Powered by Deep Web Technologies
Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Understanding Thin Film Structure for the Rational Design of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Thin Film Structure for the Rational Design of Understanding Thin Film Structure for the Rational Design of High-performance Organic Semiconductors for Plastic Electronics Organic semiconductors are attracting considerable research interest due to their potential applications in low-cost electronics such as organic light emitting diode (OLED) displays, RF identification tags (RFID), smart cards and electronic paper. The development of p-conjugated materials, which are composed of alternating single and double chemical bonds, are the foundation of these applications. In the past decade research in this field has progressed to the extent that desirable charge transport in the organic semiconductor film in organic thin film transistors (OTFT) can be achieved through molecular design by selective placement of electron-rich, electron-withdrawing, and aromatic groups in different parts of the molecule. Although the electronic properties are easily tuned by molecular design, the molecular packing within the thin film and the film microstructure have a significant influence on the OTFT performance. Despite this importance, this interrelationship between molecular structure, thin film molecular packing and charge transport are only poorly understood.

2

Geometric shape control of thin film ferroelectrics and resulting structures  

DOE Patents [OSTI]

A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

3

Carbon nanotube thin films with ordered structures Chunsheng Du,a  

E-Print Network [OSTI]

Carbon nanotube thin films with ordered structures Chunsheng Du,a Jeff Yehb and Ning Pan*a Received December 2004 DOI: 10.1039/b414682d Carbon nanotube thin films with ordered structures have been developed properties, carbon nanotubes have aroused a great deal of research interest, and a wider range of potential

Pan, Ning

4

Peeling Back the Layers of Thin Film Structure and Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 10, 2014 Bookmark and Share The layer-by-layer analysis of the concentration of strontium within a 40-angstrom thick (La, Sr)CoO thin film applied to a SiTiO3 substrate....

5

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

6

Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells  

Science Journals Connector (OSTI)

Metallic back structures with one-dimensional periodic nanoridges attached to a thin-film amorphous Si (a-Si) solar cell are numerically studied. At the interfaces between a-Si and...

Bai, Wenli; Gan, Qiaoqiang; Bartoli, Filbert; Zhang, Jing; Cai, Likang; Huang, Yidong; Song, Guofeng

2009-01-01T23:59:59.000Z

7

Plasmonic Back Structures Designed for Efficiency Enhancement of Thin Film Solar Cells  

Science Journals Connector (OSTI)

Metallic back structures with one-dimensional periodic nanoridges attached to thin-film amorphous silicon (a-Si) solar cell are proposed to enhance the cell efficiency in a wide...

Bai, Wenli; Gan, Qiaoqiang; Bartoli, Filbert; Song, Guofeng

8

Integrated photonic structures for light trapping in thin-film Si solar cells  

E-Print Network [OSTI]

We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

Sheng, Xing

9

Silicon-integrated thin-film structure for electro-optic applications  

DOE Patents [OSTI]

A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

McKee, Rodney A. (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

10

Structural Studies of Al:ZnO Powders and Thin Films | Stanford Synchrotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structural Studies of Al:ZnO Powders and Thin Films Structural Studies of Al:ZnO Powders and Thin Films Monday, June 18, 2012 - 2:00pm SSRL Main Conference Room 137-322 Dr. Bridget Ingham, Associate Investigator, MacDiarmid Institute for Advanced Materials & Nanotechnology Al-doped ZnO (Al:ZnO) is a promising transparent conducting oxide. We have used complementary synchrotron and laboratory techniques to study the incorporation of Al within the ZnO lattice, and measure its effect on the crystallinity of thin films prepared by sol-gel techniques, with an aim to understand how these properties affect the film conductivity. I will present recent results from Al:ZnO powders and thin films, prepared with varying Al concentrations and calcination temperatures. Solid state 27Al NMR and ex situ X-ray diffraction (XRD) were performed on Al:ZnO

11

COBRA: Determining Atomic Positions in Thin-Film Structures and Interfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COBRA: Determining Atomic Positions in Thin-Film Structures and Interfaces COBRA: Determining Atomic Positions in Thin-Film Structures and Interfaces Coherent Bragg rod analyses (COBRA) experiments using synchrotron x-rays at Argonne's Advanced Photon Source (MHATT-CAT and PNC-CAT beamlines) directly revealed the sub-angstrom atomic interaction of epitaxial films with substrates. Information on how atoms in the adjoining layers of the film and substrate rearrange to mimic each other may lead to improvements in semiconductor manufacturing and the development of novel heterostructure materials, such as multilayer ferroelectrics, magnetic nanostructures and thin film superconductors. COBRA electron density map of a Gd2O3 film on a gallium arsenide substrate. The peaks correspond to folded Gd atomic positions parallel to the plane of the substrate.

12

Ferroelectric Thin-Film Active Sensors for Structural Health , Victor Giurgiutiu1  

E-Print Network [OSTI]

, Structural health monitoring 1. INTRODUCTION 1.1 Background Piezoelectric wafer active sensors have beenFerroelectric Thin-Film Active Sensors for Structural Health Monitoring Bin Lin1 , Victor laboratory, Penn State University, University Park, PA 16802 ABSTRACT Piezoelectric wafer active sensors

Giurgiutiu, Victor

13

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY  

E-Print Network [OSTI]

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION, A. N. Tiwari Thin Film Physics Group, Laboratory for Solid State Physics, Technopark ETH-Building, Technoparkstr. 1, CH-8005 Zurich, Switzerland ABSTRACT: CdTe/CdS thin £lm solar cells have been grown by closed

Romeo, Alessandro

14

Geometric structures of thin film: Pt on Pd(110) and NiO on Ni(100)  

SciTech Connect (OSTI)

This thesis is divided into 3 papers: dynamical low-energy electron- diffraction investigation of lateral displacements in topmost layer of Pd(110); determination of (1{times}1) and (1{times}2) structures of Pt thin films on Pd(110) by dynamical low-energy electron-diffraction analysis; and structural determination of a NiO(111) film on Ni(100) by dynamical low-energy electron-diffraction analysis.

Warren, O.L.

1993-07-01T23:59:59.000Z

15

Composition–Structure–Function Diagrams of Ti–Ni–Au Thin Film Shape Memory Alloys  

Science Journals Connector (OSTI)

thin films; annealing; high temperature shape memory alloys; combinatorial materials science; phase transformation ...

Pio John S. Buenconsejo; Alfred Ludwig

2014-11-04T23:59:59.000Z

16

Effect of Fe-ion implantation doping on structural and optical properties of CdS thin films  

Science Journals Connector (OSTI)

We report on effects of Fe implantation doping-induced changes in structural, optical, morphological, and vibrational properties of cadmium sulfide thin films. Films were implanted with 90 keV Fe+ ions at room te...

S. Chandramohan; A. Kanjilal; S. N. Sarangi; S. Majumder…

2010-06-01T23:59:59.000Z

17

A novel integrated structure of thin film GaN LED with ultra-low thermal resistance  

Science Journals Connector (OSTI)

This study proposes a novel packaging structure for vertical thin-GaN LED applications by integration of LED chip and silicon-based packaging process. The vertical thin film LED is...

Wen, Shih-Yi; Hu, Hung-Lieh; Tsai, Yao-Jun; Hsu, Chen-Peng; Lin, Re-Ching; Horng, Ray Hua

2014-01-01T23:59:59.000Z

18

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells  

E-Print Network [OSTI]

Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

Sheng, Xing

19

Surface characterization and electronic structure of HgTe nanocrystalline thin films  

Science Journals Connector (OSTI)

Mercury telluride (HgTe) nanocrystalline thin films were synthesized using an electrochemical deposition technique. The surface morphology of the thin films were investigated by atomic force microscopy (AFM) as a function of the film thickness which shows that an increase in film thickness increases the surface roughness. The scaling exponents such as roughness exponent, ? and growth exponent, ? associated with the film growth, determined from surface and power spectral analysis using AFM are found to be 0.88±0.05 and 0.21±0.04 respectively. The shifting of the valence and core levels to higher binding energy as evidenced from x-ray photoelectron spectroscopy, suggest the change in electronic structure of the nano-HgTe films possibly due to the surface roughness.

S. Rath, D. Paramanik, S. N. Sarangi, S. Varma, and S. N. Sahu

2005-11-08T23:59:59.000Z

20

Electronic Structure and Chemical Bonding of Amorphous Chromium Carbide Thin Films  

E-Print Network [OSTI]

The microstructure, electronic structure, and chemical bonding of chromium carbide thin films with different carbon contents have been investigated with high-resolution transmission electron microscopy, electron energy loss spectroscopy and soft x-ray absorption-emission spectroscopies. Most of the films can be described as amorphous nanocomposites with non-crystalline CrCx in an amorphous carbon matrix. At high carbon contents, graphene-like structures are formed in the amorphous carbon matrix. At 47 at% carbon content, randomly oriented nanocrystallites are formed creating a complex microstructure of three components. The soft x-ray absorption-emission study shows additional peak structures exhibiting non-octahedral coordination and bonding.

Magnuson, Martin; Lu, Jun; Hultman, Lars; Jansson, Ulf; 10.1088/0953-8984/24/22/225004

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Structural Features and Water Interactions of Etherified Xylan Thin Films  

Science Journals Connector (OSTI)

In this paper, the model film approach was used to investigate the structural features and humidity induced changes of the etherified xylan derivatives by using surface sensitive methods. Two routes to modify the...

Maria Soledad Peresin; Kari Kammiovirta…

2012-12-01T23:59:59.000Z

22

Electric Field Structures in Thin Films: Formation and Properties  

Science Journals Connector (OSTI)

These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. ... Materials which produce and harbor electric (and magnetic) fields, and the layering of such materials to produce composite multiferroic heterostructures, stimulate great interest in the physicochemical and material science communities. ... One may note that the data for toluene in Figure 1b do not form precisely parallel lines and therefore do not represent the same electric field. ...

Andrew Cassidy; Oksana Plekan; Richard Balog; Jack Dunger; David Field; Nykola C. Jones

2014-06-12T23:59:59.000Z

23

Structure and dielectric properties of La{sub x}Hf{sub (1?x)}O{sub y} thin films: The dependence of components  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • La{sub x}Hf{sub (1?x)}O{sub y} thin films were grown by pulse laser deposition method. • The thin film with 10% La/(La + Hf) atom ratio forms a cubic HfO{sub 2} phase. • The amorphous thin films due to more La introduced have almost same local structure. • The main infrared phonon modes move to lower frequency for the amorphous thin films. • The static dielectric constants of the amorphous thin films increase with La content. - Abstract: La{sub x}Hf{sub (1?x)}O{sub y} (x = 0, 0.1, 0.3, 0.5, 0.7, y=2?(1/2)x) thin films were grown by pulsed laser deposition (PLD) method. The component dependence of the structure and vibration properties of these thin films is studied by combining X-ray diffraction, X-ray absorption fine structure (XAFS) and infrared spectroscopy. The thin film with 10% La/(La + Hf) atom ratio forms a cubic HfO{sub 2} phase and it has the largest static dielectric constant. More La atoms introduced cause amorphous phase formed and the static dielectric constants increase with the La content. Although XAFS indicates that these amorphous thin films have almost same local structures, the infrared phonon modes with most contribution to the static dielectric constant move to lower frequency, which results in the component dependence of the dielectric constant.

Qi, Zeming, E-mail: zmqi@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Cheng, Xuerui [Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002 (China); Zhang, Guobin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Li, Tingting [Institute of Microelectronics of Chinese Academy of Science, Beijing 100029 (China); Wang, Yuyin; Shao, Tao; Li, Chengxiang; He, Bo [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China)

2013-07-15T23:59:59.000Z

24

Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy  

SciTech Connect (OSTI)

Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Yanmin; Hu, Ran; Ren, Naifei [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); Ge, Daohan [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

2013-11-14T23:59:59.000Z

25

Structure-stress-resistivity relationship in WTi alloy ultra-thin and thin films prepared by magnetron sputtering  

Science Journals Connector (OSTI)

WTi thin films were prepared from an alloyed target (W:Ti ? 70:30?at. %) by magnetron sputtering. Body-centered cubic W x T i 1 ? x solid solutions with a { 110 } fiber texture and columnar grains have been produced with 0.75 WTi thin films is about 60 ? 200 ? ? ? ? cm depending on the film thickness and microstructure (sputtering conditions). For both ultra-thin (9.5?nm) and thin (180?nm) films a stress transition from compressive to tensile is observed as the working pressure increases. The process-structure-property relations of the WTi ultra-thin and thin films are discussed in relation with the state of the art.

P.-O. Renault

2013-01-01T23:59:59.000Z

26

Structural and morphological properties of sputtered NiO thin films at various sputtering pressures  

SciTech Connect (OSTI)

Nickel oxide thin films were successfully deposited on glass substrates at different sputtering pressures in the range of 3 x 10{sup -2} to 5 x 10{sup -2} mbar. It was observed that sputtering pressure influenced the structural and morphological properties. Structural properties were studied with X-ray diffractometer. All the deposited films were polycrystalline and exhibited cubic structure with preferential growth along (220) plane. From morphological studies it was observed that fine and uniform grains with RMS roughness of 9.4 nm were obtained when the films deposited at a sputtering pressure of 4 x 10{sup -2} mbar,. The grain size and the surface roughness decreased at higher sputtering pressures. The surface mobility of the adatoms decreased after series of collisions resulting in the decrease of grain size at high sputtering pressures.

Reddy, A. Mallikarjuna; Reddy, Y. Ashok Kumar; Reddy, A. Sivasankar; Reddy, P. Sreedhara [Department of Physics, Sri Venkateswara University, Tirupathi-517502, Andhra Pradesh (India); Division of Advanced Materials Engineering, Kongju National University, Budaedong, Cheonan City (Korea, Republic of); Department of Physics, Sri Venkateswara University, Tirupathi-517502, Andhra Pradesh (India)

2012-06-05T23:59:59.000Z

27

Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction  

SciTech Connect (OSTI)

The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

Roberts, J.G.

2000-05-01T23:59:59.000Z

28

Structural, optical and photocatalytic properties of ZnO thin films and  

E-Print Network [OSTI]

emitting diodes, gas sensors and transparent conducting thin films for solar cells. In this work, Zn an electronic furnace. Fig. 1. Grain size (black) and RMS variations (blue) of 1-6 layered ZnO films vs

29

Influence of Boron doping on the structural, optical and electrical properties of CdO thin films by spray pyrolysis technique  

SciTech Connect (OSTI)

Cadmium oxide and Boron (B) doped Cadmium oxide thin films were deposited using spray pyrolysis technique. The structural, morphological, electrical and optical properties of undoped and B doped CdO films are analyzed by varying the dopant concentration in the solution. The structural study shows the polycrystalline nature and cubic structure of undoped and B doped CdO thin films. Surface morphological study reveals that the grains are spherical in shape. Optical and electrical studies showed n-type semiconducting nature and optical band gap of 2.44 eV of deposited thin films.

Velusamy, P., E-mail: rampap2k@yahoo.co.in; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin Films Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu (India); Ramamurthi, K. [Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur - 603203, Tamil Nadu (India)

2014-04-24T23:59:59.000Z

30

Structural, Morphological and Optical properties of Sputtered Nickel oxide Thin Films  

SciTech Connect (OSTI)

Nickel oxide (NiO) thin films have been deposited by dc reactive magnetron sputtering technique on glass substrates at various substrate temperatures in the range of 303 to 723 K. The influence of substrate temperature on structural, morphological, compositional and optical properties was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and spectrophotometer studies. The structural properties of the films were strongly influenced by the substrate temperature. From the microstructural studies, fine and uniform grains were grown with RMS roughness of 9.4 nm at substrate temperature of 523 K. The optical results indicated that the optical transmittance of the films increases with increasing substrate temperature up to 523 K, thereafter decreases. The optical band of the films increases with substrate temperature initially, thereafter decreased at higher temperatures. The Highest optical transmittance of 60 % and optical band gap of 3.82 eV was observed in the present study.

Reddy, A. Mallikarjuna; Reddy, A. Sivasankar; Reddy, P. Sreedhara [Department of Physics, Sri Venkateswara University, Tirupati-517 502 (India)

2011-10-20T23:59:59.000Z

31

Surface structural analysis of LiF(100) thin films grown on Pt(111)  

SciTech Connect (OSTI)

The surface structure of a multilayer LiF(100) thin film grown on Pt(111) from the vapor has been determined by the automated tensor low energy electron diffraction (LEED) method. The final structure, which refined to a Pendry R-factor (RP) of 0.24, had a surface corrugation (D1) of 0.24+-0.04 Angstrom due to the Li+ being displaced towards the bulk, leaving the initially coplanar F - unshifted. A similar intralayer corrugation due to the movement of the Li+ was also observed in the layer immediately under the surface layer, although to a lesser degree: D2=0.07+-0.04 Angstrom. This asymmetric relaxation resulted in the reduction of the first interlayer spacing, d(F2-Li1), to 1.77+-0.0 6 Angstrom from the ideal value of 2.01 Angstrom. The second interlayer spacing, d(Li3-F2), was within error bars of the bulk value, 2.01 Angstrom.

Roberts, J.G.; Van Hove, M.A.; Somorjai, G.A.

2002-08-29T23:59:59.000Z

32

175 MeV Au{sup +13} ion irradiation induced structural and morphological modifications in zinc oxide thin films  

SciTech Connect (OSTI)

Thin films of ZnO were deposited, on Si substrates, using the RF-sputtering technique and irradiated by the 175 MeV Au{sup +13} beams. The structural changes were investigated by x-ray diffraction (XRD) measurements. The particle size found to increase with the increasing ion fluence up to 1 Multiplication-Sign 10{sup 12} ion/cm{sup 2}. At highest irradiation fluence of 5 Multiplication-Sign 10{sup 12} ion/cm{sup 2} the average particle size decreases. The Raman spectroscopy measurements were performed to understand the local phonon mode of the samples. The surface morphology of the as-deposited and irradiated thin films is measured by the Atomic Force Microscopy (AFM).

Singh, Devendra [Materials Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, UP (India); Sharma, Aditya [Materials Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, UP (India) and Department of Applied Sciences and Humanities, Krishna Institute of Engineering and Technology, Ghaziabad-201206, U.P. (India); Varshney, Mayora; Verma, K. D. [Materials Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, UP (India) and Department of Applied Sciences and Humanities, Krishna Institute of Engineering and Technolog (India); Kumar, Shalendra [School of Nano and Advanced Materials Engineering, Changwon National University, 9 Sarim-dong, Changwon- 641-773 (Korea, Republic of)

2013-02-05T23:59:59.000Z

33

Synthesis, structural and electrochemical properties of electron beam evaporated V{sub 2}O{sub 5} thin films  

SciTech Connect (OSTI)

Vanadium pentoxide is one of the most promising cathode materials because it offers high energy density, low cost, low toxicity over the other cathode materials. Its layered and open structure makes this material in thin film form well suited for electro-chemical insertion reactions with the Li ions. In the present investigation, V{sub 2}O{sub 5} thin films have been prepared by electron beam evaporation technique on gold coated silicon substrates maintained at a substrate temperature of 250 Degree-Sign C in an oxygen partial pressure of 2 Multiplication-Sign 10{sup -4} mbar. The XRD patterns exhibited three predominant diffraction peaks corresponding to (200) (001) and (400) planes of orthorhombic phase of V{sub 2}O{sub 5} with P{sub mnm} space group. The electrochemical characteristics of V{sub 2}O{sub 5} thin films with thickness of 600 nm were examined in non-aqueous region. The film exhibited step wise discharge with two plateaus. The as-deposited film delivered a discharge capacity of 70 {mu}Ah/(cm{sup 2}-{mu}m) at a current density of 30 {mu}A/cm{sup 2}. Annealing of these films at 450 Degree-Sign C exhibited a better discharge capacity of 90 {mu}Ah/(cm{sup 2}-{mu}m).

Hussain, O. M.; Rosaiah, P. [Thin Film Laboratory, Department of Physics, Sri Venkateswara University, Tirupati-517 502 (India)

2012-06-25T23:59:59.000Z

34

Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics  

DOE Patents [OSTI]

Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

2014-04-08T23:59:59.000Z

35

Growth, structure and electrical properties of epitaxial thulium silicide thin films on silicon  

SciTech Connect (OSTI)

Thulium silicide thin films were grown on (100) and (111) Si by evaporation of Tm metal and Si layers and annealing in a vacuum. Electron microscopy and x-ray diffraction results showed that the TmSi{sub 2{minus}x} layers are of high crystalline quality grown epitaxially on Si. Electrical resistivity measurements showed that TmSi{sub 2{minus}x} layers are metallic exhibiting magnetic ordering below 3 K. {copyright} {ital 1997 American Institute of Physics.}

Travlos, A.; Salamouras, N.; Boukos, N. [Institute of Materials Science, National Centre for Scientific Research Demokritos, Athens, (Greece) 15310] [Institute of Materials Science, National Centre for Scientific Research Demokritos, Athens, (Greece) 15310

1997-02-01T23:59:59.000Z

36

Ambient condition laser writing of graphene structures on polycrystalline SiC thin film deposited on Si wafer  

SciTech Connect (OSTI)

We report laser induced local conversion of polycrystalline SiC thin-films grown on Si wafers into multi-layer graphene, a process compatible with the Si based microelectronic technologies. The conversion can be achieved using a 532 nm CW laser with as little as 10 mW power, yielding {approx}1 {mu}m graphene discs without any mask. The conversion conditions are found to vary with the crystallinity of the film. More interestingly, the internal structure of the graphene disc, probed by Raman imaging, can be tuned with varying the film and illumination parameters, resembling either the fundamental or doughnut mode of a laser beam.

Yue, Naili; Zhang, Yong; Tsu, Raphael [Department of Electrical and Computer Engineering and The Center for Optoelectronics and Optical Communications, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223 (United States)] [Department of Electrical and Computer Engineering and The Center for Optoelectronics and Optical Communications, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223 (United States)

2013-02-18T23:59:59.000Z

37

Influence of implantation induced Ni-doping on structural, optical, and morphological properties of nanocrystalline CdS thin films  

Science Journals Connector (OSTI)

Ni-doped CdS thin films were prepared by 90 keV Ni+ implantation at room temperature. Ni-ion implantation induced modifications in structural, optical, and morphological properties are studied for a wide range of impurity concentrations (1.86–10.19 at.%). Addition of Ni+ ions does not lead to any structural phase transformation or formation of metallic clusters or secondary phase precipitates. However, it induces structural disorder leading to a reduction in the optical band gap from 2.39 to 2.28 eV following Ni implantation up to 3 × 1016 ions cm?2. This is addressed on the basis of band tailing due to the creation of localized energy states and implantation induced grain growth. Moreover, Ni-doping is found to modify the luminescence properties by creating shallow acceptor states.

S. Chandramohan; T. Strache; S.N. Sarangi; R. Sathyamoorthy; T. Som

2010-01-01T23:59:59.000Z

38

ThinFilms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Films Thin Films Manufacturing Technologies The Thin Film laboratory provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposi- tion processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping, or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials. Deposition capabilities and expertise * Deposition of a large variety of thin film mate- rials * Multiple sputter deposition systems - Capable of depositing four materials in a

39

Nanocauliflower like structure of CdS thin film for solar cell photovoltaic applications: In situ tin doping by chemical bath deposition technique  

Science Journals Connector (OSTI)

Abstract We report on surface morphology changes of in situ tin (Sn) doped cadmium sulphide (CdS) thin film nanostructures prepared on a glass substrate using the chemical bath deposition (CBD) technique. Sn-doping in the presence of triethanolammine (TEOA) as complexing agent resulted in the formation of nanocauliflower like structure of CdS thin film. X-ray diffraction (XRD) results indicated that Sn-doped CdS thin films show a hexagonal structure with a preferential orientation growth along the c-axis (0 0 2). The Sn4+ doping markedly influenced on the evolution of the CdS nanostructures, resulting in the formation of nanocracks due to the substitution of Cd2+ ions by larger-than-host Sn4+ ions as well as a drastic increase in electrical conductivity. An improved optical transmittance property was also achieved by the Sn-doping with no considerable change in the energy band gap. Moreover, a large improvement in both electrical conductivity and photosensitivity observed in the Sn-doped CdS thin films suggests that Sn-doping is highly effective for applications as window/buffer layers in future solar cell applications. Structural evolution of cauliflower like nanostructures are also discussed in this paper.

K.C. Wilson; E. Manikandan; M. Basheer Ahamed; B.W. Mwakikunga

2014-01-01T23:59:59.000Z

40

Bulge testing of single and dual layer thin films Dryver R. Huston*ab  

E-Print Network [OSTI]

to a thin film window. By comparing the pressure- displacement relation with a mechanical model, the elastic structures, such as the thin film windows that are used in Next Generation Lithography masks and certain MEMS it in a thin film window. Thin film windows are fabricated by removing the thick substrate out from underneath

Huston, Dryver R.

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Spatial Frequency Filtering Using Nondelineated Thin Films  

Science Journals Connector (OSTI)

We present a new approach for achieving spatial frequency filtering in the analog domain. Our device, the Thin Film Spatial Filter, is a hybrid structure which combines the strengths of analog VLSI technology with the simplicity of a continuous sheet ...

J. Mcelvain; J. Langan; A. J. Heeger

1997-10-01T23:59:59.000Z

42

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

43

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

44

Thin Film Photovoltaics Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

45

Structure, Magnetism, and Transport of CuCr2Se4 Thin Films  

E-Print Network [OSTI]

to the surface. Electronic structure calculations indicatealso present electronic structure calculations for CuCr 2 Sewith the electronic structure calculations. 1. Introduction

2008-01-01T23:59:59.000Z

46

Electronic structure of fully epitaxial Co2TiSn thin films  

E-Print Network [OSTI]

ab initio electronic structure calculations. A. Experimentalab initio electronic structure calculations. We used two di?end. First, electronic structure calculations were performed

Meinert, Markus

2011-01-01T23:59:59.000Z

47

NMR characterization of thin films  

DOE Patents [OSTI]

A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

2008-11-25T23:59:59.000Z

48

Structure of epitaxial (Fe,N) codoped rutile TiO2 thin films...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No evidence of structural disorder associated with a high concentration of oxygen vacancies is observed. Substitution of Fe for Ti could not be confirmed, although secondary...

49

Thin film photovoltaic cell  

DOE Patents [OSTI]

A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

1982-01-01T23:59:59.000Z

50

Heteroepitaxial growth and surface structure of L1{sub 0}-MnGa(111) ultra-thin films on GaN(0001)  

SciTech Connect (OSTI)

L1{sub 0}-structured MnGa(111) ultra-thin films were heteroepitaxially grown on GaN(0001) under lightly Mn-rich conditions using molecular beam epitaxy. Room-temperature scanning tunneling microscopy (STM) investigations reveal smooth terraces and angular step edges, with the surface structure consisting primarily of a 2 × 2 reconstruction along with small patches of 1 × 2. Theoretical calculations were carried out using density functional theory, and the simulated STM images were calculated using the Tersoff-Hamman approximation, revealing that a stoichiometric 1 × 2 and a Mn-rich 2 × 2 surface structure give the best agreement with the observed experimental images.

Mandru, Andrada-Oana; Wang, Kangkang; Cooper, Kevin; Ingram, David C.; Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States)] [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Garcia Diaz, Reyes; Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States) [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada Baja California, Codigo Postal 22800 (Mexico); Haider, Muhammad [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States) [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran, 31261 (Saudi Arabia)

2013-10-14T23:59:59.000Z

51

The design and manufacture of a novel thin-film microelectronic vacuum diode structure  

E-Print Network [OSTI]

be easily expanded to multi-electrode structures, and has application in flat-panel display technology. A process for the manufacture of such a diode is developed herein. Diodes of various sizes are subsequently manufactured and tested. Test results...

Mason, Mark E.

2012-06-07T23:59:59.000Z

52

Structure, Magnetism, and Transport of CuCr2Se4 Thin Films  

E-Print Network [OSTI]

Structure, Magnetism, and Transport of CuCr 2 Se 4 Thindichroism shows that the magnetism persists to the surfacesuch as the nature of magnetism at surfaces and interfaces.

2008-01-01T23:59:59.000Z

53

Structural and Magnetic Properties of Epitaxial MnSi(111) Thin Films.  

E-Print Network [OSTI]

??MnSi(111) films were grown on Si(111) substrates by solid phase epitaxy (SPE) and molecular beam epitaxy (MBE) to determine their magnetic structures. A lattice mismatch… (more)

Karhu, Eric

2012-01-01T23:59:59.000Z

54

3-D photo-patterning of refractive index structures in photosensitive thin film materials  

DOE Patents [OSTI]

A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

Potter, Jr., Barrett George (Albuquerque, NM); Potter, Kelly Simmons (Albuquerque, NM)

2002-01-01T23:59:59.000Z

55

Structural and Magnetic Properties of Co-Mn-Sb Thin films  

SciTech Connect (OSTI)

Thin Co-Mn-Sb films of different compositions were investigated and utilized as electrodes in alumina based magnetic tunnel junctions with CoFe counterelectrode. The preparation conditions were optimized with respect to magnetic and structural properties. The Co-Mn-Sb/Al-O interface was analyzed by x-ray absorption spectroscopy and magnetic circular dichroism with particular focus on the element-specific magnetic moments. Co-Mn-Sb crystallizes in different complex cubic structures depending on its composition. The magnetic moments of Co and Mn are ferromagnetically coupled in all cases. A tunnel magnetoresistance ratio of up to 24% at 13 K was found and indicates that Co-Mn-Sb is not a ferromagnetic half-metal. These results are compared to recent works on the structure and predictions of the electronic properties.

Meinert, M.; Schmalhorst, J.-M.; Ebke, D.; Liu, N. N.; Thomas, A.; Reiss, G.; Kanak, J.; Stobiecki, T.; Arenholz, E.

2009-12-17T23:59:59.000Z

56

Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells  

E-Print Network [OSTI]

(In,Ga)Se2-based thin film solar cells D. Abou-Rasa,b,*, G. Kostorza , A. Romeob,1 , D. Rudmannb , A Available online 8 December 2004 Abstract It is known that high-efficiency thin film solar cells based on Cu; Chemical bath deposition; CdS buffer 1. Introduction The highest efficiencies for thin film solar cells

Romeo, Alessandro

57

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

58

Manipulating hybrid structures of polymer/a-Si for thin film solar cells  

SciTech Connect (OSTI)

A series of uniform polymer/amorphous silicon hybrid structures have been fabricated by means of solution-casting for polymer and radio frequency excited plasma enhanced chemical vapour deposition for amorphous silicon (a-Si:H). Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) functioned as a photoactive donor, while the silicon layer acted as an acceptor. It is found that matching the hole mobility of the polymer to the electron mobility of amorphous silicon is critical to improve the photovoltaic performance from hybrid cells. A three-layer p-i-n structure of ITO/PEDOT:PSS(200?nm)/i-Si(450?nm)/n-Si(200?nm)/Al with a power conversion efficiency of 4.78% under a standard test condition was achieved.

Peng, Ying; He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk; Zhang, Zhi; Liang, Chunjun [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Diyaf, Adel; Ivaturi, Aruna; Wilson, John I. B., E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

2014-03-10T23:59:59.000Z

59

Strain induced electronic structure changes in magnetic transition metal oxides thin films  

SciTech Connect (OSTI)

We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr{sub 2}O{sub 4} films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations.

van der Laan, G.; Chopdekar, R.V.; Suzuki, Y.; Arenholz, E.

2010-07-08T23:59:59.000Z

60

Metal-induced nanocrystalline structures in Ni-containing amorphous silicon thin films  

SciTech Connect (OSTI)

The mechanisms of silicon nanocrystal structure formation in amorphous Si films have been studied for a relative Ni impurity content varying between 0.1 and 10 at. %, i.e., from a Ni doping range to the Si-Ni alloy phase. The films, deposited by the cosputtering technique at 200 deg. C, were submitted to isochronal (15 min) annealing cycles up to 800 deg. C. Four different substrates were used to deposit the studied films: crystalline (c-) quartz, c-Si, c-Ge, and glass. Both the two orders of magnitude impurity concentration range variation and the very short annealing times were selected on purpose to investigate the first steps of the mechanism leading to the appearance of crystal seeds. The conclusions of this work are the following: (a) Ni impurity induces the low-temperature crystallization of amorphous silicon; (b) the NiSi{sub 2} silicide phase mediates, at the surface or in the bulk of the film, the crystallization process; and (c) the onset of crystallization and the crystalline fraction of the samples at each temperature depend not only on the Ni impurity concentration, but also on the nature of the substrate.

Ferri, F. A.; Zanatta, A. R.; Chambouleyron, I. [Instituto de Fisica de Sao Carlos-USP, Sao Carlos 13560-250, Sao Paulo (Brazil); Instituto de Fisica Gleb Wataghin-UNICAMP, Campinas 13083-970, Sao Paulo (Brazil)

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Enhanced Thin Film Organic Photovoltaic Devices  

Energy Innovation Portal (Marketing Summaries) [EERE]

A novel structure design for thin film organic photovoltaic (OPV) devices provides a system for increasing the optical absorption in the active layer. The waveguided structure permits reduction of the active layer thickness, resulting in enhanced charge collection and extraction, leading to improved power conversion efficiency compared to standard OPV devices....

2014-01-10T23:59:59.000Z

62

Effect of deposition temperature on the structural and optical properties of CdSe thin films synthesised by chemical bath deposition  

SciTech Connect (OSTI)

Cadmium selenide thin films were synthesized on glass substrates using chemical bath technique (CBD) at temperatures 320K, 330K, 340K,and 350K. The polycrystalline nature of the material was confirmed by X-ray diffraction technique and various structural parameters such as lattice parameters, grain size, dislocation density, and micro strain. The root mean square (RMS) roughness was obtained by using atomic force microscopy(AFM), which indicated a decreasing average roughness with the decrease of the bath temperature. Optical properties were carried out by UV-Visible transmittance spectra, and the band gap energy was determined.

