Powered by Deep Web Technologies
Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Webinar Presentation: Energy Storage Solutions for Microgrids (November  

Broader source: Energy.gov (indexed) [DOE]

Presentation: Energy Storage Solutions for Microgrids Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean Energy States Aliance (CESA) hosted a webinar with Connecticut DEEP in conjuction with Sandia National Lab and DOE on State and Federal Energy Storage Technology Partnership (ESTAP). The four guest speakers were Veronica Szczerkowski (CT DEEP), Imre Gyuk (DOE), Matt Lazarewicz (CESA consultant), and Dan Borneo (Sandia). The combined presentations are available below. Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 1 Fact Sheet: Energy Storage Technology Advancement Partnership (October

2

Study on Smart Energy Storage Technology and Control Strategy in Micro-Grid  

Science Journals Connector (OSTI)

Energy storage technology is an indispensable support for reliable operation of micro-grid (MG). Various forms of energy storage...

Xing-guo Tan; Shan Lu

2012-01-01T23:59:59.000Z

3

Abstract -This paper presents the coordinated control of distributed energy storage systems (DESSs) in DC micro-grids.  

E-Print Network [OSTI]

) in DC micro-grids. In order to balance the state-of-charge (SoC) of each energy storage unit (ESU--Droop control; distributed energy storage system (DESS); DC micro-grids; state-of-charge (SoC) I. INTRODUCTION ith the objective to electrify remote areas and energy islands, the micro-grid concept is gaining more

Vasquez, Juan Carlos

4

Energy storage sizing for improved power supply availability during extreme events of a microgrid with renewable energy sources.  

E-Print Network [OSTI]

??A new Markov chain based energy storage model to evaluate the power supply availability of microgrids with renewable energy generation for critical loads is proposed.… (more)

Song, Junseok

2012-01-01T23:59:59.000Z

5

August 22 ESTAP Webinar: A Solar Storage Microgrid for the Energy City of the Future  

Broader source: Energy.gov [DOE]

On Friday, August 22, 2014 from 1 - 2 p.m. ET, Clean Energy State Alliance will host a webinar to discuss a project to build a solar plus storage microgrid located in Rutland, Vermont. OE is partnering with the State of Vermont Public Service, Green Mountain Power, and Dynapower on a resilience microgrid that will combine 2.5 MW of solar generation with 4MW of energy storage. Webinar speakers include OE's Imre Gyuk, Energy Storage Program Manager. The event is free but registration is required.

6

Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation  

Science Journals Connector (OSTI)

Abstract The microgrid concept has been closely investigated and implemented by numerous experts worldwide. The first part of this paper describes the principles of microgrid design, considering the operational concepts and requirements arising from participation in active network management. Over the last several years, efforts to standardize microgrids have been made, and it is in terms of these advances that the current paper proposes the application of IEC/ISO 62264 standards to microgrids and Virtual Power Plants, along with a comprehensive review of microgrids, including advanced control techniques, energy storage systems, and market participation in both island and grid-connection operation. Finally, control techniques and the principles of energy-storage systems are summarized in a comprehensive flowchart.

Omid Palizban; Kimmo Kauhaniemi; Josep M. Guerrero

2014-01-01T23:59:59.000Z

7

Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012)  

Broader source: Energy.gov (indexed) [DOE]

Todd Olinsky-Paul Clean Energy States Alliance (CESA) ESTAP is a project of CESA Clean Energy States Alliance (CESA) is a non-profit organization providing a forum for states to work together to implement effective clean energy policies & programs: - Information Exchange - Partnership Development - Joint Projects (National RPS Collaborative, Interstate Turbine Advisory Council) - Clean Energy Program Design & Evaluations - Analysis and Reports CESA is supported by a coalition of states and public utilities representing the leading U.S. public clean energy programs. ESTAP* Overview Purpose: Create new DOE-state energy storage partnerships and advance energy storage, with technical assistance from Sandia National Laboratories Focus: Distributed electrical energy

8

Microgrid Activities | Department of Energy  

Energy Savers [EERE]

Microgrid(tm) Electricity Advisory Committee Technology Development Smart Grid Demand Response Federal Smart Grid Task Force Distributed Energy Microgrids Recovery Act...

9

Stochastic scenario-based model and investigating size of battery energy storage and thermal energy storage for micro-grid  

Science Journals Connector (OSTI)

Abstract Energy storage systems (ESS) are designed to accumulate energy when production exceeds demand and to make it available at the user’s request. They can help match energy supply and demand, exploit the variable production of renewable energy sources (e.g. solar and wind), increase the overall efficiency of the energy system and reduce CO2 emissions. This paper presents a unit commitment formulation for micro-grid that includes a significant number of grid parallel PEM-Fuel Cell Power Plants (PEM-FCPPs) with ramping rate and minimum up and down time constraints. The aim of this problem is to determine the optimum size of energy storage devices like hydrogen, thermal energy and battery energy storages in order to schedule the committed units’ output power while satisfying practical constraints and electrical/thermal load demand over one day with 15 min time step. In order to best use of multiple PEM-FCPPs, hydrogen storage management is carried out. Also, since the electrical and heat load demand are not synchronized, it could be useful to store the extra heat of PEM-FCPPs in the peak electrical load in order to satisfy delayed heat demands. Due to uncertainty nature of electrical/thermal load, photovoltaic and wind turbine output power and market price, a two-stage scenario-based stochastic programming model, where the first stage prescribes the here-and-now variables and the second stage determines the optima value of wait-and-see variables under cost minimization. Quantitative results show the usefulness and viability of the suggested approach.

Sirus Mohammadi; Ali Mohammadi

2014-01-01T23:59:59.000Z

10

Regenerative air energy storage for remote wind–diesel micro-grid communities  

Science Journals Connector (OSTI)

Abstract Remote communities beyond the reach of conventional electricity grids primarily rely on diesel generators (DG) to supply electricity. The systems in these communities are costly to operate because of the high price of transporting diesel to remote areas, and the low overall efficiencies caused by part-load operation of the DG. There is increasing interest to use wind energy converters (WEC) to supplement DG, thereby lowering the fuel consumption and operating costs. In order to use WEC to reduce the economic and environmental burden that DG have on remote communities, an energy storage system can be incorporated to buffer both generation and demand. This can avoid curtailment of the WEC, operate the DG at optimal efficiency, and reduce the necessary maximum installed generator capacities. Regenerative air energy storage (RAES) is a form of compressed air storage that is suitable for deployment in remote communities due to its ability to utilize waste heat from DG to boost the roundtrip efficiency of energy storage. This article presents a numerical model for a RAES system operating in a wind-diesel micro-grid. Simulations are run for varying WEC penetration levels and RAES energy capacities. The results show that in systems with WEC penetration less than 75%, increasing WEC capacity is more economic than adding a RAES system. Above penetration rates of 75%, the use of RAES achieves increased diesel savings with only slightly longer payback than simple wind-diesel systems. In the remote Canadian community case study, the optimal RAES system is 0.5 MW and 1 MW h with a WEC penetration rate of approximately 75%. A larger RAES results in further fuel savings, and thus environmental benefit, with only marginal increase in simple payback period.

Sebastian C. Manchester; Lukas G. Swan; Dominic Groulx

2014-01-01T23:59:59.000Z

11

Effect of Heat and Electricity Storage and Reliability on Microgrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effect of Heat and Electricity Storage and Reliability on Microgrid Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Title Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Publication Type Report Year of Publication 2009 Authors Stadler, Michael, Chris Marnay, Afzal S. Siddiqui, Judy Lai, Brian Coffey, and Hirohisa Aki Pagination 106 Date Published 03/2006 Publisher LBNL City Berkeley Keywords consortium for electric reliability technology solutions (certs), energy analysis and environmental impacts department Abstract Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals:

12

A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded Microgrid  

Science Journals Connector (OSTI)

Abstract This paper presents a method for determining optimal size of a battery energy storage system (BESS) for primary frequency control of a Microgrid. A Microgrid is assumed to be portion of a low voltage distribution feeder including sources such as microturbine, diesel generator, fuel cell and photovoltaic system with slow response for frequency control. A BESS due to its very fast dynamic response can play an important role in restoring balance between supply and demand. In this paper, overloading capacity of the BESS is employed for fast handling of the primary frequency control of a MG. To achieve this purpose, by considering overloading characteristics and limitations of the state of charge (SOC) of battery, a control scheme of dc/ac converter for the BESS is developed. Based on this scheme, overloading capacity of the BESS and its permissible duration for participating in primary frequency control is determined. Simulation studies are carried out using PSCAD/EMTDC software package to evaluate the performance of the proposed control scheme.

Mohammad Reza Aghamohammadi; Hajar Abdolahinia

2014-01-01T23:59:59.000Z

13

Definition: Microgrids | Open Energy Information  

Open Energy Info (EERE)

Microgrids Microgrids Jump to: navigation, search Dictionary.png Microgrids A microgrid is an electrical system that includes multiple loads and distributed energy resources that can be operated in parallel with the broader utility grid or as an electrical island.[1] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition No reegle definition available, No reegle definition available., Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Currently, industrial countries generate most of their electricity in large centralized facilities, such as fossil fuel nuclear or hydropower plants. These plants have excellent economies of scale, but usually

14

Energy Security: Microgrid Planning and Design (Presentation)  

SciTech Connect (OSTI)

Energy Security: Microgrid Planning and Design presentation to be given at the 2012 WREF in Denver, CO.

Giraldez, J.

2012-05-01T23:59:59.000Z

15

2012 SG Peer Review - Energy Surety, Microgrids - Mike Hightower, SNL  

Broader source: Energy.gov (indexed) [DOE]

Support of Renewable and Distributed Support of Renewable and Distributed System Integration and Microgrids Mike Hightower Sandia National Laboratories June 7, 2012 December 2008 Support RDSI and Microgrids Objective Life-cycle Funding Summary ($K) FY 09 to FY 11 FY12, authorized FY13, requested Out-year(s) ~$2000K $870K $1000K $1000K Technical Scope To address current shortcomings of power reliability and security, Sandia is investigating advanced microgrid approaches to locate more secure and robust distributed energy generation and storage sources near loads as a way to better manage power generation and to improve overall power reliability and security. Microgrids are equally applicable to military, industrial, and utility distribution applications. Sandia's microgrid research utilizes smart grid

16

Battery energy storage system for frequency support in microgrids and with enhanced control features for uninterruptible supply of local loads  

Science Journals Connector (OSTI)

Abstract This paper proposes a battery energy storage system (BESS) to support the frequency control process within microgrids (MG) with high penetration of renewable energy sources (RES). The solution includes features that enhance the system’s stability and security of supply. The BESS can operate connected to MG or islanded and the transition between the two states is seamlessly coordinated by an original method. The BESS active power response is governed by an improved frequency controller on two layers, namely primary and secondary. It responds to frequency deviations by combining a conventional droop control method with a virtual inertia function to improve the system’s stability. The proposed BESS may also compensate the power of the local loads, so that the MG frequency transients can be reduced and, depending on the remaining inverter capacity, voltage support in the point of common coupling with the MG may be provided. If the MG power quality degrades in terms of the voltage and frequency, the BESS and the local load are disconnected from the MG and continue operating islanded. The BESS is reconnected to the MG after a smoothly resynchronization of the local voltage with the MG, without disturbing the local loads supply. Simulation and experimental results assesses the proposed control solutions.

I. Serban; C. Marinescu

2014-01-01T23:59:59.000Z

17

Economic and Emergency Operations of the Storage System in a Microgrid.  

E-Print Network [OSTI]

?? Storage system is one of the critical components of the microgrid. Storage system has broad applicability in short-term and long-term operations of microgrid. Storage… (more)

Shaghayegh, Bahramirad

2012-01-01T23:59:59.000Z

18

Advanced concepts for controlling energy surety microgrids.  

SciTech Connect (OSTI)

Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

Menicucci, David F.; Ortiz-Moyet, Juan

2011-05-01T23:59:59.000Z

19

Microgrid Workshop Report August 2011 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Microgrid Workshop Report August 2011 Microgrid Workshop Report August 2011 Microgrid Workshop Report August 2011 The U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) held the Microgrid Workshop on August 30-31, 2011, in San Diego, California. The purpose of the workshop was to convene experts and practitioners to assist the DOE in identifying and prioritizing research and development (R&D) areas in the field of microgrids. The targets of the OE microgrid initiative are to develop commercial scale microgrid systems capable of reducing outage time of required loads by >98% while reducing emissions by >20% and improving system energy efficiencies by >20%, by 2020. Microgrid Workshop Report August 2011.pdf More Documents & Publications

20

2012 Microgrid Workshop Summary Released | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2012 Microgrid Workshop Summary Released 2012 Microgrid Workshop Summary Released 2012 Microgrid Workshop Summary Released September 13, 2012 - 2:22pm Addthis The Department of Energy has released the summary report from the July 30-31, 2012 Microgrid Workshop presented by the Office of Electricity Delivery and Energy Reliability at the Illinois Institute of Technology in Chicago. The workshop was held in response to discussions at the preceding DOE Microgrid Workshop, held in August 2011, which called for sharing lessons learned and best practices for system integration from existing projects in the U.S. (including military microgrids) and internationally. In addition, the purpose of the workshop was to determine system integration gap areas in meeting the DOE program 2020 targets for microgrids and to define specific R&D activities for the needed, but unmet,

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Your own energy "island"? ORNL microgrid could standardize small...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Your own energy "island"? ORNL microgrid could standardize small, self-sustaining electric grids (hi-res image) When Department of Energy and Oak Ridge National Laboratory...

