National Library of Energy BETA

Sample records for micron-sized thin-film structures

  1. Structural characterization of thin film photonic crystals

    SciTech Connect (OSTI)

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  2. Optical and Structural Characterizations of Tin Phthalocvanine Thin Films

    SciTech Connect (OSTI)

    Cherian, Regimol C.; Menon, C. S. [School of Pure and Applied Physics, Mahatma Gandhi University Priyadarshini Hills P.O., Kottayam-686560, Kerala (India)

    2008-04-23

    Phthalocyanines are today regarded as optical materials, which applies to organic dye lasers. The analysis of the optical properties of these thin films enforces the application in the field of thin film optics. Tin phthalocyanine (SnPc) thin films used for the characterization studies are prepared by thermal evaporation technique. The variation of optical band gap with irradiation of heat radiation and post deposition heat treatment are studied from the absorption spectra. Structural properties have been analyzed using the X-ray diffractogram of SnPc powder and thin films. The structure is identified as monoclinic with a = 12.132 A, b = 8.712 A, c = 10.806 A and {beta} = 108.85 deg. The grain size increases with increase of annealing temperature. The SEM images show a rough corrugated surface. Due to heat treatment, crystallites grow into bigger size.

  3. Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure

    E-Print Network [OSTI]

    Levy, Uriel

    Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure Ronen, "Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric in thin film solar cells," Appl. Phys. Lett. 99(13), 131114 (2011). 10. H. R. Stuart and D. G. Hall

  4. Deployable telescope having a thin-film mirror and metering structure

    DOE Patents [OSTI]

    Krumel, Leslie J. (Cedar Crest, NM); Martin, Jeffrey W. (Albuquerque, NM)

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  5. Geometric shape control of thin film ferroelectrics and resulting structures

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2000-01-01

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  6. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  7. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  8. Thin-Film Active Nano-PWAS for Structural Health Monitoring , Victor Giurgiutiu1

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Thin-Film Active Nano-PWAS for Structural Health Monitoring Bin Lin1 , Victor Giurgiutiu1 , Amar S 3 University of Texas Arlington, Arlington, TX 76019 ABSTRACT Structural health monitoring (SHM is to develop the fabrication and optimum design of thin-film nano-PWAS for structural health monitoring

  9. Plasticity contributions to interface adhesion in thin-film interconnect structures

    E-Print Network [OSTI]

    Vainchtein, Anna

    Plasticity contributions to interface adhesion in thin-film interconnect structures Michael Lanea of plasticity in thin copper layers on the interface fracture resistance in thin-film interconnect structures yield properties together with a plastic flow model for the metal layers were used to predict

  10. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    E-Print Network [OSTI]

    Yu, Edward T.

    and optimization of light-trapping structures for efficient thin-film solar cells Claiborne O McPheeters1 , Dongzhi elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than in their performance. Keywords: quantum-well, quantum-dot, scattering, diffraction, thin-film, GaAs, InAs, photovoltaic

  11. Efficient light trapping structure in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

  12. Integrated photonic structures for light trapping in thin-film Si solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

  13. Silicon-integrated thin-film structure for electro-optic applications

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  14. Effect of deposition times on structure of Ga-doped ZnO thin films as humidity sensor

    SciTech Connect (OSTI)

    Khalid, Faridzatul Shahira; Awang, Rozidawati [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Gallium doped zinc oxide (GZO) has good electrical property. It is widely used as transparent electrode in photovoltaic devices, and sensing element in gas and pressure sensors. GZO thin film was prepared using magnetron sputtering. Film deposition times were set at 10, 15, 20, 25 and 30 minutes to get samples of different thickness. X-ray diffraction (XRD) was used to determine the structure of GZO thin films. Structure for GZO thin film is hexagonal wurtzite structure. Morphology and thickness of GZO thin films was observed from FESEM micrographs. Grain size and thickness of thin films improved with increasing deposition times. However, increasing the thickness of thin films occur below 25 minutes only. Electrical properties of GZO thin films were studied using a four-point probe technique. The changes in the structure of the thin films lead to the changed of their electrical properties resulting in the reduction of the film resistance. These thin films properties significantly implying the potential application of the sample as a humidity sensor.

  15. Low cost and high performance light trapping structure for thin-film solar cells

    E-Print Network [OSTI]

    Wang, DongLin; Su, Gang

    2015-01-01

    Nano-scaled dielectric and metallic structures are popular light tapping structures in thin-film solar cells. However, a large parasitic absorption in those structures is unavoidable. Most schemes based on such structures also involve the textured active layers that may bring undesirable degradation of the material quality. Here we propose a novel and cheap light trapping structure based on the prism structured SiO2 for thin-film solar cells, and a flat active layer is introduced purposefully. Such a light trapping structure is imposed by the geometrical shape optimization to gain the best optical benefit. By examining our scheme, it is disclosed that the conversion efficiency of the flat a-Si:H thin-film solar cell can be promoted to exceed the currently certified highest value. As the cost of SiO2-based light trapping structure is much cheaper and easier to fabricate than other materials, this proposal would have essential impact and wide applications in thin-film solar cells.

  16. Structural and optical studies on AgSbSe{sub 2} thin films

    SciTech Connect (OSTI)

    Asokan, T. Namitha; Urmila, K. S.; Pradeep, B. [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi- 22, Kerala (India)

    2014-01-28

    AgSbSe{sub 2} semiconducting thin films are successfully deposited using reactive evaporation technique at a substrate temperature of 398K. X-ray diffraction studies reveal that the films are polycrystalline in nature. The structural parameters such as average particle size, dislocation density, and number of crystallites per unit have been evaluated. Atomic Force Microscopy is used to study the topographic characteristics of the film including the grain size and surface roughness. The silver antimony selenide thin films have high absorption coefficient of about 10{sup 5} cm{sup ?1} and it has an indirect band gap of 0.64eV.

  17. Beta (?) tungsten thin films: Structure, electron transport, and giant spin Hall effect

    SciTech Connect (OSTI)

    Hao, Qiang; Chen, Wenzhe; Xiao, Gang

    2015-05-04

    We use a simple magnetron sputtering process to fabricate beta (?) tungsten thin films, which are capable of generating giant spin Hall effect. As-deposited thin films are always in the metastable ?-W phase from 3.0 to 26.7?nm. The ?-W phase remains intact below a critical thickness of 22.1?nm even after magnetic thermal annealing at 280?°C, which is required to induce perpendicular magnetic anisotropy (PMA) in a layered structure of ?-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO. Intensive annealing transforms the thicker films (>22.1?nm) into the stable ?-W phase. We analyze the structure and grain size of both ?- and ?-W thin films. Electron transport in terms of resistivity and normal Hall effect is studied over a broad temperature range of 10?K to at least 300?K on all samples. Very low switching current densities are achieved in ?-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO with PMA. These basic properties reveal useful behaviors in ?-W thin films, making them technologically promising for spintronic magnetic random access memories and spin-logic devices.

  18. Structural and optical studies of chemically deposited Sn{sub 2}S{sub 3} thin films

    SciTech Connect (OSTI)

    Güneri, Emine; Göde, Fatma; Boyarbay, Behiye; Gümü?, Cebrail

    2012-11-15

    Highlights: ? Sn{sub 2}S{sub 3} films were deposited at 30 °C by chemical bath deposition. ? The deposition time of the chemical bath was adjusted to 20 h, 22 h, and 24 h. ? Effect of deposition time on structural and optical properties of Sn{sub 2}S{sub 3} thin films were investigated. ? The presence of characteristic bonds of Sn{sub 2}S{sub 3} was observed from Raman shift experiment. ? The direct band gap of thin films constant were calculated. -- Abstract: Sn{sub 2}S{sub 3} thin films were grown on commercial glass substrates by chemical bath deposition at room temperature. The structural and optical properties of Sn{sub 2}S{sub 3} thin films were studied as a function of deposition time. The thin films were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and UV–vis spectroscopy. The XRD pattern showed that the Sn{sub 2}S{sub 3} thin films had an orthorhombic polycrystalline structure. The lattice constants of the thin films were a = 8.741 ?, b = 14.034 ? and c = 3.728 ?. The characteristic bonds of Sn{sub 2}S{sub 3} were observed at 66.3, 111.7, 224.7 and 308.9 cm{sup ?1} using Raman shift experiment. The optical energy band gap of the thin films decreased from 2.12 eV to 2.03 eV with increasing deposition time from 20 to 24 h. The optical constants of the thin films were obtained using the experimentally recorded transmission data as a function of the wavelength.

  19. Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

  20. Characterization of the Electronic and Chemical Structure at the Thin Film Solar Cell Interfaces: June 2005 -- June 2009

    SciTech Connect (OSTI)

    Heske, C.

    2009-09-01

    Study using photoelectron spectroscopy, inverse photoemission, and X-ray absorption and emission to derive the electronic structure of interfaces in CIGSS and CdTe thin-film solar cells.

  1. Structural controlled magnetic anisotropy in Heusler L1{sub 0}-MnGa epitaxial thin films

    SciTech Connect (OSTI)

    Wang Kangkang; Lu Erdong; Smith, Arthur R.; Knepper, Jacob W.; Yang Fengyuan

    2011-04-18

    Ferromagnetic L1{sub 0}-MnGa thin films have been epitaxially grown on GaN, sapphire, and MgO substrates using molecular beam epitaxy. Using diffraction techniques, the epitaxial relationships are determined. It is found that the crystalline orientation of the films differ due to the influence of the substrate. By comparing the magnetic anisotropy to the structural properties, a clear correlation could be established indicating that the in-plane and out-of-plane anisotropy is directly determined by the crystal orientation of the film and could be controlled via selection of the substrates. This result could be helpful in tailoring magnetic anisotropy in thin films for spintronic applications.

  2. Biologically Inspired Synthesis Route to Three-Dimensionally Structured Inorganic Thin Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwenzer, Birgit; Morse, Daniel E.

    2008-01-01

    Inorganic thin films (hydroxide, oxide, and phosphate materials) that are textured on a submicron scale have been prepared from aqueous metal salt solutions at room temperature using vapor-diffusion catalysis. This generic synthesis approach mimics the essential advantages of the catalytic and structure-directing mechanisms observed for the formation of silica skeletons of marine sponges. Chemical composition, crystallinity, and the three-dimensional morphology of films prepared by this method are extremely sensitive to changes in the synthesis conditions, such as concentrations, reaction times, and the presence and nature of substrate materials. Focusing on different materials systems, the reaction mechanism for the formation ofmore »these thin films and the influence of different reaction parameters on the product are explained.« less

  3. Novel Structure and Dynamics of Polymer Thin Films in Supercritical Fluids-Effect of Density Fluctuation

    SciTech Connect (OSTI)

    Koga,T.

    2004-01-01

    Supercritical carbon dioxide (scCO2) is being used increasingly as a green solvent in polymer processing. The major disadvantage thus far is that only a limited class of polymers, such as fluorinated or silicone-based polymers, can be dissolved in CO2. Here I show that large density fluctuations in scCO2 can significantly enhance the solubility of scCO2 in polymer thin films even when the bulk polymers have very poor miscibility with CO2. By using in situ neutron reflectivity, I found that a wide variety of polymer thin films can swell as much as 30-60% when exposed to scCO2 within a narrow temperature and pressure regime, known as the 'density fluctuation ridge', which defines the maximum density fluctuation amplitude in CO2. Furthermore, the swollen structures induced by the density fluctuation could be frozen by a flash evaporation of CO2 via the vitrification process of the polymer without a formation of void structures. X-ray reflectivity clearly showed that the scCO2 process could be used to produce uniform low-density polymer thin films. I also found that other properties of the vitrified films, such as index of refraction, dielectric constant and glass transition, were correlated with the low-density density profile.

  4. Fabrication of Transparent Capacitive Structure by Self-Assembled Thin Films

    SciTech Connect (OSTI)

    Zhang, Q.; Shing, Y. J.; Hua, Feng; Saraf, Laxmikant V.; Matson, Dean W.

    2008-06-01

    An approach to fabricating transparent electronic devices by using nanomaterial and nanofabrication is presented in this paper. A see-through capacitor is constructed from selfassembled silica nanoparticle layers that are stacked on the transparent substrate. The electrodes are made of indium tin oxide. Unlike the traditional processes used to fabricate such devices, the self-assembly approach enables one to synthesize the thin film layers at lower temperature and cost, and with a broader availability of nanomaterials. The vertical dimension of the selfassembled thin films can be precisely controlled, as well as the molecular order in the thin film layers. The shape of the capacitor is generated by planar micropatterning. The quartz crystal demonstrates the steady growth of the silica nanoparticle multilayer. In addition, because the nanomaterial synthesis and the device fabrication steps are separate, the device is not affected by the harsh conditions required for the material synthesis. A clear pattern is allowed over a large area on the substrate. The prepared capacitive structure has an optical transparency higher than 92% over the visible spectrum. The capacitive impedance is measured at different frequencies and fit the theoretical results. As one of the fundamental components, this type of capacitive structure can serve in the transparent circuits, interactive media and sensors, as well as being applicable to other transparent devices.

  5. Structure of Molecular Thin Films for Organic Electronics | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhotonStructure of DNA-Bound FEN1

  6. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore »(i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

  7. Material Development for Highly Processable Thin Film Solar Cells

    E-Print Network [OSTI]

    Bob, Brion

    2014-01-01

    Structuring of Thin-film Solar Cells with a Single Laser1. Background on Thin Film Solar Cells and TransparentCuIn(Se,S)2 thin film solar cells: Secondary phases and

  8. Method of fabricating conductive electrodes on the front and backside of a thin film structure

    DOE Patents [OSTI]

    Tabada, Phillipe J. (Roseville, CA); Tabada, legal representative, Melody (Roseville, CA); Pannu, Satinderpall S. (Pleasanton, CA)

    2011-05-22

    A method of fabricating a thin film device having conductive front and backside electrodes or contacts. Top-side cavities are first formed on a first dielectric layer, followed by the deposition of a metal layer on the first dielectric layer to fill the cavities. Defined metal structures are etched from the metal layer to include the cavity-filled metal, followed by depositing a second dielectric layer over the metal structures. Additional levels of defined metal structures may be formed in a similar manner with vias connecting metal structures between levels. After a final dielectric layer is deposited, a top surface of a metal structure of an uppermost metal layer is exposed through the final dielectric layer to form a front-side electrode, and a bottom surface of a cavity-filled portion of a metal structure of a lowermost metal layer is also exposed through the first dielectric layer to form a back-side electrode.

  9. Structural evolution and characterization of heteroepitaxial GaSb thin films on Si(111) substrates

    SciTech Connect (OSTI)

    Nguyen, Thang; Varhue, Walter; Cross, Michael; Pino, Robinson; Adams, Edward; Lavoie, Mark; Lee, Jaichan [School of Engineering, University of Vermont, Burlington, Vermont 05405 (United States); IBM Corporation, Essex Junction, Vermont 05452 (United States); Department of Materials Science and Engineering, Sung Kyun Kwan University, Suwon 440-746 (Korea, Republic of)

    2007-04-01

    This paper describes the structural evolution and characterization of heteroepitaxial GaSb thin films on Si(111) substrates. The growth process used a combination of atomic sources which included the rf sputtering of Sb and the thermal effusion of Ga. The formation of crystalline GaSb thin films required that initially a monolayer thick Sb buffer layer be applied directly to a clean H-passivated Si(111) substrate surface. The resulting film was characterized by high resolution x-ray diffraction, Rutherford backscattering spectrometry, transmission electron microscopy, secondary ion mass spectroscopy, and atomic force microscopy (AFM). The AFM images were taken from the material after several periods of growth to determine the evolution of crystal structure with thickness. Atomic force microscopy images of the film surface showed that the heteroepitaxial layers were formed via the Stranski-Krastanov growth mechanism. This result is consistent with the heteroepitaxial growth of systems representing large differences in lattice constant. The hole mobility and carrier concentration in the deposited material were determined by the Hall measurement, performed at room temperature and on a 140 nm thick sample, to be 66 cm{sup 2}/V sec and 3x10{sup 19} cm{sup -3}, respectively. The carrier mobility was relatively low as expected for measurements taken at room temperature.

  10. Design and Development of Novel Electroplating Spring Frame Mems Structure Specimens for the Microtensile Testing of Thin Film Materials

    E-Print Network [OSTI]

    Lin, Ming-Tzer; Chiang, Chung-Hsun

    2007-01-01

    Microelectromechanical systems (MEMS) technologies are developing rapidly with increasing study of the design, fabrication and commercialization of microscale systems and devices. Accurate mechanical properties are important for successful design and development of MEMS. We have demonstrated here a novel electroplating spring frame MEMS Structure Specimen integrates pin-pin align holes, misalignment compensate spring structure frame, load sensor beam and freestanding thin film. The specimen can be fit into a specially designed microtensile apparatus which is capable of carrying out a series of tests on sub-micro scale freestanding thin films.

  11. Polarization of Bi{sub 2}Te{sub 3} thin film in a floating-gate capacitor structure

    SciTech Connect (OSTI)

    Yuan, Hui E-mail: qli6@gmu.edu; Li, Haitao; Zhu, Hao; Zhang, Kai; Baumgart, Helmut; Bonevich, John E.; Richter, Curt A.; Li, Qiliang E-mail: qli6@gmu.edu

    2014-12-08

    Metal-Oxide-Semiconductor (MOS) capacitors with Bi{sub 2}Te{sub 3} thin film sandwiched and embedded inside the oxide layer have been fabricated and studied. The capacitors exhibit ferroelectric-like hysteresis which is a result of the robust, reversible polarization of the Bi{sub 2}Te{sub 3} thin film while the gate voltage sweeps. The temperature-dependent capacitance measurement indicates that the activation energy is about 0.33?eV for separating the electron and hole pairs in the bulk of Bi{sub 2}Te{sub 3}, and driving them to either the top or bottom surface of the thin film. Because of the fast polarization speed, potentially excellent endurance, and the complementary metal–oxide–semiconductor compatibility, the Bi{sub 2}Te{sub 3} embedded MOS structures are very interesting for memory application.

  12. Superconducting epitaxial thin films of CeNi{sub x}Bi{sub 2} with a bismuth square net structure

    SciTech Connect (OSTI)

    Buckow, Alexander; Kupka, Katharina; Retzlaff, Reiner; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

    2012-10-15

    We have grown highly epitaxial and phase pure thin films of the arsenic-free pnictide compound CeNi{sub x}Bi{sub 2} on (100) MgO substrates by reactive molecular beam epitaxy (RMBE). X-ray diffraction and reflection high-energy electron diffraction of the films confirm the ZrCuSiAs structure with a Bi square net layer. Superconductivity was observed in magnetization and resistivity measurements for x= 0.75 to 0.93 in these CeNi{sub x}Bi{sub 2} thin films with the highest critical temperature of 4.05 K and a resistive transition width of 0.1 K for x= 0.86. Our results indicate that thin film deposition by RMBE provides a tool to synthesize high-quality pnictide superconductors of the novel 112 type.

  13. Effect of humid air exposure on photoemissive and structural properties of KBr thin film photocathode

    E-Print Network [OSTI]

    Rai, R; Ghosh, N; Singh, B K

    2014-01-01

    We have investigated the influence of water molecule absorption on photoemissive and structural properties of potassium bromide (KBr) thin film photocathode under humid air exposure at relative humidity (RH) 65%. It is evident from photoemission measurement that the photoelectron yield of KBr photocathode is degraded exponentially with humid air exposed time. Structural studies of the "as-deposited" and "humid air aged" films reveal that there is no effect of RH on film's crystalline face centered cubic (fcc) structure. However, the average crystallite size of "humid air exposed film" KBr film has been increased as compared to "as-deposited". In addition, topographical properties of KBr film are also examined by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and atomic force microscope (AFM) and it is observed that granular characteristic of film has been altered, even for short exposure to humid air.

  14. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect (OSTI)

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  15. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  16. Durham Workshop, Dec 2005Durham Workshop, Dec 2005 Thin Film Metrology UsingThin Film Metrology Using

    E-Print Network [OSTI]

    Greenaway, Alan

    Durham Workshop, Dec 2005Durham Workshop, Dec 2005 Thin Film Metrology UsingThin Film Metrology Modelling to investigate level of aberrations introduced by thin film structure.introduced by thin film Solar Cells Reflectors Solar Cell Covers Security UV Protection Anti-static Gas Temperature Pressure

  17. Mapping strain modulated electronic structure perturbations in mixed phase bismuth ferrite thin films

    SciTech Connect (OSTI)

    Krishnan, P.S. Sanakara R.; Aguiar, Jeffery A.; Ramasse, Q. M.; Kepaptsoglou, D. M.; Liang, W. I.; Chu, Y. H.; Browning, Nigel D.; Munroe, Paul R.; Nagarajan, Valanoor

    2015-01-01

    Strain engineering of epitaxial ferroelectrics has emerged as a powerful method to tailor the electromechanical response of these materials, although the effect of strain at the atomic scale and the interplay between lattice displacements and electronic structure changes are not yet fully understood. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we systematically probe the role of epitaxial strain in mixed phase bismuth ferrite thin films. Electron energy loss O K and Fe L2,3 edge spectra acquired across the rhombohedral (R)-tetragonal (T) phase boundary reveal progressive, and systematic changes, in electronic structure going from one phase to the other. The comparison of the acquired spectra, with theoretical simulations using DFT, suggests a breakage in the structural symmetry across the boundary due to the simultaneous presence of increasing epitaxial strain and off- axial symmetry in the T phase. This implies that the imposed epitaxial strain plays a significant role in not only changing the crystal-field geometry, but also the bonding environment surrounding the central iron cation at the interface thus providing new insights and a possible link to understand how the imposed strain could perturb magnetic ordering in the T phase BFO.

  18. Structural, Morphological and Optical properties of Sputtered Nickel oxide Thin Films

    SciTech Connect (OSTI)

    Reddy, A. Mallikarjuna; Reddy, A. Sivasankar; Reddy, P. Sreedhara [Department of Physics, Sri Venkateswara University, Tirupati-517 502 (India)

    2011-10-20

    Nickel oxide (NiO) thin films have been deposited by dc reactive magnetron sputtering technique on glass substrates at various substrate temperatures in the range of 303 to 723 K. The influence of substrate temperature on structural, morphological, compositional and optical properties was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and spectrophotometer studies. The structural properties of the films were strongly influenced by the substrate temperature. From the microstructural studies, fine and uniform grains were grown with RMS roughness of 9.4 nm at substrate temperature of 523 K. The optical results indicated that the optical transmittance of the films increases with increasing substrate temperature up to 523 K, thereafter decreases. The optical band of the films increases with substrate temperature initially, thereafter decreased at higher temperatures. The Highest optical transmittance of 60 % and optical band gap of 3.82 eV was observed in the present study.

  19. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    SciTech Connect (OSTI)

    Kumar, B. Rajesh; Rao, T. Subba

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10{sup ?4} ? cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  20. Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films

    SciTech Connect (OSTI)

    Petrovi?, Suzana M.; Gakovi?, B.; Peruško, D.; Stratakis, E.; Department of Materials Science and Technology, University of Crete, 710 03 Heraklion, Crete ; Bogdanovi?-Radovi?, I.; ?ekada, M.; Fotakis, C.; Department of Physics, University of Crete, 714 09 Heraklion, Crete ; Jelenkovi?, B.

    2013-12-21

    Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in the wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.

  1. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  2. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    SciTech Connect (OSTI)

    Baruth, A.; Manno, M.; Narasimhan, D.; Shankar, A.; Zhang, X.; Johnson, M.; Aydil, E. S.; Leighton, C. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.

  3. Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics

    DOE Patents [OSTI]

    Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

    2014-04-08

    Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

  4. Investigation of variation of energy of laser beam on structural, electrical and optical properties of pulsed laser deposited CuO thin films

    SciTech Connect (OSTI)

    Dahiya, V., E-mail: vinitadce@gmail.com; Kumar, A. [Department of Applied Physics, Delhi Technological University, Delhi (India); Kaur, G.; Mitra, A. [Department of Physics, Indian Institute of Technology Roorkee, Roorkee (India)

    2014-04-24

    In this paper, copper oxide (CuO) thin films have been deposited successfully by pulsed laser deposition technique using copper metal as target material. Thin films have been prepared under different energy of laser pulses ranging from 100mJ/pulse to 250 mJ/pulse. These films have been characterized for their structural, electrical and optical properties by using X-Ray Diffractometer (XRD), Four probe method and UV spectroscopy. Morphological and structural studies show that there is increase in crystallite size with the increase in energy of laser beam. Thus resulting in improved crystallinity and degree of orientation of the CuO thin films. Optoelectrical properties show direct relation between conductivity and energy of laser beam. Optical analysis of CuO thin films prepared under different energy of laser beam shows good agreement with structural analysis. The prepared CuO thin films show high absorbance in the UV and visible range and thus are suitable candidate for thin films solar cell application.

  5. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    SciTech Connect (OSTI)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  6. Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films

    SciTech Connect (OSTI)

    Ceylan, Abdullah Ozcan, Sadan; Rumaiz, Abdul K.; Caliskan, Deniz; Ozbay, Ekmel; Woicik, J. C.

    2015-03-14

    We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600?°C for 30, 60, and 90?s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27?nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA.