Mohammed, Mudhafer Ali [Department of Applied Sciences, University of Technology / Baghdad (Iraq); Jamil, Shatha Shammon Batros [Ministry of Science and Technology / Baghdad (Iraq)

2013-12-16T23:59:59.000Z

63

Modeling and control of thin film surface morphology: application to thin film solar cells  

E-Print Network [OSTI]

materials, thin film solar cell technology stands to benefitThin-film solar cells: Review of materials, technologies and

Huang, Jianqiao

2012-01-01T23:59:59.000Z

64

Epitaxial La0.5Sr0.5CoO3 thin films: Structure, magnetism, and transport  

SciTech Connect (OSTI)

La1 xSrxCoO3 has received considerable attention in bulk form. This is due to interest in the fundamental magnetic properties spin-state transitions and magnetic phase separation as well as potential applications in ferroelectric memory and solid-oxide fuel cells. The structure and properties in thin film form are not well understood, and the influence of dimensional confinement on effects such as magnetic phase separation is unknown. Here, we report a comprehensive investigation of structure, magnetism, and transport in strained epitaxial La0.5Sr0.5CoO3 001 films deposited on SrTiO3 001 substrates by reactive dc magnetron sputtering. The crystalline quality, phase purity, strain state, oxygen stoichiometry, morphology, and magnetic and electronic properties of the epilayers are all probed and are found to be particularly sensitive to the total sputtering gas pressure and the ratio of reactive to inert gas PO2 /PAr. The various structure-property relationships are discussed in detail, particularly with respect to the degree of oxygenation and oxygen-induced resputtering. The films are strained and tetragonally distorted due to the 1.9% lattice mismatch with SrTiO3. Significant strain relaxation occurs at thicknesses around 200 , resulting in a crossover from two-dimensional-like to three-dimensional growth. Polarized neutron reflectometry was combined with x-ray reflectometry to obtain chemical and magnetic depth profiles, which are compared with cross-sectional scanning transmission electron microscopy. The results indicate a thin 10 layer at the film/substrate interface with significantly different structural properties to the bulk of the film, as well as a strongly graded magnetic and chemical profile at the film surface due to the significant roughness. The Curie temperature was found to decrease very slowly as the thickness is reduced down to 50 , at which point a rapid decrease occurs, almost coincident with a sharp decrease in saturation magnetization. At this point, the temperature dependence of the resistivity shows a crossover from metallic to insulating, accompanied by dramatic changes in the magnetoresistance. The magnetoresistance has a negative contribution peaking around the Curie point similar to that seen in bulk, a second negative contribution occurring at low temperature only for the thinnest samples, as well as a large anisotropic magnetoresistance, which vanishes at the Curie point. Remarkably, the low temperature contribution in the thinnest x=0.5 films bears a striking resemblance to that seen in the insulating phase x0.17 in bulk, suggesting the formation of a nonmetallic phase at low thickness that is similar to the low doping bulk phase, i.e., magnetic phase separation near the interface with SrTiO3.

Torija, Maria [University of Minnesota; Sharma, M [University of Minnesota; Fitzsimmons, M. R. [Los Alamos National Laboratory (LANL); Varela, M [Oak Ridge National Laboratory (ORNL); Leighton, chris [University of Minnesota

2008-01-01T23:59:59.000Z

65

Electronic and atomic structures of Ti{sub 1-x}Al{sub x}N thin films related to their damage behavior  

SciTech Connect (OSTI)

Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grain boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.

Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.; Covarel, G.; Arnold, G.; Louis, P. [Laboratoire de Mecanique, Materiaux et Procedes de Fabrication, Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse cedex (France); Rousselot, C. [Institut FEMTO-ST (UMR CNRS 6174), Universite de Franche-Comte, BP 71427, F-25211 Montbeliard cedex (France); Flank, A.-M. [CNRS--UR1 SOLEIL, F-91192 Gif sur Yvette cedex (France)

2008-04-15T23:59:59.000Z

66

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

Catalano, A.W.; Bhushan, M.

1982-08-03T23:59:59.000Z

67

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

1982-01-01T23:59:59.000Z

68

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

69

Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing  

SciTech Connect (OSTI)

Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

Das, Sayantan; Alford, T. L. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA and School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)] [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA and School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

2013-06-28T23:59:59.000Z

70

Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition  

Science Journals Connector (OSTI)

Thin films of p-type ZnO:N have been obtained by thermally oxidizing zinc oxynitride films prepared by plasma enhanced chemical vapour deposition (PECVD). The p-type ZnO:N thin film with a hole concentration of 2.7 ? 1016 cm?3 was obtained after an annealing process was conducted at 600 °C. A conductivity transition from n-type to p-type was observed, which was systematically researched via structural and compositional analyses. In terms of these analyses, it helped to better understand the properties and behaviour of nitrogen in ZnO. First, nitrogen was incorporated into ZnO films during the growth process to occupy oxygen positions, and also partly compensated some donors induced from non-stoichiometric (ZnO1–x) composition. Second, the amount of activated nitrogen gradually increased in an oxidizing atmosphere and exceeded those donor states to realize an effective compensation, yielding p-type conductivity during the course of thermal oxidation.

Zhiyan Xiao; Yichun Liu; Jiying Zhang; Dongxu Zhao; Youming Lu; Dezhen Shen; Xiwu Fan

2005-01-01T23:59:59.000Z

71

Hybrid Thin Film Deposition System | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Thin Film Deposition System Hybrid Thin Film Deposition System Only available at EMSL, the Discovery Deposition System has been customized to be a fully automated...

72

Thin Film Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Thin Film Solar Technologies Place: South Africa Product: Producers of thin-film copper, indium, gallium, sulphur, selenium modules....

73

Cobalt cluster-assembled thin films deposited by low energy cluster beam deposition: Structural and magnetic investigations of deposited layers  

SciTech Connect (OSTI)

Cobalt cluster-assembled thin films were deposited on amorphous-carbon-coated copper grids and on silicon substrates at room temperature by low energy cluster beam deposition. Characterizations using high-resolution transmission electronic microscopy and atomic force microscopy reveal randomly stacked agglomerates of 9-11 nm diameter, which are themselves composed of small 3.6 nm diameter fcc cobalt clusters. The films are ferromagnetic up to room temperature and above, which implies that the clusters are exchange coupled. The approach to saturation is analyzed within the random anisotropy model. The values of the exchange coefficient A and the anisotropy constant K then derived are discussed. The temperature dependence of the coercivity below 100 K is discussed in terms of thermal activation effects. All results indicate that the fundamental entity governing the magnetic behaviors is constituted by the 9-11 nm diameter agglomerates rather than by the clusters themselves.

Dumas-Bouchiat, F.; Nagaraja, H. S.; Rossignol, F.; Champeaux, C.; Trolliard, G.; Catherinot, A.; Givord, D. [Centre de Projet Films Minces et Microdispositifs pour Telecommunications, SPCTS, UMR CNRS 6638, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); SPCTS, UMR CNRS 6638, ENSCI, 47 Avenue Albert Thomas, 87065 Limoges Cedex (France); Centre de Projet Films Minces et Microdispositifs pour Telecommunications, SPCTS, UMR CNRS 6638, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); SPCTS, UMR CNRS 6638, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Centre de Projet Films Minces et Microdispositifs pour Telecommunications, SPCTS, UMR CNRS 6638, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Laboratoire Louis Neel, UPR CNRS 5051, BP 166, F-38042 Grenoble Cedex (France)

2006-09-15T23:59:59.000Z

74

Interface structure and thermal stability of epitaxial SrTiO{sub 3} thin films on Si (001)  

SciTech Connect (OSTI)

We have used medium energy ion scattering, temperature programmed desorption, and atomic force microscopy to study the interface composition and thermal stability of epitaxial strontium titanate thin films grown by molecular-beam epitaxy on Si (001). The composition of the interface between the film and the substrate was found to be very sensitive to the recrystallization temperature used during growth, varying from a strontium silicate phase when the recrystallization temperature is low to a Ti-rich phase for a higher recrystallization temperature. The films are stable towards annealing in vacuum up to {approx}550 deg.C, where SrO desorption begins and the initially flat film starts to roughen. Significant film disintegration occurs at 850 deg.C, and is accompanied by SiO and SrO desorption, pinhole formation, and finally titanium diffusion into the silicon bulk.

Goncharova, L. V.; Starodub, D. G.; Garfunkel, E.; Gustafsson, T.; Vaithyanathan, V.; Lettieri, J.; Schlom, D. G. [Department of Physics and Astronomy, and Laboratory for Surface Modification, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, and Laboratory for Surface Modification, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Physics and Astronomy, and Laboratory for Surface Modification, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

2006-07-01T23:59:59.000Z

75

Nanostructured thin films for solid oxide fuel cells  

E-Print Network [OSTI]

The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

Yoon, Jongsik

2009-05-15T23:59:59.000Z

76

CFN | Thin Films Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Synthesis and Characterization Facility Materials Synthesis and Characterization Facility Thin-Film Processing Facility Online Manager (FOM) website FOM manual ESR for lab 1L32 (High-Resolution SEM and x-ray microanalysis) CFN Operations Safety Awareness (COSA) form for 1L32 (ESR #1) Technical article on LABE detector (Analytical SEM) Request form for off-hours access (.doc, First time only, renewals done via email) Lab Tool capabilities Primary contact Training schedule Backup contact Booking calendar Booking rules SOP 1L32 Analytical SEM Camino Thurs 10-12 PM Stein FOM yes yes Hitachi S-4800 SEM Stein Tues 1-3 PM Black FOM no yes booking calendar: yes = need to reserve tool time in calendar before using tool booking rules: yes = specific rules exist for reserving tool time SOP = standard operating procedure (basic instructions)

77

Ferromagnetic thin films  

DOE Patents [OSTI]

A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

Krishnan, K.M.

1994-12-20T23:59:59.000Z

78

Cellulose hydrogels prepared from micron-sized bamboo cellulose fibers  

Science Journals Connector (OSTI)

Abstract We demonstrated for the first time that dimensionally stable hydrogels could be obtained from bamboo pulp fibers through dialysis against distilled water followed by a short time of ultrasonic treatment. Micron-sized short fibers rather than cellulose nanofibrils constituted the majority of fibers in the hydrogels. During the pulping process with HNO3 and KClO3, carboxylic groups could be introduced to cellulose due to the mild oxidation of hydroxyl groups. When presented in aqueous NaOH, the carboxylic groups could be converted into their sodium salt form. The subsequent dialysis treatment against water made the negatively charged COO? groups extensively exposed. The negatively charged cellulose fibers could induce considerable electrostatic repulsion between them, which was discovered to govern the formation of hydrogels. In addition, it was revealed that homogeneous hydrogels could be formed when the pH was at 7, 9 and 11. However, when salt was added, no dimensionally stable hydrogel was obtained.

Xiaofang Zhang; Yaru Wang; Canhui Lu; Wei Zhang

2014-01-01T23:59:59.000Z

79

Structural, chemical, and electronic state on La[subscript 0.7]Sr[subscript 0.3]MnO[subscript 3] dense thin-film surfaces at high temperature - Surface segregation  

E-Print Network [OSTI]

The evolution of the surface topographic and electronic structure and chemical state of the La0.7Sr0.3MnO3 (LSMO) thin films were probed using Scanning Tunneling microscopy and X-ray photoelectron spectroscopy to identify ...

Jalili, Helia

80

Scale Up of Extended Thin Film Electrocatalyst Structures (ETFECS) (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3796 * January 2012 3796 * January 2012 Scale Up of Extended Thin Film Electrocatalyst Structures (ETFECS) Project: Fuel Cell R&D NREL Team: Hydrogen Technologies & Systems Center and Chemical and Materials Science Center Accomplishment: NREL has synthesized >1 gram of platinum (Pt) ETFECS (nanotubes) for use as novel fuel cell catalysts. These materials represent the cumulative yield of four individual batch syntheses (each >250 milligrams yield). The average relevant physical and electrochemical properties of the four batches (when tested with graphitized carbon nanofibers to aid dispersion) are: * Electrochemically available surface area (ECA) of 47.0 m 2 /g Pt * Specific activity (i s 0.9V(IR free) ) of 820 μA/cm 2 Pt * Mass activity (i

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface  

SciTech Connect (OSTI)

The chemical interface structure between phosphorus-doped hydrogenated amorphous silicon and aluminum-doped zinc oxide thin films is investigated with soft x-ray emission spectroscopy (XES) before and after solid-phase crystallization (SPC) at 600C. In addition to the expected SPC-induced phase transition from amorphous to polycrystalline silicon, our XES data indicates a pronounced chemical interaction at the buried Si/ZnO interface. In particular, we find an SPC-enhanced formation of Si-O bonds and the accumulation of Zn in close proximity to the interface. For an assumed closed and homogeneous SiO2 interlayer, an effective thickness of (5+2)nm after SPC could be estimated.

Bar, M.; Wimmer, M.; Wilks, R. G.; Roczen, M.; Gerlach, D.; Ruske, F.; Lips, K.; Rech, B.; Weinhardt, L.; Blum, M.; Pookpanratana, S.; Krause, S.; Zhang, Y.; Heske, C.; Yang, W.; Denlinger, J. D.

2010-04-30T23:59:59.000Z

82

Electronic and crystalline structures of zero band-gap LuPdBi thin films grown epitaxially on MgO(100)  

SciTech Connect (OSTI)

Thin films of the proposed topological insulator LuPdBi-a Heusler compound with the C1{sub b} structure-were prepared on Ta-Mo-buffered MgO(100) substrates by co-sputtering from PdBi{sub 2} and Lu targets. Epitaxial growth of LuPdBi films was confirmed by X-ray diffraction and reflection high-energy electron diffraction. The root-mean-square roughness of the films was as low as 1.45 nm, even though the films were deposited at high temperature. The film composition is close to the ideal stoichiometric ratio. The valence band spectra of the LuPdBi films, observed by hard X-ray photoelectron spectroscopy, correspond very well with the ab initio-calculated density of states.

Shan, Rong [Institut fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany) [Institut fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); IBM Almaden Research Center, San Jose, California 95120 (United States); Ouardi, Siham; Fecher, Gerhard H.; ViolBarbosa, Carlos E.; Felser, Claudia [Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany)] [Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Gao, Li; Kellock, Andrew; Roche, Kevin P.; Samant, Mahesh G.; Parkin, Stuart S. P. [IBM Almaden Research Center, San Jose, California 95120 (United States)] [IBM Almaden Research Center, San Jose, California 95120 (United States); Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo 679-5198 (Japan)

2013-04-29T23:59:59.000Z

83

Studies of Block Copolymer Thin Films and Mixtures with an Ionic Liquid  

E-Print Network [OSTI]

identification of structure and domain size in block copolymer thin films using RSoXS enables a quantitative comparison of the bulk

Virgili, Justin

2009-01-01T23:59:59.000Z

84

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

85

Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles  

E-Print Network [OSTI]

Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum Aluminum nanoparticles Microexplosion Particle aggregation a b s t r a c t The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size

Qiao, Li

86

Low work function, stable thin films  

DOE Patents [OSTI]

Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

2000-01-01T23:59:59.000Z

87

Vertically Aligned Nanocomposite Thin Films  

E-Print Network [OSTI]

nanocomposite oxides have attracted extensive research interest. Nanocomposites consist of nanosized particles embedded in different materials matrix.8 In recent years, high quality nanocrystalline materials have shown novel physical, chemical, magnetic....................................... 9 1.2.3 Physical properties of oxide thin films........................ 12 1.2.3.1 Electrical and optical properties................. 13 1.2.3.2 Magnetism and magnetotransport properties...

Bi, Zhenxing

2012-07-16T23:59:59.000Z

88

Impact of Lattice Mismatch and Stoichiometry on the Structure and Bandgap of (Fe,Cr)2O3 Epitaxial Thin Films  

SciTech Connect (OSTI)

The structural properties of high-quality epitaxial (Fe1-xCrx)2O3 thin films are investigated across the composition range. Epitaxial films are deposited on a-Al2O3(0001) substrates by oxygen-plasma-assisted molecular beam epitaxy. Corundum (Fe1-xCrx)2O3 supercells relaxed by density functional theory confirm that the non-linear behavior of the bulk lattice parameters originates in the magnetic structure of the alloy films. High-resolution x-ray diffraction reveals the degree of epitaxial strain relaxation in the films, with Cr-rich films remaining partially strained to the Al2O3 substrate. For intermediate compositions, a lattice expansion and non-Poisson-like tetragonal distortion are found. Scanning transmission electron microscopy and electron energy loss spectroscopy reveal a columnar grain structure in the films, with uniform mixing of cations on the nanometer scale. Oxygen non-stoichiometry is quantified by non-Rutherford resonant elastic scattering measurements utilizing 3.04 MeV He+. Intermediate-composition films are found to be slightly over-stoichiometric, resulting in the observed lattice expansion. Cr-rich films, in contrast, appear to be slightly oxygen deficient. A model is proposed to explain these results based on the energetics of oxygen defect formation and rate of oxygen diffusion in the corundum lattice. Compressive biaxial strain is found to reduce the bandgap of epitaxial Cr2O3 relative to the bulk value. The relationships which are elucidated between epitaxial film structure and optical properties can be applied to bandgap optimization in the (Fe,Cr)2O3 system.

Kaspar, Tiffany C.; Chamberlin, Sara E.; Bowden, Mark E.; Colby, Robert J.; Shutthanandan, V.; Manandhar, Sandeep; Wang, Yong; Sushko, Petr; Chambers, Scott A.

2014-03-13T23:59:59.000Z

89

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell  

E-Print Network [OSTI]

We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

Li, Tong; Jiang, Chun

2010-01-01T23:59:59.000Z

90

Structural properties of amorphous carbon thin films deposited by LF (100 kHz), RF (13.56 MHz), and pulsed RF (13.56 MHz) plasma CVD  

Science Journals Connector (OSTI)

Amorphous carbon thin films were deposited by LF (100 kHz), RF (13.56 MHz), and pulsed RF (13.56 MHz) plasma CVD with DC self-bias voltage of? ... properties of the deposited films in an asymmetric plasma reactor...

Dong-Sun Kim

2005-07-01T23:59:59.000Z

91

Magnetic Imaging of Micrometer and Nanometer-size Magnetic Structures and Their Flux-Pinning Effects on Superconducting Thin Films  

E-Print Network [OSTI]

to various ferromagnetic structures. These magnetic structures include: (i) alternating iron-brass shims of 275 mu m period, (ii) an array of 4 mu m wide Co stripes with smaller period (9 mu m), (iii) a square array of 50nm diameter, high aspect ratio (5...

Ozmetin, Ali E.

2010-07-14T23:59:59.000Z

92

Polycrystalline?thin?film thermophotovoltaic cells  

Science Journals Connector (OSTI)

Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity portability silent operation absence of moving parts reduced air pollution rapid start?up high power densities potentially high conversion efficiencies choice of a wide range of heat sources employing fossil fuels biomass and even solar radiation are key advantages of TPV cells in comparison with fuel cells thermionic and thermoelectric convertors and heat engines. The potential applications of TPV systems include: remote electricity supplies transportation co?generation electric?grid independent appliances and space aerospace and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000–2000 K) black?body or selective radiators is in the 0.5–0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1?x Ga x As GaSb and Ga1?x In x Sb. Several polycrystalline thin films such as Hg1?x Cd x Te Sn1?x Cd2x Te2 and Pb1?x Cd x Te etc. have great potential for economic large?scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells e.g. 17.1% for CuIn1?x Ga x Se2 and 15.8% for CdTe. The best recombination?state density N t is in the range of 10?15–10?16 cm?3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences possibility of bandgap tailoring and use of selective emitters such as rare earth oxides (erbia holmia yttria) and rare earth?yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto?electronic (infrared detectors lasers and optical communications) technologies. Low bandgaps and larger fluences employed in TPV cells result in very high current densities which make it difficult to collect the current effectively. Techniques for laser and mechanical scribing integral interconnection and multi?junction tandem structures which have been fairly well developed for thin?film PV solar cells could be further refined for enhancing the voltages from TPV modules. Thin?film TPV cells may be deposited on metals or back?surface reflectors. Spectral control elements such as indium?tin oxide or tin oxide may be deposited directly on the TPV convertor. It would be possible to reduce the cost of TPV technologies based on single?crystal materials being developed at present to the range of US$ 2–5 per watt so as to be competitive in small to medium size commercial applications. However a further cost reduction to the range of US ¢ 35–$ 1 per watt to reach the more competitive large?scale residential consumer and hybrid?electric car markets would be possible only with the polycrystalline?thin film TPV cells.

Neelkanth G. Dhere

1996-01-01T23:59:59.000Z

93

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

94

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

95

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

96

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

97

Biocompatibility of Pristine Graphene Monolayers, Nanosheets and Thin Films  

E-Print Network [OSTI]

There is an increasing interest to develop nanoscale biocompatible graphene structures due to their desirable physicochemical properties, unlimited application opportunities and scalable production. Here we report the preparation, characterization and biocompatibility assessment of novel graphene flakes and their enabled thin films suitable for a wide range of biomedical and electronic applications. Graphene flakes were synthesized by a chemical vapour deposition method or a liquid-phase exfoliation procedure and then thin films were prepared by transferring graphene onto glass coverslips. Raman spectroscopy and transmission electron microscopy confirmed a predominantly monolayer and a high crystalline quality formation of graphene. The biocompatibility assessment of graphene thin films and graphene flakes was performed using cultured human lung epithelial cell line A549 employing a multimodal approach incorporating automated imaging, high content screening, real-time impedance sensing in combination with bio...

Conroy, Jennifer; Smith, Ronan J; Rezvani, Ehsan; Duesberg, Georg S; Coleman, Jonathan N; Volkov, Yuri

2014-01-01T23:59:59.000Z

98

Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature  

SciTech Connect (OSTI)

Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo [Departamento de Ciencia dos Materiais, CENIMAT/I3N, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica (Portugal); Barros, Raquel [Departamento de Ciencia dos Materiais, CENIMAT/I3N, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica (Portugal); Materiais Avancados, INNOVNANO, SA, 7600-095 Aljustrel (Portugal); Park, Sang-Hee Ko; Hwang, Chi-Sun [Electronic and Telecommunications Research Institute, 138 Gajeongro, Yuseong-gu, Daejeon, 305-700 (Korea, Republic of)

2010-05-10T23:59:59.000Z

99

Magnetic properties of epitaxial Co-doped anatase TiO2 thin films with excellent structural quality  

SciTech Connect (OSTI)

The heteroepitaxy of Co-doped anatase TiO2 on LaAlO3(001) has been refined with the goal of determining the relationship between structural quality and magnetic ordering. By significantly reducing the deposition rate and substrate temperature, well-ordered Co:TiO2 films with unprecedented crystalline quality were obtained by oxygen-plasma-assisted molecular beam epitaxy, as characterized by x-ray diffraction. These films exhibit uniform Co doping, with no evidence of Co segregation or secondary phases throughout the film depth or on the surface. Despite the improvement in crystalline quality and Co distribution, the films exhibit negligible ferromagnetism, with saturation moments of only ~0.1 ?B/Co. This loss of ferromagnetism is in stark contrast to faster-grown Co:TiO2 films, where a higher growth rate and substrate temperature typically result in lower crystalline quality, a highly non-uniform Co distribution, and average saturation moments of ~1.2 ?B/Co. The presence of ferromagnetism in faster-grown Co:TiO2 does not appear to arise from intrinsic point defects present in the bulk material, such as charge-compensating oxygen vacancies, but is instead attributed to the presence of extended structural defects.

Kaspar, Tiffany C.; Droubay, Timothy C.; McCready, David E.; Nachimuthu, Ponnusamy; Heald, Steve M.; Wang, Chong M.; Lea, Alan S.; Shutthanandan, V.; Chambers, Scott A.; Toney, Michael F.

2006-07-26T23:59:59.000Z

100

Quantitative LEED analysis of the surface structure of a MgCl2thin film grown on Pd(111)  

SciTech Connect (OSTI)

An epitaxial, ultrathin single-crystal film (12 Angstrom) of MgCl[2] was deposited molecularly onto a Pd single crystal of (111) orientation at a crystal temperature of {approx}650 K. A detailed surface structure determination of this insulating film was performed by low-energy electron diffraction (LEED). A low incident LEED beam current (0.36 mu A) was employed to minimize the electron-stimulated desorption (ESD) of Cl. The best-fit model for the observed hexagonal MgCl[2](1 x 1) pattern corresponds to the unreconstructed (0001) Cl-terminated plane of alpha-MgCl[2], whose stacking sequence is Cl-Mg-Cl-Cl-Mg-Cl..., with a Pendry R-factor of 0.317. Small relaxations of the surface were found as 0.03 +- 0.03, 0,003 +-0.04 and 0.04 +- 0.08 Angstrom expansions of the first three Mg-Cl interlayer spacings, respectively, and a 0.10 +- 0.06 A contraction of the first Cl-Cl interlayer spacing. These small deviations were probably driven by the loss of the van der Waals interaction at the termination plane, since surface structure data for transition-metal dichalcogenides, which have different intralayer bonding, but the same intertrilayer bonding, report a similar magnitude of interlayer spacing deviations as seen in MgCl[2].

Roberts, J.G.; Gierer, M.; Fairbrother, D.H.; Van Hove, M.A.; Somorjai, G.A.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Black Silicon Solar Thin-film Microcells Integrating Top Nanocone Structures for Broadband and Omnidirectional Light-Trapping  

E-Print Network [OSTI]

Recently developed classes of monocrystalline silicon solar microcells (u-cell) can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. In this paper, we describe a highly dense, uniform and non-periodic nanocone forest structure of black silicon (bSi) created on optically-thin (30 um) u-cells for broadband and omnidirectional light-trapping with a lithography-free and high-throughput plasma texturizing process. With optimized plasma etching conditions and a silicon nitride passivation layer, black silicon u-cells, when embedded in a polymer waveguiding layer, display dramatic increases of as much as 65.7% in short circuit current, as compared to a bare silicon device. The conversion efficiency increases from 8% to 11.5% with a small drop in open circuit voltage and fill factor.

Xu, Zhida; Brueckner, Eric P; Li, Lanfang; Jiang, Jing; Nuzzo, Ralph G; Liu, Gang L

2014-01-01T23:59:59.000Z

102

Electronic structures and magnetic moments of Co{sub 3}FeN thin films grown by molecular beam epitaxy  

SciTech Connect (OSTI)

We evaluated electronic structures and magnetic moments in Co{sub 3}FeN epitaxial films on SrTiO{sub 3}(001). The experimentally obtained hard x-ray photoemission spectra of the Co{sub 3}FeN film have a good agreement with those calculated. Site averaged spin magnetic moments deduced by x-ray magnetic circular dichroism were 1.52 ?{sub B} per Co atom and 2.08 ?{sub B} per Fe atom at 100 K. They are close to those of Co{sub 4}N and Fe{sub 4}N, respectively, implying that the Co and Fe atoms randomly occupy the corner and face-centered sites in the Co{sub 3}FeN unit cell.

Ito, Keita; Sanai, Tatsunori; Yasutomi, Yoko; Toko, Kaoru; Honda, Syuta; Suemasu, Takashi [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan)] [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Zhu, Siyuan; Kimura, Akio [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)] [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan)] [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Takeda, Yukiharu; Saitoh, Yuji [Condensed Matter Science Division, Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan)] [Condensed Matter Science Division, Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Imai, Yoji [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan) [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

2013-12-02T23:59:59.000Z

103

Ceramic Thin Films: Fabrication and Applications  

Science Journals Connector (OSTI)

...SPRAYED CERAMIC COATING, JOURNAL...PB1-XCAXTIO3 THIN-FILM GROWN BY...ELECTRICAL, OPTICAL, AND ELECTRO-OPTIC...fabrication and applications. | Ceramics...controlled optical switches...Ceramic coatings ofalumina...modified by the application of mechanical...material as a thin film cannot only...successive coatings. Although...respect to CVD that the...purposes. Applications of Thin Film Ceramics...

M. Sayer; K. Sreenivas

1990-03-02T23:59:59.000Z

104

Plasmonic Thin-Film Solar Cells  

Science Journals Connector (OSTI)

A combined computational-experimental study optimizing plasmon-enhanced absorption in thin film solar cells presented. We investigate the effect of different geometries where...

Pala, Ragip; White, Justin; Brongersma, Mark

105

Synthesis and Characterization of Functional Nanostructured Zinc Oxide Thin Films  

E-Print Network [OSTI]

.1149/1.2357098, copyright The Electrochemical Society 65 #12;66 reduced environmental impact and a minimum undesirable inter-temperature thin film growth technique has been developed to fabricate a new generation of smart and functional and structural requirements of their applications in gas sensors and solar cells. The rapid photothermal

Chow, Lee

106

Thin film solar energy collector  

DOE Patents [OSTI]

A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

1983-11-22T23:59:59.000Z

107

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Institute of Photo Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name: Institute of Photo-Electronic Thin Film Devices and Technology...

108

Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dependency of Thin Film Samaria Doped Ceria for Oxygen Sensing . Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen Sensing . Abstract: High temperature oxygen...

109

Direct Measurement of Oxygen Incorporation into Thin Film Oxides...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

110

Zinc oxide thin film acoustic sensor  

SciTech Connect (OSTI)

This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah [Department of Physics , College of Science, Al-Mustansiriyah University, Baghdad (Iraq); Mansour, Hazim Louis [Department of Physics , College of Education, Al-Mustansiriyah University, Baghdad (Iraq)

2013-12-16T23:59:59.000Z

111

Optical, structural, and electrical properties of Mg{sub 2}NiH{sub 4} thin films in situ grown by activated reactive evaporation  

SciTech Connect (OSTI)

Mg{sub 2}NiH{sub 4} thin films have been prepared by activated reactive evaporation in a molecular beam epitaxy system equipped with an atomic hydrogen source. The optical reflection spectra and the resistivity of the films are measured in situ during deposition. In situ grown Mg{sub 2}NiH{sub 4} appears to be stable in vacuum due to the fact that the dehydrogenation of the Mg{sub 2}NiH{sub 4} phase is kinetically blocked. Hydrogen desorption only takes place when a Pd cap layer is added. The optical band gap of the in situ deposited Mg{sub 2}NiH{sub 4} hydride, 1.75 eV, is in good agreement with that of Mg{sub 2}NiH{sub 4} which has been formed ex situ by hydrogenation of metallic Pd capped Mg{sub 2}Ni films. The microstructure of these in situ grown films is characterized by a homogeneous layer with very small grain sizes. This microstructure suppresses the preferred hydride nucleation at the film/substrate interface which was found in as-grown Mg{sub 2}Ni thin films that are hydrogenated after deposition.

Westerwaal, R. J.; Slaman, M.; Broedersz, C. P.; Borsa, D. M.; Dam, B.; Griessen, R.; Borgschulte, A.; Lohstroh, W.; Kooi, B.; Brink, G. ten; Tschersich, K. G.; Fleischhauer, H. P. [Faculty of Sciences, Department of Physics and Astronomy, Condensed Matter Physics, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); GKSS-Research Center Geesthacht GmbH, WTP, Building 59 Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Institut fuer Nanotechnologie, Forschungszentrum Karlsruhe GmbH, Postfach 36 40 76021 Karlsruhe (Germany); Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Institut fuer Schichten und Grenzflaechen, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

2006-09-15T23:59:59.000Z

112

Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer  

E-Print Network [OSTI]

Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained...

Lu, Tianlin

2012-07-16T23:59:59.000Z

113

BDS thin film damage competition  

SciTech Connect (OSTI)

A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

Stolz, C J; Thomas, M D; Griffin, A J

2008-10-24T23:59:59.000Z

114

SunShot Initiative: Thin Film Photovoltaics Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Film Photovoltaics Research Thin Film Photovoltaics Research to someone by E-mail Share SunShot Initiative: Thin Film Photovoltaics Research on Facebook Tweet about SunShot Initiative: Thin Film Photovoltaics Research on Twitter Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Google Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Delicious Rank SunShot Initiative: Thin Film Photovoltaics Research on Digg Find More places to share SunShot Initiative: Thin Film Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Thin Film Photovoltaics Research The U.S. Department of Energy (DOE) supports research and development of

115

Innovative Thin Films LLC | Open Energy Information  

Open Energy Info (EERE)

Thin Films LLC Thin Films LLC Jump to: navigation, search Name Innovative Thin Films LLC Place Toledo, Ohio Zip 43607 Product Provider of altnernative energy thin film deposition technology. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Visible spectrometer utilizing organic thin film absorption  

E-Print Network [OSTI]

In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

Tiefenbruck, Laura C. (Laura Christine)

2004-01-01T23:59:59.000Z

117

Nitrogen doping in pulsed laser deposited ZnO thin films using dense plasma focus  

Science Journals Connector (OSTI)

Pulsed laser deposition synthesized ZnO thin films, grown at 400 °C substrate temperature in different oxygen gas pressures, were irradiated with 6 shots of pulsed nitrogen ions obtained from 2.94 kJ dense plasma focus to achieve the nitrogen doping in ZnO. Structural, compositional and optical properties of as-deposited and nitrogen ion irradiated ZnO thin films were investigated to confirm the successful doping of nitrogen in irradiated samples. Spectral changes have been seen in the nitrogen irradiated ZnO thin film samples from the low temperature PL measurements. Free electron to acceptor emissions can be observed from the irradiated samples, which hints towards the successful nitrogen doping in films. Compositional analysis by X-ray photoelectron spectroscopy and corresponding shifts in binding energy core peaks of oxygen and nitrogen confirmed the successful use of plasma focus device as a novel source for nitrogen ion doping in ZnO thin films.