22

Hybrid Renewable Energy Investment in Microgrid Hao Wang, Jianwei Huang  

E-Print Network [OSTI]

Hybrid Renewable Energy Investment in Microgrid Hao Wang, Jianwei Huang Network Communications: {haowang, jwhuang}@ie.cuhk.edu.hk Abstract--Both solar energy and wind energy are promising renewable the hybrid renewable energy investment in the microgrid. We jointly consider the investment and operation

Huang, Jianwei

23

Expert energy management of a micro-grid considering wind energy uncertainty  

Science Journals Connector (OSTI)

Abstract Recently, the use of wind generation has rapidly increased in micro-grids. Due to the fluctuation of wind power, it is difficult to schedule wind turbines (WTs) with other distributed energy resources (DERs). In this paper, we propose an expert energy management system (EEMS) for optimal operation of \\{WTs\\} and other \\{DERs\\} in an interconnected micro-grid. The main purpose of the proposed EEMS is to find the optimal set points of \\{DERs\\} and storage devices, in such a way that the total operation cost and the net emission are simultaneously minimized. The EEMS consists of wind power forecasting module, smart energy storage system (ESS) module and optimization module. For optimal scheduling of WTs, the power forecasting module determines the possible available capacity of wind generation in the micro-grid. To do this, first, an artificial neural network (ANN) is used to forecast wind speed. Then, the obtaining results are used considering forecasting uncertainty by the probabilistic concept of confidence interval. To reduce the fluctuations of wind power generation and improve the micro-grid performances, a smart energy storage system (ESS) module is used. For optimal management of the ESS, the comprehensive mathematical model with practical constraints is extracted. Finally, an efficient modified Bacterial Foraging Optimization (MBFO) module is proposed to solve the multi-objective problem. An interactive fuzzy satisfying method is also used to simulate the trade-off between the conflicting objectives (cost and emission). To evaluate the proposed algorithm, the EEMS is applied to a typical micro-grid which consists of various DERs, smart ESS and electrical loads. The results show that the EEMS can effectively coordinate the power generation of \\{DERs\\} and ESS with respect to economic and environmental considerations.

Mehdi Motevasel; Ali Reza Seifi

2014-01-01T23:59:59.000Z

24

The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack  

Science Journals Connector (OSTI)

Abstract In a heat-power system, the use of distributed energy generation and storage not only improves system’s efficiency and reliability but also reduce the emission. This paper is focused on the comprehensive performance evaluation of a grid-tied microgrid, which consists of a PV system, a hydrogen fuel cell stack, a PEM electrolyzer, and a hydrogen tank. Electricity and heat are generated in this system, to meet the local electric and heat demands. The surplus electricity can be stored as hydrogen, which is supplied to the fuel cell stack to generate heat and power as needed. The performance of the microgrid is comprehensively evaluated and is compared with another microgrid without a fuel cell stack. As a result, the emission and the service quality in the first system are higher than those in the second one. But they both have the same overall performance.

Linfeng Zhang; Jing Xiang

2014-01-01T23:59:59.000Z

25

Sandia National Laboratories: distributed energy resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, Modeling & Analysis, News, News & Events,...

26

Renewable Energy Sources Optimization: A Micro-Grid Model Design  

Science Journals Connector (OSTI)

Abstract This paper analyzes the possibility to develop the simple micro-grid model in optimizing the utilization of local renewable energy for on-grid area. The proposed micro-grid model integrates the power plants driven by renewable energy sources employing micro hydro (MHP) and photovoltaic system (PV) which is connected to grid system. This model is analyzed using HOMER and MATLAB software. Based on the load profiles and the availability of water resources, the HOMER simulates the proposed micro-grid model with three options of MHP capacity. The simulation results show that the micro-grid model with the largest capacity MHP produced the lowest energy cost, greatest reduction of CO2 emission, and largest fraction of renewable energy. However, these result required the expensive initial capital cost. In addition, the PV power generation was always recommended with a minimum capacity. Hence, MATLAB results show the performances of the power plants with renewable energy sources were used maximally.

R. Nazir; H.D. Laksono; E.P. Waldi; E. Ekaputra; P. Coveria

2014-01-01T23:59:59.000Z

27

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

28

This document is a preprint version of the final paper: M. Soshinskaya, W. H. J. Graus, J. M. Guerrero, and J. C. Vasquez, "Microgrids: experiences, barriers and success factors," Renewable and Sustainable Energy Reviews, 2014 Elsevier.  

E-Print Network [OSTI]

and Sustainable Energy Reviews, 2014 ­ Elsevier. Microgrids: experiences, barriers and success factors Mariya of Sustainable Development, Utrecht University, The Netherlands b Department of Energy Technology, Aalborg; Renewable Energy; Islanding; Distributed Generation; Energy Storage; Barriers Acronyms greenhouse gas (GHG

Vasquez, Juan Carlos

29

Technical Report for "Hybrid Renewable Energy Investment in Microgrid"  

E-Print Network [OSTI]

1 Technical Report for "Hybrid Renewable Energy Investment in Microgrid" Hao Wang, Jianwei Huang University of Hong Kong Email: {haowang, jwhuang}@ie.cuhk.edu.hk Abstract--Both solar energy and wind energy are promising renewable sources to meet the world's problem of energy shortage in the near future. In this paper

Huang, Jianwei

30

Sharing Renewable Energy in Smart Microgrids , Zhichuan Huang  

E-Print Network [OSTI]

Sharing Renewable Energy in Smart Microgrids Ting Zhu , Zhichuan Huang , Ankur Sharma , Jikui Su § Department of Computer Science, University of Massachusetts Amherst ABSTRACT Renewable energy harvested from the environment is an at- tractive option for providing green energy to homes. Unfor- tunately, the intermittent

Shenoy, Prashant

31

Integration of Distributed Energy The CERTS MicroGrid Concept  

E-Print Network [OSTI]

Integration of Distributed Energy Resources The CERTS MicroGrid Concept CALIFORNIA ENERGY are being challenged to maintain the reliability of the grid and support economic transfers of power Consortium for Electric Reliability Technology Solutions White Paper on Integration of Distributed Energy

32

A Secure Energy Routing Mechanism for Sharing Renewable Energy in Smart Microgrid  

E-Print Network [OSTI]

A Secure Energy Routing Mechanism for Sharing Renewable Energy in Smart Microgrid Ting Zhu Sheng, Binghamton, NY, USA Abstract--Due to volatile and rising energy prices, smart microgrids appear and wind turbines on every house sharing renewable energy among houses. How to efficiently and optimally

Massachusetts at Amherst, University of

33

Energy Storage | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. These devices can also help make renewable energy, whose power output cannot be controlled by grid operators, smooth and dispatchable. They can also balance microgrids to achieve a good match between generation

34

Microgrid Activities  

Broader source: Energy.gov [DOE]

The Energy Department has a comprehensive portfolio of activities that focuses on the development and implementation of microgrids to further improve reliability and resiliency of the grid, help...

35

NREL: Technology Deployment - Microgrid Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microgrid Design Microgrid Design Photo of a microgrid test site at the National Wind Technology Center. NREL designs independent electrical generation and distribution systems called microgrids, which deliver energy that is reliable, economical, and sustainable. NREL experts work with military, government, industry, and other organizations that cannot afford to lose power to develop reliable and cost-effective microgrid systems. Expertise and Knowledge NREL offers microgrid technical expertise and project support that includes engineering, energy analysis and modeling, financial analysis, and energy management. Our comprehensive and innovative approach to microgrid design is called Continuously Optimized Reliable Energy (CORE) Microgrids. The CORE microgrid approach includes advantages such as:

36

Test report : Milspray Scorpion energy storage device.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

37

Energy Department Launches Microgrid Competition to Support Resiliency in Communities Across America  

Broader source: Energy.gov [DOE]

WASHINGTON – Today, the Energy Department launched the Microgrid 2014 MVP Challenge, a competition to support resiliency and adaptation in communities across America.

38

A motor-generator and supercapacitor based system for microgrid frequency stabilization.  

E-Print Network [OSTI]

??This research introduces an energy storage system to deliver microgrid frequency response. A doubly-fed induction generator (DFIG) and a squirrel cage induction machine (SCIM) are… (more)

Crispo, Richard F.

2013-01-01T23:59:59.000Z

39

Complementary Effect of Wind and Solar Energy Sources in a Microgrid  

E-Print Network [OSTI]

Complementary Effect of Wind and Solar Energy Sources in a Microgrid M. A. Barik, Student Member. Index Terms--Microgrid, renewable energy sources, reactive power mismatch, solar integration, voltage-mass energy, etc. Of them wind and solar energy is broadly used for their characteristics. This paper presents

Pota, Himanshu Roy

40

Adaptive load control of microgrids with non-dispatchable generation  

E-Print Network [OSTI]

Intelligent appliances have a great potential to provide energy storage and load shedding for power grids. Microgrids are simulated with high levels of wind energy penetration. Frequency-adaptive intelligent appliances are ...

Brokish, Kevin Martin

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

42

International Journal of Innovations in Engineering and Technology (IJIET) Optimal Rural Microgrid Energy Management Using  

E-Print Network [OSTI]

Abstract-The microgrid concept is a natural evolution of distributed resources that may be used to serve energy to customers in areas where conventional power system approaches cannot satisfy the reliability needs. Microgrids[2] may also provide support to conventional power systems that are too constrained to meet the power demands of customers. This paper presents a case study of a remote village dependent on agriculture, with no grid extension. The remote village consists of 400 people and 200 cattle including poultries, bovines, swine etc. The latitude and longitude of the study area are 30 ° 32 ’ N and 76 ° 39 ’ E respectively. The proposed model consists of Photovoltaic (PV) array, wind energy subsystem, micro hydro, biogas fueled generator and battery storage sub-system. The final goal is to maximize energy output from distributed energy resources (DERs) by Optimization using HOMER. Performance of each component of the model will be evaluated and finally sensitivity analysis will be performed to optimize the system at different conditions.

unknown authors

43

Test report : Raytheon / KTech RK30 energy storage system.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-10-01T23:59:59.000Z

44

Test report : Princeton power systems prototype energy storage system.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

45

Energy Storage  

SciTech Connect (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

46

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

47

How Microgrids Work | Department of Energy  

Office of Environmental Management (EM)

National Wind Technology Center in Colorado. | Photo courtesy of the National Renewable Energy Lab. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public...

48

Micro-grid energy dispatch optimization and predictive control algorithms; A UC Irvine case study  

Science Journals Connector (OSTI)

Abstract Distributed power and energy resources are now being used to meet the combined electric power, heating, and cooling demands of many buildings. The addition of on-site renewables and their accompanying intermittency and non-coincidence requires even greater dynamic performance from the distributed power and energy system. Load following generators, energy storage devices, and predictive energy management are increasingly important to achieve the simultaneous goals of increased efficiency, reduced emissions, and sustainable economics. This paper presents two optimization strategies for the dispatch of a multi-chiller cooling plant with cold-water thermal storage. The optimizations aim to reduce both costs and emissions while considering real operational constraints of a plant. The UC Irvine campus micro-grid operation between January 2009 and December 2013 serves as a case study for how improved utilization of energy storage can buffer demand transients, reduce costs and improve plant efficiency. A predictive control strategy which forecasts campus demands from weather predictions, optimizes the plant dispatch, and applies feedback control to modify the plant dispatch in real-time is compared to best-practices manual operation. The dispatch optimization and predictive control algorithms are shown to reduce annual utility bill costs by 12.0%, net energy costs by 3.61%, and improve energy efficiency by 1.56%.

Dustin McLarty; Carles Civit Sabate; Jack Brouwer; Faryar Jabbari

2015-01-01T23:59:59.000Z

49

Energy Storage Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power conversion equipment for energy storage Power conversion equipment for energy storage * Ultra- and super-capacitor systems * DC systems, such as commercial microgrids Partner with Us Work with NREL experts and take advantage of the state-of-the-art capabilities at the ESIF to make progress on your projects, which may range from fundamental research to applications engineering. Partners at the ESIF's Energy Storage Laboratory

50

NREL: Energy Systems Integration Facility - Prototype and Component...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DC systems such as commercial microgrids Long-duration reliability and safety tests of battery and energy storage system components Thermal energy storage materials testing...

51

Sandia National Laboratories: Microgrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mesa del Sol, Microgrid, News, News & Events, Partnership, Photovoltaic, Renewable Energy, SMART Grid, Solar, Systems Analysis, Systems Engineering The Mesa del Sol...

52

DECENTRALIZED VOLTAGE CONTROL TO MINIMIZE DISTRIBUTION LOSSES IN AN ISLANDED MICROGRID  

E-Print Network [OSTI]

power sources and energy storage systems such as batteries requires new power and voltage control-time voltage control algorithm that minimizes power losses for a microgrid supported by inverter based Microgrids can bring electricity power to rural communities or isolated military forward operation bases

Peng, Huei

53

Intelligent demand side energy management system for autonomous polygeneration microgrids  

Science Journals Connector (OSTI)

Autonomous polygeneration microgrids is a novel approach in addressing the needs of remote areas. These needs can include power, fuel for transportation in the form of hydrogen, potable water through desalination and space heating and cooling. This approach has been investigated technically and economically and has proved viable. Further research has taken place in the supervisory management of this topology using computational intelligence techniques like fuzzy logic, which has optimized the concept minimizing the sizes of the installed components. The optimal design of the system can meet, though, only the design principles and needs. In reality experience has shown that most autonomous power systems operate out of specifications very shortly after installation or after a couple of years new needs arise and it is not possible economic wise for the people to extend it. In these cases the microgrid would struggle to cover the increased needs and in the end fail, causing blackouts. A solution to this is partial load shedding in an intelligent manner. This paper presents a multi agent system for intelligent demand side management of the polygeneration microgrid topology which also includes grey prediction algorithms for better management. This approach can also be used for designing the optimal polygeneration microgrid for a given amount of an investment. The results show that the proposed intelligent demand side management system can address its design principles successfully and guaranty the most effective operation even in conditions near and over the limits of the design specification of the autonomous polygeneration microgrid.