  7. Influence of structural disorder on soft x-ray optical behavior of NbC thin films

    SciTech Connect (OSTI)

    Singh, Amol E-mail: rrcat.amol@gmail.com; Modi, Mohammed H.; Sinha, A. K.; Lodha, G. S.; Rajput, Parasmani

    2015-05-07

    Structural and chemical properties of compound materials are modified, when thin films are formed from bulk materials. To understand these changes, a study was pursued on niobium carbide (NbC) thin films of different thicknesses deposited on Si (100) substrate using ion beam sputtering technique. Optical response of the film was measured in 4–36?nm wavelength region using Indus-1 reflectivity beamline. A discrepancy in soft x-ray performance of NbC film was observed which could not be explained with Henke's tabulated data (see http://henke.lbl.gov/optical{sub c}onstants/ ). In order to understand this, detailed structural and chemical investigations were carried out using x-ray reflectivity, grazing incidence x-ray diffraction, x-ray absorption near edge structure, extended x-ray absorption fine structure, and x-ray photoelectron spectroscopy techniques. It was found that the presence of unreacted carbon and Nb deficiency due to reduced Nb-Nb coordination are responsible for lower soft x-ray reflectivity performance. NbC is an important material for soft x-ray optical devices, hence the structural disorder need to be controlled to achieve the best performances.

  8. Structure and properties of nanocrystalline ZrN{sub x}O{sub y} thin films: Effect of the oxygen content and film thickness

    SciTech Connect (OSTI)

    Lan, Kuan-Che; Hunag, Jia-Hong; Ai, Chi-Fong; Yu, Ge-Ping [Department of Engineering and System Science, National Tsing Hua University, 101 Kuang Fu Rd., Sec. 2, Hsinchu, 300 Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, 325 Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, 101 Kuang Fu Rd., Sec. 2, Hsinchu, 300 Taiwan (China) and Institute of Nuclear Engineering and Science, 101 Kuang Fu Rd., Sec. 2, Hsinchu, 300 Taiwan (China)

    2011-05-15

    The main objective of this study was to investigate the structure and properties of ZrN{sub x}O{sub y} thin films associated with oxygen content and film thickness. ZrN{sub x}O{sub y} thin films were deposited using hollow cathode discharge ion plating on Si (100) substrate. The thickness of ZrN{sub x}O{sub y} films increased with increasing oxygen flow rate, ranging from 143 to 894 nm. Phase separation from ZrN{sub x}O{sub y} to ZrN and monoclinic ZrO{sub 2} (m-ZrO{sub 2}) was observed by x-ray diffraction (XRD). The electrical and mechanical properties were influenced by the film thickness and the amount of separated phase, m-ZrO{sub 2}. ZrN{sub x}O{sub y} thin films with smaller thickness or deposited at higher O{sub 2} flow rate were found to have higher electrical resistivity. Hardness of the ZrN{sub x}O{sub y} thin films increased with increasing thickness, which could be related to microstructure change of the thin films. Residual stress of the ZrN phase in the ZrN{sub x}O{sub y} thin films, measured using the modified sin{sup 2} {psi} XRD method, decreased with increasing oxygen flow rate. The thickness dependence of the residual stress in ZrN was different with different oxygen flow rates. The average residual stress of the ZrN{sub x}O{sub y} thin films also decreased with increasing oxygen flow rate and the stress did not showed significant dependence on the film thickness.

  9. Structural relaxation and nanoindentation response in Zr-Cu-Ti amorphous thin films

    SciTech Connect (OSTI)

    Chou, H. S.; Huang, J. C.; Chang, L. W. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Nieh, T. G. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2008-11-10

    Ternary Zr-Cu-Ti system, especial with a high Ti content, is normally difficult to be fully vitrified. In this paper, we demonstrate that cosputtering can produce amorphous Zr-Cu-Ti thin films with an excessive Ti content even as high as 19%. Sub-T{sub g} annealing of the film induces the formation of medium-range-ordered clusters and to raise the nanohardness by 35% to 6.6 GPa. The promising mechanical properties of the sub-T{sub g} annealed Zr{sub 52}Cu{sub 29}Ti{sub 19} films offer great potential for microelectromechanical system applications.

  10. The structural and in-plane dielectric/ferroelectric properties of the epitaxial (Ba, Sr)(Zr, Ti)O{sub 3} thin films

    SciTech Connect (OSTI)

    Chan, N. Y., E-mail: ngaiyuichan@gmail.com; Wang, Y.; Chan, H. L. W. [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Wang, D. Y. [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Dai, J. Y. [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Shenzhen Research Institute, The Hong Kong Polytechnic University (China)

    2014-06-21

    Epitaxial (Ba{sub 1-x}Sr{sub x})(Zr{sub 0.1}Ti{sub 0.9})O{sub 3} (BSZT, x?=?0 – 0.45) thin films were deposited on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.35} (LSAT) substrates by pulsed laser deposition. The experimental results demonstrate that the structural, dielectric, and ferroelectric properties of the BSZT thin films were greatly dependent on the strontium content. The BSZT thin films transformed from tetragonal to cubic phase when x???0.35 at room temperature. The Curie temperature and room-temperature remnant polarization decrease with increasing strontium concentration. The optimal dielectric properties were found in (Ba{sub 0.55}Sr{sub 0.45})(Zr{sub 0.1}Ti{sub 0.9})O{sub 3} thin films which is in paraelectric state, having tunability of 47% and loss tangent of 0.0338 under an electric field of 20 MV/m at 1?MHz. This suggests that BSZT thin film is a promising candidate for tunable microwave device applications.

  11. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  12. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  13. Multifunctional thin film surface

    DOE Patents [OSTI]

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  14. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  15. Structural and optical properties of (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin film alloys

    SciTech Connect (OSTI)

    Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.; McCandless, B. E.

    2014-06-14

    The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu?+?Ag)/(In?+?Ga) ratio. Films deposited at 550?°C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a{sub o} lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, and Zunger. However, the refined c{sub o} lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.

  16. Microstructure and ionic-conductivity of alternating-multilayer structured Gd-doped ceria and zirconia thin films

    SciTech Connect (OSTI)

    Wang, Yiguang; An, Linan; Saraf, Laxmikant V.; Wang, Chong M.; Shutthanandan, V.; Mccready, David E.; Thevuthasan, Suntharampillai

    2009-04-01

    Multilayer thin-film of consisting of alternating Gd-doped ceria and zirconia have been grown by sputter-deposition on ?-Al2O3 (0001) substrates. The films were characterized using x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The Gd-doped ceria and zirconia layers had the fluorite structure and are highly textured such that the (111) plane of the films parallel to the (0001) plane of the ?-Al2O3. The epitaxial relationship can be written as (111)ZrO2/CeO2//(0001)Al2O3 and [11-2]ZrO2/CeO2//[-2110]Al2O3.. The absence of Ce3+ features in the XPS spectra indicates that the Gd-doped ceria films are completely oxidized. The ionic conductivity of this structure shows great improvement as compared with that of the bulk crystalline material. This research provides insight on designing of material for low-temperature electrolyte applications.

  17. Structure of epitaxial (Fe,N) codoped rutile TiO2 thin films by x-ray absorption

    SciTech Connect (OSTI)

    Kaspar, Tiffany C.; Ney, A.; Mangham, Andrew N.; Heald, Steve M.; Joly, Yves; Ney, V.; Wilhelm, F.; Rogalev, A.; Yakou, Flora; Chambers, Scott A.

    2012-07-23

    Homoepitaxial thin films of Fe:TiO2 and (Fe,N):TiO2 were deposited on rutile(110) by molecular beam epitaxy. X-ray absorption near edge spectroscopy (XANES) spectra were collected at the Ti L-edge, Fe L-edge, O K-edge, N K-edge, and Ti K-edge. No evidence of structural disorder associated with a high concentration of oxygen vacancies is observed. Substitution of Fe for Ti could not be confirmed, although secondary phase Fe2O3 and metallic Fe can be ruled out. The similarity of the N K-edge spectra to O, and the presence of a strong x-ray linear dichroism (XLD) signal for the N K-edge, indicates that N is substitutional for O in the rutile lattice, and is not present as a secondary phase such as TiN. Simulations of the XANES spectra qualitatively confirm substitution, although N appears to be present in more than one local environment. Neither Fe:TiO2 nor (Fe,N):TiO2 exhibit intrinsic room temperature ferromagnetism, despite the presence of mixed valence Fe(II)/Fe(III) in the reduced (Fe,N):TiO2 film.

  18. Comparison of the structural and optical properties of porous In{sub 0.08}Ga{sub 0.92}N thin films synthesized by electrochemical etching

    SciTech Connect (OSTI)

    Abud, Saleh H., E-mail: salehhasson71@gmail.com [Nano-Optoelectronics Research and Technology (N.O.R.) Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Physics, College of Science, University of Kufa (Iraq); Hassan, Z.; Yam, F.K. [Nano-Optoelectronics Research and Technology (N.O.R.) Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ghazai, A.J. [Department of Physics, College of Science, Thi-Qar University (Iraq)

    2014-04-01

    This paper presents the structural and optical study of porous (1 µm) In{sub 0.08}Ga{sub 0.92}N synthesized by photoelectrochemical etching under various conditions. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin films have a sufficiently smooth surface over a large region with wurtzite structure. The roughness increased with an increase in etching duration. The blue shift phenomenon was measured for photoluminescence emission peaks at 300 K. The energy band gap increased to be 3.18 and 3.16 eV for post-etched films at ratios of 1:4 and 1:5, respectively. At the same time, the photoluminescence intensities of the post-etched thin films indicated that the optical properties have been enhanced. - Graphical abstract: PL spectra of the as-grown and porous In{sub 0.08}Ga{sub 0.92}N under various etching duration. - Highlights: • Nanoporous structures of In{sub 0.08}Ga{sub 0.92}N. • The roughness of the porous thin films increased with an increase in etching durations. • No phase segregation in XRD pattern. • Blue shifts were observed in the PL spectra of the post-etched films.

  19. Interfacial band alignment and structural properties of nanoscale TiO{sub 2} thin films for integration with epitaxial crystallographic oriented germanium

    SciTech Connect (OSTI)

    Jain, N.; Zhu, Y.; Hudait, M. K., E-mail: mantu.hudait@vt.edu [Advanced Devices and Sustainable Energy Laboratory (ADSEL), Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Maurya, D.; Varghese, R.; Priya, S. [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-01-14

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO{sub 2}) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO{sub 2} thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO{sub 2} thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO{sub 2}/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33?±?0.02?eV was determined for the amorphous TiO{sub 2} thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2?eV was obtained at the TiO{sub 2}/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO{sub 2}/Ge system were found to be smaller than 1?eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ?E{sub V}(100)?>??E{sub V}(111)?>??E{sub V}(110) and a conduction band-offset relation of ?E{sub C}(110) >??E{sub C}(111)?>??E{sub C}(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO{sub 2} for potential high-? dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  20. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  1. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  2. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  3. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  4. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    SciTech Connect (OSTI)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  5. The design and manufacture of a novel thin-film microelectronic vacuum diode structure 

    E-Print Network [OSTI]

    Mason, Mark E.

    1993-01-01

    be easily expanded to multi-electrode structures, and has application in flat-panel display technology. A process for the manufacture of such a diode is developed herein. Diodes of various sizes are subsequently manufactured and tested. Test results...

  6. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  7. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOE Patents [OSTI]

    Potter, Jr., Barrett George (Albuquerque, NM); Potter, Kelly Simmons (Albuquerque, NM)

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  8. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  9. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  10. Manipulating hybrid structures of polymer/a-Si for thin film solar cells

    SciTech Connect (OSTI)

    Peng, Ying; He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk; Zhang, Zhi; Liang, Chunjun [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Diyaf, Adel; Ivaturi, Aruna; Wilson, John I. B., E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2014-03-10

    A series of uniform polymer/amorphous silicon hybrid structures have been fabricated by means of solution-casting for polymer and radio frequency excited plasma enhanced chemical vapour deposition for amorphous silicon (a-Si:H). Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) functioned as a photoactive donor, while the silicon layer acted as an acceptor. It is found that matching the hole mobility of the polymer to the electron mobility of amorphous silicon is critical to improve the photovoltaic performance from hybrid cells. A three-layer p-i-n structure of ITO/PEDOT:PSS(200?nm)/i-Si(450?nm)/n-Si(200?nm)/Al with a power conversion efficiency of 4.78% under a standard test condition was achieved.

  11. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    151 Two-stage thin film deposition process15 Description of thin film depositionProcess Model . . . . 54 Porous Thin-Film Deposition Process

  12. Impact of air-exposure on the chemical and electronic structure ofZnO:Zn3N2 thin films

    SciTech Connect (OSTI)

    Bar, M.; Ahn, K.-S.; Shet, S.; Yan, Y.; Weinhardt, L.; Fuchs, O.; Blum, M.; Pookpanratana, S.; George, K.; Yang, W.; Denlinger, J.D.; Al-Jassim, M.; Heske, C.

    2008-09-08

    The chemical and electronic surface structure of ZnO:Zn3N2 ("ZnO:N") thin films with different N contents was investigated by soft x-ray emission spectroscopy. Upon exposure to ambient air (in contrast to storage in vacuum), the chemical and electronic surface structure of the ZnO:N films changes substantially. In particular, we find that the Zn3N2/(Zn3N2+ZnO) ratio decreases with exposure time and that this change depends on the initial N content. We suggest a degradation mechanism based on the reaction of the Zn3N2 content with atmospheric humidity.

  13. Replication of patterned thin-film structures for use in plasmonics and metamaterials

    DOE Patents [OSTI]

    Norris, David J; Han, Sang Eon; Bhan, Aditya; Nagpal, Prashant; Lindquist, Nathan Charles; Oh, Sang-Hyun

    2015-02-03

    The present invention provides templating methods for replicating patterned metal films from a template substrate such as for use in plasmonic devices and metamaterials. Advantageously, the template substrate is reusable and can provide plural copies of the structure of the template substrate. Because high-quality substrates that are inherently smooth and flat are available, patterned metal films in accordance with the present invention can advantageously provide surfaces that replicate the surface characteristics of the template substrate both in the patterned regions and in the unpatterned regions.

  14. Structural Studies of Al:ZnO Powders and Thin Films | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton SourceSuperconductorsSRS Structural

  15. Non-equilibrium structure and dynamics in a microscopic model of thin film active gels

    E-Print Network [OSTI]

    D. A. Head; W. J. Briels; G. Gompper

    2014-02-26

    In the presence of ATP, molecular motors generate active force dipoles that drive suspensions of protein filaments far from thermodynamic equilibrium, leading to exotic dynamics and pattern formation. Microscopic modelling can help to quantify the relationship between individual motors plus filaments to organisation and dynamics on molecular and supra-molecular length scales. Here we present results of extensive numerical simulations of active gels where the motors and filaments are confined between two infinite parallel plates. Thermal fluctuations and excluded-volume interactions between filaments are included. A systematic variation of rates for motor motion, attachment and detachment, including a differential detachment rate from filament ends, reveals a range of non-equilibrium behaviour. Strong motor binding produces structured filament aggregates that we refer to as asters, bundles or layers, whose stability depends on motor speed and differential end-detachment. The gross features of the dependence of the observed structures on the motor rate and the filament concentration can be captured by a simple one-filament model. Loosely bound aggregates exhibit super-diffusive mass transport, where filament translocation scales with lag time with non-unique exponents that depend on motor kinetics. An empirical data collapse of filament speed as a function of motor speed and end-detachment is found, suggesting a dimensional reduction of the relevant parameter space. We conclude by discussing the perspectives of microscopic modelling in the field of active gels.

  16. Preparation and structure characterization of SmCo{sub 5}(0001) epitaxial thin films grown on Cu(111) underlayers

    SciTech Connect (OSTI)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-04-01

    SmCo{sub 5}(0001) epitaxial films were prepared on Cu(111) single-crystal underlayers formed on Al{sub 2}O{sub 3}(0001) substrates at 500 deg. C. The nucleation and growth mechanism of (0001)-oriented SmCo{sub 5} crystal on Cu(111) underlayer is investigated and a method to control the nucleation is proposed. The SmCo{sub 5} epitaxial thin film formed directly on Cu underlayer consists of two types of domains whose orientations are rotated around the film normal by 30 deg. each other. By introducing a thin Co seed layer on the Cu underlayer, a SmCo{sub 5}(0001) single-crystal thin film is successfully obtained. Nucleation of SmCo{sub 5} crystal on Cu underlayer seems controllable by varying the interaction between the Cu underlayer and the SmCo{sub 5} layer.

  17. Photochemical Pattern Transfer and Enhancement of Thin Film Silica

    E-Print Network [OSTI]

    Parikh, Atul N.

    Photochemical Pattern Transfer and Enhancement of Thin Film Silica Mesophases Andrew M. Dattelbaum chemical treatment of the film can selectively remove the mesostructured regions, leading to patterned, hydrophobicity, and structural morphology of the mesoscopic thin film material on a wide range of substrates

  18. Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis

    E-Print Network [OSTI]

    Owens, Travis Nathan

    2011-01-01

    Organic Thin Films 4.1 Introduction . . . . . . . . . . . .T iO 2 thin films. . . . . . . . . . . . . . . . . . . . .properties of the organic thin films. . . . . . . . .

  19. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  20. Structure and mechanical properties of 3dTM ion doped RF sputtered ZnO thin films on Si (100)

    SciTech Connect (OSTI)

    Venkaiah, M., E-mail: rssp@uohyd.ernet.in; Singh, R., E-mail: rssp@uohyd.ernet.in [School of Physics, University of Hyderabad, Central University P.O, Hyderabad-500046 (India)

    2014-04-24

    Mn, Fe and Mn-Fe doped ZnO thin films were deposited on Si (100) substrates by rf- magnetron sputtering using ceramic target in pure oxygen gas environment. The X-ray diffraction shows the polycrystalline wurtzite structure films. The average grain size varies from 32-50 nm, with lower grain size for Fe doped ZnO films. The room temperature loading and unloading curve are continuous without any pop-in. The Young's modulus and hardness are in the range 156-178 GPa and 14-15.5 GPa respectively.

  1. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    SciTech Connect (OSTI)

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  2. Effect of deposition temperature on the structural and optical properties of CdSe thin films synthesised by chemical bath deposition

    SciTech Connect (OSTI)

    Mohammed, Mudhafer Ali [Department of Applied Sciences, University of Technology / Baghdad (Iraq); Jamil, Shatha Shammon Batros [Ministry of Science and Technology / Baghdad (Iraq)

    2013-12-16

    Cadmium selenide thin films were synthesized on glass substrates using chemical bath technique (CBD) at temperatures 320K, 330K, 340K,and 350K. The polycrystalline nature of the material was confirmed by X-ray diffraction technique and various structural parameters such as lattice parameters, grain size, dislocation density, and micro strain. The root mean square (RMS) roughness was obtained by using atomic force microscopy(AFM), which indicated a decreasing average roughness with the decrease of the bath temperature. Optical properties were carried out by UV-Visible transmittance spectra, and the band gap energy was determined.

  3. Zinc concentration effect on structural, optical and electrical properties of Cd{sub 1?x}Zn{sub x}Se thin films

    SciTech Connect (OSTI)

    Akaltun, Yunus; Y?ld?r?m, M. Ali; Ate?, Aytunç; Y?ld?r?m, Muhammet

    2012-11-15

    Highlights: ? Cd{sub 1?x}Zn{sub x}Se thin films were deposited using SILAR method. ? The electron effective mass, refractive index, dielectric constant values were calculated by using the energy bandgap values as a function of the zinc concentration (x). ? The resistivity and activation energy changed as a function of the zinc concentration (x). -- Abstract: Cd{sub 1?x}Zn{sub x}Se thin films with different compositions (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were deposited on glass substrates using successive ionic layer adsorption and reaction (SILAR) method at room temperature and ambient pressure. The zinc concentration (x) effect on the structural, morphological, optical and electrical properties of Cd{sub 1?x}Zn{sub x}Se thin films were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibited polycrystalline nature and were covered well on glass substrates. The energy dispersive X-ray (EDAX) analysis confirmed nearly stoichiometric deposition of the films. The energy bandgap values were changed from 1.99 to 2.82 eV depending on the zinc concentration. Bowing parameter was calculated as 0.08 eV. The electron effective mass (m{sub e}*/m{sub o}), refractive index (n), optical static and high frequency dielectric constants (?{sub o}, ?{sub ?}) values were calculated by using the energy bandgap values as a function of the zinc concentration. The resistivity values of the films changed between 10{sup 5} and 10{sup 7} ? cm with increasing zinc concentration at room temperature.

  4. Reflection high-energy electron diffraction beam-induced structural and property changes on WO{sub 3} thin films

    SciTech Connect (OSTI)

    Du, Y., E-mail: yingge.du@pnnl.gov; Varga, T. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Zhang, K. H. L.; Chambers, S. A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-08-04

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO{sub 3} as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO{sub 3}, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  5. Reflection High-Energy Electron Diffraction Beam-Induced Structural and Property Changes on WO3 Thin Films

    SciTech Connect (OSTI)

    Du, Yingge; Zhang, Hongliang; Varga, Tamas; Chambers, Scott A.

    2014-08-08

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO3 as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO3, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  6. Electronic and atomic structures of Ti{sub 1-x}Al{sub x}N thin films related to their damage behavior

    SciTech Connect (OSTI)

    Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.; Covarel, G.; Arnold, G.; Louis, P.; Rousselot, C.; Flank, A.-M.

    2008-04-15

    Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grain boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.

  7. Shielding superconductors with thin films

    E-Print Network [OSTI]

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  8. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  9. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  10. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  11. Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    (In,Ga)Se2-based thin film solar cells D. Abou-Rasa,b,*, G. Kostorza , A. Romeob,1 , D. Rudmannb , A.N. Tiwarib,2 a ETH Zu¨rich, Institute of Applied Physics, 8093 Zu¨rich, Switzerland b ETH Zu¨rich, Thin Film Available online 8 December 2004 Abstract It is known that high-efficiency thin film solar cells based on Cu

  12. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  13. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect (OSTI)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130?nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5??C/m at Curie temperature (?28?°C) and 17.44??C/m at 41?°C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100??C/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  14. Structure and composition of zirconium carbide thin-film grown by ion beam sputtering for optical applications

    SciTech Connect (OSTI)

    Singh, Amol, E-mail: modimh@rrcat.gov.in; Modi, Mohammed H., E-mail: modimh@rrcat.gov.in; Dhawan, Rajnish, E-mail: modimh@rrcat.gov.in; Lodha, G. S., E-mail: modimh@rrcat.gov.in [X-ray Optics Section, ISU Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2014-04-24

    Thin film of compound material ZrC was deposited on Si (100) wafer using ion beam sputtering method. The deposition was carried out at room temperature and at base pressure of 3×10{sup ?5} Pa. X-ray photoelectron spectroscopy (XPS) measurements were performed for determining the surface chemical compositions. Grazing incidence x-ray reflectivity (GIXRR) measurements were performed to study the film thickness, roughness and density. From GIXRR curve roughness value of the film was found less than 1 nm indicating smooth surface morphology. Films density was found 6.51 g/cm{sup 3}, which is close to bulk density. Atomic force microscopy (AFM) measurements were performed to check the surface morphology. AFM investigation showed that the film surface is smooth, which corroborate the GIXRR data. Figure 2 of the original article PDF file, as supplied to AIP Publishing, contained a PDF processing error. This article was updated on 12 May 2014 to correct that error.

  15. TRANSMISSION ELECTRON MICROSCOPY OF THE TEXTURED SILVER BACK REFLECTOR OF A THIN FILM SILICON SOLAR CELL: FROM CRYSTALLOGRAPHY TO OPTICAL ABSORPTION

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    in amorphous, microcrystalline and micromorph thin-film Si solar cells is an important and active field-reflector of thin-film Si solar cells. 1 INTRODUCTION The study of light trapping in thin-film Si solar cells for an optimized back reflector structure in a microcrystalline thin film Si solar cell, when compared with the use

  16. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  17. Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    (In,Ga)Se2-based thin film solar cells D. Abou-Rasa,b,*, G. Kostorza , A. Romeob,1 , D. Rudmannb , A Available online 8 December 2004 Abstract It is known that high-efficiency thin film solar cells based on Cu in efficiencies of solar cells with CBD- and PVD-CdS buffer layers can partly be explained by referring

  18. The macroscopic delamination of thin films from elastic substrates

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical ...

  19. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  20. Nanostructured thin films for solid oxide fuel cells 

    E-Print Network [OSTI]

    Yoon, Jongsik

    2009-05-15

    The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

  1. Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface

    SciTech Connect (OSTI)

    Bar, M.; Wimmer, M.; Wilks, R. G.; Roczen, M.; Gerlach, D.; Ruske, F.; Lips, K.; Rech, B.; Weinhardt, L.; Blum, M.; Pookpanratana, S.; Krause, S.; Zhang, Y.; Heske, C.; Yang, W.; Denlinger, J. D.

    2010-04-30

    The chemical interface structure between phosphorus-doped hydrogenated amorphous silicon and aluminum-doped zinc oxide thin films is investigated with soft x-ray emission spectroscopy (XES) before and after solid-phase crystallization (SPC) at 600C. In addition to the expected SPC-induced phase transition from amorphous to polycrystalline silicon, our XES data indicates a pronounced chemical interaction at the buried Si/ZnO interface. In particular, we find an SPC-enhanced formation of Si-O bonds and the accumulation of Zn in close proximity to the interface. For an assumed closed and homogeneous SiO2 interlayer, an effective thickness of (5+2)nm after SPC could be estimated.

  2. Structural and dielectric properties of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown by PLD

    SciTech Connect (OSTI)

    James, K. K.; Satish, B.; Jayaraj, M. K.

    2014-01-28

    Ferroelectric thin films of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) were deposited on Si/SiO{sub 2}/TiO{sub 2}/Pt (PtSi) substrate by pulsed laser deposition (PLD). Crystalline films with perovskite structure were obtained without post-deposition annealing. Phase purity of the deposited films was confirmed by x-ray diffraction. The lowest value of FWHM obtained for the film deposited at oxygen pressure 5.4×10{sup ?4} mbar and substrate temperature 600°C, indicates the high crystallinity of the film. The room temperature dielectric constant at 100 kHz was 85. Butterfly loop, which is the characteristic of ferroelectric materials, was obtained in the regime of ?4 to +4V. The leakage current density was nearly 9×10{sup ?13} Acm{sup ?2}.