S. Karamat; R.S. Rawat; T.L. Tan; P. Lee; S.V. Springham; E. Ghareshabani; R. Chen; H.D. Sun

2011-01-01T23:59:59.000Z

118

Design consideration of micro thin film solid-oxide fuel cells  

Science Journals Connector (OSTI)

Miniaturized planar solid-oxide fuel cells (SOFCs) and stacks can be fabricated by thin film deposition and micromachining. Serious thermal stresses, originating in fabrication and during operation, cause thermal–mechanical instability of the constituent thin films. In this paper, the effect of thin film geometry on thermal stress and mechanical stability is evaluated to optimize the structure of a thin film. A novel design of thin circular electrolyte films for SOFCs is presented by using corrugated structures, with which small thermal stresses and a broad design range of structure parameters can be obtained. Thermal transfer analysis shows that heat loss by solid conduction is serious in thin films with a small radius. But thermal convection and radiation dominate heat loss in large thin films with a radius of several millimetres. Scale-dependent thermal characteristics show the importance of film size and packaging in optimization of thermal isolation for micro SOFCs. A novel flip-flop stack configuration for micro SOFCs is presented. This configuration allows multiple cells to share one reaction chamber, helps to obtain uniform flow fields, and simplifies the flow field network for micro fuel cell stacks.

Yanghua Tang; Kevin Stanley; Jonathan Wu; Dave Ghosh; Jiujun Zhang

2005-01-01T23:59:59.000Z

119

Method for formation of thin film transistors on plastic substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

1998-10-06T23:59:59.000Z

120

Method for formation of thin film transistors on plastic substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

1998-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.  

SciTech Connect (OSTI)

The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and significant plastic deformation during compressi on . On the other hand, the micron sized Al 2 O 3 particles exhibited brittle f racture in compression. In situ compression experiments showed 3um Al 2 O 3 particles fractured into pieces without observable plastic deformation in compression. Particle deformation behaviors will be used to inform Al 2 O 3 coating deposition parameters and particle - particle bonding in the consolidated Al 2 O 3 coatings.

Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul G.; McKenzie, Bonnie B.; Bufford, Daniel Charles; Hall, Aaron Christopher.

2014-09-01T23:59:59.000Z

122

Electrical transport and structural study of CuCr1 ? xMgxO2 delafossite thin films grown by pulsed laser deposition  

Science Journals Connector (OSTI)

The growth and properties of delafossites CuCr1 ? xMgxO2 thin films are examined. These films are grown by pulsed laser deposition. As a class of materials delafossites have received recent interest since some members show p-type behavior. While not considered true wide-bandgap materials due to a narrow indirect bandgap that fails to adsorb light due to a forbidden same parity transition, optical transparencies greater than 40% in the visible can be observed. In order to be useful for transparent device applications, CuCr1 ? xMgxO2 films are needed with low resistivity and high optical transparency. Epitaxial films of CuCr1 ? xMgxO2 were grown on c-sapphire, examining the effects of oxygen pressure and growth temperature on film properties. Films were realized with resistivity of ~ 0.02 ?-cm and optical transparency of 40% in the visible. The formation of a problematic secondary minority spinel phase of (Cu,Mg)Cr2O4 is discussed. While conductivity increases substantially with Mg doping, the incidence of the spinel phase increases as well.

P.W. Sadik; M. Ivill; V. Craciun; D.P. Norton

2009-01-01T23:59:59.000Z

123

Thin-film aerogel thermal conductivity measurements via 3?  

Science Journals Connector (OSTI)

The limiting constraint in a growing number of nano systems is the inability to thermally tune devices. Silica aerogel is widely accepted as the best solid thermal insulator in existence and offers a promising solution for microelectronic systems needing superior thermal isolation. In this study, thin-film silica aerogel films varying in thickness from 250 to 1280 nm were deposited on SiO2 substrates under a variety of deposition conditions. These samples were then thermally characterized using the 3? technique. Deposition processes for depositing the 3? testing mask to the sample were optimized and it was demonstrated that thin-film aerogel can maintain its structure in common fabrication processes for microelectromechanical systems. Results indicate that thin-film silica aerogel can maintain the unique, ultra-low thermal conductivity commonly observed in bulk aerogel, with a directly measured thermal conductivity as low as 0.024 W/m-K at temperature of 295 K and pressure between 0.1 and 1 Pa.

M.L. Bauer; C.M. Bauer; M.C. Fish; R.E. Matthews; G.T. Garner; A.W. Litchenberger; P.M. Norris

2011-01-01T23:59:59.000Z

124

Thin film absorber for a solar collector  

DOE Patents [OSTI]

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1985-01-01T23:59:59.000Z

125

Superhydrophobic Thin Film Symposium | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superhydrophobic Thin Film Symposium Superhydrophobic Thin Film Symposium Sep 05 2012 12:00 AM - 05:00 PM Hosted by Oak Ridge Laboratory's Partnerships Directorate and focusing on the recent LDRD Launch project work completed by Dr. Tolga Aytug and Dr. John T. Simpson (ORNL research PI's). Oak Ridge, TN Oak Ridge National Laboratory CONTACT : Email: Cassie Lopez Phone:(865) 576-9294 Add to Calendar SHARE Hosted by Oak Ridge Laboratory's Partnerships Directorate and focusing on the recent LDRD Launch project work completed by Dr. Tolga Aytug and Dr. John T. Simpson (ORNL research PI's). Purpose To share the ORNL Superhydrophonbic Thin Film technology to prospective commercial partners. Date and Time The conference will be held on the morning of Wednesday September 5th at Oak Ridge National Laboratory (ORNL) by Partnerships and Technology

126

Thin Film Transistors On Plastic Substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

2004-01-20T23:59:59.000Z

127

Vibration welding system with thin film sensor  

DOE Patents [OSTI]

A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

2014-03-18T23:59:59.000Z

128

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments [OSTI]

Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

Dudney, N. J.; Bates, J. B.; Lubben, D.

1995-06-00T23:59:59.000Z

129

SAW determination of surface area of thin films  

DOE Patents [OSTI]

N.sub.2 adsorption isotherms are measured from thin films on SAW devices. The isotherms may be used to determine the surface area and pore size distribution of thin films.

Frye, Gregory C. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

130

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

131

Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells  

E-Print Network [OSTI]

We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

2013-01-01T23:59:59.000Z

132

SINGLE AND DUAL LAYER THIN FILM BULGE TESTING  

E-Print Network [OSTI]

film windows that are used in Next Generation Lithography masks and certain MEMS devices. The bulge testing method measures the mechanical properties of a thin film by isolating it in a thin film window of the system. Figure 6 Dual Layer Thin Film Membrane Window For a dual layer membrane the effective total

Huston, Dryver R.

133

THIN FILM MECHANICS BULGING AND Ph.D Dissertation  

E-Print Network [OSTI]

for the intensive effort in research in materials and processing techniques. Thin film windows are window underneath. The thin film window has such a small thickness to span ratio that it can usually be considered and precision-stretching of thin film windows are examined. Bulge Testing is a method used to evaluate

Huston, Dryver R.

134

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES  

E-Print Network [OSTI]

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES S. Suresh1 , T.-G. Nieh2 and B.W. Choi2: Mechanical properties; Nano-indentation; Thin films; Copper; Dislocations Introduction Indentation methods films on substrates (e.g., [2,3]) using instrumented indentation. Nano-indentation studies of thin films

Suresh, Subra

135

A high performance thin film thermoelectric cooler  

SciTech Connect (OSTI)

Thin film thermoelectric devices with small dimensions have been fabricated using microelectronics technology and operated successfully in the Seebeck mode as sensors or generators. However, they do not operate successfully in the Peltier mode as coolers, because of the thermal bypass provided by the relatively thick substrate upon which the thermoelectric device is fabricated. In this paper a processing sequence is described which dramatically reduces this thermal bypass and facilitates the fabrication of high performance integrated thin film thermoelectric coolers. In the processing sequence a very thin amorphous SiC (or SiO{sub 2}SiN{sub 4}) film is deposited on a silicon substrate using conventional thin film deposition and a membrane formed by removing the silicon substrate over a desired region using chemical etching or micro-machining. Thermoelements are deposited on the membrane using conventional thin film deposition and patterning techniques and configured so that the region which is to be cooled is abutted to the cold junctions of the Peltier thermoelements while the hot junctions are located at the outer peripheral area which rests on the silicon substrate rim. Heat is pumped laterally from the cooled region to the silicon substrate rim and then dissipated vertically through it to an external heat sink. Theoretical calculations of the performance of a cooler described above indicate that a maximum temperature difference of about 40--50K can be achieved with a maximum heat pumping capacity of around 10 milliwatts.

Rowe, D.M.; Min, G.; Volklein, F.

1998-07-01T23:59:59.000Z

136

Thin films for solar control applications  

Science Journals Connector (OSTI)

...properly cited. Thin films for solar control applications Sapna Shrestha...performance of vacuum glazing. Solar Energy 81, 8. ( doi:10...mirrors produced by plasma ion assisted deposition. J. Non-Cryst...and cost of vacuum glazing. Solar Energy 55, 151. ( doi:10...

2010-01-01T23:59:59.000Z

137

Characterization of chemical bath deposited CdS thin films doped with methylene blue and Er3+  

Science Journals Connector (OSTI)

The optical, electrical, and structural properties of CdS thin films grown by chemical bath deposition and simultaneously doped with methylene blue (MB) and Er3+ were studied. Doping was achieved by adding a c...

S. A. Tomás; R. Lozada-Morales; O. Portillo…

2008-01-01T23:59:59.000Z

138

Thin film solar cell including a spatially modulated intrinsic layer  

DOE Patents [OSTI]

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

139

Photovoltaic Polycrystalline Thin-Film Cell Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polycrystalline Thin-Film Cell Basics Polycrystalline Thin-Film Cell Basics Photovoltaic Polycrystalline Thin-Film Cell Basics August 20, 2013 - 2:36pm Addthis Polycrystalline thin-film cells are made of many tiny crystalline grains of semiconductor materials. The materials used in these cells have properties that are different from those of silicon. Thin-film cells have many advantages over their thick-film counterparts. For example, they use much less material. The cell's active area is usually only 1 to 10 micrometers thick, whereas thick films typically are 100 to 300 micrometers thick. Also, thin-film cells can usually be manufactured in a large-area process, which can be an automated, continuous production process. Finally, they can be deposited on flexible substrate materials. The term thin film comes from the method used to deposit the film, not from

140

Fuel Cells Catalyst for Start-up and Shutdown Conditions: Electrochemical, XPS, and TEM Evaluation of Sputter-Deposited Ru, Ir, and Ti on Pt-Nano-Structured Thin Film (NSTF) Support  

SciTech Connect (OSTI)

Minute amounts of Ru, Ir and Ti (2 and 10 g/cm2) sputter-deposited over 3M Pt-coated nano-structured thin film (NSTF) substrate were evaluated as oxygen evolution reaction (OER) catalysts in a polymer electrolyte membrane (PEM) environment. The purpose of the study was to explore the suitability of these elements for modifying both the anode and the cathode catalysts in order to lower the overpotential for the oxidation of water during transient conditions. By keeping the electrode potential as close as possible to the thermodynamic potential for OER, other components in the fuel cell, such as platinum, the gas diffusion layer and the bipolar plates, will be less prone to degradation. While Ru and Ir were chosen due to their high OER activity in aqueous environment, Ti was also included due to its ability to stabilize the OER catalysts. The 3M Pt-NSTF was selected as a stable, carbon-free substrate. The surface chemistry and the morphology of OER catalysts on Pt-NSTF were examined by x-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). The OER catalytic activity of Ru and Ir in PEMs compares well with their behavior in aqueous environment. It was found that Ru is more active than Ir, that Ir is considerably more stable, while the mass activity of both is higher in comparison with similar OER catalyst.

Atanasoski, Radoslav [3M Industrial Mineral Products; Atanasoska, Liliana [3M Industrial Mineral Products; Cullen, David A [ORNL; Vernstrom, George [3M Industrial Mineral Products; More, Karren Leslie [ORNL; Haugen, Gregory [3M Industrial Mineral Products

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films  

SciTech Connect (OSTI)

Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2? = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (?E) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, ?. The value of n and k increases with the increase of substrate temperature.

Kumar, B. Rajesh, E-mail: rajphyind@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati - 517 502, A.P, India and Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India); Hymavathi, B.; Rao, T. Subba [Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India)

2014-01-28T23:59:59.000Z

142

Thin film photovoltaic panel and method  

DOE Patents [OSTI]

A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

1991-06-11T23:59:59.000Z

143

Annealed CVD molybdenum thin film surface  

DOE Patents [OSTI]

Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

Carver, Gary E. (Tucson, AZ); Seraphin, Bernhard O. (Tucson, AZ)

1984-01-01T23:59:59.000Z

144

Titanium nitride thin films deposited by reactive pulsed-laser ablation in RF plasma  

Science Journals Connector (OSTI)

Titanium nitride thin films were deposited on Si (100) substrates by pulsed laser ablation of a titanium target in a N2 atmosphere (gas pressure approx. 10 Pa) using a doubled frequency Nd:YAG laser (532 nm) also assisted by a 13.56-MHz radio frequency (RF) plasma. Deposition was carried out at various substrate temperatures ranging from 373 up to 873 K and films were analyzed by X-ray diffractometry, scanning electron microscopy and optical emission spectroscopy. A comparison between the ‘normal’ pulsed laser deposition (PLD) and the RF plasma-assisted PLD showed the influence of the plasma on the structural characteristics of the thin films.

A. Giardini; V. Marotta; S. Orlando; G.P. Parisi

2002-01-01T23:59:59.000Z

145

Method of preparing high-temperature-stable thin-film resistors  

DOE Patents [OSTI]

A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

Raymond, L.S.

1980-11-12T23:59:59.000Z

146

Method of preparing high-temperature-stable thin-film resistors  

DOE Patents [OSTI]

A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

Raymond, Leonard S. (Tucson, AZ)

1983-01-01T23:59:59.000Z

147

Fabrication Of Multilayered Thin Films Via Spin-Assembly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fabrication Of Multilayered Thin Films Via Spin-Assembly Fabrication Of Multilayered Thin Films Via Spin-Assembly Fabrication Of Multilayered Thin Films Via Spin-Assembly A process of forming multilayer thin film heterostructures. Available for thumbnail of Feynman Center (505) 665-9090 Email Fabrication Of Multilayered Thin Films Via Spin-Assembly A process of forming multilayer thin film heterostructures is disclosed and includes applying a solution including a first water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto a substrate to form a first coating layer on the substrate, drying the first coating layer on the substrate, applying a solution including a second water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species

148

NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS) and its alloys. The Module Reliability Team and Environmental Health and Safety Team were crosscutting. The teams comprised researchers from the solar industry, academia, and NREL who focused their efforts on improving materials, devices, and manufacturing processes-all

149

Solar Energy Materials & Solar Cells 91 (2007) 17261732 Optical and structural properties of Ta2O5CeO2 thin films  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 91 (2007) 1726­1732 Optical and structural properties of Ta2O5

Thirumalai, Devarajan

150

Sputter deposition for multi-component thin films  

DOE Patents [OSTI]

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

1990-01-01T23:59:59.000Z

151

Sputter deposition for multi-component thin films  

DOE Patents [OSTI]

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

Krauss, A.R.; Auciello, O.

1990-05-08T23:59:59.000Z

152

Nanoarrays for Light Management in Thin Film Solar Cells  

Science Journals Connector (OSTI)

We report the use of plasmonic and photonic nanoarray to achieve light management in thin film solar cells. Theoretical and experimental data will be presented.

Ji, Jin; Nasr, Magued B; McCutcheon, Murray W; Herring, Cy

153

Apparatus and Method for Fabricating Thin Film Devices using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

method for manufacturing thin-films was developed specifically for fabrication of CdSCdTe photovoltaic modules. However, this innovation should perform excellently for any...

154

Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization  

E-Print Network [OSTI]

Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

Bielecki, Anthony

2013-01-01T23:59:59.000Z

155

Partial Shading in Monolithic Thin Film PV Modules: Analysis...  

Broader source: Energy.gov (indexed) [DOE]

A. Alam, "Identification, Characterization and Implications of Shadow Degradation in Thin Film Solar Cells," in Reliability Physics Symposium (IRPS), 2011 IEEE International, 2011,...

156

Low-Cost Light Weigh Thin Film Solar Concentrators  

Broader source: Energy.gov (indexed) [DOE]

Light Weight Thin Film Solar Concentrators PI: Gani B. Ganapathi (JPLCaltech) Other Contributors: L'Garde: Art Palisoc, Gyula Greschik, Koorosh Gidanian JPL: Bill Nesmith,...

157

Thermochromic Properties of Nanocrystal-based Thin Films | The...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanocrystal-based Thin Films Functional coatings that can selectively reflect or transmit near-infrared solar radiation while maintiaining high transmittance for visible light can...

158

In situ Raman spectroscopy of lanthanum-strontium-cobaltite thin films  

E-Print Network [OSTI]

Raman spectroscopy is used to probe the structural change of Lanthanum Strontium Cobaltite (La1.xSrxCoO 3 -8) thin films across change in composition (0%-60% strontium) and temperature (30*C-520°C). Raman shift peaks were ...

Breucop, Justin Daniel

2012-01-01T23:59:59.000Z

159

Mechanical properties of surface modified silica low-k thin films  

Science Journals Connector (OSTI)

The surface modification of sol-gel deposited low-k thin films has been carried out successfully by trimethylchlorosilane (TMCS) using wet chemical treatment method. Ellipsometer is used to determine the thickness of films. The changes in chemical structure ... Keywords: Contact angle, Hydrophobic, Nano-indentation, Sol-gel, Surface modification

Yogesh S. Mhaisagar; Bhavana N. Joshi; Ashok M. Mahajan

2014-02-01T23:59:59.000Z

160

Optimisation of masked ion irradiation damage profiles in YBCO thin films by Monte Carlo simulation  

E-Print Network [OSTI]

Optimisation of masked ion irradiation damage profiles in YBCO thin films by Monte Carlo simulation production with a given mask structure. The results suggest that minimum ion scattering broadening tails with beam energy up to a few hundred keV, though the throughput is intrinsically low [1]. A combination

Webb, Roger P.

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Angular behavior of the absorption limit in thin film silicon solar cells  

E-Print Network [OSTI]

We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic pola...

Naqavi, Ali; Söderström, Karin; Battaglia, Corsin; Paeder, Vincent; Scharf, Toralf; Herzig, Hans Peter; Ballif, Christophe

2013-01-01T23:59:59.000Z

162

Thin film photovoltaic device with multilayer substrate  

DOE Patents [OSTI]

A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

Catalano, Anthony W. (Rushland, PA); Bhushan, Manjul (Wilmington, DE)

1984-01-01T23:59:59.000Z

163

A thin film transistor driven microchannel device  

E-Print Network [OSTI]

= [8] 25 where n = 4 for the ideal case. However, based on experimental results, typical values for n are between 1 and 2.22 In any case, the larger potential drop appears at the smaller electrode. 2.4. PECVD Thin Film Silicon nitride film... can be deposited by a low-pressure chemical vapor deposition (LPCVD) and plasma enhanced chemical vapor deposition (PECVD). Table II shows a comparison of silicon nitride?s physical properties between two deposition methods. The PECVD silicon...

Lee, Hyun Ho

2005-02-17T23:59:59.000Z

164

Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics  

E-Print Network [OSTI]

nanowire networks as window layers in thin film solar cells.window layer for fully solution-deposited thin filmITO) thin films by silver nanowire composite window layers

Chung, Choong-Heui

2012-01-01T23:59:59.000Z

165

Influence of film thickness, substrate temperature and nano-structural changes on the optical properties of UHV deposited Ti thin films  

Science Journals Connector (OSTI)

Titanium films of different thicknesses ranging from 18 to 210?nm were deposited on glass substrates, at different substrate temperatures (313 to 600?K) under UHV conditions. Their optical properties were measured by spectrophotometry in the spectral range of 200–2500?nm. The optical functions were obtained from the Kramers–Kronig analysis of the reflectivity curves. The effective medium approximation (EMA) analysis was employed to establish the relationship between the structure zone model (SZM) and EMA predictions. There was good agreement between SZM as a function of substrate temperature and film thickness and the values of volume fraction of voids was obtained from EMA analysis. The gettering property of Ti can play an important role in the nano-structure of the film and causes variations in the optical behaviour of thin Ti films, though films were produced under UHV condition and the XRD analysis did not show a detectable amount of oxidation. The over-layer thickness was calculated to be less than 2.0?nm, using the transfer matrix method.

Hadi Savaloni; Haleh Kangarloo

2007-01-01T23:59:59.000Z

166

Apparatus for laser assisted thin film deposition  

DOE Patents [OSTI]

A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

Warner, B.E.; McLean, W. II

1996-02-13T23:59:59.000Z

167

Rechargeable thin-film lithium batteries  

SciTech Connect (OSTI)

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

168

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments [OSTI]

Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

1993-11-00T23:59:59.000Z

169

Experimental characterisations of thin film transmission line losses  

E-Print Network [OSTI]

Experimental characterisations of thin film transmission line losses D. Kim, H. Kim and Y. Eo New frequency-variant losses of planar thin film transmission lines are experimentally investigated in a broad frequency range. The fre- quency-variant transmission line parameters are accurately determined

170

Avalanches through windows: Multiscale visualization in magnetic thin films  

E-Print Network [OSTI]

Avalanches through windows: Multiscale visualization in magnetic thin films Alessandro Magni, Cornell University, Ithaca, NY 14853-2501 Abstract--The dynamics of domain walls motion in thin films dynamics, but are strongly dependent on the size of the windows chosen. Here we investigate how to properly

Sethna, James P.

171

Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors  

Science Journals Connector (OSTI)

We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (?-HfIZO) thin film transistors (TFTs). Co-sputtering-processed ?-HfIZO thin films have shown an amorphous phase in nature. ...

Sheng-Po Chang; San-Syong Shih

2012-01-01T23:59:59.000Z

172

Microstructure and properties of copper thin films on silicon substrates  

E-Print Network [OSTI]

copper thin films but on an expense of conductivity. This study proposes a technique to deposit high strength and high conductivity copper thin films on different silicon substrates at room temperature. Single crystal Cu (100) and Cu (111) have been grown...

Jain, Vibhor Vinodkumar

2009-05-15T23:59:59.000Z

173

Fracture patterns in thin films and multilayers Alex A. Volinsky  

E-Print Network [OSTI]

Fracture patterns in thin films and multilayers Alex A. Volinsky University of South Florida, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress is the key for causing thin film fracture, either in tension, or compression, it is the influence

Volinsky, Alex A.

174

APPLIED PHYSICS REVIEWS Erbium implanted thin film photonic materials  

E-Print Network [OSTI]

, phosphosilicate, borosilicate, and soda-lime glasses , ceramic thin films Al2O3, Y2O3, LiNbO3 , and amorphous. Phosphosilicate glass. . . . . . . . . . . . . . . . . . . . . . 7 C. Soda-lime silicate glass Er-doped thin film photonic materials is described. It focuses on oxide glasses pure SiO2

Polman, Albert

175

Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thin Film Thermoelectric Systems forEfficient Air-Conditioners Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners Presents recent advances in thermoelectric...

176

Surface Patterns of Tetragonal Phase FePt Thin Films from Pt{at}Fe2O3 Core-Shell Nanoparticles Using Combined Langmuir-Blodgett and Soft Lithographic Techniques  

SciTech Connect (OSTI)

OAK B204 We present the fabrication of micron-sized patterns of FePt thin films from Pt{at}Fe2O3 core-shell nanoparticles. In a typical procedure, Pt@Fe2O3 core-shell nanoparticles were spread and formed a Langmuir film using water as the subphase. This film was lifted onto polydimethylsiloxane (PDMS) stamps with micron-sized patterns of lines, dots and wells, and transferred onto silicon wafers using microcontact printing (u-CP). The patterns of Pt@Fe2O3 core-shell nanoparticles were converted into face-centered tetragonal phase FePt alloy at enhanced temperatures in the presence of 5% hydrogen. Scanning electron microscopy (SEM), atomic force microscopy (AFM), powder X-ray diffraction (PXRD) and superconducting quantum interference device (SQUID) magnetometer were used to characterize the patterns and the properties of the final FePt alloy films.

Guo, Q.; Teng, X.; Yang, H.

2003-09-30T23:59:59.000Z

177

Structural and magnetic properties of Ge{sub 1-x}Mn{sub x} thin films grown on Ge (001) substrates  

SciTech Connect (OSTI)

We investigate the structural and magneto-optical properties of Mn-doped Ge (Ge{sub 1-x}Mn{sub x}) films with self-organized nanocolumns, grown on Ge (001) substrates by molecular beam epitaxy (MBE), in which the substrate temperature (T{sub S}) and growth rate (R{sub G}) are varied. Transmission electron microscopy (TEM) observations and magnetic circular dichroism (MCD) measurements reveal that Mn-rich nanocolumnar precipitation is formed in the Ge{sub 1-x}Mn{sub x} films grown at T{sub S} {<=} 100 deg. C, with keeping the size and spacing. At higher T{sub S} ({>=}150 deg. C), ferromagnetic Mn{sub 5}Ge{sub 3} clusters are formed. It is also found that the Mn distribution in the Ge{sub 1-x}Mn{sub x} films can be controlled: By lowering T{sub S} or increasing R{sub G}, the Mn content x{sub nc} in the nanocolumns decreases and Mn atoms are more distributed into the Ge matrix, and eventually the magnetic properties are changed. The formation of the nanocolumns is explained by the spinodal decomposition in the layer-by-layer growth mode. We analyzed the periodicity and Mn content x{sub nc} of nanocolumns by using the Cahn-Hilliard equation.

Yada, Shinsuke; Nam Hai, Pham; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sugahara, Satoshi [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259-G2-14 Nagatsuta, Yokohama, Kanagawa 226-8502 (Japan)

2011-10-01T23:59:59.000Z

178

Interfacial studies of a thin-film Li2Mn4O9 electrode  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interfacial studies of a thin-film Li2Mn4O9 electrode Interfacial studies of a thin-film Li2Mn4O9 electrode Title Interfacial studies of a thin-film Li2Mn4O9 electrode Publication Type Journal Article Year of Publication 1999 Authors Kostecki, Robert, Fanping Kong, Yoshiaki Matsuo, and Frank R. McLarnon Journal Electrochimica Acta Volume 45 Pagination 225-233 Keywords interfacial films, manganese oxide electrode Abstract A thin-film spinel Li2Mn4O9 electrode was prepared by spin coating onto a Pt substrate. Spectroscopic ellipsometry, X-ray diffraction and current-sensing atomic force microscopy (CSAFM) were used to characterize interfacial processes and film formation at this electrode in the presence of 1.0 M LiPF6, EC:DMC (1:1 by volume) electrolyte. Prolonged exposure of the film to the electrolyte at ambient temperature resulted in spontaneous decomposition of the spinel to λ-MnO2 without disruption of the original structure. The surface of the resulting λ-MnO2 film exhibited no significant change in morphology, however a thin passive electrode surface layer was detected by the CSAFM probe. This electrode surface layer exhibited insulating properties and most likely contained Li2O, a by-product of Li2Mn4O9 decomposition.

179

Characterization of sputter deposited thin film scandate cathodes for miniaturized thermionic converter applications  

SciTech Connect (OSTI)

We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc{sub 2}O{sub 3} matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA{center_dot}cm{sup {minus}2} at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson{close_quote}s constant, A{sup {asterisk}}) of 36 mA{center_dot}cm{sup {minus}2}{center_dot}K{sup {minus}2}. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties. {copyright} {ital 1999 American Institute of Physics.}

Zavadil, K.R.; Ruffner, J.H.; King, D.B. [Sandia National Laboratories, Materials Processing Sciences Center, Albuquerque, New Mexico 87185-0340 (United States)

1999-01-01T23:59:59.000Z

180

Characterization of Sputter Deposited Thin Film Scandate Cathodes for Miniaturized Thermionic Converter Applications  

SciTech Connect (OSTI)

We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work fimction, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a SqOq matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.

King, D.B.; Ruffner, J.H.; Zavadil, K.R.

1998-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Photoconductivity in reactively evaporated copper indium selenide thin films  

SciTech Connect (OSTI)

Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

Urmila, K. S., E-mail: urmilaks7@gmail.com; Asokan, T. Namitha, E-mail: urmilaks7@gmail.com; Pradeep, B., E-mail: urmilaks7@gmail.com [Solid State Physics Laboratory, Cochin University of Science and Technology, Kochi, Kerala (India); Jacob, Rajani; Philip, Rachel Reena [Thin Film Research Laboratory, Union Christian College, Aluva, Kerala (India)

2014-01-28T23:59:59.000Z

182

Graphite aerogels and the formation mechanism of unusual micron-sized rod and helical structures .  

E-Print Network [OSTI]

??"Pyrolysis at 800 ºC under argon has shown that polyimide (PI), polyacrylonitrile (PAN), polydicyclopentadiene (DCPD) and polybenzoxazine (PBO) aerogels are all viable alternatives to traditional… (more)

Wisner, Clarissa Ann

2014-01-01T23:59:59.000Z

183

Structures for dense, crack free thin films  

DOE Patents [OSTI]

The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2011-03-08T23:59:59.000Z

184

Metallophthalocyanine thin films : structure and physical properties  

E-Print Network [OSTI]

organic spintronics, optoelectronics and photonics have seenin spintronics, optoelectronics, and photonics. Organic

Colesniuc, Corneliu Nicolai

2011-01-01T23:59:59.000Z

185

Glow discharge plasma deposition of thin films  

DOE Patents [OSTI]

A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

1984-05-29T23:59:59.000Z

186

Thin Film Femtosecond Laser Damage Competition  

SciTech Connect (OSTI)

In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

2009-11-14T23:59:59.000Z

187

Superlattice-like Ge8Sb92/Ge thin films for high speed and low power consumption phase change memory application  

Science Journals Connector (OSTI)

The amorphous-to-crystalline transitions of superlattice-like Ge8Sb92/Ge thin films were investigated through in situ film resistance measurement. X-ray reflectivity was used to measure the density change before and after phase change. The superlattice-like structure of the thin films was confirmed by using transmission electron microscopy. A picosecond laser pump–probe system was used to study the phase change speed. Phase change memory cells based on the SLL [Ge8Sb92(4 nm)/Ge(3 nm)]7 thin films were fabricated to test and verify the switching speed and operation consumption.

Yifeng Hu; Xiaoyi Feng; Jiwei Zhai; Ting Wen; Tianshu Lai; Sannian Song; Zhitang Song

2014-01-01T23:59:59.000Z

188

Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells  

E-Print Network [OSTI]

, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active for electron holography of a thin film solar cell using conventional lift-out specimen preparation and a homeFocused ion beam specimen preparation for electron holography of electrically biased thin film

Dunin-Borkowski, Rafal E.

189

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

Sites, James R.

190

Room temperature ferromagnetism in Co defused CdTe nanocrystalline thin films  

SciTech Connect (OSTI)

Nanocrystalline Co defused CdTe thin films were prepared using electron beam evaporation technique by depositing CdTe/Co/CdTe stacked layers with different Co thickness onto glass substrate at 373 K followed by annealing at 573K for 2 hrs. Structural, morphological and magnetic properties of of all the Co defused CdTe thin films has been investigated. XRD pattern of all the films exhibited zinc blende structure with <111> preferential orientation without changing the crystal structure of the films. The grain size of the films increased from 31.5 nm to 48.1 nm with the increase of Co layer thickness from 25nm to 100nm. The morphological studies showed that uniform texture of the films and the presence of Co was confirmed by EDAX. Room temperature magnetization curves indicated an improved ferromagnetic behavior in the films with increase of the Co thickness.

Rao, N. Madhusudhana; Kaleemulla, S.; Begam, M. Rigana [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India)

2014-04-24T23:59:59.000Z

191

Fast molecular-dynamics simulation for ferroelectric thin-film capacitors using a first-principles effective Hamiltonian  

Science Journals Connector (OSTI)

A newly developed fast molecular dynamics method is applied to BaTiO3 ferroelectric thin-film capacitors with short-circuited electrodes or under applied voltage. The molecular dynamics simulations based on a first-principles effective Hamiltonian clarify that dead layers (or passive layers) between ferroelectrics and electrodes markedly affect the properties of capacitors, and predict that the system is unable to hop between a uniformly polarized ferroelectric structure and a striped ferroelectric domain structure at low temperatures. Simulations of hysteresis loops of thin-film capacitors are also performed, and their dependence on film thickness, epitaxial constraints, and electrodes are discussed.

Takeshi Nishimatsu; Umesh V. Waghmare; Yoshiyuki Kawazoe; David Vanderbilt

2008-09-04T23:59:59.000Z

192

Functionalized multilayer thin films for protection against acutely toxic agents  

E-Print Network [OSTI]

The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

Krogman, Kevin Christopher

2009-01-01T23:59:59.000Z

193

Metal Nanoparticles Enhanced Optical Absorption in Thin Film Solar Cells  

Science Journals Connector (OSTI)

The plasmonic enhanced absorption for thin film solar cells with silver nanoparticles (NPs) deposited on top of the amorphous silicon film (a-Si:H) solar cells and embedded inside the...

Xie, Wanlu; Liu, Fang; Qu, Di; Xu, Qi; Huang, Yidong

194

Laser scribing of CIGS based thin films solar cells  

Science Journals Connector (OSTI)

Laser scribing tests on CIGS based thin films solar cells have been performed. The obtained high quality incisions show that laser scribing is a valuable tool for producing low-cost...

Sozzi, Michele; Menossi, Daniele; Bosio, Alessio; Cucinotta, Annamaria; Romeo, Nicola; Selleri, Stefano

195

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

SciTech Connect (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

Not Available

2013-06-01T23:59:59.000Z

196

National High Magnetic Field Laboratory: Magnetic Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recorded work with magnetic thin films took place in the 1880s and was carried out by German physicist August Kundt. Well known for his research on sound and optics, Kundts...

197

Picosecond laser ablation of nano-sized WTi thin film  

Science Journals Connector (OSTI)

Interaction of an Nd:YAG laser, operating at 532 nm wavelength and pulse duration of 40 ps, with tungsten-titanium (WTi) thin film (thickness, 190 nm)...2...were found to be sufficient for modification of the WTi

S. Petrovi?; B. Gakovi?; D. Peruško; T. Desai; D. Batani; M. ?ekada…

2009-08-01T23:59:59.000Z

198

Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films  

E-Print Network [OSTI]

Center In situ electrical properties of a-IGZO thin films were carried out at 200ºC as a function of carrier content vs. pO2) analysis should be applicable for studying the underlying carrier generation

Shahriar, Selim

199

Flexible, transparent thin film transistors raise hopes for flexible...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

screens and displays. Virtually all flat-screen TVs and smartphones are made up of thin film transistors today; they form the basis of both LEDs and LCDs (liquid crystal...

