National Library of Energy BETA

Sample records for micropulse lidar mpl

  1. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  2. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  3. Micropulse Lidar The ARM Program studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms to Speed Production of Biofuels Oak1 Micropulse

  4. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  5. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sawyer, Virginia

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  6. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  7. ARM - Instrument - mpl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstpsgovInstrumentsclapgovInstrumentsmasc DocumentationgovInstrumentsmpl Documentation MPL :

  8. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  9. Raman lidar and MPL Measurements during ALIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.Raman

  10. MPL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministration | Department

  11. ROUTINE CLOUD-BOUNDARY ALGORITHM DEVELOPMENT FOR ARM MICROPULSE LIDAR

    E-Print Network [OSTI]

    of Energy Office of Science ABSTRACT An operational cloud boundary algorithm (Wang and Sassen 2001) has been Associates, LLC under Contract No. DE-AC02- 98CH10886 with the U.S. Department of Energy. The publisher-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript

  12. ARM - Field Campaign - MPL Measurements, Norwegian Young sea ICE cruise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design togovCampaignsMASRAD: Pt. Reyes Stratus Cloud and Drizzle StudygovCampaignsMPL

  13. DOE/SC-ARM/TR-098 Micropulse Lidar Cloud Mask Value-Added Product Technical Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQSiteo n n e v i2 ARM Climate1623375 The78

  14. A new cloud and aerosol layer detection method based on micropulse lidar measurements

    E-Print Network [OSTI]

    Zeng, Ning

    aerosols and clouds are subject to more uncertainties depending on the thresholds selected. Compared. Introduction Clouds play an essential role in the Earth's climate by modulating the energy budget and water cycle. They can change the Earth's energy balance by reflecting solar radiation and by trapping longwave

  15. ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA Contacts ENAProductsHSRL

  16. Effect of Polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: Modeling and

    E-Print Network [OSTI]

    Bahrami, Majid

    Effect of Polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity robust model is devel- oped for estimating GDL thermal conductivity. The model considers PTFE addition of thermal conductivity on PTFE, MPL, and compression is considered. Thermal contact resistances between GDL

  17. Study on the steady operating state of a micro-pulse electron gun

    SciTech Connect (OSTI)

    Kui, Zhou; Xing, Luo; Xiangyang, Lu; Shengwen, Quan; Jifei, Zhao; Ziqin, Yang

    2014-09-15

    Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856?MHz has been designed, constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.

  18. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  19. Raman Lidar (RL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  20. Raman Lidar Receives Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.Raman Lidar2

  1. Doppler Lidar (DL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  2. ARM - Datastreams - mpl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love toDatastreamsmoltsedassfcclass1 Documentation XDC documentation Data QualityDatastreamsmpl

  3. ARM - Campaign Instrument - mpl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday,air Comments?govInstrumentsmaeri Comments? Wemich-airgovInstrumentsmpl

  4. Position Announcement Postdoctoral Research Associate Lidar Remote Sensing

    E-Print Network [OSTI]

    Salvaggio, Carl

    Position Announcement Postdoctoral Research Associate ­ Lidar Remote Sensing Department Summary: The employee will provide remote sensing expertise and conduct research in lidar remote sensing from advanced terrestrial, airborne, and satellite remote sensing platforms, including UASs (Unmanned

  5. Heterodyne lidar for chemical sensing

    SciTech Connect (OSTI)

    Oldenborg, R. C. (Richard C.); Tiee, J. J. (Joe J.); Shimada, T. (Tsutomu); Wilson, C. W. (Carl W.); Remelius, D. K. (Dennis K.); Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO{sub 2} transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics have to be validated. The baseline coherent DIAL detection sensitivity that can be achieved averaging multiple laser pulses and by comparisons of different wavelengths will be demonstrated. Factors that are presently limiting performance and attempts to circumvent these issues will be discussed.

  6. REFURBISHMENT AND UPGRADE OF FE BOLTZMANN/RAYLEIGH TEMPERATURE LIDAR AT BOULDER FOR A MCMURDO LIDAR CAMPAIGN IN ANTARCTICA

    E-Print Network [OSTI]

    Chu, Xinzhao

    REFURBISHMENT AND UPGRADE OF FE BOLTZMANN/RAYLEIGH TEMPERATURE LIDAR AT BOULDER FOR A MCMURDO LIDAR conditions, refurbishment and upgrade of the system was necessary in order to restore its performance. More

  7. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  8. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  9. Lidar techniques for search and rescue

    SciTech Connect (OSTI)

    Cabral, W.L.

    1985-01-01

    Four techniques for using LIDAR in Search and Rescue Operations will be discussed. The topic will include laser retroreflection, laser-induced fluorescence in the visible, laser-induced fluorescence during daylight hours, and laser-induced fluorescence in the uv. These techniques use high-repetition rate lasers at a variety of frequencies to induce either fluorescence in dye markers or retroreflection from plastic corner cubes on life preservers and other emergency markers.

  10. Oil spill fluorosensing lidar for inclined onshore or shipboard operation

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    Oil spill fluorosensing lidar for inclined onshore or shipboard operation Renata Karpicz, Andrej An oil spill detection fluorosensing lidar for onshore or shipboard operation is described. Some the back- ground water column fluorescence from signals such as yellow substance. This enables oil

  11. Ris-R-Report LIDAR Wind Speed Measurements from a

    E-Print Network [OSTI]

    Risø-R-Report LIDAR Wind Speed Measurements from a Rotating Spinner: "SpinnerEx 2009" Nikolas: LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009) Division: Wind Energy Division application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner

  12. Lidar on the Phoenix mission to Mars James Whiteway,1

    E-Print Network [OSTI]

    Duck, Thomas J.

    Lidar on the Phoenix mission to Mars James Whiteway,1 Michael Daly,2 Allan Carswell,3 Thomas Duck,4 from the surface of Mars as part of the Phoenix mission. This will measure the height profile, and C. Cook (2008), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi:10

  13. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    1998-03-01

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  14. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  15. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  16. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2004-10-01

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  17. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  18. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  19. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  20. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  1. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  2. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  3. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  4. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  5. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  6. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  7. Rayleigh lidar observations of mesosphere temperature structure

    SciTech Connect (OSTI)

    Meriwether, J.W.; Dao, P.D.; Mcnutt, R.T.; Klemetti, W.; Moskowitz, W.; Davidson, G. [Hanscom Air Force Base, MA (United States)]|[PhotoMetrics, Inc., Woburn, MA (United States)

    1994-08-01

    Ground-based observations of atmospheric density profiles to 92 km were obtained for four successive seasons between summer 1989 and spring 1990. These results were obtained with a powerful Rayleigh lidar facility located at Wright Patterson Air Force Base (Dayton, Ohio). This instrument combined a 14-W XeF laser transmitter with a 2.54-m receiver mirror to observe returns from altitudes between 40 and 95 km. Analysis of the scale height dependence of the density profiles produced temperatures with a measurement error of about 5 K (approximately 2.5%) at 90 km when the lidar data was averaged for 20 min. and smoothed in height over 2.7 km. Examination of these profiles for the total of 18 nights showed that there often existed in the mesophere a layer of enhanced temperatures when compared with the U.S. standard profile. The layer centroid height was about 85 km for summer and 70 to 75 km for winter. Data obtained for the equinoctial periods showed the amplitude of these layers to be weak. The winter temperature profiles showed evidence for long-period waves passing through the region of the thermal anomaly while the equinox profiles revealed more sporadic wave activity with shorter vertical wavelengths. Both the winter and summer temperature data displayed regions where the observed lapse rate approached the adiabatic lapse rate. In the summer the wave activity near the iversion layer was weak.

  8. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

  9. Mitigation of Coastal Bluff Instability in San Diego County, California/Evaluating Seacliff Morphology and Erosion Control in San Diego County Using LIDAR and GIS

    E-Print Network [OSTI]

    Ashford, Scott

    2005-01-01

    County Using LIDAR and GIS In order to evaluate seacliffgeographic information systems (GIS) analysis. LIDAR is the

  10. Automatic registration of LIDAR and optical images of urban scenes

    E-Print Network [OSTI]

    Mastin, Dana Andrew

    Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

  11. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-24

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates somemore »of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  12. A motor drive control system for the Lidar Polarimeter 

    E-Print Network [OSTI]

    Leung, Waiming

    1977-01-01

    A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Submitted to the Graduate College of Texas A/M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCF, May 1977 Major... Subject: Electrical Engineering A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Approved as to style and content by: Chairman o Comm' ee ea o epartment Member Mem er May 1977 ABSTRACT A Motor Drive Control...

  13. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  14. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    and tonal lineaments were used to define possible faults in both the LiDAR and LSA photo data sets.The LiDAR and LSA photo analysis has identified a large number of previously...

  15. THEORETICAL MODELING OF LIDAR RETURN PHENOMENOLOGY FROM SNOW AND ICE SURFACES

    E-Print Network [OSTI]

    Kerekes, John

    THEORETICAL MODELING OF LIDAR RETURN PHENOMENOLOGY FROM SNOW AND ICE SURFACES J. Kerekes, J. Zhang the science of lidar sensing of complex ice and snow surfaces as well as in support of the upcoming ICESat- 2 from snow and ice surfaces. First, the anticipated lidar return characteristics for a sloped non

  16. 6.4 ARCTIC OBSERVATIONS WITH THE UNIVERSITY OF WISCONSIN HIGH SPECTRAL RESOLUTION LIDAR

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    @lidar.ssec.wisc.edu 2 NOAA Earth Systems Research Laboratory, 325 Broadway, Boulder, CO, USA taneil seatainers are joined together as shelter for the lidar, radar, and PAREI instruments. The 35 GHz radar antenna is seen on the near corner of the shelter and the zenith facing lidar window is located

  17. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect (OSTI)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  18. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  19. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  20. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  1. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  2. Imaging doppler lidar for wind turbine wake profiling

    DOE Patents [OSTI]

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  3. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    SciTech Connect (OSTI)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  4. Automatic Construction of Building Footprints from Airborne LIDAR Data

    E-Print Network [OSTI]

    Chen, Shu-Ching

    1 Automatic Construction of Building Footprints from Airborne LIDAR Data Keqi Zhang, Jianhua Yan. INTRODUCTION BUILDING footprints are one of the fundamental GIS data components that can be used to estimate, and estimation of building base elevation for flood insurance [2]. In addition, footprint data in combination

  5. Airborne lidar detection and characterization of internal waves in a

    E-Print Network [OSTI]

    Shaw, Joseph A.

    on the strength of the wind. This tends to create a layer of less dense water on top of the more dense water below of water with lower density at the surface. This layer is typically mixed with the water below. The airborne lidar detected a thin plankton layer at the bottom of the upper layer of the water

  6. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  7. Lidar fluorosensing of mineral oil spills on the sea surface

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    be discriminated from heavy fuel, and from less harmful substances like fish oil or vegetable oil, Fig. 3, whichLidar fluorosensing of mineral oil spills on the sea surface Theo Hengstermann and Rainer Reuter Airborne .fluorosensor measurements over maritime oil spills show that this method enables a sensitive

  8. Wind velocity measurements using a pulsed LIDAR system: first results

    E-Print Network [OSTI]

    Peinke, Joachim

    , M K¨uhn3 and J Peinke4 1,4 ForWind Center for Wind Energy Research, University of Oldenburg, Germany 2,3 Endowed Chair of Wind Energy, University of Stuttgart, Germany E-mail: 1 matthias relevance for wind energy utilization. Different technologies are in use in this field, among them LIDAR

  9. Research Article Application of Short-Range LIDAR in

    E-Print Network [OSTI]

    Tang, Wenbo

    a series of meteorological instruments, including long-range LIDAR (light detection and ranging) systems Island of complex terrain to the south. The Lantau Island is composed of rows of northeast- southwest are brought about by strong winds across the Lantau Island to the south of the airport, including the strong

  10. Meenakshi Power Ltd MPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop,Smw importMeeme, Wisconsin:

  11. ARM - Campaign Instrument - mpl-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday,air Comments?govInstrumentsmaeri Comments?

  12. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    SciTech Connect (OSTI)

    Scholbrock, F. A.; Fleming, P.; Wright, A.; Davoust, S.; Jehu, A.; Bouillet, M.; Bardon M.; Vercherin, B.

    2014-02-01

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  13. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S., E-mail: drssatyanarayana.malladi@gmail.com; Satyanarayana, Malladi, E-mail: drssatyanarayana.malladi@gmail.com; Dhaman, Reji K., E-mail: drssatyanarayana.malladi@gmail.com; Motty, G. S., E-mail: drssatyanarayana.malladi@gmail.com [Department of Optoelectronics, University of Kerala, Karyavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  14. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-07

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine powermore »performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.« less

  15. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  16. Window Transmission Monitoring and Cleaning Schemes used with the LIDAR Thomson Scattering Diagnostic on the JET Tokamak

    E-Print Network [OSTI]

    Window Transmission Monitoring and Cleaning Schemes used with the LIDAR Thomson Scattering Diagnostic on the JET Tokamak

  17. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  18. Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report

    SciTech Connect (OSTI)

    Johnson, David K; Lewis, Matthew J; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

    2013-02-01

    The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

  19. AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA

    E-Print Network [OSTI]

    Schindler, Konrad

    AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA N. Demir* , E. Baltsavias, Detection, 3D Modelling ABSTRACT: In this work, an automated approach for 3D building roof modelling of accurate and complete 3D building models with high degree of automation. Aerial images and LiDAR data

  20. BUILDING ROOF SEGMENTATION AND RECONSTRUCTION FROM LIDAR POINT CLOUDS USING CLUSTERING TECHNIQUES

    E-Print Network [OSTI]

    Shan, Jie

    BUILDING ROOF SEGMENTATION AND RECONSTRUCTION FROM LIDAR POINT CLOUDS USING CLUSTERING TECHNIQUES presents an approach to creating a polyhedral model of building roof from LiDAR point clouds using. The normal vectors are then clustered together to determine the principal directions of the roof planes

  1. 3-D tomographic imaging of ocean mines from real and simulated lidar returns

    E-Print Network [OSTI]

    Singer, Andrew C

    3-D tomographic imaging of ocean mines from real and simulated lidar returns Nail C¸adalli, Peter J of underwater objects, where the trans- mitted laser beam can penetrate the air-water interface and illuminate by using an accurate statistical model that incorporates multiple scattering. Keywords: lidar, ocean optics

  2. ARM - Field Campaign - Lidar support for ICECAPS at Summit, Greenland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic- HemisphericCloudsgovCampaignsLidar

  3. Lidar Inter-Comparison Exercise Final Campaign Report A Protat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidentialLensless Imaging ofLibSciTeaming UpLidar

  4. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    SciTech Connect (OSTI)

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest) from the lidar (the lidar beam path was limited by site constraints and was {approx}100 meters). When one door of each of the cars was opened (sequentially), the lidar was clearly able to determine which vehicles had been tagged and which one was not. The lidar is probably capable of greater than 0.5 kilometer standoff distances based on the extreme amount of signal return achieved (so much that the system had to be de-tuned). The BNL lidar system, while optimized to the extent possible with available parts and budget, was not as sensitive as it could be. Steps to improve the lidar are detailed in this report and include using a better laser system (for more stable power output), dual wavelengths (to improve the sensitivity and allow common mode noise reduction and to allow the use of the lidar in a scanning configuration), heterodyning (for range resolved PFT detection) and an off-axis optical configuration (for improved near field sensitivity).

  5. Complex-optical-field lidar system for range and vector velocity measurement

    E-Print Network [OSTI]

    Gao, Shuang; Sullivan, Maurice O.; Hui, Rongqing

    2012-11-01

    lidar system based on the measurement of complex optical field is demonstrated for the first time. An electro-optic in- phase/quadrature (I/Q) modulator is used in the lidar transmitter to realize carrier-suppressed complex optical field modulation...-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Opt. Lett. 37(11), 2022–2024 (2012). 11. Y. Zhang, M. O’Sullivan, and R. Hui, “Digital subcarrier multiplexing for flexible spectral allocation in optical transport network...

  6. Fully automatic calibration of LIDAR and video streams from a vehicle

    E-Print Network [OSTI]

    Bileschi, Stanley M.

    This work describes a fully automatic technique to calibrate a geometric mapping between lidar and video feeds on a mobile ground-based platform. This data association is a crucial first step for any multi-modal scene ...