  3. Structural perturbations of epitaxial ?-(Fe1-xVx)2O3 thin films driven by excess oxygen near the surface

    SciTech Connect (OSTI)

    Chamberlin, Sara E.; Kaspar, Tiffany C.; Bowden, Mark E.; Shutthanandan, V.; Kabius, Bernd C.; Heald, Steve M.; Keavney, David; Chambers, Scott A.

    2014-12-21

    We examine the structure and composition of phase-pure epitaxial ?-(Fe1-xVx)2O3 thin films deposited on ?-Al2O3(0001) substrates by oxygen-plasma-assisted molecular beam epitaxy for 0 ? x ? ~0.5. The films crystallize in the corundum lattice, with vanadium substituting for iron throughout. Vanadium cations exhibit the expected 3+ charge state in the bulk, but exhibit higher valences nearer to the surface, most likely because of excess oxygen in interstitial sites near the surface. The extent of vanadium oxidation beyond the 3+ state is inversely proportional to x. The gradation of vanadium valence with depth may have an impact on local bonding geometries, and could be highly significant in this material’s efficiency as a photocatalyst.

  4. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    SciTech Connect (OSTI)

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; Hofmann, F.; Clark, J. N.; Harder, R. J.; Vine, D. J.; Abbey, B.

    2015-04-29

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  5. Structural, electrical and optical properties of Bi{sub 2}Se{sub 3} and Bi{sub 2}Se{sub (3-x)}Te {sub x} thin films

    SciTech Connect (OSTI)

    Augustine, Saji [Crystal Growth Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala, (India) and Materials and Process Simulation Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305701 (Korea, Republic of)]. E-mail: sajia@kaist.ac.kr; Ampili, S. [Crystal Growth Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Kang, Jeung Ku [Materials and Process Simulation Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305701 (Korea, Republic of); Mathai, Elizabeth [Crystal Growth Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2005-08-11

    Thin films of Bi{sub 2}Se{sub 3}, Bi{sub 2}Se{sub 2.9}Te{sub 0.1}, Bi{sub 2}Se{sub 2.7}Te{sub 0.3} and Bi{sub 2}Se{sub 2.6}Te{sub 0.4} are prepared by compound evaporation. Micro structural, optical and electrical measurements are carried out on these films. X-ray diffraction pattern indicates that the as-prepared films are polycrystalline in nature with exact matching of standard pattern. The composition and morphology are determined using energy dispersive X-ray analysis and scanning electron microscopy (SEM). The optical band gap, which is direct allowed, is 0.67 eV for Bi{sub 2}Se{sub 3} thin films and the activation energy is 53 meV. Tellurium doped thin films also show strong optical absorption corresponding to a band gap of 0.70-0.78 eV. Absolute value of electrical conductivity in the case of tellurium doped thin film shows a decreasing trend with respect to parent structure.

  6. Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16

    and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

  7. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

  8. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    microcrystalline silicon thin films and solar cells. Journalof a p-i-n thin-film solar cell with front transparent con-microcrystalline silicon thin film solar cells. Solar Energy

  9. Multiferroic oxide thin films and heterostructures

    SciTech Connect (OSTI)

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  10. Preparation of thin film high temperature superconductors

    SciTech Connect (OSTI)

    VenKatesan, X.X.T.; Li, Q.; Findikoglu, A.; Hemmick, D. . Dept. of Physics); Wu, X.D. ); Inam, A.; Chang, C.C.; Ramesh, R.; Hwang, D.M.; Ravi, T.S.; Etemad, S.; Martinez, J.A.; Wilkens, B. )

    1991-03-01

    This paper addresses fundamental issues in preparing high quality high T{sub c} YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films. The techniques of inverted cylindrical magnetron sputtering and pulsed laser deposition are chosen as successful examples to illustrate how the key problems can be solved. The fabrication of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}/PrBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superlattices where superconductivity in a single unit cell layer of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} was observed demonstrates the state of the art of thin film deposition of high T{sub c} materials. Systematic variations of the deposition parameters result in changes of superconducting and structural properties of the films that correlate with their microwave and infrared characteristics.

  11. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    E-Print Network [OSTI]

    Marcinek, M.

    2008-01-01

    Meeting on Lithium Batteries, Biarritz, France, June 18–23,Thin-Film Anodes for Li-ion Batteries M. Marcinek, L. J.Sn/C anodes for lithium batteries. Thin layers of graphitic

  12. Strain-Dependence of the Structure and Ferroic Properties of Epitaxial NiTiO3Thin Films Grown on Different Substrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Kovarik, Libor; Hu, Dehong; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3(M = Fe, Mn, and Ni). We set out to stabilize this metastable perovskite structure by growing NiTiO3epitaxially on different substrates and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO3films were deposited on Al2O3, Fe2O3, and LiNbO3substrates by pulsed laser deposition and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from X-ray diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystallinemore »quality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain and highlight our ability to control the ferroic properties in NiTiO3thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO3is polarization induced. From the substrates studied here, the perovskite substrate LiNbO3proved to be the most promising one for strong multiferroism.« less

  13. Annealing effects on structural, electrical and optical properties of antimony-tinoxide thin films deposited by sol gel dip coating technique

    SciTech Connect (OSTI)

    Lekshmy, S. Sujatha, E-mail: jolly2jolly@gmail.com; Anitha, V. S., E-mail: jolly2jolly@gmail.com; Berlin, I. John, E-mail: jolly2jolly@gmail.com; Joy, K., E-mail: jolly2jolly@gmail.com [Thin film Laboratory, Post Graduate and Research Department of Physics, Mar Ivanios College, Thiruvananthapuram 695 015 (India)

    2014-01-28

    Antimony-doped tin dioxide possess interesting physical and chemical properties. These properties have a wide range of applications such as catalysis and optoelectronic devices. In the present study, antimony-doped tin oxide (SnO2:Sb) thin films were deposited on the quartz substrates by sol-gel dip coating technique. The films were annealed at temperatures 350°C, 550°C and 850°C in air for 2 hours. The structure and surface morphologies were observed by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). XRD patterns shows tetragonal structure for the SnO2:Sb films annealed at different temperatures. Crystallite size increased from 6 to 14 nm as annealing temperature increased from 350°C to 850°C. SEM studies reveals crack free and smooth surface for all the films. The grains are found to be homogenously distributed for films annealed at higher temperature. The electrical conductivity of the films annealed at 350°C and 550°C decreased and increased for the films annealed at 850°C. The optical properties of the films were investigated in the UV-visible-NIR region (200-900 nm) using UV spectra. The transmittance of the films decreased for films annealed at higher temperature. The optical energy band gap values (4.13 eV-4.83 eV) increased with the increase in annealing temperature.

  14. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  15. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  16. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  17. Structural characterisation of BaTiO{sub 3} thin films deposited on SrRuO{sub 3}/YSZ buffered silicon substrates and silicon microcantilevers

    SciTech Connect (OSTI)

    Colder, H.; Jorel, C. Méchin, L.; Domengès, B.; Marie, P.; Boisserie, M.; Guillon, S.; Nicu, L.; Galdi, A.

    2014-02-07

    We report on the progress towards an all epitaxial oxide layer technology on silicon substrates for epitaxial piezoelectric microelectromechanical systems. (101)-oriented epitaxial tetragonal BaTiO{sub 3} (BTO) thin films were deposited at two different oxygen pressures, 5.10{sup ?2} mbar and 5.10{sup ?3} mbar, on SrRuO{sub 3}/Yttria-stabilized zirconia (YSZ) buffered silicon substrates by pulsed laser deposition. The YSZ layer full (001) orientation allowed the further growth of a fully (110)-oriented conductive SrRuO{sub 3} electrode as shown by X-ray diffraction. The tetragonal structure of the BTO films, which is a prerequisite for the piezoelectric effect, was identified by Raman spectroscopy. In the BTO film deposited at 5.10{sup ?2} mbar strain was mostly localized inside the BTO grains whereas at 5.10{sup ?3} mbar, it was localized at the grain boundaries. The BTO/SRO/YSZ layers were finally deposited on Si microcantilevers at an O{sub 2} pressure of 5.10{sup ?3} mbar. The strain level was low enough to evaluate the BTO Young modulus. Transmission electron microscopy (TEM) was used to investigate the epitaxial quality of the layers and their epitaxial relationship on plain silicon wafers as well as on released microcantilevers, thanks to Focused-Ion-Beam TEM lamella preparation.

  18. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    SciTech Connect (OSTI)

    G, Sreeja V; Anila, E. I., E-mail: anilaei@gmail.com; R, Reshmi, E-mail: anilaei@gmail.com; John, Manu Punnan, E-mail: anilaei@gmail.com [Optolectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva-683 102, Kerala (India); V, Sabitha P; Radhakrishnan, P. [International School of Photonics, CUSAT, Cochin-22 (India)

    2014-10-15

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  19. Evolution of structural and optical properties of photocatalytic Fe doped TiO{sub 2} thin films prepared by RF magnetron sputtering

    SciTech Connect (OSTI)

    Nair, Prabitha B. Maneeshya, L. V. Justinvictor, V. B. Daniel, Georgi P. Joy, K. Thomas, P. V.

    2014-01-28

    Undoped and Fe doped TiO{sub 2} thin films have been prepared by RF magnetron sputtering. Pure TiO{sub 2} thin film exhibited an amorphous-like nature. With increase in iron concentration (0–0.1 at%), the films exhibited better crystallization to anatase phase . Red shift of absorption edge was observed in the UV-vis transmittance spectra . At higher Fe concentration (0.5 at%), onset of phase transformation to rutile is noticed. Photocatalytic properties of pure and 0.1 at% Fe doped TiO{sub 2} thin films were investigated by degradation of methylene blue in UV light, visible light and light from Hg vapor lamp. 70% degradation of methylene blue was observed in the presence of Fe doped film in comparison with 3% degradation in presence of pure TiO{sub 2} film when irradiated using visible light for 2 h.

  20. Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

    E-Print Network [OSTI]

    Li, Tong; Jiang, Chun

    2010-01-01

    We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

  1. Structural c aracterization and microwave loss of Ndl~s5CeO~15Cu04-y superconducting thin films on yttria-stabilized zirconia buffered sapphire

    E-Print Network [OSTI]

    Anlage, Steven

    on yttria-stabilized zirconia buffered sapphire S. N. Mao, X. X. Xi, Jian Mao, D. H. Wu, Qi Li, S. M. Anlage) thin films on (liO2) sapphire using a yttria-stabilized zirconia (YSZ) buffer layer, which has been-type yttria-stabilized zirconia (YSZ) buffer layer. It is well known that the buffer layer between the sap

  2. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  3. Role of oxide thickening in fatigue crack initiation in LIGA nickel MEMS thin films

    E-Print Network [OSTI]

    Shan, Wanliang

    Role of oxide thickening in fatigue crack initiation in LIGA nickel MEMS thin films W.L. Shan a 2012 Accepted 16 October 2012 Available online 24 October 2012 Keywords: LIGA Ni MEMS thin films Oxide micro-electro-mechanical-systems (MEMS) structures. & 2012 Elsevier B.V. All rights reserved. 1

  4. Photonic light trapping and electrical transport in thin-film silicon solar cells

    E-Print Network [OSTI]

    Photonic light trapping and electrical transport in thin-film silicon solar cells Lucio Claudio Keywords: Thin-film solar cells Light trapping Photonic structures Carrier collection Electro-optical simulations Surface recombination a b s t r a c t Efficient solar cells require both strong absorption

  5. Effect of Dual-Function Nano-Structured Silicon Oxide Thin Film on Multi-Junction Solar Cells

    SciTech Connect (OSTI)

    Yan, B.; Sivec, L.; Yue, G.; Jiang, C. S.; Yang, J.; Guha, S.

    2011-01-01

    We present our recent study of using nano-structured hydrogenated silicon oxide films (nc-SiO{sub x}:H) as a dual-function layer in multi-junction solar cells. The nc-SiO{sub x}:H films were deposited using very high frequency glow discharge of a SiH{sub 4} (or Si{sub 2}H{sub 6}), CO{sub 2}, PH{sub 3}, and H{sub 2} gas mixture. By optimizing deposition parameters, we obtained 'dual function' nc-SiO{sub x}:H material characterized by a conductivity suitable for use as an n layer and optical properties suitable for use as an inter-reflection layer. We tested the nc-SiO{sub x}:H by replacing the normal n-type material in the tunnel junction of a multi-junction structure. The advantage of the dual-function nc-SiO{sub x}:H layer is twofold; one is to simplify the cell structure, and the other is to reduce any optical loss associated with the inter-reflection layer. Quantum efficiency measurements show the gain in top cell current is equal to or greater than the loss in bottom cell current for a-Si:H/nc-Si:H structures. In addition, a thinner a-Si:H top cell with the nc-SiO{sub x}:H n layer improves the top-cell stability, thereby providing higher stabilized solar cell efficiency. We also used the dual-function layer between the middle and the bottom cells in a-Si:H/a-SiGe:H/nc-Si:H triple-junction structures. The gain in the middle cell current is {approx}1.0 mA/cm{sup 2}, leading to an initial active-area efficiency of 14.8%.

  6. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedof a p-i-n thin-film solar cell with front transparent con-

  7. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  8. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    SciTech Connect (OSTI)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    FeCo epitaxial films were prepared on MgO(111), SrTiO{sub 3}(111), and Al{sub 2}O{sub 3}(0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110){sub bcc} films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO{sub 3} and Al{sub 2}O{sub 3} substrates include FeCo(111){sub bcc} crystal in addition to the FeCo(110){sub bcc} crystals with NW and KS relationships. The FeCo(111){sub bcc} crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110){sub bcc} and FeCo(111){sub bcc} crystals formed on the insulating substrates are in agreement with those of the bulk Fe{sub 50}Co{sub 50} (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  9. Polycrystalline Thin Film Solar Cell Technologies: Preprint

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    Rapid progress is being made by CdTe and CIGS-based thin-film PV technologies in entering commercial markets.

  10. Synthesis and Characterization of Functional Nanostructured Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Chow, Lee

    .1149/1.2357098, copyright The Electrochemical Society 65 #12;66 reduced environmental impact and a minimum undesirable inter-temperature thin film growth technique has been developed to fabricate a new generation of smart and functional and structural requirements of their applications in gas sensors and solar cells. The rapid photothermal

  11. Impact of annealing on the chemical structure and morphology of the thin-film CdTe/ZnO interface

    SciTech Connect (OSTI)

    Horsley, K. Hanks, D. A.; Weir, M. G.; Beal, R. J.; Wilks, R. G.; Blum, M.; Häming, M.; Hofmann, T.; Weinhardt, L.; and others

    2014-07-14

    To enable an understanding and optimization of the optoelectronic behavior of CdTe-ZnO nanocomposites, the morphological and chemical properties of annealed CdTe/ZnO interface structures were studied. For that purpose, CdTe layers of varying thickness (4–24?nm) were sputter-deposited on 100?nm-thick ZnO films on surface-oxidized Si(100) substrates. The morphological and chemical effects of annealing at 525?°C were investigated using X-ray Photoelectron Spectroscopy (XPS), X-ray-excited Auger electron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy. We find a decrease of the Cd and Te surface concentration after annealing, parallel to an increase in Zn and O signals. While the as-deposited film surfaces show small grains (100?nm diameter) of CdTe on the ZnO surface, annealing induces a significant growth of these grains and separation into islands (with diameters as large as 1??m). The compositional change at the surface is more pronounced for Cd than for Te, as evidenced using component peak fitting of the Cd and Te 3d XPS peaks. The modified Auger parameters of Cd and Te are also calculated to further elucidate the local chemical environment before and after annealing. Together, these results suggest the formation of tellurium and cadmium oxide species at the CdTe/ZnO interface upon annealing, which can create a barrier for charge carrier transport, and might allow for a deliberate modification of interface properties with suitably chosen thermal treatment parameters.

  12. Thin Film Encapsulation Methods for Large Area MEMS Packaging

    E-Print Network [OSTI]

    Mahajerin, Armon

    2012-01-01

    P. J. French, “Robust Wafer-Level Thin-Film Encapsulation ofThe Elastic Properties of Thin- Film Silicon Nitride,” IEEELPCVD Silicon Nitride Thin Films at Cryogenic Temperatures,”

  13. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    Katagiri, Cu2ZnSnS4 thin film solar cells, Thin Solid FilmsIndium Galenide Films Thin-film solar cells are created bycandidate for thin- film solar cells. CIGS solar cell

  14. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    to High-Efficiency CZTSSe Thin-film Solar Cells, Proc. IEEEMetal chalcogenide-based thin film solar cells are currentlyof metal chalcogenide thin film solar cells A dissertation

  15. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  16. Atomistic surface erosion and thin film growth modelled over...

    Office of Scientific and Technical Information (OSTI)

    Atomistic surface erosion and thin film growth modelled over realistic time scales Citation Details In-Document Search Title: Atomistic surface erosion and thin film growth...

  17. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Institute of Photo Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name: Institute of Photo-Electronic Thin Film Devices and Technology...

  18. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  19. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic...

  20. A Sensitivity Analysis of a Thin Film Conductivity Estimation...

    Office of Scientific and Technical Information (OSTI)

    Conference: A Sensitivity Analysis of a Thin Film Conductivity Estimation Method Citation Details In-Document Search Title: A Sensitivity Analysis of a Thin Film Conductivity...

  1. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  2. Semiconductor-nanocrystal/conjugated polymer thin films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Semiconductor-nanocrystalconjugated polymer thin films Citation Details In-Document Search Title: Semiconductor-nanocrystalconjugated polymer thin films You are accessing a...

  3. Zinc oxide thin film acoustic sensor

    SciTech Connect (OSTI)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah [Department of Physics , College of Science, Al-Mustansiriyah University, Baghdad (Iraq); Mansour, Hazim Louis [Department of Physics , College of Education, Al-Mustansiriyah University, Baghdad (Iraq)

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  4. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  5. Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer 

    E-Print Network [OSTI]

    Lu, Tianlin

    2012-07-16

    Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric ...

  6. Earth abundant materials for high efficiency heterojunction thin film solar cells

    E-Print Network [OSTI]

    Buonassisi, Tonio

    We investigate earth abundant materials for thin-film solar cells that can meet tens of terawatts level deployment potential. Candidate materials are identified by combinatorial search, large-scale electronic structure ...

  7. Thickness dependent structural, optical and electrical properties of CuIn{sub 0.8}Ga{sub 0.2}Se{sub 2} thin films deposited by pulsed laser deposition

    SciTech Connect (OSTI)

    Mishra, Pradeep K.; Prasad, J. N. [University Department of Physics, Ranchi University, Ranchi-834008 (India); Gautam, Yogendra K.; Jain, Ravish K.; Choudhary, A. K.; Chandra, Ramesh [Institute Instrumentation Centre, Indian Institute of Technology, Roorkee-247667 (India); Kumar, Ashwani [Institute Instrumentation Centre, Indian Institute of Technology, Roorkee-247667, India and Centre for Nanotechnology, Indian Institute of Technology, Roorkee-247667 (India)

    2014-01-28

    CuIn{sub 0.8}Ga{sub 0.2}Se{sub 2} (CIGS) polycrystalline thin films have been deposited on soda lime glass substrate at different deposition time by pulsed laser deposition. The effect of thickness on structural, surface morphological, optical and electrical properties of thin films were investigated by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), atomic force microscopy (AFM), UV-Vis-NIR spectrophotometer and electrical measurement unit. XRD study reveals that all deposited films are polycrystalline in nature and have tetragonal phase of CIGS. Crystallinity of CIGS films has been found to improve with increase in thickness of CIGS films as evidenced by sharp XRD peaks for (112) orientation. Grain size and rms surface roughness of CIGS films have been found to be increased with increase in thickness. All the deposited CIGS films exhibit direct band gap semiconducting behaviour with ?10{sup 6} cm{sup ?1} absorption co-efficient. Optical band gap and resistivity of CIGS films have been found to decrease with increase in thickness.

  8. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  9. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C. Robert (Palo Alto, CA); Kozlowski, Mark R. (Pleasanton, CA); Campbell, John H. (Livermore, CA); Staggs, Michael (Tracy, CA); Rainer, Frank (Livermore, CA)

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  10. Structural, magnetic, and electronic properties of GdTiO{sub 3} Mott insulator thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Grisolia, M. N.; Bruno, F. Y.; Sando, D.; Jacquet, E.; Barthélémy, A.; Bibes, M.; Zhao, H. J.; Chen, X. M.; Bellaiche, L.

    2014-10-27

    We report on the optimization process to synthesize epitaxial thin films of GdTiO{sub 3} on SrLaGaO{sub 4} substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature T{sub C}?=?31.8?K with a saturation magnetization of 4.2??{sub B} per formula unit at 10?K. Transport measurements reveal an insulating response, as expected. Optical spectroscopy indicates a band gap of ?0.7?eV, comparable to the bulk value. Our work adds ferrimagnetic orthotitanates to the palette of perovskite materials for the design of emergent strongly correlated states at oxide interfaces using a versatile growth technique such as pulsed laser deposition.

  11. HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa

    E-Print Network [OSTI]

    Romeo, Alessandro

    HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa , Alessio in the fabrication of high efficiency CdTe/CdS thin film solar cells. Usually, it is done first by etching the CdTe/CdS structure causing shunt paths by segregating into the grain boundaries or lowering the cell efficiency

  12. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    E-Print Network [OSTI]

    important evaluation criterion for photovoltaic (PV) technology. Therefore, research on novel structuresTowards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping February 2014; published online 3 March 2014) Thin-film solar cells based on silicon have emerged

  13. Electrochromic Behavior in Flexible WO3 and Prussian Blue Thin Films for Use in Ski Goggle Lenses

    E-Print Network [OSTI]

    Sparks, Taylor D.

    Electrochromic Behavior in Flexible WO3 and Prussian Blue Thin Films for Use in Ski Goggle Lenses electrodeposited Prussian blue (PB) and sputtered WO3 thin films on ITO coated PET substrates 3. Films were to intercalate with the crystal structure of the electrochromic layer. This reaction for WO3 is as follows: WO3

  14. Nanomechanical properties of hydrated organic thin films

    E-Print Network [OSTI]

    Choi, Jae Hyeok

    2007-01-01

    Hydrated organic thin films are biological or synthetic molecularly thin coatings which impart a particular functionality to an underlying substrate and which have discrete water molecules associated with them. Such films ...

  15. Thin film production method and apparatus

    DOE Patents [OSTI]

    Loutfy, Raouf O. (Tucson, AZ); Moravsky, Alexander P. (Tucson, AZ); Hassen, Charles N. (Tucson, AZ)

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  16. Polycrystalline Thin-Film Multijunction Solar Cells

    SciTech Connect (OSTI)

    Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

    2005-11-01

    We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

  17. A thin film transistor driven microchannel device 

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17

    THIN FILM TRANSISTOR DRIVEN MICROCHANNEL DEVICE FOR PROTEIN AND DNA ELECTROPHORESIS A Dissertation by HYUN HO LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Chemical Engineering A THIN FILM TRANSISTOR DRIVEN MICROCHANNEL DEVICE FOR PROTEIN AND DNA ELECTROPHORESIS A Dissertation by HYUN HO LEE Submitted to Texas A...

  18. Thin film composition with biological substance and method of making

    DOE Patents [OSTI]

    Campbell, Allison A. (Kennewick, WA); Song, Lin (Richland, WA)

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  19. Thin film composition with biological substance and method of making

    SciTech Connect (OSTI)

    Campbell, A.A.; Song, L.

    1999-09-28

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphous structures, organic crystalline structures, and organic amorphous structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobial, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflammatory, steroid, nonsteroid anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor consisting of the compositions listed above.

  20. Efficiency calculations of thin-film GaAs solar cells on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.

    1985-11-01

    Dislocation effect upon the efficiency of single-crystal thin-film AlGaAs-GaAs heteroface solar cells on Si substrates is analyzed. Solar-cell properties are calculated based on a simple model; in the model, dislocations act as recombination centers to reduce the minority-carrier diffusion length in each layer and increase the space-charge layer recombination current. Numerical analysis is also carried out to optimize thin-film AlGaAs-GaAs heteroface solar-cell structures. The fabrication of thin-film AlGaAs-GaAs heteroface solar cells with a practical efficiency larger than 18% on Si substrates appears possible if the dislocation density in the thin-film GaAs layer is less than 10/sup 6/ cm/sup -2/.

  1. Characterization of Thin Films by XAFS: Application to Spintronics Materials

    SciTech Connect (OSTI)

    Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2009-10-25

    X-ray absorption fine structure (XAFS) has proven very valuable in characterizing thin films. This is illustrated with some examples from the area of diluted magnetic semiconductor (DMS) materials for spintronics applications. A promising route to DMS materials is doping of oxides such as TiO2 and ZnO with magnetic atoms such as Co. These can be grown as epitaxial thin films on various substrates. XAFS is especially valuable for characterizing the dopant atoms. The near edge region is sensitive to the symmetry of the bonding and valence of the dopants, and the extended XAFS can determine the details of the lattice site. XAFS is also valuable for detecting metallic nanoparticles. These can be difficult to detect by other methods, and can give a spurious magnetic signal. The power of XAFS is illustrated by examples from studies on Co doped ZnO films.