200

Role of Microstructural Phenomena in Magnetic Thin Films. Final Report  

SciTech Connect (OSTI)

Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

Laughlin, D. E.; Lambeth, D. N.

2001-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Self-Assembling Process for Fabricating Tailored Thin Films  

ScienceCinema (OSTI)

A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

Sandia

2009-09-01T23:59:59.000Z

202

Self-Assembling Process for Fabricating Tailored Thin Films  

ScienceCinema (OSTI)

A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

None

2010-01-08T23:59:59.000Z

203

Initiated chemical vapor deposition of functional polyacrylic thin films  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

Mao, Yu, 1975-

2005-01-01T23:59:59.000Z

204

Direct printing of lead zirconate titanate thin films  

E-Print Network [OSTI]

Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

Bathurst, Stephen, 1980-

2008-01-01T23:59:59.000Z

205

A Review of Thin Film Silicon for Solar Cell Applications  

E-Print Network [OSTI]

A Review of Thin Film Silicon for Solar Cell Applications May 99 Contents 1 Introduction 3 2 Low 2.2.3 Deposition onto foreign substrates with the intention of improving crystallographic nature Field Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11

206

Modeling of thin-film solar thermoelectric generators  

E-Print Network [OSTI]

Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

Weinstein, Lee Adragon

207

Fluorination of amorphous thin-film materials with xenon fluoride  

DOE Patents [OSTI]

A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

Weil, R.B.

1987-05-01T23:59:59.000Z

208

Monolithic integration of thin-film coolers with optoelectronic devices  

E-Print Network [OSTI]

Monolithic integration of thin-film coolers with optoelectronic devices Christopher La Barbara, California 93106-9560 Abstract. Active refrigeration of optoelectronic components through the use manuscript received June 30, 2000; accepted for publication June 30, 2000. 1 Introduction Optoelectronic

209

Enabling integration of vapor-deposited polymer thin films  

E-Print Network [OSTI]

Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

Petruczok, Christy D. (Christy Danielle)

2014-01-01T23:59:59.000Z

210

Method for making surfactant-templated thin films  

DOE Patents [OSTI]

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

2010-08-31T23:59:59.000Z

211

Method for making surfactant-templated thin films  

DOE Patents [OSTI]

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

2002-01-01T23:59:59.000Z

212

Properties and sensor performance of zinc oxide thin films  

E-Print Network [OSTI]

Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

Min, Yongki, 1965-

2003-01-01T23:59:59.000Z

213

Magnetic Skyrmion Phase in MnSi Thin Films.  

E-Print Network [OSTI]

??Detailed magnetometry and polarized neutron reflectometry studies were conducted on MnSi thin films grown epitaxially on Si(111) substrates. It is demonstrated that with an in-plane… (more)

Wilson, Murray

2013-01-01T23:59:59.000Z

214

Layer-by-layer assembly of electrically conductive polymer thin films  

E-Print Network [OSTI]

) to deposit layers of carbon black that are pre-stabilized with polyethylenimine (PEI) and poly(acrylic acid) (PAA) (see chemical structures in Fig. 3). The resulting films are thin, flexible, and relatively dense, with a high concentration of carbon black... within the deposition mixtures is described in Chapter III. Materials and Methods Materials Two types of polymers were used to stabilize carbon black for layer-by-layer (LbL) assembly of composite thin films. Poly(acrylic acid) (PAA...

Jan, Chien Sy Jason

2007-09-17T23:59:59.000Z

215

Epitaxial Ba{sub 2}IrO{sub 4} thin-films grown on SrTiO{sub 3} substrates by pulsed laser deposition  

SciTech Connect (OSTI)

We have synthesized epitaxial Ba{sub 2}IrO{sub 4} (BIO) thin-films on SrTiO{sub 3} (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr{sub 2}IrO{sub 4}. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.

Nichols, J., E-mail: john.nichols@uky.edu; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States)

2014-03-24T23:59:59.000Z

216

Josephson junction in a thin film  

SciTech Connect (OSTI)

The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

2001-04-01T23:59:59.000Z

217

Chemical selective microstructural analysis of thin film using resonant x-ray reflectivity  

SciTech Connect (OSTI)

Strong modulations of the reflected x-ray intensities near the respective absorption edges of the constituent materials promise to determine layer composition of thin film structures along with spectroscopic like information. Near the absorption edge, the orders of magnitude more contrast beyond the pure electron density distributions of materials find an approach to overcome the low density difficulty of the conventional x-ray reflectivity technique. These aspects are explained by experimental studies on partially decomposed boron nitride thin films. Chemical composition profile is determined from free surface to the embedded buried layer with depth resolution in nanometer scale. The results of resonant reflectivity for chemical analysis are correlated with depth dependent x-ray photo electron spectroscopy.

Nayak, Maheswar; Lodha, G. S. [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India)

2013-07-14T23:59:59.000Z

218

Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes  

SciTech Connect (OSTI)

The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

Greg M. Swain, PI

2009-03-10T23:59:59.000Z

219

Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity  

SciTech Connect (OSTI)

We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

2011-01-12T23:59:59.000Z

220

New frontier in thin film epitaxy and nanostructured materials  

Science Journals Connector (OSTI)

Nanomaterials hold the key to the success of nanotechnology. This review starts with a new paradigm for thin film growth based upon matching of integral multiples of lattice planes across the film-substrate interface. This paradigm of domain matching epitaxy (DME) unifies small as well as large misfit systems utilising the concept of systematic domain variation. By controlling the kinetics of clustering and energetics of interfaces, it is possible to obtain nanoclusters of uniform size and create novel nanostructured materials by design, where relative orientation with respect to matrix can be controlled by DME. In nanostructured materials with unit dimensions 1â??100 nm, science and processing challenges include self-assembly processing, control of interfacial atoms and energetics, quantum confinement issues, nanoscale structure-property correlations. In addition, metastability of interfaces should be controlled for reliability in manufacturing of nanosystems. This paper presents fundamentals of synthesis and processing of nanomaterials, role of interfaces, nanoscale characterisation to establish atomic structure-property correlations and modelling to create novel nanostructured structural, magnetic, photonic and electronic systems with unique and improved properties for next-generation systems with new functionality.

Jagdish Narayan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings  

SciTech Connect (OSTI)

Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

Long, Rong, E-mail: rlongmech@gmail.com [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Dunn, Martin L. [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Singapore University of Technology and Design, Singapore 138682 (Singapore)

2014-06-21T23:59:59.000Z

222

Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions  

E-Print Network [OSTI]

We review recent experiments on dewetting thin films of evaporating colloidal nanoparticle suspensions (nanofluids) and discuss several theoretical approaches to describe the ongoing processes including coupled transport and phase changes. These approaches range from microscopic discrete stochastic theories to mesoscopic continuous deterministic descriptions. In particular, we describe (i) a microscopic kinetic Monte Carlo model, (ii) a dynamical density functional theory and (iii) a hydrodynamic thin film model. Models (i) and (ii) are employed to discuss the formation of polygonal networks, spinodal and branched structures resulting from the dewetting of an ultrathin 'postcursor film' that remains behind a mesoscopic dewetting front. We highlight, in particular, the presence of a transverse instability in the evaporative dewetting front, which results in highly branched fingering structures. The subtle interplay of decomposition in the film and contact line motion is discussed. Finally, we discuss a simple thin film model (iii) of the hydrodynamics on the mesoscale. We employ coupled evolution equations for the film thickness profile and mean particle concentration. The model is used to discuss the self-pinning and depinning of a contact line related to the 'coffee-stain' effect. In the course of the review we discuss the advantages and limitations of the different theories, as well as possible future developments and extensions.

U. Thiele; I. Vancea; A. J. Archer; M. J. Robbins; L. Frastia; A. Stannard; E. Pauliac-Vaujour; C. P. Martin; M. O. Blunt; P. J. Moriarty

2010-01-15T23:59:59.000Z

223

Electron scattering mechanisms in fluorine-doped SnO{sub 2} thin films  

SciTech Connect (OSTI)

Polycrystalline fluorine-doped SnO{sub 2} (FTO) thin films have been grown by ultrasonic spray pyrolysis on glass substrate. By varying growth conditions, several FTO specimens have been deposited and the study of their structural, electrical, and optical properties has been carried out. By systematically investigating the mobility as a function of carrier density, grain size, and crystallite size, the contribution of each physical mechanism involved in the electron scattering has been derived. A thorough comparison of experimental data and calculations allows to disentangle these different mechanisms and to deduce their relative importance. In particular, the roles of extended structural defects such as grain or twin boundaries as revealed by electron microscopy or x-ray diffraction along with ionized impurities are discussed. As a consequence, based on the quantitative analysis presented here, an experimental methodology leading to the improvement of the electro-optical properties of FTO thin films is reported. FTO thin films assuming an electrical resistivity as low as 3.7?·?10{sup ?4}???cm (square sheet resistance of 8??/?) while retaining good transmittance up to 86% (including substrate effect) in the visible range have been obtained.

Rey, G., E-mail: germrey@gmail.com; Consonni, V.; Bellet, D. [Laboratoire des Matériaux et du Génie Physique, CNRS—Grenoble INP, 3 parvis Louis Néel, 38016 Grenoble (France); Ternon, C. [Laboratoire des Matériaux et du Génie Physique, CNRS—Grenoble INP, 3 parvis Louis Néel, 38016 Grenoble (France); Laboratoire des Technologies de la Microélectronique, CNRS/UJF-Grenoble 1/CEA, 17 rue des Martyrs, 38054 Grenoble (France); Modreanu, M. [Micro-Nanoelectronics Centre, Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork (Ireland); Mescot, X. [Institut de Microélectronique Electromagnétisme et Photonique-Laboratoire d'Hyperfréquences et de Caractérisation, Grenoble INP, 3 Parvis Louis Néel, 38016 Grenoble (France)

2013-11-14T23:59:59.000Z

224

Nitrogen doped zinc oxide thin film  

SciTech Connect (OSTI)

To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

Li, Sonny X.

2003-12-15T23:59:59.000Z

225

Growth and ferromagnetic resonance of yttrium iron garnet thin films on Yiyan Sun, Young-Yeal Song, and Mingzhong Wu  

E-Print Network [OSTI]

doped TbMnO3 thin films grown by pulsed laser deposition J. Appl. Phys. 112, 033914 (2012) Structural. Phys. Lett. 101, 033910 (2012) Ge2Sb2Te5 phase-change films on polyimide substrates by pulsed laser and two thin cladding layers. The cladding layers were high entropy alloy nitrides (HEAN) and served

226

Growth and characterization of Pt-protected Gd5Si4 thin films  

SciTech Connect (OSTI)

Successful growth and characterization of thin films of giant magnetocaloric Gd5(SixGe1?x)4 were reported in the literature with limited success. The inherent difficulty in producing this complex material makes it difficult to characterize all the phases present in the thin films of this material. Therefore, thin film of binary compound of Gd5Si4 was deposited by pulsed laser deposition. It was then covered with platinum on the top of the film to protect against any oxidation when the film was exposed to ambient conditions. The average film thickness was measured to be approximately 350?nm using a scanning electron microscopy, and the composition of the film was analyzed using energy dispersive spectroscopy. X-ray diffraction analysis indicates the presence of Gd5Si4 orthorhombic structure along with Gd5Si3 secondary phase. The transition temperature of the film was determined from magnetic moment vs. temperature measurement. The transition temperature was between 320 and 345?K which is close to the transition temperature of the bulk material. Magnetic moment vs. magnetic field measurement confirmed that the film was ferromagnetic below 342?K.

Hadimani, R. L.; Mudryk, Y.; Prost, T. E.; Pecharsky, V. K.; Gschneidner, K. A.; Jiles, D. C.

2014-05-07T23:59:59.000Z

227

Induced polarized state in intentionally grown oxygen deficient KTaO{sub 3} thin films  

SciTech Connect (OSTI)

Deliberately oxygen deficient potassium tantalate thin films were grown by RF magnetron sputtering on Si/SiO{sub 2}/Ti/Pt substrates. Once they were structurally characterized, the effect of oxygen vacancies on their electric properties was addressed by measuring leakage currents, dielectric constant, electric polarization, and thermally stimulated depolarization currents. By using K{sub 2}O rich KTaO{sub 3} targets and specific deposition conditions, KTaO{sub 3-{delta}} oxygen deficient thin films with a K/Ta = 1 ratio were obtained. Room temperature X-ray diffraction patterns show that KTaO{sub 3-{delta}} thin films are under a compressive strain of 2.3% relative to KTaO{sub 3} crystals. Leakage current results reveal the presence of a conductive mechanism, following the Poole-Frenkel formalism. Furthermore, dielectric, polarization, and depolarization current measurements yield the existence of a polarized state below T{sub pol} {approx} 367 Degree-Sign C. A Cole-Cole dipolar relaxation was also ascertained apparently due to oxygen vacancies induced dipoles. After thermal annealing the films in an oxygen atmosphere at a temperature above T{sub pol}, the aforementioned polarized state is suppressed, associated with a drastic oxygen vacancies reduction emerging from annealing process.

Mota, D. A.; Romaguera-Barcelay, Y.; Tkach, A.; Agostinho Moreira, J.; Almeida, A. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Department of Physics and Astronomy, Faculty of Science of University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Perez de la Cruz, J. [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Vilarinho, P. M. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Tavares, P. B. [Centro de Quimica, Universidade de Tras-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal)

2013-07-21T23:59:59.000Z

228

Vibrational spectra of CO adsorbed on oxide thin films: A tool to probe the surface defects and phase changes of oxide thin films  

SciTech Connect (OSTI)

Thin films of iron oxide were grown on Pt(111) single crystals using cycles of physical vapor deposition of iron followed by oxidative annealing in an ultrahigh vacuum apparatus. Two procedures were utilized for film growth of ?15–30 ML thick films, where both procedures involved sequential deposition+oxidation cycles. In procedure 1, the iron oxide film was fully grown via sequential deposition+oxidation cycles, and then the fully grown film was exposed to a CO flux equivalent to 8 × 10{sup ?7} millibars, and a vibrational spectrum of adsorbed CO was obtained using infrared reflection-absorption spectroscopy. The vibrational spectra of adsorbed CO from multiple preparations using procedure 1 show changes in the film termination structure and/or chemical nature of the surface defects—some of which are correlated with another phase that forms (“phase B”), even before enough of phase B has formed to be easily detected using low energy electron diffraction (LEED). During procedure 2, CO vibrational spectra were obtained between deposition+oxidation cycles, and these spectra show that the film termination structure and/or chemical nature of the surface defects changed as a function of sequential deposition+oxidation cycles. The authors conclude that measurement of vibrational spectra of adsorbed CO on oxide thin films provides a sensitive tool to probe chemical changes of defects on the surface and can thus complement LEED techniques by probing changes not visible by LEED. Increased use of vibrational spectra of adsorbed CO on thin films would enable better comparisons between films grown with different procedures and by different groups.

Savara, Aditya, E-mail: savaraa@ornl.gov [Chemical Sciences Division, Oak Ridge National Lab, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831 (United States)

2014-03-15T23:59:59.000Z

229

Shape variation of micelles in polymer thin films  

SciTech Connect (OSTI)

The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.

Zhou, Jiajia, E-mail: zhou@uni-mainz.de; Shi, An-Chang, E-mail: shi@mcmaste.ca [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)] [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2014-01-14T23:59:59.000Z

230

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents [OSTI]

A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

1998-02-03T23:59:59.000Z

231

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents [OSTI]

A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

1998-02-03T23:59:59.000Z

232

Method of improving field emission characteristics of diamond thin films  

DOE Patents [OSTI]

A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

1999-01-01T23:59:59.000Z

233

Method of improving field emission characteristics of diamond thin films  

DOE Patents [OSTI]

A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

Krauss, A.R.; Gruen, D.M.

1999-05-11T23:59:59.000Z

234

Formation and ferromagnetic properties of FeSi thin films  

SciTech Connect (OSTI)

In this work, the growth and ferromagnetic properties of {epsilon}-FeSi thin film on Si(100) substrate prepared by molecular beam epitaxy are reported. The inter-diffusion of Fe layer on Si(100) substrate at 600 Degree-Sign C results in polycrystalline {epsilon}-FeSi layer. The determined activation energy was 0.044 eV. The modified magnetism from paramagnetic in bulk to ferromagnetic states in {epsilon}-FeSi thin films was observed. The saturated magnetization and coercive field of {epsilon}-FeSi film are 4.6 emu/cm{sup 3} and 29 Oe at 300 K, respectively.

Shin, Yooleemi; Anh Tuan, Duong; Hwang, Younghun; Viet Cuong, Tran; Cho, Sunglae [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

2013-05-07T23:59:59.000Z

235

Two-color Laser Desorption of Nanostructured MgO Thin Films....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

236

Initiated chemical vapor deposition of polymeric thin films : mechanism and applications  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

237

Trend Detection on Thin-Film Solar Cell Technology Using Cluster Analysis and Modified Data Crystallization  

Science Journals Connector (OSTI)

Thin-film solar cell, one of green energies, is growing ... . To detect the potential trends of this technology is essential for companies and relevant industries ... patterns, the potential trends of thin-film solar

Tzu-Fu Chiu; Chao-Fu Hong; Yu-Ting Chiu

2010-01-01T23:59:59.000Z

238

Thin-film solar cells: review of materials, technologies and commercial status  

Science Journals Connector (OSTI)

As apparent from Table 1..., showing the production volume for different manufacturers of these thin-film technologies over the past 3 years, rapidly-growing ... are also increasing rapidly, the thin-film technologies

Martin A. Green

2007-10-01T23:59:59.000Z

239

Quench Properties and Fault Current Limiters of YBCO Thin-Film Superconductors  

Science Journals Connector (OSTI)

We measured the current dependence of quench propagation velocities in strip-shaped YBCO thin films and the current-limiting properties of fault current limiters consisting of a YBCO thin film and ... -300 cm/sec...

Hiroshi Kubota; Yuki Kudo; Mutsuki Yamazaki…

1998-01-01T23:59:59.000Z

240

E-Print Network 3.0 - advanced thin film Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

half of all glass... cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function... , but static, layer of a thin-film pho- tovoltaic...

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing  

E-Print Network [OSTI]

One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

242

Influence of samaria doping on the resistance of ceria thin films...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Influence of samaria doping on the resistance of ceria thin films and...

243

Generation of low work function, stable compound thin films by laser ablation  

DOE Patents [OSTI]

Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

2001-01-01T23:59:59.000Z

244

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

SciTech Connect (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

245

Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film  

SciTech Connect (OSTI)

We investigated the growth mechanism of amorphous silicon thin films by implementing hot-wire chemical vapor deposition and fabricated thin film solar cell devices. The fabricated cells showed efficiencies of 7.5 and 8.6% for the samples without and with the rear-reflector decomposed by sputtering, respectively. The rear-reflector enhances the quantum efficiency in the infrared spectral region from 550 to 750?nm. The more stable quantum efficiency of the sample with the inclusion of a rear-reflector than the sample without the rear-reflector due to the bias effect is related to the enhancement of the short circuit current.

Park, Seungil [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Yong Ji, Hyung; Jun Kim, Myeong; Hyeon Peck, Jong [Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Kim, Keunjoo, E-mail: kimk@chonbuk.ac.kr [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2014-02-17T23:59:59.000Z

246

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a)  

E-Print Network [OSTI]

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a) Bulang Li, and Xinghua for publication 16 February 2000 We have demonstrated the operation of a thin-film thermo-optical beam deflector in a three-layer optical planar waveguide. The fabricated waveguide beam deflector consists of a thin-film Si

Chen, Ray

247

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b  

E-Print Network [OSTI]

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

Paris-Sud XI, Université de

248

Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova*  

E-Print Network [OSTI]

1 Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova* , I be minimized throughout the fabrication process. Amorphous silicon thin-film transistors and solar cells, thin-film transistor, solar cell, flexible electronics Phone: (609) 258-4626, Fax: (609) 258-3585, E

249

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1; * Corresponding author: buonassisi@mit.edu; ABSTRACT We investigate earth abundant materials for thin- film solar cuprous oxide (Cu2O) as a prototype candidate for investigation as an absorber layer in thin film solar

Ceder, Gerbrand

250

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle  

E-Print Network [OSTI]

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two) measurements are providing a direct link between the spatial non-uniformities inherent in thin-film

Sites, James R.

251

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

Sites, James R.

252

Plasmonic enhancement of thin-film solar cells using gold-black C.J. Fredricksena  

E-Print Network [OSTI]

Plasmonic enhancement of thin-film solar cells using gold-black coatings C.J. Fredricksena , D. R thin-film amorphous-silicon solar cells enhance the short-circuit current by 20% over a broad spectrum and locally enhance the field strength. Keywords: plasmonics, thin-film, solar cell, metallic nanoparticles

Peale, Robert E.

253

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell  

E-Print Network [OSTI]

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic­4]. In this context, a basic idea is to periodically texture the metallic back reflector of a thin-film solar cell

254

Metal-black scattering centers to enhance light harvesting by thin-film solar cells  

E-Print Network [OSTI]

Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

Peale, Robert E.

255

Method of preparing thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

1997-01-01T23:59:59.000Z

256

Perovskite phase thin films and method of making  

DOE Patents [OSTI]

The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

257

Preparation and characterization of TL-based superconducting thin films  

E-Print Network [OSTI]

A simple method for growth of Tl-based superconducting thin films is described. In this method, the precursor was prepared in a vacuum chamber by deposition of Ba, Ca and Cu metals or a Ba-Ca alloy and Cu metal. The precursor was then oxidized...

Wang, Pingshu

2012-06-07T23:59:59.000Z

258

Chemical analysis of thin films at Sandia National Laboratories  

SciTech Connect (OSTI)

The characterization of thin films produced by chemical and physical vapor deposition requires special analytical techniques. When the average compositions of the films are required, dissolution of the thin films and measurement of the concentrations of the solubilized species is the appropriate analytical approach. In this report techniques for the wet chemical analysis of thin films of Si:Al, P/sub 2/O/sub 5/:SiO/sub 2/, B/sub 2/O/sub 3/:SiO/sub 2/, TiB/sub x/ and TaB/sub x/ are described. The analyses are complicated by the small total quantities of these analytes present in the films, the refractory characters of these analytes, and the possibility of interferences from the substrates on which the films are deposited. Etching conditions are described which dissolve the thin films without introducing interferences from the substrates. A chemical amplification technique and inductively coupled plasma atomic emission spectrometry are shown to provide the sensitivity required to measure the small total quantities (micrograms to milligrams) of analytes present. Also the chemical analysis data has been used to calibrate normal infrared absorption spectroscopy to give fast estimates of the phosphorus and/or boron dopant levels in thin SiO/sub 2/ films.

Tallant, D.R.; Taylor, E.L.

1980-05-01T23:59:59.000Z

259

The origin of white luminescence from silicon oxycarbide thin films  

SciTech Connect (OSTI)

Silicon oxycarbide (SiC{sub x}O{sub y}) is a promising material for achieving strong room-temperature white luminescence. The present work investigated the mechanisms for light emission in the visible/ultraviolet range (1.5–4.0?eV) from chemical vapor deposited amorphous SiC{sub x}O{sub y} thin films, using a combination of optical characterizations and electron paramagnetic resonance (EPR) measurements. Photoluminescence (PL) and EPR studies of samples, with and without post-deposition passivation in an oxygen and forming gas (H{sub 2} 5 at.?% and N{sub 2} 95 at.?%) ambient, ruled out typical structural defects in oxides, e.g., Si-related neutral oxygen vacancies or non-bridging oxygen hole centers, as the dominant mechanism for white luminescence from SiC{sub x}O{sub y}. The observed intense white luminescence (red, green, and blue emission) is believed to arise from the generation of photo-carriers by optical absorption through C-Si-O related electronic transitions, and the recombination of such carriers between bands and/or at band tail states. This assertion is based on the realization that the PL intensity dramatically increased at an excitation energy coinciding with the E{sub 04} band gaps of the material, as well as by the observed correlation between the Si-O-C bond density and the PL intensity. An additional mechanism for the existence of a blue component of the white emission is also discussed.

Nikas, V.; Gallis, S., E-mail: sgalis@us.ibm.com; Huang, M.; Kaloyeros, A. E. [College of Nanoscale Sciences and Engineering, State University of New York, Albany, New York 12203 (United States); Nguyen, A. P. D.; Stesmans, A.; Afanas'ev, V. V. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

2014-02-10T23:59:59.000Z

260

Characterization Of Superconducting Samples With SIC System For Thin Film Developments: Status And Recent Results  

SciTech Connect (OSTI)

Within any thin film development program directed towards SRF accelerating structures, there is a need for an RF characterization device that can provide information about RF properties of small samples. The current installation of the RF characterization device at Jefferson Lab is Surface Impedance Characterization (SIC) system. The data acquisition environment for the system has recently been improved to allow for automated measurement, and the system has been routinely used for characterization of bulk Nb, films of Nb on Cu, MgB{sub 2}, NbTiN, Nb{sub 3}Sn films, etc. We present some of the recent results that illustrate present capabilities and limitations of the system.

Phillips, H. Lawrence [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Valente-Feliciano, Anne-Marie [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Xiao, Binping [Brookhaven National Lab, Upton, NY (United States); Eremeev, Grigory V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Amorphous-Silicon Thin-Film Transistors Using Chemical Vapor Deposition of Disilane  

Science Journals Connector (OSTI)

Amorphous silicon layers have been deposited by low pressure chemical vapour deposition at 450°C using disilane as the only source gas. Simple inverted staggered thin-film transistors were made with thermal silicon dioxide as the gate insulator. Field-effect mobilities for electrons and holes were 1.4 cm2/V s and 0.1 cm2/V s, respectively. In order to obtain these high mobilities the transistor structures were carefully annealed in a hydrogen-radical rich ambient.

Paul A. Breddels; Hiroshi Kanoh; Osamu Sugiura; Masakiyo Matsumura

1990-01-01T23:59:59.000Z

262

Magnetism and transport properties of epitaxial Fe-Ga thin films on GaAs(001)  

SciTech Connect (OSTI)

Epitaxial Fe-Ga thin films in disordered bcc {alpha}-Fe crystal structure (A2) have been grown on GaAs(001) by molecular beam epitaxy. The saturated magnetization (M{sub S}) decreased from 1371 to 1105 kA/m with increasing Ga concentration from 10.5 to 24.3 % at room temperature. The lattice parameter increased with the increase in Ga content because of the larger atomic radius of Ga atom than that of Fe. The increase in carrier density with Ga content caused in lower resistivity.

Duong Anh Tuan; Shin, Yooleemi; Cho, Sunglae [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Dang Duc Dung [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet road, Ha Noi (Viet Nam); Vo Thanh Son [Centers for Nanobioenineering and Spintronics, Chungnam National University, Daejon 350-746 (Korea, Republic of)

2012-04-01T23:59:59.000Z

263

Electrochemical Performance of rf Magnetron Sputtered LiCoO{sub 2} Thin Film Positive Electrodes  

SciTech Connect (OSTI)

Thin films of LiCoO{sub 2} were grown by rf magnetron sputtering technique and studied the influence of In situ annealing treatment on microstructural and electrochemical properties of the films. Annealing treatment in presence of O{sub 2} ambient develops characteristic (104) plan in relative to (003) plane texture indicating that the films have HT-layered structure with R3-bar m symmetry. The effect is discussed in terms of grain size, cycling stability, reversibility and the specific discharge capacity.

Kumar, P. Jeevan; Babu, K. Jayanth; Hussain, O. M. [Thin Film Laboratory, Department of Physics, Sri Venkateswara University, TIRUPATI-517 502 (India)

2010-12-01T23:59:59.000Z

264

Institute of Photo Electronic Thin Film Devices and Technology of Nankai  

Open Energy Info (EERE)

Electronic Thin Film Devices and Technology of Nankai Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University Place Tianjin Municipality, China Zip 300071 Sector Solar Product A thin-film solar cell research institute in China. References Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University is a company located in Tianjin Municipality, China . References ↑ "Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University"

265

Abstract--In this paper, the propagation characteristics of an enhanced-thickness magnetic nanoparticle thin film are  

E-Print Network [OSTI]

nanoparticle thin film are investigated on high resistivity silicon substrate (10,000 ohm-cm) for the first time up to 60 GHz. Contrary to other thin films, this nanoparticle thin film can achieve a thickness up. Index Terms-- Magnetic thin film, Nanoparticle, Coplanar waveguide, high-permeability materials, FGC I

Tentzeris, Manos

266

Thin?film temperature sensors for gas turbine engines: Problems and prospects  

Science Journals Connector (OSTI)

The increasing trend towards high?temperature fuel efficient jet engines has led to the development of complex cooling schemes for the turbine blades. The measurement of temperature of the blade during operation which is accomplished in conventional blade design by embedding wire thermocouples in the blade wall causes serious structural and aerodynamic problems in the case of cooled turbines. In order to meet the requirement of temperature measurement in cooled turbines it is desirable to develop surface?mounted thin?film thermocouples or a resistance thermometer. In the current state of the art of thin?film thermocouples the sensing element consists of 2??m?thick Pt and Pt 10% Rh thin?film elements deposited on the insulating surface of the blades and vanes. The insulator is developed by thermal oxidation of a MCrAlY coating which is deposited on the blade and vane surface in the current state of turbine technology. The understanding of the structural and thermoelectric stability of the sensor elements and of the insulating layer of Al2O3 in the hostile environment of a gas turbine requires an in?depth study of the metallurgical reactions occurring at the thin?film Al2O3 and Al2O3–MCrAlY interfaces and of the corrosive reactions on the surface of the metal film. The work presented in this review addresses the problems associated with obtaining highly adherent and insulating Al2O3 on the MCrAlY surfaces adhesion of the sensor elements thermoelectric stability of the sensors on contamination and finally the development of a corrosion protectioncoating. The desired quality Al2O3 has been grown on NiCoCrAlY?coated nickel?based superalloy substrates by a combination of oxidation treatments. The interface?modified Pt and Pt/Rh films are deposited on the oxide by a dc magnetron sputtering technique. The corrosion protection requirements involve deposition of Si–O–N and Si3N4 graded structures on the sensors by the plasma?assisted chemical vapor deposition process. Details of the electrical and metallurgical characteristics of the device at each stage of the coating/film growth have been analyzed by a number of surface sensitive and bulk analytical techniques.

R. C. Budhani; S. Prakash; R. F. Bunshah

1986-01-01T23:59:59.000Z

267

Ion beam assisted sputter deposition of ZnO for silicon thin-film solar cells  

Science Journals Connector (OSTI)

Ion beam assisted deposition (IBAD) is a promising technique for improving the material quality of ZnO-based thin films. The operation of an auxiliary Ar+ ion source during deposition of ZnO?:?Ga thin films by dc magnetron sputtering led to an improvement in crystalline texture, especially at low temperatures due to momentum transfer from the ions to the growing film. Etching of IBAD-ZnO?:?Ga films in diluted HCl revealed crater-like surface structures with crater diameters of up to 600 nm. These structures are usually achieved after deposition at high substrate temperatures. This is an indication that the grain structure was remarkably changed by bombarding these films during deposition in terms of increasing the compactness of the ZnO?:?Ga films. Subsequent annealing procedures led to an improvement in the electrical and optical properties. Hydrogenated microcrystalline silicon (µc-Si?:?H) solar cells exhibited enhanced efficiency as compared to cells on other low-temperature sputtered reference ZnO films. This improvement was ascribed to light trapping by the modified etching behaviour of the IBAD-ZnO?:?Ga films as well as improved transparency after the vacuum annealing step.

M Warzecha; D Köhl; M Wuttig; J Hüpkes

2014-01-01T23:59:59.000Z

268

Organic thin film prehistory: looking towards solution phase aggregation |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organic thin film prehistory: looking towards solution phase aggregation Organic thin film prehistory: looking towards solution phase aggregation Wednesday, November 6, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Christopher Tassone, SSRL Polymer bulk heterojunction (BHJ) solar cells have attracted significant attention in industry and academia because of their potential for achieving large-area, light-weight, and flexible photovoltaic devices through cost-effective solution deposition techniques. These devices consist of a blend of an absorbing polymer and an electron accepting fullerene, the molecular packing and phase segregation of which heavily influence power conversion efficiency by effecting important processes such as exciton splitting, charge transport, and recombination. Understanding and utilization of molecular interactions to predicatively control the

269

Engineering Thin-Film Oxide Interfaces | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Materials Become Multifunctional at the Ultimate Quantum Limit Novel Materials Become Multifunctional at the Ultimate Quantum Limit Outsmarting Flu Viruses How Lead-Free Solder (Mis)Behaves under Stress Dynamics of Polymer Chains Atop Different Materials Priming the Pump in the Fight against Drug-Resistant Tuberculosis Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Engineering Thin-Film Oxide Interfaces NOVEMBER 12, 2012 Bookmark and Share LAO thin films on STO substrates are depicted in the top schematics (LAO indicated by blue spheres, STO by green spheres). The top left-hand panel demonstrates a chemically broad interface resulting from conventional growth in a low pressure oxygen environment. In contrast, the top

270

NREL: Energy Analysis - Crystalline Silicon and Thin Film Photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crystalline Silicon and Thin Film Photovoltaic Results - Life Cycle Crystalline Silicon and Thin Film Photovoltaic Results - Life Cycle Assessment Harmonization Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet) Cover of the Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics factsheet Download the Fact Sheet Over the last 30 years, hundreds of life cycle assessments (LCAs) have been conducted and published for a variety of residential and utility-scale solar photovoltaic (PV) systems with wide-ranging results. The inconsistencies in these results can be attributed to the technologies evaluated-such as differing system designs, real-world versus conceptual systems, or technology improvements over time-and life cycle assessment methods and assumptions. To better understand greenhouse gas (GHG) emissions from commercial

271

Thin-Film Reliability Trends Toward Improved Stability  

SciTech Connect (OSTI)

Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (R{sub d}) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2 {+-} 0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

Jordan, D. C.; Kurtz, S. R.