  7. Statistical methods for 2D-3D registration of optical and LIDAR images

    E-Print Network [OSTI]

    Mastin, Dana Andrew

    2009-01-01

    Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

  8. USING LIDAR TO MEASURE PERFLUOROCARBON TRACERS FOR THE VERIFICATION AND MONITORING

    E-Print Network [OSTI]

    and pilot-scale indoor experiments using an a continuous wave, line-tunable infrared CO2 laser were used region Using a pilot-scale lidar system in a 40 m indoor hallway air concentrations of PMCH were

  9. Simulation of Lidar Return Signals Associated with Water Clouds 

    E-Print Network [OSTI]

    Lu, Jianxu

    2010-01-14

    depolarization is not shown and the sensitivity studies on the empirical relationship are not very clear. Thus more details are needed for further research. This thesis will present another way to derive the multiple-scattering lidar equa- tion reported by Rakovi....0?m when 10 million photons are sampled. The idea is from Winker and Poole [9]. 38 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 Ef fec tiv eM ult ipl eS cat ter ing Fa cto r?? Integrated Volume Depolarization Ratio ?acc 3?m4?m 6?m8?m 15?m20?m (1??acc...

  10. Tides in the mesopause region over Fort Collins, Colorado (41N, 105W) based on lidar temperature observations

    E-Print Network [OSTI]

    - teristics of the westward traveling solar tidal waves in the mesopause region, which can impact thermal hopefully stimulate future tidal studies with lidar temperature, and zonal and meridional wind observations: tides, mesopause region, lidar temperature, midlatitude 1. Introduction [2] Atmospheric solar tides

  11. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing

    E-Print Network [OSTI]

    Baum, Bryan A.

    A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2]. Other studies have compared CO2- slicing cloud heights with those computed from lidar data [Smith in assessing the accuracy of the CO2-slicing cloud height algorithm. Infrared measurements of upwelling

  12. Remote control and telescope auto-alignment system for multiangle LIDAR under development at CEILAP, Argentina

    E-Print Network [OSTI]

    Pallotta, Juan; Otero, Lidia; Chouza, Fernando; Raul, Delia; Gonzalez, Francisco; Etchegoyen, Alberto; Quel, Eduardo

    2013-01-01

    At CEILAP (CITEDEF-CONICET), a multiangle LIDAR is under development to monitor aerosol extinction coefficients in the frame of the CTA (Cherenkov Telescope Array) Project. This is an initiative to build the next generation of ground-based instruments to collect very high energy gamma-ray radiation (>10 GeV). The atmospheric conditions are very important for CTA observations, and LIDARs play an important role in the measurement of the aerosol optical depth at any direction. The LIDAR being developed at CEILAP was conceived to operate in harsh environmental conditions during the shifts, and these working conditions may produce misalignments. To minimize these effects, the telescopes comprising the reception unit are controlled by a self-alignment system. This paper describes the self-alignment method and hardware automation.

  13. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect (OSTI)

    S, Motty G, E-mail: mottygs@gmail.com; Satyanarayana, M., E-mail: mottygs@gmail.com; Krishnakumar, V., E-mail: mottygs@gmail.com; Dhaman, Reji k., E-mail: mottygs@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  14. Master Thesis: Dual-Doppler technique applied to scanning lidars for the characterization of

    E-Print Network [OSTI]

    Peinke, Joachim

    -lidar system was developed and installed at the offshore wind farm "alpha ventus". This system includes three and wind turbine wakes in large wind farms offshore. Wind Energy, 12(5):431­444, 2009. [2] Brian Hirth, D of multiple wakes in a wind farm M. van Dooren Supervisors: D. Trabucchi, K. S. Hansen University

  15. Estimation of tropical forest structural characteristics using large-footprint lidar

    E-Print Network [OSTI]

    Weishampel, John F.

    Estimation of tropical forest structural characteristics using large-footprint lidar Jason B in identifying the amount of carbon in terrestrial vegetation pools and is central to global carbon cycle studies. Although current remote sensing techniques recover such tropical forest structure poorly, new large-footprint

  16. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore »true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less

  17. Surface-Layer Wind and Turbulence Profiling from LIDAR: Theory and Measurements

    E-Print Network [OSTI]

    Surface-Layer Wind and Turbulence Profiling from LIDAR: Theory and Measurements Régis DANIELIAN (Vestas Wind System) Hans Ejsing JØRGENSEN (Wind Energy Department, Risø. Contact: haej@risoe.dk) Torben MIKKELSEN (Wind Energy Department, Risø. Contact: tomi@risoe.dk) Jacob MANN (Wind Energy Department, Risø

  18. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  19. Remote sensing the wind using Lidars and Sodars Ioannis Antoniou (1)

    E-Print Network [OSTI]

    masts for their mounting and the costs associated with the purchase, erection and instrumentation for wind energy applications. The first reason is that the cost (purchase, erection, instrumentation with power curve and resource assessment measurements. Both SODAR (SOund Detection And Ranging) and LIDAR

  20. ARCTIC OBSERVATIONS WITH THE UNIVERSITY OF WISCONSIN HIGH SPECTRAL RESOLUTION LIDAR

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    ) as part of the US National Oceanic and At- mospheric Administration (NOAA) SEARCH program. SEARCH seeks- lution Lidar has provided nearly continuous data since its August 2005 deployment at Eureka, Canada (80N. An expanded transmitted beam and low pulse energy make the output beam eye safe. Using molecular scattering

  1. Lidars in Wind Energy Jakob Mann, Ferhat Bingl, Torben Mikkelsen, Ioannis Antoniou, Mike

    E-Print Network [OSTI]

    Lidars in Wind Energy Jakob Mann, Ferhat Bingöl, Torben Mikkelsen, Ioannis Antoniou, Mike Courtney, Gunner Larsen, Ebba Dellwik Juan Jose Trujillo* and Hans E. Jørgensen Wind Energy Department Risø of the presentation · Introduction to wind energy · Accurate profiles of the mean wind speed · Wakes behind turbines

  2. Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects

    E-Print Network [OSTI]

    Singer, Andrew C

    returns from the surrounding water medium and ocean bottom. Our results provide a generalization ocean lidar return, obtained by a CCD array. © 2002 Optical Society of America OCIS codes: 010.3640, 030 a laser to generate a short, high-powered pulse of light. The transmitted laser beam can penetrate the air

  3. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  4. Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    SciTech Connect (OSTI)

    Danny L. Anderson

    2012-05-01

    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates a new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.

  5. Estimating forest structural characteristics with airborne lidar scanning and a near-real time profiling laser systems 

    E-Print Network [OSTI]

    Zhao, Kaiguang

    2009-05-15

    LiDAR (Light Detection and Ranging) directly measures canopy vertical structures, and provides an effective remote sensing solution to accurate and spatiallyexplicit mapping of forest characteristics, such as canopy height and Leaf Area Index...

  6. Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system

    DOE Patents [OSTI]

    Schmitt, Randal L. (Tijeras, NM); Henson, Tammy D. (Albuquerque, NM); Krumel, Leslie J. (Cedar Crest, NM); Hargis, Jr., Philip J. (Albuquerque, NM)

    2006-06-20

    A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.

  7. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    SciTech Connect (OSTI)

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  8. ARM - Publications: Science Team Meeting Documents: MPL Hardware Upgrades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARMCarloDerivingimpactand New

  9. ARM - Evaluation Product - MPL Corrected for Ship Motion (MPLPOLFSSHIPCOR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA Contacts ENAProductsHSRL Corrected forCorrectionfor

  10. ARM - PI Product - Planetary Boundary Layer from AERI and MPL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSAProductsMerged and corrected 915Dust

  11. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR

    E-Print Network [OSTI]

    Bunkin, Alexey F; Lednev, Vasily N; Lushnikov, Dmitry L; Marchenko, Aleksey V; Morozov, Eugene G; Pershin, Sergey M; Yulmetov, Renat N

    2013-01-01

    A compact Raman LIDAR system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the RAS. The developed system is based on a diode pumped solid state YVO4:Nd laser combined with compact spectrograph equipped with gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (~20 kg) and low power consumption (300 W) make possible to install the device on any vehicle including unmanned aircraft or submarine system. The Raman LIDAR presented was used for Svalbard fjords study and analysis of different influence of the open sea and glaciers on the water properties. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It...

  12. TARSHA-KURDI, F., LANDES, T., GRUSSENMEYER, P., (2008). Extended RANSAC algorithm for automatic detection of building roof planes from Lidar data.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2008-01-01

    detection of building roof planes from Lidar data. The Photogrammetric Journal of Finland. Vol. 21, n°1, 2008, pp.97-109. EXTENDED RANSAC ALGORITHM FOR AUTOMATIC DETECTION OF BUILDING ROOF PLANES FROM LIDAR the detection of 3D building roof planes are of crucial importance. For this purpose, this paper studies

  13. Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0856420 LiDAR and optical imaging for 3-D fracture orientations

    E-Print Network [OSTI]

    Maerz, Norbert H.

    #0856420 LiDAR and optical imaging for 3-D fracture orientations Otoo, J. N., Maerz, N. H. Missouri manifest themselves in rock cuts as ,,facets that can be measured by LIDAR or fracture ,,traces that can mechanical break or fracture of negligible tensile strength, it has a low shear strength and high fluid

  14. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

  15. Quantifying Surface Subsidence along US Highway 50, Reno County, KS using Terrestrial LiDAR

    E-Print Network [OSTI]

    Herrs, Andrew J.

    2010-04-23

    by Brett Bennett of the Kansas Geological Survey. Initial scouting of the study area was done with the help of Bob Henthorne from KDOT. LiDAR acquisition at each project site was accomplished with the help of Nick Laskares, Willy Rittase, Ken Stalder..., Mike Taylor, Lynn Watney, the Hutchinson KDOT maintenance crew, and KDOT’s Salina Regional Geology Department. Kwan Yee Cheng and Richard Styron also helped with plotting data in MATLAB. ArcMap techniques were demonstrated by Prabin Shilpakar from...

  16. Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.Raman Lidar

  17. Marine boundary layer structure as observed by space-based Lidar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, T.; Wang, Z.; Zhang, D.

    2015-12-03

    The marine boundary layer (MBL) structure is important to the exchange of heat, momentum, and moisture between oceans and the low atmosphere and to the marine low cloud processes. This paper explores MBL structure over the eastern Pacific region with a new 4 year satellite-based dataset. The MBL aerosol lidar backscattering from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) was used to identify the MBL top (BLH) and the mixing layer height (MLH). Results showed that MBL is generally decoupled with MLH / BLH ratio ranging from ? 0.5 to ? 0.8 and the MBL decoupling magnitude ismore »mainly controlled by estimated inversion strength (EIS) that affects the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops, which may relate to the meso-scale circulations or gravity wave in MBL, also show dependence on EIS. Further analysis indicated that the MBL shows similar decoupled structure for clear sky and cumulus cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  18. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore »sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing. « less

  19. Using LiDAR and normalized difference vegetation index to remotely determine LAI and percent canopy cover at varying scales 

    E-Print Network [OSTI]

    Griffin, Alicia Marie Rutledge

    2009-05-15

    The use of airborne LiDAR (Light Detection and Ranging) as a direct method to evaluate forest canopy parameters is vital in addressing both forest management and ecological concerns. The overall goal of this study was to develop the use of airborne...

  20. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  1. Plant Species Classification using a 3D LIDAR Sensor and Machine Learning Ulrich Weiss and Peter Biber

    E-Print Network [OSTI]

    Zell, Andreas

    Plant Species Classification using a 3D LIDAR Sensor and Machine Learning Ulrich Weiss and Peter of the plant and species. Automatically distinguishing between plant species is a challenging task, because of the appearances and the differences between the plants used by humans, into a formal, computer understandable form

  2. Radar/Lidar Sensor Fusion for Car-Following on Highways Daniel Gohring, Miao Wang, Michael Schnurmacher, Tinosch Ganjineh

    E-Print Network [OSTI]

    Rojas, Raúl

    Radar/Lidar Sensor Fusion for Car-Following on Highways Daniel G¨ohring, Miao Wang, Michael Schn-time algorithm which enables an autonomous car to comfortably follow other cars at various speeds while keeping that depends on the position as well as the velocity of the followed car. Radar sensors provide reliable

  3. CLOUD FRACTION STATISTICS DERIVED FROM 2YEARS OF HIGH SPECTRAL RESOLUTION LIDAR DATA ACQUIRED AT EUREKA, CANADA.

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    CLOUD FRACTION STATISTICS DERIVED FROM 2YEARS OF HIGH SPECTRAL RESOLUTION LIDAR DATA ACQUIRED(AHSRL) and the NOAA 8.6 mm wavelength cloud radar (MMCR). Both instruments have operated nearly continuously since Sept 2005. This paper presents a record of cloud cover, cloud altitude and cloud phase derived

  4. Sedimentological Reinterpretation of Surficial Unconsolidated Debris Flows and Stream Deposits of the Southern Flanks of Grand Mesa, CO: An Integrated LiDAR Approach 

    E-Print Network [OSTI]

    Blakeley, Mitchell W.

    2014-08-08

    . This study developed a sedimentological description and interpretation of these deposits and tested the capabilities of terrestrial LiDAR (Light Detection and Ranging) for use in sedimentological studies. This research addressed the origin of the deposits...

  5. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the

    E-Print Network [OSTI]

    Protat, Alain

    -term meteorological measurements by active (radar and lidar) and passive (infrared and visible fluxes) remote sensing effect is governed primarily by the equi- librium between their albedo effect and their green- house

  6. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect (OSTI)

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  7. Raman Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.

  8. Design of a Shadowband Spectral Radiometer for the Retrieval of Thin Cloud Optical Depth, Liquid Water Path, and the Effective Radius

    E-Print Network [OSTI]

    Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole accuracies that strain the capabilities of traditional detectors (e.g., microwave receivers) and theoretical for LWP , 100 g m22 (Turner et al. 2007b). For example, micropulse lidars (MPLs) and microwave radiometers

  9. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    SciTech Connect (OSTI)

    Newsom, Rob K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2011-04-14

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds show that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.

  10. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  11. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  12. Quantifying and relating land-surface and subsurface variability in permafrost environments using lidar and surface geophsical datasets

    SciTech Connect (OSTI)

    Hubbard, Susan S [Lawrence Berkeley National Laboratory (LBNL); Gangodagmage, C [Los Alamos National Laboratory (LANL); Dafflon, B [Lawrence Berkeley National Laboratory (LBNL); Wainwright, H [Lawrence Berkeley National Laboratory (LBNL); Peterson, J [Lawrence Berkeley National Laboratory (LBNL); Gusmeroli, A [University of Alaska, Fairbanks; Ulrich, Craig [Lawrence Berkeley National Laboratory (LBNL); Wu, Yuxin [Lawrence Berkeley National Laboratory (LBNL); Wilson, Cathy [Los Alamos National Laboratory (LANL); Rowland, J [Los Alamos National Laboratory (LANL); Tweedie, Craig [University of Texas, El Paso; Wullschleger, Stan D [ORNL

    2013-01-01

    The complexity of permafrost dynamics and its critical impact on climate feedbacks warrant continued development of advanced high-latitude terrestrial ecosystem characterization and monitoring approaches. In this study, we explore the value of remote sensing and surface geophysical data for characterizing land surface and subsurface properties and their linkages in an Alaskan Coastal Plain ecosystem. We base our study on data collected at the end of the 2011 growing season in the Barrow Environmental Observatory, where a nested suite of measurements were collected within a polygon-dominated region including: surface ground penetrating radar, electromagnetic, and electrical resistance tomography data; thaw depth, soil temperature and moisture content, soil texture, soil carbon and nitrogen content, and major and trace cations. Previously-collected lidar data were also available for the study. Analysis of the datasets, individually and in combination, revealed the utility of the methods for characterizing critical land-surface and subsurface properties and associated spatial zonation. Lidar analysis was performed to extract geomorphic metrics (such as slope, curvature, and directed distance of polygons), which potentially indicate drainage potential and permafrost deformation state. Cluster analysis of these lidar-obtained attributes suggested that the land surface can be grouped into three spatially coherent zones, each having a dominant geomorphic expression including: a high centered polygon zone, a low centered polygon zone and a transitional zone. Comparison of the geophysical attributes from radar, electrical resistance tomography, and electromagnetic data with point measurements suggests that the surface geophysical data can provide very high-resolution information about subsurface properties that affect ecosystem feedbacks to climate, such as thaw depth and moisture content. Cluster analysis suggested that the geophysical attributes also varied spatially in a systematic way, suggesting the presence of three laterally distinct subsurface zones. Analysis of zone-based subsurface point measurements suggests that the geophysically-defined zones have unique distributions of hydrological, thermal, and geochemical properties and that the subsurface (geophysically-based) and land-surface (lidar-based) zonation is consistent. Although the close linkage between land surface (polygonal geomorphology) and subsurface (active layer) variability revealed through our study is not surprising, to our knowledge this is the first study to document such relationships using high resolution and non-invasive approaches. This study suggests the potential of using coincident lidar and surface geophysical measurements to quantify land surface and subsurface properties (respectively) and their linkages, which are likely to play a role in terrestrial ecosystem evolution and feedbacks to climate. These findings open the way for future research focused on using combined geophysical and remote sensing datasets to estimate subsurface and land-surface properties in high resolution and over large regions as is needed for process understanding and numerical model initialization in high latitude terrestrial ecosystems.