  2. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  3. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  4. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01

    CuIn(Se,S) 2 thin film solar cells: secondary phaseChalcopyrite Thin Film Solar Cells: Materials Chemistry,Chalcopyrite Thin Film Solar Cells: Materials Chemistry,

  5. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  6. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles

    E-Print Network [OSTI]

    Qiao, Li

    Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum form 27 July 2010 Accepted 3 September 2010 Keywords: High-energy-density fuels Droplet combustion n-decane-based fuels. Five distinctive stages (preheating and ignition, classical combustion

  7. Influence of different sulfur to selenium ratios on the structural and electronic properties of Cu(In,Ga)(S,Se){sub 2} thin films and solar cells formed by the stacked elemental layer process

    SciTech Connect (OSTI)

    Mueller, B. J.; Zimmermann, C.; Haug, V. Koehler, T.; Zweigart, S.; Hergert, F.; Herr, U.

    2014-11-07

    In this study, we investigate the effect of different elemental selenium to elemental sulfur ratios on the chalcopyrite phase formation in Cu(In,Ga)(S,Se){sub 2} thin films. The films are formed by the stacked elemental layer process. The structural and electronic properties of the thin films and solar cells are analyzed by means of scanning electron microscopy, glow discharge optical emission spectrometry, X-ray diffraction, X-ray fluorescence, Raman spectroscopy, spectral photoluminescence as well as current-voltage, and quantum efficiency measurements. The influence of different S/(S+Se) ratios on the anion incorporation and on the Ga/In distribution is investigated. We find a homogenous sulfur concentration profile inside the film from the top surface to the bottom. External quantum efficiency measurements show that the band edge of the solar cell device is shifted to shorter wavelength, which enhances the open-circuit voltages. The relative increase of the open-circuit voltage with S/(S+Se) ratio is lower than expected from the band gap energy trend, which is attributed to the presence of S-induced defects. We also observe a linear decrease of the short-circuit current density with increasing S/(S+Se) ratio which can be explained by a reduced absorption. Above a critical S/(S+Se) ratio of around 0.61, the fill factor drops drastically, which is accompanied by a strong series resistance increase which may be attributed to changes in the back contact or p-n junction properties.

  8. A study on dependence of the structural, optical and electrical properties of cadmium lead sulphide thin films on Cd/Pb ratio

    SciTech Connect (OSTI)

    Nair, Sinitha B., E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Abraham, Anitha, E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Philip, Rachel Reena, E-mail: reenatara@rediffmail.com [Thin film research Lab, U.C. College, Aluva, Kerala (India); Pradeep, B., E-mail: bp@cusat.ac.in [Solid State Physics Laboratory, Cochin University of science and Technology, Cochin (India); Shripathi, T., E-mail: shri@csr.res.in, E-mail: vganesancsr@gmail.com; Ganesan, V., E-mail: shri@csr.res.in, E-mail: vganesancsr@gmail.com [UGC-DAE CSR, Khandwa Road, Indore, 452001, Madhya Pradesh (India)

    2014-10-15

    Cadmium Lead Sulphide thin films with systematic variation in Cd/Pb ratio are prepared at 333K by CBD, adjusting the reagent-molarity, deposition time and pH. XRD exhibits crystalline-amorphous transition as Cd% exceeds Pb%. AFM shows agglomeration of crystallites of size ?50±5 nm. EDAX assess the composition whereas XPS ascertains the ternary formation, with binding energies of Pb4f{sub 7/2} and 4f{sub 5/2}, Cd3d{sub 5/2} and 3d{sub 3/2} and S2p at 137.03, 141.606, 404.667, 412.133 and 160.218 eV respectively. The optical absorption spectra reveal the variance in the direct allowed band gaps, from 1.57eV to 2.42 eV as Cd/Pb ratio increases from 0.2 to 2.7, suggesting possibility of band gap engineering in the n-type films.

  9. Morphology and structure evolution of tin-doped indium oxide thin films deposited by radio-frequency magnetron sputtering: The role of the sputtering atmosphere

    SciTech Connect (OSTI)

    Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Mete, Tayfun; Ellmer, Klaus [Department of Solar Fuels and Energy Storage Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D14109 Berlin (Germany)

    2014-04-21

    The microstructure and morphology evolution of tin-doped indium oxide (ITO) thin films deposited by radio-frequency magnetron sputtering in different sputtering atmospheres were investigated by X-ray diffraction, X-ray reflectivity, and atomic force microscopy. The surface roughness w increases with increasing film thickness d{sub f}, and exhibits a power law behavior w???d{sub f}{sup ?}. The roughness decreases with increasing O{sub 2} flow, while it increases with increasing H{sub 2} flow. The growth exponent ? is found to be 0.35, 0.75, and 0.98 for depositions in Ar/10%O{sub 2}, pure Ar, and Ar/10%H{sub 2} atmospheres, respectively. The correlation length ? increases with film thickness also with a power law according to ????d{sub f}{sup z} with exponents z?=?0.36, 0.44, and 0.57 for these three different gas atmospheres, respectively. A combination of local and non-local growth modes in 2?+?1 dimensions is discussed for the ITO growth in this work.

  10. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test themore »quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.« less

  11. The interplay between spatially separated ferromagnetic and superconducting thin films 

    E-Print Network [OSTI]

    Sullivan, Isaac John

    2013-02-22

    characterized. 26 CHAPTER III THE SC/FM THIN FILM MULTILAYER The fabrication and characterization of the SC/FM film couples comprised the most de- manding and arduous work during the tenure of my thesis project. Many special parts were designed... EXPERIMENTAL DETAILS A. Ferromagnetic Thin Films 1. Film Preparation 2. Film Characterization B. Superconducting Thin Films 1. Film Preparation III THE SC/FM THIN FILM MULTILAYER . A. SC/FM Thin Film Multilayer Preparation B. SC/FM Thin Film Multilayer...

  12. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  13. Thin film absorber for a solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  14. Thin film dielectric composite materials

    SciTech Connect (OSTI)

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  15. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  16. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  17. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  18. Effect of In Situ Thermal Annealing Process on Structural, Optical and Electrical Properties of CdS\\CdTe Thin-Film Solar Cells Fabricated by Pulsed Laser Deposition

    E-Print Network [OSTI]

    Al-mebir, Alaa Ayad Khedhair

    2015-08-31

    Cadmium Telluride has long been recognized as the second lowest- cost material after Si in the world photovoltaic market, specifically for thin-film solar cells. The two attractive properties of the CdTe are its nearly ...

  19. Piezoreslstive graphite/polyimide thin films for micromachining applications

    E-Print Network [OSTI]

    Piezoreslstive graphite/polyimide thin films for micromachining applications A. Bruno Frazier) In this work, graphite/polyimide composite thin films are introduced and characterized for micromachining tetracarboxylic dianhydride+xydianiline/metaphenylene diamine polyimide matrix. The resultant material represents

  20. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    film solar cells. CIGS solar cell efficiencies have beenCIGS, making it a favorable choice for thin-film solar cells.thin film solar cell [3]. However, use of CIGS has a number

  1. Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells

    E-Print Network [OSTI]

    Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

    2013-01-01

    We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

  2. Polymer-Metal Nanocomposites via Polymer Thin Film

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Polymer-Metal Nanocomposites via Polymer Thin Film T. P. Radhakrishnan School of Chemistry, University of Hyderabad Polymer-metal nanocomposite thin films are versatile materials that not only Chemistry Inside a Polymer Thin Film P. Radhakrishnan School of Chemistry, University of Hyderabad metal

  3. Environmental Aspects of Thin Film Module Production and Product Lifetime

    E-Print Network [OSTI]

    Bergman, Keren

    Impact #12;3 Thin-Film PV -The Triangle of SuccessThin-Film PV -The Triangle of Success Low Cost of Thin Film Module Production and Product Lifetime Vasilis Fthenakis PV Environmental Research Center@bnl.gov web: www.pv.bnl.gov www.clca.columbia.edu #12;2 PV Sustainability CriteriaPV Sustainability Criteria

  4. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedtrapping in nanostructured solar cells. ACS Nano, 5:10055–

  5. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    modeling of ? -Si : H solar cells with rough interfaces:of a p-i-n thin-film solar cell with front transparent con-amorphous-silicon-based P-I-N solar cells deposited on rough

  6. ORIGINAL PAPER Nanocrystalline Diamond Thin Films Synthesis

    E-Print Network [OSTI]

    Qin, Qinghua

    -CVD, and Meng [13] prepared NCD thin film on cemented carbide using a high extended DC arc plasma process substrate using direct current plasma jet chemical vapor deposition. A special cooling system was designed of Physics, Australian National University, Canberra, ACT 0200, Australia 123 Plasma Chem Plasma Process

  7. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  8. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  9. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    SciTech Connect (OSTI)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul G.; McKenzie, Bonnie B.; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and significant plastic deformation during compressi on . On the other hand, the micron sized Al 2 O 3 particles exhibited brittle f racture in compression. In situ compression experiments showed 3um Al 2 O 3 particles fractured into pieces without observable plastic deformation in compression. Particle deformation behaviors will be used to inform Al 2 O 3 coating deposition parameters and particle - particle bonding in the consolidated Al 2 O 3 coatings.

  10. Structure and magnetoresistance of a Ni{sub 79.7}Fe{sub 14.0}Co{sub 2.8}Zr{sub 2.0}Cu{sub 1.5} thin film

    SciTech Connect (OSTI)

    Varyukhin, V. N.; Izotov, A. I.; Moroz, T. T. Shkuratov, B. E.

    2013-01-15

    The structure and magnetoresistance R of thin films based on Ni{sub 80}Fe{sub 20} permalloy doped with Co, Zr, and Cu have been examined by X-ray diffraction analysis and resistance measurement. The films have been obtained by ion plasma sputtering on oxidized silicon, fused quartz, and glass ceramic cold substrates. It has been shown that the structure of a film in the initial state is a mixture of solid solutions based on two phases: Ni(fcc) particles with a size of L Almost-Equal-To 8 nm and (Zr{sub 0.67}Ni{sub 0.22}O{sub 0.11}){gamma} particles with a size of L Almost-Equal-To 12 nm. The R(H) dependences on the strength and direction of the magnetic field H have been obtained at room temperature for film samples in the initial state and after isothermal annealing at 653 K for 1 h. According to R(H) dependences and X-ray diffraction analysis, films in the initial state are assumingly in a superparamagnetic state, whereas they exhibit ferromagnetic properties after isothermal annealing.

  11. Magnetic structures of FeTiO{sub 3}-Fe{sub 2}O{sub 3} solid solution thin films studied by soft X-ray magnetic circular dichroism and ab initio multiplet calculations

    SciTech Connect (OSTI)

    Hojo, H. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Fujita, K. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Matoba, T.; Tanaka, K.; Ikeno, H.; Mizoguchi, T.; Tanaka, I.; Nakamura, T.; Takeda, Y.; Okane, T.

    2014-03-17

    The solid solutions between ilmenite (FeTiO{sub 3}) and hematite (?-Fe{sub 2}O{sub 3}) have recently attracted considerable attention as a spintronic material due to their interesting magnetic and electrical properties. In this study, the electronic and magnetic structures of epitaxially grown 0.6FeTiO{sub 3}·0.4Fe{sub 2}O{sub 3} solid solution thin films were investigated by combining x-ray absorption near-edge structure (XANES), x-ray magnetic circular dichroism (XMCD) for two different crystallographic projections, and first-principles theoretical calculations. The Fe L-edge XANES and XMCD spectra reveal that Fe is in the mixed-valent Fe{sup 2+}–Fe{sup 3+} states while Fe{sup 2+} ions are mainly responsible for the magnetization. Moreover, the experimental Fe L-edge XANES and XMCD spectra change depending on the incident x-ray directions, and the theoretical spectra explain such spectral features. We also find a large orbital magnetic moment, which can originate the magnetic anisotropy of this system. On the other hand, although the valence state of Ti was interpreted to be 4+ from the Ti L-edge XANES, XMCD signals indicate that some electrons are present in the Ti-3d orbital, which are coupled antiparallel to the magnetic moment of Fe{sup 2+} ions.

  12. Correlation between the electronic and atomic structure, transport properties, and oxygen vacancies on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} thin films

    SciTech Connect (OSTI)

    Rubio-Zuazo, J. Onandia, L.; Castro, G. R.

    2014-01-13

    We present a study of the role of oxygen vacancies on the atomic and electronic structure and transport properties on a 20?nm thick La{sub 0.7}Ca{sub 0.3}MnO{sub 3} film grown by the pulsed laser deposition method on a SrTiO{sub 3} (001) substrate. The results show that oxygen vacancies induce an atomic structure modification characterized by the movement of the La/Ca cations to the perovskite regular position, by the reduction of the MnO{sub 6} basal plane rotation, and by a cooperative tilting of the octahedra along the out-of-plane direction. The out-of-plane lattice parameter increases due to the reduction of the Mn valence upon oxygen vacancies creation. As a consequence, a shift of the Metal-to-Insulator transition to lower temperatures is found to occur. We discuss the influence of the competitive phenomena of manganese valence and Mn-O-Mn bond distortion on the transport properties of manganite thin films.

  13. Durable silver thin film coating for diffraction gratings

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA); Britten, Jerald A. (Oakley, CA); Komashko, Aleksey M. (San Diego, CA)

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  14. Thin film solar cell including a spatially modulated intrinsic layer

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  15. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  16. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67?MeV/atom

    SciTech Connect (OSTI)

    Koide, T.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University Sakai, Osaka 599-8531 (Japan)

    2014-05-07

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67?MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280?emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240?emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  17. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films

    SciTech Connect (OSTI)

    Kumar, B. Rajesh, E-mail: rajphyind@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati - 517 502, A.P, India and Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India); Hymavathi, B.; Rao, T. Subba [Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India)

    2014-01-28

    Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2? = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (?E) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, ?. The value of n and k increases with the increase of substrate temperature.

  18. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  19. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  20. Substrate heater for thin film deposition

    DOE Patents [OSTI]

    Foltyn, Steve R. (111 Beryl St., Los Alamos, NM 87544)

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  1. Deposition and characterization of molybdenum thin films using dc-plasma magnetron sputtering

    SciTech Connect (OSTI)

    Khan, Majid, E-mail: majids@hotmail.com [National University of Sciences and Technology, School of Chemical and Materials Engineering (Pakistan); Islam, Mohammad, E-mail: mohammad.islam@gmail.com [King Saud University, Center of Excellence for Research in Engineering Materials, Advanced Manufacturing Institute (Saudi Arabia)

    2013-12-15

    Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thin films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ?550 nm and electrical resistivity value of 0.57 × 10{sup ?4} ? cm.

  2. Superconducting thin films on potassium tantalate substrates

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  3. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  4. Impact of strain on electronic defects in (Mg,Zn)O thin films

    SciTech Connect (OSTI)

    Schmidt, Florian Müller, Stefan; Wenckstern, Holger von; Benndorf, Gabriele; Pickenhain, Rainer; Grundmann, Marius

    2014-09-14

    We have investigated the impact of strain on the incorporation and the properties of extended and point defects in (Mg,Zn)O thin films by means of photoluminescence, X-ray diffraction, deep-level transient spectroscopy (DLTS), and deep-level optical spectroscopy. The recombination line Y?, previously detected in ZnO thin films grown on an Al-doped ZnO buffer layer and attributed to tensile strain, was exclusively found in (Mg,Zn)O samples being under tensile strain and is absent in relaxed or compressively strained thin films. Furthermore a structural defect E3´ can be detected via DLTS measurements and is only incorporated in tensile strained samples. Finally it is shown that the omnipresent deep-level E3 in ZnO can only be optically recharged in relaxed ZnO samples.

  5. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework

    SciTech Connect (OSTI)

    Cai, SL; Zhang, YB; Pun, AB; He, B; Yang, JH; Toma, FM; Sharp, ID; Yaghi, OM; Fan, J; Zheng, SR; Zhang, WG; Liu, Y

    2014-09-16

    Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I-2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagnetic resonance spectra. Conductivity as high as 0.28 S m(-1) is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.

  6. Modulated IR radiometry for determining thermal properties and basic characteristics of titanium thin films

    SciTech Connect (OSTI)

    Apreutesei, Mihai; Lopes, Claudia; Vaz, Filipe; Macedo, Francisco; Borges, Joel

    2014-07-01

    Titanium thin films of different thicknesses were prepared by direct current magnetron sputtering to study modulated infrared (IR) radiometry as a tool for analyzing film thickness. Thickness was varied by regularly increasing the deposition time, keeping all the other deposition parameters constant. The influence of film thickness on morphological, structural, and electrical properties of the titanium coatings also was investigated. The experimental results revealed a systematic grain growth with increasing film thickness, along with enhanced film crystallinity, which led to increased electrical conductivity. Using the results obtained by modulated IR radiometry, the thickness of each thin film was calculated. These thickness values were then compared with the coating thickness measurements obtained by scanning electron microscopy. The values confirmed the reliability of modulated IR radiometry as an analysis tool for thin films and coatings, and for determining thicknesses in the micrometer range, in particular.

  7. Analytica Chimica Acta 573574 (2006) 913 Metal oxide thin films as sensing layers for ozone detection

    E-Print Network [OSTI]

    2006-01-01

    Analytica Chimica Acta 573­574 (2006) 9­13 Metal oxide thin films as sensing layers for ozone. Their structural, electrical and ozone sensing properties were analyzed. Structural investigations carried out with ultraviolet light and subsequent oxidation in ozone atmosphere at room temperature. © 2006 Elsevier B.V. All

  8. Scanning Tunneling Microscopy Studies of Metal Clusters Supported on Graphene and Silica Thin Film 

    E-Print Network [OSTI]

    Zhou, Zihao

    2012-10-19

    reveal that the geometric and/or electronic structure of graphene can be adjusted correspondingly. In the study of the silica thin film system, the structure of silica was carefully investigated and our STM images favor for the [SiO4] cluster model...

  9. Method of preparing high-temperature-stable thin-film resistors

    DOE Patents [OSTI]

    Raymond, L.S.

    1980-11-12

    A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

  10. Synthesis and characterization of SnO{sub 2} thin films doped with Fe to 10%

    SciTech Connect (OSTI)

    López, E.; Marín, J.; Osorio, J.

    2014-05-15

    Appropriate conditions for SnO{sub 2} powder synthesis doped with iron to 10% by using sol-gel route are found. The powders obtained have been analyzed by means of analytic spectroscopic techniques: Raman, Mössbauer, diffuse reflectance, Fourier transform infrared, and X-ray diffraction. Sn{sub 0.9}Fe{sub 0.1}O{sub 2} thin films deposited by AC magnetron sputtering on silicon substrates are obtained and characterized. A crystal structure rutile-type was found for thin films.

  11. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect (OSTI)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  12. Band Gap Energy of Chalcopyrite Thin Film Solar Cell Absorbers Determined by Soft X-Ray Emission and Absorption Spectroscopy

    E-Print Network [OSTI]

    Bar, M.

    2010-01-01

    OF CHALCOPYRITE THIN FILM SOLAR CELL ABSORBERS DETERMINED BYchalcopyrite thin film solar cell absorbers significantlyof chalcopyrite thin film solar cell absorbers. excitation

  13. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  14. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  15. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  16. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  17. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  18. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

  19. Tax Credits Give Thin-Film Solar a Big Boost

    Office of Energy Efficiency and Renewable Energy (EERE)

    California company will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.

  20. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast...

  1. Production and characterization of thin film group IIIB, IVB...

    Office of Scientific and Technical Information (OSTI)

    Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation Citation Details In-Document Search Title: Production and...

  2. Orientational Analysis of Molecules in Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crucial if an epitaxial or even crystalline organic growth is desired, if such thin film should serve as template or anchoring unit for further depositiongrowth in a...

  3. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    for further improvement on CZTS solar cells efficiency.improvement. Figure 6.1 Efficiency progress for hydrazine solution processing CIGS and CZTS thin film solar cells

  4. Graphene as tunable contact for high performance thin film transistor

    E-Print Network [OSTI]

    Liu, Yuan

    2015-01-01

    64 Figure 4-5. Air stability of a planar PCBM thin filmfilm. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .obtained by annealing 8-nm thick gold thin film. . . . .

  5. Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers

    E-Print Network [OSTI]

    Barrett, Christopher

    , are established biomaterials finding application as drug delivery systems, enteric coatings for drugs, dental and biomaterial applications. Introduction The fabrication of polyelectrolyte multilayer thin films has received

  6. Thermoelectric effect in very thin film Pt/Au thermocouples

    E-Print Network [OSTI]

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

    2006-01-01

    TABLE I. Measured thermoelectric power S for samples ofThermoelectric effect in very thin film Pt/Au thermocouplesthickness dependence of the thermoelectric power of Pt films

  7. Epitaxial ternary nitride thin films prepared by a chemical solution method

    SciTech Connect (OSTI)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  8. In situ Raman spectroscopy of lanthanum-strontium-cobaltite thin films

    E-Print Network [OSTI]

    Breucop, Justin Daniel

    2012-01-01

    Raman spectroscopy is used to probe the structural change of Lanthanum Strontium Cobaltite (La1.xSrxCoO 3 -8) thin films across change in composition (0%-60% strontium) and temperature (30*C-520°C). Raman shift peaks were ...

  9. Photochemical template removal and spatial patterning of zeolite MFI thin films using UV/ozone treatment

    E-Print Network [OSTI]

    Parikh, Atul N.

    Photochemical template removal and spatial patterning of zeolite MFI thin films using UV/ozone (structure code: MFI) following a previously published procedure. The films were illuminated using an ozone. Results presented here indicate that the UV/ozone treatment under nominally room temperature conditions

  10. Investigation of the formation of nanostructures on silicon thin films by excimer laser irradiation

    E-Print Network [OSTI]

    Chaudhary, Vipin

    Investigation of the formation of nanostructures on silicon thin films by excimer laser irradiation-pulse excimer laser irradiation. The fabricated structures have heights of about 1 m and apical radii on an insulator substrate is irradiated in air environment with a single 25ns pulse from a KrF excimer laser

  11. Design and Implementation of a Micron-Sized Electron Column Fabricated by Focused Ion Beam Milling

    E-Print Network [OSTI]

    Wicki, Flavio; Escher, Conrad; Fink, Hans-Werner

    2015-01-01

    We have designed, fabricated and tested a micron-sized electron column with an overall length of about 700 microns comprising two electron lenses; a micro-lens with a minimal bore of 1 micron followed by a second lens with a bore of up to 50 microns in diameter to shape a coherent low-energy electron wave front. The design criteria follow the notion of scaling down source size, lens-dimensions and kinetic electron energy for minimizing spherical aberrations to ensure a parallel coherent electron wave front. All lens apertures have been milled employing a focused ion beam and could thus be precisely aligned within a tolerance of about 300 nm from the optical axis. Experimentally, the final column shapes a quasi-planar wave front with a minimal full divergence angle of 4 mrad and electron energies as low as 100 eV.

  12. Angular behavior of the absorption limit in thin film silicon solar cells

    E-Print Network [OSTI]

    Naqavi, Ali; Söderström, Karin; Battaglia, Corsin; Paeder, Vincent; Scharf, Toralf; Herzig, Hans Peter; Ballif, Christophe

    2013-01-01

    We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic pola...

  13. Innovative Thin Films LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAndInformation ReeseInnovativeThin Films

  14. Tuning the Magnetic and Electronic Properties of FexSi1-x Thin Films for Spintronics

    E-Print Network [OSTI]

    Karel, Julie Elizabeth

    2012-01-01

    x Si 1-x Thin Films for Spintronics By Julie Elizabeth Karelx Si 1-x Thin Films for Spintronics Copyright 2012 by Juliex Si 1-x Thin Films for Spintronics by Julie Elizabeth Karel

  15. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    E-Print Network [OSTI]

    Baker, Jessica L

    2010-01-01

    properties of Au thin films by X?ray diffraction and in in  polythiophene thin?film transistors.  Nat Mater 2006, copper  phthalocyanine thin films evaporated on amorphous 

  16. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01

    Intensity  in  Thin  Film  Solar  Cells   3.2.1   U.  Rau,  EL)  Intensity   in  Thin  Film  Solar  Cells   3.3  properties  of  thin  film  solar  cell   absorbers,  with  

  17. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    trapping in silicon thin film solar cells," Solar Energy,textured surfaces in thin-film solar cells," Opt. Express,Design of Plasmonic Thin-Film Solar Cells with Broadband

  18. CaTiO.sub.3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class

    DOE Patents [OSTI]

    McKee, Rodney Allen (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    1998-01-01

    A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.

  19. MultiLayer solid electrolyte for lithium thin film batteries

    DOE Patents [OSTI]

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  20. Origin of superstructures in (double) perovskite thin films

    SciTech Connect (OSTI)

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  1. Structural study of Fe{sub 3}O{sub 4}(111) thin films with bulk like magnetic and magnetotransport behaviour

    SciTech Connect (OSTI)

    Gilks, D. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Lari, L.; Lazarov, V. K., E-mail: vlado.lazarov@york.ac.uk [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); York-JEOL Nanocentre, University of York, Heslington, York YO10 5BR (United Kingdom); Matsuzaki, K.; Susaki, T. [Secure Materials Center, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hosono, H. [Secure Materials Center, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2014-05-07

    Post-annealing of Fe{sub 3}O{sub 4} films in a CO/CO{sub 2} atmosphere results in a significant improvement in magnetic and magnetotransport properties with values close to the single crystal bulk of M{sub s}???480?emu/cm{sup 3} and negative magnetoresistance of 0.05% in a field of 1?T. By using atomic resolution Z-contrast transmission electron microscopy, we show that improved magnetic properties in the annealed films are due to improved structural ordering as a result of the annealing process.

  2. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  3. VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS*

    E-Print Network [OSTI]

    ERL 03-8 VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS* Yulin Li# and Simon Ho, LEPP, Cornell University, Ithaca, NY 14853, USA Abstract* Vacuum pumping via non-evaporable getter (NEG) thin film deposited directly onto the interior of a vacuum chamber is a novel way to achieve extreme

  4. Multilayer thin-film coatings for optical communication systems

    E-Print Network [OSTI]

    Miller, David A. B.