2011-01-01T23:59:59.000Z

272

Thin-Film Reliability Trends Toward Improved Stability: Preprint  

SciTech Connect (OSTI)

Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

Jordan, D. C.; Kurtz, S. R.

2011-07-01T23:59:59.000Z

273

Thin film battery and method for making same  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

1994-01-01T23:59:59.000Z

274

TI--CR--AL--O thin film resistors  

DOE Patents [OSTI]

Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

2000-01-01T23:59:59.000Z

275

Comparative studies of optical and elastic properties of ZrO{sub 2} thin films prepared under normal and oblique incidence deposition geometries  

SciTech Connect (OSTI)

Oblique angle deposited optical thin films have attracted recent researcher’s interest because of their attractive optical, micro-structural, mechanical properties and more importantly because of their great potential in achieving tunability in refractive index. These properties in turn make it important in case of designing different optical devices. In the present work, ZrO{sub 2} thin films have been deposited on fused silica substrate by electron beam evaporation technique in normal as well as oblique angle deposition configurations. Optical properties, especially refractive index of the films have been estimated by fitting the measured transmission spectra with suitable theoretical dispersion models. Atomic force microscopy has been employed to characterize morphological properties of samples. The elastic properties of both the films are estimated by Atomic Force Acoustic Microscopy, a new and highly sensitive technique for thin films.

Sarkar, P., E-mail: piyali.sarkar4@gmail.com; Tokas, R. B., E-mail: piyali.sarkar4@gmail.com; Jena, S., E-mail: piyali.sarkar4@gmail.com; Thakur, S., E-mail: piyali.sarkar4@gmail.com; Sahoo, N. K., E-mail: piyali.sarkar4@gmail.com [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

2014-04-24T23:59:59.000Z

276

Thin film adhesion by nanoindentation-induced superlayers. Final report  

SciTech Connect (OSTI)

This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

Gerberich, William W.; Volinsky, A.A.

2001-06-01T23:59:59.000Z

277

Highly conductive p-type microcrystalline silicon thin films  

SciTech Connect (OSTI)

In the development of thin film solar cells there is presently an increasing interest in microcrystalline silicon, deposited at low temperatures (200--400 C). The plasma deposition of boron doped microcrystalline films was optimized with respect to crystallinity and doping efficiency. High room temperature conductivities up to 39 Scm{sup {minus}1} were achieved under condition when the energy of positive ions impinging on the growth surface is minimized.

Heintze, M.; Schmitt, M. [Univ. Stuttgart (Germany). Inst. fuer Physikalische Elektronik

1996-12-31T23:59:59.000Z

278

Amorphous silicon thin film transistor as nonvolatile device.  

E-Print Network [OSTI]

particles before loaded into the deposition chamber. 2.2.2. Equipment for Plasma Processes Plasma-Enhanced Chemical Vapor...: Dr. Yue Kuo n-channel and p-channel amorphous-silicon thin-film transistors (a-Si:H TFTs) with copper electrodes prepared by a novel plasma etching process have been fabricated and studied. Their characteristics are similar to those of TFTs...

Nominanda, Helinda

2008-10-10T23:59:59.000Z

279

Synthesis of thin films and materials utilizing a gaseous catalyst  

DOE Patents [OSTI]

A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

2013-10-29T23:59:59.000Z

280

Fabrication and testing of thermoelectric thin film devices  

SciTech Connect (OSTI)

Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Formation of thin-film resistors on silicon substrates  

DOE Patents [OSTI]

The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

1988-11-01T23:59:59.000Z

282

Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites  

E-Print Network [OSTI]

The crystal structure and chemical bonding of magnetron-sputtering deposited nickel carbide Ni$_{1-x}$C$_{x}$ (0.05$\\leq$x$\\leq$0.62) thin films have been investigated by high-resolution X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and soft X-ray absorption spectroscopy. By using X-ray as well as electron diffraction, we found carbon-containing hcp-Ni (hcp-NiC$_{y}$ phase), instead of the expected rhombohedral-Ni$_{3}$C. At low carbon content (4.9 at\\%) the thin film consists of hcp-NiC$_{y}$ nanocrystallites mixed with a smaller amount of fcc-NiC$_{x}$. The average grain size is about 10-20 nm. With the increase of carbon content to 16.3 at\\%, the film contains single-phase hcp-NiC$_{y}$ nanocrystallites with expanded lattice parameters. With further increase of carbon content to 38 at\\%, and 62 at\\%, the films transform to X-ray amorphous materials with hcp-NiC$_{y}$ and fcc-NiC$_{x }$ nanodomain structures in an amorphous carbon-rich matrix. Ram...

Furlan, Andrej; Hultman, Lars; Jansson, Ulf; Magnuson, Martin

2014-01-01T23:59:59.000Z

283

Proof of Concept Thin Films and Multilayers Toward Enhanced Field Gradients in SRF Cavities  

SciTech Connect (OSTI)

Due to the very shallow penetration depth of the RF fields, SRF properties are inherently a surface phenomenon involving a material thickness of less than 1 micron thus opening up the possibility of using thin film coatings to achieve a desired performance. The challenge has been to understand the dependence of the SRF properties on the detailed characteristics of real surfaces and then to employ appropriate techniques to tailor these surface properties for greatest benefit. Our aim is to achieve gradients >100 MV/m and no simple material is known to be capable of sustaining this performance. A theoretical framework has been proposed which could yield such behavior [1] and it requires creation of thin film layered structures. I will present our systematic studies on such proof-of-principle samples. Our overarching goal has been to build a basic understanding of key nano-scale film growth parameters for materials that show promise for SRF cavity multilayer coatings and to demonstrate the ability to elevate the barrier for vortex entry in such layered structures above the bulk value of Hc1 for type-II superconductors and thus to sustain higher accelerating fields.

Lukaszew, R.A.; Beringer, D.; Roach, W.M.; Eremeev, G.V.; Valente-Feliciano, A-M.; Reece, C.E.; Xi, X.

2013-09-01T23:59:59.000Z

284

Electrically Modulated Thin Film Dynamics Controlling Bubble Manipulation in Microfluidic Confinement  

E-Print Network [OSTI]

Thin film dynamics and associated instability mechanisms have triggered a wide range of scientific innovations, as attributed to their abilities of creating fascinating patterns over small scales. Here, we demonstrate a new thin film instability phenomenon governed by electro-mechanics and hydrodynamics over interfacial scales in a narrow fluidic confinement. We first bring out the essential physics of this instability mechanism, in consideration with the fact that under the action of axial electrical field in a confined microfluidic environment, perturbations may be induced on the interfaces of thin corner films formed adjacent to the walls of a microchannel, leading to the inception of ordered lateral structures. A critical electric field exists beyond which these structures from the walls of the confinement intermingle to evolve into localized gas pockets in the form of bubbles. These bubbles do not remain static with further changes in electric field, but undergo a sequence of elongation-deformation-breakup episode in a dynamically evolving manner. By elucidating the complex interplay of electro-hydrodynmic forces and surface tension, we offer further insights into a new paradigm of interfacial instability mediated controlled microbubble manipulation for on-chip applications, bearing far-ranging scientific and technological consequences in executing designed fluidic operations in confined miniaturized environment.

Debapriya Chakraborty; Suman Chakraborty

2014-12-03T23:59:59.000Z

285

New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells  

E-Print Network [OSTI]

Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350nm-800nm, the conversion efficiency of solar cells can be further enhanced.

Wang, DongLin

2014-01-01T23:59:59.000Z

286

Influence of film thickness and In-doping on physical properties of CdS thin films  

Science Journals Connector (OSTI)

Abstract Polycrystalline CdS thin films were deposited on glass substrates by close spaced sublimation technique. Samples of various thicknesses, ranging from 250 to 940 nm were obtained. The optical and electrical properties of pure CdS thin films were studied as a function of film thickness. The resistivity of as-deposited CdS films was in the order of 106–108 ? cm, depending upon the film thickness. In the high temperature region, carriers are transported over the grain boundaries by thermionic emission. Resistivity was reduced to the order of 10?2–101 ? cm by the thermally diffusion of indium into CdS films, without changing the type of carriers. The annealing temperature dependence of structural, optical and electrical properties of In-doped CdS films showed that the samples annealed at 350 °C and 400 °C exhibited better results.

Sajid Butt; Nazar Abbas Shah; Adnan Nazir; Zulfiqar Ali; Asghri Maqsood

2014-01-01T23:59:59.000Z

287

Spin hall effect in paramagnetic thin films  

E-Print Network [OSTI]

the principle of Light Emitting Diode, but changed the design to a coplanar structure with two p-n junctions. A Light-Emitting Diode [27] consists of a chip of semiconductor materials doped with impurities to create a p-n junction. When the LED is forward... the principle of Light Emitting Diode, but changed the design to a coplanar structure with two p-n junctions. A Light-Emitting Diode [27] consists of a chip of semiconductor materials doped with impurities to create a p-n junction. When the LED is forward...

Xu, Huachun

2009-05-15T23:59:59.000Z

288

Piezoelectric, solar and thermal energy harvesting for hybrid low-power generator systems with thin-film batteries  

Science Journals Connector (OSTI)

The harvesting of ambient energy to power small electronic components has received tremendous attention over the last decade. The research goal in this field is to enable self-powered electronic components for use particularly in wireless sensing and measurement applications. Thermal energy due to temperature gradients, solar energy and ambient vibrations constitute some of the major sources of energy that can be harvested. Researchers have presented several papers focusing on each of these topics separately. This paper aims to develop a hybrid power generator and storage system using these three sources of energy in order to improve both structural multifunctionality and system-level robustness in energy harvesting. A multilayer structure with flexible solar, piezoceramic, thin-film battery and metallic substructure layers is developed (with the overhang dimensions of 93 mm ? 25 mm ? 1.5 mm in cantilevered configuration). Thermal energy is also used for charging the thin-film battery layers using a 30.5 mm ? 33 mm ? 4.1 mm generator. Performance results are presented for charging and discharging of the thin-film battery layers using each one of the harvesting methods. It is shown based on the extrapolation of a set of measurements that 1 mA h of a thin-film battery can be charged in 20 min using solar energy (for a solar irradiance level of 223 W m?2), in 40 min using thermal energy (for a temperature difference of 31 °C) and in 8 h using vibrational energy (for a harmonic base acceleration input of 0.5g at 56.4 Hz).

P Gambier; S R Anton; N Kong; A Erturk; D J Inman

2012-01-01T23:59:59.000Z

289

Vacuum Thermal Switch Made of Phase Transition Materials Considering Thin Film and Substrate Effects  

E-Print Network [OSTI]

In the present study, we demonstrate a vacuum thermal switch based on near-field thermal radiation between phase transition materials, i.e., vanadium dioxide (VO2), whose phase changes from insulator to metal at 341 K. Similar modulation effect has already been demonstrated and it will be extended to thin-film structure with substrate in this paper. Strong coupling of surface phonon polaritons between two insulating VO2 plates significantly enhances the near-field heat flux, which on the other hand is greatly reduced when the VO2 emitter becomes metallic, resulting strong thermal switching effect. Fluctuational electrodynamics predicts more than 80% heat transfer reduction at sub-30-nm vacuum gaps and 50% at vacuum gap of 1 micron. By replacing the bulk VO2 receiver with a thin film of several tens of nanometers, the switching effect can be further improved over a broad range of vacuum gaps from 10 nm to 1 um. In addition, for the purpose of more practical setup in experiments and applications, the SiO2 subst...

Yang, Yue; Wang, Liping

2014-01-01T23:59:59.000Z

290

Kinetics of CO adsorption on epitaxial (111)Cu on (111)Pd thin films  

SciTech Connect (OSTI)

CO adsorption has been studied on (111)Cu/Pd thin-film surfaces grown epitaxially on mica in UHV of base pressure 5 x 10/sup -11/ Torr. Auger electron spectroscopy investigations of the growth of Cu on (111)Pd films showed that layer growth occurred. The Kelvin probe, work function method was used to monitor the CO adsorption at 298 K as a function of Cu overlayer thickness. It was found that very thin Cu overlayers had a drastic effect on saturation CO coverage: one monolayer of copper reduced the saturation CO coverage by /similar to/95%. For the pure (111)Pd thin-film surface, the data showed that the rate of CO adsorption changes when the CO fractional coverage approaches /similar to/0.4. This result is most likely due to the previously reported change in CO superlattice structure that occurs with increasing coverage. The kinetic adsorption data for various bilayers were interpreted in terms of a first-order Kisliuk mobile precursor model.

Oral, B.; Kothari, R.; Vook, R.W.

1989-05-01T23:59:59.000Z

291

Nanoassembly control and optical absorption in CdTe-ZnO nanocomposite thin films  

SciTech Connect (OSTI)

The spatial distribution of CdTe nanoparticles within a ZnO thin-film matrix was manipulated using a dual-source, sequential radio-frequency (RF)-sputter deposition technique to produce nanocomposite materials with tuned spectral absorption characteristics. The relative substrate exposure time to each sputtering source was used to control the semiconductor phase connectivity, both within the film plane and along the film growth direction, to influence the degree of photocarrier confinement and the resulting optical transition energies exhibited by the CdTe phase. Significant changes (up to {Delta}E {approx_equal} 0.3 eV) in the absorption onset energy for the CdTe nanoparticle ensemble were produced through modification in the extended structure of the semiconductor phase. Raman spectroscopy, cross-sectional transmission electron microscopy, and x-ray diffraction were used to confirm the phase identity of the CdTe and ZnO and to characterize the nanostructures produced in these composite films. Isochronal annealing for 5 min at temperatures up to 800 deg. C further indicated the potential to improve film crystallinity as well as to establish the post-deposition thermal processing limits of stability for the semiconductor phase. The study highlights the significance of ensemble behavior as a means to influence quantum-scale semiconductor optical characteristics of import to the use of such materials as the basis for a variety of optoelectronic devices, including photosensitized heterojunction components in thin film photovoltaics.

Potter, B. G. Jr. [Materials Science and Engineering Department, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Beal, R. J.; Allen, C. G. [Materials Science and Engineering Department, University of Arizona, Tucson, Arizona 85721 (United States)

2012-02-01T23:59:59.000Z

292

Oxygen off-stoichiometry and phase separation in EuO thin films  

SciTech Connect (OSTI)

We report on our study on the influence of the growth conditions on the europium/oxygen stoichiometry, morphology, magnetic properties, and electrical conductivity of EuO thin films. SQUID magnetometry and x-ray photoelectron spectroscopy were utilized as complementary techniques to determine the oxygen content of EuO{sub 1{+-}x} thin films grown by molecular beam epitaxy with and without the employment of the so-called Eu distillation process. We found indications for phase separation to occur in Eu-rich as well as in over-oxidized EuO for films grown at substrate temperatures below the Eu distillation temperature. Only a fraction of the excess Eu contributes to the metal-insulator transition in Eu-rich films grown under these conditions. We also observed that the surfaces of these films were ill defined and may even contain more Eu excess than the film average. Only EuO films grown under distillation conditions are guaranteed to have the same magnetic and electrical properties as stoichiometric bulk EuO, and to have surfaces with the proper Eu/O stoichiometry and electronic structure.

Altendorf, S. G.; Efimenko, A.; Oliana, V. [II. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, DE-50937 Koeln (Germany); Max Planck Institute for Chemical Physics of Solids, Noethnitzerstr. 40, DE-01187 Dresden (Germany); Kierspel, H. [II. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, DE-50937 Koeln (Germany); Rata, A. D.; Tjeng, L. H. [Max Planck Institute for Chemical Physics of Solids, Noethnitzerstr. 40, DE-01187 Dresden (Germany)

2011-10-15T23:59:59.000Z

293

CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film  

Science Journals Connector (OSTI)

Abstract Nanostructured ZnO thin films were deposited on glass substrates using a DC reactive magnetron sputtering technique. Thin films of three different thicknesses viz 40, 100 and 300 nm were prepared and subsequently annealed at 450 °C. The structural, topographical, and optical characteristics of all the three annealed films were studied using X-ray diffractometer (XRD), Atomic Force Microscope (AFM) UV–visible and photoluminescence spectrophotometers. The carbon dioxide (CO2) gas sensing behavior of these films was investigated in detail in the concentration range of 500–10,000 ppm. The sensing performance was optimized with respect to the ZnO film thickness as well as the operating temperature. ZnO film with 40 nm thickness showed better response characteristics at the operating temperature of 300 °C than that of thicker ZnO films. A maximum sensitivity (%) of 1.13 with a response and recovery time of 20 s was observed towards 1000 ppm of CO2.

Padmanathan Karthick Kannan; Ramiah Saraswathi; John Bosco Balaguru Rayappan

2014-01-01T23:59:59.000Z

294

Deposition of tungsten nitride thin films by plasma focus device at different axial and angular positions  

Science Journals Connector (OSTI)

Tungsten nitride thin films were deposited on stainless steel–304 substrates by using a low energy (2 kJ) Mather type plasma focus device. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and microhardness are used to study the surface of treated samples. The XRD analysis shows that the degree of crystallinity of deposited thin films strongly depends on axial and angular positions of samples. The SEM micrographs of the deposited films at different angular positions (0°, 10° and 30°) and axial position of 8 cm show that the content of WN sub-micro crystalline structures on the surface of deposited films decreased with increasing the angle with respect to anode axis. From AFM results we observe that for the sample deposited at 8 cm and 0° axial and angular positions, respectively, the most uniform surface and the most homogenous distribution of grains are obtained. Also the hardness results show that the highest mechanical hardness is obtained when the film is deposited at 8 cm and 0° axial and angular positions, respectively.

M.T. Hosseinnejad; M. Ghoranneviss; G.R. Etaati; M. Shirazi; Z. Ghorannevis

2011-01-01T23:59:59.000Z

295

Nanoporosity induced by ion implantation in deposited amorphous Ge thin films  

SciTech Connect (OSTI)

The formation of a nano-porous structure in amorphous Ge thin film (sputter-deposited on SiO{sub 2}) during ion irradiation at room temperature with 300 keV Ge{sup +} has been observed. The porous film showed a sponge-like structure substantially different from the columnar structure reported for ion implanted bulk Ge. The voids size and structure resulted to be strongly affected by the material preparation, while the volume expansion turned out to be determined only by the nuclear deposition energy. In SiGe alloys, the swelling occurs only if the Ge concentration is above 90%. These findings rely on peculiar characteristics related to the mechanism of voids nucleation and growth, but they are crucial for future applications of active nanostructured layers such as low cost chemical and biochemical sensing devices or electrodes in batteries.

Romano, L.; Impellizzeri, G.; Ruffino, F.; Miritello, M.; Grimaldi, M. G. [IMM-CNR MATIS and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Bosco, L. [Scuola Superiore di Catania, Via Valdisavoia 9, I-95123 Catania (Italy)

2012-06-01T23:59:59.000Z

296

Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing...

297

Advanced Light-Trapping in Thin-Film Silicon Solar Cells  

Science Journals Connector (OSTI)

Light-trapping schemes are essential for high efficiency thin-film Silicon devices. Implementation of various light-trapping/scattering elements will be discussed. An optimum textured...

Wyrsch, Nicolas

298

Emission-angle-dependent photoluminescence of rubrene thin films on silver  

Science Journals Connector (OSTI)

Rubrene layers with thickness comparable to a visible light wavelength on silver thin film exhibit anomalous photoluminescence (PL) spectra that depend strongly on emission angle. The...

Wakamatsu, Takashi

2014-01-01T23:59:59.000Z

299

Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells  

E-Print Network [OSTI]

Thin-film silicon solar cell technology," Progress insolar cells: modeling, materials and device technology.technologies competitive with traditional wafer based solar cells,

Deceglie, Michael G.

2014-01-01T23:59:59.000Z

300

Technological assessment of light-trapping technology for thin-film Si solar cell.  

E-Print Network [OSTI]

??The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was… (more)

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

E-Print Network 3.0 - as2s3 thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

51 KO UNIVERSITY Math-Science Seminar Summary: Technical University) Title: Optical and Electrochromic Properties of Sol-Gel Made Thin Films Date and Time... technologies. The...

302

E-Print Network 3.0 - aggase2 thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

42 KO UNIVERSITY Math-Science Seminar Summary: Technical University) Title: Optical and Electrochromic Properties of Sol-Gel Made Thin Films Date and Time... technologies. The...

303

E-Print Network 3.0 - ag-in-se thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

36 KO UNIVERSITY Math-Science Seminar Summary: Technical University) Title: Optical and Electrochromic Properties of Sol-Gel Made Thin Films Date and Time... technologies. The...

304

E-Print Network 3.0 - alendronate-hydroxyapatite thin films Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

35 KO UNIVERSITY Math-Science Seminar Summary: Technical University) Title: Optical and Electrochromic Properties of Sol-Gel Made Thin Films Date and Time... technologies. The...

305

E-Print Network 3.0 - almgb14 thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

38 KO UNIVERSITY Math-Science Seminar Summary: Technical University) Title: Optical and Electrochromic Properties of Sol-Gel Made Thin Films Date and Time... technologies. The...

306

E-Print Network 3.0 - antibacterial thin films Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

78 KO UNIVERSITY Math-Science Seminar Summary: Technical University) Title: Optical and Electrochromic Properties of Sol-Gel Made Thin Films Date and Time... technologies. The...

307

E-Print Network 3.0 - abrasion-resistant thin films Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

73 KO UNIVERSITY Math-Science Seminar Summary: Technical University) Title: Optical and Electrochromic Properties of Sol-Gel Made Thin Films Date and Time... technologies. The...

308

E-Print Network 3.0 - al-cu-fe thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

52 KO UNIVERSITY Math-Science Seminar Summary: Technical University) Title: Optical and Electrochromic Properties of Sol-Gel Made Thin Films Date and Time... technologies. The...

309

Using Localized Plasmon Resonances to Enhance Absorption Efficiency in Thin-film Organic Solar Cells  

Science Journals Connector (OSTI)

We propose the use of localized surface plasmon modes excited by square metallic gratings to enhance the optical absorption of thin-film organic solar cells. Broadband absorption...

Le, Khai Q; Abass, Aimi; Maes, Bjorn; Bienstman, Peter; Alu, Andrea

310

E-Print Network 3.0 - active thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Western Ontario a JOINT presentation of the Summary: and conducting thin films for optoelectronic applications from carbon nanotubes and graphene" ABSTRACT: Low... . The interest...

311

E-Print Network 3.0 - ag sn thin-film Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solar... on a conventional metal-oxide transparent electrode. Thin-film optoelectronic devices make ... Source: Cui, Yi - Department of Materials Science and Engineering,...

312

Study of GaN:Eu3+ Thin Films Deposited by Metallorganic  

E-Print Network [OSTI]

as an advantageous architecture for transparent electrodes in optoelectronic devices due primarily to high characteristics of electrodes in optoelectronic devices and in supercapactiors, we introduced oxide thin films

McKittrick, Joanna

313

Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells  

Science Journals Connector (OSTI)

In this paper, we present the integration of an absorbing photonic crystal within a monocrystalline silicon thin film photovoltaic stack fabricated without epitaxy. Finite difference...

Meng, Xianqin; Depauw, Valérie; Gomard, Guillaume; El Daif, Ounsi; Trompoukis, Christos; Drouard, Emmanuel; Jamois, Cécile; Fave, Alain; Dross, Frédéric; Gordon, Ivan; Seassal, Christian

2012-01-01T23:59:59.000Z

314

Thin-Film Fiber Optic Sensors for Power Control and Fault Detection. Final Report  

SciTech Connect (OSTI)

Described is the development of an optical current measurement device, an active power conditioning system, and sol gel type thin films for the detection of magnetic fields.

Duncan, Paul Grems

2003-09-30T23:59:59.000Z

315

Electrostatic layer-by-layer assembly of hybrid thin films using polyelectrolytes and inorganic nanoparticles.  

E-Print Network [OSTI]

??Polymer/inorganic nanoparticle hybrid thin films, primarily composed of functional inorganic nanoparticles, are of great interest to researchers because of their interesting electronic, photonic, and optical… (more)

Peng, Chunqing

2011-01-01T23:59:59.000Z

316

Robust Thin-Film Generator Based on Segmented Contact-Electrification for Harvesting Wind Energy  

Science Journals Connector (OSTI)

Robust Thin-Film Generator Based on Segmented Contact-Electrification for Harvesting Wind Energy ... energies in a wide range of forms. ...

Xian Song Meng; Guang Zhu; Zhong Lin Wang

2014-05-13T23:59:59.000Z

317

Alta Devices Develops World Record Setting Thin-Film Solar Cell  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of Alta Devices' thin film Gallium Arsenide photovoltaic technology that set a world record for conversion efficiency.

318

LT-UHV-STM/STS Study on Laser Ablated Nd1+xBa2-xCu3O7-? Superconducting Thin Films  

Science Journals Connector (OSTI)

We have succeeded in growing high quality Nd1+xBa2-xCu3O7-? superconducting thin films on SrTiO3...(100) by laser ablation technique. The structural and superconducting properties have been investigated by XRD, A...

R. Itti; M. Badaye; K. Matsumoto; Wu Ting; H. Nakaji…

1996-01-01T23:59:59.000Z

319

Phase Transitions and High-Voltage Electrochemical Behavior of LiCoO2 Thin Films Grown by Pulsed Laser Deposition  

E-Print Network [OSTI]

Laser Deposition H. Xia,a L. Lu,b,z Y. S. Meng,c and G. Cederc, * a Advanced Materials for Micro behavior of LiCoO2 thin-film cathodes prepared by pulsed laser deposition are studied for charging voltages- discharge curves. Ex situ X-ray diffraction measurements confirm structural changes and a phase transition

Ceder, Gerbrand

320

Growth and characterization of Pt-protected Gd{sub 5}Si{sub 4} thin films  

SciTech Connect (OSTI)

Successful growth and characterization of thin films of giant magnetocaloric Gd{sub 5}(Si{sub x}Ge{sub 1?x}){sub 4} were reported in the literature with limited success. The inherent difficulty in producing this complex material makes it difficult to characterize all the phases present in the thin films of this material. Therefore, thin film of binary compound of Gd{sub 5}Si{sub 4} was deposited by pulsed laser deposition. It was then covered with platinum on the top of the film to protect against any oxidation when the film was exposed to ambient conditions. The average film thickness was measured to be approximately 350?nm using a scanning electron microscopy, and the composition of the film was analyzed using energy dispersive spectroscopy. X-ray diffraction analysis indicates the presence of Gd{sub 5}Si{sub 4} orthorhombic structure along with Gd{sub 5}Si{sub 3} secondary phase. The transition temperature of the film was determined from magnetic moment vs. temperature measurement. The transition temperature was between 320 and 345?K which is close to the transition temperature of the bulk material. Magnetic moment vs. magnetic field measurement confirmed that the film was ferromagnetic below 342?K.

Hadimani, R. L., E-mail: hadimani@iastate.edu; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Mudryk, Y.; Prost, T. E. [Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Pecharsky, V. K.; Gschneidner, K. A. [Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

2014-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)  

SciTech Connect (OSTI)

The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com [New Mexico Institute of Mining and Technology, Department of Materials Engineering, 801 LeRoy Place, Socorro, NM 87801 (United States); Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

2014-09-15T23:59:59.000Z

322

Surface oxidation of Permalloy thin films  

SciTech Connect (OSTI)

The chemical and magnetic structures of oxides on the surface of Permalloy Ni{sub 81}Fe{sub 19} films were investigated as functions of annealing time with x-ray and polarized neutron reflectometry. For annealing times of less than one hour, the oxide consisted of a 1.5-nm-thick layer of NiO on an Fe oxide layer that was in contact with Permalloy. The Fe oxide thickness increases with annealing time with a parabolic rate constant of 10{sup -18} cm{sup 2} s{sup -1} (for an annealing temperature of 373 K). The growth of the oxide layer is limited by the rate at which oxygen appears below the NiO layer. No portion of the oxide region was found to be ferromagnetically ordered for films annealed less than one hour. The growth of the Fe oxide region is well correlated with the measured increase of the second-order magnetic susceptibility for similarly prepared samples.

Fitzsimmons, M. R.; Crawford, T. M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Silva, T. J. [National Institute of Standards and Technology, Boulder, Colorado 80303 (United States)

2006-01-01T23:59:59.000Z

323

B{sub 4}C thin films for neutron detection  

SciTech Connect (OSTI)

Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

2012-05-15T23:59:59.000Z

324

B4C thin films for neutron detection  

Science Journals Connector (OSTI)

Due to the very limited availability of 3He new kinds of neutron detectors not based on 3He are urgently needed. Here we present a method to produce thin films of 10B4C with maximized detection efficiency intended to be part of a new generation of large area neutron detectors. B4C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from natB4C and 10B4C targets in an Ar discharge using an industrial deposition system. The films were characterized with scanning electron microscopy elastic recoil detection analysis x-ray reflectivity and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8?Å/s and substrate temperature of 400?°C result in films with a density close to bulk values and good adhesion to film thickness above 3 ?m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m2 of 1 ?m thick 10B4C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness number of layers neutron wavelength and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas which for a full-scale detector could be in total ?1000 m2 of two-side coated Al-blades with ?1 ?m thick 10B4C films.

Carina Höglund; Jens Birch; Ken Andersen; Thierry Bigault; Jean-Claude Buffet; Jonathan Correa; Patrick van Esch; Bruno Guerard; Richard Hall-Wilton; Jens Jensen; Anton Khaplanov; Francesco Piscitelli; Christian Vettier; Wilhelmus Vollenberg; Lars Hultman

2012-01-01T23:59:59.000Z

325

Thin-film tin oxideâ??ethanol sensor  

Science Journals Connector (OSTI)

Tin Oxide (SnO2) thin films grown on glass substrate at 648 K using direct evaporation method with two gold pads deposited on the top for electrical contacts were exposed to ethanol vapours (200-1000 ppm). The operating temperature of the sensor was optimised. The sensitivity variation of films having different thicknesses was studied. To improve the sensitivity and selectivity further, a thin layer of metal oxide was deposited on the sensor surface to work as a catalytic layer and its effect on the performance of the sensor was studied. The response and recovery times of the sensor were determined.

H.J. Pandya

2009-01-01T23:59:59.000Z

326

Oriented niobate ferroelectric thin films for electrical and optical devices  

DOE Patents [OSTI]

Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

2001-01-01T23:59:59.000Z

327

Control of magnetization reversal in oriented strontium ferrite thin films  

SciTech Connect (OSTI)

Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

2014-02-21T23:59:59.000Z

328

Photoresponse of Tb{sup 3+} doped phosphosilicate thin films  

SciTech Connect (OSTI)

Phosphosilicate ceramic was doped with Tb{sup 3+} using sol-gel technique to prepare thin films. The films were prepared by spin coating the phosphosilicate sols on SiO{sub x}/indium-tin-oxide/glass substrates. The photocurrent of the films at 355 nm laser excitation was observed. The photoresponse as a function of applied field and laser energy was linear and showed no sign of saturation. The films exhibited very stable photoresponse under a very high number of laser shots.

Lee, B.L.; Cao, Z. [Clemson Univ., SC (United States). Gilbert C. Robinson Dept. of Ceramic and Materials Engineering] [Clemson Univ., SC (United States). Gilbert C. Robinson Dept. of Ceramic and Materials Engineering; Sisk, W.N.; Hudak, J. [Univ. of North Carolina, Charlotte, NC (United States)] [Univ. of North Carolina, Charlotte, NC (United States); Samuels, W.D.; Exarhos, G.J. [Pacific Northwest National Lab., Richland, WA (United States). Materials and Chemical Science] [Pacific Northwest National Lab., Richland, WA (United States). Materials and Chemical Science

1997-09-01T23:59:59.000Z

329

Thin film reactions on alloy semiconductor substrates  

SciTech Connect (OSTI)

The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

Olson, D.A.

1990-11-01T23:59:59.000Z

330

Nonlinear Photoemission Electron Micrographs of Plasmonic Nanoholes in Gold Thin Films  

SciTech Connect (OSTI)

Nonlinear photoemission electron microscopy of isolated nanoholes in gold thin films map propagating surface plasmon polaritons (SPPs) launched from the lithographically patterned plasmonic structures. A damped sinusoidal elongated ring-like photoemission beat pattern is observed from the nanoholes, following low angle of incidence irradiation of these structures with sub-15 fs 780 nm laser pulses. A notable agreement between finite difference time domain simulations and experiment corroborates our assignment of the observed photoemission patterns to SPPs launched from isolated nanoholes and probed through nonlinear photoemission. We also demonstrate how the efficiency of coupling light waves into isolated plasmonic holes can be tuned by varying hole diameter. In this regard, a simple intuitive geometrical model, which accounts for the observed and simulated diameter dependent plasmonic response, is proposed. Overall, this study paves the way for designing nanohole assemblies where optical coupling and subsequent plasmon propagation can be rationally controlled through 2D SPP interferometry

Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

2014-11-06T23:59:59.000Z

331

Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor  

E-Print Network [OSTI]

The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

Nominanda, Helinda

2012-06-07T23:59:59.000Z

332

Thin film deposition of barium strontium oxide by rf magnetron sputtering  

SciTech Connect (OSTI)

Barium strontium oxide [(BaSr)O] thin films approximately 1 {mu}m in thickness were deposited on tungsten substrates using rf magnetron sputter deposition for thermionic cathode applications. Three substrate temperatures ranging from 25 to 700 deg. C were used in the deposition processes to create oxide films with different surface morphologies and crystalline structures. The films were characterized with scanning electron microscopy and their surface morphologies were correlated to their thermionic emission properties. The results showed that the surface morphology and crystalline structure of the oxide films strongly affected the emission properties. The oxide film deposited at the lowest substrate temperature of 25 deg. C showed a rough surface and a crystalline structure consisting of nanograins. At higher substrate temperatures, the oxide films exhibited smooth surfaces and close-packed crystalline structures with larger grains. The work function of the oxide films was reduced and the emission current density increased as a result of the increase in the growth temperature. The (BaSr)O film made at 700 deg. C exhibited the lowest work function of 1.57 eV and the largest emission current density of 1.60 A/cm{sup 2} at 1198 K under an electrical field of 0.88 V/{mu}m. The emission current density and the work function of the (BaSr)O thin film cathodes were stable over the testing period of 8 h. Compared to the traditional cathode fabrication process, which involves the coating of carbonates followed by an activation process, rf magnetron sputtering has a greater ability to control the deposition parameters, which makes it a valuable alternative technique to fabricate oxide cathodes.