  13. The probability of laser caused ocular injury to the aircrew of undetected aircraft violating the exclusion zone about the airborne aura LIDAR.

    SciTech Connect (OSTI)

    Augustoni, Arnold L.

    2006-12-01

    The probability of a laser caused ocular injury, to the aircrew of an undetected aircraft entering the exclusion zone about the AURA LIDAR airborne platform with the possible violation of the Laser Hazard Zone boundary, was investigated and quantified for risk analysis and management.

  14. Using LiDAR, Aerial Photography, and Geospatial Technologies to Reveal and Understand Past Landscapes in Four West Central Missouri Counties

    E-Print Network [OSTI]

    Price, R. Zane

    2012-05-31

    . Each sensor offers unique advantages and disadvantages due to the design and construction of the sensor. LiDAR can strip away vegetation to present a bare earth model (a DTM) of terrain, useful in the detection of features revealed by subtle elevation...

  15. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Combined lidar and sun-photometer retrievals of ash particle size and mass

    E-Print Network [OSTI]

    Hogan, Robin

    -photometer retrievals of ash particle size and mass concentration from the Eyjafjallaj¨okull volcano Robin J. Hogan,1 the need for lidar monitoring stations capa- ble of routinely estimating the vertical profile of ash mass to demonstrate that large errors are likely in methods that attempt to infer the properties of the ash from

  16. Deriving a Framework for Estimating Individual Tree Measurements with Lidar for Use in the TAMBEETLE Southern Pine Beetle Infestation Growth Model 

    E-Print Network [OSTI]

    Stukey, Jared D.

    2011-02-22

    , individual bole height (IBH), diameter at breast height (DBH), length of crown (CrHT), and age for use in TAMBEETLE; (2) to estimate individual tree age using lidar-estimated height and site index provided by the United States Department of Agriculture (USDA...

  17. 7 Plots of Biomass Burning and Dust Plumes This supplementary section shows curtain plots from the NASA Langley airborne High Spectral Resolution Lidar for

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    7 Plots of Biomass Burning and Dust Plumes This supplementary section shows curtain plots from the NASA Langley airborne High Spectral Resolution Lidar for cases of fresh biomass burning plumes and dust: Curtain plots of HSRL backscatter coefficients and intensive properties for transects over fresh biomass

  18. Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and

    E-Print Network [OSTI]

    Hogan, Robin

    Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

  19. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    SciTech Connect (OSTI)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of incoming wind speeds that could be provided by LIDAR. Non-causal series expansion and Preview Control methods reduce blade root loads but increase tower bending in simulation results. The optimized FIR filter reduces loads overall, keeps pitch rates low, and maintains rotor speed regulation and power capture, while using imperfect wind measurements provided by the spinning continuous-wave LIDAR model.

  20. Analysis of mixing layer heights inferred from radiosonde, wind profiler, airborne lidar, airborne microwave temperature profiler, and in-situ aircraft data during the Texas 2000 air quality study in Houston, TX 

    E-Print Network [OSTI]

    Smith, Christina Lynn

    2005-08-29

    The mixing layer (ML) heights inferred from radiosondes, wind profilers, airborne lidar, airborne microwave temperature profiler (MTP), and in-situ aircraft data were compared during the Texas 2000 Air Quality Study in the Houston area...

  1. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B. (Anthony B.); Rohde, C. A. (Charles A.); Ho, Cheng,

    2001-01-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  2. S1MPL:E TECHNIQUES TO CO~RIRECI'FOR VCO NONLINEARITIES

    E-Print Network [OSTI]

    York, Robert A.

    wave tank (fig. l),and a combination of a simple hardware linearization technique and the software mea- surement of a metal calibrittion sphere suspended above the wave tank. 0-7803-3246-6/96/$5.000IEE on a triple-balanced mixer were employed for simulta.neous measurement of the CO-and cross

  3. XRAYOPS Info Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar

  4. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore »using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  5. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore »under stratocumulus, where cloud water path is retrieved with an error of 31 g m?2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m?2.« less

  6. Airborne Multiwavelength High-Spectral-Resolution Lidar (HSRL-2) Observations During TCAP 2012: Vertical Proles of Optical and Microphysical Properties of a Smoke/Urban Haze Plume Over the Northeastern Coast of the US

    SciTech Connect (OSTI)

    Muller, Detlef; Hostetler, Chris A.; Ferrare, R. A.; Burton, S. P.; Chemyakin, Eduard; Kolgotin, A.; Hair, John; Cook, A. L.; Harper, David; Rogers, R. R.; Hare, Rich; Cleckner, Craig; Obland, Michael; Tomlinson, Jason M.; Berg, Larry K.; Schmid, Beat

    2014-10-10

    We present rst measurements with the rst airborne multiwavelength High-Spectral Resolution Lidar (HSRL-2), developed by NASA Langley Research Center. The instrument was operated during the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed out ow of urban haze and fresh biomass burning smoke from the East Coast of the US out over the West Atlantic Ocean. Lidar ratios at 355 and 532 nm were ... sr indicating moderately absorbing aerosols. Extinctionrelated Angstrom exponents were 1.5{2 pointing at comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieves particle e*ective radii of approximately 0.2 *m, which is in agreement with the large Angstrom exponents. We nd reasonable agreement to particle size parameters obtained from situ measurements carried out with the DOE G-1 aircraft that ew during the lidar observations.

  7. With a ground-based Doppler lidar on the Northwest side of a wind farm in the Tehachapi Pass of California, measurements were collected for repeating sector sweeps to the Northwest, measuring up to

    E-Print Network [OSTI]

    With a ground-based Doppler lidar on the Northwest side of a wind farm in the Tehachapi Pass. The method being explored uses real-time measurements of wind velocity made upstream of the wind farm and models the power output of a turbine in the wind farm as though it were located upstream. This determines

  8. ESTIMATION OF THE LIDAR OVERLAP FUNCTION BY NON-LINEAR A. C. Povey1, R. G. Grainger1, D. M. Peters1, J. L. Agnew2, and D. Rees3

    E-Print Network [OSTI]

    Oxford, University of

    for the extinction profile, constrained by aerosol opti- cal thickness. Considering simulated data, the scheme is successful even where the aerosol profile deviates sig- nificantly from the simple model assumed. Application. Further, many methods of lidar analysis are designed to only consider regions where the overlap function

  9. High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications

    SciTech Connect (OSTI)

    Henry Revercomb, David Tobin, Robert Knuteson, Lori Borg, Leslie Moy

    2009-06-17

    This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004. More specifically, our major achievements for ARM include 1. Development of the Atmospheric Emitted Radiance Interferometer (AERI) to function like a satellite on the ground for ARM, providing a steady stream of accurately calibrated spectral radiances for Science Team clear sky and cloud applications (Knuteson et al. 2004a), 2. Detailed radiometric calibration and characterization of AERI radiances, with uncertainty estimates established from complete error analyses and proven by inter-comparison tests (Knuteson et al. 2004b), 3. AERI data quality assessment and maintenance over the extended time frames needed to support ARM (Dedecker et al., 2005) 4. Key role in the radiative transfer model improvements from the AERI/LBLRTM QME (Turner et al. 2004) and AERI-ER especially from the SHEBA experiment (Tobin et al. 1999), 5. Contributed scientific and programmatic leadership leading to significant water vapor accuracy improvements and uncertainty assessments for the low to mid troposphere (Turner et al. 2003a, Revercomb et al. 2003), 6. Leadership of the ARM assessment of the accuracy of water vapor observations from radiosondes, Raman Lidar and in situ aircraft observations in the upper troposphere and lower stratosphere (Tobin et al. 2002, Ferrare et al. 2004), 7. New techniques for characterizing clouds from AERI (DeSlover et al. 1999, Turner 2003b, Turner et al. 2003b), 8. Initial design and development of the Scanning-HIS aircraft instrument and application to ARM UAV Program missions (Revercomb et al. 2005), and 9. Coordinated efforts leading to the use of ARM observations as a key validation tool for the high resolution Atmospheric IR Sounder on the NASA Aqua platform (Tobin et al. 2005a) 10. Performed ARM site and global clear sky radiative closure studies that shows closure of top-of-atmosphere flux at the level of ~1 W/m2 (Moy et al 2008 and Section 3 of this appendix) 11. Performed studies to characterize SGP site cirrus cloud property retrievals and assess impacts on computed fluxes and heating rate profiles (Borg et al. 2008 and Section 2 of this appendix).

  10. ARM - Measurement - Lidar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticle sizefractiongovMeasurementsLatent

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols, andCorrelatonA NewSimplifyingARM Micropulse Lidar:

  12. X:\ARM_19~1\P185-192.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud base

  13. X:\ARM_19~1\P185-192.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK a band

  14. X:\ARM_19~1\P193-223.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK a

  15. X:\ARM_19~1\P193-223.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK ao e m

  16. X:\ARM_19~1\P193-223.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK ao e

  17. X:\ARM_19~1\P193-223.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK ao eeff

  18. X:\ARM_19~1\P193-223.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK ao

  19. X:\ARM_19~1\P193-223.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK aocm 1

  20. X:\ARM_19~1\P225-243.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK aocm

  1. X:\ARM_19~1\P225-243.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK aocmPr

  2. X:\ARM_19~1\P225-243.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK

  3. X:\ARM_19~1\P225-243.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK5

  4. X:\ARM_19~1\P225-243.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK52 µm

  5. X:\ARM_19~1\P245-258.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK52 µm5

  6. X:\ARM_19~1\P245-258.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK52

  7. X:\ARM_19~1\P259-271.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud baseK52C

  8. X:\ARM_19~1\P259-271.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloud

  9. X:\ARM_19~1\P273-281.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c T KL In[q

  10. X:\ARM_19~1\P273-281.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c T KL

  11. X:\ARM_19~1\P273-281.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c T KLdBZe

  12. X:\ARM_19~1\P283-315.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c T

  13. X:\ARM_19~1\P283-315.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c TRemote

  14. X:\ARM_19~1\P283-315.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c

  15. X:\ARM_19~1\P283-315.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c Now at

  16. X:\ARM_19~1\P283-315.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c Now atr)

  17. X:\ARM_19~1\P283-315.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c Now atr)10

  18. X:\ARM_19~1\P283-315.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c Now

  19. X:\ARM_19~1\P317-334.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c NowFigure

  20. X:\ARM_19~1\P317-334.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ c

  1. X:\ARM_19~1\P317-334.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z LCL v v

  2. X:\ARM_19~1\P317-334.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z LCL v

  3. X:\ARM_19~1\P335-353.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z LCL va)

  4. X:\ARM_19~1\P335-353.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z LCL

  5. X:\ARM_19~1\P335-353.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z

  6. X:\ARM_19~1\P355-365.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,r e r e

  7. X:\ARM_19~1\P355-365.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,r e r

  8. X:\ARM_19~1\P355-365.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,r e r

  9. X:\ARM_19~1\P377-392.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,r e

  10. X:\ARM_19~1\P377-392.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,r e1 2

  11. X:\ARM_19~1\P377-392.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,r e1

  12. X:\ARM_19~1\P397-400.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,r e1P(

  13. X:\ARM_19~1\PG93-112.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,r e1P(T

  14. X:\ARM_19~1\PG93-112.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,r

  15. X:\ARM_19~1\PG93-112.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,rFigure

  16. X:\ARM_19~1\PG93-112.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv Z,rFigure

  17. X:\ARM_19~1\PG93-112.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ cv

  18. X:\ARM_19~1\PGS1-8.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZ

  19. X:\ARM_19~1\PGS1-8.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 C >

  20. X:\ARM_19~1\PGS19-27.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 C

  1. X:\ARM_19~1\PGS19-27.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CW 98 W,

  2. X:\ARM_19~1\PGS29-47.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CW 98

  3. X:\ARM_19~1\PGS29-47.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CW 981/3

  4. X:\ARM_19~1\PGS29-47.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CW

  5. X:\ARM_19~1\PGS29-47.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CW

  6. X:\ARM_19~1\PGS49-51.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CWSO 2

  7. X:\ARM_19~1\PGS53-62.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CWSO 2ms

  8. X:\ARM_19~1\PGS53-62.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CWSO

  9. X:\ARM_19~1\PGS63-75.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CWSOkm 2

  10. X:\ARM_19~1\PGS63-75.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24 CWSOkm

  11. X:\ARM_19~1\PGS77-91.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC 24

  12. X:\ARM_19~1\PGS77-91.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZC

  13. X:\ARM_19~1\PGS9-17.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZCSPD p p q

  14. X:\ARM_19~1\PGS9-17.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZCSPD p p

  15. X:\ARM_19~1\SHAW.TP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZCSPD p

  16. XANES Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZCSPD

  17. XE6_Tips_022011.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZCSPDFor m ost

  18. XE6_Tips_09302010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZCSPDFor m

  19. XFEL 2004 - Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZCSPDFor

  20. XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidar cloudZCSPDForIn

  1. XRMS: X-Ray Spectroscopy of Magnetic Solids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS: X-Ray

  2. XTD-4's Amy Bauer | National Security Science Magazine | Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS: X-RayNational

  3. XX 08

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS: X-RayNational8

  4. Xeon Phi Nationwide training sessions available from Intel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS: X-RayNational8

  5. Xia Huang | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS:Xia Huang Xia

  6. Xianghui Xiao | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS:Xia Huang

  7. Xiao-Min Lin | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS:Xia

  8. Xiaonan Lu | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS:XiaXiaonan Lu

  9. Xing Chen | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse lidarXRMS:XiaXiaonan

  10. Comparison of Mixed Layer Heights from Airborne High Spectral Resolution Lidar, Ground-based Measurements, and the WRP-Chem Model during CalNex and CARES

    SciTech Connect (OSTI)

    Scarino, Amy Jo; Obland, Michael; Fast, Jerome D.; Burton, S. P.; Ferrare, R. A.; Hostetler, Chris A.; Berg, Larry K.; Lefer, Barry; Haman, C.; Hair, John; Rogers, Ray; Butler, Carolyn; Cook, A. L.; Harper, David

    2014-06-05

    The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid incharacterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root7 mean-square (RMS) difference of 157 m and bias difference (HSRL radiosonde) of 5 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem HSRL) of -157 m) for CalNex and 0.59 (RMS difference of 689 m and a bias difference (WRF-Chem HSRL) of 220 m) for CARES. Aerosol backscatter simulations are also available from WRF15 Chem and are compared to those from HSRL to examine differences among the methods used to derive ML heights.

  11. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  12. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  13. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect (OSTI)

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  14. Radiative Energy Balance in the Tropical Tropopause Layer: An Investigation with ARM Data

    SciTech Connect (OSTI)

    Fu, Qiang

    2013-10-22

    The overall objective of this project is to use the ARM observational data to improve our understanding of cloud-radiation effects in the tropical tropopause layer (TTL), which is crucial for improving the simulation and prediction of climate and climate change. In last four and half years, we have been concentrating on (i) performing the comparison of the ice cloud properties from the ground-based lidar observations with those from the satellite CALIPSO lidar observations at the ARM TWP sites; (ii) analyzing TTL cirrus and its relation to the tropical planetary waves; (iii) calculating the radiative heating rates using retrieved cloud microphysical properties by combining the ground-based lidar and radar observations at the ARM TWP sites and comparing the results with those using cloud properties retrieved from CloudSat and CALIPSO observations; (iv) comparing macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidar observations; (v) improving the parameterization of optical properties of cirrus clouds with small effective ice particle sizes; and (vi) evaluating the enhanced maximum warming in the tropical upper troposphere simulated by the GCMs. The main results of our research efforts are reported in the 12 referred journal publications that acknowledge the DOE Grant No. DE-FG02-09ER64769.

  15. Efficient Open Source Lidar for Desktop Users

    E-Print Network [OSTI]

    Flanagan, Jacob Patrick

    2015-01-01

    handle this data in a more efficiently manner has become athe search methods for efficiently extracting the “area ofbased analysis, their efficiently falls short when handling

  16. Systematic Sampling of Scanning Lidar Swaths 

    E-Print Network [OSTI]

    Marcell, Wesley Tyler

    2011-02-22

    classical SyS arises from fact that SyS induces within-level (h) and between-level components of variance and that the between-level component is unmeasured (Cochran, 1977). The SRS-based estimator (2) is unbiased if the order of units... squared error is depicted differently in the graphics of Appendix E. On each page the panels are histograms of MSE for all h = 1, ? , k and i= 1, 2? , n possibilities, each 29 panel representing one of our eight estimators. The SRS histogram...