George Kyriakarakos; Dimitrios D. Piromalis; Anastasios I. Dounis; Konstantinos G. Arvanitis; George Papadakis

2013-01-01T23:59:59.000Z

54

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

55

DERIREC 22@Microgrid (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

DERIREC 22@Microgrid (Smart Grid Project) DERIREC 22@Microgrid (Smart Grid Project) Jump to: navigation, search Project Name DERIREC 22@Microgrid Country Spain Headquarters Location Barcelona, Spain Coordinates 41.387917°, 2.169919° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.387917,"lon":2.169919,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

57

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

58

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1334E-2009 1334E-2009 Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Michael Stadler, Chris Marnay, Afzal Siddiqui, Judy Lai, Brian Coffey, and Hirohisa Aki Environmental Energy Technologies Division Revised March 2009 http://eetd.lbl.gov/EA/EMP/emp-pubs.html The work described in this paper was funded by the Office of Electricity Delivery and Energy Reliability, Renewable and Distributed Systems Integration Program in the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct

59

Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management Mike Simpson, Tony Markel, and Michael O'Keefe National Renewable Energy Laboratory INTRODUCTION OPPORTUNITY National Renewable Energy Laboratory Presented at the 4th International Conference on Integration of Renewable & Distributed Energy Resources, December 6-10 , 2010 * Albuquerque, New Mexico U.S. military bases, such as Fort Carson, are interested in opportunities to lower energy consumption and use renewable resources. l Electricity GCV Micro-Grid The Smith Electric Newton all-electric truck Fort Carson Photovoltaic Installation NREL PIX 17631 NREL PIX # 17394 Natural Gas Renewable Energy Truck Fleet Diesel Generators

60

Building sustainable energy systems: Homeostatic control of grid-connected microgrids, as a means to reconcile power supply and energy demand response management  

Science Journals Connector (OSTI)

Abstract The issue of worldwide over consumption and squandering of electrical energy has resulted in what one might call an energy obesity problem in terms of energy intake and its expenditure. It is indeed something that must change if modern society is to become sustainable someday. This is to be realized in conjunction with adequate government policies and innovative strategies aimed at effectively integrating non-conventional renewable energies (NCRE), with thriftiness and energy efficiency (EE) – the three pillars of energy sustainability (ES) – in today?s electric power systems generation and distribution infrastructure. This ought to be done in a way that incorporates them jointly, as part of a comprehensive energy strategy to propitiate a wider penetration of distributed generation (DG) solutions. Departing from mainstream literature on the subject, this paper proposes such strategies for integrating hybrid micro-generation power systems to the grid through homeostatic control (HC), as a means to reconcile power supply and energy demand response management (EDRM). These strategies can be designed and implemented in the microgrid?s supervisory control system for the purpose of eliciting EE and thriftiness in consumers to build ES in the system. The theoretical model behind the HC strategies is presented and a numerical example is provided, using real electricity consumption data of a small rural community in Chile. Upon examining a particular set of criteria designed to control renewable power (RP) supply from a grid-tie microgrid to residential consumers, simulation results show that the model proves effective when testing such criteria for different power supply scenarios. Particularly revealing is the role of the energy storage system (ESS) – the energy buffer – in the HC strategies being proposed and the difference that it makes in eliciting thrifty, efficient energy consumption as a result of individual and collective efforts to ensure energy sustainability of the system as a whole.

Franco Fernando Yanine; Federico I. Caballero; Enzo E. Sauma; Felisa M. Córdova

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Electric Storage in California's Commercial Buildings  

E-Print Network [OSTI]

Distributed photovoltaic generation and energy storageenergy management in buildings and microgrids with e.g. installed Photovoltaic (energy storage, TS – thermal storage, FB – Flow Battery, AC – Absorption Chiller, ST – solar thermal system, PV – photovoltaic.

Stadler, Michael

2014-01-01T23:59:59.000Z

62

Renewable generation and demand response integration in micro-grids: development of a new energy management and control system  

Science Journals Connector (OSTI)

The aim of this research resides in the development of an energy management and control system to control a micro-grid based on the use of renewable generation and demand resources to introduce the application of...

Carlos Álvarez-Bel; Guillermo Escrivá-Escrivá; Manuel Alcázar-Ortega

2013-11-01T23:59:59.000Z

63

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

64

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

65

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

66

DoD Energy Innovation on Military Installations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LPG Other Test Bed Focus 4 Smart Secure Installation Energy Management * Microgrids * Energy Storage * Ancillary Service Markets Efficient Integrated Buildings * Design,...

67

Distribution Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

charging and electrolyzers Energy storage Building and industrial loads and demand response Smart grid sensing, automation, and microgrids Informed efforts in technology...

68

Optimal energy management of a micro-grid with renewable energy resources and demand response  

Science Journals Connector (OSTI)

With the introduction of smart energy grids and extensive penetration of renewable energy resources in distribution networks Micro-Grids (MGs) which are comprised of various alternative energy resources and Advanced Metering Infrastructure (AMI) systems for better implementation of DR programs are effectively employed. The design and development of Smart Energy Management Systems (SEMSs) for MGs are interesting and attractive research problems. In this paper a new SEMS architecture is presented to solve the multi-objective operation management and scheduling problem in a typical MG while considering different energy resource technologies Plug-in Hybrid Electric Vehicles (PHEVs) and DR programs. The energy management problem is formulated as a constrained mixed integer nonlinear multi-objective optimization problem in which the MG's total operating cost and net emissions must be minimized simultaneously. Three different optimization algorithms are used to solve the above mentioned problem and their outputs (Pareto optimal solutions) for the same problem are compared and analyzed.

M. Parvizimosaed; F. Farmani; A. Anvari-Moghaddam

2013-01-01T23:59:59.000Z

69

2012 Microgrid Workshop Summary Released  

Broader source: Energy.gov [DOE]

The Department of Energy has released the summary report from the July 30-31, 2012 Microgrid Workshop presented by the Office of Electricity Delivery and Energy Reliability at the Illinois Institute of Technology in Chicago. The workshop was held in response to discussions at the preceding DOE Microgrid Workshop, held in August 2011, which called for sharing lessons learned and best practices for system integration from existing projects in the U.S. (including military microgrids) and internationally.

70

Abstract Microgrids are a new concept for future energy dis-tribution systems that enable renewable energy integration and  

E-Print Network [OSTI]

distributed generators (DGs) that are usually integrated via power-electronic inverters. In order to enhance generators (DGs) has been significantly improved. Inverter-interfaced DGs can be flexibly deployed in power1 Abstract ­ Microgrids are a new concept for future energy dis- tribution systems that enable

Collins, Emmanuel

71

Energy Storage | Department of Energy  

Energy Savers [EERE]

Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over...

72

Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

73

Energy Storage  

Science Journals Connector (OSTI)

Any energy system includes at least two essential entities, namely, energy generators and energy consumers. Each of these elements has its associated characteristics, and it is not necessary that at all times ...

?brahim Dinçer; Calin Zamfirescu

2012-01-01T23:59:59.000Z

74

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

75

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

76

NREL: Energy Storage - Energy Storage Thermal Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

77

NREL: Energy Storage - Energy Storage Systems Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

78

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

79

Fuel Cells: Thermodynamic Engine to a Sustainable Energy Future Richard T. Carlin  

E-Print Network [OSTI]

sustainable, reliable electrical grids and micro-grids. Integration of fuel cell systems with renewable penetration; enhances grid and micro-grid power management; provides efficient electrical power generation from biomass; provides easily scalable micro-grid energy storage; and enables long

Levi, Anthony F. J.

80

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Power Characteristics of a Fuel Cell Micro-grid with Wind Power Generation  

Science Journals Connector (OSTI)

A micro-grid technique is predicted to be effective with ... , when renewable energy is connected to a micro-grid, there is potential to reduce the amount ... discharge [21, 22, 91]. A micro-grid has an interconn...

2009-01-01T23:59:59.000Z

82

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

83

Thermochemical Energy Storage  

Broader source: Energy.gov [DOE]

This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013.

84

Energy Storage Systems  

SciTech Connect (OSTI)

Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

85

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

86

Energy Storage Systems 2010 Update Conference Presentations - Day 3,  

Broader source: Energy.gov (indexed) [DOE]

2 2 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the second session of Day 3, chaired by SNL's Stan Atcitty, are below. ESS 2010 Update Conference - Demonstration of Microgrids with Storage & Senior Design Class - Satish Ranade, NMSU.pdf ESS 2010 Update Conference - Development of an Integrated Power Controller Based on HT SOI and SiC - Joseph Henfling, SNL.pdf ESS 2010 Update Conference - Power Electrontics Reliability - Mark Smith,

87

Energy Storage Systems 2010 Update Conference Presentations - Day 3,  

Broader source: Energy.gov (indexed) [DOE]

3, Session 2 3, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the second session of Day 3, chaired by SNL's Stan Atcitty, are below. ESS 2010 Update Conference - Demonstration of Microgrids with Storage & Senior Design Class - Satish Ranade, NMSU.pdf ESS 2010 Update Conference - Development of an Integrated Power Controller Based on HT SOI and SiC - Joseph Henfling, SNL.pdf

88

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

89

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

90

The Role of Microgrids in Helping to Advance the Nation’s Energy System  

Broader source: Energy.gov [DOE]

Microgrids, which are localized grids that can disconnect from the traditional grid to operate autonomously and help mitigate grid disturbances to strengthen grid resilience, can play an important...

91

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

92

Web-Based Economic and Environmental Optimization of Microgrids  

E-Print Network [OSTI]

Our Contribution to Microgrids Technology research TestingEconomic & environmental technology selection Economic &Lai Environmental Energy Technologies Division January 20,

Stadler, Michael

2014-01-01T23:59:59.000Z

93

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network [OSTI]

energy costs, CO 2 emissions, or multiple objectives of providing services to a building microgrid produces technology neutral

Stadler, Michael

2011-01-01T23:59:59.000Z

94

Sandia National Laboratories: evaluate energy storage opportunity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

95

Sandia National Laboratories: implement energy storage projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

96

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

97

The Role of Microgrids in Helping to Advance the Nation's Energy...  

Broader source: Energy.gov (indexed) [DOE]

distributed energy resources such as combined heat and power, energy storage, and demand response. In addition, the use of local sources of energy to serve local loads helps...

98

Load Response Characteristics of a Fuel Cell Micro-grid with Control of the Number of Units  

Science Journals Connector (OSTI)

The micro-grid is expected to reduce the discharge of ... in an emergency [21–23]. A micro-grid technique connects energy equipment, such as an ... cooperating piece of equipment. In forming a micro-grid, the coo...

2009-01-01T23:59:59.000Z

99

Optimal Operation for Cogenerating System of Micro-grid Network  

Science Journals Connector (OSTI)

This paper presents a mathematical model for optimal operating cogeneration of Micro-Grid Network. The electrical and thermal energy production ... solution of Optimal operation for cogenerating system of micro-grid

Phil-Hun Cho; Hak-Man Kim; Myong-Chul Shin…

2005-01-01T23:59:59.000Z

100

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Large Scale Energy Storage  

Science Journals Connector (OSTI)

This work is mainly an experimental investigation on the storage of solar energy and/or the waste heat of a ... lake or a ground cavity. A model storage unit of (1×2×0.75)m3 size was designed and constructed. The...

F. Çömez; R. Oskay; A. ?. Üçer

1987-01-01T23:59:59.000Z

102

NREL: Transportation Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

103

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Broader source: Energy.gov (indexed) [DOE]

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

104

Solar Energy Storage Methods  

Science Journals Connector (OSTI)

Solar Energy Storage Methods ... Conducting polymers have superior specific energies to the carbon-based supercapacitors and have greater power capability, compared to inorganic battery material. ... The question of load redistribution for better energetic usage is of vital importance since these new renewable energy sources are often intermittent. ...

Yu Hou; Ruxandra Vidu; Pieter Stroeve

2011-06-09T23:59:59.000Z

105

CERTS Microgrid Laboratory Test Bed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

106

Flywheel Energy Storage Module  

Broader source: Energy.gov (indexed) [DOE]

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

107

Carbon-based Materials for Energy Storage  

E-Print Network [OSTI]

Architectures for Solar Energy Production, Storage andArchitectures for Solar Energy Production, Storage and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

108

Energy Storage Computational Tool | Open Energy Information  

Open Energy Info (EERE)

Energy Storage Computational Tool Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool Agency/Company /Organization: Navigant Consulting Sector: Energy Focus Area: Grid Assessment and Integration Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Country: United States Web Application Link: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Cost: Free Northern America Language: English Energy Storage Computational Tool Screenshot References: Energy Storage Computational Tool[1] SmartGrid.gov[2] Logo: Energy Storage Computational Tool This tool is used for identifying, quantifying, and monetizing the benefits

109

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

110

2012 Microgrid Workshop Report  

Broader source: Energy.gov (indexed) [DOE]

and Energy Reliability Smart Grid R&D Program Summary Report: 2012 DOE Microgrid Workshop July 30-31, 2012 Chicago, Illinois 2012 DOE Microgrid Workshop Report Page i Acknowledgment The U.S. Department of Energy (DOE) would like to acknowledge the support provided by the organizations represented on the workshop planning committee in developing the workshop process and sessions. The preparation of this workshop report was coordinated by Energy & Environmental Resources Group, LLC (E2RG). The report content is based on the workshop session discussions, with session summary descriptions taken from the report-out presentations by individual teams during the closing plenary. Contributions to this report by all workshop participants, via expressed viewpoints during the

111

DOE Global Energy Storage Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

112

Cost versus reliability sizing strategy for isolated photovoltaic micro-grids in the developing world  

Science Journals Connector (OSTI)

Abstract For many isolated regions in the developing world micro-grids which combine photovoltaic electricity generation and battery storage may represent the most reliable and least expensive form of energy service. Due to climate induced solar resource variations, achieving high reliability levels necessitates excess generation and storage capacity which can significantly increase the end consumer cost of energy. Due to severe financial limitations, many consumers in the developing world may prefer cost versus reliability trade-offs, as long as their basic energy needs are met. Defining reliability as the percent of electricity demand a grid can deliver, we utilize a time series energy balance algorithm at hourly resolution to create cost versus reliability curves of micro-grid performance. We then propose a micro-grid sizing strategy which enables designers with knowledge of local energy needs to determine the acceptability of potential micro-grids. Our strategy relies on visualizing simulation data at increasing levels of temporal resolution to determine where energy shortfalls occur and if they interfere with high priority energy demand. A case study is presented which utilizes the proposed methods. Results suggest that the methodology has the potential to reduce the cost of service while maintaining acceptable consumer reliability.