Liu Yan; Day, Christopher M.; Little, Scott A.; Jin, Feng [Department of Physics and Astronomy, Ball State University, Muncie, Indiana 47306 (United States)

2006-11-15T23:59:59.000Z

333

Critical lines of magnetic semiconductor thin films: Experiment  

Science Journals Connector (OSTI)

The irreversibilities between the field-cooled and zero-field-cooled dc magnetization were used to determine the field and composition dependence of the spin-glass freezing temperature in CdCr2-2x In2x Se4 thin films. The magnetic ordering was confirmed by the temperature dependence of induced magnetization M and unidirectional magnetic anisotropy field Han determined from ferromagnetic resonance data (4.2–120 K). The experimentally determined H-T phase diagram shows two instability lines: the Gabay-Toulouse-type (GT line) and the Almeida-Thouless-type (AT line) for thin films of CdCr2 Se4 :In with reentrant transition and the AT line for CdCr2-2x In2x Se4 in the spin-glass state. The AT and GT lines obey the relation ?=[(n+1)(n+2)/8]1/3 (heff )2/3 and ?=[(n2 +4n+2)/(4(n+2)2 )] (heff )2 , respectively, for the normalized effective field heff =ha +hm . The first term in heff stands for the external magnetic field, while the second is related to the internal field of the infinite ferromagnetic network (long-range ordering). The value of hm determined from the H-T phase diagram was found to be dependent on indium concentration.

M. Lubecka; L. J. Maksymowicz; R. Szymczak; W. Powroz-acutenik

1997-03-01T23:59:59.000Z

334

Issue and challenges facing rechargeable thin film lithium batteries  

Science Journals Connector (OSTI)

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5–6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development.

Arun Patil; Vaishali Patil; Dong Wook Shin; Ji-Won Choi; Dong-Soo Paik; Seok-Jin Yoon

2008-01-01T23:59:59.000Z

335

Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment  

E-Print Network [OSTI]

We present the investigation on the modifications of structural and magnetic properties of MnAs thin film epitaxially grown on GaAs induced by slow highly charged ions bombardment under well-controlled conditions. The ion-induced defects facilitate the nucleation of one phase with respect to the other in the first-order magneto-structural MnAs transition with a consequent suppression of thermal hysteresis without any significant perturbation on the other structural and magnetic properties. In particular, the irradiated film keeps the giant magnetocaloric effect at room temperature opening new perspective on magnetic refrigeration technology for everyday use.

Trassinelli, Martino; Eddrief, M; Etgens, V H; Gafton, V; Hidki, S; Lacaze, Emmanuelle; Lamour, Emily; Prigent, Christophe; Rozet, Jean-Pierre; Steydli, S; Zheng, Y; Vernhet, Dominique

2014-01-01T23:59:59.000Z

336

Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment  

SciTech Connect (OSTI)

We present the investigation on the modifications of structural and magnetic properties of MnAs thin film epitaxially grown on GaAs induced by slow highly charged ions bombardment under well-controlled conditions. The ion-induced defects facilitate the nucleation of one phase with respect to the other in the first-order magneto-structural MnAs transition, with a consequent suppression of thermal hysteresis without any significant perturbation on the other structural and magnetic properties. In particular, the irradiated film keeps the giant magnetocaloric effect at room temperature opening new perspective on magnetic refrigeration technology for everyday use.

Trassinelli, M., E-mail: martino.trassinelli@insp.jussieu.fr; Marangolo, M.; Eddrief, M.; Etgens, V. H.; Gafton, V.; Hidki, S.; Lacaze, E.; Lamour, E.; Prigent, C.; Rozet, J.-P.; Steydli, S.; Zheng, Y.; Vernhet, D. [CNRS, UMR 7588, Institut des NanoSciences de Paris (INSP), F-75005 Paris (France); Sorbonne Universités, UPMC Univ. Paris 06, UMR 7588, INSP, F-75005 Paris (France)

2014-02-24T23:59:59.000Z

337

Dielectric back scattering patterns for light trapping in thin-film Si solar cells  

E-Print Network [OSTI]

Dielectric back scattering patterns for light trapping in thin-film Si solar cells M. van Lare,1 of dielectric and metallic backscattering patterns in thin-film a-Si:H solar cells. We compare devices. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, "Nanodome solar cells with efficient light management

Polman, Albert

338

Electrical characteristics of Ta2O5 thin films deposited by electron beam gun evaporation  

E-Print Network [OSTI]

Electrical characteristics of Ta2O5 thin films deposited by electron beam gun evaporation V films deposited by a simple electron beam gun evaporator. We describe thicknessO5 thin films deposited by a simple electron beam gun evaporator which enables versatility

Eisenstein, Gadi

339

Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint  

SciTech Connect (OSTI)

We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. In CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.

Ullal, H. S.; von Roedern, B.

2007-09-01T23:59:59.000Z

340

Enhancement of photoluminescence due to erbium-doped in CdS thin films  

Science Journals Connector (OSTI)

Cadmium sulfide (CdS) thin films were synthesized by chemical bath ... on glass substrates at 80 °C. The CdS thin films were doped with erbium (Er3+) during the growth process by adding aqueous solutions of Er(NO

O. Zelaya-Angel; S. A. Tomás; P. Rodríguez…

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EPMA Instructions for Thin Film Samples General guidelines to reading computer related commands  

E-Print Network [OSTI]

EPMA Instructions for Thin Film Samples General guidelines to reading computer related commands: `Single quote' = menu item, window, or icon "Double quote" = something you type = button you your sample, thin film up, on the dot of epoxy 4. Repeat until all samples are on the puck 5. Flip your

342

Electric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films  

E-Print Network [OSTI]

Electric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films Ting Xu, A. V Manuscript Received June 21, 2004 ABSTRACT: An electric field induced sphere-to-cylinder transition in thin. In the absence of an applied electric field, thin films of the asymmetric diblock copolymer consisted of layers

Ocko, Ben

343

Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell  

E-Print Network [OSTI]

Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell J. Grandidier on top of a solar cell can enhance light absorption and therefore increase its efficiency. Freely photocurrent of the solar cell. On a typical thin film amorphous silicon solar cell, a parametric analysis

Atwater, Harry

344

The effect of stress on the dielectric properties of barium strontium titanate thin films  

E-Print Network [OSTI]

The effect of stress on the dielectric properties of barium strontium titanate thin films T. M Barium strontium titanate thin films are being developed as capacitors in dynamic random access memories to their large permittivities, barium strontium titan- ate BST bulk ceramics have long been used to make high

Suo, Zhigang

345

High tunability barium strontium titanate thin films for rf circuit applications  

E-Print Network [OSTI]

High tunability barium strontium titanate thin films for rf circuit applications N. K. Pervez,a) P) Large variations in the permittivity of rf magnetron sputtered thin-film barium strontium titanate have/cm. © 2004 American Institute of Physics. [DOI: 10.1063/1.1818724] Barium strontium titanate (BST) is a solid

York, Robert A.

346

Optimization of High Tunability Barium Strontium Titanate Thin Films Grown by RF Magnetron  

E-Print Network [OSTI]

Optimization of High Tunability Barium Strontium Titanate Thin Films Grown by RF Magnetron Abstract-- Barium strontium titanate is a solid solution perovskite with a field-dependent permittivity.7 MV/cm. I. INTRODUCTION In recent years there has been much interest in thin-film barium strontium

York, Robert A.

347

Discrete Barium Strontium Titanate (BST) Thin-Film Interdigital Varactors on Alumina: Design, Fabrication, Characterization, and  

E-Print Network [OSTI]

Discrete Barium Strontium Titanate (BST) Thin-Film Interdigital Varactors on Alumina: Design, Raleigh, NC-27695-7914, USA. Email:jayeshnath@ieee.org Abstract -- Discrete Barium Strontium Titanate (BST, capacitors, BST, ferroelectric, thin-film, barium strontium titanate, bandpass filter, IP3, ACPR, temperature

348

Self-similar solutions for a fractional thin film equation governing hydraulic fractures  

E-Print Network [OSTI]

Self-similar solutions for a fractional thin film equation governing hydraulic fractures C. Imbert equation governing hydraulic fractures are constructed. One of the boundary con- ditions, which accounts, 35R11, 35C06 Keywords: Hydraulic fractures, higher order equation, thin films, fractional Laplacian

Boyer, Edmond

349

STRAIN SENSING WITH PIEZOELECTRIC ZINC OXIDE THIN FILMS FOR VIBRATION SUPPRESSION IN HARD DISK DRIVES  

E-Print Network [OSTI]

was successfully obtained while the suspension was flying on a disk as in normal drive operation. PreliminarySTRAIN SENSING WITH PIEZOELECTRIC ZINC OXIDE THIN FILMS FOR VIBRATION SUPPRESSION IN HARD DISK This paper describes the integration of thin film ZnO strain sensors onto hard disk drive suspensions

Horowitz, Roberto

350

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries  

E-Print Network [OSTI]

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries Patrick E. Trapa to be stable over a wide temperature range and voltage window. Solid-state, thin-film batteries comprised triflate-doped POEM-g-PDMS, which exhibited solid-like mechanical behavior, were nearly identical to those

Sadoway, Donald Robert

351

Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films  

E-Print Network [OSTI]

Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films A. Bulusu and D. G. Walker1 Interdisciplinary Program in Material Science Vanderbilt University Nashville on device characteristics of 1D and 2D thin film superlattices whose applications include thermoelectric

Walker, D. Greg

352

LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin  

E-Print Network [OSTI]

1 LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin electrochromism with high coloration efficiencies. These nickel oxide films were particularly stable compared, and readily scalable to larger substrates. Keywords: liquid phase deposition; electrochromic films; thin film

353

Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells  

E-Print Network [OSTI]

Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells O. Lundberga,*, J. Lua , A. Rockettb , M. Edoffa , L. Stolta a A°ngstro¨m Solar Center, Uppsala University, P.O. Box 534, SE-751 21 Abstract The diffusion of indium and gallium in polycrystalline thin film Cu(In,Ga)Se2 layers has been

Rockett, Angus

354

Nano-photonic Light Trapping In Thin Film Solar Dennis M. Callahan Jr.  

E-Print Network [OSTI]

Nano-photonic Light Trapping In Thin Film Solar Cells Thesis by Dennis M. Callahan Jr. In Partial. Jeremy Munday for helping me get started on the thin-film GaAs project and for all the time we spent to thank Dr. Jonathan Grandidier for working closely with me for a couple years on the nano sphere solar

Winfree, Erik

355

Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition  

E-Print Network [OSTI]

. Thin films were grown by flash evaporation at Texas A&M University, and by pulsed laser deposition (PLD) at the University of Wollongong, Australia. The latter of these techniques is widely used for growing thin films of various compounds. Single...

Ganapathy Subramanian, Santhana

2004-09-30T23:59:59.000Z

356

Measuring the fracture toughness of ultra-thin films with application to AlTa coatings  

E-Print Network [OSTI]

1 Measuring the fracture toughness of ultra-thin films with application to AlTa coatings Yong Xiang Abstract An experimental technique is presented for measuring the fracture toughness of brittle thin films with a focused ion beam and the membranes are pressurized until rupture. The fracture stress of the membrane

357

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films  

E-Print Network [OSTI]

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardsona@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic

358

Extended light scattering model incorporating coherence for thin-film silicon solar cells  

E-Print Network [OSTI]

Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non potential for light trapping in textured thin film silicon solar cells. VC 2011 American Institute

Lenstra, Arjen K.

359

High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams  

E-Print Network [OSTI]

High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams Hyun-throughput residual stress measurements on thin films by means of micromachined cantilever beams and an array of parallel laser beams. In this technique, the film of interest is deposited onto a silicon substrate

360

Synthesis and Screening of Thin Films in the CeCl3-CeBr3 System...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Screening of Thin Films in the CeCl3-CeBr3 System for Scintillator Applications. Synthesis and Screening of Thin Films in the CeCl3-CeBr3 System for Scintillator Applications....

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors  

SciTech Connect (OSTI)

Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

Cherry, H.B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States)

1997-05-01T23:59:59.000Z

362

Solar Thin Films Inc formerly American United Global Inc | Open Energy  

Open Energy Info (EERE)

Films Inc formerly American United Global Inc Films Inc formerly American United Global Inc Jump to: navigation, search Name Solar Thin Films Inc (formerly American United Global Inc) Place New York, New York Zip 10038 Sector Solar Product A US-based solar manufacturing equipment supplier. References Solar Thin Films Inc (formerly American United Global Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Thin Films Inc (formerly American United Global Inc) is a company located in New York, New York . References ↑ "Solar Thin Films Inc (formerly American United Global Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Thin_Films_Inc_formerly_American_United_Global_Inc&oldid=351338

363

Reactions of Disilane on Cu(111): Direct Observation of Competitive Dissociation, Disproportionation, and Thin Film Growth Processes  

Science Journals Connector (OSTI)

Reactions of Disilane on Cu(111): Direct Observation of Competitive Dissociation, Disproportionation, and Thin Film Growth Processes ...

Shrikant P. Lohokare; Benjamin C. Wiegand; Ralph G. Nuzzo

1995-10-01T23:59:59.000Z

364

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa  

E-Print Network [OSTI]

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa , Alessio in the fabrication of high efficiency CdTe/CdS thin film solar cells. Usually, it is done first by etching the Cd: Back Contact, CdTe, Thin Film 1 INTRODUCTION The back contact in the CdTe/CdS thin film solar cell

Romeo, Alessandro

365

Comparison of Ag and SiO2 Nanoparticles for Light Trapping Applications in Silicon Thin Film Solar Cells  

Science Journals Connector (OSTI)

Comparison of Ag and SiO2 Nanoparticles for Light Trapping Applications in Silicon Thin Film Solar Cells ... † Department

Martin Theuring; Peng Hui Wang; Martin Vehse; Volker Steenhoff; Karsten von Maydell; Carsten Agert; Alexandre G. Brolo

2014-09-10T23:59:59.000Z

366

Low-energy muon [LEM] study of Zn-phthalocyanine and ZnO thin films  

Science Journals Connector (OSTI)

Implantation of low-energy muons in zinc-phthalocyanine (ZnPc) thin-films leads to the formation of muoniated radical states, the fast decaying of the ? SR signal at low fields being a clear indication of muonium formation. The formation probability of these paramagnetic states is independent of the implantation depth and amounts, as in the bulk, to approximately 100% of all muons. In these molecular crystals the formation of muonium is a highly local effect and is fairly independent of crystalline structure and defects in the sample. In contrast to that, in vapour-grown ZnO films the paramagnetic signal known from bulk experiments is not observed, even for the deeper implantations. We suggest that in this case muonium is not formed due to the low concentration of free electrons. In these strongly distorted films, electrons are captured at defects and are not available for muonium formation.

H.V. Alberto; J. Piroto Duarte; A. Weidinger; R.C. Vilão; J.M. Gil; N. Ayres de Campos; K. Fostiropoulos; T. Prokscha; A. Suter; E. Morenzoni

2009-01-01T23:59:59.000Z

367

Optical characteristics of pulsed laser deposited Ge-Sb-Te thin films studied by spectroscopic ellipsometry  

SciTech Connect (OSTI)

Pulsed laser deposition technique was used for the fabrication of (GeTe){sub 1-x}(Sb{sub 2}Te{sub 3}){sub x} (x = 0, 0.33, 0.50, 0.66, and 1) amorphous thin films. Scanning electron microscopy with energy-dispersive x-ray analysis, x-ray diffraction, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (rocksaltlike) layers. In order to extract optical functions of the films, the Cody-Lorentz model was applied for the analysis of ellipsometric data. Fitted sets of Cody-Lorentz model parameters are discussed in relation with chemical composition and the structure of the layers. The GeTe component content was found to be responsible for the huge optical functions and thickness changes upon amorphous-to-fcc phase transition.

Nemec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Prikryl, J.; Frumar, M. [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Nazabal, V. [Equipe Verres et Ceramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Universite de Rennes 1, 35042 Rennes Cedex (France)

2011-04-01T23:59:59.000Z

368

Microcrystalline SiGe Absorber Layers in Thin-film Silicon Solar Cells  

Science Journals Connector (OSTI)

Abstract We report on physical properties of microcrystalline silicon-germanium (?c-SiGe:H) absorber layers for the use as a bottom structure in silicon based multijunction thin-film solar cells. Due to incorporation of Ge the absorption of the film is enhanced compared to pure ?c-Si:H films. This provides the opportunity to significantly reduce the absorber layer thickness. The experiments were carried out in a 13.56 MHz PECVD reactor using germane, silane and hydrogen as process gases. Single layers were characterized for their optical and electrical properties. Results from single and multijunction solar cells using a ?c- SiGe:H absorbers will be shown. In tandem solar cells a reduction of about 60% of the absorber layer thickness could be reached by using SiGe alloys compared to pristine silicon tandem cells.

K.V. Maydell; K. Grunewald; M. Kellermann; O. Sergeev; P. Klement; N. Reininghaus; T. Kilper

2014-01-01T23:59:59.000Z

369

Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal  

SciTech Connect (OSTI)

We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon–Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film, the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity, and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allow us to define a structure based on a 30?nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.

Mruczkiewicz, M.; Krawczyk, M. [Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Pozna? 61-614 (Poland)

2014-03-21T23:59:59.000Z

370

Phase assembly and photo-induced current in CdTe-ZnO nanocomposite thin films  

SciTech Connect (OSTI)

Sequential radio-frequency sputtering was used to produce CdTe-ZnO nanocomposite thin films with varied semiconductor-phase extended structures. Control of the spatial distribution of CdTe nanoparticles within the ZnO embedding phase was used to influence the semiconductor phase connectivity, contributing to both changes in quantum confinement induced spectral absorption and carrier transport characteristics of the resulting nanocomposite. An increased number density of CdTe particles deposited along the applied field direction produced an enhancement in the photo-induced current observed. These results highlight the opportunity to employ long-range phase assembly as a means to control optoelectronic properties of significant interest for photovoltaic applications.

Beal, R. J.; Kana Kana, J. B. [Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Potter, B. G. Jr. [Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

2012-07-16T23:59:59.000Z

371

Thermal annealing characteristics of Si and Mg-implanted GaN thin films  

SciTech Connect (OSTI)

In this letter, we report the results of ion implantation of GaN using {sup 28}Si and {sup 24}Mg species. Structural and electrical characterizations of the GaN thin films after thermal annealing show that native defects in the GaN films dominate over implant doping effects. The formation energies of the annealing induced defects are estimated to range from 1.4 to 3.6 eV. A 40 keV 10{sup 14} cm{sup {minus}2} Mg implant results in the decrease of the free-carrier concentration by three orders of magnitude compared to unimplanted GaN up to an annealing temperature of 690{degree}C. Furthermore, we have observed the correlation between these annealing-induced defects to both improved optical and electrical properties. {copyright} {ital 1996 American Institute of Physics.}

Chan, J.S.; Cheung, N.W. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)] [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Schloss, L.; Jones, E.; Wong, W.S.; Newman, N.; Liu, X.; Weber, E.R. [Department of Material Science and Mineral Engineering, University of California, Berkeley, California 64720 (United States)] [Department of Material Science and Mineral Engineering, University of California, Berkeley, California 64720 (United States); Gassman, A.; Rubin, M.D. [Lawrence Berkeley Laboratory, 1 Cyclotron Road, University of California, Berkeley, California 64720 (United States)] [Lawrence Berkeley Laboratory, 1 Cyclotron Road, University of California, Berkeley, California 64720 (United States)

1996-05-01T23:59:59.000Z

372

Ge doped HfO{sub 2} thin films investigated by x-ray absorption spectroscopy  

SciTech Connect (OSTI)

The stability of the tetragonal phase of Ge doped HfO{sub 2} thin films on Si(100) was investigated. Hf(Ge)O{sub 2} films with Ge atomic concentrations varying from 0% to 15% were deposited by remote plasma chemical vapor deposition. The atomic structure on the oxide after rapid thermal annealing was investigated by x-ray absorption spectroscopy of the O and Ge K edges and by Rutherford backscattering spectrometry. The authors found that Ge concentrations as low as 5 at. % effectively stabilize the tetragonal phase of 5 nm thick Hf(Ge)O{sub 2} on Si and that higher concentrations are not stable to rapid thermal annealing at temperatures above 750 deg. C.

Miotti, Leonardo; Bastos, Karen P.; Lucovsky, Gerald; Radtke, Claudio; Nordlund, Dennis [Department of Physics, North Carolina State University, Box 8202, Raleigh, North Carolina 27695-8202 (United States); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre (Brazil); Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025 (United States)

2010-07-15T23:59:59.000Z

373

Double-metal-gate nanocrystalline Si thin film transistors with flexible threshold voltage controllability  

SciTech Connect (OSTI)

We fabricated nano-crystalline Si (nc-Si:H) thin-film transistors (TFTs) with a double-metal-gate structure, which showed a high electron-mobility (?{sub FE}) and adjustable threshold voltages (V{sub th}). The nc-Si:H channel and source/drain (S/D) of the multilayered TFT were deposited at 375?°C by inductively coupled plasma chemical vapor deposition. The low grain-boundary defect density of the channel layer is responsible for the high ?{sub FE} of 370 cm{sup 2}/V-s, a steep subthreshold slope of 90?mV/decade, and a low V{sub th} of ?0.64?V. When biased with the double-gate driving mode, the device shows a tunable V{sub th} value extending from ?1?V up to 2.7?V.

Chiou, Uio-Pu; Pan, Fu-Ming, E-mail: fmpan@faculty.nctu.edu.tw [Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan (China)] [Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan (China); Shieh, Jia-Min, E-mail: jmshieh@narlabs.org.tw, E-mail: jmshieh@faculty.nctu.edu.tw [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China) [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China); Yang, Chih-Chao [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China)] [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Huang, Wen-Hsien [Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan (China) [Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan (China); National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Kao, Yo-Tsung [Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China)] [Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China)

2013-11-11T23:59:59.000Z

374

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS  

E-Print Network [OSTI]

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS solar cells using back reflectors. We studied absorption enhancement in InGaAs and InGaAsP thin film and metal, on InGaAs thin film solar cell performance by device modeling and nu- merical simulations. DEVICE

Atwater, Harry

375

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a  

E-Print Network [OSTI]

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk understanding of thin film solar cell device physics, including important module performance variability issues

Alam, Muhammad A.

376

Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings  

E-Print Network [OSTI]

Enhancement of optical absorption in thin-film organic solar cells through the excitation 2010 We theoretically investigate the enhancement of optical absorption in thin-film organic solar.1063/1.3377791 Thin-film organic solar cells OSCs are a promising candidate for low-cost energy conversion.1­6 However

Veronis, Georgios

377

THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te-CdTe HETEROJUNCTIONS (1)  

E-Print Network [OSTI]

195 THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te This paper is a short status report on the continuing development of Cu22014xTe-CdTe thin film solar cells Company has had a conti- nuous effort on thin film solar cells for the past four and a half years

Paris-Sud XI, Université de

378

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property  

E-Print Network [OSTI]

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High-conductor-free organic lead iodide thin film solar cells have been fabricated with a sequential deposition method are comparable to that of the high-efficiency thin-film solar cells. VC 2014 AIP Publishing LLC. [http

Wang, Wei Hua

379

Microfluidic pumps employing surface acoustic waves generated in ZnO thin films  

SciTech Connect (OSTI)

ZnO thin film based surface acoustic wave (SAW) devices have been utilized to fabricate microfluidic pumps. The SAW devices were fabricated on nanocrystalline ZnO piezoelectric thin films deposited on Si substrates using rf magnetron sputtering and use a Sezawa wave mode for effective droplet motion. The as-deposited ZnO surface is hydrophilic, with a water contact angle of {approx}75 deg., which prevents droplet pumping. Therefore, the ZnO surface was coated using a self-assembled monolayer of octadecyltrichlorosilane which forms a hydrophobic surface with a water contact angle of {approx}110 deg. Liquid droplets between 0.5 and 1 {mu}l in volume were successfully pumped on the hydrophobic ZnO surface at velocities up to 1 cm s{sup -1}. Under acoustic pressure, the water droplet on an hydrophilic surface becomes deformed, and the asymmetry in the contact angle at the trailing and leading edges allow the force acting upon the droplet to be calculated. These forces, which increase with input voltage above a threshold level, are found to be in the range of {approx}100 {mu}N. A pulsed rf signal has also been used to demonstrate precision manipulation of the liquid droplets. Furthermore, a SAW device structure is demonstrated in which the ZnO piezoelectric only exists under the input and output transducers. This structure still permits pumping, while avoiding direct contact between the piezoelectric material and the fluid. This is of particular importance for biological laboratory-on-a-chip applications.

Du, X. Y.; Flewitt, A. J.; Milne, W. I. [Electrical Engineering Division, Department of Engineering, University of Cambridge, JJ Thomson Ave., Cambridge CB3 0FA (United Kingdom); Fu, Y. Q. [Electrical Engineering Division, Department of Engineering, University of Cambridge, JJ Thomson Ave., Cambridge CB3 0FA (United Kingdom); Department of Mechanical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Luo, J. K. [Electrical Engineering Division, Department of Engineering, University of Cambridge, JJ Thomson Ave., Cambridge CB3 0FA (United Kingdom); Centre for Material Research and Innovation, University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom)

2009-01-15T23:59:59.000Z

380

Nanostructured Thin Film Electrolyte for Thin Film Solid Oxide Fuel Cells  

E-Print Network [OSTI]

-aligned nanocomposite (VAN) structure as an interlayer between the electrolyte and cathode is demonstrated. The development of the VAN structures consisted of the cathode material as a perovskite or ordered double perovskite structure, La0.5Sr0.5CoO3 (LSCO) or PrBaCo2O5...

Cho, Sungmee

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Overview and Challenges of Thin Film Solar Electric Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Challenges of Thin and Challenges of Thin Film Solar Electric Technologies H.S. Ullal Presented at the World Renewable Energy Congress X and Exhibition 2008 Glasgow, Scotland, United Kingdom July 19-25, 2008 Conference Paper NREL/CP-520-43355 December 2008 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

382

Casimir effect for thin films from imperfect materials  

E-Print Network [OSTI]

We propose an approach for investigation of interaction of thin material films with quantum electrodynamic fields. Using main principles of quantum electrodynamics (locality, gauge invariance, renormalizability) we construct a single model for Casimir-like phenomena arising near the film boundary on distances much larger then Compton wavelength of the electron where fluctuations of Dirac fields are not essential. In this model the thin film is presented by a singular background field concentrated on a 2-dimensional surface. All properties of the film material are described by one dimensionless parameter. For two parallel plane films we calculate the photon propagator and the Casimir force, which appears to be dependent on film material and can be both attractive and repulsive. We consider also an interaction of plane film with point charge and straight line current. Here, besides usual results of classical electrodynamics the model predicts appearance of anomalous electric and magnetic fields.

V. N. Markov; Yu. M. Pis'mak

2006-06-04T23:59:59.000Z

383

Combinatorial study of zinc tin oxide thin-film transistors  

SciTech Connect (OSTI)

Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO:SnO{sub 2} ratio of the film varies as a function of position on the sample, from pure ZnO to SnO{sub 2}, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2 to 12 cm{sup 2}/V s, with two peaks in mobility in devices at ZnO fractions of 0.80{+-}0.03 and 0.25{+-}0.05, and on/off ratios as high as 10{sup 7}. Transistors composed predominantly of SnO{sub 2} were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

McDowell, M. G.; Sanderson, R. J.; Hill, I. G. [Dalhousie University, Department of Physics, Halifax, Nova Scotia B3H 3J5 (Canada)

2008-01-07T23:59:59.000Z

384

Properties of ferroelectric/ferromagnetic thin film heterostructures  

SciTech Connect (OSTI)

Ferroelectric/ferromagnetic thin film heterostructures, SrBi{sub 2}Ta{sub 2}O{sub 9}/BaFe{sub 12}O{sub 19} (SBT/BaM), were grown on platinum-coated Si substrates using metal-organic decomposition. X-ray diffraction patterns confirmed that the heterostructures contain only SBT and BaM phases. The microwave properties of these heterostructures were studied using a broadband ferromagnetic resonance (FMR) spectrometer from 35 to 60 GHz, which allowed us to determine gyromagnetic ratio and effective anisotropy field. The FMR linewidth is as low as140 Oe at 58 GHz. In addition, measurements of the effective permittivity of the heterostructures were carried out as a function of bias electric field. All heterostructures exhibit hysteretic behavior of the effective permittivity. These properties indicate that such heterostructures have potential for application in dual electric and magnetic field tunable resonators, filters, and phase shifters.

Chen, Daming, E-mail: chendaming1986@gmail.com [Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan (China); Harward, Ian; Linderman, Katie; Economou, Evangelos; Celinski, Zbigniew [Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States); Nie, Yan [Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States); School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

2014-05-07T23:59:59.000Z

385

Manipulating Josephson junctions in thin-films by nearby vortices  

SciTech Connect (OSTI)

It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

Kogan, V.G.; Mints, R.G.

2014-07-01T23:59:59.000Z

386

Spectroscopic ellipsometry characterization of thin-film silicon nitride  

SciTech Connect (OSTI)

We have measured and analyzed the optical characteristics of a series of silicon nitride thin films prepared by plasma-enhanced chemical vapor deposition on silicon substrates for photovoltaic applications. Spectroscopic ellipsometry measurements were made by using a two-channel spectroscopic polarization modulator ellipsometer that measures N, S, and C data simultaneously. The data were fit to a model consisting of air / roughness / SiN / crystalline silicon. The roughness was modeled using the Bruggeman effective medium approximation, assuming 50% SiN, 50% voids. The optical functions of the SiN film were parameterized using a model by Jellison and Modine. All the {Chi}{sup 2} are near 1, demonstrating that this model works extremely well for all SiN films. The measured dielectric functions were used to make optimized SiN antireflection coatings for crystalline silicon solar cells.

Jellison, G.E. Jr.; Modine, F.A. [Oak Ridge National Lab., TN (United States); Doshi, P.; Rohatgi, A. [Georiga Inst. of Technology, Atlanta, GA (United States)

1997-05-01T23:59:59.000Z

387

Room-temperature magnetoelectric multiferroic thin films and applications thereof  

DOE Patents [OSTI]

The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

Katiyar, Ram S; Kuman, Ashok; Scott, James F.

2014-08-12T23:59:59.000Z

388

Quantum states of neutrons in magnetic thin films  

SciTech Connect (OSTI)

We have studied experimentally and theoretically the interaction of polarized neutrons with magnetic thin films and magnetic multilayers. In particular, we have analyzed the behavior of the critical edges for total external reflection in both cases. For a single film we have observed experimentally and theoretically a simple behavior: the critical edges remain fixed and the intensity varies according to the angle between the polarization axis and the magnetization vector inside the film. For the multilayer case we find that the critical edges for spin-up and spin-down polarized neutrons move toward each other as a function of the angle between the magnetization vectors in adjacent ferromagnetic films. Although the results for multilayers and single thick layers appear to be different, in fact, the same spinor method explains both results. An interpretation of the critical edges behavior for the multilyers as a superposition of ferromagnetic and antifferomagnetic states is given.

Radu, F.; Zabel, H. [Department of Physics, Ruhr-University Bochum, D- 44780 Bochum (Germany); Leiner, V. [Institut fuer Werkstoffforschung WFN, GKSS Forschungszentrum GmbH, 21502 Geesthacht (Germany); Wolff, M. [Department of Physics, Ruhr-University Bochum, D- 44780 Bochum (Germany); Institut Laue-Langevin, F-38042 Grenoble Cedex 9 (France); Ignatovich, V.K. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna Moscow Region (Russian Federation)

2005-06-01T23:59:59.000Z

389

Characterization of Field Exposed Thin Film Modules: Preprint  

SciTech Connect (OSTI)

Test arrays of thin film modules have been deployed at the Solar Energy Centre near New Delhi, India since 2002-2003. Performances of these arrays were reported by O.S. Sastry [1]. This paper reports on NREL efforts to support SEC by performing detailed characterization of selected modules from the array. Modules were selected to demonstrate both average and worst case power loss over the 8 years of outdoor exposure. The modules characterized included CdTe, CIS and three different types of a-Si. All but one of the a-Si types were glass-glass construction. None of the modules had edge seals. Detailed results of these tests are presented along with our conclusions about the causes of the power loss for each technology.

Wohlgemuth, J. H.; Sastry, O. S.; Stokes, A.; Singh, Y. K.; Kumar, M.

2012-06-01T23:59:59.000Z

390

Organic Thin Film Magnet of Nickel-Tetracyanoethylene  

SciTech Connect (OSTI)

Hybrid organic-inorganic materials consisting of a transition metal and an organic compound, TCNE form a unique class of organic magnets denoted by M(TCNE){sub x}(where M = transition metals, and TCNE = tetracyanoethylene). The organic thin film magnet of nickel-tetracyanoethylene, Ni(TCNE){sub x} is deposited on sputtered clean gold substrate using the physical vapor deposition (PVD) technique under ultra high vacuum (UHV) conditions at room temperature. X-ray photoelectron spectroscopy (XPS) has been used to investigate chemical and electronic properties of Ni(TCNE){sub x} film. XPS derived film thickness and stoichiometry are found to be 6 nm and 1:2 ratio between Ni and TCNE resulting Ni(TCNE){sub 2} film, respectively. In addition, XPS results do not show any signature of the presence of pure metallic Ni or Ni-clustering in the Ni(TCNE){sub x} film.