  17. Sandia Energy - ARM Raman Lidar Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring (ARM) program, measurements of water vapor profiles at high temporal and vertical resolution was deemed to be critical for both the radiative-transfer and...

  18. Sandia Energy - ARM Raman Lidar Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring (ARM) program, measurements of water vapor profiles at high temporal and vertical resolution was deemed to be critical for both the radiative-transfer and...

  19. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect (OSTI)

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  20. Comments on: ARM Raman Lidar Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP Post-Doctoral

  1. Comments on: ARM Raman Lidar Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP Post-Doctoral

  2. ARM - Campaign Instrument - co2lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday,air Comments? We would love to hear from you! Send us a note belowlidar

  3. ARM - Campaign Instrument - lidar-dial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday,air Comments? WegovInstrumentsirt-airgovInstrumentslidar-dial Comments?

  4. LiDAR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:LaredoLeelanauLeonicsLewisville,LiLiDAR

  5. Doppler Lidar Wind Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown2008Donald Raby Donald_ -498

  6. Sandia Energy - ARM Raman Lidar Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >Scientific andInstitute ResultsApplications Home

  7. Sandia Energy - ARM Raman Lidar Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >Scientific andInstitute ResultsApplications

  8. Reports on Deep Earth Sampling and Monitoring NUMBER1,2005

    E-Print Network [OSTI]

    Gilli, Adrian

    mpl i ng subsea - f loor environments. T hrough multiple drilling platforms, IODP scientists explore

  9. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of

    E-Print Network [OSTI]

    Bahrami, Majid

    cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out decreases with compression. GDL-BPP TCR increases with MPL and PTFE, regardless of the PTFE loading. High PTFE loading, MPL, and BPP out- of-flatness increase the TCR dramatically. The graphite BPP-GDL TCR

  10. Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers

    E-Print Network [OSTI]

    Kandlikar, Satish

    . In this investigation, the effect of microporous layer (MPL) coatings, GDL thickness, and polytetrafluorethylene (PTFE TGP-H GDL samples are tested experimentally with and without MPL coatings and varying PTFE loadings, and 750 sccm. MPL coatings and increasing levels of PTFE content introduce significant resistance

  11. Lane estimation for autonomous vehicles using vision and LIDAR

    E-Print Network [OSTI]

    Huang, Albert Shuyu

    2010-01-01

    Autonomous ground vehicles, or self-driving cars, require a high level of situational awareness in order to operate safely and eciently in real-world conditions. A system able to quickly and reliably estimate the location ...

  12. Lidar characterization of crystalline silica generation and gravel plant

    E-Print Network [OSTI]

    Trzepla-Nabaglo, K.; Shiraki, R.; Holm'en, B. A.

    2006-01-01

    Hazardous Materials 132 (2006) 14–25 plumes than the plumes identi?ed at the other locations.Hazardous Materials 132 (2006) 14–25 Fig. 2. (a) Relative locations

  13. Lidar for Turbine Control: March 1, 2005 - November 30, 2005

    SciTech Connect (OSTI)

    Harris, M.; Hand, M.; Wright, A.

    2006-01-01

    This study explores the potential of a turbine-mounted laser anemometer to enhance capabilities for wind energy production.

  14. AIRBORNE HIGH SPECTRAL RESOLUTION LIDAR MEASUREMENTS OF ATMOSPHERIC AEROSOLS

    E-Print Network [OSTI]

    the evolution and transport of pollution from Mexico City. The second major experiment was the Texas Air Quality, A., University of Hawaii, Department of Oceanography University of Hawaii, Honolulu, HI 96822 Air B200 aircraft during several field experiments. Most of the flights were conducted during two

  15. Polar Mesosphere Winter Echoes -by ESRAD, EISCAT and lidar

    E-Print Network [OSTI]

    Kirkwood, Sheila

    fluctuations with scale-sizes as short as the 3 m needed to produce radar echoes at 52 MHz at half maximum echo power) than the 300 m resolution of the radar measurements. When the radar echoes km. A sharp cut-off in PMWE occurrence was found at ~ 102 , independent of electron density

  16. Advanced Lidars for ARM: What Would We Get?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegister /Advancedenzyme mixtures

  17. Cloud properties derived from the High Spectral Resolution Lidar during

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j eCommittee offromandMPACE

  18. LiDAR (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:

  19. LiDAR (Lewicki & Oldenburg) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:Oldenburg) Jump to: navigation,

  20. LiDAR (Lewicki & Oldenburg, 2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:Oldenburg) Jump to: navigation,4)

  1. LiDAR (Lewicki & Oldenburg, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:Oldenburg) Jump to:

  2. LiDAR (Monaster And Coolbaugh, 2007) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:Oldenburg) Jump to:Monaster And

  3. ARM - Field Campaign - Aerosol Lidar Validation Experiment - ALIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012III ARMgovCampaignsAbsolute

  4. ARM - Field Campaign - Boundary Layer CO2 Using CW Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012IIIAtlanticMarine BoundarygovCampaignsBoundary

  5. ARM - Field Campaign - M-PACE - Polarization Diversity Lidar (PDL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic-govCampaignsLower Atmospheric Boundary-

  6. ARM - Field Campaign - M-PACE HSR Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic-govCampaignsLower Atmospheric

  7. A Lidar View of Clouds in Southeastern China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ionA FirstA Key Enzyme

  8. ARM - PI Product - Finnish Meteorological Institute Doppler Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA RelatedInhibition (CIN)ProductsFinnish

  9. ARM - PI Product - Raman lidar/AERI PBL Height Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSAProductsMerged and

  10. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown2008Donald Raby Donald_ -49

  11. Accessing the Energy Department's Lidar Buoy Data off Virginia Beach |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: DemonstrationProgram |to HoldAbouttheHeat

  12. Multi-temporal Terrestrial Lidar for Estimating Individual Tree Dimensions and Biomass Change 

    E-Print Network [OSTI]

    Srinivasan, Shruthi

    2013-10-30

    Accurate measures of forest structural parameters are essential to forest inventory and growth models, managing wildfires, and modeling of carbon cycle. Terrestrial laser scanning (TLS) provides accurate understory information rapidly through non...

  13. DOE/SC-ARM/TR-120 Raman Lidar Profiles-Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQSiteo n n e v i2 ARM Climate1623375250

  14. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior

    E-Print Network [OSTI]

    ) producing spatially explicit digital fuel maps. Estimates of fuel models were compared with in-situ data to improve the overall accuracy of image classification. Supervised image classification methods provided

  15. A light detection and ranging (lidar) study of the Sierra Nevada

    E-Print Network [OSTI]

    Phelps, Gary M. II

    2011-01-01

    1997). "The Stanford Digital Library metadata architecture."International Journal on Digital Libraries 1(2): 108-121.working web-based digital library for environmental

  16. Finding Multiple Lanes in Urban Road Networks with Vision and Lidar

    E-Print Network [OSTI]

    Huang, Albert S.

    This paper describes a system for detecting and estimating the properties of multiple travel lanes in an urban road network from calibrated video imagery and laser range data acquired by a moving vehicle. The system operates ...

  17. Semi-Automated DIRSIG Scene Modeling from 3D LIDAR and Passive Imaging Sources

    E-Print Network [OSTI]

    Kerekes, John

    powerful tool for algorithm testing and sensor evaluation. However, the extensive time required to create given the parameters of the sensor. This may be done to evaluate an existing sensor under a host synthetic multispectral and hyperspectral images from the visible to long wave infrared (0.4 to 20 microns

  18. LiDAR observations of offshore winds at future wind turbine operating heights

    E-Print Network [OSTI]

    at the Horns Rev offshore wind farm. The influence of atmospheric stability on the surface layer wind shear of offshore wind farms in the coming years. In contrast with the situation over land, the knowledge turbine manufacturers and wind farm developers, although the offshore environment represents other

  19. COMBINING LIDAR, MULTI-SPECTRAL IMAGERY AND GIS TO ASSESS RIPARIAN AREA CONDITIONS

    E-Print Network [OSTI]

    Wallin, David O.

    .................................................... 16 3.4 Model Overview ............................................................ 19 3.5 LWD Model .................................... 45 4.3 LWD Potential .......... .................................................... 46 4.4 Shade: large woody debris (LWD) delivery and shade. The model consists of custom applications written in Visual

  20. AIRBORNE HIGH SPECTRAL RESOLUTION LIDAR AEROSOL MEASUREMENTS DURING CALNEX AND CARES

    E-Print Network [OSTI]

    , and Evgueni Kassianov, Pacific Northwest National Laboratory Brent Holben, NASA Goddard Space Flight Center National Laboratory U.S. Department of Energy Office of Science ABSTRACT The NASA Langley Research Center layers of dust, likely transported from Asia, were located above urban aerosols. HSRL and ground- based

  1. Delineating Individual Trees from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches

    E-Print Network [OSTI]

    Kelly, Maggi

    2013-01-01

    LIBLINEAR: A library for large linear classification. J.is a library for large-scale linear classification that

  2. Airborne LiDAR Detects Selectively Logged Tropical Forest Even in an Advanced Stage of Recovery

    E-Print Network [OSTI]

    Kent, Rafi; Lindsell, Jeremy A.; Laurin, Gaia Vaglio; Valentini, Riccardo; Coomes, David A.

    2015-01-01

    logged tropical forests: the attained and the attainable. Conserv. Lett. 2012, 5, 296–303. 10. Silver, W. L.; Ostertag, R.; Lugo, a. E. The Potential for Carbon Sequestration Through Reforestation of Abandoned Tropical Agricultural and Pasture Lands... be of high conservation value [2,7–9] and act as globally-important carbon sinks [9–12]. However, there is much uncertainty regarding the changing extent of regenerating forests, their rate and stage of recovery, and the influence of recovery on further...

  3. LIDAR, Camera and Inertial Sensors Based Navigation Techniques for Advanced Intelligent Transportation System Applications

    E-Print Network [OSTI]

    Huang, Lili

    2010-01-01

    planar range sensor designed for intelligent robots andSensors Based Navigation Techniques for Advanced IntelligentSensors Based Navigation Techniques for Advanced Intelligent

  4. Development of a lidar polarimeter technique of measuring suspended solids in water 

    E-Print Network [OSTI]

    Presley, David W

    1980-01-01

    31 32 34 34 39 44 Chapter IV TABLE OF CONTENTS (Continued) Algae Measurements Surface Roughness Measurements Depth of Measurements. DATA REDUCTION Cross Section Calculation. White Target Calibration Optical Alignment. White Target... Cross Section RESULTS. Scattering Phenomena Discussion of Measurements Sediment Concentration Particle Shape. Particle Color. Depth of Measurement. Size Distribution Page 46 47 49 50 50 52 52 53 57 57 65 65 68 72 83 88 VI Algae...

  5. DWEL: A DUAL-WAVELENGTH ECHIDNA LIDAR FOR GROUND-BASED FOREST SCANNING

    E-Print Network [OSTI]

    is currently undergoing integration and testing for field deployment in July-August, 2012. Index Terms height, leaf area index, foliage profile, and above-ground biomass using the approach pioneered to estimate both green and woody biomass without allometric equations. II. RATIONALE FOR DUAL WAVELENGTH

  6. Mapping surface fuels using LIDAR and multispectral data fusion for fire behavior modeling 

    E-Print Network [OSTI]

    Mutlu, Muge

    2009-05-15

    Fires have become intense and more frequent in the United States. Improving the accuracy of mapping fuel models is essential for fuel management decisions and explicit fire behavior prediction for real-time support of suppression tactics...

  7. Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation

    E-Print Network [OSTI]

    Lefsky, Michael

    production (NEP). Remote sensing of NPP and NPPAw is generally based on light use efficiency or process ecosystem production (NEP, Curtis et al., 2002). This relationship of NPPAw to NEP is strongest in young

  8. Development of Cloud Microphysical Property Retrievals Using the University of Wisconsin Arctic High Spectral Resolution Lidar

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    .6 2.8 1/(m str) 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 October 9,2004 Time (UT) Altitude:50 21:55 22:00 22:05 22:10 22:15 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1/(m str) 1e-14 1e-13 1e-12 1e-11 1- eterization and Modeling Workgroup to increase our ability to simu- late mixed-phase boundary layer clouds

  9. Object-Based Image Analysis of Downed Logs in Disturbed Forested Landscapes Using Lidar

    E-Print Network [OSTI]

    Kelly, Maggi

    2011-01-01

    for species, fuel for forest fires, and function as a keyis a fuel source for forest fires, and is a key component ofsite was burned by the Star Forest Fire in 2001, eight years

  10. Eddy-resolving Lidar Measurements and Numerical Simulations of the Convective Internal Boundary Layer

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    in speed. The vertical gradient of wind-speed decreases offshore because of strong vertical mixing caused Layer Shane D. Mayor, Gregory J. Tripoli, and Edwin W. Eloranta Department of Atmospheric and Oceanic 10 January 1998, 14:16-14:57 UT divergence(s-1) Distance east of VIL (offshore distance) km 0 1 2 3 4

  11. LIDAR OBSERVATIONS AND COMPARISON WITH NUMERICAL SIMULATION OF A LAKE MICHIGAN LAND BREEZE FRONT

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    offshore, at which point it met the prevailing winds, which directly opposed the circulation. Since. de Boer(1) , E.W. Eloranta(2) , G. J. Tripoli(1) (1) Department of Atmospheric and Oceanic Science circulation over Lake Michigan. Backscatter returns revealed a steady offshore flow extending 1.5 to 4 km

  12. FOREDUNE CLASSIFICATION AND STORM RESPONSE: AUTOMATED ANALYSIS OF TERRESTRIAL LIDAR DEMS

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ) are presented, and suggest that man- made and recovering dunes lost more volume and eroded more rapidly when-growth, are therefore critical to evaluating the vulnerability of coastal communities. The landfall of Hurricane Sandy

  13. Geospatial analysis of vulnerable beach-foredune systems from decadal time series of lidar data

    E-Print Network [OSTI]

    Mitasova, Helena

    to quantify elevation change trends, map dynamic and stable locations, identify new and lost buildings surface elevation, and homes built within the shoreline dynamics band have already been lost. The raster 2003), including assessment of major storm and hurricane impacts (Sallenger et al. 2006). The high

  14. Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry

    E-Print Network [OSTI]

    Bookhagen, Bodo

    and transpiration (Chen, Rich, Gower, Norman, & Plummer, 1997). In addi- tion, dry depositional uptake building cooling costs. At the sa

  15. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    SciTech Connect (OSTI)

    Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  16. Lidar Bacscatter Cross-Section Radar Bacscatter Cross-Section Mixed Phase

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    S S I AC A N A D A U.K.IRE. ICELAND NORWAY SWEDEN FINLAND LATVIA LITH. BELARUS UKRAINE POLAND DENMARK GERMANY EST. KAZ. JAPAN (DENMARK) Greenland (NORWAY) Svalbard (NORWAY) (NORWAY) CHINA UNITED STATES Faroe AC A N A D A U.K.IRE. ICELAND NORWAY SWEDEN FINLAND LATVIA LITH. BELARUS UKRAINE POLAND DENMARK

  17. Visual Localization within LIDAR Maps for Automated Urban Driving Ryan W. Wolcott and Ryan M. Eustice

    E-Print Network [OSTI]

    Eustice, Ryan

    is the prohibitive cost of the sensor suites necessary for localization. The most common sensor on these platforms localization within an a priori known map. Rather than using the vehicle's sensors to explicitly perceive lane markings, traffic signs, etc., metadata is embedded into a prior map, which transforms the difficult

  18. A light detection and ranging (lidar) study of the Sierra Nevada

    E-Print Network [OSTI]

    Phelps, Gary M. II

    2011-01-01

    metadata streams, ranging from large spatial data sets (e.g. , remote sensing products) to in situ sensor

  19. Fast LIDAR Localization using Multiresolution Gaussian Mixture Maps Ryan W. Wolcott and Ryan M. Eustice

    E-Print Network [OSTI]

    Eustice, Ryan

    localization within an a priori known map. Rather than using the vehicle's sensors to explicitly extract lane markings, traffic signs, etc., metadata is embedded into a prior map, which reduces the complex- ity

  20. DETECTING OBJECTS UNDER SHADOWS BY FUSION OF HYPERSPECTRAL AND LIDAR DATA: A PHYSICAL MODEL APPROACH

    E-Print Network [OSTI]

    Plemmons, Robert J.

    in many fields such as environmental remote sensing, monitoring chemi- cal/oil spills, and military target the extraction of a variety of information from the data ensemble and as such is a cur- rent topic in remote

  1. Mapping forests with Lidar provides flexible, accurate data with many uses

    E-Print Network [OSTI]

    Kelly, Maggi; Tommaso, Stefania Di

    2015-01-01

    to develop inputs for forest fire behavior modeling, and tovegetation inputs for forest fire behavior modeling canopy (across public forests. Forest fire behavior models need a

  2. Modeling Plot-Level Biomass and Volume Using Airborne and Terrestrial Lidar Measurements 

    E-Print Network [OSTI]

    Sheridan, Ryan D.