    Multilayer thin-film coatings for optical communication systems Martina Gerken Lichttechnisches-film coatings for optical communication systems are reviewed. Particular emphasis is given to thin-film designs with dispersion related to the photonic crystal superprism effect. A single dispersive coating may be used

  5. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  6. Fracture patterns in thin films and multilayers Alex A. Volinsky

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Fracture patterns in thin films and multilayers Alex A. Volinsky University of South Florida, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress is the key for causing thin film fracture, either in tension, or compression, it is the influence

  7. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    in ultrathin plasmonic solar cells," Optics Express, vol.Bailat, "Thin-film silicon solar cell technology," Progresstrapping in silicon thin film solar cells," Solar Energy,

  8. The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis in a Microwave Field

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis assisted photocatalysis using TiO2 thin films has been examined. Several factors influencing

  9. Stress Evolution Behavior in CoCrPt Alloy Thin Films with varying Pt Concentration

    E-Print Network [OSTI]

    Im, M.-Y.

    2009-01-01

    Stress Evolution Behavior in CoCrPt Alloy Thin Films withmagnetic recording media is to investigate growth stress,since stress inevitably generated during thin film

  10. The Calculation Of Absorbing Thin Film Optical Constants And Electronic Structure From Photometric Measures On Domain IR-VIS-UV Using Neural Networks

    SciTech Connect (OSTI)

    Bourouis, Chahrazed [Faculty of science and Engineering University of Guelma, BP 401 Guelma 24000 (Algeria); Meddour, Ahcene [Laboratory of semi conductors, University of Badji Mokhtar, Annaba (Algeria); Moussaoui, Abdelkrim [Electrical Engineering Laboratory (LGEG), University of Guelma, BP 401, 24000 (Algeria)

    2008-09-23

    In this paper a new method using the combination of Neural Networks and the Newton-Raphson algorithm is developped. The technique consists of the use of the solution obtained by Newton-Raphson algorithm between 0.5 and 2.1eV for pure manganese (Mn) and for the amorphous metallic alloy Al{sub 88}Mn{sub 12}, to construct two parts of datasets; the first one is used for training the neural network and the second one for the validation tests. The validated neural network model is applied to the determination of optical constants of the two materials Mn and Al{sub 88}Mn{sub 12} in the range of 0.5 and 6.2eV (IR-VIS-UV). The results obtained over all the studied energy range are used to trace back to dielectric function, optical absorption and electronic structure of the same material. By using the partial solution obtained by Newton-Raphson as a database of the neural network prediction model, it is shown that the obtained results are in accordance with those of the literature which consolidate the efficiency of the suggested approach.

  11. Growth of Ca{sub 2}MnO{sub 4} Ruddlesden-Popper structured thin films using combinatorial substrate epitaxy

    SciTech Connect (OSTI)

    Lacotte, M.; David, A.; Pravarthana, D.; Prellier, W.; Grygiel, C.; Rohrer, G. S.; Salvador, P. A.; Velazquez, M.; Kloe, R. de

    2014-12-28

    The local epitaxial growth of pulsed laser deposited Ca{sub 2}MnO{sub 4} films on polycrystalline spark plasma sintered Sr{sub 2}TiO{sub 4} substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650?°C and 800?°C) was found to be 750?°C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew in a grain-over-grain pattern such that each Ca{sub 2}MnO{sub 4} grain had a single OR with the Sr{sub 2}TiO{sub 4} grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001]{sub film}||[100][001]{sub sub}. The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides.

  12. Characterization on RF magnetron sputtered niobium pentoxide thin films

    SciTech Connect (OSTI)

    Usha, N. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15

    Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching of Nb{sub 2}O{sub 5} films.

  13. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect (OSTI)

    Varghese, Binni; Piramanayagam, S. N. Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee; Okamoto, Iwao

    2014-05-07

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8?nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  14. Ultra-high current density thin-film Si diode

    DOE Patents [OSTI]

    Wang; Qi (Littleton, CO)

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  15. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect (OSTI)

    Urmila, K. S., E-mail: urmilaks7@gmail.com; Asokan, T. Namitha, E-mail: urmilaks7@gmail.com; Pradeep, B., E-mail: urmilaks7@gmail.com [Solid State Physics Laboratory, Cochin University of Science and Technology, Kochi, Kerala (India); Jacob, Rajani; Philip, Rachel Reena [Thin Film Research Laboratory, Union Christian College, Aluva, Kerala (India)

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  16. Metallophthalocyanine thin films : structure and physical properties

    E-Print Network [OSTI]

    Colesniuc, Corneliu Nicolai

    2011-01-01

    powder, purified three times by gradient sublimation, was used to prepare sandwich devices between palladium and

  17. Metallophthalocyanine thin films : structure and physical properties

    E-Print Network [OSTI]

    Colesniuc, Corneliu Nicolai

    2011-01-01

    The fields of organic spintronics, optoelectronics andand applications in spintronics, optoelectronics, andcan be applied to spintronics: the use of the electron spin

  18. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  19. Sizing and burn time measurements of micron-sized metal powders

    SciTech Connect (OSTI)

    Gill, Robert J.; Mohan, Salil; Dreizin, Edward L. [New Jersey Institute of Technology Newark, New Jersey 07102 (United States)

    2009-06-15

    Detailed ignition and combustion mechanisms are needed to develop optimized propellant and energetic formulations using micron-sized metal powders, such as aluminum. Combustion researchers have traditionally used relatively coarse metal particles to characterize the burn time dependence on particle size. However, measurements of burn times for particles below 10 {mu}m in diameter are still needed for aluminum powders and other metal fuels. The apparatus described here sizes the particles just before the ignition event, providing a direct correlation between individual particle size and its burn time. Two lasers were utilized: a 785 nm laser diode for sizing the particles and a 125 W CO{sub 2} laser for particle ignition. The particles crossed the 785 nm laser beam just before crossing the CO{sub 2} laser beam. The particle size was determined from the amplitude of the scattered 785 nm light pulse. The burn time was determined from the duration of the visible light emission produced from the ignited particle. The in situ measured particle size distributions compared well with the size distributions measured for the same powders by a commercial instrument using low angle laser light scattering. Our measurements with two nominally spherical aluminum powders, suggest that the burn times increase from 0.5 to {approx}2.5 ms as the particle diameters increase from 3 to 8 {mu}m.

  20. TEM characterization of nanodiamond thin films.

    SciTech Connect (OSTI)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  1. Thin Film Femtosecond Laser Damage Competition

    SciTech Connect (OSTI)

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  2. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  3. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  4. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    SciTech Connect (OSTI)

    Kavitha, A.; Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindugal-624622 (India); Subramanian, N. Sankara [Department of Physics, Thiagarajar College of Engineering, Madurai -625015, Tamilnadu (India); Loganathan, S. [Ion Plating, Titan Industries Ltd., Hosur - 635126, Tamilnadu (India)

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  5. Self-Similar Micron-Size and Nanosize Drops of Liquid Generated by Surface Acoustic Waves Daniel Taller,1

    E-Print Network [OSTI]

    Chang, Hsueh-Chia

    '' approximation is permissible for the acous- tic wave equation to yield a quasistatic analysis of the acousticSelf-Similar Micron-Size and Nanosize Drops of Liquid Generated by Surface Acoustic Waves Daniel 46556, USA (Received 13 September 2012; published 27 November 2012) A planar surface acoustic wave

  6. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  7. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jamer, M. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Sterbinsky, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States). Photon Sciences Directorate; Assaf, B. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Arena, D. [Brookhaven National Laboratory (BNL), Upton, NY (United States). Photon Sciences Directorate; Heiman, D. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics

    2014-12-07

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)

  8. The state of the art of thin-film photovoltaics

    SciTech Connect (OSTI)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.

  9. STRESS-INDUCED PERIODIC FRACTURE PATTERNS IN THIN FILMS Alex A. Volinsky1

    E-Print Network [OSTI]

    Volinsky, Alex A.

    STRESS-INDUCED PERIODIC FRACTURE PATTERNS IN THIN FILMS Alex A. Volinsky1 , Neville R. Moody2 applied stresses in thin films can cause film fracture. In the case of compressive stress thin film stress a network of through- thickness cracks forms in thin films. Excessive biaxial residual stress

  10. Multimonth controlled small molecule release from biodegradable thin films

    E-Print Network [OSTI]

    Hammond, Paula T.

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

  11. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    S. Guha, High-Efficiency Cu2ZnSnSe4 Solar Cells with a TiNfurther improvement on CZTS solar cells efficiency. Finally,Route to High-Efficiency CZTSSe Thin-film Solar Cells, Proc.

  12. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  13. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS

    E-Print Network [OSTI]

    Volinsky, Alex A.

    MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS A.A. Volinsky* , J. Vella microns were electroplated on top of the adhesion-promoting barrier layers on single crystal silicon

  14. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

  15. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  16. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  17. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  18. Direct printing of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Bathurst, Stephen, 1980-

    2008-01-01

    Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

  19. Functionalized multilayer thin films for protection against acutely toxic agents

    E-Print Network [OSTI]

    Krogman, Kevin Christopher

    2009-01-01

    The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

  20. Properties and sensor performance of zinc oxide thin films

    E-Print Network [OSTI]

    Min, Yongki, 1965-

    2003-01-01

    Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

  1. TiNi-based thin films for MEMS applications

    E-Print Network [OSTI]

    Fu, Yongqing

    In this paper, some critical issues and problems in the development of TiNi thin films were discussed, including preparation and characterization considerations, residual stress and adhesion, frequency improvement, fatigue ...

  2. Functionality Tuning in Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Chen, Aiping

    2013-04-04

    Vertically aligned nanocomposite (VAN) oxide thin films are unique nanostructures with two-phase self-assembled, heteroepitaxially grown on single-crystal substrates. Both phases tend to grow vertically and simultaneously ...

  3. Antimony-Doped Tin(II) Sulfide Thin Films

    E-Print Network [OSTI]

    Chakraborty, Rupak

    Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin ...

  4. June 26, 2000 1 Fracture in Thin Films

    E-Print Network [OSTI]

    Suo, Zhigang

    in many technologies. Examples include zirconia coatings as thermal barriers on superalloys in enginesJune 26, 2000 1 Fracture in Thin Films Z. Suo Mechanical and Aerospace Engineering Department

  5. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  6. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  7. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  8. Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large Sharp Magnetoelectric Effect Home Author: B. Liu, T. Sun, J. He, V. P. Dravid Year: 2010 Abstract: Nanostructures of...

  9. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    SciTech Connect (OSTI)

    Jacob, Rajani, E-mail: reenatara@rediffmail.com; Philip, Rachel Reena, E-mail: reenatara@rediffmail.com; Nazer, Sheeba, E-mail: reenatara@rediffmail.com; Abraham, Anitha, E-mail: reenatara@rediffmail.com; Nair, Sinitha B., E-mail: reenatara@rediffmail.com [Thin film research lab, U.C. College, Aluva, Kerala (India); Pradeep, B.; Urmila, K. S. [Solid State Physics Laboratory, Cochin University of Science and Technology, Cochin (India); Okram, G. S. [UGC-DAE CSR, Khandwa Road, Indore-452 001, Madhya Pradesh (India)

    2014-01-28

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ?1.78eV with high absorption coefficient ?10{sup 6}/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80–330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ?2.6?m and the films showed good photo response.

  10. Thin-film solar cell fabricated on a flexible metallic substrate

    DOE Patents [OSTI]

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  11. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOE Patents [OSTI]

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  12. Simple flash evaporator for making thin films of compounds

    SciTech Connect (OSTI)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  13. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect (OSTI)

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250?°C. GaN thin films are grown at 200?°C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?°C, which is the lowest process temperature reported for GaN based transistors, so far.

  14. Engineering of the band gap and optical properties of thin films of yttrium hydride

    SciTech Connect (OSTI)

    You, Chang Chuan; Mongstad, Trygve; Maehlen, Jan Petter; Karazhanov, Smagul, E-mail: smagulk@ife.no [Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)

    2014-07-21

    Thin films of oxygen-containing yttrium hydride show photochromic effect at room temperature. In this work, we have studied structural and optical properties of the films deposited at different deposition pressures, discovering the possibility of engineering the optical band gap by variation of the oxygen content. In sum, the transparency of the films and the wavelength range of photons triggering the photochromic effect can be controlled by variation of the deposition pressure.

  15. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect (OSTI)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  16. Transparent conducting thin films for spacecraft applications

    SciTech Connect (OSTI)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.; Rutledge, S.K.; Roig, D.; Degroh, K.K.; Hung, C.

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  17. Correlations between 1/f noise and thermal treatment of Al-doped ZnO thin films deposited by direct current sputtering

    SciTech Connect (OSTI)

    Barhoumi, A. Guermazi, S.; Leroy, G.; Gest, J.; Carru, J. C.; Yang, L.; Boughzala, H.; Duponchel, B.

    2014-05-28

    Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures T{sub s}. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200?°C, 300?°C, and 400?°C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with T{sub s} which is in agreement with the noise measurements. The noise was characterized between 1?Hz and 100?kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, R{sub sh} and [??]{sub eff} increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.

  18. Molecular orientation in soft matter thin films studied by resonant soft x-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B; Valvidares, Manuel; Gullikson, Eric M; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-04-05

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft x-ray reflectivity using linear s and p polarization. It combines the chemical sensitivity of near-edge x-ray absorption fine structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of x-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft x-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and is independent of the film thickness.

  19. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  20. Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes

    SciTech Connect (OSTI)

    Greg M. Swain, PI

    2009-03-10

    The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

  1. Tailoring of a metastable material: alfa-FeSi2 thin film

    SciTech Connect (OSTI)

    Cao, Guixin; Singh, David J; Zhang, Xiaoguang; Samolyuk, German D; Qiao, Liang; Parish, Chad M; Ke, Jin; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E Andrew; Biegalski, Michael D; Ward, Thomas Zac; Sales, Brian C; Mandrus, D.; Stocks, George Malcolm; Gai, Zheng

    2015-01-01

    The epitaxially stabilized metallic -FeSi2 thin films on Si(001) were grown using pulsed laser deposition. While the bulk material of -FeSi2 is a high temperature metastable phase and nonmagnetic, the thin film is stabilized at room temperature and shows unusual electronic transport and magnetic properties due to strain modification. The transport renders two different conducting states with a strong crossover at 50 K accompanied by an onset of ferromagnetism as well as a substantial magnetocaloric effect and magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of -FeSi2 obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our findings provide an example of a tailored material with interesting physics properties for practical applications.

  2. Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings

    SciTech Connect (OSTI)

    Long, Rong, E-mail: rlongmech@gmail.com [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Dunn, Martin L. [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Singapore University of Technology and Design, Singapore 138682 (Singapore)

    2014-06-21

    Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

  3. Nitrogen doped zinc oxide thin film

    SciTech Connect (OSTI)

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  4. Chapter 1. Introduction to Thin Film Technologygy Thin films are deposited onto bulk materials (substrates) to achieveThin films are deposited onto bulk materials (substrates) to achieve

    E-Print Network [OSTI]

    Wang, Jianfang

    parts TiN coatings on cutting tools Offer hardness, low friction, and a chemical barrier to alloying on this system. #12;Thin films for multiple properties Cr coatings on automobile parts TiN coatings on cutting tools Impart hardness, metallic luster, and protection against ultraviolet light. Cr coatings on plastic

  5. Macromol. Rapid Commun. 19, 619623 (1998) 619 Surface studies of polyimide thin films via surface-enhanced

    E-Print Network [OSTI]

    Zhuang, Xiaowei

    1998-01-01

    Macromol. Rapid Commun. 19, 619­623 (1998) 619 Surface studies of polyimide thin films via surface polyimides having the same backbone chemical structure and different pendant side groups at the 2- and 29 (LCD) tech- nology, is often realized by using rubbed polyimide films as alignment layers1) . Therefore

  6. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  7. Thin-film absorber for a solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  8. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  9. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    SciTech Connect (OSTI)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  10. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  11. Shape variation of micelles in polymer thin films

    SciTech Connect (OSTI)

    Zhou, Jiajia Shi, An-Chang

    2014-01-14

    The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.

  12. Properties of zirconia thin films deposited by laser ablation

    SciTech Connect (OSTI)

    Cancea, V. N.; Filipescu, M.; Colceag, D.; Dinescu, M.; Mustaciosu, C.

    2013-11-13

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (?=193 nm, ?=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup ?2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  13. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

    1998-02-03

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  14. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  15. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  16. Effect of current injection into thin-film Josephson junctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to ?=2?2/d;? is the bulk London penetration depth of the film material and d is the film thickness.

  17. Large area quantitative analysis of nanostructured thin-films

    E-Print Network [OSTI]

    Sliz, Rafal; Eneh, Chibuzor; Suzuki, Yuji; Czajkowski, Jakub; Fabritius, Tapio; Kathirgamanathan, Poopathy; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan

    2015-01-09

    of SEM images of quantum dots and InP nanostructured thin-films are provided in the supple- mentary information. 3 Results 3.1 Physical Characterization The AFM and XRD techniques were used to verify the sur- face morphology and provide the reference... research subject for their high applicability in optoelectronics22–24. In addi- tion, self-assembled gold quantum dots and InP-based nanos- tructures were examined. Prior to the analysis, ZnO fabricated thin-films were additionally characterized with AFM...

  18. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  19. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    E-Print Network [OSTI]

    Zhu, Yuankun

    2014-01-01

    7. Optical bandgap of the doped CdO thin films as a functionelectrical properties of In-doped CdO thin films fabricatedand transparent Ti-doped CdO films by pulsed laser

  20. Generation of low work function, stable compound thin films by laser ablation

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2001-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  1. The development of a thin-film rollforming process for pharmaceutical continuous manufacturing

    E-Print Network [OSTI]

    Slaughter, Ryan (Ryan R.)

    2013-01-01

    In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

  2. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    W. Prather, "Thin film solar cell design based on photonicH. A. Atwater, "Design of nanostructured solar cells usingBrongersma, "Design of Plasmonic Thin-Film Solar Cells with

  3. PID Failure of c-Si and Thin-Film Modules and Possible Correlation...

    Energy Savers [EERE]

    PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents...

  4. Electron-beam-evaporated thin films of hafnium dioxide for fabricating...

    Office of Scientific and Technical Information (OSTI)

    complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution...

  5. Cathodic ALD V2O5 thin films for high-rate electrochemical energy...

    Office of Scientific and Technical Information (OSTI)

    Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage Citation Details In-Document Search Title: Cathodic ALD V2O5 thin films for high-rate electrochemical...

  6. Layer-by-Layer Assembly of Clay-filled Polymer Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Jang, Woo-Sik

    2010-01-14

    robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown...

  7. Characterization of Zirconium Phosphate/Polycation Thin Films Grown by Sequential Adsorption Reactions

    E-Print Network [OSTI]

    Characterization of Zirconium Phosphate/Polycation Thin Films Grown by Sequential Adsorption Received April 7, 1997X Monolayer and multilayer thin films consisting of anionic R-zirconium phosphate (R

  8. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    O Thin Films as a Solid Electrolyte for 3D Microbatteries,”Li 0.5 La 0.5 )TiO 3 solid electrolyte thin films grown byIonic conductivity in solid electrolytes based on lithium

  9. High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing

    E-Print Network [OSTI]

    Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

  10. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  11. Microstructure and magnetic properties of FeCo epitaxial thin films grown on MgO single-crystal substrates

    SciTech Connect (OSTI)

    Shikada, Kouhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-04-01

    FeCo epitaxial films were prepared on MgO(100), MgO(110), and MgO(111) substrates by ultrahigh vacuum molecular beam epitaxy. FeCo thin films with (100), (211), and (110) planes parallel to the substrate surface grow on respective MgO substrates. FeCo/MgO interface structures are studied by high-resolution cross-sectional transmission electron microscopy and the epitaxial growth mechanism is discussed. Atomically sharp boundaries are recognized between the FeCo thin films and the MgO substrates where misfit dislocations are introduced in the FeCo thin films presumably to decrease the lattice misfits. Misfit dislocations are observed approximately every 9 and 1.4 nm in FeCo thin film at the FeCo/MgO(100) and the FeCo/MgO(110) interfaces, respectively. X-ray diffraction analysis indicates that the lattice spacing measured parallel to the single-crystal substrate surfaces are in agreement within 0.1% with those of the respective bulk values of Fe{sub 50}Co{sub 50} alloy crystal, showing that the FeCo film strain is very small. The magnetic anisotropies of these epitaxial films basically reflect the magnetocrystalline anisotropy of bulk FeCo alloy crystal.

  12. Effects of phosphorus doping by plasma immersion ion implantation on the structural and optical characteristics of Zn{sub 0.85}Mg{sub 0.15}O thin films

    SciTech Connect (OSTI)

    Saha, S.; Nagar, S.; Chakrabarti, S.

    2014-08-11

    ZnMgO thin films deposited on ?100? Si substrates by RF sputtering were annealed at 800, 900, and 1000?°C after phosphorus plasma immersion ion implantation. X-ray diffraction spectra confirmed the presence of ?101{sup ¯}0? and ?101{sup ¯}3? peaks for all the samples. However, in case of the annealed samples, the ?0002? peak was also observed. Scanning electron microscopy images revealed the variation in surface morphology caused by phosphorus implantation. Implanted and non-implanted samples were compared to examine the effects of phosphorus implantation on the optical properties of ZnMgO. Optical characteristics were investigated by low-temperature (15?K) photoluminescence experiments. Inelastic exciton–exciton scattering and localized, and delocalized excitonic peaks appeared at 3.377, 3.42, and 3.45?eV, respectively, revealing the excitonic effect resulting from phosphorus implantation. This result is important because inelastic exciton–exciton scattering leads to nonlinear emission, which can improve the performance of many optoelectronic devices.

  13. Dissolution dynamics of thin films measured by optical reflectance Christian Punckt and Ilhan A. Aksaya

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    of copper thin films on gold substrates in a mild hydrochloric acid solution. Due to its simplicity, our of corrosion rates of thin films are in high demand for the quan- tification of material degradation measurement of dissolution rates of galvanically corrod- ing copper thin films based on bright field optical

  14. Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells

    E-Print Network [OSTI]

    Pulfrey, David L.

    Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells D.L. Pulfrey*, J. Dell): pulfrey@ece.ubc.ca ABSTRACT Cadmium telluride thin-film solar cells are now commercially available be attainable. 1. INTRODUCTION Thin film solar cells based on polycrystalline CdTe have been investigated

  15. EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Ceder, Gerbrand

    materials for thin film solar cells such as CdTe and CIGS suffer from concerns over resource scarcity (eEARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1 conversion efficiencies should be increased. In terms of reducing module cost, thin film solar cells

  16. DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME

    E-Print Network [OSTI]

    Hart, Gus

    deposition and characterization of reactively-sputtered uranium nitride thin films. I also report opticalDETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

  17. Small-scale thin film experiments provide models for large-scale engineering applications

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    Small-scale thin film experiments provide models for large-scale engineering applicationsMIT's Department of Civil and Environmental Engineering · http://cee.mit.edu Delamination occurs in a thin film blisters occur in a predictable manner. Photo / Donna Coveney, MIT PROBLEM Thin films are omnipresent

  18. Physics of thin-film ferroelectric oxides DPMC, University of Geneva, CH-1211, Geneva 4, Switzerland

    E-Print Network [OSTI]

    Wu, Zhigang

    Physics of thin-film ferroelectric oxides M. Dawber* DPMC, University of Geneva, CH-1211, Geneva 4 of thin-film ferroelectric oxides, the strongest emphasis being on those aspects particular to ferroelectrics in thin-film form. The authors introduce the current state of development in the application

  19. Barium ferrite thin film media with perpendicular c-axis orientation and small grain size

    E-Print Network [OSTI]

    Laughlin, David E.

    Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

  20. DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-FILM SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

  1. Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells

    E-Print Network [OSTI]

    Van Stryland, Eric

    Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells Qiumei Bian in the fabrication and assembly of thin film solar cells. Using a femtosecond (fs) laser, we selectively removed a unique scheme to ablate the indium tin-oxide layer for the fabrication of thin film solar cells

  2. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  3. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  4. Predictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    :F, CdTe, solar cell INTRODUCTION Thin-film solar cell is a promising technology to achieve substrates. Cadmium telluride (CdTe) is the dominant thin film solar cell material in recent years because manufacturing processes in the fabrication of thin film solar cells is monolithic cell isolation and series

  5. CARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT

    E-Print Network [OSTI]

    CARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT A.E. Delahoy, Z. Cheng different wavelengths. Keywords: CdTe, thin film solar cell, modeling 1 INTRODUCTION Traditional Si p, Jsc, is independent of voltage, i.e. superposition holds. Thin film CdTe solar cells deviate from

  6. Light trapping in thin-film solar cells with randomly rough and hybrid

    E-Print Network [OSTI]

    Light trapping in thin-film solar cells with randomly rough and hybrid textures Piotr Kowalczewski. M. Smets, and M. Zeman, "Plasmonic light trapping in thin-film silicon solar cells with improved Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns," Opt. Express 20, A224­A

  7. Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells

    E-Print Network [OSTI]

    Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells Piotr A theoretical study of randomly rough interfaces to obtain light trapping in thin-film silicon solar cells of thin-film solar cells. © 2012 Optical Society of America OCIS codes: 040.5350, 050.1950. Reducing

  8. LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle

    E-Print Network [OSTI]

    Sites, James R.

    LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two) measurements are providing a direct link between the spatial non-uniformities inherent in thin-film

  9. LOSS ANALYSIS OF BACK-CONTACT BACK-JUNCTION THIN-FILM MONOCRYSTALLINE SILICON SOLAR CELLS

    E-Print Network [OSTI]

    LOSS ANALYSIS OF BACK-CONTACT BACK-JUNCTION THIN-FILM MONOCRYSTALLINE SILICON SOLAR CELLS F. Haase losses in back-contact back- junction monocrystalline thin-film silicon solar cells. The cells are made for back-contact back- junction (BC BJ) monocrystalline thin-film silicon solar cells using the PSI process

  10. Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings

    E-Print Network [OSTI]

    Yu, Edward T.

    Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings X://jap.aip.org/authors #12;Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings X of nanostructured TiO2 layers fabricated on thin-film solar cells to provide, simultaneously, both antireflection

  11. Mechanics of thin-film transistors and solar cells on flexible substrates

    E-Print Network [OSTI]

    Suo, Zhigang

    Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova a,*, I be minimized throughout the fab- rication process. Amorphous silicon thin-film transistors and solar cells rights reserved. Keywords: Amorphous silicon; Thin-film transistor; Solar cell; Flexible electronics 1

  12. Dielectric back scattering patterns for light trapping in thin-film Si solar cells

    E-Print Network [OSTI]

    Polman, Albert

    Dielectric back scattering patterns for light trapping in thin-film Si solar cells M. van Lare,1 of dielectric and metallic backscattering patterns in thin-film a-Si:H solar cells. We compare devices for Light Trapping in Thin-Film Silicon Solar Cells", in Proceedings of the 23rd European Photovoltaic Solar

  13. Light trapping regimes in thin-film silicon solar cells with a photonic pattern

    E-Print Network [OSTI]

    Light trapping regimes in thin-film silicon solar cells with a photonic pattern Simone Zanotto a theoretical study of crystalline and amorphous silicon thin-film solar cells with a periodic pattern on a sub. Poortmans and V. Arkhipov (editors), Thin Film Solar Cells (Wiley, Chichester 2006). 4. P. W¨urfel, Physics

  14. BACK CONTACT MONOCRYSTALLINE THIN-FILM SILICON SOLAR CELLS FROM THE POROUS SILICON PROCESS

    E-Print Network [OSTI]

    BACK CONTACT MONOCRYSTALLINE THIN-FILM SILICON SOLAR CELLS FROM THE POROUS SILICON PROCESS F. Haase contact cells. Kraiem et al [7] made a back contact thin film monocrystalline solar cell with cell), Am Ohrberg 1, D-31860 Emmerthal, Germany ABSTRACT We develop a back contact monocrystalline thin-film

  15. ENGINEERED SUBSTRATES FOR THIN-FILM SOLAR CELLS: SCATTERING PROPERTIES OF 1D ROUGHNESS

    E-Print Network [OSTI]

    ENGINEERED SUBSTRATES FOR THIN-FILM SOLAR CELLS: SCATTERING PROPERTIES OF 1D ROUGHNESS S. Del Sorbo, Optical Properties, Substrates, Texturisation, Thin Film Solar Cells 1 MOTIVATION OF THIS WORK The aim of thin film technology is to reduce both the electrical transport losses in the bulk region of a solar

  16. Preparation and characterization of TL-based superconducting thin films 

    E-Print Network [OSTI]

    Wang, Pingshu

    1995-01-01

    A simple method for growth of Tl-based superconducting thin films is described. In this method, the precursor was prepared in a vacuum chamber by deposition of Ba, Ca and Cu metals or a Ba-Ca alloy and Cu metal. The precursor was then oxidized...

  17. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    SciTech Connect (OSTI)

    Zhang, Yijun; Liu, Ming E-mail: wren@mail.xjtu.edu.cn Ren, Wei E-mail: wren@mail.xjtu.edu.cn; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang E-mail: wren@mail.xjtu.edu.cn

    2015-05-07

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe{sub 3}O{sub 4} thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe{sub 3}O{sub 4} thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7?nm, resulting in a superparamagnetic behavior with a blocking temperature of 210?K. After post-annealing in H{sub 2}/Ar at 400?°C, the as-grown ??Fe{sub 2}O{sub 3} sample is reduced to Fe{sub 3}O{sub 4} phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications.

  18. RF sputtered piezoelectric zinc oxide thin film for transducer applications

    E-Print Network [OSTI]

    Tang, William C

    parameters that could influence the quality of the resulting films include RF power, the ratio of argon depen- dency of the c-axis zinc oxide growth in radio-frequency sputtering system. Different deposition on the piezoelectric and crystalline qualities of the ZnO thin films. Experimental results showed that the multilayer

  19. Crystalline Thin Films Formed by Supramolecular Assembly for

    E-Print Network [OSTI]

    Gao, Hongjun

    Crystalline Thin Films Formed by Supramolecular Assembly for Ultrahigh-Density Data Storage with crystalline materials.[9] In contrast with small-mole- cule materials, supramolecular materials, which combine the benefits of polymers with those of organic crystalline systems, have been considered a promising medium

  20. Stress and Moisture Effects on Thin Film Buckling Delamination

    E-Print Network [OSTI]

    Volinsky, Alex A.

    ­2 GPa compres- sive residual stresses were sputter deposited on top of thin (below 100 nm) copperStress and Moisture Effects on Thin Film Buckling Delamination P. Waters & A.A. Volinsky Received, commonly called telephone cords, shown in Fig. 2 for the 1 2m W film on top of a 20 nm diamond-like carbon

  1. Long-wave instabilities and saturation in thin film equations

    E-Print Network [OSTI]

    Pugh, Mary

    to shorter wavelengths which then dissipate the energy. The nonlinearity in the KS equation is advective.2) The equation arises as an interface model in bio-fluids [15], solar convec- tion [19], and binary alloys [48Long-wave instabilities and saturation in thin film equations A. L. Bertozzi Department

  2. Longwave instabilities and saturation in thin film equations

    E-Print Network [OSTI]

    Pugh, Mary

    then dissipate the energy. The nonlinearity in the KS equation is advective, and a#ects the dy­ namics di.2) The equation arises as an interface model in bio­fluids [15], solar convec­ tion [19], and binary alloys [48Long­wave instabilities and saturation in thin film equations A. L. Bertozzi Department

  3. Perovskite phase thin films and method of making

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  4. Communications to the Editor Thin-Film Differential Scanning

    E-Print Network [OSTI]

    Allen, Leslie H.

    -mail: L-ALLEN9@uiuc.edu. Figure 1. MEMS-based calorimetric sensor for TDSC (not to scale). Volume 35. In this paper we demonstrate a recently developed MEMS-based thin-film differential scanning calorimetry (TDSC a microfabricated sensor shown in Figure 1 as a calorimetric cell. The sensor consists of a Si3Nx membrane supported

  5. Enhanced Superconducting Properties of Iron Chalcogenide Thin Films 

    E-Print Network [OSTI]

    Chen, Li

    2013-07-26

    phase have been studied and correlated with the superconducting properties. Second, we reported our initial attempt on introducing the flux pinning centers into FeSe_0.5Te_0.5 thin films either under a controlled oxygen atmosphere or with a thin CeO_2...

  6. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  7. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    SciTech Connect (OSTI)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  8. Characterization Of Superconducting Samples With SIC System For Thin Film Developments: Status And Recent Results

    SciTech Connect (OSTI)

    Phillips, H. Lawrence [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Valente-Feliciano, Anne-Marie [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Xiao, Binping [Brookhaven National Lab, Upton, NY (United States); Eremeev, Grigory V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    Within any thin film development program directed towards SRF accelerating structures, there is a need for an RF characterization device that can provide information about RF properties of small samples. The current installation of the RF characterization device at Jefferson Lab is Surface Impedance Characterization (SIC) system. The data acquisition environment for the system has recently been improved to allow for automated measurement, and the system has been routinely used for characterization of bulk Nb, films of Nb on Cu, MgB{sub 2}, NbTiN, Nb{sub 3}Sn films, etc. We present some of the recent results that illustrate present capabilities and limitations of the system.

  9. Ageing effect in spray pyrolysed B:SnO{sub 2} thin films for LPG sensing

    SciTech Connect (OSTI)

    Skariah, Benoy E-mail: dr.boben1@gmail.com; Thomas, Boben E-mail: dr.boben1@gmail.com

    2014-10-15

    For LPG sensing, boron doped (0.2 to 0.8 wt. %) polycrystalline tin oxide thin films are deposited by spray pyrolysis in the temperature range 325 - 430 °C. Sensor response of 56 % is achieved for 1000 ppm of LPG, at an operating temperature of 350 °C. The effects of ageing under ambient conditions on the sensor response are investigated for a storage period of six years. Ageing increases the film resistance but the gas response is lowered. XRD, SEM, FESEM, FTIR and XPS are utilized for structural, morphological and compositional charaterisations.

  10. Magnetism and transport properties of epitaxial Fe-Ga thin films on GaAs(001)

    SciTech Connect (OSTI)

    Duong Anh Tuan; Shin, Yooleemi; Cho, Sunglae; Dang Duc Dung; Vo Thanh Son

    2012-04-01

    Epitaxial Fe-Ga thin films in disordered bcc {alpha}-Fe crystal structure (A2) have been grown on GaAs(001) by molecular beam epitaxy. The saturated magnetization (M{sub S}) decreased from 1371 to 1105 kA/m with increasing Ga concentration from 10.5 to 24.3 % at room temperature. The lattice parameter increased with the increase in Ga content because of the larger atomic radius of Ga atom than that of Fe. The increase in carrier density with Ga content caused in lower resistivity.

  11. Comparative study of broadband electrodynamic properties of single-crystal and thin-film strontium titanate

    SciTech Connect (OSTI)

    Findikoglu, A. T.; Jia, Q. X.; Kwon, C.; Reagor, D. W.; Kaduchak, G.; Rasmussen, K. Oe.; Bishop, A. R.

    1999-12-27

    We have used a coplanar waveguide structure to study broadband electrodynamic properties of single-crystal and thin-film strontium titanate. We have incorporated both time- and frequency-domain measurements to determine small-signal effective refractive index and loss tangent as functions of frequency (up to 4 GHz), dc bias (up to 10{sup 6} V/m), and cryogenic temperature (17 and 60 K). The large-signal impulse response of the devices and the associated phenomenological nonlinear wave equation illustrate how dissipation and nonlinearity combine to produce the overall response in the large-signal regime. (c) 1999 American Institute of Physics.

  12. Buried anode lithium thin film battery and process for forming the same

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  13. First observation of temperature dependent lightinduced response of Ge25As10Se65 thin films

    E-Print Network [OSTI]

    Khan, Pritam; Deshpande, Uday; Adarsh, K V

    2015-01-01

    Ge rich ternary chalcogenide glasses (ChG) exhibit photobleaching (PB) when illuminated with bandgap light and such an effect is originating from the combined effect of intrinsic structural changes and photo-oxidation. In a sharp contradict to these previous observations, in this letter, we demonstrate for the first time that Ge rich Ge25As10Se65 ChG thin films exhibit photodarkening (PD) at 20 K and PB at 300 and 420 K for continuous illumination of ~ 3 hours. Strikingly, the temporal evolution of PD/PB show distinct characteristics at the temperatures of illumination and provide valuable information on the light induced structural changes. Further, structure specific far infrared (FIR) absorption measurements give direct evidence of different structural units involved in PD/PB at the contrasting temperatures. By comparing the lightinduced effects in vacuum and air, we conclude that intrinsic structural changes dominate over photo-oxidation in the observed PB in Ge25As10Se65 ChG thin films.

  14. Abstract--In this paper, the propagation characteristics of an enhanced-thickness magnetic nanoparticle thin film are

    E-Print Network [OSTI]

    Tentzeris, Manos

    nanoparticle thin film are investigated on high resistivity silicon substrate (10,000 ohm-cm) for the first time up to 60 GHz. Contrary to other thin films, this nanoparticle thin film can achieve a thickness up to several hundred nanometers, even to micron. The enhanced thickness of this thin film is achieved

  15. 5-23 Photonics MTL Annual Research Report 2008 Micro-patterning Organic Thin Films via Contact Stamp Lift-off for Organic Light-emitting

    E-Print Network [OSTI]

    in an ambient environment, although a nitrogen environment is preferred for organic light-emitting device (OLED Stamp Lift-off for Organic Light-emitting Device Arrays J Yu, V Bulovi Sponsor: CMSE, PECASE Patterning) fabrication. This technique is applied to pattern 13 micron-sized features of a two-color OLED structure

  16. Enhancement of Heat and Mass Transfer in Mechanically Contstrained Ultra Thin Films

    SciTech Connect (OSTI)

    Kevin Drost; Jim Liburdy; Brian Paul; Richard Peterson

    2005-01-01

    Oregon State University (OSU) and the Pacific Northwest National Laboratory (PNNL) were funded by the U.S. Department of Energy to conduct research focused on resolving the key technical issues that limited the deployment of efficient and extremely compact microtechnology based heat actuated absorption heat pumps and gas absorbers. Success in demonstrating these technologies will reduce the main barriers to the deployment of a technology that can significantly reduce energy consumption in the building, automotive and industrial sectors while providing a technology that can improve our ability to sequester CO{sub 2}. The proposed research cost $939,477. $539,477 of the proposed amount funded research conducted at OSU while the balance ($400,000) was used at PNNL. The project lasted 42 months and started in April 2001. Recent developments at the Pacific Northwest National Laboratory and Oregon State University suggest that the performance of absorption and desorption systems can be significantly enhanced by the use of an ultra-thin film gas/liquid contactor. This device employs microtechnology-based structures to mechanically constrain the gas/liquid interface. This technology can be used to form very thin liquid films with a film thickness less then 100 microns while still allowing gas/liquid contact. When the resistance to mass transfer in gas desorption and absorption is dominated by diffusion in the liquid phase the use of extremely thin films (<100 microns) for desorption and absorption can radically reduce the size of a gas desorber or absorber. The development of compact absorbers and desorbers enables the deployment of small heat-actuated absorption heat pumps for distributed space heating and cooling applications, heat-actuated automotive air conditioning, manportable cooling, gas absorption units for the chemical process industry and the development of high capacity CO{sub 2} absorption devices for CO{sub 2} collection and sequestration. The energy potential energy savings associated with these technologies is estimated to ultimately be 2.88 quads per year. It has become clear that commercial application of these technologies depends on a deeper understanding of the thermal phenomena encountered in a mechanically constrained ultra-thin film device. Our lack of understanding is currently limiting both the performance of these devices and the potential for further size reductions. Barriers to successful commercial applications of the mechanically-constrained ultra-thin film contactors include poorly understood single and two phase flow phenomena in the thin film, the need for improved micromachined contactors and a poor understanding of the phenomena effecting the dimensional stability of the thin film. The research included in this proposal is focused on research associated with resolving and removing these technical barriers to commercialization. The results of the research will significantly advance the prospects for the commercialization of the whole range to technologies that depend on improved gas/liquid contacting.

  17. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  18. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  19. Thin-Film Reliability Trends Toward Improved Stability: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-07-01

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  20. Eddy Current Testing for Detecting Small Defects in Thin Films

    SciTech Connect (OSTI)

    Obeid, Simon; Tranjan, Farid M. [Electrical and Computer Engineering Department, UNCC (United States); Dogaru, Teodor [Albany Instruments, 426-O Barton Creek, Charlotte, NC 28262 (United States)

    2007-03-21

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  1. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    1994-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  2. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  3. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  4. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1994-08-16

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

  5. TI--CR--AL--O thin film resistors

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  6. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  7. Development of Nb and Alternative Material Thin Films Tailored for SRF Applications

    SciTech Connect (OSTI)

    Valente-Feliciano, A -M; Reece, C E; Spradlin, J K; Xiao, B; Zhao, X; Gu, Diefeng; Baumgart, Helmut; Beringer, Douglas; Lukaszew, Rosa

    2011-09-01

    Over the years, Nb/Cu technology, despite its shortcomings due to the commonly used magnetron sputtering, has positioned itself as an alternative route for the future of superconducting structures used in accelerators. Recently, significant progress has been made in the development of energetic vacuum deposition techniques, showing promise for the production of thin films tailored for SRF applications. JLab is pursuing energetic condensation deposition via techniques such as Electron Cyclotron Resonance and High Power Impulse Magnetron Sputtering. As part of this project, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated with the characterization of their surface, structure, superconducting properties and RF response. It has been shown that the film RRR can be tuned from single digits to values greater than 400. This paper presents results on surface impedance measurements correlated with surface and material characterization for Nb films produced on various substrates, monocrystalline and polycrystalline as well as amorphous. A progress report on work on NbTiN and AlN based multilayer structures will also be presented.

  8. Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)

    SciTech Connect (OSTI)

    Yoshida, Yasuo, E-mail: yyoshida@issp.u-tokyo.ac.jp; Yokosuka, Takuya; Hasegawa, Yukio, E-mail: hasegawa@issp.u-tokyo.ac.jp [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Yang, Hung-Hsiang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Huang, Hsu-Sheng; Guan, Shu-You; Su, Wei-Bin; Chang, Chia-Seng [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yanagisawa, Susumu [Department of Physics and Earth Science Department, University of the Ryukyus, 1 Nishihara, Okinawa 903-0213 (Japan); Lin, Minn-Tsong [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Hoffmann, Germar [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-09-21

    Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112{sup ¯}] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11{sup ¯}0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular ? stacking. Two-dimensional delocalized electronic states are found on the K-deposited ? stacking structure.

  9. Cu(In,Ga)Se2 alloys are the leading choice for absorber layers in high-efficiency thin film solar cells due to their direct gap, high absorption

    E-Print Network [OSTI]

    Rockett, Angus

    film solar cells due to their direct gap, high absorption coefficient and excellent thermal stability]/[In+Ga]SubstrateCrystalSample *Negligible amount of Ga diffused into back of film from substrate; not detectable by EDX Device structure GaAs(In,Ga)SePhotoluminescence Excitation Spectroscopy of Cu(In,Ga)Se22 Thin FilmsThin Films Damon Hebert, Julio Soares, Marie Mayer, Angus

  10. Adsorption and Electronic States of Benzene on Ordered MgO and Al2O3 Thin Films S. C. Street, Q. Guo, C. Xu, and D. W. Goodman*

    E-Print Network [OSTI]

    Goodman, Wayne

    Adsorption and Electronic States of Benzene on Ordered MgO and Al2O3 Thin Films S. C. Street, Q structure of benzene (C6H6) on thin film MgO(100)/Mo(100) and highly ordered Al2O3/Mo(110) substrates have, upright (end-on) adsorption of benzene on the monolayer-covered surface. Large exposures of benzene yield

  11. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    SciTech Connect (OSTI)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Duran, Alicia; Aparacio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Kelsen 5 (Campus de Cantoblanco), Madrid, 28049 (Spain)

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  12. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  13. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1993-01-01

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  14. A comparison of thick film and thin film traffic stripes 

    E-Print Network [OSTI]

    Keese, Charles J

    1952-01-01

    of this thesis. CONTESTS Introduction ~ ~ ~ ~ ~ 1 Scope and Obfectives Method of Conducting Road Service Tests ~ ~ ~ ~ ~ ~ ~ ~ 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 PART I A Comparison of Paint Films of Various Thicknesses . . . . . . . . ~ ~, ~, ~ 72 App1ioation... of Test Stripes . Results of Thiokness Tests . 13 19 Conclusions 2$ PART II A Comparison of Various Thick Film and Thin Film Traffic Stripes. 26 Paint Stripes Over Adhesive Films Rosin Striping Compounds. . . + ~ . , ~ 29 ~ ~ ~ Preforsmd Plastic...

  15. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  16. Fabrication and testing of thermoelectric thin film devices

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

    1996-03-01

    Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

  17. Experimental thin film deposition and surface analysis techniques

    SciTech Connect (OSTI)

    Collins, W.E.; Rambabu, B.

    1986-01-01

    An attempt has been made to present some of the thin-film deposition and surface analysis techniques which may be useful in growing superionic conducting materials. Emphasis is made on the importance of being careful in selecting process parameters and materials in order to produce films with properties outlined in this article. Also, special care should be given to proper consideration of grain boundary effects.

  18. Deuterium phase behavior in thin-film Pd

    SciTech Connect (OSTI)

    Munter, A.E.; Heuser, B.J.

    1998-07-01

    The absorption of deuterium from the gas phase into two Pd thin films 668 {Angstrom} and 1207 {Angstrom} thick was measured at room temperature with {ital in situ} neutron reflectometry. Room-temperature solubility isothermal curves, out-of-plane film expansion, and deuterium depth profiles were determined from fits to the neutron reflectivity data. The measurements demonstrate that the deuterium solubility behavior, both in solid solution and within the two-phase region, is strongly perturbed by the thin-film geometry, consistent with previous solubility measurements in the published literature. The phase behavior investigated here was observed to depend on film thickness and on deuterium cycling through the two-phase region. The 668-{Angstrom} film exhibited the greatest initial phase perturbation and most significant changes upon cycling. Upon repeated cycling, both films approach nearly identical deuterium isothermal solubility and out-of-plane expansion behaviors. The observed equilibrium out-of-plane expansion behavior was consistent with the films expanding under an in-plane clamping constraint imposed by the substrate. The effect of this substrate constraining force is to amplify the out-of-plane expansion beyond that expected in bulk Pd. Taken together, these measurements implicate the film/substrate interfacial clamping interaction as the origin of the perturbed hydrogen phase behavior in thin-film geometry. {copyright} {ital 1998} {ital The American Physical Society}

  19. Understanding strain-induced phase transformations in BiFeO3 thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M.; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M.; Cooper, Valentino R.

    2015-05-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO? thin films, which comprises a tetragonal-like (T´) and an intermediate S´ polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T´ phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S´ phase is energetically very close to the T´ phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S´ polymorph, it is demonstrated that the flat energy landscape resultingmore »in the absence of an energy barrier between the T´ and S´ phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S´ and T´ polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S´ to T´ is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.« less

  20. Electrically Modulated Thin Film Dynamics Controlling Bubble Manipulation in Microfluidic Confinement

    E-Print Network [OSTI]

    Debapriya Chakraborty; Suman Chakraborty

    2014-12-03

    Thin film dynamics and associated instability mechanisms have triggered a wide range of scientific innovations, as attributed to their abilities of creating fascinating patterns over small scales. Here, we demonstrate a new thin film instability phenomenon governed by electro-mechanics and hydrodynamics over interfacial scales in a narrow fluidic confinement. We first bring out the essential physics of this instability mechanism, in consideration with the fact that under the action of axial electrical field in a confined microfluidic environment, perturbations may be induced on the interfaces of thin corner films formed adjacent to the walls of a microchannel, leading to the inception of ordered lateral structures. A critical electric field exists beyond which these structures from the walls of the confinement intermingle to evolve into localized gas pockets in the form of bubbles. These bubbles do not remain static with further changes in electric field, but undergo a sequence of elongation-deformation-breakup episode in a dynamically evolving manner. By elucidating the complex interplay of electro-hydrodynmic forces and surface tension, we offer further insights into a new paradigm of interfacial instability mediated controlled microbubble manipulation for on-chip applications, bearing far-ranging scientific and technological consequences in executing designed fluidic operations in confined miniaturized environment.

  1. Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

    1998-04-01

    The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

  2. Optical and electronic properties of highly stable and textured hydrogenated ZnO:Al thin films

    SciTech Connect (OSTI)

    Hwang, Younghun, E-mail: younghh@ulsan.ac.kr [Basic Science Research Institute, University of Ulsan, Ulsan 680-749 (Korea, Republic of)] [Basic Science Research Institute, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kim, Hyungmin [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of)] [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Um, Youngho, E-mail: yhum@ulsan.ac.kr [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of)] [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Park, Hyoyeol [Semiconductor Applications, Ulsan College, Ulsan 680-749 (Korea, Republic of)] [Semiconductor Applications, Ulsan College, Ulsan 680-749 (Korea, Republic of)

    2012-09-15

    Highlights: ? We investigate the impact of hydrogen treatment at high temperature of ZnO:Al film. ? Electrical properties of the ZnO:Al films improved due to hydrogen annealing. ? Optical properties of the ZnO:Al films enhanced due to hydrogen annealing. ? ZnO:Al film properties strongly depend on the hydrogen treatment temperature. -- Abstract: We have experimentally investigated the effects of hydrogen-annealing on the structural, electrical, and optical properties of Al-doped ZnO (ZnO:Al) thin films prepared by RF magnetron sputtering at room temperature. From the X-ray diffraction observations, the orientation of ZnO:Al films was found to be a c-axis in the hexagonal structure. We found that intentionally incorporated hydrogen plays an important role in n-type conduction as a donor, improving free carrier concentration and electrical stability. We simultaneously obtained improved optical transmission and enhanced absorption edge of the ZnO:Al film due to hydrogen-annealing. Our experimental data suggest the hydrogen-annealing process as an important role in the enhancement of electrical and optical properties, which is promising as a back reflector material for thin-film solar cells.

  3. Proof of Concept Thin Films and Multilayers Toward Enhanced Field Gradients in SRF Cavities

    SciTech Connect (OSTI)

    Lukaszew, R A; Beringer, D; Roach, W M; Eremeev, G V; Valente-Feliciano, A-M; Reece, C E; Xi, X

    2013-09-01

    Due to the very shallow penetration depth of the RF fields, SRF properties are inherently a surface phenomenon involving a material thickness of less than 1 micron thus opening up the possibility of using thin film coatings to achieve a desired performance. The challenge has been to understand the dependence of the SRF properties on the detailed characteristics of real surfaces and then to employ appropriate techniques to tailor these surface properties for greatest benefit. Our aim is to achieve gradients >100 MV/m and no simple material is known to be capable of sustaining this performance. A theoretical framework has been proposed which could yield such behavior [1] and it requires creation of thin film layered structures. I will present our systematic studies on such proof-of-principle samples. Our overarching goal has been to build a basic understanding of key nano-scale film growth parameters for materials that show promise for SRF cavity multilayer coatings and to demonstrate the ability to elevate the barrier for vortex entry in such layered structures above the bulk value of Hc1 for type-II superconductors and thus to sustain higher accelerating fields.