Mitchell Lee; Daniel Soto; Vijay Modi

2014-01-01T23:59:59.000Z

113

International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)  

E-Print Network [OSTI]

microgrids 3. Match technology with end-use requirements 4.Ministry of Science and Technology, and National EnergyNew Energy and Industrial Technology Organization), Nippon

Marnay, Chris

2014-01-01T23:59:59.000Z

114

Energy Storage: Current landscape for alternative energy  

E-Print Network [OSTI]

Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

115

Energy Department Releases Grid Energy Storage Report  

Broader source: Energy.gov [DOE]

The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use.

116

2012 DOE Microgrid Workshop Summary Report (September 2012) | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Microgrid Workshop Summary Report (September 2012) DOE Microgrid Workshop Summary Report (September 2012) 2012 DOE Microgrid Workshop Summary Report (September 2012) The July 30-31, 2012 Microgrid Workshop was presented by the Office of Electricity Delivery and Energy Reliability at the Illinois Institute of Technology in Chicago. The workshop was held in response to discussions at the preceding DOE Microgrid Workshop, held in August 2011, which called for sharing lessons learned and best practices for system integration from existing projects in the U.S. (including military microgrids) and internationally. An additional purpose of the workshop was to determine system integration gap areas in meeting the DOE program 2020 targets for microgrids and to define specific R&D activities for the needed, but unmet, functional

117

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

118

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

119

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various

2011-01-01T23:59:59.000Z

120

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Carbon-based Materials for Energy Storage  

E-Print Network [OSTI]

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

122

Energy Storage - More Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage - More Information Energy Storage - More Information Energy Storage - More Information As energy storage technology may be applied to a number of areas that differ in power and energy requirements, DOE's Energy Storage Program performs research and development on a wide variety of storage technologies. This broad technology base includes batteries (both conventional and advanced), flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems. The Energy Storage Program works closely with industry partners, and many of its projects are highly cost-shared. The Program collaborates with utilities and State energy organizations such as the California Energy Commission and New York State Energy Research and Development Authority to field major pioneering storage installations that

123

Compressed Air Energy Storage System  

E-Print Network [OSTI]

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

124

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

125

Policies and demonstrations of micro-grids in China: A review  

Science Journals Connector (OSTI)

Abstract Micro-grids are effective concepts and systems to interface renewable and sustainable energy resources into utility, which has been paid significant attention. In this paper, the policies and demonstrations of micro-grids for researches and developments, as well as practical applications in China have been comprehensively reviewed. Many recent policies on renewable energy and micro-grids are summarized, which have been guiding and contributing the development of micro-grids in China. Additionally, the available micro-grids demonstrations in China are also introduced in detail. Finally, the emergency necessaries and trends of micro-grid applications in China have been concluded.

Zheng Zeng; Rongxiang Zhao; Huan Yang; Shengqing Tang

2014-01-01T23:59:59.000Z

126

Superconducting magnetic energy storage  

SciTech Connect (OSTI)

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

127

Grid Applications for Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

128

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy Storage, Facilities, Materials Science, News, News & Events, Partnership, Research...

129

Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island  

Science Journals Connector (OSTI)

Abstract This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 29–48% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote areas.

Tao Ma; Hongxing Yang; Lin Lu

2014-01-01T23:59:59.000Z

130

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy — is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

131

Micro-grid Environmental Economic Dispatch Using Improved Linearly Decreasing Weight Particle Swarm Optimization  

Science Journals Connector (OSTI)

Comparing with large power grid, micro-grid is quite different in operation method, energy ... on the environmental economic dispatch of a simplified micro-grid which consists of photovoltaic generation, wind tur...

Gujing Han; Yunhong Xia; Wuzhi Min

2014-01-01T23:59:59.000Z

132

Unbalanced Three-Phase Power Flow Calculation Based on Newton Method for Micro-Grid  

Science Journals Connector (OSTI)

Because of the connection of distributed generation to energy complementary micro-grid, there are multi-supplying points and loop ... power flow calculation based on Newton method for micro-grid is presented, in ...

Jiang Guixiu; Shu Jie; Wu Zhifeng…

2012-01-01T23:59:59.000Z

133

2012 SG Peer Review - SDE&G Borrego Springs Microgrid - Tom Bialek, SDG&E  

Broader source: Energy.gov (indexed) [DOE]

Peer Review Meeting Peer Review Meeting SDG&E Borrego Springs Microgrid Demonstration Project Thomas Bialek, PhD, PE Principal Investigator June 8, 2012 December 2008 Borrego Springs Microgrid Demonstration Project Objective Life-cycle Funding ($K) Budget Period 1 FY2008 - FY2010 Budget Period 2 FY2011 - FY2013 Total DOE Funding $1,241 $6,237 $7,477 Technical Scope Conduct a pilot scale "proof-of concept" demonstration of how advanced information- based technologies and distributed energy resources (DER) may increase asset utilization and reliability of the power grid in support of the national agenda. Establish a microgrid demonstration to prove the effectiveness of integrating multiple DER technologies, energy storage, feeder automation system technologies, and outage management

134

Lana'ai Hawaii: An Inside Look at the World's Most Advanced Renewable Energy MicroGrid  

Broader source: Energy.gov [DOE]

This is a 47-slide presentation on the performance and operation of the microgrid on the island of Lanai with multi-megawatt solar PV generation.

135

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

136

Sandia National Laboratories: solar thermal energy storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities,...

137

Sandia National Laboratories: DOE Energy Storage Systems program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

138

CFES RESEARCH THRUSTS: Energy Storage  

E-Print Network [OSTI]

CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our on their progress and findings Along with the research advances, sponsors will benefit from the visibility

Lü, James Jian-Qiang

139

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulations Reveal Ion Dynamics in Polymer Electrolyte On November 13, 2012, in Energy Storage, News, News & Events Improving battery electrolytes is highly desirable, particularly...

140

Energy storage in carbon nanoparticles.  

E-Print Network [OSTI]

??Hydrogen (H2) and methane (CH4) are clean energy sources, and their storage in carbonaceous materials is a promising technology for safe and cost effective usage… (more)

Guan, Cong.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NV Energy Electricity Storage Valuation  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

142

Microgrid Reliability Modeling and Battery Scheduling Using Stochastic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reliability Modeling and Battery Scheduling Using Stochastic Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming Title Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6309E Year of Publication 2013 Authors Cardoso, Gonçalo, Michael Stadler, Afzal S. Siddiqui, Chris Marnay, Nicholas DeForest, Ana Barbosa-Póvoa, and Paulo Ferrão Journal Journal of Electric Power Systems Research Volume 103 Pagination 61-69 Date Published 06/2013 Abstract This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6%.

143

Superconducting energy storage  

SciTech Connect (OSTI)

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

144

CARNEGIE MELLON UNIVERSITY Electric Power Micro-grids: Opportunities and Challenges  

E-Print Network [OSTI]

CARNEGIE MELLON UNIVERSITY Electric Power Micro-grids: Opportunities and Challenges for an Emerging;Electric Power Micro-grids: Barriers and opportunities for an emerging distributed energy architecture ii the value of DERs is the micro-grid architecture, which builds on conventional continuous-use DER

145

Solar energy storage: A demonstration experiment  

Science Journals Connector (OSTI)

Solar energy storage: A demonstration experiment ... A demonstration of a phase transition that can be used for heat storage. ...

Howard S. Kimmel; Reginald P. T. Tomkins

1979-01-01T23:59:59.000Z

146

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Systems New Liquid Salt Electrolytes Could Lead to Cost-Effective Flow Batteries On February 22, 2012, in Energy, Energy Storage Systems, Grid Integration, News,...

147

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

148

Energy Storage and Distributed Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diagram of molecular structure, spectrocscopic data, low-swirl flame diagram of molecular structure, spectrocscopic data, low-swirl flame Energy Storage and Distributed Resources Energy Storage and Distributed Resources application/pdf icon esdr-org-chart-03-2013.pdf EETD researchers in the energy storage and distributed resources area conduct R&D and develops technologies that provide the electricity grid with significant storage capability for energy generated from renewable sources; real-time monitoring and response technologies for the "smart grid" to optimize energy use and communication between electricity providers and consumers; and technologies for improved electricity distribution reliability. Their goal is to identify and develop technologies, policies and strategies to enable a shift to renewable energy sources at $1 per watt for a

149

NREL: Energy Storage - Laboratory Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

150

NREL: Learning - Energy Storage Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

151

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

152

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the1974. Geothermal Storage of Solar Energy, in "Governors

Authors, Various

2011-01-01T23:59:59.000Z

153

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

R. A. 8 1971, Storage of solar energy in a sandy-gravelthermal energy storage for cogeneration and solar systems,storage, solar captors for heat production 9 and heat pumps for energy

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

154

Arnold Schwarzenegger CERTS MICROGRID  

E-Print Network [OSTI]

equipment operation ... 4.0 Procedures ­ CERTS Microgrid Test Bed Lockout/Tagout 5.0 Procedures ­ General 5

155

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector ( kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

156

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

157

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

158

Department of Energy Will Hold a Batteries and Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

159

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

SciTech Connect (OSTI)

The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

2008-07-25T23:59:59.000Z

160

Part II Energy Storage Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

Zakhidov, R. A. 8 1971, Storage of solar energy in a sandy-aquifers for heat storage, solar captors for heat productionthermal energy storage for cogeneration and solar systems,

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

162

Grid Storage and the Energy Frontier Research Centers | Department...  

Broader source: Energy.gov (indexed) [DOE]

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

163

Thermal Energy Storage Technologies  

Science Journals Connector (OSTI)

Energy, the lifeline of all activities is highly ... a country. The gap present between the energy generation and the energy consumption keeps expanding with a precipitous increase in the demand for the energy, e...

R. Parameshwaran; S. Kalaiselvam

2013-01-01T23:59:59.000Z

164

Energy Programs | Advanced Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

165

Addressing the Grand Challenges in Energy Storage  

SciTech Connect (OSTI)

The editorial summarizes the contents of the special issue for energy storage in Advanced Functional Materials.

Liu, Jun

2013-02-25T23:59:59.000Z

166

Importance of Energy Storage  

Science Journals Connector (OSTI)

The world is limited, and therefore the primary energy sources are limited. Some of the primary energy sources might even become quite scarce in our lifetime.

B. K?lk??; S. Kakaç

1989-01-01T23:59:59.000Z

167

Hydrogen for Energy Storage Analysis Overview (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

competing technologies for utility- scale energy storage systems. Explore the cost and GHG emissions impacts of interaction of hydrogen storage and variable renewable resources...

168

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

169

Storage Gas Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance...

170

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

capitalcost.htm). EPRI-DOE Handbook of Energy Storage foret al. 1996, 2003, EPRI-DOE Handbook 2003, Goldstein, L. etet al. 2003, EPRI-DOE Handbook 2003 and at the Electricity

Stadler, Michael

2009-01-01T23:59:59.000Z

171

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

et al. 1996, 2003, EPRI-DOE Handbook 2003, Goldstein, L. etet al. 2003, EPRI-DOE Handbook 2003 and at the Electricitycapitalcost.htm). EPRI-DOE Handbook of Energy Storage for

Stadler, Michael

2009-01-01T23:59:59.000Z

172

Carbon Capture and Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil...

173

Photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Photochemical conversion and storage of solar energy ... In this article, the author considers the use of inorganic photochemical reactions for the conversion and storage of solar energy. ... HOMO?LUMO energy difference values compared ... ...

Charles Kutal

1983-01-01T23:59:59.000Z

174

Storage Related News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Related News Storage Related News Storage Related News November 1, 2013 November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. August 30, 2013 September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System On Monday, September 16 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on optimizing the benefits of a photovoltaic (PV) storage system with a battery. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery

175

Regenerative Fuel Cells for Energy Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regenerative Fuel Cells for Energy Storage Regenerative Fuel Cells for Energy Storage Presentation by Corky Mittelsteadt, Giner Electrochemical Systems, at the NREL Reversible Fuel...

176

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Army Collaborate on Operational Energy at Fort Devens On November 26, 2012, in Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security,...

177

Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui  

E-Print Network [OSTI]

1 Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui University's decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long. KEYWORDS. OR in Energy; Distributed Generation; Real Options; Optimal Investment. 1. INTRODUCTION

Guillas, Serge

178

Economic analysis of electric energy storage.  

E-Print Network [OSTI]

??This thesis presents a cost analysis of grid-connected electric energy storage. Various battery energy storage technologies are considered in the analysis. Life-cycle cost analysis is… (more)

Poonpun, Piyasak

2006-01-01T23:59:59.000Z

179

Electrochemical Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has been has been actively involved in the development of advanced batteries since the late 1960s when it initiated R&D on high-temperature lithium sulfur batteries. In the early 1970s, the US Department of Energy (DOE) established its first independent battery test facility at Argonne and named it the National Battery Test Laboratory (NBTL), for the purpose of conducting independent evaluations on advanced battery technologies that were potential candidates for use in battery-powered electric vehicles. NBTL incorporated a well equipped post-test analysis laboratory that was instrumental in helping to identify life-limiting mechanisms with several candidate battery technologies. Even in these early days of the battery program, Argonne was internationally

180

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

electrochemical capacitor energy storage systems. 1.2 Energyto electrochemical energy storage in TiO 2 (anatase)3D nanoarchitec- tures for energy storage and conversion,”

Wang, Hainan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES  

E-Print Network [OSTI]

temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

182

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

183

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

energy and power storage systems, Renewable and Sustainable Energyeconomical and sustainable energy storage devices. Moreover,performance and sustainable energy storage systems. Figure.