    2012-07-16

    The United States Forest Service (USFS) Forest Inventory and Analysis (FIA) program provides a diverse selection of data used to assess the status of the nation’s forested areas using sample locations dispersed throughout ...

  3. Mapping forests with Lidar provides flexible, accurate data with many uses

    E-Print Network [OSTI]

    Kelly, Maggi; Tommaso, Stefania Di

    2015-01-01

    27. Chen Q, Baldocchi D, Gong P, Kelly M. 2006. IsolatingRem S 72:923–32. Chen Q, Gong P, Baldocchi D, Tian Y. 2007.data. J Forest 108:436–43. Gong P, Biging GS, Lee SM, et al.

  4. UTILIZACIN DE DATOS LIDAR Y SU INTEGRACIN CON SISTEMAS DE INFORMACIN GEOGRFICA

    E-Print Network [OSTI]

    Gilbes, Fernando

    , interactive software environment for visualizing and extracting three dimensional features and products from and natural features from point cloud data. The resulting products and visualizations add valuableDAR data, fly through a realistic scene, identify and extract features, refine the resulting products, and

  5. Constructing a GIS-based 3D urban model using LiDAR and aerial photographs 

    E-Print Network [OSTI]

    Lin, Wei-Ming

    2005-02-17

    Due to the increasing availability of high-resolution remotely sensed imagery and detailed terrain surface elevation models, urban planners and municipal managers can now model and visualize the urban space in ...

  6. Object-Based Image Analysis of Downed Logs in Disturbed Forested Landscapes Using Lidar

    E-Print Network [OSTI]

    Kelly, Maggi

    2011-01-01

    spectral and non-spectral ancillary information. Photogramm.OBIA software that supports ancillary vector data and image

  7. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  8. IN THIS ISSUE: Using LiDAR to locate cave openings, geography and geology

    E-Print Network [OSTI]

    Weishampel, John F.

    DAR system was used to generate a 1 m resolution, bare-earth digital elevation model (DEM) from and mythological importance in addition to functioning as shelters. They were sites of rituals, ceremonies

  9. An investigation of the depolarization of backscattered electromagnetic waves using a lidar polarimeter 

    E-Print Network [OSTI]

    Wilhelmi, Gary Joe

    1973-01-01

    . P. James for their guidance and assistance throughout this study. The efforts of Dr. J. L. Stone and Dr. L. E. Fite in procuring the vacuum equipment is greatly appreciated. Also, sincere thanks are due Dr. K. J. McCree for use of the Spectral...-2 Values of Q' for Rough Surfaces 91 V-3 C-1 C-2 Values of Volume Reflection Coefficients for Rough Surfaces Turbid Water Data Rough Surface Data 140 141 LIST OF FIGURFS Figure ~pa e II-1 Scattering geometry for the surface scatter...

  10. Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of

    E-Print Network [OSTI]

    Lefsky, Michael

    infrequently measured, from either field or remote used in predictive equations generated by the stepwise Laboratory, Pacific exceeds 3 has been less successful (e.g., Sader et al., Northwest Research Station, Corvallis Smithsonian Environmental Research Center, Edgewater, primarily in the temperate and tropical

  11. Improved Approach to Lidar Airport Obstruction Surveying Using Full-Waveform Data

    E-Print Network [OSTI]

    Nowak, Robert

    . Parrish1 and Robert D. Nowak2 ABSTRACT Over the past decade, the National Oceanic and Atmospheric, or building that penetrates an airport's obstruction identification surfaces (OIS) (FAA 1996; FAA 2008

  12. Assessing Available Woody Plant Biomass on Rangelands with Lidar and Multispectral Remote Sensing 

    E-Print Network [OSTI]

    Ku, Nian-Wei

    2012-07-16

    products. Mesquite trees, a type of woody plant, are a proven source of bioenergy feedstock found on semi-arid lands. The overall objectives of this study were to develop algorithms for determining woody plant biomass on rangelands in Texas at plot...

  13. Improved forecasts of extreme weather events by future space borne Doppler wind lidar

    E-Print Network [OSTI]

    Marseille, Gert-Jan

    of forecast failures, in particular those with large socio economic impact. Forecast failures of high- impact on their ability to improve meteorological analyses and subsequently reduce the probability of forecast failures true atmospheric state. This was generated by the European Centre for Medium-Range Weather Forecasts

  14. Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter Relationships 

    E-Print Network [OSTI]

    Cho, Hyoun-Myoung

    2012-02-14

    . The three possible misclassifications of MODIS IR cloud phasealgorithm, which are studied by Nasiri and Kahn (2008) with radiative transfer modeling, are tested by comparing between MODIS IR phase and CALIOP observations. The current results support...

  15. An Information Theoretic Framework for Camera and Lidar Sensor Data Fusion and its Applications in

    E-Print Network [OSTI]

    Eustice, Ryan

    and discuss any problem. He always made sure that I am making progress and always guided me towards the right, besides research. Finally, I would like to thank my family who supported me unconditionally from the time achieve this milestone. Funding This work is supported through grants from the Ford Motor Company via

  16. A LIDAR-based crop height measurement system for Miscanthus giganteus Lei Zhang, Tony E. Grift

    E-Print Network [OSTI]

    G stem densities. The results showed an average error of 5.08% with a maximum error of 8% and a minimum of bioenergy crop performance. Field crops such as corn and soybean are harvested for their seeds, and various flow measurements. However, in the case of bioenergy crops, the complete above ground plant

  17. LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:Oldenburg) Jump to:Monaster

  18. LiDAR At Dixie Valley Geothermal Area (Helton, Et Al., 2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:Oldenburg) Jump

  19. LiDAR At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:Oldenburg) JumpGabbs Valley Area

  20. LiDAR At Twenty-Nine Palms Area (Page, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:Oldenburg) JumpGabbs Valley

  1. LiDAR At Twenty-Nine Palms Area (Sabin, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho:Oldenburg) JumpGabbs

  2. ARM - Field Campaign - NASA Coordinated Airborne CO2 Lidar Flight Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design togovCampaignsMASRAD: Pt. Reyes Stratus(MC3E):govCampaignsMixed-Phase

  3. A Comparison of Cirrus Cloud Visible Optical Depth Derived from Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries arePlasmaARM

  4. Polarized Micro Pulse Lidars R. L. Coulter and T. J. Martin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinumtake the 2011|Poemand Performance of

  5. Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlines the majorL.Posters955 Posters

  6. Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek Wind FarmStrattonAerial

  7. LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:LaredoLeelanauLeonicsLewisville,Li

  8. WEBSITE: http://www.edbio.ups-tlse.fr Director: Philippe Valet

    E-Print Network [OSTI]

    Bordenave, Charles

    DOMAINS Structural and functional biology Molecular biology Molecular genetics Metabolic & cardiovascular://www.toulouse- limoges.inserm/mpl/fr/laboratoire/zone_geographique/toulouse/unite_1037.html Research Center on Food

  9. ARM Climate Modeling Best Estimate Lamont, OK Statistical Summary (ARMBE-CLDRAD SGPC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    Calculate monthly mean diurnal cycle based on the hourly CMBE data with qcflag >=-1 (>30% valid data within the averaged hour). For 2-D clouds, only data over the period when both MMCR and MPL were working are used.

  10. ARM Climate Modeling Best Estimate Lamont, OK Statistical Summary (ARMBE-CLDRAD SGPC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2010-01-26

    Calculate monthly mean diurnal cycle based on the hourly CMBE data with qcflag >=-1 (>30% valid data within the averaged hour). For 2-D clouds, only data over the period when both MMCR and MPL were working are used.

  11. DOE/SC-ARM/TR-100 Raman Lidar Profiles Best Estimate Value-Added Product Technical Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQSiteo n n e v i2 ARM Climate1623375 The780

  12. HOUGH-TRANSFORM AND EXTENDED RANSAC ALGORITHMS FOR AUTOMATIC DETECTION OF 3D BUILDING ROOF PLANES FROM LIDAR DATA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HOUGH-TRANSFORM AND EXTENDED RANSAC ALGORITHMS FOR AUTOMATIC DETECTION OF 3D BUILDING ROOF PLANES reconstruction methods, the techniques allowing the detection of 3D building roof planes are of crucial even if this plane does not always represent a roof plane. So the proposed extension allows harmonizing

  13. Effects of the Hawaiian Islands on the Vertical1 Structure of Low-level Clouds from CALIPSO Lidar2

    E-Print Network [OSTI]

    Xie, Shang-Ping

    -top elevation over the windward slopes of the islands of Kauai and Oahu due32 to orographic lifting and daytime island heating. In the nighttime near-island wake of33 Kauai, CALIPSO captures a striking cloud eddy of the mechanical wake behind35 the island of Hawaii favors the formation of low-level clouds

  14. Direct-detection Doppler wind measurements with a CabannesMie lidar: B. Impact of aerosol variation on

    E-Print Network [OSTI]

    Jin-Jia Guo,2 Song-Hua Wu,2 and Zhi-Shen Liu2 1 Department of Physics, Colorado State University, Fort

  15. Sensitivity analysis of fire behavior modeling with LIDAR-derived surface Muge Mutlu *, Sorin C. Popescu, Kaiguang Zhao

    E-Print Network [OSTI]

    1. Introduction Forest fires destroy many houses and natural resources such as plant and animal life and Queen, 1999). Some of this software can be used to predict future fire growth and compute possible of such software is FARSITE, a spatially explicit fire growth model developed by Finney (1994). FARSITE is a two

  16. Long-term trends observed in the middle atmosphere temperatures using ground based LIDARs and satellite borne measurements

    E-Print Network [OSTI]

    2014-01-01

    lower thermosphere region: 2. Solar response, J. Geo- phys.of the 27-day and 11-year solar cycles: Radiative and/orD. M. : Long-term and solar cycle changes in the atmospheric

  17. Extraordinary dust event over Beijing, China, during April 2006: Lidar, Sun photometric, satellite observations and model validation

    E-Print Network [OSTI]

    ratio for the dust particles (84 sr) during the most intense dust period. The DREAM forecast model the Beijing area, are located in Xingjiang and the Inner Mongolia provinces [Sun et al., 2001]. Strong winds [Dillner et al., 2006]. The increasing urbanization and industrialization of the East Asia region

  18. Efficient all-solid-state UV lidar sources : from 100's of millijoules to 100's of microjoules.

    SciTech Connect (OSTI)

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2005-07-01

    Sandia National Laboratories has developed high-energy all-solid-state UV sources for use in laboratory tests of the feasibility of satellite-based ozone DIAL. These sources generate 320 nm light by sum-frequency mixing the 532 nm second harmonic of an Nd:YAG laser with the 803 nm signal light derived from a self-injection-seeded image-rotating optical parametric oscillator (OPO). The OPO cavity utilizes the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. Two configurations were developed, one using extra-cavity sum-frequency mixing, where the sum-frequency-generation (SFG) crystal is outside the OPO cavity, and the other intra-cavity mixing, where the SFG crystal is placed inside the OPO cavity. Our goal was to obtain 200 mJ, 10 ns duration, 320 nm pulses at 10 Hz with near-IR to UV (1064 nm to 320 nm) optical conversion efficiency of 25%. To date we've obtained 190 mJ at 320 nm using extra-cavity SFG with 21% efficiency, and >140 mJ by intra-cavity SFG with efficiency approaching 24%. While these results are encouraging, we've determined our conversion efficiency can be enhanced by replacing self-seeding at the signal wavelength of 803 nm with pulsed idler seeding at 1576 nm. By switching to idler seeding and increasing the OPO cavity dimensions to accommodate flat-top beams with diameters up to 10 mm, we expect to generate UV energies approaching 300 mJ with optical conversion efficiency approaching 25%. While our technology was originally designed to obtain high pulse energies, it can also be used to generate low-energy UV pulses with high efficiency. Numerical simulations using an idler-seeded intra-cavity SFG RISTRA OPO scaled to half its nominal dimensions yielded 560 {micro}J of 320 nm light from 2 mJ of 532 nm pump using an idler-seed energy of 100 {micro}J.

  19. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing

    E-Print Network [OSTI]

    Sheridan, Jennifer

    with dual polarization at 0.532 m. The comparisons were performed for 10 flight days during the Subsonic specification of clear-sky radiances. 1. Introduction Clouds have a large impact on the Earth's water and energy budgets. Their impact on the radiation budget can result in a heating or in a cooling of the planet

  20. Non-parametric Image Registration of Airborne LiDAR, Hyperspectral and Photographic Imagery of Wooded Landscapes

    E-Print Network [OSTI]

    Lee, Juheon; Cai, Xiaohao; Schönlieb, Carola-Bibiane; Coomes, David A.

    2015-06-02

    spectrometers measure solar energy reflected off the Earth’s surface within a swath of land. Hyper- spectral data were gathered using the AISA Eagle and AISA Hawk sensors (Specim Ltd., Finland), which are pushbroom sen- sors with 255 and 256 spectral bands... | obtained by using established methods NCC, MI, NGF, SURF, as well as our NGF-Curv method. The results of registration methods are denoted by TNCCreg , T MI reg , T NGF reg , T SURF reg , and TNGF-Curvreg , respectively, in these panels; yellow circle...

  1. New constraints on the processes that control cliff erosion and sediment dispersal using ground-based LIDAR

    E-Print Network [OSTI]

    Raymond, Jessica Hall

    2011-01-01

    runup during the 1997-1998 El Niño. Marine Geology, v. 187.G.B, 1998. The 1997-98 El Nino and erosion processes along2000. The influence of El Nino-Southern Oscillation (ENSO)

  2. Development of Omnidirectional 3D LIDAR Using Unlimited Rotating Device -Power Supplying and Signal Transmitting through Rotaing Shaft-

    E-Print Network [OSTI]

    Ohya, Akihisa

    Transmitting through Rotaing Shaft- ( ), ( ), ( ) Morihiko YOSHIDA, University of Tsukuba Atsushi WATANABE shaft and transmitting modulated carrier signal on power supply line. Also, the detailed designof Vcc 0 0 Vcc 0 Signal Fig. 1 Power supply and signal transmission through rotaing shaft 3.1 2 URG-04

  3. Comparing synthetic aperture radar and LiDAR for above-ground biomass estimation in Glen Affric, Scotland 

    E-Print Network [OSTI]

    Tan, Chue Poh

    2012-06-25

    Quantifying above-ground biomass (AGB) and carbon sequestration has been a significant focus of attention within the UNFCCC and Kyoto Protocol for improvement of national carbon accounting systems (IPCC, 2007; UNFCCC, ...

  4. A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling

    E-Print Network [OSTI]

    over the Mediterranean region (http://www.bsc.es/projects/earthscience/ DREAM/) considering four of dust exported annually from northern Africa (Sahara-Sahel region) are still not reliable, and range]. Once in the atmosphere, dust particles interact with solar and thermal radiation, modulating the Earth

  5. An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia

    E-Print Network [OSTI]

    Clarke, Antony

    and 6 km over Sagami Bay southwest of Tokyo. The C-130 observation package included a tracking Sun extinction coefficients (sa $ 0.03 kmÀ1 ) derived from the airborne tracking Sun photometer, in situ optical

  6. Assessment of MISR and MODIS cloud top heights through inter-comparison with a back-scattering lidar at SIRTA

    E-Print Network [OSTI]

    ) algorithms that were released in November 2002 and have been used to reprocess all data collected since March

  7. Exploring the relationships between vegetation measurements and temperature in residential areas by integrating LIDAR and remotely sensed imagery 

    E-Print Network [OSTI]

    Clemonds, Matthew A

    2006-10-30

    Approved by: Chair of Committee, Hongxing Liu Committee Members, Robert Bednarz Daniel Sui John Nielsen-Gammon Head of Department Douglas Sherman August 2005 Major Subject: Geography iii ABSTRACT Exploring... big picture idea of education in general and this research. Our frequent talks have not only been a source of valuable information, but also enjoyment. Dr. Daniel Sui has supplied a solid and respected sounding board. Dr. John Nielsen-Gammon has...