  4. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells

    E-Print Network [OSTI]

    Wang, DongLin

    2014-01-01

    Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350nm-800nm, the conversion efficiency of solar cells can be further enhanced.

  5. Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells; January 28, 2010 -- January 31, 2011

    SciTech Connect (OSTI)

    Slafer, D.; Dalal, V.

    2012-03-01

    Final subcontract report for PV Incubator project 'Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells.' The goal of this program was to produce tandem Si cells using photonic bandgap enhancement technology developed at ISU and Lightwave Power that would have an NREL-verified efficiency of 7.5% on 0.25 cm{sup 2} area tandem junction cell on plastic substrates. This goal was met and exceeded within the timeframe and budget of the program. On smaller area cells, the efficiency was even higher, {approx}9.5% (not verified by NREL). Appropriate polymers were developed to fabricate photonic and plasmonic devices on stainless steel, Kapton and PEN substrates. A novel photonic-plasmon structure was developed which shows a promise of improving light absorption in thin film cells, a better light absorption than by any other scheme.

  6. Multilayer thin film thermoelectrics produced by sputtering

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

    1995-06-19

    In this work we explore the possibility of achieving bulk electrical properties in single layer sputter deposited films grown epitaxially on (111) oriented BaF{sub 2} substrates. There are a number of sputter deposition parameters that can be varied in order to optimize the film quality. It is important to understand the effect of varying the deposition temperature, Ar sputtering gas pressure, and the substrate bias. We will consider only Bi and Bi{sub 0.86}Sb{sub 0.14} films in this paper. These materials were chosen since they have the same simple structure, two different band gaps and do not change significantly either in physical or electrical properties with small amounts of cross contamination. We will also present our work on multilayer thermoelectrics made of Bi and Bi{sub 0.86}Sb{sub 0.14} layers. There has been considerable interest in this multilayer structure in the literature. Theoretical calculations of the band structure and interface states of these multilayer structures have been made by Mustafaev and Agassi et al. respectively [6,7]. Experimentally Yoshida et al. have examined similar multilayer structures grown by MBE as well as Bi/Sb multilayer samples in which report an anomalous thermoelectric power [8].

  7. Process for making dense thin films

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  8. Methods for fabricating thin film III-V compound solar cell

    DOE Patents [OSTI]

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  9. Enhancement of ultra-thin film emission using a waveguiding active layer

    E-Print Network [OSTI]

    Aad, R; Bruyant, A; Couteau, C; Lérondel, G

    2013-01-01

    We present a theoretical study on the impact of an active optical layer on the emission properties of an ultrathin luminescent film. While the study can be generalized to any material, we focus here on a simple layered medium composed of a conjugated polymers (CPs) thin film, a zinc oxide layer (ZnO) and a sapphire substrate. The study spreads throughout variable aspects including the effect of the structure parameters on the CP luminescence and radiation pattern and more specifically the influence of the absorption and emission properties of the active layer. Comparing between the passive and active layer cases, the obtained results show that an enhancement of the CP luminescence of more than 20 times can be obtained by using an optically active underlying layer. The results can be explained in terms of photon recycling where the optically active layer acts as a photon reservoir and a secondary light source for the ultra thin film. This general concept is of a special interest for ultra-trace chemosensor.

  10. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect (OSTI)

    Kumar, Avishek, E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Law, Felix; Widenborg, Per I. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Dalapati, Goutam K., E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 and Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30??m in width, and with high Hall mobility of about 71.5?cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18??m with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900?MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  11. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    SciTech Connect (OSTI)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  12. 2012 THIN FILM AND SMALL SCALE MECHANICAL BEHAVIOR GRS/GRC, JULY 21-27, 2012

    SciTech Connect (OSTI)

    Balk, Thomas

    2012-07-27

    The mechanical behavior of materials with small dimension(s) is of both fundamental scientific interest and technological relevance. The size effects and novel properties that arise from changes in deformation mechanism have important implications for modern technologies such as thin films for microelectronics and MEMS devices, thermal and tribological coatings, materials for energy production and advanced batteries, etc. The overarching goal of the 2012 Gordon Research Conference on "Thin Film and Small Scale Mechanical Behavior" is to discuss recent studies and future opportunities regarding elastic, plastic and time-dependent deformation, as well as degradation and failure mechanisms such as fatigue, fracture and wear. Specific topics of interest include, but are not limited to: fundamental studies of physical mechanisms governing small-scale mechanical behavior; advances in test techniques for materials at small length scales, such as nanotribology and high-temperature nanoindentation; in-situ mechanical testing and characterization; nanomechanics of battery materials, such as swelling-induced phenomena and chemomechanical behavior; flexible electronics; mechanical properties of graphene and carbon-based materials; mechanical behavior of small-scale biological structures and biomimetic materials. Both experimental and computational work will be included in the oral and poster presentations at this Conference.

  13. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    SciTech Connect (OSTI)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)

    2014-05-07

    R-Fe-O (R?=?rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850?°C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  14. May 2003 NREL/CP-520-33933 Amorphous and Thin-Film

    E-Print Network [OSTI]

    Deng, Xunming

    May 2003 · NREL/CP-520-33933 Amorphous and Thin-Film Silicon B.P. Nelson, H.A. Atwater, B. von and Thin-Film Silicon Brent P. Nelson,1 Harry A. Atwater,2 Bolko von Roedern,1 Jeff Yang,3 Paul Sims,4 in the Amorphous and Thin-Film Silicon session at the National Center for Photovoltaics and Solar Program Review

  15. p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells

    E-Print Network [OSTI]

    p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells Ken K. Chin n substitution of Cd CuCd 0=À #12; #12; play critical roles in p-doping of CdTe in CdS/CdTe thin film solar cells in Fig. 1. As for the CdTe polycrystalline thin film in a CdS/CdTe solar cell, it is still being debated

  16. An approach to simultaneously test multiple devices for high-throughput production of thin film electronics

    E-Print Network [OSTI]

    Kumar, A.; Flewitt, A. J.

    2015-07-28

    of transparent flexible thin-film transistors using amorphous oxide semiconductors.,” Nature, vol. 432, no. 7016, pp. 488–492, 2004. [2] E. Fortunato, P. Barquinha, and R. Martins, “Oxide semiconductor thin-film transistors: a review of recent advances... , M. Lavine, and R. Coontz, “Looking Beyond Silicon,” Science, vol. 327, no. 5973. pp. 1595–1595, 2010. [6] A. J. Flewitt, “Hydrogenated Amorphous Silicon Thin Film Transistors (a Si:H TFTs),” Handbook of Visual Display Technology-Springer, 2012...

  17. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  18. DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important contributor to the global energy demand by the mid-21st-century. Cu(In,Ga)Se2 (CIGS) solar cells, which haveDISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler

  19. Thin film porous membranes for catalytic sensors

    SciTech Connect (OSTI)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  20. Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows...

    Office of Scientific and Technical Information (OSTI)

    Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows toControl Photoactive Biological Systems. Citation Details In-Document Search Title: Electrochromism vs. the...

  1. Investigation of the optical properties of MoS{sub 2} thin films...

    Office of Scientific and Technical Information (OSTI)

    ellipsometry Spectroscopic ellipsometry (SE) characterization of layered transition metal dichalcogenide (TMD) thin films grown by vapor phase sulfurization is reported. By...

  2. OPTICAL PROPERTIES AND ABUNDANCES OF MINERALS AND GLASSES IN THE 10 TO 45 MICRON SIZE FRACTION OF MARE SOILS: PART II Carl M. Pieters1

    E-Print Network [OSTI]

    Hiroi, Takahiro

    OPTICAL PROPERTIES AND ABUNDANCES OF MINERALS AND GLASSES IN THE 10 TO 45 MICRON SIZE FRACTION on providing this direct link. Individual mineral components are relatively well under- stood in terms large or fresh craters, the only unambiguous mineral remotely detected (but not quantified) for well

  3. Reactivity Screening of Anatase TiO2 Nanotube Arrays and Anatase Thin Films: A Surface Chemistry Point of View

    SciTech Connect (OSTI)

    Funk, S.; Hokkanen, B.; Nurkic, T.; Goering, J.; Kadossov, E.; Burghaus, Uwe; Ghicov, A.; Schmuki, P.; Yu, Zhongqing; Thevuthasan, Suntharampillai; Saraf, Laxmikant V.

    2008-09-19

    As a reactivity screening we collected thermal desorption spectroscopy (TDS) data of iso-butane, O2, CO2, and CO adsorbed on ordered TiO2 nanotube (TiNTs) arrays. As a reference system iso-butane adsorption on an anatase TiO2 thin film has been considered as well. The as-grown TiNTs are vertically aligned and amorphous. Polycrystalline (poly.) anatase or poly. anatase/rutile mixed nanotubes are formed by annealing confirmed by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The anatase thin film was grown on SrTiO3(001) and characterized by XRD and atomic force microscopy (AFM). Surprisingly, oxygen distinctly interacts with the TiNTs whereas this process is not observed on fully oxidized single crystal rutile TiO2(110). Desorption temperatures of 110-150 K and 100-120 K were observed for CO2 and CO, respectively, on the TiNTs. Variations in the binding energies of the alkanes on TiNTs and anatase thin films also were present, i.e., a structure-activity relationship (SAR) is evident.

  4. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    SciTech Connect (OSTI)

    Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com [New Mexico Institute of Mining and Technology, Department of Materials Engineering, 801 LeRoy Place, Socorro, NM 87801 (United States); Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

    2014-09-15

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  5. Modeling and fabrication of self-assembling micron-scale rollup structures

    E-Print Network [OSTI]

    Cybulski, James Stanley, 1979-

    2004-01-01

    Self-assembling micron-scale structures based on standard photolithographic and thin film deposition techniques are investigated. Differences in residual stress between successive thin film layers causes the structures to ...

  6. Room temperature multiferroic properties of (Fe{sub x}, Sr{sub 1?x})TiO{sub 3} thin films

    SciTech Connect (OSTI)

    Kim, Kyoung-Tae; Kim, Cheolbok; Fang, Sheng-Po; Yoon, Yong-Kyu, E-mail: ykyoon@ece.ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-09-08

    This letter reports the structural, dielectric, ferroelectric, and magnetic properties of Fe substituted SrTiO{sub 3} thin films in room temperature. The structural data obtained from x-ray diffraction indicates that (Fe{sub x},Sr{sub 1?x})TiO{sub 3}, the so called FST, transforms from pseudocubic to tetragonal structures with increase of the Fe content in SrTiO{sub 3} thin films, featuring the ferroelectricity, while vibrating sample magnetometer measurements show magnetic hysteresis loops for the samples with low iron contents indicating their ferromagnetism. The characterized ferroelectricity and ferromagnetism confirms strong multiferroitism of the single phase FST thin films in room temperature. Also, an FST thin film metal-insulator-metal multiferroic capacitor has been fabricated and characterized in microwave frequencies between 10 MHz and 5 GHz. A capacitor based on Fe{sub 0.1}Sr{sub 0.9}TiO{sub 3} with a thickness of 260?nm shows a high electric tunability of 18.6% at 10?V and a maximum magnetodielectric value of 1.37% at 0.4?mT with a loss tangent of 0.021 at 1?GHz. This high tuning and low loss makes this material as a good candidate for frequency agile microwave devices such as tunable filters, phase shifters, and antennas.

  7. High-temperature superconducting thin-film-based electronic devices

    SciTech Connect (OSTI)

    Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

    1996-09-01

    This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

  8. Thin film superconductors and process for making same

    DOE Patents [OSTI]

    Nigrey, P.J.

    1988-01-21

    A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.

  9. Thin-Film Material Science and Processing | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermalš ÐÓÔÑ ÒØ ÓworkThin-Film

  10. Nanoscale Phase Separation In Epitaxial Cr-Mo and Cr-V Alloy Thin Films Studied Using Atom Probe Tomography: Comparison Of Experiments And Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Kaspar, Tiffany C.; Ramanan, Sathvik; Walvekar, Sarita K.; Bowden, Mark E.; Shutthanandan, V.; Kurtz, Richard J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxial (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation it is very challenging to characterize by conventional techniques. Therefor laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr0.61Mo0.39, Cr0.77Mo0.23, and Cr0.32V0.68 alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were thus confirmed.

  11. Nanoscale phase separation in epitaxial Cr-Mo and Cr-V alloy thin films studied using atom probe tomography: Comparison of experiments and simulation

    SciTech Connect (OSTI)

    Devaraj, A.; Ramanan, S.; Walvekar, S.; Bowden, M. E.; Shutthanandan, V.; Kaspar, T. C.; Kurtz, R. J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxy (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However, the presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation, it is very challenging to characterize by conventional techniques. Therefore, laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr{sub 0.61}Mo{sub 0.39}, Cr{sub 0.77}Mo{sub 0.23}, and Cr{sub 0.32}V{sub 0.68} alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus, the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were confirmed.

  12. Resistance switching in epitaxial SrCoO{sub x} thin films

    SciTech Connect (OSTI)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-08-11

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO{sub 3} (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO{sub 2.5}) and conducting perovskite (SrCoO{sub 3??}) depending on the oxygen content. The current–voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoO{sub x} thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO{sub 2.5}.

  13. Ferromagnetism and Nonmetallic Transport of Thin-Film ? - FeSi 2 : A Stabilized Metastable Material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Guixin; Singh, D.?J.; Zhang, X.-G.; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; et al

    2015-04-07

    A metastable phase ?-FeSi? was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on ?-FeSi? (111) thin films, while the bulk material of ?-FeSi? is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of ?-FeSi? obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding shedsmore »light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.« less

  14. Ferromagnetism and Nonmetallic Transport of Thin-Film ? - FeSi 2 : A Stabilized Metastable Material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Guixin; Singh, D.?J.; Zhang, X.-G.; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E. Andrew; Biegalski, Michael; Ward, T.?Z.; Mandrus, David; Stocks, G.?M.; Gai, Zheng

    2015-04-01

    A metastable phase ?-FeSi? was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on ?-FeSi? (111) thin films, while the bulk material of ?-FeSi? is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of ?-FeSi? obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding sheds light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.

  15. Crystallization and phase transformations in amorphous NiTi thin films for microelectromechanical systems

    SciTech Connect (OSTI)

    Lee, Hoo-Jeong; Ramirez, Ainissa G. [Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520 (United States)

    2004-08-16

    Amorphous sputtered nickel-titanium thin films were deposited onto micromachined silicon-nitride membranes and subjected to heating and cooling conditions. Their associated microstructure was monitored directly and simultaneously with in situ transmission electron microscopy. These electron-transparent membranes constrained the NiTi films and rendered it possible for observation of the complete transformation cycle, which includes: the crystallization of the amorphous phase to austenite phase (cubic B2 structure) with heating; and the conversion of austenite (B2) to martensite (monoclinic B19{sup '} structure) with cooling. Electron micrographs show the nucleation and growth of grains occurs at a temperature of 470 deg. C and at a rate that indicates a polymorphic transformation. The onset of martensitic transformation occurs between 25 and 35 deg. C. Calorimetric measurements are consistent with the observed crystallization.

  16. A non-resonant dielectric metamaterial for enhancement of thin-film solar cells

    E-Print Network [OSTI]

    Omelyanovich, Mikhail; Simovski, Constantin

    2014-01-01

    Recently, we have suggested dielectric metamaterial composed as an array of submicron dielectric spheres located on top of an amorphous thin-film solar cell. We have theoretically shown that this metamaterial can decrease the reflection and simultaneously can suppress the transmission through the photovoltaic layer because it transforms the incident plane wave into a set of focused light beams. This theoretical concept has been strongly developed and experimentally confirmed in the present paper. Here we consider the metamaterial for oblique angle illumination, redesign the solar cell and present a detailed experimental study of the whole structure. In contrast to our precedent theoretical study we show that our omnidirectional light-trapping structure may operate better than the optimized flat coating obtained by plasma-enhanced chemical vapor deposition.

  17. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Sheldon, Peter (Lakewood, CO)

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  18. Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor 

    E-Print Network [OSTI]

    Nominanda, Helinda

    2004-01-01

    The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

  19. Thin film cadmium telluride and zinc phosphide solar cells

    SciTech Connect (OSTI)

    Chu, T.

    1984-10-01

    This report describes research performed from June 1982 to October 1983 on the deposition of cadmium telluride films by direct combination of the cadmium and tellurium vapor on foreign substrates. Nearly stoichiometric p-type cadmium telluride films and arsenic-doped p-type films have been prepared reproducibly. Major efforts were directed to the deposition and characterization of heterojunction window materials, indium tin oxide, fluorine-doped tin oxide, cadmium oxide, and zinc oxide. A number of heterojunction solar cells were prepared, and the best thin-film ITO/CdTe solar cells had an AMl efficiency of about 7.2%. Zinc phosphide films were deposited on W/steel substrates by the reaction of zinc and phosphine in a hydrogen flow. Films without intentional doping had an electrical resistivity on the order of 10/sup 6/ ohm-cm, and this resistivity may be reduced to about 5 x 10/sup 4/ ohm-cm by adding hydrogen chloride or hydrogen bromide to the reaction mixture. Lower resistivity films were deposited by adding a controlled amount of silver nitrate solution on to the substrate surface. Major efforts were directed to the deposition of low-resistivity zinc selenide in order to prepare ZnSe/An/sub 3/P/sub 2/ heterojunction thin-film solar cells. However, zinc selenide films deposited by vacuum evaporation and chemical vapor deposition techniques were all of high resistivity.

  20. Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates

    SciTech Connect (OSTI)

    Djaziri, S. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Renault, P.-O.; Le Bourhis, E.; Goudeau, Ph., E-mail: Philippe.goudeau@univ-poitiers.fr [Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Faurie, D. [LSPM, (UPR 3407 CNRS), Université Paris 13, Institut Galilée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Geandier, G. [Institut Jean Lamour (UMR 3079 CNRS), Université de Lorraine, Parc de Saurupt, CS 50840, 54011 NANCY Cedex (France); Mocuta, C.; Thiaudière, D. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2014-09-07

    Comparative studies of the mechanical behavior between copper, tungsten, and W/Cu nanocomposite based on copper dispersoïd thin films were performed under in-situ controlled tensile equi-biaxial loadings using both synchrotron X-ray diffraction and digital image correlation techniques. The films first deform elastically with the lattice strain equal to the true strain given by digital image correlation measurements. The Cu single thin film intrinsic elastic limit of 0.27% is determined below the apparent elastic limit of W and W/Cu nanocomposite thin films, 0.30% and 0.49%, respectively. This difference is found to be driven by the existence of as-deposited residual stresses. Above the elastic limit on the lattice strain-true strain curves, we discriminate two different behaviors presumably footprints of plasticity and fracture. The Cu thin film shows a large transition domain (0.60% true strain range) to a plateau with a smooth evolution of the curve which is associated to peak broadening. In contrast, W and W/Cu nanocomposite thin films show a less smooth and reduced transition domain (0.30% true strain range) to a plateau with no peak broadening. These observations indicate that copper thin film shows some ductility while tungsten/copper nanocomposites thin films are brittle. Fracture resistance of W/Cu nanocomposite thin film is improved thanks to the high compressive residual stress and the elimination of the metastable ?-W phase.

  1. Effects of Process Conditions on Properties of Electroplated Ni Thin Films for Microsystem Applications

    E-Print Network [OSTI]

    Fleck, Norman A.

    Effects of Process Conditions on Properties of Electroplated Ni Thin Films for Microsystem, Southampton SO17 1QJ, United Kingdom The properties of electroplated Ni thin films have been systematically, micromotors, and pneumatic actuators.3-11 Ni and NiFe are the electroplated metals most commonly used for MEMS

  2. Ambient induced degradation and chemically activated recovery in copper phthalocyanine thin film transistors

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Ambient induced degradation and chemically activated recovery in copper phthalocyanine thin film 2009 The electrical degradation aging of copper phthalocyanine CuPc organic thin film transistors OTFTs of Physics. DOI: 10.1063/1.3159885 I. INTRODUCTION The recent demand for low cost, versatile electronic de

  3. Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    solar cells M. Duchamp1 , M. den Hertog2 , R. Imlau1 , C. B. Boothroyd1 , A. Kovács1 , A. H. Tavabi1, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active absorber layers in solar cells deposited on low cost substrates using plasma-enhanced chemical vapour

  4. Dual gratings for enhanced light trapping in thin-film solar cells

    E-Print Network [OSTI]

    Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique, Ireland * christian.schuster@york.ac.uk Abstract: Thin film solar cells benefit significantly from, "Progress and outlook for high-efficiency crystalline silicon solar cells," Sol. Energy Mater. Sol. Cells 65

  5. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell

    E-Print Network [OSTI]

    to bring down the cost of photovoltaic (PV) solar cells has gained huge momentum, and many strategiesOptimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic

  6. Optimization and Characterization of RF Sputtered Piezoelectric Zinc Oxide Thin Film for

    E-Print Network [OSTI]

    Tang, William C

    Oxide (ZnO) thin films had been found to have unique piezoelectric effect for the applicationsOptimization and Characterization of RF Sputtered Piezoelectric Zinc Oxide Thin Film for Transducer Applications Yu-Hsiang Hsu, John Lin, and William C. Tang* Department of Biomedical Engineering University

  7. THIN-FILM FLOWS WITH WALL SLIP: AN ASYMPTOTIC ANALYSIS OF HIGHER ORDER GLACIER FLOW MODELS

    E-Print Network [OSTI]

    Fournier, John J.F.

    THIN-FILM FLOWS WITH WALL SLIP: AN ASYMPTOTIC ANALYSIS OF HIGHER ORDER GLACIER FLOW MODELS, Cambridge, CB3 0ET, UK) [Received 6 January 2009. Revise 6 November 2009] Summary Free-surface thin film of the flow. Conversely, membrane or `free film' models are appropriate in situations where there is rapid

  8. Organic thin film devices with stabilized threshold voltage and mobility, and method for preparing the devices

    DOE Patents [OSTI]

    Nastasi, Michael Anthony; Wang, Yongqiang; Fraboni, Beatrice; Cosseddu, Piero; Bonfiglio, Annalisa

    2013-06-11

    Organic thin film devices that included an organic thin film subjected to a selected dose of a selected energy of ions exhibited a stabilized mobility (.mu.) and threshold voltage (VT), a decrease in contact resistance R.sub.C, and an extended operational lifetime that did not degrade after 2000 hours of operation in the air.

  9. Conductive polymer/fullerene blend thin films with honeycomb framework for transparent photovoltaic application

    DOE Patents [OSTI]

    Cotlet, Mircea; Wang, Hsing-Lin; Tsai, Hsinhan; Xu, Zhihua

    2015-04-21

    Optoelectronic devices and thin-film semiconductor compositions and methods for making same are disclosed. The methods provide for the synthesis of the disclosed composition. The thin-film semiconductor compositions disclosed herein have a unique configuration that exhibits efficient photo-induced charge transfer and high transparency to visible light.

  10. DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS Clean and environmentally friendly photovoltaic

  11. Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell

    E-Print Network [OSTI]

    Grandidier, Jonathan

    Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell J. Grandidier photocurrent of the solar cell. On a typical thin film amorphous silicon solar cell, a parametric analysis of SiO2 spheres directly placed on top of a-Si [1] and gallium arsenide (GaAs) [3] solar cells. We

  12. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with

    E-Print Network [OSTI]

    Yu, Edward T.

    Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light, Austin, TX 78758, USA * ety@ece.utexas.edu Abstract: Simulations of thin film (~2.5 µm thick) InGaAs/GaAs. Roberts, G. Hill, and C. Calder, "Progress in quantum well solar cells," Thin Solid Films 511­512, 76

  13. The peeling behavior of thin films with finite bending stiffness and the implications on gecko adhesion

    E-Print Network [OSTI]

    . This paper assesses the influence of the bending stiffness on thin film peeling and argues that detailedThe peeling behavior of thin films with finite bending stiffness and the implications on gecko the bending stiffness of the spatula has a strong influence on the peeling force which is neglected

  14. Bending tests of carbon nanotube thin-film transistors on flexible Daniel Pham1

    E-Print Network [OSTI]

    Chen, Ray

    Bending tests of carbon nanotube thin-film transistors on flexible substrate Daniel Pham1 , Harish, San Marcos, TX 78666. ABSTRACT Bending tests of carbon nanotube thin-film transistors on flexible substrate have been characterized in this paper. The device channel consisting of dense, aligned, 99% pure

  15. Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate Rajesh Kiteya adhesion strength between a gold (Au) thin film and an anisotropic passivated silicon (Si) substrate delamination remain a major reliability concern as interfacial properties, in particular interfacial adhesion

  16. Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films

    E-Print Network [OSTI]

    Reed, Mark

    Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform nanotubes grown on patterned nickel nanodots and uniform thin films by plasma-enhanced chemical vapor on patterned nickel nanodots and uniform thin films is different. During growth of carbon nanotubes, a nickel

  17. Fracture toughness of polycrystalline silicon carbide thin films J. J. Bellante and H. Kahn

    E-Print Network [OSTI]

    Ballarini, Roberto

    Fracture toughness of polycrystalline silicon carbide thin films J. J. Bellante and H. Kahn online 11 February 2005 Thin film polycrystalline silicon carbide poly-SiC doubly clamped microtensile reported, including pressure sensors,2,3 bolometers,4 resonators,5,6 and fuel atomizers;7 these were

  18. Study of lithium diffusion in RF sputtered Nickel/Vanadium mixed oxides thin films

    E-Print Network [OSTI]

    Artuso, Florinda

    Study of lithium diffusion in RF sputtered NickelÁ/Vanadium mixed oxides thin films F. Artuso a lithium insertion inside RF sputtered Ni/V mixed oxides thin films have been investigated employing, showed three steps clearly involved in the intercalation mechanism of lithium in the oxide films: (i

  19. Thin-film Lithium Niobate Contour-mode Resonators Renyuan Wang and Sunil A. Bhave

    E-Print Network [OSTI]

    Afshari, Ehsan

    Thin-film Lithium Niobate Contour-mode Resonators Renyuan Wang and Sunil A. Bhave School Micro Devices, Inc. Greensboro, North Carolina, USA Abstract--This paper presents Lithium Niobate (LN this platform, we demonstrate, on a black Y136 cut Lithium Niobate thin-film, one-port high-order width

  20. METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Peale, Robert E.

    METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

  1. Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the

    E-Print Network [OSTI]

    Firestone, Jeremy

    Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the Institute of Energy of Photovoltaics 2. IEC: History and Capabilities 3. Current Research at IEC #12;Bill Shafarman 2 May 15, 2013 Concentrators #12;Bill Shafarman 5 May 15, 2013 Thin Film Photovoltaics Potential for low cost PV using " a

  2. Study of the thin-film palladium/hydrogen system by an optical transmittance method

    E-Print Network [OSTI]

    Mandelis, Andreas

    Study of the thin-film palladium/hydrogen system by an optical transmittance method Jose A. Garcia, Canada Received 22 March 1996; accepted for publication 21 August 1996 The thin-film palladium/hydrogen Laboratory and Center for Hydrogen and Electrochemical Studies (CHES), University of Toronto, Toronto M5S 3G8

  3. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells Nicholas P of solar energy conversion be- cause they use thin films of photoactive material and can be manufactured and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband

  4. Molecular Dynamics Simulation of Thin Films with Rough and Asymmetric Interfaces

    E-Print Network [OSTI]

    Walker, D. Greg

    Molecular Dynamics Simulation of Thin Films with Rough and Asymmetric Interfaces N.A. Roberts with the use of interfaces and shows that pristine, imperfect and asymmetric interfaces in thin films can interface whose features are of the order of the phonon wavelength. At a constant temperature difference

  5. Investigation of Solar Energy Transfer through Plasmonic Au Nanoparticle-doped Sol-derived TiO? Thin Films in Photocatalysis and Photovoltaics /

    E-Print Network [OSTI]

    Zelinski, Andrew

    2013-01-01

    TiO 2 Thin Films in Photocatalysis and Photovoltaics ATiO 2 Thin Films in Photocatalysis and Photovoltaics by

  6. Effect of chemical order on the magnetic and electronic properties of epitaxial off-stoichiometry F e x S i 1 - x thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Karel, J.; Juraszek, J.; Minar, J.; Bordel, C.; Stone, K. H.; Zhang, Y. N.; Hu, J.; Wu, R. Q.; Ebert, H.; Kortright, J. B.; et al

    2015-04-01

    Off-stoichiometry, epitaxial FexSi1-x thin films (0.5more »and D0? and the strong enhancement for the A2 structure. The calculated electronic density of states shows many similarities in both structure and spin polarization between the D0? and B2 structures, while the A2 structure exhibits disorder broadening and a reduced spin polarization.« less

  7. Topological crystalline insulator Pb{sub x}Sn{sub 1-x}Te thin films on SrTiO{sub 3} (001) with tunable Fermi levels

    SciTech Connect (OSTI)

    Guo, Hua; Liu, Jun-Wei; Wang, Zhen-Yu; Wu, Rui; Ji, Shuai-Hua; Duan, Wen-Hui; Chen, Xi Xue, Qi-Kun; Yan, Chen-Hui; Zhang, Zhi-Dong; Wang, Li-Li; He, Ke; Ma, Xu-Cun

    2014-05-01

    In this letter, we report a systematic study of topological crystalline insulator Pb{sub x}Sn{sub 1-x}Te (0 < x < 1) thin films grown by molecular beam epitaxy on SrTiO{sub 3}(001). Two domains of Pb{sub x}Sn{sub 1-x}Te thin films with intersecting angle of ? ? 45° were confirmed by reflection high energy diffraction, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy (ARPES). ARPES study of Pb{sub x}Sn{sub 1-x}Te thin films demonstrated that the Fermi level of PbTe could be tuned by altering the temperature of substrate whereas SnTe cannot. An M-shaped valance band structure was observed only in SnTe but PbTe is in a topological trivial state with a large gap. In addition, co-evaporation of SnTe and PbTe results in an equivalent variation of Pb concentration as well as the Fermi level of Pb{sub x}Sn{sub 1-x}Te thin films.

  8. Pulsed laser deposition and characterization of conductive RuO{sub 2} thin films

    SciTech Connect (OSTI)

    Iembo, A.; Fuso, F.; Arimondo, E.; Ciofi, C.; Pennelli, G.; Curro, G.M.; Neri, F.; Allegrini, M. |

    1997-06-01

    RuO{sub 2} thin films have been produced on silicon-based substrates by {ital in situ} pulsed laser deposition for the first time. The electrical properties, the surface characteristics, the crystalline structure, and the film-substrate interface of deposited samples have been investigated by 4-probe resistance versus temperature technique, scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy, respectively. The films show good electrical properties. The RuO{sub 2}-substrate interface is very thin ({approx}3 nm), since not degraded by any annealing process. These two characteristics render our films suitable to be used as electrodes in PZT-based capacitors.{copyright} {ital 1997 Materials Research Society.}

  9. Temperature dependence of the spin relaxation in highly degenerate ZnO thin films

    SciTech Connect (OSTI)

    Prestgard, M. C.; Siegel, G.; Tiwari, A.; Roundy, R.; Raikh, M.

    2015-02-28

    Zinc oxide is considered a potential candidate for fabricating next-generation transparent spintronic devices. However, before this can be achieved, a thorough scientific understanding of the various spin transport and relaxation processes undergone in this material is essential. In the present paper, we are reporting our investigations into these processes via temperature dependent Hanle experiments. ZnO thin films were deposited on c-axis sapphire substrates using a pulsed laser deposition technique. Careful structural, optical, and electrical characterizations of the films were performed. Temperature dependent non-local Hanle measurements were carried out using an all-electrical scheme for spin injection and detection over the temperature range of 20–300?K. From the Hanle data, spin relaxation time in the films was determined at different temperatures. A detailed analysis of the data showed that the temperature dependence of spin relaxation time follows the linear-in-momentum Dyakonov-Perel mechanism.

  10. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    SciTech Connect (OSTI)

    Hanyu, Yuichiro, E-mail: y-hanyu@lucid.msl.titech.ac.jp; Domen, Kay [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan)] [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Nomura, Kenji [Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan)] [Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Hiramatsu, Hidenori; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan) [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Kumomi, Hideya [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan)] [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan) [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan)

    2013-11-11

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300?°C exhibit good operation characteristics; while those annealed at ?400?°C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430?°C. A plausible structural model is suggested.

  11. Spatial localization of excitons and charge carriers in hybrid perovskite thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin; Xiao, Kai; Ma, Ying -Zhong

    2015-07-21

    The fundamental photophysics underlying the remarkably high power conversion efficiency of organic-inorganic hybrid perovskite-based solar cells has been increasingly studied using complementary spectroscopic techniques. The spatially heterogeneous polycrystalline morphology of the photoactive layers owing to the presence of distinct crystalline grains has been generally neglected in optical measurements and therefore the reported results are typically averaged over hundreds or even thousands of such grains. Here, we apply femtosecond transient absorption microscopy to spatially and temporally probe ultrafast electronic excited-state dynamics in pristine methylammonium lead tri-iodide (CH3NH3PbI3) thin films and composite structures. We found that the electronic excited-state relaxation kinetics aremore »extremely sensitive to the sample location probed, which was manifested by position-dependent decay timescales and transient signals. As a result, analysis of transient absorption kinetics acquired at distinct spatial positions enabled us to identify contributions of excitons and free charge carriers.« less

  12. The Morphology and Microstructure of Thin-Film GaAs on Mo Substrates

    SciTech Connect (OSTI)

    Jones, K. M.; Al-Jassim, M. M.; Hasoon, F. S.; Venkatasubramanian, R.

    1999-04-26

    The growth of GaAs thin films on Molybdenum foils was investigated in an attempt to find a low-cost substrate for GaAs. The films were grown by metalorganic chemical vapor deposition (MOCVD). The film thickness was in the 2-4{micro}m range, while the deposition temperature was in the 650-825 C range. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the film morphology and microstructure, respectively. The film morphology in general, and the grain size in particular, were found to be strongly dependent on the growth temperature. However, the defect structure observed in these films was relatively insensitive to the growth conditions.

  13. Double-metal-gate nanocrystalline Si thin film transistors with flexible threshold voltage controllability

    SciTech Connect (OSTI)

    Chiou, Uio-Pu; Pan, Fu-Ming, E-mail: fmpan@faculty.nctu.edu.tw [Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan (China)] [Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan (China); Shieh, Jia-Min, E-mail: jmshieh@narlabs.org.tw, E-mail: jmshieh@faculty.nctu.edu.tw [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China) [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China); Yang, Chih-Chao [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China)] [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Huang, Wen-Hsien [Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan (China) [Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan (China); National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Kao, Yo-Tsung [Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China)] [Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China)

    2013-11-11

    We fabricated nano-crystalline Si (nc-Si:H) thin-film transistors (TFTs) with a double-metal-gate structure, which showed a high electron-mobility (?{sub FE}) and adjustable threshold voltages (V{sub th}). The nc-Si:H channel and source/drain (S/D) of the multilayered TFT were deposited at 375?°C by inductively coupled plasma chemical vapor deposition. The low grain-boundary defect density of the channel layer is responsible for the high ?{sub FE} of 370 cm{sup 2}/V-s, a steep subthreshold slope of 90?mV/decade, and a low V{sub th} of ?0.64?V. When biased with the double-gate driving mode, the device shows a tunable V{sub th} value extending from ?1?V up to 2.7?V.

  14. Ordering of fullerene and carbon nanotube thin films under energetic ion impact

    SciTech Connect (OSTI)

    Kumar, Amit; Avasthi, D. K.; Pivin, J. C.; Koinkar, P. M.

    2008-06-02

    We report the ordering of carbon nanostructures under energetic ion irradiation at low fluence (<5x10{sup 11} ions/cm{sup 2}). Fullerene thin films and multiwalled carbon nanotube (MWCNT) films were irradiated with 200 MeV Au and 60 MeV Ni ions at different ion fluences, respectively. The changes in the irradiated films have been investigated by means of Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction, and Raman spectroscopy. FTIR and Raman spectroscopy show the improvement of vibration strength in low fluence irradiated fullerene and MWCNT films. X-ray diffraction analysis on low fluence irradiated fullerene films revealed the structural order along the (220) atomic planes.

  15. Method for transferring thermal energy and electrical current in thin-film electrochemical cells

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2003-05-27

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  16. Hydrodynamically-driven colloidal assembly in the thin-film entrainment regime

    E-Print Network [OSTI]

    Carlos E. Colosqui; Jeffrey F. Morris; Howard A. Stone

    2012-10-01

    We study numerically the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth and uniform substrates. Below a critical withdrawal speed of the substrate, capillary forces required to deform the meniscus prevent colloidal particles from entering the coating film. Capillary forces are overcome by hydrodynamic drag only after a minimum number of particles organize in a close-packed formation within the meniscus. Once within the film, the formed assembly moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces can thus produce periodic and regular structures within the curved meniscus that extends below the withdrawn film. The hydrodynamically-driven assembly documented here is consistent with stripe pattern formations observed experimentally in the so-called thin-film entrainment regime.

  17. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film

    E-Print Network [OSTI]

    Deng, Xunming

    -infrared to ultraviolet: Applications in thin film photovoltaics A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, and R. W. Collinsa) Department of Physics, Materials Research Institute, and Center for Thin Film, it has numerous applications in the analysis and simulation of thin film a-Si:H based p-i-n and n

  18. High Efficiency Thin Film CdTe and a-Si Based Solar Cells Annual Technical Report for the Period

    E-Print Network [OSTI]

    Deng, Xunming

    High Efficiency Thin Film CdTe and a-Si Based Solar Cells Annual Technical Report for the Period This report covers the second year of this subcontract for research on high efficiency CdTe-based thin-film solar cells and on high efficiency a-Si-based thin-film solar cells. The effort on CdTe- based materials

  19. Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a

    E-Print Network [OSTI]

    Alam, Muhammad A.

    Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk understanding of thin film solar cell device physics, including important module performance variability issues

  20. Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors

    E-Print Network [OSTI]

    Polman, Albert

    Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors is a critical component of solar cell development. In typical thin film cells the thickness of the absorbing of photovoltaic power. Thin film Si solar cells using hydrogenated amorphous Si a-Si:H and nano- crystalline Si nc

  1. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells M. van Lare,1

    E-Print Network [OSTI]

    Polman, Albert

    Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells M. van Lare,1 F a completed thin-film a-Si:H solar cell. Current-voltage measurements show a photocurrent enhancement of 10 of Physics. [http://dx.doi.org/10.1063/1.4767997] Thin-film solar cells offer the potential of high photovol

  2. EFFECT OF HYDROGEN ON SURFACE TEXTURING AND CRYSTALLIZATION ON A-SI:H THIN FILM IRRADIATED BY EXCIMER LASER

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    -Si:H thin film solar cell applications. Introduction Many industrial solar cells in use today use bulk and instability, thin-film a- Si:H solar cells require a highly efficient light-trapping design to absorb cell applications. In this study, hydrogenated and dehydrogenated amorphous silicon thin films

  3. Studies of thin film hydrogenated silicon solar cells using electron energy-loss spectroscopy in the transmission electron microscope

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Studies of thin film hydrogenated silicon solar cells using electron energy-loss spectroscopy (TEM) to study n-i-p thin film Si solar cells grown on steel foil or glass substrates. For a solar cell experiment, we study the chemical compositions of defective regions in thin film Si solar cells using energy

  4. CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION ASSISTED CHEMICAL VAPOR DEPOSITION

    E-Print Network [OSTI]

    CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for manufacturing high efficiency silicon thin-film solar cells. Industrially feasible epitaxy systems therefore

  5. Transparent electrode requirements for thin film solar cell modules Michael W. Rowell and Michael D. McGehee*

    E-Print Network [OSTI]

    McGehee, Michael

    Transparent electrode requirements for thin film solar cell modules Michael W. Rowell and Michael D The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power to replace conducting oxides in this geometry. Thin film solar cell modules can be manufactured either

  6. Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings

    E-Print Network [OSTI]

    Fan, Shanhui

    Enhancement of optical absorption in thin-film organic solar cells through the excitation.1063/1.3377791 Thin-film organic solar cells OSCs are a promising candidate for low-cost energy conversion.1­6 However 2010 We theoretically investigate the enhancement of optical absorption in thin-film organic solar

  7. Synthesis and Characterization of Self-assembled c-axis Oriented Bi2Sr3Co2Oy Thin Films by the Sol gel Method

    SciTech Connect (OSTI)

    Lei H.; Zhu, X.; Tang, X.; Shi, D.; Jian, H.; Yeoh, W.K.; Zhao, B.; Yang, J.; Li, Q.; Zheng, R.; Dou, S.; Sun, Y.

    2011-08-18

    Bi{sub 2}Sr{sub 3}Co{sub 2}Oy thin films are prepared on SrTiO{sub 3} (100), (110) and (111) single crystal substrates using the sol-gel method. All the thin films are c-axis oriented regardless of the orientation of the substrate suggesting self-assembled c-axis orientation, and X-ray photoelectron spectroscopy results give evidence of coexistence of Co{sup 3+} and Co{sup 2+} ions in the derived films. Transmission electronic microscopy observations reveal that all samples are c-axis oriented with no obvious differences for different samples, and the c-axis lattice constant is determined as 15 {angstrom} suggesting the misfit structure. A phenomenological thermodynamic phase diagram for self-assembled c-axis orientation is established for misfit cobaltate-based films using chemical solution deposition. All samples behave like semiconductors due to the coexistence of Co{sup 3+}/Co{sup 2+} ions, and the resistivity at 350 K is 47, 39 and 17 m{Omega} cm for the thin films on SrTiO{sub 3} (100), (110) and (111), respectively, whereas the Seebeck coefficient at 300 K is 97, 89 and 77 {micro}V K{sup -1}. The successful attainment of Bi{sub 2}Sr{sub 3}Co{sub 2}O{sub y} thin films with self-assembled c-axis orientation will provide an effective prototype for investigation of growth mechanisms in complex oxide thin films with a misfit structure.

  8. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al{sub 2}O{sub 3}(0001) substrates

    SciTech Connect (OSTI)

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-05-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al{sub 2}O{sub 3}(0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively.

  9. Electrodeposition of Zn based nanostructure thin films for photovoltaic applications

    SciTech Connect (OSTI)

    Al-Bat’hi, S. A. M.

    2015-03-30

    We present here a systematic study on the synthesis thin films of various ZnO, CdO, Zn{sub x}Cd{sub 1-x} (O) and ZnTe nanostructures by electrodeposition technique with ZnCl{sub 2,} CdCl{sub 2} and ZnSO{sub 4} solution as starting reactant. Several reaction parameters were examined to develop an optimal procedure for controlling the size, shape, and surface morphology of the nanostructure. The results showed that the morphology of the products can be carefully controlled through adjusting the concentration of the electrolyte. The products present well shaped Nanorods arrays at specific concentration and temperature. UV-VIS spectroscopy and X-ray diffraction results show that the product presents good crystallinity. A possible formation process has been proposed.

  10. Optical limiting effects in nanostructured silicon carbide thin films

    SciTech Connect (OSTI)

    Borshch, A A; Starkov, V N; Volkov, V I; Rudenko, V I; Boyarchuk, A Yu; Semenov, A V

    2013-12-31

    We present the results of experiments on the interaction of nanosecond laser radiation at 532 and 1064 nm with nanostructured silicon carbide thin films of different polytypes. We have found the effect of optical intensity limiting at both wavelengths. The intensity of optical limiting at ? = 532 nm (I{sub cl} ? 10{sup 6} W cm{sup -2}) is shown to be an order of magnitude less than that at ? = 1064 nm (I{sub cl} ? 10{sup 7} W cm{sup -2}). We discuss the nature of the nonlinearity, leading to the optical limiting effect. We have proposed a method for determining the amount of linear and two-photon absorption in material media. (nonlinear optical phenomena)

  11. The electron beam hole drilling of silicon nitride thin films

    SciTech Connect (OSTI)

    Howitt, D. G.; Chen, S. J.; Gierhart, B. C.; Smith, R. L.; Collins, S. D.

    2008-01-15

    The mechanism by which an intense electron beam can produce holes in thin films of silicon nitride has been investigated using a combination of in situ electron energy loss spectrometry and electron microscopy imaging. A brief review of electron beam interactions that lead to material loss in different materials is also presented. The loss of nitrogen and silicon decreases with decreasing beam energy and although still observable at a beam energy of 150 keV ceases completely at 120 keV. The linear behavior of the loss rate coupled with the energy dependency indicates that the process is primarily one of direct displacement, involving the sputtering of atoms from the back surface of the specimen with the rate controlling mechanism being the loss of nitrogen.

  12. Thermoelectric effect in very thin film Pt/Au thermocouples

    SciTech Connect (OSTI)

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown,I.G.

    2006-01-10

    The thickness dependence of the thermoelectric power of Pt films of variable thickness on a reference Au film has been determined for the case when the Pt film thickness, t, is not large compared to the charge carrier mean free path, {ell}, that is, t/{ell}. Pt film thicknesses down to 2.2 nm were investigated. We find that {Delta}S{sub F} = S{sub B}-S{sub F} (where S{sub B} and S{sub F} are the thermopowers of the Pt bulk and film, respectively) does not vary linearly as 1/t as is the case for thin film thermocouples when the film thickness is large compared to the charge carrier mean free path.

  13. Studies on nickel-tungsten oxide thin films

    SciTech Connect (OSTI)

    Usha, K. S. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup ?1} and 1100 cm{sup ?1} correspond to Ni-O vibration and the peak at 860 cm{sup ?1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  14. Method for making thick and/or thin film

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-11-02

    A method to make thick or thin films a very low cost. The method is generally similar to the conventional tape casting techniques while being more flexible and versatile. The invention involves preparing a slip (solution) of desired material and including solvents such as ethanol and an appropriate dispersant to prevent agglomeration. The slip is then sprayed on a substrate to be coated using an atomizer which spreads the slip in a fine mist. Upon hitting the substrate, the solvent evaporates, leaving a green tape containing the powder and other additives, whereafter the tape may be punctured, cut, and heated for the desired application. The tape thickness can vary from about 1 .mu.m upward.

  15. Long-laser-pulse method of producing thin films

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

    1991-01-01

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  16. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    DOE Patents [OSTI]

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  17. Naphthacene Based Organic Thin Film Transistor With Rare Earth Oxide

    SciTech Connect (OSTI)

    Konwar, K. [Department of Physics, Digboi College, Digboi-786171, Assam (India); Baishya, B. [Department of Physics, Dibrugarh University, Dibrugarh-786004, Assam (India)

    2010-12-01

    Naphthacene based organic thin film transistors (OTFTs) have been fabricated using La{sub 2}O{sub 3}, as the gate insulator. All the OTFTs have been fabricated by the process of thermal evaporation in vacuum on perfectly cleaned glass substrates with aluminium as source-drain and gate electrodes. The naphthacene film morphology on the glass substrate has been studied by XRD and found to be polycrystalline in nature. The field effect mobility, output resistance, amplification factor, transconductance and gain bandwidth product of the OTFTs have been calculated by using theoretical TFT model. The highest value of field effect mobility is found to be 0.07x10{sup -3} cm{sup 2}V{sup -1}s{sup -1} for the devices annealed in vacuum at 90 deg. C for 5 hours.

  18. Microstructure of amorphous indium oxide and tin oxide thin films

    SciTech Connect (OSTI)

    Rauf, I.A.; Brown, L.M. (Univ. of Cambridge (United Kingdom))

    1994-03-15

    Indium oxide, tin oxide, and some other doped and undoped oxide semiconductors show an interesting and technologically important combination of properties. They have high luminous transparency, good electrical conductivity and high infrared reflectivity. Numerous techniques for depositing these materials have been developed and have undergone a number of changes during last two decades. An understanding of the basic physics of these materials has begun to dawn. Most of the literature on transparent conducting oxides consists of studying the dependence of the properties on the composition, preparation conditions, such as deposition rate, substrate temperature or post-deposition heat treatment. In this paper the authors have employed the transmission electron microscopy to study the microstructure of reactively evaporated, electron beam evaporated, ion-beam sputtered amorphous indium oxide and reactively evaporated amorphous tin oxide thin films. These films, which have received little attention in the past, can have enormous potential as transparent conductive coatings on heat-sensitive substrates and inexpensive solar cells.

  19. Fundamentals of polycrystalline thin film materials and devices

    SciTech Connect (OSTI)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (USA). Inst. of Energy Conversion)

    1991-01-01

    This report presents the results of a one-year research program on polycrystalline thin-film solar cells. The research was conducted to better understand the limitations and potential of solar cells using CuInSe{sub 2} and CdTe by systematically investigating the fundamental relationships linking material processing, material properties, and device behavior. By selenizing Cu and In layers, we fabricated device-quality CuInSe{sub 2} thin films and demonstrated a CuInSe{sub 2} solar cell with 7% efficiency. We added Ga, to increase the band gap of CuInSe{sub 2} devices to increase the open-circuit voltage to 0.55 V. We fabricated and analyzed Cu(InGa)Se{sub 2}/CuInSe{sub 2} devices to demonstrate the potential for combining the benefits of higher V{sub oc} while retaining the current-generating capacity of CuInSe{sub 2}. We fabricated an innovative superstrate device design with more than 5% efficiency, as well as a bifacial spectral-response technique for determining the electron diffusion length and optical absorption coefficient of CuInSe{sub 2} in an operational cell. The diffusion length was found to be greater than 1 {mu}m. We qualitatively modeled the effect of reducing heat treatments in hydrogen and oxidizing treatments in air on the I-V behavior of CuInSe{sub 2} devices. We also investigated post-deposition heat treatments and chemical processing and used them to fabricate a 9.6%-efficient CdTe/CdS solar cell using physical vapor deposition.

  20. Ultrafast Magnetization Dynamics of SrRuO3 Thin Films

    SciTech Connect (OSTI)

    Langner, Matthew C

    2009-05-19

    Itinerant ferromagnet SrRuO3 has drawn interest from physicists due to its unusual transport and magnetic properties as well as from engineers due to its low resistivity and good lattice-matching to other oxide materials. The exact electronic structure remains a mystery, as well as details of the interactions between magnetic and electron transport properties. This thesis describes the use of time-resolved magneto-optical Kerr spectroscopy to study the ferromagnetic resonance of SrRuO3 thin films, where the ferromagnetic resonance is initiated by a sudden change in the easy axis direction in response to a pump pulse. The rotation of the easy axis is induced by laser heating, taking advantage of a temperature-dependent easy axis direction in SrRuO3 thin films. By measuring the change in temperature of the magnetic system in response to the laser pulse, we find that the specific heat is dominated by magnons up to unusually high temperature, ~;;100 K, and thermal diffusion is limited by a boundary resistance between the film and the substrate that is not consistent with standard phonon reflection and scattering models. We observe a high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha ~;; 1, consistent with strong spin-orbit coupling. We observe a time-dependent change in the easy axis direction on a ps time-scale, and we find that parameters associated with the change in easy axis, as well as the damping parameter, have a non-monotonic temperature dependence similar to that observed in anomalous Hall measurements.