Bhatt, Pramod; Yusuf, S. M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2011-07-15T23:59:59.000Z

391

Asymmetric Reduction of Gold Nanoparticles into Thermoplasmonic Polydimethylsiloxane Thin Films  

Science Journals Connector (OSTI)

This work extends this range to include fabrication and characterization of AuNP-containing asymmetric thin films and shows important advantages relative to uniformly distributed particles via sub-surface introduction of AuNPs at just one interface of a polymer. ... Using a diffusivity of water in PDMS of approximately 2 × 10–9 m2/s,(32) diffusive penetration of water into a semi-infinite PDMS slab would reach approximately 5 cm after 24 h. ... This increase in thermal response relative to previous aqueous, silica, and PDMS samples appears to result from an increase in nanoparticle density relative to insulating PDMS, insulation of the heated layer by a thicker, adjacent gold-free PDMS, and reduction of radiativity of the PDMS relative to planar substrates. ...

Jeremy R. Dunklin; Gregory T. Forcherio; Keith R. Berry, Jr.; D. Keith Roper

2013-08-09T23:59:59.000Z

392

Gain properties of dye-doped polymer thin films  

E-Print Network [OSTI]

The demonstration of an electrically pumped organic laser remains a major issue of organic optoelectronics for several decades. Nowadays, hybrid pumping seems a promising compromise where the organic material is optically pumped by an electrically pumped inorganic device on chip. This technical solution requires therefore an optimization of the organic gain medium under optical pumping. Here, we report a detailed study of gain features of dye-doped polymer thin films, in particular we introduce the gain efficiency $K$, in order to facilitate comparison between material and experimental conditions. First, we measure the bulk gain by the means of a pump-probe setup, and then present in details several factors which modify the actual gain of the layer, namely the confinement factor, the pump polarization, the molecular anisotropy, and the re-absorption. The usual model to evaluate the gain leads to an overestimation by more than one order of magnitude, which stresses the importance to design the devices accordin...

Gozhyk, I; Rabbani, H; Djellali, N; Forget, S; Chenais, S; Ulysse, C; Brosseau, A; Gauvin, S; Zyss, J; Lebental, M

2014-01-01T23:59:59.000Z

393

Order on disorder: Copper phthalocyanine thin films on technical substrates  

SciTech Connect (OSTI)

We have studied the molecular orientation of the commonly used organic semiconductor copper phthalocyanine (CuPC) grown as thin films on the technically relevant substrates indium tin oxide, oxidized Si, and polycrystalline gold using polarization-dependent x-ray absorption spectroscopy, and compare the results with those obtained from single crystalline substrates [Au(110) and GeS(001)]. Surprisingly, the 20{endash}50 nm thick CuPC films on the technical substrates are as highly ordered as on the single crystals. Importantly, however, the molecular orientation in the two cases is radically different: the CuPC molecules stand on the technical substrates and lie on the single crystalline substrates. The reasons for this and its consequences for our understanding of the behavior of CuPC films in devices are discussed. {copyright} 2001 American Institute of Physics.

Peisert, H.; Schwieger, T.; Auerhammer, J. M.; Knupfer, M.; Golden, M. S.; Fink, J.; Bressler, P. R.; Mast, M.

2001-07-01T23:59:59.000Z

394

Long-laser-pulse method of producing thin films  

DOE Patents [OSTI]

A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

1991-01-01T23:59:59.000Z

395

Generation of mirage effect by heated carbon nanotube thin film  

SciTech Connect (OSTI)

Mirage effect, a common phenomenon in nature, is a naturally occurring optical phenomenon in which lights are bent due to the gradient variation of refraction in the temperature gradient medium. The theoretical analysis of mirage effect generated by heated carbon nanotube thin film is presented both for gas and liquid. Excellent agreement is demonstrated through comparing the theoretical prediction with published experimental results. It is concluded from the theoretical prediction and experimental observation that the mirage effect is more likely to happen in liquid. The phase of deflected optical beam is also discussed and the method for measurement of thermal diffusivity of medium is theoretically verified. Furthermore, a method for measuring the refractive index of gas by detecting optical beam deflection is also presented in this paper.

Tong, L. H. [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu 215123 (China); Lim, C. W., E-mail: bccwlim@cityu.edu.hk [USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu 215123 (China); Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057 (China); Li, Y. C. [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Chuanzeng; Quoc Bui, Tinh [Department of Civil Engineering, University of Siegen, Paul-Bonatz-Str. 9-11, D-57076 Siegen (Germany)

2014-06-28T23:59:59.000Z

396

Bioinspired Ceramic Thin Film Processing:? Present Status and Future Perspectives  

Science Journals Connector (OSTI)

23 When considering the preparation of thin films through a chemical route, one should realize that modern chemistry as a major branch of science and industry should be developed to emphasize low consumption of raw materials and energy, low generation of waste, and producer/user friendliness. ... 40,42a,60b The experimental method involves the measurement of surface forces using a surface force apparatus (SFA)61 and atomic force microscopy (AFM),62 which are used for measuring forces between two macroscopic surfaces or between a fine tip and a surface, respectively. ... The result is a hybrid technique combining ease of use and ability to see into cells using optical microscopy with the higher resolution of electron microscopy. ...

Yanfeng Gao; Kunihito Koumoto

2005-07-26T23:59:59.000Z

397

Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors  

SciTech Connect (OSTI)

Metglas{sup TM} 2826MB foils of 25-30 {mu}m thickness with the composition of Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18} have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of {approx}3 {mu}m thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum (Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magnetic properties of FeNi is also observed as the Mo dopant level increases. The coercivity of FeNi films doped with Mo decreases to a value less than one third of the value without dopant. Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropy properties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The film material that is fabricated using an optimized process is magnetically as soft as amorphous Metglas{sup TM} 2826MB with a coercivity of less than 40 Am{sup -1}. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin film materials on their magnetic properties.

Liang Cai; Gooneratne, Chinthaka; Cha, Dongkyu; Chen Long; Kosel, Jurgen [Computer Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955 (Saudi Arabia); Gianchandani, Yogesh [Department of Electrical Engineering and Computer Science, 1301 Beal Ave., University of Michigan, Ann Arbor, Michigan 48109 (United States)

2012-12-01T23:59:59.000Z

398

Ultrafast Magnetization Dynamics of SrRuO3 Thin Films  

SciTech Connect (OSTI)

Itinerant ferromagnet SrRuO3 has drawn interest from physicists due to its unusual transport and magnetic properties as well as from engineers due to its low resistivity and good lattice-matching to other oxide materials. The exact electronic structure remains a mystery, as well as details of the interactions between magnetic and electron transport properties. This thesis describes the use of time-resolved magneto-optical Kerr spectroscopy to study the ferromagnetic resonance of SrRuO3 thin films, where the ferromagnetic resonance is initiated by a sudden change in the easy axis direction in response to a pump pulse. The rotation of the easy axis is induced by laser heating, taking advantage of a temperature-dependent easy axis direction in SrRuO3 thin films. By measuring the change in temperature of the magnetic system in response to the laser pulse, we find that the specific heat is dominated by magnons up to unusually high temperature, ~;;100 K, and thermal diffusion is limited by a boundary resistance between the film and the substrate that is not consistent with standard phonon reflection and scattering models. We observe a high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha ~;; 1, consistent with strong spin-orbit coupling. We observe a time-dependent change in the easy axis direction on a ps time-scale, and we find that parameters associated with the change in easy axis, as well as the damping parameter, have a non-monotonic temperature dependence similar to that observed in anomalous Hall measurements.

Langner, Matthew C

2009-05-19T23:59:59.000Z

399

Electrical properties of thin-film structures formed by pulsed laser deposition of Au, Ag, Cu, Pd, Pt, W, Zr metals on n-6H-SiC crystal  

SciTech Connect (OSTI)

Diode structures with ideality factors of 1.28-2.14 and potential barriers from 0.58 to 0.62 eV on the semiconductor side were formed by pulsed laser deposition of Au, Ag, Cu, Pd, Pt, W, and Zr metal films on n-6H-SiC crystal without epitaxial layer preparation. A high density of surface acceptor and donor states was formed at the metal-semiconductor interface during deposition of the laser-induced atomic flux, which violated the correlation between the potential barrier height and metal work function. The barrier heights determined from characteristic currents and capacitance measurements were in quite good agreement. For the used low-resistance semiconductor and contact elements, the sizes of majority carrier (electron) depletion regions were determined as 26-60 nm.

Romanov, R. I.; Zuev, V. V.; Fominskii, V. Yu., E-mail: vyfominskij@mephi.ru; Demin, M. V.; Grigoriev, V. V. [MEPhI National Research Nuclear University (Russian Federation)

2010-09-15T23:59:59.000Z

400

In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition  

SciTech Connect (OSTI)

We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent electrical conductivity and Seebeck coefficient studies confirmed the polarity type of graphene films. Nitrogen doping at different sites of the honeycomb structure, responsible for n-type conduction, is identified using X-ray photoelectron spectroscopy, for films grown in nitrogen. A diode-like rectifying behavior is exhibited by p-n junction diodes fabricated using the graphene films.

Sarath Kumar, S. R.; Nayak, Pradipta K.; Hedhili, M. N.; Khan, M. A.; Alshareef, H. N., E-mail: husam.alshareef@kaust.edu.sa [Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

2013-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation  

SciTech Connect (OSTI)

Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)] [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

2013-12-02T23:59:59.000Z

402

Near-infrared photoactive Cu{sub 2}ZnSnS{sub 4} thin films by co-sputtering  

SciTech Connect (OSTI)

The thin films of Cu{sub 2}ZnSnS{sub 4} (CZTS) were grown by co-sputtering further the structural, optical and electrical properties were analyzed and confirmed the CZTS phase formation. The photo response of CZTS in near IR photodectection has been demonstrated. The detector response was measured employing both the IR lamp and IR laser illuminations. The calculated growth and decay constants were 130 m sec and 700 m sec followed by the slower components upon lamp illumination. The external quantum efficiency of 15%, responsivity of 13 AW{sup ?1} makes CZTS a suitable candidate for the IR photodectection.

Banavoth, Murali; Dias, Sandra; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore- 560012 (India)] [Materials Research Centre, Indian Institute of Science, Bangalore- 560012 (India)

2013-08-15T23:59:59.000Z

403

Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture  

E-Print Network [OSTI]

In this paper, an optoelectronic device simulation framework valid for arbitrary spatial variation of electronic potentials and optical modes, and for transport regimes ranging from ballistic to diffusive, is used to study non-local photon absorption, photocurrent generation and carrier extraction in ultra-thin film and nanostructure-based solar cell devices at the radiative limit. Among the effects that are revealed by the microscopic approach and which are inaccessible to macroscopic models is the impact of structure, doping or bias induced nanoscale potential variations on the local photogeneration rate and the photocarrier transport regime.

Aeberhard, Urs

2014-01-01T23:59:59.000Z

404

Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof  

DOE Patents [OSTI]

Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

2010-07-13T23:59:59.000Z

405

Scanning electrochemical microscope characterization of thin film combinatorial libraries for fuel cell electrode applications  

Science Journals Connector (OSTI)

Pt–Ru combinatorial libraries of potential fuel cell anode catalysts are formed by sequential sputter deposition through masks onto Si wafers. Scanning electrochemical microscopy (SECM) is employed for characterization of electrocatalytic activity. Aspects of using a scanning electrochemical microscope for characterization of an array of thin film fuel cell electrode materials are discussed. It is shown that in applying SECM to library characterization, careful attention must be paid to thin film annealing, specimen topography and tip degradation in order to realize meaningful results. Results from a Pt–Ru thin film library reveal the most active members near the 50 Pt/50 Ru composition.

M Black; J Cooper; P McGinn

2005-01-01T23:59:59.000Z

406

Highly Transparent, Flexible, and Thermally Stable Superhydrophobic ORMOSIL Aerogel Thin Films  

Science Journals Connector (OSTI)

(9, 22) On the other hand, ORMOSIL aerogel thin films produced in this work are highly transparent, do not need any pre or post surface treatments and can be applied on a variety of substrates including glass, wood, and plastics at ambient conditions with common thin-film deposition methods such as spin, dip, and spray coating. ... (b) Photographs of ORMOSIL aerogel thin films coated on glass substrates. ... This makes it possible to coat superhydrophobic aerogels on many different surfaces other than glass, including wood, wall tile, aluminum slab, cotton cloth, and plastics, which enables fast and easy production of large-scale superhydrophobic coatings. ...

Hulya Budunoglu; Adem Yildirim; Mustafa O. Guler; Mehmet Bayindir

2011-01-12T23:59:59.000Z

407

Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications  

Science Journals Connector (OSTI)

This paper describes a systematic approach to analyze the simultaneous impact of various reactant plasma parameters of remote plasma enhanced ALD (PEALD) on the ZnO thin film properties. Particular emphasis is placed on the film stoichiometry which affects the electrical properties of the thin film. Design of Experiment (DOE) is used to study the impact of the oxygen plasma parameters such as the RF power, pressure and plasma time to realize semiconductor quality of ZnO thin film. Based on the optimized plasma condition, staggered bottom-gate \\{TFTs\\} were fabricated and its electrical characteristics were measured.

S.M. Sultan; O.D. Clark; T.B. Masaud; Q. Fang; R. Gunn; M.M.A. Hakim; K. Sun; P. Ashburn; H.M.H. Chong

2012-01-01T23:59:59.000Z

408

Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology  

Science Journals Connector (OSTI)

Abstract Despite the many advantages of thin-film silicon (Si) solar cells, their low efficiencies remain a challenge that must be overcome. Efficient light utilization across the solar spectrum is required to achieve efficiencies over 15%, allowing them to be competitive with other solar cell technologies. To produce high-efficiency thin-film Si solar cells, we have developed triple-junction solar cell structures to enhance solar spectrum utilization. To maximize the light management, in-house ZnO:Al layers with high haze ratios and high transmittances were developed. In addition, novel doping layers, such as n-type microcrystalline silicon oxide (µc-SiOx:H), which has a very low refractive index, and p-type microcrystalline silicon oxide (µc-SiOx:H), which has a wide bandgap, were successfully applied to the optical reflector and the window layer, respectively. Thin-film quality control techniques for the deposition of hydrogenated amorphous silicon (a-Si:H) in the top cell, hydrogenated amorphous silicon-germanium (a-SiGe:H) or hydrogenated microcrystalline silicon (?c-Si:H) in the middle cell, and hydrogenated microcrystalline silicon (?c-Si:H) in the bottom cell were also important factors leading to the production of high-efficiency triple-junction solar cells. As a result of this work, an initial efficiency of 16.1% (in-house measurement) in the a-Si:H/a-SiGe:H/?c-Si:H stack and a stabilized efficiency of 13.4% (confirmed by NREL) in the a-Si:H/?c-Si:H/?c-Si:H stack were successfully achieved in a small-area triple-junction solar cell with dimensions of 1 cm×1 cm.

Soohyun Kim; Jin-Won Chung; Hyun Lee; Jinhee Park; Younho Heo; Heon-Min Lee

2013-01-01T23:59:59.000Z

409

Photovoltaic Single-Crystalline, Thin-Film Cell Basics | Department of  

Broader source: Energy.gov (indexed) [DOE]

Single-Crystalline, Thin-Film Cell Basics Single-Crystalline, Thin-Film Cell Basics Photovoltaic Single-Crystalline, Thin-Film Cell Basics August 20, 2013 - 2:50pm Addthis Single-crystalline thin films are made from gallium arsenide (GaAs), a compound semiconductor that is a mixture of gallium and arsenic. Gallium arsenide (GaAs) is a compound semiconductor, a mixture of gallium and arsenic. Gallium is a byproduct of the smelting of other metals, notably aluminum and zinc, and it is rarer than gold. Arsenic is not rare, but it is poisonous. Gallium arsenide has been developed for use in solar cells at about the same time that it has been developed for light-emitting diodes, lasers, and other electronic devices that use light. GaAs solar cells offer several benefits: The GaAs bandgap is 1.43 eV-nearly ideal for single-junction solar

410

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology  

Broader source: Energy.gov (indexed) [DOE]

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology April 22, 2011 - 10:17am Addthis Photo courtesy of General Electric Photo courtesy of General Electric Minh Le Minh Le Program Manager, Solar Program Earlier this month, General Electric announced plans to enter the global marketplace for solar photovoltaic (PV) panels in a big way - and to do it, they will be using technology pioneered at the Department of Energy's National Renewable Energy Lab (NREL). The record-breaking Cadmium-Telluride (CdTe) thin film photovoltaic technology GE has chosen for its solar panels was originally developed more than a decade ago by a team of scientists led by NREL's Xuanzhi Wu, and

411

Femtosecond pump-probe studies of reduced graphene oxide thin films  

E-Print Network [OSTI]

The dynamics of photocarriers in reduced graphene oxide thin films is studied by using ultrafast pump-probe spectroscopy. Time dependent differential transmissions are measured with sample temperatures ranging from 9 to 300 K. At each sample...

Ruzicka, Brian Andrew; Werake, Lalani Kumari; Zhao, Hui; Wang, Shuai; Loh, Kian Ping

2010-04-01T23:59:59.000Z

412

Designing Randomness - The Impact of Textured Surfaces on the Efficiency of Thin-Film Solar Cells  

Science Journals Connector (OSTI)

We analyze experimentally and theoretically light localization at randomly textured ZnO surfaces and light absorption in thin-film amorphous Si deposited conformal on it. Guidance is...

Beckers, Thomas; Bittkau, Karsten; Carius, Reinhard; Fahr, Stephan; Rockstuhl, Carsten; Lederer, Falk

413

Nanoscale Materials for Thin Film Cu(In,Ga)Se2 Solar Cells  

Science Journals Connector (OSTI)

Cu(In,Ga)Se2 solar cells show the highest efficiencies of all thin film technologies. Nano-particulate precursor materials could have the potential to lead this technology to...

Ahlswede, Erik

414

Optimization-based design of surface textures for thin-film Si solar cells  

E-Print Network [OSTI]

We numerically investigate the light-absorption behavior of thin-film silicon for normal-incident light, using surface textures to enhance absorption. We consider a variety of texture designs, such as simple periodic ...

Sheng, Xing

415

Efficient Föster energy transfer : from phosphorescent organic molecules to J-aggregate thin film  

E-Print Network [OSTI]

This thesis demonstrates the first ever use of Forster resonance energy transfer (FRET) to increase the quantum efficiency of a electrically pumped J-aggregate light emitting device (JLED). J-aggregate thin films are highly ...

Shirasaki, Yasuhiro

2008-01-01T23:59:59.000Z

416

Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films  

E-Print Network [OSTI]

We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

Osedach, Timothy P.

417

Micro/nano devices fabricated from Cu-Hf thin films  

DOE Patents [OSTI]

An all-metal microdevice or nanodevice such as an atomic force microscope probe is manufactured from a copper-hafnium alloy thin film having an x-ray amorphous microstructure.

Luber, Erik J; Ophus, Colin; Mitlin, David; Olsen, Brian; Harrower, Christopher; Radmilovi, Velimir

2013-06-04T23:59:59.000Z

418

Apparatus for making cathodo- and photo- luminescent measurements of thin film phosphors  

E-Print Network [OSTI]

the understanding of the thin film phosphor, tungsten doped zinc oxide. Principally, a vacuum system is constructed and provides for both photo-and cathode-phosphor excitations. A measurement capability is then included. Finally, additions are mentioned...

Babuchna, Paul Michael

1998-01-01T23:59:59.000Z

419

Electrical and optical properties of polycrystalline Ag-doped CdS thin films  

Science Journals Connector (OSTI)

CdS and CdS:Ag thin films were prepared using the spray pyrolysis technique. The prepared films were deposited on glass substrate kept at a temperature of (420±10) °C. The optical and electrical properties hav...

M. A. Khalid; H. A. Jassem

1993-03-01T23:59:59.000Z

420

Impurity and back contact effects on CdTe/CdS thin film solar cells.  

E-Print Network [OSTI]

??CdTe/CdS thin film solar cells are the most promising cost-effective solar cells. The goal of this project is to improve the performance for CdS/CdTe devices… (more)

Zhao, Hehong

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Polymeric precursor derived nanocrystalline ZnO thin films using EDTA as chelating agent  

E-Print Network [OSTI]

properties, ZnO has plausible electro-optical applications, such as, solar cells [1, 2], light- emitting diodes [3, 4], UV lasers [5], thin film transistors [6,7], and UV photodetectors [8]. Besides

Mohanty, Saraju P.

422

Transparent and Conductive Carbon Nanotube Multilayer Thin Films Suitable as an Indium Tin Oxide Replacement  

E-Print Network [OSTI]

Transparent electrodes made from metal oxides suffer from poor flexibility and durability. Highly transparent and electrically conductive thin films based on carbon nanotubes (CNTs) were assembled as a potential indium tin oxide (ITO) replacement...

Park, Yong Tae

2012-07-16T23:59:59.000Z

423

Photovoltaics, solar energy materials & thin films-IMRC 2006, Cancun, Mexico: Selected papers  

Science Journals Connector (OSTI)

The International symposium “Photovoltaics, Solar Energy Materials & Thin Films” was held in Cancun, Mexico from 20 to 24 August 2006. More...2 solar cells; and material characterization. A good...2 and the devic...

Xavier Mathew

2007-11-01T23:59:59.000Z

424

Strain engineered barium strontium titanate for tunable thin film resonators H. Khassaf,1  

E-Print Network [OSTI]

Strain engineered barium strontium titanate for tunable thin film resonators H. Khassaf,1 N of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit

Alpay, S. Pamir

425

Development of CdTe thin film solar cells on flexible foil substrates.  

E-Print Network [OSTI]

??Cadmium telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal band gap of 1.45 eV, its high optical absorption… (more)

Hodges, Deidra Ranel

2009-01-01T23:59:59.000Z

426

CdTe/CdS Thin Film Solar Cells Fabricated on Flexible Substrates.  

E-Print Network [OSTI]

??Cadmium Telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal bandgap of 1.45 eV and its high optical absorption… (more)

Palekis, Vasilios

2011-01-01T23:59:59.000Z

427

Electron-reflector strategy for CdTe thin-film solar cells.  

E-Print Network [OSTI]

??The CdTe thin-film solar cell has a large absorption coefficient and high theoretical efficiency. Moreover, large-area photovoltaic panels can be economically fabricated. These features potentially… (more)

Hsiao, Kuo-Jui

2010-01-01T23:59:59.000Z

428

Strain effect on coercive field of epitaxial barium titanate thin films S. Choudhury,1,a  

E-Print Network [OSTI]

reduced to zero and coercive field electric field re- quired to reduce the net polarization to zero . From of magnitude higher compared to a thin film under zero substrate strain.11 However, some reports show

Chen, Long-Qing

429

Solid-state dewetting of continuous and patterned single crystal Ni thin films  

E-Print Network [OSTI]

Solid-state dewetting of thin films is a process through which continuous solid films agglomerate to form islands. This process is driven by capillary forces, often occurring via surface self-diffusion. Solid-state dewetting ...

Ye, Jongpil

2011-01-01T23:59:59.000Z

430

Active-head sliders using piezoelectric thin films for flying height control  

Science Journals Connector (OSTI)

This paper describes design and fabrication of a MEMS-based active-head slider using a PZT thin film for flying height control in hard disk drives. A piezoelectric cantilever integrated in the ... air bearing sli...

Kenji Suzuki; Takayuki Akimatsu; Kenji Sasaki; Masayuki Kurita

2005-08-01T23:59:59.000Z

431

Effects of diffusion on lubricant distribution under flying headon thin-film disks  

Science Journals Connector (OSTI)

Lubricants on thin-film disks have large effects on head–disk interface characteristics. They reduce head and disk wear while thick lubricant film increases friction ... in many cases. Lubricant depletion due to

K. Yanagisawa; Y. Kawakubo; M. Yoshino

2005-01-01T23:59:59.000Z

432

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents [OSTI]

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

433

Analysis of potential applications for the templated dewetting of metal thin films  

E-Print Network [OSTI]

Thin films have a high surface-to-volume ratio and are therefore usually morphologically unstable. They tend to reduce their surface energy through transport of mass by diffusion. As a result, they decay into a collection ...

Frantzeskakis, Emmanouil

2005-01-01T23:59:59.000Z

434

E-Print Network 3.0 - ag thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new range of high... -stability thin-film resistors has been introduced to meet growing market requirements for passive components Source: Berns, Hans-Gerd - HaGe's homepage,...

435

Chemical vapor deposition of conjugated polymeric thin films for photonic and electronic applications  

E-Print Network [OSTI]

(cont.) Conjugated polymers have delocalized electrons along the backbone, facilitating electrical conductivity. As thin films, they are integral to organic semiconductor devices emerging in the marketplace, such as flexible ...

Lock, John P

2005-01-01T23:59:59.000Z

436

Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film  

E-Print Network [OSTI]

This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly ...

Schmidt, Daniel J.

437

Metallic to insulating transition in disordered pulsed laser deposited silicide thin films.  

E-Print Network [OSTI]

??A metal-to-insulating transition has been observed in iron, iron oxide, iron silicide and cobalt silicide thin films when deposited on Si substrate with a native… (more)

Abou Mourad, Houssam

2005-01-01T23:59:59.000Z

438

Towards Large Area Industrial Cost Competitive Coating for Thin Film Solar Electricity Production  

Science Journals Connector (OSTI)

Thin film PV market faces a struggling situation due to the need of reducing strongly prices, which can be done by increasing efficiency and reducing fabrication costs. Improvement of...

Bermudez, Veronica

439

Earth-Abundant Materials for High-Efficiency Heterojunction Thin Film Solar Cells  

Science Journals Connector (OSTI)

We investigate materials for thin film solar cells that can meet tens of terawatts level deployment potential. As one of the candidates, cuprous oxide (Cu2O) is synthesized and...

Lee, Yun Seog; Bertoni, Mariana; Buonassisi, Tonio

440

Nanotribology: an UHV-SFM study on thin films of AgBr(001)  

Science Journals Connector (OSTI)

We performed scanning force microscopy (SFM) in ultrahigh vacuum (UHV) on AgBr thin films which were in... x tip and AgBr and NaCl, respectively. The two-dimensional histogram r...

R. Lüthi; E. Meyer; H. Haefke; L. Howald; H. -J. Güntherodt

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

400V Class Resistive Fault Current Limiter using YBCO Thin Films  

Science Journals Connector (OSTI)

A resistive fault current limiter with 410 Vrms x 56 Arms was realized by connecting six current limiting elements in series. An element was...3...single crystal and a metal film on AIN. The YBCO thin film was co...

Yuki Kudo; Hiroshi Kubota; Mutsuki Yamazaki…

2000-01-01T23:59:59.000Z

442

Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials  

DOE Patents [OSTI]

Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

2014-02-04T23:59:59.000Z

443

The bias-stress effect in pentacene organic thin-film transistors  

E-Print Network [OSTI]

Organic thin-film transistors (OTFTs) are promising for flexible large-area electronics. However, the bias-stress effect (BSE) in OTFTs causes operational instability that limits the usefulness of the OTFT technology in a ...

Ryu, Kyungbum

2010-01-01T23:59:59.000Z

444

Evaluation on the thin-film phase change material-based technologies  

E-Print Network [OSTI]

Two potential applications of thin film phase-change materials are considered, non-volatile electronic memories and MEMS (Micro-Electro-Mechanical Systems) actuators. The markets for those two applications are fast growing ...

Guo, Qiang, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

445

Polycrystalline silicon thin-film solar cells on glass by ion-assisted deposition.  

E-Print Network [OSTI]

??Polycrystalline silicon (pc-Si, grain size > 1??m, no amorphous tissue) on glass is an interesting material for thin-film solar cells due to the low costs,… (more)

Straub, Axel

2005-01-01T23:59:59.000Z

446

Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

447

Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium Reduction of Polymer-  

E-Print Network [OSTI]

Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium-assembly of mesoporous silica followed by magnesium reduction. The periodic ordering of pores in mesoporous silicon

Pilon, Laurent

448

Electrochemical properties of magnetron sputtered WO{sub 3} thin films  

SciTech Connect (OSTI)

Thin films of tungsten oxide (WO{sub 3}) were deposited on ITO substrates by using RF magnetron sputtering at oxygen and argon atmospheres of 6 Multiplication-Sign 10{sup -2}Pa and 4 Pa respectively. The chemical composition and surface morphology of the WO{sub 3} thin films have been studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results indicate that the deposited WO{sub 3} thin films are nearly stoichiometric. The electrochemical performances of the WO{sub 3} thin films have been evaluated by galvonostatic charging/discharging method. The discharge capacity was 15{mu}Ah/cm{sup 2}{mu}m at the initial cycle and faded rapidly in the first few cycles and stabilized at a lesser stage.

Madhavi, V.; Kondaiah, P.; Hussain, O. M.; Uthanna, S. [Department of Physics, Sri Venkateswara University, Tirupati - 517 502 (India)

2013-02-05T23:59:59.000Z

449

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network [OSTI]

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

450

Kläui Ligand Thin Films for Rapid Plutonium Analysis by Alpha Spectrometry  

Science Journals Connector (OSTI)

Safety Considerations ... To further assess the use of the Kläui ligand thin films for environmental samples, a sample of contaminated Rocky Flats soil (NIST Standard Reference Material 4353A) was analyzed for plutonium. ...

Susan K. Hanson; Alexander H. Mueller; Warren J. Oldham, Jr.

2014-01-07T23:59:59.000Z

451

Single Source Electron Beam Evaporation of Bi-Sr-Ca-Cu-O Thin Films  

Science Journals Connector (OSTI)

A modified electron beam evaporation technique for the deposition of BiSrCaCuO thin films has been developed. In contrast to the conventional hearthed electron beam crucible the design in the present study use...

M. Ghanashyam Krishna; G. K. Muralidhar…

1990-01-01T23:59:59.000Z

452

Photocatalytic performance of TiO2 thin films connected with Cu micro-grid  

Science Journals Connector (OSTI)

Aiming at reducing the recombination of photo-induced carriers in semiconductor photocatalytic process, we prepared TiO2...thin film with its surface modified by a connected Cu micro-grid via a microsphere lithog...

HaiLing Zhu; JunYing Zhang; TianMin Wang…

2009-08-01T23:59:59.000Z

453

Energy collection and charge transfer processes in thin film photocells and photoelectrochemical cells: Final report  

SciTech Connect (OSTI)

The following paragraphs describe accomplishments and significant results for the two lines of research: (1) studies of energy collection and charge transfer processes in thin film systems and (2) solar energy utilization by photosensitized electrode processes at semiconductor electrodes.

Tachikawa, Hiroyasu

1981-12-31T23:59:59.000Z

454

MELT-MEDIATED LASER CRYSTALLIZATION OF THIN FILM NITI SHAPE MEMORY ALLOYS  

E-Print Network [OSTI]

matrix displays (e.g. LCD and OLED) as well as the active medium in thin film solar cells [4 of furnace, solid phase crystallization parameters (i.e. annealing temperature and dwell time

Yao, Y. Lawrence

455

Properties of Ta{sub 2}O{sub 5} thin films prepared by ion-assisted deposition  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Investigating the effect of ion-beam parameters on optical properties. • Exploring the effect of ion-beam parameters on structural properties. • Studying XRD patterns of Ta{sub 2}O{sub 5} films deposited at different ion energies. - Abstract: Tantalum penta-oxide (Ta{sub 2}O{sub 5}) thin films were deposited onto highly polished and clean, fused silica glass substrates via ion beam-assisted deposition at room temperature using a high-vacuum coater equipped with an electron beam gun. The effects of ion beam parameters, oxygen flow rate, and deposition rate on the optical and structural properties as well as the stress of Ta{sub 2}O{sub 5} films were studied. It has been revealed that Ta{sub 2}O{sub 5} thin films deposited at 300 eV ion beam energy, 60 ?A/cm{sup 2} ion current density, 20 sccm oxygen flow rate and 0.6 nm/s deposition rate demonstrated excellent optical, structural and compressive stress.

Farhan, Mansour S. [College of Engineering, Wasit University (Iraq); Zalnezhad, E., E-mail: erfan_zalnezhad@yahoo.com [Center of Advanced Manufacturing and Material Processing, Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R. [Center of Advanced Manufacturing and Material Processing, Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia)

2013-10-15T23:59:59.000Z

456

Atomic-scale Structural Characterizations of Functional Epitaxial Thin Films  

E-Print Network [OSTI]

......................................................................................................... 28 Figure 1.13. HR-STEM micrograph of Graphene (a) before83 and (b) after84 probe CS-correction. ............................................................................................ 29 Figure 2.1. Schematic diagram of the pulsed laser...

Zhu, Yuanyuan

2013-06-03T23:59:59.000Z

457

Structure of Molecular Thin Films for Organic Electronics | Stanford...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such as light emitting diodes (OLED) are already on the market, other application such as solar cells, integrated circuits, and sensors are still a topic of research. Here, the...

458

Mechanisms for fatigue and wear of polysilicon structural thin films  

E-Print Network [OSTI]

since the extent of subcritical crack growth and coalescenceinvestigated subcritical crack growth in pre-cracked, 150 µmof continuous and subcritical crack growth was noted under

Alsem, Daniel Henricus

2006-01-01T23:59:59.000Z

459

Metal-semiconductor hybrid thin films in field-effect transistors  

SciTech Connect (OSTI)

Metal-semiconductor hybrid thin films consisting of an amorphous oxide semiconductor and a number of aluminum dots in different diameters and arrangements are formed by electron beam lithography and employed for thin-film transistors (TFTs). Experimental and computational demonstrations systematically reveal that the field-effect mobility of the TFTs enhances but levels off as the dot density increases, which originates from variations of the effective channel length that strongly depends on the electric field distribution in a transistor channel.

Okamura, Koshi, E-mail: koshi.okamura@kit.edu; Dehm, Simone [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany)] [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Hahn, Horst [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); KIT-TUD Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt, Petersenstr. 32, 64287 Darmstadt (Germany)

2013-12-16T23:59:59.000Z

460

Thin-film fiber optic hydrogen and temperature sensor system  

DOE Patents [OSTI]

The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

Nave, S.E.