  8. Summer Undergraduate Research Fellowships

    E-Print Network [OSTI]

    New Hampshire, University of

    mem- ber. They will conduct research related to acoustics, bathymetric mapping, habitat mapping, lidar

  9. Robust 1550-nm single-frequency all-fiber ns-pulsed fiber amplifier for wind-turbine predictive control by wind lidar

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    Oldenburg, Germany ABSTRACT Scaling of the power yield of offshore wind farms relies on the capacity powers [1]. To reach the ambitious and politically motivated aims of Multi-GW offshore wind farms belongs to this category. Clustered in wind farms, today's wind turbines produce Megawatt-level output

  10. Bachelor thesis: "Validation of an engineering model of the near wake wind field of wind turbines based on nacelle based lidar measurements"

    E-Print Network [OSTI]

    Peinke, Joachim

    , in an early stage of wind farm layout optimisation and wind turbine loading calculation in wind farms by Ainslie[1], This is widely used in the industry for wind farming purposes. Scope During this project analysis are performed of near wake measurements of a 5 MW wind turbine at the offshore test field alpha

  11. UAV LiDAR for below-canopy forest surveys Ryan A. Chisholm, Jinqiang Cui, Shawn K. Y. Lum and Ben M. Chen

    E-Print Network [OSTI]

    Benmei, Chen

    be achieved through use of a localisation device. The long-term factor limiting the deployment of below measurement, unmanned aerial vehicle, biomass estimation. Résumé : Les outils de télédétection sont de plus en

  12. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 94, NO. A2, PAGES 1533-1536, FEBRUARY 1, 1989 Lidar Technique for Measuring Ionospheric

    E-Print Network [OSTI]

    Goree, John

    - tralatomvelocityvmustexceedI/c,satisfyingr/mVc·'/2= where r/ is an efficiencywhich dependson competing loss mechanisms

  13. Vindicator Lidar Assessment for Wind Turbine Feed-Forward Control Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-352

    SciTech Connect (OSTI)

    Wright, A.

    2014-01-01

    Collaborative development and testing of feed-forward and other advanced wind turbine controls using a laser wind sensor.

  14. AMS Annual Meeting, Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar. 20-24 January 2008, New Orleans, LA

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    minimizes a cost function that includes the departure of the analysis from the background, the departure constraint on the analyzed wind field. The ARPS 3DVAR is described in detail in Gao et al. 2004 and Hu et al US likely aided in this thunderstorm development. The thunderstorm complex grew in areal extent

  15. Evidence of a gravity wave breaking event and the estimation of the wave characteristics from sodium lidar observation over Fort Collins,

    E-Print Network [OSTI]

    by simultaneous observations of both temperature and horizontal wind with high vertical and temporal reso- lutions heat flux transport. These observed features are highly suggestive of wave breaking in these altitudes with a period of $1.5 hr, whose spectrum power was greatly reduced after the sudden horizontal wind a

  16. CityFIT Urban Guide: Modelling and Deploying indicators of Property Exposure to Flooding in Lagos using LIDAR DEM and DSM data 

    E-Print Network [OSTI]

    Mosuro, Sulaiman

    2012-11-29

    The propagation of flood inundation in urban catchments is highly dependent on the surface topography, land cover and the representation of structure in elevation data used in modelling. Studies have shown that subtle ...

  17. Development of Small Size 3D LIDAR* Katsumi Kimoto1, Norihiro Asada1, Toshihiro Mori1, Yoshitaka Hara2, Akihisa Ohya2, and Shin'ichi Yuta3

    E-Print Network [OSTI]

    Ohya, Akihisa

    degrees. However this sensor is heavy and expensive. ECO SCAN of Nippon Signal Company [7] has single MEMS is small, light weight and low cost. The size and weight are important factors of the aimed sensor to use and light weight construction the sensor has single pair of laser transmitter and receiver, and scanning

  18. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    DOE Patents [OSTI]

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  19. Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign

    E-Print Network [OSTI]

    de Foy, B.

    The Mexico City Metropolitan Area (MCMA) experiences high loadings of atmospheric aerosols from anthropogenic sources, biomass burning and wind-blown dust. This paper uses a combination of measurements and numerical ...

  20. A comparison of automated land cover/use classification methods for a Texas bottomland hardwood system using lidar, spot-5, and ancillary data 

    E-Print Network [OSTI]

    Vernon, Zachary Isaac

    2009-05-15

    Bottomland hardwood forests are highly productive ecosystems which perform many important ecological services. Unfortunately, many bottomland hardwood forests have been degraded or lost. Accurate land cover mapping is crucial for management...

  1. Measurements of aerosol vertical profiles and optical properties during INDOEX

    E-Print Network [OSTI]

    , and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sun photometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical

  2. Partitioning strategies for parallel KIVA-4 engine simulations

    SciTech Connect (OSTI)

    Torres, D J [Los Alamos National Laboratory; Kong, S C [IOWA STATE UNIV

    2008-01-01

    Parallel KIVA-4 is described and simulated in four different engine geometries. The Message Passing-Interface (MPl) was used to parallelize KIVA-4. Par itioning strategies ar accesed in light of the fact that cells can become deactivated and activated during the course of an engine simulation which will affect the load balance between processors.

  3. How to determine a good multi-programming level for external scheduling Bianca Schroeder Mor Harchol-Balter Adam Wierman

    E-Print Network [OSTI]

    Harchol-Balter, Mor

    Heights, NY USA @us.ibm.com Abstract Scheduling/prioritization of DBMS transactions is im not all DBMS resources will be utilized. On the other hand, if the MPL is too high, there is insufficient. For such applications it is often desirable to control the order in which transactions are exe- cuted at the DBMS. An e

  4. How to determine a good multi-programming level for external scheduling Bianca Schroeder Mor Harchol-Balter

    E-Print Network [OSTI]

    Toronto, University of

    Heights, NY USA @us.ibm.com Abstract Scheduling/prioritization of DBMS transactions is im not all DBMS resources will be utilized. On the other hand, if the MPL is too high, there is insufficient. For such applications it is often desirable to control the order in which transactions are exe- cuted at the DBMS. An e

  5. Steps to Reconcile Inflationary Tensor and Scalar Spectra Vinicius Miranda,1, 2

    E-Print Network [OSTI]

    Hu, Wayne

    The Capes Foundation, Ministry of Education of Brazil, Bras´ilia DF 70359-970, Brazil 3 Kavli Institute-Gaussianity is then unde- tectable [8, 9]. Throughout, we work in natural units where the reduced Planck mass MPl = (8GN

  6. The MAZOOPS Project Third year of engineering school internship report

    E-Print Network [OSTI]

    Jaffe, Jules

    The MAZOOPS Project Third year of engineering school internship report MPL supervisor: Dr. Jules S. Jaffe ISITV supervisor: Dr. Marc Francius Student: Florian Aulanier #12;Third year of engineering school the people I met during this internship who have made me have a good time. Florian Aulanier. #12;Third year

  7. Please cite this article in press as: M.J. Martnez-Rodrguez, et al., J. Power Sources (2012), doi:10.1016/j.jpowsour.2012.01.132 ARTICLE IN PRESS

    E-Print Network [OSTI]

    Van Zee, John W.

    2012-01-01

    in the optimization of fuel cell performance. The functionality of the GDL inside the fuel cell relies in maintaining Effective diffusion Pore size distribution Gas diffusion layer Fuel cells a b s t r a c t The effect) and fuel cell performance. The GDLs were customized by the addition of a microporous layer (MPL

  8. Journal of Power Sources 195 (2010) 41964205 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Mench, Matthew M.

    2010-01-01

    the micro-porous layer (MPL) and the catalyst layer (CL) on the polymer electrolyte fuel cell (PEFC electrolyte fuel cells (PEFCs). In order to achieve these improvements, a deeper under- standing of local up to 6­18% of total water content in PEFC under normal operating condition. A study by Hartnig et al

  9. Description The SPCM-AQR is a self-contained module

    E-Print Network [OSTI]

    Saffman, Mark

    : $ 170 mm SPCM-AQR-2X: $ 425 mm · Timing Resolution of 300ps FWHM · User Friendly Applications · LIDAR

  10. Xingqiu Yuan | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single Micropulse

  11. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Determining the contribution of volcanic ash and

    E-Print Network [OSTI]

    Reading, University of

    of volcanic ash and Boundary Layer aerosol in backscatter lidar returns: a three-component atmosphere approach MARENCO AND HOGAN: VOLCANIC ASH AND BL AEROSOL IN LIDAR RETURNS Abstract. A solution of the lidar equation successfully applied to simultaneous observations of volcanic ash and Boundary Layer aerosol obtained in Exeter

  12. Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon

    SciTech Connect (OSTI)

    Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; Sinclair, Michael B.; Davids, Paul S.

    2015-01-01

    A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, and characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.

  13. A rotordynamic analysis of the Space Shuttle Main Engine (SSME) High-Pressure Oxygen Turbopump (HPOTP) 

    E-Print Network [OSTI]

    Moyer, David Scott

    1984-01-01

    engine design philosophy is given by Rothe, '7] while design performance characteristics are listed by Ek ', 3]. The rotating assembly for the HPOTP is illustrated in Fig. 2. This turbopump basically consists of a two-stage centrifugal pump driven by a... and Damping Coefficients at MPL; v = 19, 841 cpm Calculated Boost Impeller Inlet Wear-Ring Damper Seal Stiffness, Damping, and Added-Mass Coefficients Ca)culated Boost Impeller Discharge Wear-Ring Damper Seal Stiffness, Damping, and Added...

  14. ARM - Instrument - mti

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstpsgovInstrumentsclapgovInstrumentsmasc DocumentationgovInstrumentsmpl Documentation MPL

  15. Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for

    E-Print Network [OSTI]

    for wind farm site selection, design, and control. In this research, CDL measurements obtained from, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers is used to estimate the spatial power density at hub height. Since CDL can measure winds at different

  16. This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal

    E-Print Network [OSTI]

    cross- valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations

  17. CX-007901: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-007901: Categorical Exclusion Determination Improving Atmospheric Models for Offshore Wind Resource Mapping and Prediction Using LIDAR, Aircraft, and In-Ocean...

  18. Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis

    E-Print Network [OSTI]

    Kelly, Maggi

    2011-01-01

    Pollution) *Note: OBIA: Object-based image analysis; ETM: Enhanced Thematic Mapper; Lidar: Light Detection and Ranging; ASTER: Advanced Spaceborne Thermal

  19. Pulsed Laser Imager for Detecting Hydrocarbon and VOC Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Inventions and Innovation Program, LaSen, Inc., developed the Airborne Lidar Pipeline Inspection System (ALPIS). ALPIS is a helicopter-based, mid-infrared, Differential...

  20. ARM - ARM Priorities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MWR3C, and Doppler Lidar Real-Time Processing Radiative Flux Analysis to production RWP Corrected Moments Areal Average Albedo Evaluation Data QCECOR - Eddy Correlation...

  1. Cuba. 7-69 

    E-Print Network [OSTI]

    United States. Central Intelligence Agency

    1969-01-01

    ; and (2) a combination of height-based and distance-based terrestrial lidar metrics has the potential to estimate biomass and volume on FIA subplots....

  2. Characterizing and Controlling Beam Losses at the LANSCE Facility

    SciTech Connect (OSTI)

    Rybarcyk, Lawrence J.

    2012-09-12

    The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols, andCorrelatonA NewSimplifyingARM Micropulse

  4. Xun Lu | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu Xun Lu Xun Lu

  5. Y

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu Xun Lu Xun Lu5:

  6. Y High-Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu Xun Lu Xun Lu5:

  7. Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu Xun Lu Xun

  8. Y-12 "Alpha" building | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu Xun Lu

  9. Y-12 Administration and Labor Relations building | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu Xun LuComplex

  10. Y-12 Apprentice Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu Xun

  11. Y-12 Apprentice Program celebrates third graduating class | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu XunNuclear Security

  12. Y-12 Bulletin Uranium Articles | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu XunNuclearBulletin

  13. Y-12 Calutron | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun Lu

  14. Y-12 Celebrates Its Sixtieth Anniversary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun LuCelebrates Its

  15. Y-12 Earth Day | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun LuCelebrates Its Earth

  16. Y-12 History Center and some special artifiacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun LuCelebrates Its

  17. Y-12 Knows Uranium | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun LuCelebrates ItsKnows

  18. Y-12 National Security Complex Performance Evaluations | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun LuCelebrates

  19. Y-12 National Security Complex Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXun LuCelebratesInnovation

  20. Y-12 National Security Complex | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations /

  1. Y-12 National Security Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations /69/%2A en

  2. Y-12 Shift Change, famous Ed Westcott image recreated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations /69/%2A

  3. Y-12 Times, A newsletter for employees and friends of the Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations /69/%2A9

  4. Y-12 Times, February 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations /69/%2A92

  5. Y-12 Times, newsletter for employees and friends of the Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations

  6. Y-12 Volunteer Day 2015 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations Volunteer

  7. Y-12 Work for Others Â… a historical perspective, part 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations Volunteer1

  8. Y-12 Work for Others Â… a historical perspective, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations Volunteer12

  9. Y-12 Work for Others Â… a historical perspective, part 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations Volunteer123

  10. Y-12 again called on by the nation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperations

  11. Y-12 and East TN Public Broadcasting System Â… A Nuclear Family Video Miniseries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperationsEast TN

  12. Y-12 and Smithsonian video history interview, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperationsEast TN2 Last

  13. Y-12 and Stone & Webster`

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperationsEast TN2

  14. Y-12 and dramatic changes of early 1980s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperationsEast

  15. Y-12 and emerging environmental regulations in 1985

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single MicropulseXunOperationsEastemerging

  16. March 2012 Vol. 5 Issue 1 pages 1 -120 Mongabay.com Open Access Journal -Tropical Conservation Science Vol.5 (1):12-24, 2012

    E-Print Network [OSTI]

    Weishampel, John F.

    algunas medidas de perturbación del dosel derivadas de imágenes satelitales durante un periodo de tres décadas a partir de 1980, con aquellas derivadas de una campaña de vuelos con LiDAR llevada a cabo en 2009 del dosel detectadas con LiDAR, se adentran 1 km más en Belice (hasta 3.5 km) que aquellas derivadas

  17. , 7 2011, 7 2011 : LASER

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    : ­ ­ , 7 2011, 7 2011 `' #12; : ­ ­ , 7 2011 : LASER : : : & · : & (-) - - - . · : laser ­ · : ­ & · : > 50 & (---) · ­ : lidar (- ) ­ -3 lidar (WMO, ESA; : ­ ­ , 7 2011 : LASER : : : & · : · : laser · : ( 10 m) · : > 5

  18. ORIGINAL PAPER Synergistic use of very high-frequency radar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    carbon sequestration (Hyde et al. 2007; Lucas et al. 2000; Skole and Tucker 1993). The traditional field · Introduction Accurate estimation of aboveground bio- mass is essential to better understand the carbon cycleSAR . Scanning lidar. Profiling lidar. Aboveground biomass . Best subsets regression . Carbon 1 Introduction

  19. PROBLEM: Augmented Reality (AR) systems register computer generated models with real world objects. For AR systems to be useful, the generated objects must be accurately registered with the

    E-Print Network [OSTI]

    feature extraction methods. 2. Extraction algorithm implementation Extraction algorithms for circular arcs algorithms and cross sensor registration methods. METHODS: 3D Primitive Extraction Algorithm Choose 3D point Primitive Feature Extraction from LIDAR Range Data LIDAR Because the World is Watching For Further

  20. The Mystery of Foehn Winds Alexander Gohm

    E-Print Network [OSTI]

    Gohm, Alexander

    the Mesoscale Alpine Programme (MAP): (1) The target area (Wipp valley). (2) Surface observations along the Wipp), Wipp valley cross-section (b), Patscherkofel cross-section (c). (4) NOAA/ETL Doppler lidar: wind speed along the Wipp valley (5) Airborne aerosol lidar SABL on NCAR/Electra: backscatter intensity and AML

  1. False Vacuum in the Supersymmetric Mass Varying Neutrinos Model

    E-Print Network [OSTI]

    Ryo Takahashi; Morimitsu Tanimoto

    2007-11-04

    We present detailed analyses of the vacuum structure of the scalar potential in a supersymmetric Mass Varying Neutrinos model. The observed dark energy density is identified with false vacuum energy and the dark energy scale of order $(10^{-3}eV)^4$ is understood by gravitationally suppressed supersymmetry breaking scale, $F({TeV})^2/M_{Pl}$, in the model. The vacuum expectation values of sneutrinos should be tiny in order that the model works. Some decay processes of superparticles into acceleron and sterile neutrino are also discussed in the model.