Chen, Zheng

2012-01-01T23:59:59.000Z

184

PEDOT Nanowires for Energy Storage: Synthesis and Property  

E-Print Network [OSTI]

polymer and paper-based energy storage devices”, Adv. Mater.PEDOT Nanowires for Energy Storage: Synthesis and Property Aand Carbon Materials for Energy Storage Synthesized PEDOT

Ying, Wu

2014-01-01T23:59:59.000Z

185

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

186

Modified Microgrid Concept for Rural Electrification in Africa | Open  

Open Energy Info (EERE)

Modified Microgrid Concept for Rural Electrification in Africa Modified Microgrid Concept for Rural Electrification in Africa Jump to: navigation, search Tool Summary Name: Modified Microgrid Concept for Rural Electrification in Africa Agency/Company /Organization: IEEE Sector: Energy Focus Area: Grid Assessment and Integration Topics: Co-benefits assessment, - Energy Access Resource Type: Technical report Website: ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1709540 UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English References: Modified Microgrid Concept for Rural Electrification in Africa[1] "With the population of 13.4% of the world and a land area of 15%, Africa has only 2% of the world's industrial capacity. Its per capita income is only 15% of the world average and only consumes 3% of world energy. Many

187

Microsoft Word - Microgrid Notice of Intent.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Notice of Intent to Issue Notice of Intent to Issue Funding Opportunity Announcement No.: DE-FOA-0000997 Microgrid Research, Development, and Demonstration The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) intends to issue, on behalf of the DOE Office of Electricity Delivery and Energy Reliability, a Funding Opportunity Announcement (FOA) entitled "Microgrid Research, Development, and Demonstration." The objective of this FOA is to solicit proposals for development and demonstration of commercial-scale microgrid systems having up to 10 megawatts (MW) of aggregated generation capacity. In addition, systems must be proposed that will aid the DOE Microgrid Program with meeting strategic targets by 2020, namely:  reducing outage time of critical loads by >98% at a cost comparable to non-

188

Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties  

Science Journals Connector (OSTI)

Abstract Due to the uncertain nature and limited predictability of wind and PV generated power, these resources participating in most of electricity markets are subject to significant deviation penalties during market settlements. In order to balance the unpredicted wind and PV power variations, system operators need to schedule additional reserves. This paper presents the optimal integrated participation model of wind and PV energy including demand response, storage devices, and dispatchable distributed generations in microgrids or virtual microgrids to increase their revenues in the intra-market. This market is considered 3–7 h before the delivered time, so that the amount of the contracted energy could be updated to reduce the produced power deviation of microgrid. A stochastic programming approach is considered in the development of the proposed bidding strategies for microgrid producers and loads. The optimization model is characterized by making the analysis of several scenarios and simultaneously treating three kinds of uncertainty including wind and PV power, intra-market, and imbalance prices. In order to predict these uncertainty variables, a neuro-fuzzy based approach has been applied. Historic data are used to forecast future prices and wind and PV power production in the adjustment markets. Also, a probabilistic approach based on the error of forecasted and real historic data is considered for estimating the future IM and imbalance prices of wind and PV produced power. Further, a test case is applied to example the microgrid using the Spanish market rules during one week, month, and year period to illustrate the potential benefits of the proposed joint biding strategy. The simulations results, carried out by MATLAB/optimization toolbox.

H. Shayeghi; B. Sobhani

2014-01-01T23:59:59.000Z

189

Energy Storage Safety Strategic Plan- December 2014  

Broader source: Energy.gov [DOE]

The Energy Storage Safety Strategic Plan is a roadmap for grid energy storage safety that addresses the range of grid-scale, utility, community, and residential energy storage technologies being deployed across the Nation. The Plan highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations, and makes recommendations for near- and long-term actions.

190

Fuel cells and electrochemical energy storage  

Science Journals Connector (OSTI)

Fuel cells and electrochemical energy storage ... Fuel cells and electrochemical energy storage : types of fuel cells, batteries for electrical energy storage, major batteries presently being investigated, and a summary of present major materials problems in the sodium-sulfur and lithium-alloy metal sulfide battery. ...

Anthony F. Sammells

1983-01-01T23:59:59.000Z

191

Electrochemistry: Metal-free energy storage  

Science Journals Connector (OSTI)

... % of total energy capacity will require electric-energy storage systems to be deployed. For grid-scale applications and remote generation sites, cheap and flexible storage systems are needed, but ... level as a source of potential energy) or expensive (for example, conventional batteries, flywheels and superconductive electromagnetic storage). On page 195 of this issue, Huskinson et al. ...

Grigorii L. Soloveichik

2014-01-08T23:59:59.000Z

192

Vehicle Technologies Office: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

193

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

194

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

195

Compact magnetic energy storage module  

DOE Patents [OSTI]

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

196

Compact magnetic energy storage module  

DOE Patents [OSTI]

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

Prueitt, M.L.

1994-12-20T23:59:59.000Z

197

Optimization of micro-grid system using MOPSO  

Science Journals Connector (OSTI)

Abstract Access to a reliable source of electricity is a basic need for any community as it can improve the living standards characterized via the improvement of healthcare, education, and the local economy at large. There are two key factors to consider when assessing the appropriateness of a micro-grid system, the cost-effectiveness of the system and the quality of service. The tradeoff between cost and reliability of the system is a major compromise in designing hybrid systems. In this way, optimization of a Hybrid Micro-Grid System (HMGS) is investigated. A hybrid wind/PV system with battery storage and diesel generator is used for this purpose. The power management algorithm is applied to the load, and the Multi-Objective Particle Swarm Optimization (MOPSO) method is used to find the best configuration of the system and for sizing the components. A set of recent hourly wind speed data from three meteorological stations in Iran, namely: Nahavand, Rafsanjan, and Khash, are selected and tested for the optimization of HMGS. Despite design complexity of the aforementioned systems, the results show that the MOPSO optimization model produces appropriate sizing of the components for each location. It is also suggested that the use of HMGS can be considered as a good alternative to promote electrification projects and enhance energy access within remote Iranian areas or other developing countries enjoying the same or similar climatic conditions.

Hanieh Borhanazad; Saad Mekhilef; Velappa Gounder Ganapathy; Mostafa Modiri-Delshad; Ali Mirtaheri

2014-01-01T23:59:59.000Z

198

Progress and problems in micro-grid protection schemes  

Science Journals Connector (OSTI)

Abstract Globally, gradual depletion of fossil fuel resources, poor energy efficiency and environmental pollution are among the main problems faced in the conventional power system. This leads to a new trend of generating power locally by using Distributed Energy Resources (DERs) at distribution voltage level. The concept of micro-grid has appeared as an attractive alternative for integration of \\{DERs\\} in the distribution networks which has numerous advantages in terms of reliability and power quality. Despite the advantages, several challenges are still hindering the development of micro-grids. One of the challenges is micro-grid protection, and to resolve this, researchers have been working to develop different protection schemes. The objective of this study is to review previous research works on the existing protection strategies deployed in addressing micro-grid protection issues in both grid-connected and islanded mode of operation.

Sohrab Mirsaeidi; Dalila Mat Said; Mohd. Wazir Mustafa; Mohd. Hafiz Habibuddin; Kimia Ghaffari

2014-01-01T23:59:59.000Z

199

Multi-Building Microgrids for a Distributed Energy Future in Portugal  

E-Print Network [OSTI]

from services buildings energy audits. The data was obtainedtool typically used in energy audit engineering or research

Mendes, Goncalo

2013-01-01T23:59:59.000Z

200

Sandia National Laboratories: energy storage materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nanophase Glass Ceramics for Capacitive Energy Storage.  

E-Print Network [OSTI]

??Glass ceramics are candidate dielectric materials for high energy storage capacitors. Since energy density depends primarily on dielectric permittivity and breakdown strength, glass ceramics with… (more)

Rangarajan, Badri

2009-01-01T23:59:59.000Z

202

Multi-agent system for the operation of an integrated microgrid  

Science Journals Connector (OSTI)

Operation of modern power system has become a complex problem as its focus has shifted to implementing smart grid techniques and integrating distributed renewable energy sources. Integrated microgrid is an innovative control and management architecture at distribution network level where several microgrids are electrically interconnected with each other. This paper presents a multi-agent system (MAS) for the operation of an integrated microgrid. A hierarchical control scheme is used for maximizing the power production output of local distributed generators and optimizing power exchanges among the microgrids as well as power exchange between the main distribution system and the integrated microgrid. This scheme was implemented on the multi-agent system. Simulation studies carried out on the developed system demonstrate the effectiveness of the proposed multi-agent system for the operation of an integrated microgrid.

Thillainathan Logenthiran; Dipti Srinivasan

2012-01-01T23:59:59.000Z

203

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost  

E-Print Network [OSTI]

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

Ulukus, Sennur

204

Power management of hybrid micro-grid system by a generic centralized supervisory control scheme  

Science Journals Connector (OSTI)

Abstract This paper presents a generic centralized supervisory control scheme for the power management of multiple power converters based hybrid micro-grid system. The system consists of wind generators, photovoltaic system, multiple parallel connected power converters, utility grid, ac and dc loads. Power management of the micro-grid is performed under two cases: grid mode and local mode. Central supervisory unit (CSU) generates command signal to ensure the power management during the two modes. In local mode, the dc loads in the ac–dc hybrid system can be controlled. In the case of grid mode operation, power flow between the utility grid and micro-grid is controlled. A novel feature of this paper is the incorporation of the multiple power converters. The generated command signal from the CSU can also control the operation of the multiple power converters in both grid and local modes. An additional feature is the incorporation of sodium sulfur battery energy storage system (NAS BESS) which is used to smooth the output power fluctuation of the wind farm. The effectiveness of the control scheme is also verified using real time load pattern. The simulation is performed in PSCAD/EMTDC.

Mir Nahidul Ambia; Ahmed Al-Durra; Cedric Caruana; S.M. Muyeen

2014-01-01T23:59:59.000Z

205

Center for Electrical Energy Storage Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Energy Storage DOE Logo Electrical Energy Storage DOE Logo Focus Areas 3D Interface Architectures Dynamically Responsive Interfaces Control of Interfacial Processes Theory Search Argonne ... Search Argonne Home >Center for Electrical Energy Storage > Home Directorate & Principal Investigators Management Council Executive Committee Research Staff External Advisory Committee News Science Highlights Publications & Presentations CEES-Authored and Co-Authored Cover Stories Peer-Reviewed Publications Presentations Patents Frontiers in Energy Research Awards Jobs at CEES Energy Frontier Research Centers at Argonne Center for Electrical Energy Storage - an Energy Frontier Research Center Above: An artistic rendition showing a metal-fluoride stabilized surface structure at a lithium cobalt oxide

206

Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator  

Science Journals Connector (OSTI)

Abstract This paper deals with how demand response can contribute to the better integration of renewable energy resources such as wind power, solar, small hydro, biomass and CHP. In particular, an economic evaluation performed by means of the micro-power optimization model HOMER Energy has been done, considering a micro-grid supplied by a biomass gasification power plant, operating isolated to the grid and in comparison with other generation technologies. Different scenarios have been simulated considering variations in the power production of the gasified biomass generator and different solutions to guarantee the balance generation/consumption are analyzed, demonstrating as using demand response resources is much more profitable than producing this energy by other conventional technologies by using fossil fuels.

Lina Montuori; Manuel Alcázar-Ortega; Carlos Álvarez-Bel; Alex Domijan

2014-01-01T23:59:59.000Z

207

Charging Graphene for Energy Storage  

SciTech Connect (OSTI)

Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

Liu, Jun

2014-10-06T23:59:59.000Z

208

NREL: Technology Transfer - NREL Designing Microgrid to Back Up USAFA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Designing Microgrid to Back Up USAFA Critical Loads NREL Designing Microgrid to Back Up USAFA Critical Loads January 30, 2013 NREL grid and dispatchable power experts are helping the United States Air Force Academy (USAFA) in Colorado Springs, Colorado, develop a system to maintain power to critical loads when power is unavailable from the local utility. Under an agreement with USAFA and in collaboration with Colorado Springs Utilities, NREL will design a USAFA microgrid using its Continuously Optimized Reliable Energy (CORE) Microgrid Design process. The four-step CORE process evaluates existing reports, gathers data, analyzes designs, and monitors project implementation and installation. The data gathering and preliminary generation design evaluation phases are nearly complete. Generation options identified during the preliminary

209

NREL: Technology Deployment - NREL Designing Microgrid to Back Up USAFA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Designing Microgrid to Back Up USAFA Critical Loads NREL Designing Microgrid to Back Up USAFA Critical Loads January 30, 2013 NREL grid and dispatchable power experts are helping the United States Air Force Academy (USAFA) in Colorado Springs, Colorado, develop a system to maintain power to critical loads when power is unavailable from the local utility. Under an agreement with USAFA and in collaboration with Colorado Springs Utilities, NREL will design a USAFA microgrid using its Continuously Optimized Reliable Energy (CORE) Microgrid Design process. The four-step CORE process evaluates existing reports, gathers data, analyzes designs, and monitors project implementation and installation. The data gathering and preliminary generation design evaluation phases are nearly complete. Generation options identified during the preliminary

210

Localizing Micro-grids Research for the SE Asian Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Localizing Micro-grids Research for the SE Asian Region Localizing Micro-grids Research for the SE Asian Region Speaker(s): Cheng-Guan (Michael) Quah Valerie Choy Date: December 3, 2010 - 12:00pm Location: 90-3122 This presentation discusses developments (and test-beds) of micro-grids and distributed generation systems that are on-going in Singapore and poses the question as to whether simpler versions of such systems would be applicable to meet the challenges of rural electrification and energy poverty particularly those of its closest neighbors. Southeast Asia is an ethnically and culturally diverse region comprising more than 10 nations where 160 million people still live without electricity. Off-grid electrification for rural village communities and eco-resorts using DG and micro-grid systems are conceivable but many technical, political, cultural

211

Economic analysis of using above ground gas storage devices for compressed air energy storage system  

Science Journals Connector (OSTI)

Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on...