1998-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nanoindentation study of niobium nitride thin films on niobium fabricated by reactive pulsed laser deposition  

SciTech Connect (OSTI)

Nanomechanical and structural properties of NbNX films deposited on single crystal Nb using pulsed laser deposition for different substrate temperature were previously investigated as a function of film/substrate crystal structure [Mamun et al., 2012]. In this study we focus on the effect of laser fluences and background nitrogen pressure on the nanomechanical and structural properties of NbNX films. The crystal structure and surface morphology of the thin films were tested by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Using nanoindentation, the investigation of the nanomechanical properties revealed that the hardness of the NbNX films was directly influenced by the laser fluence for low background nitrogen pressure, whereas the nanomechanical hardness showed no apparent correlation with laser fluence at high background nitrogen pressure. The NbNX film hardness measured at 30% film thickness increased from 14.0 ± 1.3 to 18.9 ± 2.4 GPa when the laser fluence was increased from 15 to 25 J/cm2 at 10.7 Pa N2 pressure. X-ray diffraction showed NbNX films with peaks that correspond to ?-NbN cubic and ?-Nb2N hexagonal phases in addition to the ??-NbN hexagonal phase. Increasing the laser fluence resulted in NbNX films with larger grain sizes.

Mamun, Md Abdullah; Farha, Ashraf Hassan; Ufuktepe, Y??ksel; Elsayed-Ali, Hani E.; Elmustafa, Abdelmageed A.

2015-01-01T23:59:59.000Z

462

Development of electron reflection suppression materials for improved thermionic energy converter performance using thin film deposition techniques  

SciTech Connect (OSTI)

Nonideal electrode surfaces cause significant degree of electron reflection from collector during thermionic converter operation. The effect of the collector surface structure on the converter performance was assessed through the development of several electron reflection suppression materials using various thin film deposition techniques. The double-diode probe method was used to compare the J-V characteristics of converters with polished and modified collector surfaces for emitter temperature and cesium vapor pressure in the ranges of 900-2000 K and 0.02-1.5 torr, respectively. The coadsorption of cesium and oxygen with respective partial vapor pressures of {approx}1.27 torr and a few microtorrs reduced the emitter work function to a minimum value of 0.99 eV. It was found that the collector surfaces with matte black appearance such as platinum black, voided nickel from radio-frequency plasma sputtering, and etched electroless Ni-P with craterlike pore morphology exhibited much better performance compared with polished collector surface. For these thin films, the increase in the maximum output voltage was up to 2.0 eV. For optimum performance with minimum work function and maximum saturation emission current density, the emitter temperature was in the range of 1100-1500 K, depending on the collector surface structure. The use of these materials in cylindrical converter design and/or in combination with hybrid mode triode configuration holds great potential in low and medium scale power generators for commercial use.

Islam, Mohammad; Inal, Osman T.; Luke, James R. [Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); New Mexico Institute of Mining and Technology, Institute for Engineering Research and Applications (IERA) , 901 University Blvd. SE, Albuquerque, New Mexico 87106-4339 (United States)

2006-10-15T23:59:59.000Z

463

Substitutional incorporation of Sn in compressively strained thin films of heavily-alloyed Ge1 ? xSn  

Science Journals Connector (OSTI)

Short-range-order and long-range-order structures in Ge1 ? xSn x /Ge thin films grown by molecular beam epitaxy (MBE) were investigated by using extended x-ray absorption fine structure (EXAFS) and x-ray diffraction (XRD) techniques, respectively. These materials are of great potential for constructing efficient optoelectronic devices. The EXAFS analysis demonstrates that Sn atoms occupy Ge sites in these thin-film samples with Sn concentration up to 20 at.%. The Ge-Sn bonds expected in the substitutional model were also observed in Raman spectra of these samples. The XRD results show that, in the out-of-plane direction, the lattice constants of the films are distinctly larger than that of the Ge substrates. However, such increased lattice parameters were not observed in the in-plane direction. Our x-ray and Raman results have clearly revealed substitutional incorporation of Sn with high concentration in dislocation-free MBE-grown Ge films of practical-device thickness.

Y L Soo; T S Wu; Y C Chen; Y F Shiu; H J Peng; Y W Tsai; P Y Liao; Y Z Zheng; S L Chang; T S Chan; J F Lee; G E Sterbinsky; H Li; H H Cheng

2014-01-01T23:59:59.000Z

464

Fabrication of magnesium silicide thin films by pulsed ion beam ablation in a 1.6 kJ plasma focus device  

Science Journals Connector (OSTI)

The production of magnesium silicide (Mg2Si) thin films on silicon (1 0 0) at room temperature using a low energy (1.6 kJ) plasma focus device is reported. The conventional hollow copper anode is replaced by anode fitted with solid magnesium top and the deposition is done using different numbers of deposition shots (5, 10, 15 and 20). The interaction of the high energy magnesium ion beams with silicon (1 0 0) substrates using different number of deposition shots, result in the formation of surface coatings, with different characteristic structures and morphologies. X-ray diffraction (XRD) analysis reveals that crystal structure characteristics of obtained thin films strongly depend on number of deposition shots. The structure growth and variation in surface smoothness with increasing of deposition shots is revealed by scanning electron microscope (SEM) micrographs and atomic force microscopy (AFM) images. Moreover, AFM results revealed that the distribution of grain sizes on the surface of samples and surface roughness of deposited thin films increase with the number of deposition shots. Also the average thickness of deposited samples tested with surface profiler.

M.T. Hosseinnejad; Mahmood Ghoranneviss; G. Reza Etaati; Farhad Shahgoli

2013-01-01T23:59:59.000Z

465

High Seebeck effects from conducting polymer: Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) based thin-film device with hybrid metal/polymer/metal architecture  

SciTech Connect (OSTI)

Conductive polymers are of particular interest for thermoelectric applications due to their low thermal conductivity and relatively high electrical conductivity. In this study, commercially available conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) was used in a hybrid metal/polymer/metal thin film design in order to achieve a high Seebeck coefficient with the value of 252lV/k on a relatively low temperature scale. Polymer film thickness was varied in order to investigate its influence on the Seebeck effect. The high Seebeck coefficient indicates that the metal/polymer/metal design can develop a large entropy difference in internal energy of charge carriers between high and low-temperature metal electrodes to develop electrical potential due to charge transport in conducting polymer film through metal/polymer interface. Therefore, the metal/polymer/metal structure presents a new design to combine inorganic metals and organic polymers in thin-film form to develop Seebeck devices

Stanford, Michael G [ORNL; Wang, Hsin [ORNL; Ivanov, Ilia N [ORNL; Hu, Bin [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

466

Dielectric properties of c-axis oriented Zn{sub 1-x}Mg{sub x}O thin films grown by multimagnetron sputtering  

SciTech Connect (OSTI)

Zn{sub 1-x}Mg{sub x}O (x=0.3) thin films have been fabricated on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates using multimagnetron sputtering technique. The films with wurtzite structure showed a (002) preferred orientation. Ferroelectricity in Zn{sub 1-x}Mg{sub x}O films was established from the temperature dependent dielectric constant and the polarization hysteresis loop. The temperature dependent study of dielectric constant at different frequencies exhibited a dielectric anomaly at 110 deg. C. The resistivity versus temperature characteristics showed an anomalous increase in the vicinity of the dielectric transition temperature. The Zn{sub 1-x}Mg{sub x}O thin films exhibit well-defined polarization hysteresis loop, with a remanent polarization of 0.2 {mu}C/cm{sup 2} and coercive field of 8 kV/cm at room temperature.

Dhananjay,; Krupanidhi, S. B. [Department of Instrumentation, Indian Institute of Science, Bangalore 560012 (India); Materials Research Center, Indian Institute of Science, Bangalore 560012 (India)

2006-08-21T23:59:59.000Z

467

Annealing of the radiation damage in Mg-implanted GaN thin films: Temperature development of lattice parameters and stresses  

Science Journals Connector (OSTI)

Heteroepitaxial GaN thin films implanted with Mg ions with a concentration of 1.3 × 1019 cm?3 are analyzed using in-situ X-ray diffraction in the temperature range of 20–700 °C. The temperature dependence of unstressed lattice parameters and stresses in the implanted films is evaluated and compared with the results from a virgin GaN thin film. The measurements indicate that the annealing of the radiation damage in the implanted GaN is accompanied by a unique temperature hysteresis of the GaN structural characteristics and the main part of the radiation damage is removed during heating in the temperature range of 100–300 °C. The temperature of 1620 °C is extrapolated as an important annealing limit in order to significantly decrease implantation-induced disorder in the films.

J. Keckes; A. Wenzel; J.W. Gerlach; B. Rauschenbach

2003-01-01T23:59:59.000Z

468

1 000 000 "C/s thin film electrical heater: ln situ resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing  

E-Print Network [OSTI]

introduce a new technique for rapidly heating (10' "C/s) thin films using an electrical thermal annealing- ently, most commercial RTA systems use radiation-heating techniques via tungsten-halogen lamps. These systems typi- cally have a maximum heating rate of 100-300 "C/s. We introduce an alternative methodfor

Allen, Leslie H.

469

Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: a study of photocatalytic properties  

Science Journals Connector (OSTI)

Iron oxide thin films have been deposited over fused quartz substrate by simple metal organic deposition from Fe-(III) acetylacetonate as the organic precursor. The decomposition of Fe-acetylacetonate is characterised by its distinct transition temperatures and thermogravimetric loss rates, which have been measured by thermal gravimetric analysis. As-deposited films were sintered in the temperature range 365–800°C and the structural changes of the iron oxide thin films as they transform into different crystalline phases have been studied by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy and scanning electron microscopy techniques. Mainly amorphous ?-Fe2O3 is formed at an annealing temperature of approximately 365–400°C, which transforms to ?-Fe2O3 phase with a further increase (600–800°C) in sintering temperature. The film sintered at 800°C consists of mainly crystalline ?-Fe2O3 phase, which shows photocatalytic degradation of an oxygenated aqueous solution of phenol upon visible light illumination.

Bonamali Pal; Maheshwar Sharon

2000-01-01T23:59:59.000Z

470

Strain controlled systematic variation of metal-insulator transition in epitaxial NdNiO{sub 3} thin films  

SciTech Connect (OSTI)

We report here the strain dependent structural and electrical transport properties of epitaxial NdNiO{sub 3} thin films. Pulsed laser deposition technique was used to grow the NdNiO{sub 3} thin films on c-axis oriented SrTiO{sub 3} single crystals. Deposited films were irradiated using 200 MeV Ag{sup 15+} ion beam at the varying fluence (1 Multiplication-Sign 10{sup 11}, 5 Multiplication-Sign 10{sup 11}, and 1 Multiplication-Sign 10{sup 12} ions/cm{sup 2}). X-ray diffraction studies confirm the epitaxial growth of the deposited films, which is maintained even up to the highest fluence. Rise in the in-plane compressive strain has been observed after the irradiation. All the films exhibit metal-insulator transition, however, a systematic decrease in the transition temperature (T{sub MI}) has been observed after irradiation, which may be attributed to the increase in the in-plane compression. Raman spectroscopy data reveal that this reduction in T{sub MI}, with the irradiation, is related to the decrease in band gap due to the stress generated by the in-plane compressive strain.

Kumar, Yogesh [Materials Science Division, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Choudhary, R. J. [UGC-DAE Consortium for Scientific Research, Indore 452 001 (India); Kumar, Ravi [Materials Science Division, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Centre for Material Science and Engineering, National Institute of Technology, Hamirpur 177 005 (India)

2012-10-01T23:59:59.000Z

471

Zinc vacancy and erbium cluster jointly promote ferromagnetism in erbium-doped ZnO thin film  

SciTech Connect (OSTI)

Zn{sub 1-x}Er{sub x}O (0.005 ? x ? 0.04) thin films have been prepared by inductively coupled plasma enhanced physical vapor deposition method. Ferromagnetism, crystal structure, microstructure and photoluminescence properties of the films were characterized. It is found that the chemical valence state of Er is trivalent, and the Er{sup 3+} cations play an important role in ferromagnetism. Both saturated magnetization (M{sub s}) and zinc vacancy (V{sub Zn}) are decreased with the increase of x from 0.005 to 0.03. However, further increasing x to 0.04, the M{sub s} is quenched due to the generation of Er clusters. It reveals that the intensity of M{sub s} is not only associated with the V{sub Zn} concentration, but also related to the Er clusters. The V{sub Zn} concentration and the Er clusters can jointly boost the ferromagnetism in the Zn{sub 1-x}Er{sub x}O thin films.

Chen, Hong-Ming; Zhou, Ren-Wei; Li, Fei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Shanghai 201800 (China) [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Xue-Chao, E-mail: xcliu@mail.sic.ac.cn; Zhuo, Shi-Yi; Shi, Er-Wei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Shanghai 201800 (China)] [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Shanghai 201800 (China); Xiong, Ze [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)] [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

2014-04-15T23:59:59.000Z

472

A fluctuational electrodynamics model for the optimization of light-extraction efficiency in thin-film light-emitting diodes  

SciTech Connect (OSTI)

The rapid development of thin film light-emitting diodes (LEDs) has enabled the enhancement of the light extraction beyond geometrical limits but more quantitative understanding of the underlying optical processes is required to fully optimize the extraction. We present first-principle calculations of the light extraction efficiency and optical energy flow in thin-film LEDs. The presented model generalizes the methods of fluctuational electrodynamics to excited semiconductors and simultaneously accounts for wave optical effects, e.g., interference and near-field coupling as well as the internal absorption of the light-emitting material in determining the rate of light emission and internal dissipation in the optical cavity formed by a planar LED. The calculations show that in structures with a metallic mirror, the emissivity of the active region can approach unity at selected wavelengths, even when the nominal emissivity of the active region is only moderate. However, the results also show that near-field coupling of emission from the active region to the mirror can provide a substantial non-radiative loss channel reducing the maximum light extraction efficiency to 0.67 in our example setup. These losses can be partly compensated by the efficient photon recycling enabled by thick active regions that quench emission to confined modes and thereby reduce parasitic absorption.

Heikkilä, Oskari, E-mail: oskari.heikkila@aalto.fi; Oksanen, Jani; Tulkki, Jukka [Department of Biomedical Engineering and Computational Science, Aalto University, Helsinki (Finland)

2013-12-14T23:59:59.000Z

473

Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications  

Science Journals Connector (OSTI)

Abstract Low thermal emittance is the key factor of a solar collector. For high temperature solar thermal applications, low emittance is an important parameter, because the thermal radiative losses of the absorbers increase proportionally by T4. Our primary motivation for carrying out this work has been to lower the thermal emittance of stainless steel substrate (intrinsic emittance=0.12–0.13) by coating a thin film of high infrared (IR) reflecting tungsten (W). Tungsten thin films were deposited on stainless steel substrates using a glow discharge direct current magnetron sputtering system. Emittance as low as 0.03 was obtained by varying the thickness of W coating on stainless steel substrate. The influences of structural, morphological and electrical properties of the W coating on its emittance values are studied. The effect of substrate roughness on the emittance of W coating is also examined. Thermal stability of the W coatings is studied in both vacuum and air. In order to demonstrate the effect of W interlayer, solar selective coating of AlTiN/AlTiON/AlTiO tandem absorber was deposited on W coated stainless steel substrates, which exhibited absorptance of 0.955 and emittance of 0.08 with a thermal stability up to 600 °C in vacuum.

K.P. Sibin; Siju John; Harish C. Barshilia

2015-01-01T23:59:59.000Z

474

Synthesis of nanostructured multiphase (Ti,Al)N/a-Si3N4 thin films using dense plasma focus device  

Science Journals Connector (OSTI)

A 2.3 kJ pulsed plasma focus device was used to prepare thin films of nc-(Ti,Al)N/a-Si3N4 at room temperature. The plasma focus device, fitted with copper anode encapsulated with Ti0.5Al0.5 anode, was operated with nitrogen as the filling gas. Films were deposited with various number of focus shots, at 90 mm from top of the anode and at zero angular position with respect to anode axis. XRD patterns show the growth of polycrystalline (Ti,Al)N thin films with orientations in the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) crystallographic planes. Behavior of lattice constant, grain size and film roughness of deposited film as a function of variation in number of focus shots is discussed. SEM micrographs of film deposited with 15 number of focus shots exhibit well-developed net like structure of nc-(Ti,Al)N/a-Si3N4 and possibly nc-(Ti,Al)N/a-Si3N4/a-AlN or nc-TiN/a-Si3N4/a-AlN. Surface Roughness ranging 64 nm to 89 nm was also observed.

Tousif Hussain; R. Ahmad; Nida Khalid; Z.A. Umar; A. Hussnain

2011-01-01T23:59:59.000Z

475

Photo-Alignment Behavior of Mesoporous Silica Thin Films Synthesized on a Photo-Cross-Linkable Polymer Film  

Science Journals Connector (OSTI)

Photo-Alignment Behavior of Mesoporous Silica Thin Films Synthesized on a Photo-Cross-Linkable Polymer Film ... Photo-aligning and micropatterning techniques for mesochannels of a silica thin film using a photo-cross-linkable polymer film with a cinnamoyl group are proposed. ... We propose herein a new photo-aligning and micropatterning technique for mesochannels of a silica thin film using a photo-cross-linkable polymer film with a cinnamoyl group. ...

Haruhiko Fukumoto; Shusaku Nagano; Nobuhiro Kawatsuki; Takahiro Seki

2006-02-11T23:59:59.000Z

476

Decomposition mechanisms in thermally-aged thin-film explosives  

SciTech Connect (OSTI)

The isothermal decomposition of nitrocellulose (NC) has been examined using two substantially different experimental techniques, involving both confined and unconfined samples. The confined isothermal aging technique involved confined thin-film samples heated to temperatures of 150 to 170{degrees}C, for 1 to 72 hours. Condensed-phase chemistry was monitored real-time using FTIR. Results indicated that the first step in decomposition was scission of the O-NO{sub 2} bond and subsequent formation of carbonyl and hydroxyl products. Scission of the O-NO{sub 2} bond appeared to occur by a first-order reaction. The Arrhenius expression for the first-order reaction rate constant was evaluated from the experimental data. The unconfined rapid isothermal decomposition technique involved both high speed-photography and time-of-flight mass spectrometry (TOFMS). Mass spectra obtained from experiments at 420{degrees}C indicated that NO{sub 2} formation and, therefore, scission of the O-NO{sub 2} bond occurred by a first order reaction, the rate constant for which was evaluated from the experimental data. The rate constant for global pseudo-first order decomposition of NC at 450{degrees}C was also estimated from high speed photography results. Rate constants at 420 and 450{degrees}C were predicted using the Arrhenius expression developed from the confined isothermal aging results and were in good agreement with the rate constants obtained at those temperatures in the unconfined rapid decomposition experiments using TOFMS and high-speed photography. Results from these substantially different measurements gave consistent results over a temperature range of about 300{degrees}C, in which reaction rates vary by nine orders of magnitude, and indicate that the two experimental techniques being developed have good potential for studying condensed-phase decomposition of energetic materials.

Erickson, K.L.; Trott, W.M.; Renlund, A.M.

1994-10-01T23:59:59.000Z

477

Substrate effects on the growth of MGCL2 thin films  

SciTech Connect (OSTI)

The dependence of the overlayer growth on the underlying substrate is illustrated in this study of MgCl{sub 2} thin films on the following substrates: Pd(111), Pt(111), Pd(100) and Rh(111). On Pd(111) and Pt(111), the TPD of the deposited MgCl{sub 2} showed a significant substrate-adsorbate interaction as evidenced by a monolayer desorption feature. The interaction was further attested by the formation of two monolayers LEED patterns -- Pd(111)-(4x4)-MgCl{sub 2} and Pd(111)-({radical}13 x {radical}13)-R 13.9{degrees}-MgCl{sub 2}. Also, on Pd(111) and Pt(111), a multilayer coverage pattern was grown, MgCl{sub 2} (1 x 1). When Pd(100) was used as the substrate, the monolayer desorption feature disappeared from the TPD as well as the two monolayer patterns seen on Pd(111), but a MgCl{sub 2} (1 x 1) pattern with multiple rotated domains was created as the multilayer coverage. This difference resulted from the fact that the Pd(100) does not possess the correct angle for the (0001) face of the MgCl{sub 2}. To preserve this angle, the deposition of MgCl{sub 2} was performed on Rh(111) and the reconstructed face of Pt(100). Again, evidence of the strong substrate-adsorbate interaction was gone. The buckling of Pt(100)`s surface layer caused this result. For the Rh(111), the lattice match was not preserved with the angle.

Roberts, J.G.; Fairbrother, D.H.; Somorjai, G.A. [Univ. of California, Berkeley, CA (United States); [Lawrence Berkeley National Lab., CA (United States)

1997-12-31T23:59:59.000Z

478

Ferrimagnetism and disorder of epitaxial Mn2-xCoxVAl Heusler compound thin films  

SciTech Connect (OSTI)

The quaternary full Heusler compound Mn{sub 2-x}Co{sub x}VAl with x = 1 is predicted to be a half-metallic antiferromagnet. Thin films of the quaternary compounds with x = 0-2 were prepared by dc and RF magnetron co-sputtering on heated MgO (0 0 1) substrates. The magnetic structure was examined by x-ray magnetic circular dichroism and the chemical disorder was characterized by x-ray diffraction. Ferrimagnetic coupling of V to Mn was observed for Mn{sub 2}VAl (x = 0). For x = 0.5, we also found ferrimagnetic order with V and Co antiparallel to Mn. The observed reduced magnetic moments are interpreted with the help of band structure calculations in the coherent potential approximation. Mn{sub 2}VAl is very sensitive to disorder involving Mn, because nearest-neighbour Mn atoms couple antiferromagnetically. Co{sub 2}VAl has B2 order and has reduced magnetization. In the cases with x {ge} 0.9 conventional ferromagnetism was observed, closely related to the atomic disorder in these compounds.

Meinert, Markus; Schmalhorst, Jan-Michael; Reiss, Gunter; Arenholz, Elke

2011-01-29T23:59:59.000Z

479

Magnetoimpedance effect at the high frequency range for the thin film geometry: Numerical calculation and experiment  

E-Print Network [OSTI]

The magnetoimpedance effect is a versatile tool to investigate ferromagnetic materials, revealing aspects on the fundamental physics associated to magnetization dynamics, broadband magnetic properties, important issues for current and emerging technological applications for magnetic sensors, as well as insights on ferromagnetic resonance effect at non-saturated magnetic states. Here, we perform a theoretical and experimental investigation of the magnetoimpedance effect for the thin film geometry in a wide frequency range. We calculate the longitudinal magnetoimpedance for single layered, multilayered or exchange biased systems from an approach that considers a magnetic permeability model for planar geometry and the appropriate magnetic free energy density for each structure. From numerical calculations and experimental results found in literature, we analyze the magnetoimpedance behavior, and discuss the main features and advantages of each structure. To test the robustness of the approach, we directly compare theoretical results with experimental magnetoimpedance measurements obtained in a wide range of frequencies for an exchange biased multilayered film. Thus, we provide experimental evidence to confirm the validity of the theoretical approach employed to describe the magnetoimpedance in ferromagnetic films, revealed by the good agreement between numerical calculations and experimental results.

M. A. Corrêa; F. Bohn; R. B. da Silva; R. L. Sommer

2014-11-04T23:59:59.000Z

480

Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics  

SciTech Connect (OSTI)

Significant efforts are being devoted to the development of semiconductor thin film and nanostructured material architectures as components of solar energy harvesting and conversion devices. In particular, nanostructured assemblies with well-defined geometrical shapes have emerged as possible highly efficient and economically viable alternatives to planar junction thin film architectures , , , . However, fabrication of inorganic nanostructures generally requires complicated and multiple step processing techniques, making them less suitable for large-scale manufacturing. Hence, innovative cell architectures and materials processing schemes are essential to large-scale integration and practical viability in photovoltaic devices. Here we present here a new approach towards nanostructured thin film solar cells, by exploiting phase-separated self-assembly , . Through a single-step deposition by rf magnetron sputtering, we demonstrate growth of an epitaxial, composite film matrix formed as self-assembled, well ordered, phase segregated, and oriented p-n type interfacial nanopillars of Cu2O and TiO2. The composite films were structurally characterized to atomic resolution by a variety of analytical tools, and evaluated for preliminary optical properties using absorption measurements. We find nearly atomically distinct Cu2O-TiO2 interfaces (i.e. a p-n junction), and an absorption profile that captures a wide range of the solar spectrum extending from ultraviolet to visible wavelengths. This work opens a novel avenue for development of simple and cost-effective optically active thin film architectures, and offers promise for significantly increased photovoltaic device efficiencies using nanostructured cells that can be optimized for both incident light absorption and carrier collection.

Polat, Ozgur [ORNL; Aytug, Tolga [ORNL; Lupini, Andrew R [ORNL; Paranthaman, Mariappan Parans [ORNL; Ertugrul, Memhet [Ataturk University; Bogorin, Daniela Florentina [ORNL; Meyer III, Harry M [ORNL; Wang, Wei [ORNL; Pennycook, Stephen J [ORNL; Christen, David K [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "micron-sized thin-film structures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Micro-Machined Thin Film Sensor Arrays For The Detection Of H2, Containing Gases, And Method Of Making And Using The Same.  

DOE Patents [OSTI]

The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

DiMeo, Jr., Frank (Danbury, CT); Baum, Thomas H. (New Fairfield, CT)

2003-07-22T23:59:59.000Z

482

Tax Credits Give Thin-Film Solar a Big Boost | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tax Credits Give Thin-Film Solar a Big Boost Tax Credits Give Thin-Film Solar a Big Boost Tax Credits Give Thin-Film Solar a Big Boost October 18, 2010 - 2:00pm Addthis MiaSolé will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.| Photo courtesy of MiaSolé MiaSolé will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.| Photo courtesy of MiaSolé Lorelei Laird Writer, Energy Empowers What are the key facts? MiaSolé adding more than ten times its current manufacturing capacity Company expects to double or triple its workforce with expansion Expansion is funded by $101 million in Recovery Act tax credit For MiaSolé, a relative newcomer to the solar energy market, 2010 has been

483

Highly photosensitive properties of CdS thin films doped with boron in high doping levels  

Science Journals Connector (OSTI)

We report the photosensitive properties of CdS thin films doped with boron at high doping levels. Boron-doped CdS thin films were successfully prepared through the chemical bath deposition (CBD) method. The photosensitive properties of the boron-doped CdS thin films were significantly affected by the molar ratio of boric acid (H3BO3) to cadmium acetate (CdAc2) (0.001, 0.1, 0.15, and 0.25) and by NH3 concentration (7 and 14 M). As the H3BO3/CdAc2 molar ratio increased, dark sheet resistance rapidly increased, and the boron-doped CdS thin film exhibited the highest room temperature photosensitivity (?1×106 at 0.15–0.25 H3BO3/CdAc2 molar ratio). The photosensitive properties of the boron-doped CdS thin films were much higher than those previously reported in boron-doped CdS systems.

Kiran Kumar Challa; Edoardo Magnone; Eui-Tae Kim

2012-01-01T23:59:59.000Z

484

Pseudocrystalline model of the magnetic anisotropy in amorphous rare-earth–transition-metal thin films  

Science Journals Connector (OSTI)

A pseudocrystalline model is proposed to explain the occurrence of perpendicular anisotropy in amorphous rare-earth–transition metal (R-T) thin films. It is based on the central hypothesis that during layer-by-layer growth small planar hexagonal units are formed defining on average a preferential axis perpendicular to the film plane. The units are similar in structure to relaxed crystalline ones and are estimated to typically comprise six rare-earth atoms. They are regarded as an idealized model of the short-range order and are consistent with the known nearest-neighbor R-T and T-T coordination numbers in the amorphous state. This model is able to explain the known experimental results concerning the influence of composition, substrate temperature, annealing, and bombardment effects during sputter deposition on the magnetic anisotropy of thin amorphous rare-earth–transition-metal films of the system (Nd, Tb, Dy) (Fe, Co), as well as the destruction of this anisotropy by additives.

D. Mergel; H. Heitmann; P. Hansen

1993-01-01T23:59:59.000Z

485

Characterization of temperature-induced changes in amorphous hydrogenated carbon thin films  

Science Journals Connector (OSTI)

Abstract Hard hydrogenated amorphous carbon thin films were heated in vacuum to different temperatures and held at these for at least 30 min. Afterwards, the cooled-down samples were analyzed by various techniques. Strict and reproducible correlations were found between all the determined parameters and the annealing temperature. Single-wavelength ellipsometry shows that the real part of the refractive index of the films at 633 nm wavelength decreases with temperature while the extinction coefficient increases. It also shows swelling of the films with a thickness increase of about 50% for films heated to ? 1000 K. The associated decrease of mass density is proportional to the decrease in refractive index. Ion beam analysis shows that hydrogen is released from the films during heating with only about 5% of the initial H remaining after annealing at 1300 K while no significant loss of carbon can be detected. The losses of hydrogen during heating are monitored by temperature programmed desorption and they are in good agreement with the ion-beam-analysis results. Raman spectroscopy delivers evidence of aromatization of the films under heat treatment. Indication of first structural changes is found already at 600 K while the quickest changes of the refractive index, thickness, and hydrogen content with temperature occur around 850 K.

Christian Hopf; Thierry Angot; Etienne Aréou; Thomas Dürbeck; Wolfgang Jacob; Céline Martin; Cédric Pardanaud; Pascale Roubin; Thomas Schwarz-Selinger

2013-01-01T23:59:59.000Z

486

Sputter deposition of thin film MIM capacitors on LTCC substrates for RF bypass and filtering applications  

SciTech Connect (OSTI)

Thin film capacitors for RF bypass and filtering applications were sputter deposited onto low temperature co-fired ceramic (LTCC) substrates. The capacitors were configured in a metal-insulator-metal (MIM) design featuring 200 nm thick Al electrodes and a 300 nm thick Al{sub 2}O{sub 3} dielectric layer, with dimensions varied between ~150x150 ?m and ~750x750 ?m. DC current-voltage measurements (E ? 5 MV/cm) coupled with impedance analysis (?15 MHz) was used to characterize the resulting devices. More than 90% of the devices functioned as capacitors with high DC resistance (>20 M?) and low loss (tan ? <0.1). A second set of capacitors were made under the same experimental conditions with device geometries optimized for high frequency (?200 MHz) applications. These capacitors featured temperature coefficient of capacitance (TCC) values between 500 and 1000 ppm/°C as well as low loss and high self-resonant frequency performance (ESR <0.6 Ohms at self-resonance of 5.7 GHz for 82 pF). Capacitance and loss values were comparable between the capacitor structures of similar areas at the different frequency regimes.

Murray, Jack [Missouri University of Science and Technology; O'Keefe, Matthew J. [Missouri University of Science and Technology; Wilder, Kristina [Missouri University of Science and Technology; Eatinger, Ryan [Kansas State University; Kuhn, William [Kansas State University; Krueger, Daniel S. [Honeywell Federal Manufacturing & Technologies; Wolf, J. Ambrose [Honeywell Federal Manufacturing & Technologies

2011-08-31T23:59:59.000Z

487

Synthesis and characterization of CdIn2O4 thin films by spray pyrolysis technique  

Science Journals Connector (OSTI)

Transparent conducting cadmium indium oxide (CIO) thin films were deposited onto preheated glass substrates by using spray pyrolysis technique with cadmium acetate and indium acetate as precursors for Cd and In ions, respectively. The films have been deposited at various substrate temperatures within 250–325 °C. As-deposited films were annealed at optimized temperature of 400 °C for 2 h in order to enhance the film properties under ambient air atmosphere. These films were characterized by X-ray diffraction (XRD), SEM, optical absorption and Hall effect techniques. The XRD studies reveal that films are of polycrystalline CdIn2O4 with cubic spinel structure and crystallinity increases appreciably after annealing. Optical absorption study shows the presence of direct optical transition and the band gap energy, estimated for as-deposited and annealed films were observed to be 3.1 and 3.0 eV, respectively. The decrease of electrical resistivity from 91.2 × 10?3 to 1.92 × 10?3 ? cm have been observed after annealing, due to improvement in the crystallinity of the films. The highest figure of merit observed in the present study is 4.51 × 10?3 cm2 ??1.

R.J. Deokate; C.H. Bhosale; K.Y. Rajpure

2009-01-01T23:59:59.000Z

488

Titanium and Magnesium Co-Alloyed Hematite Thin Films for Photoelectrochemical Water Splitting  

SciTech Connect (OSTI)

Using a combination of density functional theory calculation and materials synthesis and characterization we examine the properties of charge-compensated Ti and Mg co-alloyed hematite thin films for the application of photoelectrochemical (PEC) water splitting. We find that the charge-compensated co-alloying results in the following effects: (1) It enhances the solubility of Mg and Ti, which leads to reduced electron effective mass and therefore increased electron mobility; (2) It tunes the carrier density and therefore allows the optimization of electrical conductivity; and (3) It reduces the density of charged defects and therefore reduces carrier recombination. As a result, the Ti and Mg co-alloyed hematite thin films exhibit improved water oxidation photocurrent magnitudes as compared to pure hematite thin films. Our results suggest that charge-compensated co-alloying is a plausible approach for engineering hematite for the application of PEC water splitting.

Tang, H.; Yin, W. J.; Matin, M. A.; Wang, H.; Deutsch, T.; Al-Jassim, M. M.; Turner, J. A.; Yan, Y.

2012-04-01T23:59:59.000Z

489

The catalytic reactivity of thin film crystal surfaces: Annual technical progress report  

SciTech Connect (OSTI)

Research is being conducted on Cu/Pd and Pd/Cu thin films. Work has been completed on the following: Work Function Studies on Epitaxial Cu/Pd Bilayer Films; Kinetics of CO and Oxygen Adsorption on Smooth and Sputtered Epitaxial Pd(lll) Films on Mica; A Simple Model for the Auger Electron Spectroscopy Evaluation of Thin Film Layer Growth Systems in Which Substrate-Overgrowth Mixing Occurs. Work in progress includes: AES of the Growth of Pd on (lll)Cu and Cu on (lll)Pd; Catalysis of the CO Oxidation Reaction on Epitaxial Cu/Pd Bila