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols, and WaterMining the ARM Data Set:MPL-net at ARM

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols, and WaterMining the ARM Data Set:MPL-net at

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols, and WaterMining the ARM Data Set:MPL-net

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols, and WaterMining the ARM Data Set:MPL-netDevelopment

  6. Final Report on ASU Research Funded through Lawrence Livermore National Laboratory Grant ASU XAJ9991/CO

    SciTech Connect (OSTI)

    Calhoun, R; Sommer, J

    2004-01-21

    The line of inquiry which the ASU lidar group has been investigating, with collaboration and support from LLNL, is to create approaches and algorithms for better utilizing the rich information available through modern remote sensors in dispersion modeling systems. In particular, our goal is to create a lidar-data-driven dispersion model mode in ADAPT/LODI. This report describes progress towards this goal during the 2002/2003 academic year. Because of the nature of lidar data and the necessity to utilize additional information, both numerical and measured, this is essentially a data retrieval and data fusion project. With the current generation of commercially available lidar, the scope of the domain in which we are interested is initially 4 to 14 kilometers in radius, where the potentially scanned domain is roughly hemispherical. Figure 1, for example, taken from a recent lidar deployment in Oklahoma City, shows visually the most typical range of the domain that can be probed with the ASU lidar. Ranges 2 or 3 times the distance to the cluster of buildings in the photograph can be probed with a properly functioning, commercially available lidar. This could be of significant value for protecting key buildings with roof-top located remote sensors coupled with dispersion models.

  7. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  8. Proca Stars: gravitating Bose-Einstein condensates of massive spin 1 particles

    E-Print Network [OSTI]

    Richard Brito; Vitor Cardoso; Carlos A. R. Herdeiro; Eugen Radu

    2015-08-21

    We establish that massive complex Abelian vector fields (mass $\\mu$) can form gravitating solitons, when minimally coupled to Einstein's gravity. Such Proca stars (PSs) have a stationary, everywhere regular and asymptotically flat geometry. The Proca field, however, possesses a harmonic time dependence (frequency $w$), realizing Wheeler's concept of geons for an Abelian spin 1 field. We obtain PSs with both a spherically symmetric (static) and an axially symmetric (stationary) line element. The latter form a countable number of families labelled by an integer $m\\in \\mathbb{Z}^+$. PSs, like (scalar) boson stars, carry a conserved Noether charge, and are akin to the latter in many ways. In particular, both types of stars exist for a limited range of frequencies and there is a maximal ADM mass, $M_{max}$, attained for an intermediate frequency. For spherically symmetric PSs (rotating PSs with $m=1,2,3$), $M_{max}\\simeq 1.058 M_{Pl}^2/\\mu$ ($M_{max}\\simeq 1.568,\\, 2.337, \\, 3.247 \\, M_{Pl}^2/\\mu$), slightly larger values than those for (mini-)boson stars. We establish perturbative stability for a subset of solutions in the spherical case and anticipate a similar conclusion for fundamental modes in the rotating case. The discovery of PSs opens many avenues of research, reconsidering five decades of work on (scalar) boson stars, in particular as possible dark matter candidates.

  9. Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; Sinclair, Michael B.; Davids, Paul S.

    2015-01-01

    A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore »characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less

  10. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery

    E-Print Network [OSTI]

    Zahawi, RA; Dandois, JP; Holl, KD; Nadwodny, D; Reid, JL; Ellis, EC

    2015-01-01

    Schiffman, R. , 2014. Drones ?ying high as new tool for ?eldS.A. , 2012. Dawn of drone ecology: low-cost autonomousCanopy structure Costa Rica Drone Ecosynth Hexacopter LiDAR

  11. Effect on Speed Distribution due to Intrusive and Non-Intrusive Portable Speed Measurement Devices

    E-Print Network [OSTI]

    Jasrotia, Romika

    2011-06-02

    with pneumatic tubes, Smartsensor, Autoscope with camera trailer and Lidar gun were compared. Results showed that drivers did not react to pneumatic tubes and continued driving at the same speed; there was no significant difference in speeds at different...

  12. Football - 1896-1910 - 14 

    E-Print Network [OSTI]

    Winter & Smith

    2006-05-11

    The mixing layer (ML) heights inferred from radiosondes, wind profilers, airborne lidar, airborne microwave temperature profiler (MTP), and in-situ aircraft data were compared during the Texas 2000 Air Quality Study in the ...

  13. Quantifying atmospheric pollution across north america from boreal forest fires: a combined analysis of atmospheric modelling and ground-based remote sensing 

    E-Print Network [OSTI]

    Trigwell, Robert

    2011-11-24

    This paper describes the interpretation of the 2010 summer LIDAR observations from Dal- housie University, Nova Scotia. The GEOS-Chem global 3D chemistry transport model was used to identify the chemical and optical ...

  14. Tracking Dynamic Boundary Fronts using Range Sensors

    E-Print Network [OSTI]

    Ramamritham, Krithi

    , tracking forest fires and environmental phenomena. Consider a poisonous gas or plume monitoring ap) are being used for detecting forest fires [6], [7] in the last few years. Lidars detect fire by analysing

  15. IIHR--HYDROSCIENCE & ENGINEERING COLLEGE OF ENGINEERING

    E-Print Network [OSTI]

    Stanier, Charlie

    Water Intake Structures B & M Nakato * ** Study of Frazil-Ice for Wisconsin Electric's Power Plant near of CASES-99 Lidar Data Army Eichinger ** Development of a Web-Based Virtual Fluids Lab ATAC Eichinger

  16. GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 9, PAGES 1407-1410, MAY 1, 2000 Observations of boreal forest fire smokein the stratosphere by

    E-Print Network [OSTI]

    Li, Zhanqing

    forest fire smokein the stratosphere by POAM Ill, SAGE II, and lidar in 1998 Michael, TOMS aerosolindex data, and forest fire statistics revealsa stronglink betweenstratosphericaerosolandforestfire smoke. Our analysisstronglysuggeststhat smokefrom boreal forest fires was lofted acrossthe

  17. Agenda for 2014 Meeting of MSRL March 3-7, 2014

    E-Print Network [OSTI]

    Texas at Austin, University of

    continuity from Lidar imaging: Boquillas Fm, West Texas: Greg Frebourg · CH4 Adsorption on Oil-Bearing Shales: Implication for Oil and Gas Storage in Organic- rich Mudrocks: Sheng Peng · Initial Chemostratigraphic

  18. EVALUATION OF BREAKWATERS AND SEDIMENTATION AT DANA POINT HARBOR, CA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    dissipate wave energy and reduce wave reflection, the current and sediment transport can pass through survey for the underwater portion along with the above-water mapping via the LiDAR scanning technology

  19. Quantification of Salt Marsh Carbon Stocks: Integration of Remote Sensing Data and Techniques with Field Measurements 

    E-Print Network [OSTI]

    Kulawardhana, Ranjani W

    2013-12-02

    in this study show the capability of remote sensing data for the characterization of salt marsh terrain and vegetation heights and the estimation of above-ground biomass quantities. The best biomass prediction models using lidar heights reported considerably...

  20. NREL Advances Feedforward Control in Turbines (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This NREL Highlight is being produced for the 2015 February Alliance S&T Board meeting, and describes research that uses lidar and feedforward algorithms to improve rotor speed regulation and reduce costs of maintenance and operation.

  1. Frey, H.C., and K. Zhang, "Spatial and Temporal Analysis of Real-World Empirical Fuel Use and Emissions," Paper No. 2007-AWMA-285, Proceedings, 100th

    E-Print Network [OSTI]

    Frey, H. Christopher

    strategies in order to reduce both local and total trip emissions. Emission factor models (EMFs database. Road grade was estimated using a Light Detection And Ranging (LIDAR) data-based method.4

  2. The single pixel GPS: learning big data signals from tiny coresets

    E-Print Network [OSTI]

    Feldman, Dan

    We present algorithms for simplifying and clustering patterns from sensors such as GPS, LiDAR, and other devices that can produce high-dimensional signals. The algorithms are suitable for handling very large (e.g. terabytes) ...

  3. Beam dynamics in a long-pulse linear induction accelerator

    SciTech Connect (OSTI)

    Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  4. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    SciTech Connect (OSTI)

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  5. A high voltage pulse power supply for metal plasma immersion ion implantation and deposition

    SciTech Connect (OSTI)

    Salvadori, M. C.; Teixeira, F. S.; Araujo, W. W. R.; Sgubin, L. G.; Sochugov, N. S.; Spirin, R. E.; Brown, I. G.

    2010-12-15

    We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film/substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate.

  6. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    SciTech Connect (OSTI)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  7. LHC, le Big Bang en éprouvette

    ScienceCinema (OSTI)

    None

    2011-10-06

    Notre compréhension de l?Univers est en train de changer? Bar des Sciences - Tout public Débat modéré par Marie-Odile Montchicourt, journaliste de France Info. Evenement en vidéoconférence entre le Globe de la science et de l?innovation, le bar le Baloard de Montpellier et la Maison des Métallos à Paris. Intervenants au CERN : Philippe Charpentier et Daniel Froideveaux, physiciens au CERN. Intervenants à Paris : Vincent Bontemps, philosophe et chercheur au CEA ; Jacques Arnould, philosophe, historien des sciences et théologien, Jean-Jacques Beineix, réalisateur, producteur, scénariste de cinéma. Intervenants à Montpellier (LPTA) : André Neveu, physicien théoricien et directeur de recherche au CNRS ; Gilbert Moultaka, physicien théoricien et chargé de recherche au CNRS. Partenariat : CERN, CEA, IN2P3, Université MPL2 (LPTA) Dans le cadre de la Fête de la science 2008

  8. Constraining Lorentz violations with Gamma Ray Bursts

    E-Print Network [OSTI]

    Maria Rodriguez Martinez; Tsvi Piran

    2006-05-17

    Gamma ray bursts are excellent candidates to constrain physical models which break Lorentz symmetry. We consider deformed dispersion relations which break the boost invariance and lead to an energy-dependent speed of light. In these models, simultaneously emitted photons from cosmological sources reach Earth with a spectral time delay that depends on the symmetry breaking scale. We estimate the possible bounds which can be obtained by comparing the spectral time delays with the time resolution of available telescopes. We discuss the best strategy to reach the strongest bounds. We compute the probability of detecting bursts that improve the current bounds. The results are encouraging. Depending on the model, it is possible to build a detector that within several years will improve the present limits of 0.015 m_pl.

  9. Strict Limit on CPT Violation from Polarization of Gamma-Ray Bursts

    E-Print Network [OSTI]

    Kenji Toma; Shinji Mukohyama; Daisuke Yonetoku; Toshio Murakami; Shuichi Gunji; Tatehiro Mihara; Yoshiyuki Morihara; Tomonori Sakashita; Takuya Takahashi; Yudai Wakashima; Hajime Yonemochi; Noriyuki Toukairin

    2012-11-09

    We report the strictest observational verification of CPT invariance in the photon sector, as a result of gamma-ray polarization measurement of distant gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the universe. We detected the gamma-ray polarization of three GRBs with high significance, and the source distances may be constrained by a well-known luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion relation E_{\\pm}^2=p^2 \\pm 2\\xi p^3/M_{Pl}, where \\pm denotes different circular polarization states of the photon, the parameter \\xi is constrained as |\\xi|

  10. Method for tracking the location of mobile agents using stand-off detection technique

    DOE Patents [OSTI]

    Schmitt, Randal L. (Tijeras, NM); Bender, Susan Fae Ann (Tijeras, NM); Rodacy, Philip J. (Albuquerque, NM); Hargis, Jr., Philip J. (Albuquerque, NM); Johnson, Mark S. (Albuquerque, NM)

    2006-12-26

    A method for tracking the movement and position of mobile agents using light detection and ranging (LIDAR) as a stand-off optical detection technique. The positions of the agents are tracked by analyzing the time-history of a series of optical measurements made over the field of view of the optical system. This provides a (time+3-D) or (time+2-D) mapping of the location of the mobile agents. Repeated pulses of a laser beam impinge on a mobile agent, such as a bee, and are backscattered from the agent into a LIDAR detection system. Alternatively, the incident laser pulses excite fluorescence or phosphorescence from the agent, which is detected using a LIDAR system. Analysis of the spatial location of signals from the agents produced by repeated pulses generates a multidimensional map of agent location.

  11. Meteorological Observations for Renewable Energy Applications at Site 300

    SciTech Connect (OSTI)

    Wharton, S; Alai, M; Myers, K

    2011-10-26

    In early October 2010, two Laser and Detection Ranging (LIDAR) units (LIDAR-96 and LIDAR-97), a 3 m tall flux tower, and a 3 m tall meteorological tower were installed in the northern section of Site 300 (Figure 1) as a first step in development of a renewable energy testbed facility. This section of the SMS project is aimed at supporting that effort with continuous maintenance of atmospheric monitoring instruments capable of measuring vertical profiles of wind speed and wind direction at heights encountered by future wind power turbines. In addition, fluxes of energy are monitored to estimate atmospheric mixing and its effects on wind flow properties at turbine rotor disk heights. Together, these measurements are critical for providing an accurate wind resource characterization and for validating LLNL atmospheric prediction codes for future renewable energy projects at Site 300. Accurate, high-resolution meteorological measurements of wind flow in the planetary boundary layer (PBL) and surface-atmosphere energy exchange are required for understanding the properties and quality of available wind power at Site 300. Wind speeds at heights found in a typical wind turbine rotor disk ({approx} 40-140 m) are driven by the synergistic impacts of atmospheric stability, orography, and land-surface characteristics on the mean wind flow in the PBL and related turbulence structures. This section of the report details the maintenance and labor required in FY11 to optimize the meteorological instruments and ensure high accuracy of their measurements. A detailed look at the observations from FY11 is also presented. This portion of the project met the following milestones: Milestone 1: successful maintenance and data collection of LIDAR and flux tower instruments; Milestone 2: successful installation of solar power for the LIDAR units; and Milestone 3: successful implementation of remote data transmission for the LIDAR units.

  12. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect (OSTI)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  13. The Pennsylvania State University The Graduate School

    E-Print Network [OSTI]

    Brennan, Sean

    -based experimental tests using a 1:14 scale R/C tractor-trailer vehicle. The practicality of using a Light Detection and Ranging (LiDAR) unit for vehicle pose detection is also explored. For guiding the truck to the loading

  14. Copyright 2007, Optech Incorporated. All rights reserved. Recent Advancements in Commercial

    E-Print Network [OSTI]

    in target classification #12;© Copyright 2007, Optech Incorporated. All rights reserved. Digitized return "Multipulse" Waveform Digitizer Sensor Fusion New Applications #12;© Copyright 2007, Optech Incorporated. All Built-in Digitizer post processing software DLL & SDK available DASHMAP: The next generation in lidar

  15. Image Processing For Remote SUR 5386 Spring 2014

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    sensing concepts and data analysis towards digital image processing topics with natural resources, and classification are presented. Special emphasis is given to hyperspectral and LiDAR data collection/analysis and machine learning algorithms for image classification. This course depends heavily on distance education

  16. 7,511,624 -Aviation Overview: Device for monitoring the tracking, balance and integrity of helicopter and propeller

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    of helicopter and propeller blades Researchers at Montana State University have developed a LIDAR (Light monitoring, used from the ground or as a carry-on instrument. [This technology was tested by sensing the wing of any helicopter or propeller driven aircraft.] Application · Rotor and propeller tracking ­ rotor wing

  17. 32ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING 2011 Atmospheric "Super Test Beam" for the Pierre Auger Observatory

    E-Print Network [OSTI]

    _spokespersons@fnal.gov Abstract: We present results from 200 hours of operation of an atmospheric super test beam system developed system combines a Raman backscatter LIDAR receiver with a calibrated pulsed UV laser system to generate Facilities (CLF [1] & XLF) generate tracks that are recorded by the Auger Observatory fluorescence detector

  18. CX-100075: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Unobtrusive Multi-static Serial LiDAR Imager (UMSLI) for Wide-area Surveillance and Identificaiton of Marine Life at MHK Installations Award: DE-EE0006787 CX(s) Applied: A9, B3.6 Water Power Program Date: 09/23/2014 Location(s): Florida Office(s): Golden Field Office

  19. An evaluation of alternate remote sensing products for forest inventory, monitoring, and

    E-Print Network [OSTI]

    Lefsky, Michael

    and related attributes at a regional scale. Several sensors were evaluated, including (i) single date Landsat), a lidar sensor that di- rectly measures the height and canopy structure of forest vegetation. To evaluateAn evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping

  20. Oceans and Coastal Resources Council Final Research List in priority order

    E-Print Network [OSTI]

    new technologies--including but not limted to sensors (LIDAR, sonar, passive acoustics, infrared observing systems in areas that currently have no or minimal observing. 2 13.45 RC 74: Identify and evaluate by 2010. 12 22 RC 101: Conduct monitoring, assessment, and modeling evaluations of the impacts of fishing

  1. 2007 Urban Remote Sensing Joint Event 1-4244-0712-5/07/$20.00 2007 IEEE.