Jinchao Liu; Xinjing Zhang; Yujie Xu; Zongyan Chen…

2014-12-01T23:59:59.000Z

212

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network [OSTI]

electric load thermal storage solar thermal storage chargingcombustion solar thermal CHP heat storage charging generateof solar thermal collectors, 1100 kWh of electrical storage,

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

213

Control and simulation of a flywheel energy storage for a wind diesel power system  

Science Journals Connector (OSTI)

Abstract Wind diesel power systems (WDPSs) are isolated microgrids which combine wind diesel generators with wind turbine generators. If the WDPS includes a short-term energy storage system (ESS) both the logistic and the dynamic operation are improved. Flywheel based energy storage systems (FESSs) have characteristics that make them very appropriate to be used as short-term ESS in WDPS, so that a FESS, is added to the WDPS. The FESS main components: electrical machine, flywheel, grid converter and electrical machine converter are described. As the main aim of the FESS in the present article is power quality improvement, a robust low cost low-speed FESS (LS-FESS) is selected. The LS-FESS which includes an asynchronous machine (ASM) and a steel flywheel is sized for a particular WDPS. The FESS power converters and ASM can be controlled as if they were a servo but, in order to attain more robustness, it is better to control the ASM converter to maintain a constant DC-voltage in the DC-link and to control the grid converter to exchange the necessary power references with the isolated grid. Finally, in order to verify the proposed low speed FESS, it is simulated along with the WDPS. Simulation results with graphs for the isolated power system frequency and voltage, active powers generated/consumed by the WDPS elements, the FESS-ASM direct and quadrature currents and FESS-flywheel speed are presented for load and wind speed steps. The simulations show a power quality improvement of the isolated microgrid due to the use of the FESS.

R. Sebastián; R. Peña-Alzola

2015-01-01T23:59:59.000Z

214

Energy Storage Systems 2007 Peer Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7 Peer Review 7 Peer Review Energy Storage Systems 2007 Peer Review The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. The agenda and ESS program overview presentation are below. Presentation categories Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Agenda.pdf ESS 2007 Peer Review - Program Overview - John Boyes, SNL.pdf More Documents & Publications Energy Storage Systems 2006 Peer Review Energy Storage & Power Electronics 2008 Peer Review - Agenda/Presentation List Energy Storage Systems 2007 Peer Review - International Energy Storage

215

Microsoft PowerPoint - DOD Microgrid 102513 SHORT.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Success Stories in DOE's Success Stories in DOE's ARRA Smart Grid Program Steve Bossart, Senior Energy Analyst Smart Grids & Microgrids for Government & Military Symposium October 24-25, 2013, Arlington, VA ‹#› Topics * OE ARRA Smart Grid Program * OE ARRA Smart Grid Progress * Case Studies/Success Stories * Life After ARRA Smart Grid ‹#› DOE OE ARRA Smart Grid Program ‹#› American Recovery and Reinvestment Act ($4.5B) * Smart Grid Investment Grants (99 projects) - $3.4 billion Federal; $4.7 billion private sector - > 800 PMUs covering almost 100% of transmission - ~ 8000 distribution automation circuits - > 15 million smart meters * Smart Grid Demonstration Projects (32 projects) - $685 million Federal; $1 billion private sector - 16 storage projects - 16 regional demonstrations

216

Microsoft Word - Grid Energy Storage December 2013  

Broader source: Energy.gov (indexed) [DOE]

Grid Energy Storage Grid Energy Storage U.S. Department of Energy December 2013 Acknowledgements We would like to acknowledge the members of the core team dedicated to developing this report on grid energy storage: Imre Gyuk (OE), Mark Johnson (ARPA-E), John Vetrano (Office of Science), Kevin Lynn (EERE), William Parks (OE), Rachna Handa (OE), Landis Kannberg (PNNL), Sean Hearne & Karen Waldrip (SNL), Ralph Braccio (Booz Allen Hamilton). 2 Table of Contents Acknowledgements ....................................................................................................................................... 1 Executive Summary ....................................................................................................................................... 4

217

Energy storage inherent in large tidal turbine farms  

Science Journals Connector (OSTI)

...Research articles 1006 154 139 140 Energy storage inherent in large tidal turbine...in channels have short-term energy storage. This storage lies in the inertia...channels. inertia|renewable energy|storage|tidal|current|power| 1...

2014-01-01T23:59:59.000Z

218

International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)  

E-Print Network [OSTI]

Canadian Solar. The all DC micro-grid project will utilizeand control) Secure micro-grid generation & distribution (Installation Smart Micro-Grid • Islanded Installation • High

Marnay, Chris

2014-01-01T23:59:59.000Z

219

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network [OSTI]

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

Peng, Dan

2013-01-01T23:59:59.000Z

220

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects |  

Broader source: Energy.gov (indexed) [DOE]

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 1, 2013 - 5:00pm Addthis On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke Energy's six deployed battery systems, which cover a wide range of battery chemistries, sizes, locations on the grid, and applications. The deployments include the Notrees Wind Storage project, which OE supports under the Recovery Act-funded Smart Grid Energy Storage Demonstration Program. The other projects are the Rankin

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Department of Computer Science  

E-Print Network [OSTI]

.32%, and a reduction in error from baseline models by up to 53%. Keywords-energy forecast models; energy informatics I that physically char- acterize a building, or are based on measured building performance data. Smart meters have analysis and machine learning methods can be used to mine sensor data and extract forecast models

Prasanna, Viktor K.

222

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

storage, thermal storage, solar thermal collectors, PVs, andis disallowed; 5. a low storage, PV, and solar thermal priceW run 4 force low storage / PV and solar thermal results run

Stadler, Michael

2009-01-01T23:59:59.000Z

223

Development of a thermal and electrical energy management in residential building micro-grid  

Science Journals Connector (OSTI)

Global warming and pressing concern about CO2 emission along with increasing fuel and oil cost have brought about great challenges for energy companies and homeowners. In this regard a potential candidate solution is widely used for Distributed Energy Resources which are capable of providing high quality low-cost heat and power to off-grid or remote facilities. To appropriately manage thermal and electrical energy a Smart Energy Management System (SEMS) with hierarchical control scheme has been presented. The developed SEMS model results in mixed integer non-linear programming optimization problem with the objective function of minimizing the operation cost as well as considering emissions. Moreover the optimization problem has been solved for deterministic and stochastic scheduling algorithms. The novelty of this work is basically reliant on using data mining approach to reduce forecasting error. Several case studies have been carried out to evaluate the performance of proposed data mining method on both energy cost and expected cost.

B. Vahidi

2014-01-01T23:59:59.000Z

224

Investigation of energy storage options for sustainable energy systems.  

E-Print Network [OSTI]

??Determination of the possible energy storage options for a specific source of energy requires a thorough analysis from the points of energy, exergy, and exergoeconomics.… (more)

Hosseini, Mehdi

2013-01-01T23:59:59.000Z

225

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

226

Microgrids for Rural Electrification  

E-Print Network [OSTI]

microgrids, electricity market design, institutional barriers, and socio-political aspects of technology adoption to inform sound policy and private decision making. Ranjit Deshmukh is a researcher- partment of Engineering and Public Policy. He is the Director of the Carnegie Mellon Electricity Industry

227

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of Miamiin soils extraction of geothermal energy heat storage in the

Authors, Various

2011-01-01T23:59:59.000Z

228

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

efficiency of the thermoelectric energy generation and battery storageefficiency of the thermoelectric energy generation and battery storagebattery electrodes suggest that the use of nanostructured materials can substantially improve the thermal management of the batteries and their energy storage efficiency.

Khan, Javed Miller

2012-01-01T23:59:59.000Z

229

Electric Storage in California's Commercial Buildings  

E-Print Network [OSTI]

or combined heat and power (CHP) in commercial buildings anda renewable energy source or CHP system at the commercialPV at (GW) microgrids adopted CHP and (GW) DG at microgrids

Stadler, Michael

2014-01-01T23:59:59.000Z

230

Storage Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Water Heaters Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Conventional storage water heaters remain the most popular type of water heating system for the home. Here you'll find basic information about how storage water heaters work; what criteria to use when selecting the right model; and some installation, maintenance, and safety tips. How They Work A single-family storage water heater offers a ready reservoir -- from 20 to

231

Energy Storage Safety Strategic Plan Now Available  

Broader source: Energy.gov [DOE]

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan also makes recommendations for near- and long-term actions.

232

Matt Rogers on AES Energy Storage  

SciTech Connect (OSTI)

The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

Rogers, Matt

2010-01-01T23:59:59.000Z

233

2014 Energy Storage Peer Review- Preliminary Agenda  

Broader source: Energy.gov [DOE]

The 2014 Energy Storage Peer Review will be held September 19-19, 2014, in Washington, DC. The preliminary agenda is available for downloading.

234

Chemical Storage and Pumping of Solar Energy  

Science Journals Connector (OSTI)

Chemical heat storage is familiar to us, in the form of carbon compounds, which are the basis of our present energy economy (wood - coal - natural gas - oil).

A. Vialaron

1981-01-01T23:59:59.000Z

235

Energy Storage for the Power Grid  

ScienceCinema (OSTI)

The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

Wang, Wei; Imhoff, Carl; Vaishnav, Dave

2014-06-12T23:59:59.000Z

236

NREL: Energy Storage - Battery Materials Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

237

Sandia National Laboratories: Energy Storage Multimedia Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sparks Students' STEM Interest First-Ever Asian MELCOR User Group Meeting DOE OE Energy Storage Safety Strategic Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure...

238

Hydrogen for Energy Storage Analysis Overview (Presentation)  

SciTech Connect (OSTI)

Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

Steward, D. M.; Ramsden, T.; Harrison, K.

2010-06-01T23:59:59.000Z

239

Design methodologies for advanced flywheel energy storage.  

E-Print Network [OSTI]

??Higher penetration of volatile renewable sources and increasing load demand are putting a strain on the current utility grid structure. Energy storage solutions are required… (more)

Hearn, Clay Stephen

2014-01-01T23:59:59.000Z

240

Energy storage in composite flywheel rotors.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: As the push continues for increased use of renewables on the electricity grid, the problem of energy storage is becoming more urgent than… (more)

Janse van Rensburg, Petrus J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microgrid Scheduling for Reliable, Cost-Effective, and Environmentally Friendly Energy Management  

Science Journals Connector (OSTI)

The model provides optimal schedules with minimal cost or reduced environmental impacts, e.g., global warming potential, while satisfying the balance of electricity supply and demand. ... (15) The environmental impact function can be described by computing the total GWP from all electricity-generating sources as follows:(2)where RenewGWPj, FuelGWPi, BGWP, and NGWP denote the GWP imposed per unit of electricity from renewable source j, fuel source i, battery, and national grid, respectively; erenewj,t, and efueli,t denote electricity directly used from renewable source j and electricity generated from fuel i at time t, separately. ... Wind, solar, and MSW energies are the renewables in the system; the expected renewable energy can be either stored to the battery or used to satisfy the demand of local loads as in eq 13. ...

Jeremy Jie Ming Kwok; Nan Yu; Iftekhar A. Karimi; Dong-Yup Lee

2012-05-31T23:59:59.000Z

242

Energy Cascading Combined with Thermal Energy Storage in Industry  

Science Journals Connector (OSTI)

The opportunities for energy conservation through the application of storage cascades has not previously been examined in...

R. J. Wood; D. T. Baldwin; P. W. O’Callaghan…

1983-01-01T23:59:59.000Z

243

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

SciTech Connect (OSTI)

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01T23:59:59.000Z

244

Energy Storage Valuation Methodology and Supporting Tool  

Broader source: Energy.gov (indexed) [DOE]

Ben Kaun Ben Kaun Sr. Project Engineer Electricity Advisory Committee: Storage Valuation Panel 6-6-13 Energy Storage Valuation Methodology and Supporting Tool 2 © 2013 Electric Power Research Institute, Inc. All rights reserved. Electric Power Research Institute (EPRI) * Independent, non-profit, collaborative research institute, with full spectrum electric industry coverage * EPRI members represent ~90% of energy delivered in the U.S. * Energy Storage Research Program has over 30 funding utility members 3 © 2013 Electric Power Research Institute, Inc. All rights reserved. Storage Valuation Can be Confusing! Renewable Integration Frequency Regulation Spinning Reserve Resource Adequacy Asset Utilization Voltage Support Reduced GHG? Lower Production Costs

245

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network [OSTI]

on-board automotive hydrogen storage. International JournalVehicular Hydrogen Storage http://www.hydrogen.energy.gov/et al. , Reversible hydrogen storage in calcium borohydride

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

246

Energy Department Releases Strategic Plan for Energy Storage Safety  

Broader source: Energy.gov [DOE]

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading, also makes recommendations for near- and long-term actions. The Energy Storage Safety Strategic Plan complements two reports released by OE earlier this year: the Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States and the Inventory of Safety-related Codes and Standards for Energy Storage Systems.

247

NREL: Vehicles and Fuels Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map NREL's Energy Storage Project is leading the charge on battery thermal management, modeling, and systems solutions to enhance the performance of fuel cell, hybrid electric, and electric vehicles (FCVs, HEVs, and EVs) for a cleaner, more secure transportation future. NREL's experts work closely with the U.S. Department of Energy (DOE), industry, and automotive manufacturers to improve energy storage devices, such as battery modules and ultracapacitors, by enhancing their thermal performance and life-cycle cost. Activities also involve modeling and simulation to evaluate technical targets and energy storage parameters, and investigating combinations of energy storage systems to increase vehicle efficiency. Much of this research is conducted at our state-of-the-art energy storage

248

Energy Harvesting Broadcast Channel with Inefficient Energy Storage  

E-Print Network [OSTI]

Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

Yener, Aylin

249

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

D. O. Energy, “Energy Storage-A Key Enabler of the Smartof storage [electric energy storage],” Power and EnergyJ. Østergaard, “Battery energy storage technology for power

Wang, Zuoqian

2013-01-01T23:59:59.000Z

250

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

Webb, C. Nelson, Compressed Air Energy Storage in Hard RockEnergy Program: Compressed Air Energy Storage, United StatesOn the other hand, compressed air energy storage is based on

Chen, Zheng

2012-01-01T23:59:59.000Z

251

Sandia National Laboratories: thermochemical energy-storage systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy-storage systems Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage,...

