; Noh, K. W.; Wen, J-G.; Dillon, S. J. (Materials Science Division); (Massachusetts Inst. Tech.); (Univ. Illinois - Urbana)

2011-10-17T23:59:59.000Z

478

Electron Microscopy Studies of GaP(N,As) Grown on Si  

DOE Green Energy (OSTI)

The objective of this work is to perform transmission electron microscopy (TEM) studies of GaP(N,As) alloys grown by metal-organic chemical vapor deposition (MOCVD) on Si substrates. These alloys are of interest for the fabrication of high-efficiency tandem solar cells based on Si. The results indicated that the nucleation and growth conditions used are critical for obtaining planar epitaxial layers with a low defect density. In particular, antiphase domains are eliminated using a low growth temperature. TEM studies of these alloy layers, which contain only a few percent N, revealed no phase separation. However, electron diffraction studies revealed the first evidence of CuPt-type atomic ordering in these P-rich, dilute nitride alloy layers.

Norman, A. G.; Geisz, J. F.; Olson, J. M.; Jones, K. M.; Al-Jassim, M. M.

2005-01-01T23:59:59.000Z

479

Spectral-domain phase microscopy with improved sensitivity using two-dimensional detector arrays  

Science Conference Proceedings (OSTI)

In this work we demonstrate the use of two-dimensional detectors to improve the signal-to-noise ratio (SNR) and sensitivity in spectral-domain phase microscopy for subnanometer accuracy measurements. We show that an increase in SNR can be obtained, from 82 dB to 105 dB, using 150 pixel lines of a low-cost CCD camera as compared to a single line, to compute an averaged axial scan. In optimal mechanical conditions, phase stability as small as 92 {mu}rad, corresponding to 6 pm displacement accuracy, could be obtained. We also experimentally demonstrate the benefit of spatial-averaging in terms of the reduction of signal fading due to an axially moving sample. The applications of the improved system are illustrated by imaging live cells in culture.

Singh, K.; Dion, C.; Ozaki, T. [Centre de Recherche, Hopital Maisonneuve-Rosemont, Montreal, Quebec (Canada); Institut National de la Recherche Scientifique, Energie, Materiaux et Telecommunications, Varennes, Quebec (Canada); Lesk, M. R. [Centre de Recherche, Hopital Maisonneuve-Rosemont, Montreal, Quebec (Canada); Departement d'Ophtalmologie, Universite de Montreal, Montreal, Quebec (Canada); Costantino, S. [Centre de Recherche, Hopital Maisonneuve-Rosemont, Montreal, Quebec (Canada); Departement d'Ophtalmologie, Universite de Montreal, Montreal, Quebec (Canada); Institut de Genie Biomedical, Universite de Montreal, Montreal, Quebec (Canada)

2011-02-15T23:59:59.000Z

480

ARM - Measurement - Soil surface temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

surface temperature surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component CO2FLX : Carbon Dioxide Flux Measurement Systems SOIL : Soil Measurement from the SGP SWATS : Soil Water and Temperature System MET : Surface Meteorological Instrumentation