    E-Print Network [OSTI]

    Kerekes, John

    into the software, providing an extremely powerful tool for algorithm testing and sensor evaluation. However wave infrared (0.4 to 20 microns). Over the last few years, significant enhancements such as spectral-dimensional spatial details, while lidar can provide accurate 3D position information. Similarly, infrared data

  2. The GCM Oriented Calipso Cloud Product (CALIPSO-GOCCP) H. Chepfer(1)

    E-Print Network [OSTI]

    Dufresne, Jean-Louis

    ;2 Abstract. This paper presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Cloud Product (CALIPSO-GOCCP) designed to evaluate the cloudiness simulated by General the effects of viewing geometry, sensors' sensitivity and vertical overlap of cloud layers. For this purpose

  3. National Airborne Field Experiments for Prediction in Ungauged Basins

    E-Print Network [OSTI]

    Walker, Jeff

    , such as validation of these data products from new sensors, maturing retrieval algorithms, developing techniques with thermal infrared, near infrared, visible and lidar data. Passive microwave data will be collected in both if there is sufficient interest. A trial campaign to evalu

  4. ESF / VHREM Workshop, 22-23 September 2006 at the University of Hohenheim, Stuttgart, Germany

    E-Print Network [OSTI]

    Gohm, Alexander

    · Case study of a bora event · Case study of a wintertime air pollution event · Conclusions Outline Case backscatter lidar observations Case study of a wintertime air pollution event: Investigation of the role study of a bora event · Case study of a wintertime air pollution event · Conclusions RAMS model domain 5

  5. Remote Sens. 2010, 2, 1157-1176; doi:10.3390/rs2041157 Remote Sensing

    E-Print Network [OSTI]

    Ellis, Erle C.

    ) are essential for accurate estimation of vegetation biomass, carbon accounting, forestry, fire hazard evaluation closed canopy forest. Results confirm that computer vision can support ultra-low-cost, user-deployed high Keywords: vegetation biomass; vegetation carbon; canopy height models; bundle adjustment; Bundler; LiDAR; 3

  6. Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ

    E-Print Network [OSTI]

    Sun photometer and airborne in situ and ship-based lidar measurements B. Schmid,1 D. A. Hegg,2 J. Wang (closure) between solar beam attenuation by aerosols and water vapor measured by airborne Sun photometry agreement with airborne Sun photometry in the marine boundary layer but is considerably lower in layers

  7. Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines

    E-Print Network [OSTI]

    Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines Torben Mikkelsen, Jakob Mann and Michael Courtney Wind Energy Department, Risø National Laboratory:Torben.Mikkelsen@Risoe.dk Summary RISØ DTU has started to build a newly designed laser-based lidar scanning facility for remote wind

  8. VOLUME 37 MARCH 1998J O U R N A L O F A P P L I E D M E T E O R O L O G Y 1998 American Meteorological Society 241

    E-Print Network [OSTI]

    Liou, K. N.

    - tistics were obtained by Mace (1997) based on the 94- GHz radar returns data. During a number of field ex multilayer cirrus cloud systems using AVHRR data. It is based on the physical properties of the AVHRR 0.63- m ground-based lidar and radar im- ages, balloon-borne replicator data, and NCAR­CLASS humidity soundings

  9. 4/5/2014 Micro-windmill Charger | DailyHome Decor Ideas http://www.dailyhomedecorideas.com/stunning-ideas/micro-windmill-charger/ 1/4

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Turbine Education GG Design Inspirations Lidar Power Supply Affordable Area Rugs factoryoutletrugs://www.dailyhomedecorideas.com/stunning-ideas/micro-windmill-charger/ 3/4 Where there is the wind, there is the electrical power. Researchers in University of Texas Arlington have developed a ultra-small micro-windmill that is capable of making enough wind power

  10. An Automated Asset Locating System (AALS) with Applications to Inventory Management

    E-Print Network [OSTI]

    Spletzer, John R.

    An Automated Asset Locating System (AALS) with Applications to Inventory Management Thomas H-of-concept Automated Asset Locating System (AALS) for enhancing inventory management. AALS integrates LIDAR and RFID with the positions of assets in the environment. We present significant experimental results where the proof

  11. Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields

    E-Print Network [OSTI]

    Ramírez, Jorge A.

    distribution of snow depth fields Ernesto Trujillo,1 Jorge A. Rami´rez,1 and Kelly J. Elder2 Received 5 July, LIDAR snow depths, bare ground elevations (topography), and elevations filtered to the top of vegetation (topography + vegetation) in five 1-km2 areas are used to determine whether the spatial distribution of snow

  12. Sesso Temtica: Contribuio do Sensoriamento Remoto para a Explorao Petrolfera em Bacias Terrestres (Contribution of remote sensing for oil exploration in terrestrial basins).

    E-Print Network [OSTI]

    and gas exploration in onshore areas, such as seismic survey planning, definition of boundary conditions of morphostructural interpretation techniques aiming at the detection of subsurface traps: transition from RADAMBRASIL, SRTM, and LIDAR Dr. Fernando Pellon de Miranda (Petrobras/CENPES) 10:00 Joint interpretation

  13. The National Airborne Field Experiment Data Sets Walker J.P. 1

    E-Print Network [OSTI]

    Walker, Jeff

    -band Multibeam Radiometer (PLMR), a thermal imager, full-wave transform lidar, tri-spectral scanner and digital Carolina, United States 16. Department of Primary Industries, Australia 17. NSW Department of Environment's water, energy, and carbon cycles. Moreover, soil moisture knowledge is critical in weather and climate

  14. Geospatial analysis of a coastal sand dune field evolution: Jockey's Ridge, North Carolina

    E-Print Network [OSTI]

    Mitasova, Helena

    Geospatial analysis of a coastal sand dune field evolution: Jockey's Ridge, North Carolina Helena to the Jockey's Ridge, North Carolina, the largest active dune field on the east coast of the United States, lidar and GPS point data were used to compute a multitemporal elevation model of the dune field

  15. Morphological barrier island changes and recovery of dunes after Hurricane Dennis, St. George Island, Florida

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Morphological barrier island changes and recovery of dunes after Hurricane Dennis, St. George September 2009 Keywords: Dune recovery LiDAR Overwash Hurricane Dennis Barrier island During the summer of the barrier island are analyzed, along with the short-term post-storm recovery of secondary dunes. Results

  16. CX-008207: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Evaluation and Validation of Remote Wind Sensing Technologies - Shore-Based and Buoy Mounted Light LIDAR Systems CX(s) Applied: A9, A11, B3.1, B3.16 Date: 03/26/2012 Location(s): New Jersey Offices(s): Golden Field Office

  17. Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site

    E-Print Network [OSTI]

    to test the strengths and limitations of cloud boundary retrievals from radiosonde profiles, 4 yearsComparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains radiosonde-based methods applied to 200 m resolution profiles obtained at the same site. The lidar

  18. CHILBOLTON OBSERVATORY The Chilbolton Observatory in Hampshire is at the

    E-Print Network [OSTI]

    's energy balance. Scientists use CFARR's sophisticated RADAR (Radio Detection And Ranging), LIDAR (LIghtCHILBOLTON OBSERVATORY The Chilbolton Observatory in Hampshire is at the cutting-edge of world Monitoring Facility. CFARR CFARR is one of the world's most advanced experimental meteorological remote

  19. On the study of wind energy at great heights using remote sensing techniques

    E-Print Network [OSTI]

    On the study of wind energy at great heights using remote sensing techniques Alfredo Pe~na1 for a wind assessment campaign on the transformer/platform of Horns Rev, the world's largest offshore wind masts surrounding the wind farm. LiDAR and SoDAR observations of mean wind speed agree for the first

  20. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.206) Track: Technical

    E-Print Network [OSTI]

    Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.206) Track: Technical INVESTIGATION OF THE MEASUREMENT OF THE WIND SPEED STANDARD DEVIATION USING) Siemens wind power The LiDAR seems to be an effective alternative to met masts measurements of wind

  1. Atmos. Chem. Phys., 5, 20652079, 2005 www.atmos-chem-phys.org/acp/5/2065/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    in the case examined, which was also successfully forecasted by the DREAM dust model. The lidar data analy natural sources (wind- borne dust, sea spray, forest fires and volcanic eruptions, etc.) and anthropogenic- creasing urbanization and industrialization over the whole Mediterranean region and especially along

  2. Atmos. Chem. Phys., 4, 24412447, 2004 www.atmos-chem-phys.org/acp/4/2441/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    are very small, as at present, this method is, potentially, free of a number of systematic errors that bedevil more commonly-used methods. The method rests on the as- sumption that the aerosol consists of spherical droplets which do not depolarise the lidar signal, which is valid under most conditions. Maximum

  3. LASER MEASUREMENTS OF WAKE DYNAMICS Ferhat Bingol, Jakob Mann and Gunner C. Larsen

    E-Print Network [OSTI]

    for a rotation of the laser beam around a vertical axis.horizontal rotation, thus resulting in a horizontal sweep Introduction The vast majority of today's wind turbines are erected in wind farms. As a consequence, wake from upstream turbines. The wind energy LiDAR, ZephIR (Figure 1a), was de- veloped primarily to obtain

  4. Response of Wetland Soils to Flow Alterations in the Sabine River below Toledo Bend Dam for the Texas Instream Flows Program. 

    E-Print Network [OSTI]

    Nally, Deseri 1975-

    2011-04-29

    sites were identified below the dam using high radar LIDAR digital elevation modeling. Soils were collected from each stratum to a depth of 50 cm using a stratified random approach. Distinct patterns were observed in regards to the pH, redox, Ferrous...

  5. End of an Era: UW's state-of-the-art airborne research facility grounded after 30 years

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    pollution on the atmosphere and some of the ear- liest research on acid rain. The team flew through's largest groups studying clouds, precipitation and at- mospheric pollution, all of which are important, where she spent two years running, among other scientific instruments, a lidar, which uses laser light

  6. Baseline zone estimation in two Atul Mallik

    E-Print Network [OSTI]

    Banerjee, Moulinath

    being the region of interest. In LIDAR (light detection and ranging) experiments used for measuring concentration of pollu- tants in the atmosphere, interest often centers on finding high/low pollution zones (see, for example, Wakimoto and McElroy (1986)); in such contexts, S0 would be the zone of minimal pollution

  7. BIG DATA SYSTEMS AT THE ARM ARCHIVE I: INTERACTIVE VISUALIZATION OPPORTUNITIES

    E-Print Network [OSTI]

    BIG DATA SYSTEMS AT THE ARM ARCHIVE I: INTERACTIVE VISUALIZATION OPPORTUNITIES Giri Palanisamy, Oak instrumentation (e.g., scanning radars and lidars). As part of the "Big Data System" (BDS) design, the ARM Archive that will be dedicated to visualization and software development based on the very large data volumes from new ARM

  8. 3D Multi-Field Multi-Scale Features From Range Data In Spacecraft Proximity Operations 

    E-Print Network [OSTI]

    Flewelling, Brien Roy

    2012-07-16

    . These methods exist for both active sensors such as Light Detection and Ranging(LIDAR) or laser RADAR(LADAR), and passive sensors such as CCD and CMOS camera systems. This dissertation presents a method for fusing time of flight(ToF) range data inherent...

  9. Traffic Light Mapping and Detection Nathaniel Fairfield Chris Urmson

    E-Print Network [OSTI]

    Cortes, Corinna

    Traffic Light Mapping and Detection Nathaniel Fairfield Chris Urmson {nfairfield, curmson, and lidar to perceive their surroundings, the state of standard traffic lights can only be perceived lights and improve detection of the light state. The prior map also encodes the control semantics

  10. Autonomous Docking of a Smart Wheelchair for the

    E-Print Network [OSTI]

    Spletzer, John R.

    . From an automation per- spective, autonomously docking the wheelchair onto the lift platform presented platform rails. To solve the docking task, we employed a light detection and ranging (LIDAR)­based approach wheelchair. Van conversions start with a standard van produced by a major automotive manufacturer. The van

  11. Earth and Planetary Science Letters 377378 (2013) 239247 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Roering, Joshua J.

    2013-01-01

    : landslides hydrology precipitation InSAR lidar pore-water pressure diffusion Precipitation drives seasonal velocity changes in slow-moving landslides by increasing pore-water pressure and reducing the effective normal stress along basal shear zones. This pressure change is often modeled as a pore-water pressure

  12. Quantification of Dune Response during a 6-Day Nor'easter, Outer Banks, NC Kate L. Brodie1, Nick J. Spore1, Christy Swann2

    E-Print Network [OSTI]

    US Army Corps of Engineers

    using Coastal Lidar And Imaging System (CLARIS) during the first dune collision event following cross-shore erosion of recently pushed, un-vegetated dunes reached 2 m/day. Variations in foreduneQuantification of Dune Response during a 6-Day Nor'easter, Outer Banks, NC Kate L. Brodie1, Nick J

  13. Applying Single-Layer Shallow-Water Theory to Gap Flows in the Brenner Pass Region

    E-Print Network [OSTI]

    Gohm, Alexander

    /22 +-= cc BFFM1=cF Arakawa (69), Armi (84) = bbB cc / orography layer height #12;The Wipp valley orography: · pressure jumps · speed maximum in lower third of Wipp valley (several secondary maxima) 2. Radiosoundings.9 at GED 3. Wind and aerosol backscatter lidar: · speed-up in lower third of Wipp valley indicating

  14. The Interruption of Alpine Foehn by a Cold Front. Part I: Observations

    E-Print Network [OSTI]

    Gohm, Alexander

    in Inn and Wipp Valley Temperature slope profile Doppler wind lidar in Wipp Valley #12;6 of 13 Case study study Wipp Valley: AWS network Pot. Temp. and Wind ­ Hovmoeller diagram Strong and warm foehn in the lower Wipp Valley Western Inn-Valley gust front enters Wipp Valley Cold front propagates southward

  15. Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 962977, April 2010 Part B Evolution and structure of a cold front in an Alpine valley as

    E-Print Network [OSTI]

    Gohm, Alexander

    is a Doppler lidar that had been operated in the Wipp Valley (Austria). The cold front approached the European part of the cold air had entered the adjacent north­south aligned Wipp Valley. Asynthesisof in the Wipp Valley was an atmospheric density current characterized by an elevated head, a front

  16. Cassandra Wheeler Univ. of Colorado Department of Atmospheric and Oceanic Sciences (ATOC)

    E-Print Network [OSTI]

    .) #12;1. Overview of ASCOS Field Campaign and Remote Sensors 2. Vertically Pointing Radars 3. Ceilometer on the energy budget NOAA's Contribution: Remotely observe cloud layers and environmental conditions Svalbard Oden #12;Ka-Band Radar S-Band Radar Wind Profiler Scanning Radiometer Lidar Ceilometer 2-Channel

  17. Detection Probability Modeling for Airport Wind-Shear August 28, 2008

    E-Print Network [OSTI]

    Cho, John Y. N.

    Detection Probability Modeling for Airport Wind-Shear Sensors August 28, 2008 John Y. N. Cho Robert An objective wind-shear detection probability estimation model is developed for radar, lidar, and sensor combinations. The model includes effects of system sensitivity, site-specific wind-shear, clutter, and terrain

  18. neath the Pines 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    the site index provided by SSURGO and the site index curves created for the study area with an RMSE of 4.8 years for mean plot age. Underestimation of tree height by lidar and error in the site index curve explained 91% of the error in mean plot age...

  19. Atmos. Chem. Phys., 4, 307321, 2004 www.atmos-chem-phys.org/acp/4/307/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    -located spectral and broad- band solar UV-B irradiance measurements, as well as total ozone observations, were the irradiance measure- ments, using total ozone and the lidar aerosol data as input. From the comparison- lar irradiance at the Earth's surface. The TUV radiative trans- fer model has been used to simulate

  20. Frequency agile optical parametric oscillator

    DOE Patents [OSTI]

    Velsko, S.P.

    1998-11-24

    The frequency agile OPO device converts a fixed wavelength pump laser beam to arbitrary wavelengths within a specified range with pulse to pulse agility, at a rate limited only by the repetition rate of the pump laser. Uses of this invention include Laser radar, LIDAR, active remote sensing of effluents/pollutants, environmental monitoring, antisensor lasers, and spectroscopy. 14 figs.