252

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

onto carbon nanotubes for energy-storage applications.and Carbon Nanotubes, Advanced Energy Materials, 2011, 1,Energy Storage Architectures from Carbon Nanotubes and

Chen, Zheng

2012-01-01T23:59:59.000Z

253

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

density of di?erent electrical energy stor- age systems (carbonate in electrical energy storage applications,”challenges facing electrical energy storage,” MRS Bulletin,

Wang, Hainan

2013-01-01T23:59:59.000Z

254

Sandia National Laboratories: Sandia, DOE Energy Storage Program...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integration, Energy, Energy Efficiency, Energy Storage Systems, Global Climate & Energy, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research &...

255

Joint Center for Energy Storage Research  

SciTech Connect (OSTI)

The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

Eric Isaacs

2012-11-30T23:59:59.000Z

256

Batteries and Energy Storage | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

257

Energy Storage Program Planning Document | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-008689: Categorical Exclusion Determination

258

New York's Energy Storage System Gets Recharged | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

York's Energy Storage System Gets Recharged York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the first thing to come to mind, but with a $17.1 million conditional commitment for a loan guarantee from the Department of Energy AES Energy Storage will develop a battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission

259

Energy Storage Program Planning Document | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-010738: Categorical Exclusion Determination

260

J.M. Tarascon, et al. , Electrochemical energy storage  

E-Print Network [OSTI]

opportunities for Electrochemical Energy Storage (EES) Mass storage (MW): Which technology? Compressed air #12J.M. Tarascon, et al. , Electrochemical energy storage for renewable energies CNRS, Jeudi 3 Octobre 28 TW Renewable EnergiesRenewable EnergiesRenewable Energies WHY ENERGY STORAGE ? Billionsdebarils

Canet, Léonie

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High Speed Flywheels for Integrated Energy Storage and Attitude Control  

E-Print Network [OSTI]

High Speed Flywheels for Integrated Energy Storage and Attitude Control Christopher D. Hall. Decomposition of the space of internal torques separates the attitude control functionfrom the energy storage simultaneously performing energy storage and extraction operations. 1 Introduction The power engineering

Hall, Christopher D.

262

Vehicle Technologies Office: 2013 Energy Storage R&D Progress...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Energy Storage R&D Progress Report, Sections 4-6 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 The FY 2013 Progress Report for Energy Storage...

263

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

264

Thermal Energy Storage for Vacuum Precoolers  

E-Print Network [OSTI]

radically creating high peak demands and low load factors. An ice bank thermal energy storage (TES) and ice water vapor condenser were installed. The existing equipment and TES system were computer monitored to determine energy consumption and potential... efficiency at night. The ice bank thermal energy storage system has a 4.4 year simple payback. While building ice, the refrigeration system operated at a 6.26 Coefficient of Performance (COP). The refrigeration system operated more efficiently at night...

Nugent, D. M.

265

Energy Department Releases Grid Energy Storage Report | Department of  

Broader source: Energy.gov (indexed) [DOE]

Releases Grid Energy Storage Report Releases Grid Energy Storage Report Energy Department Releases Grid Energy Storage Report December 12, 2013 - 9:48am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to a cleaner, more secure energy future, Energy Secretary Ernest Moniz today released the Energy Department's Grid Energy Storage report to the members of the Senate Energy and Natural Resources Committee. The report was commissioned at the request of Senator Ron Wyden, Committee Chairman. The report identifies the benefits of grid energy storage, the challenges that must be addressed to enable broader use, and the efforts of the Energy Department, in conjunction with industry and other government organizations, to meet those challenges.

266

Energy Department Releases Grid Energy Storage Report | Department of  

Broader source: Energy.gov (indexed) [DOE]

Releases Grid Energy Storage Report Releases Grid Energy Storage Report Energy Department Releases Grid Energy Storage Report December 12, 2013 - 9:48am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to a cleaner, more secure energy future, Energy Secretary Ernest Moniz today released the Energy Department's Grid Energy Storage report to the members of the Senate Energy and Natural Resources Committee. The report was commissioned at the request of Senator Ron Wyden, Committee Chairman. The report identifies the benefits of grid energy storage, the challenges that must be addressed to enable broader use, and the efforts of the Energy Department, in conjunction with industry and other government organizations, to meet those challenges.

267

Fact Sheet: Energy Storage Database (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Sandia National Laboratories Sandia National Laboratories List of projects, including technology details and status Interactive map of search result project locations Multiple sort options (e.g., state, type, size) to ease navigation Energy storage projects and policies across the United States are rapidly evolving and expanding. A publicly accessible central archive is increasingly essential to document these developments; to facilitate future projects; and to ease cross-sector, national, and international coordination. The U.S. Department of Energy (DOE) and Sandia National Laboratories contracted Strategen Consulting LLC to develop a database of energy storage projects and policies. When completed, the database will present current information about energy storage projects worldwide and U.S. energy storage policy in an easy-to-use and intuitive format. The database will be research-grade, unbiased,

268

Self-Assembled, Nanostructured Carbon for Energy Storage and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

269

Fact Sheet: Codes and Standards for Energy Storage System Performance...  

Broader source: Energy.gov (indexed) [DOE]

Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) The...

270

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

271

Project Profile: Innovative Thermal Energy Storage for Baseload...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

272

Fact Sheet Available: Codes and Standards for Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet Available: Codes and Standards for Energy Storage System...

273

Project Profile: Innovative Phase Change Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

274

Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Abstract: Sodium ion (Na+) batteries...

275

Sandia National Laboratories: molten salt energy storage demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

molten salt energy storage demonstration Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power,...

276

2014 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers [EERE]

Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014amr02.pdf More...

277

Sandia National Laboratories: New Mexico Renewable Energy Storage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mexico Renewable Energy Storage Task Force New Mexico Renewable Energy Storage Task Force Composite-Materials Fatigue Database Updated DOE-Sponsored Reference Model Project Results...

278

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

279

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

280

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...  

Office of Environmental Management (EM)

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) Funding Number:...

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

282

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

283

Project Profile: Novel Molten Salts Thermal Energy Storage for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power...

284

Fact Sheet: Isothermal Compressed Air Energy Storage (October...  

Broader source: Energy.gov (indexed) [DOE]

Isothermal Compressed Air Energy Storage (October 2012) Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) SustainX will demonstrate an isothermal compressed air...

285

Fact Sheet: Energy Storage Testing and Validation (October 2012...  

Broader source: Energy.gov (indexed) [DOE]

Validation (October 2012) More Documents & Publications Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) Energy Storage Systems 2012 Peer Review Presentations -...

286

2011 Annual Merit Review Results Report - Energy Storage Technologies...  

Broader source: Energy.gov (indexed) [DOE]

2011 Annual Merit Review Results Report - Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies...

287

2012 Annual Merit Review Results Report - Energy Storage Technologies...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies...

288

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

acid batteries flow battery thermal n/a n/a xiv The Effectslead/acid battery) and thermal storage, capabilities, withlifetime (a) thermal storage 1 flow battery 220$/kWh and

Stadler, Michael

2009-01-01T23:59:59.000Z

289

Underground Storage Tank Regulations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

290

Compressed air energy storage system  

DOE Patents [OSTI]

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

291

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by battery

Stadler, Michael

2009-01-01T23:59:59.000Z

292

University of Arizona Compressed Air Energy Storage  

SciTech Connect (OSTI)

Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

293

NREL: Energy Storage - Working with Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with Us Working with Us Partnering with industry, government, and universities is key to developing affordable energy storage technology and moving it into the marketplace and the U.S. economy. In collaboration with our diverse partners, we use thermal management and modeling and analysis from a vehicle systems perspective to improve energy storage devices. Much of our research is conducted at the state-of-the-art energy storage laboratory, in Golden, Colorado. There are a variety of ways to become involved with NREL's Energy Storage activities: NREL's Partnering Agreements Work collaboratively with NREL through a variety of Technology Partnership Agreements. We can help you select the most appropriate agreement for your research project. Gain access to NREL's expertise and specialized research facilities through

294

Energy Storage Systems 2005 Peer Review  

Broader source: Energy.gov [DOE]

The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on October 20, 2005 in San Francisco, CA. The agenda and ESS program overview presentation are below.

295

Solar Energy Storage in Packed Beds  

Science Journals Connector (OSTI)

Solar heating of buildingsand grain drying for example, requires the accumulation and storage of solar energy to provide heating for the night ... available on clear and partly cloudy days. Solar heating is a pro...

Wen-Jei Yang

1989-01-01T23:59:59.000Z

296

NREL: Energy Storage - Isothermal Battery Calorimeters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

100 Maximum Constant Heat Generation (W) 50 150 4,000 Working with Industry to Fine-Tune Energy Storage Designs The IBCs' capabilities make it possible for battery developers to...

297

Electrochemical Energy Storage Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

298

Using Alternative Energy Storage in UPS Applications  

Broader source: Energy.gov (indexed) [DOE]

Data Management for Data Management for CEC/DOE Energy Storage Demonstration Project Work performed under contract with Sandia National Labs Garth Corey Project Manager Project funded by the US DOE ESS Program Dr. Imre Gyuk, Program Manager Presented by Doug Dorr ESI Project Manager ddorr@eprisolutions.com 2 Presentation Outline  Project Overview and Objectives  Data acquisition status for the demonstration projects  Updates to the Energy Storage Initiative Website  Examples of Website Data Analysis 3 Project Overview and Objectives  Promote New Energy Storage Technologies that can achieve California's long range energy goals:  Increased energy utilization efficiency  Reduced demand for out of state energy procurement  Reduced overall energy costs to consumers

299

Why Systems Analysis for Energy Storage?  

Broader source: Energy.gov (indexed) [DOE]

Cost Effectiveness Evaluation, Cost Effectiveness Evaluation, DNV KEMA Modeling for CPUC Energy Storage Proceeding Energy Storage Panel, EAC Meeting June 6, 2013 Common Pitfalls  Using historical prices - Prices are likely to change due to rule modifications, changes in regulation supply resources over time, changes in regulation needs over time - Depending on the amount of storage added to the market, the introduction of storage can change market prices  Modeling deterministic behavior (perfect performance assuming knowledge of upcoming prices) - Future prices are unknown and actual revenues will likely not reflect strategy that gets maximum revenue 100% of the time  Ignoring system effects - In addition to affecting prices, certain amounts of storage can affect imports/exports

300

Sharing local energy infrastructure : organizational models for implementing microgrids and district energy systems in urban commercial districts  

E-Print Network [OSTI]

There is a growing trend in cities toward establishing localized, shared energy infrastructure. As existing energy infrastructure ages and demand increases, cities face rising energy costs and security risks combined with ...

Sherman, Genevieve Rose

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Acoustic Energy Storage in Single Bubble Sonoluminescence  

E-Print Network [OSTI]

Single bubble sonoluminescence is understood in terms of a shock focusing towards the bubble center. We present a mechanism for significantly enhancing the effect of shock focusing, arising from the storage of energy in the acoustic modes of the gas. The modes with strongest coupling are not spherically symmetric. The storage of acoustic energy gives a framework for understanding how light intensities depend so strongly on ambient gases and liquids and suggests that the light intensities of successive flashes are highly correlated.

Michael P. Brenner; Sascha Hilgenfeldt; Detlef Lohse; Rodolfo R. Rosales

1996-05-07T23:59:59.000Z

302

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

303

PNNL Solving the Energy Storage Challenge | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PNNL Solving the Energy Storage Challenge PNNL Solving the Energy Storage Challenge PNNL Solving the Energy Storage Challenge January 14, 2011 - 12:41pm Addthis PNNL teamed up with Northwest Public Television to produce a video on their effort on energy storage, "Saving the Sun for a Rainy Day." Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? In order to maintain reliability from renewables, energy must be stored for when power cannot be generated -- a challenge that PNNL is working on. In conversations about renewable energy sources like solar and wind - whether here at the Energy Department or among industry leaders, scientists and students - energy storage is repeatedly identified as the tipping point between intermittency and reliability.

304

Integrated solar energy harvesting and storage  

Science Journals Connector (OSTI)

To explore integrated solar energy harvesting as a power source for low power systems, an array of energy scavenging photodiodes based on a passive-pixel architecture for CMOS imagers has been fabricated together with storage capacitors implemented using ... Keywords: energy harvesting, low-power design, photodiodes

Nathaniel J. Guilar; Travis J. Kleeburg; Albert Chen; Diego R. Yankelevich; Rajeevan Amirtharajah

2009-05-01T23:59:59.000Z

305

Project Profile: CSP Energy Storage Solutions — Multiple Technologies Compared  

Broader source: Energy.gov [DOE]

US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial, utility-scale thermal energy storage technologies and provide a path to cost-effective energy storage for CSP plants >50 MW.

306

Flywheel energy storage using superconducting magnetic bearings  

SciTech Connect (OSTI)

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

307

Dynamics and challenges of microgrids implementation  

E-Print Network [OSTI]

Microgrids have the capability of operating on an island mode as well as an integrated mode with the smart grid, depending on the requirement and objectives. Recently, microgrids projects have gained popularity both in ...

Sabhlok, Vikalp Pal

2013-01-01T23:59:59.000Z

308

State Estimation of the Micro-grid  

Science Journals Connector (OSTI)

For the goal of actual needs of power companies, this chapter develops a state estimation procedure of the micro-grid, using branch currents as state variables, ... In this chapter, an IEEE-33 nodes micro-grid is...

Jinling Lu; Guodong Zhu; Yuyang Miao

2014-01-01T23:59:59.000Z

309

Definition: Electricity Storage Technologies | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Electricity Storage Technologies Technologies that can store electricity to be used at a later time. These devices require a mechanism to convert alternating current (AC) electricity into another form for storage, and then back to AC electricity. Common forms of electricity storage include batteries, flywheels, and pumped hydro. Electricity storage can provide backup power, peaking power, and ancillary services, and can store excess electricity produced by renewable energy resources when available.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/electricity_storage_technologies [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid,

310

Sorption thermal storage for solar energy  

Science Journals Connector (OSTI)

Abstract Sorption technologies, which are considered mainly for solar cooling and heat pumping before, have gained a lot of interests for heat storage of solar energy in recent years, due to their high energy densities and long-term preservation ability for thermal energy. The aim of this review is to provide an insight into the basic knowledge and the current state of the art of research on sorption thermal storage technologies. The first section is concerned with the terminology and classification for sorption processes to give a clear scope of discussion in this paper. Sorption thermal storage is suggested to cover four technologies: liquid absorption, solid adsorption, chemical reaction and composite materials. Then the storage mechanisms and descriptions of basic closed and open cycles are given. The progress of sorption materials, cycles, and systems are also reviewed. Besides the well-known sorbents like silica gels and zeolites, some new materials, including aluminophosphates (AlPOs), silico-aluminophosphates (SAPOs) and metal-organic frameworks (MOFs), are proposed for heat storage. As energy density is a key criterion, emphais is given to the comparison of storage densities and charging tempertures for different materials. Ongoing research and development studies show that the challenges of the technology focus on the aspects of different types of sorption materials, the configurations of absorption cycles and advanced adsorption reactors. Booming progress illustrates that sorption thermal storage is a realistic and sustainable option for storing solar energy, especially for long-term applications. To bring the sorption storage solution into market, more intensive studies in fields of evaluation of advanced materials and development of efficient and compact prototypes are still required.

N. Yu; R.Z. Wang; L.W. Wang

2013-01-01T23:59:59.000Z

311

Microgrid cyber security reference architecture.  

SciTech Connect (OSTI)

This document describes a microgrid cyber security reference architecture. First, we present a high-level concept of operations for a microgrid, including operational modes, necessary power actors, and the communication protocols typically employed. We then describe our motivation for designing a secure microgrid; in particular, we provide general network and industrial control system (ICS)-speci c vulnerabilities, a threat model, information assurance compliance concerns, and design criteria for a microgrid control system network. Our design approach addresses these concerns by segmenting the microgrid control system network into enclaves, grouping enclaves into functional domains, and describing actor communication using data exchange attributes. We describe cyber actors that can help mitigate potential vulnerabilities, in addition to performance bene ts and vulnerability mitigation that may be realized using this reference architecture. To illustrate our design approach, we present a notional a microgrid control system network implementation, including types of communica- tion occurring on that network, example data exchange attributes for actors in the network, an example of how the network can be segmented to create enclaves and functional domains, and how cyber actors can be used to enforce network segmentation and provide the neces- sary level of security. Finally, we describe areas of focus for the further development of the reference architecture.

Veitch, Cynthia K.; Henry, Jordan M.; Richardson, Bryan T.; Hart, Derek H.

2013-07-01T23:59:59.000Z

312

Energy Storage Technologies: State of Development for Stationary and  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Enhancing the Smart Grid: Integrating Clean Distributed and Renewable

313

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based biofuels. SINTEF...

314

Energy Storage | Global and Regional Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainable Energy Technologies Department Sustainable Energy Technologies Department Energy Storage Group A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric vehicles - is essential for reducing oil dependency. Brookhaven National Laboratory conducts leading-edge research into two of the most promising technologies to move us closer to making such vehicles feasible, affordable and safe: solid-state hydrogen storage and lithium batteries. Brookhaven scientists are conducting basic electrochemical research to significantly improve the efficiency and reliability of fuel cells and batteries. They have launched a concerted effort of basic and applied research for the development of improved energy-storage materials and

315

Energy Storage Systems 2006 Peer Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6 Peer Review 6 Peer Review Energy Storage Systems 2006 Peer Review The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on November 2-3, 2006. Current and completed program projects were presented and reviewed by a group of industry professionals. The agenda and ESS program overview are available below. Day 1 morning session presentations Day 1 afternoon session presentations Day 2 morning session presentations Day 2 afternoon session presentations ESS 2006 Peer Review - Agenda.pdf ESS 2006 Peer Review - ESS Program Overview - John Boyes, SNL.pdf More Documents & Publications Energy Storage Systems 2007 Peer Review Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications

316

Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface  

SciTech Connect (OSTI)

GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

None

2010-10-01T23:59:59.000Z

317

Energy Hub Based on Nuclear Energy and Hydrogen Energy Storage  

Science Journals Connector (OSTI)

An ‘energy hub’ comprises of the interactions of different energy loads and sources for power generation, storage, and conversion. ... In addition, where there are technical limitations in electricity distribution such as transmission congestion, the use of hydrogen as an energy carrier to increase the efficiency and reliability of the electric grid becomes an attractive option. ... It will be able to facilitate the intermittency of renewable resources such as solar, and wind, and be able to store energy in the form of hydrogen and convert hydrogen back to electricity when demand returns. ...

Yaser Maniyali; Ali Almansoori; Michael Fowler; Ali Elkamel

2013-05-13T23:59:59.000Z

318

Macroencapsulation of Phase Change Materials for Thermal Energy Storage.  

E-Print Network [OSTI]

??The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy. Latent heat storage enables… (more)

Pendyala, Swetha

2012-01-01T23:59:59.000Z

319

Project Profile: CSP Energy Storage Solutions - Multiple Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial,...

320

Hierarchical Control and Management of Virtual Microgrids for Vehicle Electrification  

E-Print Network [OSTI]

of electrical power generation and delivery. A Smart Grid is an intelligent and automated energy grid and new types of loads such as plug-in (hybrid) electric vehicles (PEVs); (2) optimizing systemHierarchical Control and Management of Virtual Microgrids for Vehicle Electrification Feng Lina

Zhang, Hongwei

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

acid batteries flow battery thermal n/a n/a xiv The Effectscapacity electrical flow battery thermal n/a n/a source:lead/acid battery) and thermal storage, capabilities, with

Stadler, Michael

2009-01-01T23:59:59.000Z

322

Storage of Solar Thermal Energy  

Science Journals Connector (OSTI)

It is estimated that, at the present rate of consumption of (readily available stored energy in) fossil fuels, the world’s ... world are in search of new and renewable energy sources. Developing efficient and ine...

S. Kakaç; E. Paykoç; Y. Yener

1989-01-01T23:59:59.000Z

323

NREL: Energy Storage - Awards and Successes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awards and Successes Awards and Successes Photo of Research and Development 100 Award In collaboration with DOE and industry, NREL's energy storage team has received numerous awards for innovative technologies that now benefit industry and consumers around the world. R&D 100 Awards Two prestigious R&D 100 awards were won by the energy storage team. These awards, which have been called "the Nobel Prizes of applied research," are presented annually by R&D Magazine and recognize the world's top 100 technologically significant products. Current-Interrupt Charging Algorithm Developed In 2001, NREL's energy storage team, Recombination Technologies, Optima Batteries, and the Advanced Lead Acid Battery Consortium were recognized with an R&D 100 Award for developing a current-interrupt charging algorithm

324

Stationary flywheel energy storage systems. Final report  

SciTech Connect (OSTI)

The aim of this system study is to find out industrial applications of Stationary Flywheel Energy Accumulators. The economic value for the consumer and the effects on the power supply grid should be investigated. As to overall economy, compensation of short time maximum power out-put seems to be more favorable at the power stations. An additional possibility for energy storage by flywheels is given where otherwise lost energy can be used effectively, according to the successful brake energy storage in vehicles. Under this aspect the future use of flywheels in wind-power-plants seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed for instance in telecommunication systems. Especially the application for emergency power supply, in power stations and in combination with wind energy converters needs further investigation.

Gilhaus, A.; Hau, E.; Gassner, G.; Huss, G.; Schauberger, H.

1982-01-01T23:59:59.000Z

325

Optimal Demand Response with Energy Storage Management  

E-Print Network [OSTI]

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

326

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

327

Compressed Air Storage Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

328

Carbon Capture and Storage (CCS) Studies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carbon Capture and Storage (CCS) Studies Carbon Capture and Storage (CCS) Studies Fossil Energy Studies for the next 6 months,December 2008-June 2009, Carbon Capture and Storage...

329

Chemical Hydrogen Storage R & D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Hydrogen Storage R & D Chemical Hydrogen Storage R & D DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient regeneration systems for...

330

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Reference Model 5...

331

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

332

Grid Energy Storage December 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Grid Energy Storage December 2013 Grid Energy Storage December 2013 Grid Energy Storage December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy needs-including addressing climate change by relying on more energy from renewable sources-in the coming decades, while maintaining a robust and resilient electricity delivery system. By some estimates, the United States will need somewhere between 4 and 5 tera kilowatt-hours of electricity annually by 2050. Those planning and implementing grid expansion to meet this increased electric load face growing challenges in balancing economic and commercial viability, resiliency, cyber-security, and impacts to carbon emissions and environmental sustainability. Energy storage systems (ESS) will play a

333

Compressed Air Energy Storage (CAES) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Compressed Air Energy Storage (CAES) Jump to: navigation, search Contents 1 Introduction 2 Technology Description 3 Plants 4 References Introduction Compressed air energy storage (CAES) is a way to store energy that is generated at night and deliver the energy during the day to meet peak demand. This is performed by compressing air and storing it during periods of excess electricity and expanding the air through a turbine when electricity is needed. Technology Description Diabatic Diabatic compressed air energy storage is what the two existing compressed air energy storage facilities currently employ. This method is

334

Magnetic energy storage and conversion in the solar atmosphere  

Science Journals Connector (OSTI)

A review of the theoretical problems associated with preflare magnetic energy storage and conversion is presented. The review consists of three parts; preflare magnetic energy storage, magnetic energy conversion ...

D. S. Spicer

1982-01-01T23:59:59.000Z

335

Mass energy storage using off-river pumped hydro  

Science Journals Connector (OSTI)

Abstract: Energy storage assists very high penetration of variable renewable energy sources such as wind and solar. In many regions short-term off-river pumped hydro energy storage can...

Blakers, Andrew

336

The assessment of battery-ultracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

He, Yiou

2014-01-01T23:59:59.000Z

337

Control Algorithms for Grid-Scale Battery Energy Storage Systems  

E-Print Network [OSTI]

Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

338

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network [OSTI]

potential materials for thermal energy storage in buildingcoupled with thermal energy storage," Applied Energy, vol.N. Fumo, "Benefits of thermal energy storage option combined

Steen, David

2014-01-01T23:59:59.000Z

339

2012 SG Peer Review - CERTS Microgrid Test Bed - Joe Eto, LBNL  

Broader source: Energy.gov (indexed) [DOE]

Peer Peer Review Meeting Peer Review Meeting The CERTS Microgrid Test Bed g Joe Eto Lawrence Berkeley National Laboratory 7 June 2012 The CERTS Microgrid Test Bed Objective To lower the cost and improve the performance of clusters of smaller distributed energy resources and loads when operated in an integrated manner when operated in an integrated manner, i.e., as microgrids Life-cycle Funding Summary ($K) Prior to FY12, FY13, Out-year(s) Technical Scope The CERTS Microgrid Test Bed is being expanded through the addition of new hardware elements: 1) a CERTS- compatible conventional synchronous generator ; 2) an FY 12 , authorized , requested y ( ) 2500K 1000K 1000K 2500K energy management system relying on software as a service (SaaS) for dispatch; 3) a commercially available, stand-alone

340

Multi-Agent based Microgrid Coordinated Control  

Science Journals Connector (OSTI)

There are obvious advantages in collaborative work for the system based on the multi-agent technology. According to a concrete microgrid in this paper, multi-agent control system is designed based on the microgrid control goals. The structure of multi-agent microgrid control system and the specific functions of each agent are proposed, expounding the microgrid coordinated control strategies at the grid-connected and islanded state respectively. The model of microgrid based on the multi-agent is established in the MATLAB/SIMULINK. The simulation model has simulated the microgrid's characteristics of running operation performance both under the grid-connected and islanded situation. Simulation results show that multi-agent microgrid control system can fully satisfy the requirement of power balance control and inhibit frequency fluctuation under the two situation.

Zhou Xiaoyan; Liu Tianqi; Liu Xueping

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Review of DC Micro-grid Protection  

Science Journals Connector (OSTI)

In this paper, an overview of DC micro-grid is described, which includes the status of DC micro-grid protection and its future development. The paper presents the key techniques of DC micro-grid protection. So fa...

Yuhong Xie; Jia Ning; Yanquan Huang…

2013-01-01T23:59:59.000Z

342

Fault Diagnosis of Micro-grid Based on Petri Net  

Science Journals Connector (OSTI)

Micro-grid is the next generation of distribution system, ... 2010). This chapter analyzes the characteristics of Micro-grid and describes the typical form of Micro-grid. Considering the requirements of protectio...

Hongxia Wu; Guoming Yang; Ailing Zhang…

2014-01-01T23:59:59.000Z

343

Category:Smart Grid Projects - Energy Storage Demonstrations | Open Energy  

Open Energy Info (EERE)

Energy Storage Demonstrations Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects - Energy Storage Demonstrations" The following 16 pages are in this category, out of 16 total. 4 44 Tech Inc. Smart Grid Demonstration Project A Amber Kinetics, Inc. Smart Grid Demonstration Project B Beacon Power Corporation Smart Grid Demonstration Project C City of Painesville Smart Grid Demonstration Project D Duke Energy Business Services, LLC Smart Grid Demonstration Project E East Penn Manufacturing Co. Smart Grid Demonstration Project K Ktech Corporation Smart Grid Demonstration Project N New York State Electric & Gas Corporation Smart Grid Demonstration Project P Pacific Gas & Electric Company Smart Grid Demonstration Project

344

Energy Storage Systems 2007 Peer Review - Power Electronics Presentations |  

Broader source: Energy.gov (indexed) [DOE]

Power Electronics Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to power electronics are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage Systems ESS 2007 Peer Review - StatCom with Energy Storage to Smooth Intermittent Power Output of Wind Farms - Mesut Baran, NC State.pdf ESS 2007 Peer Review - Cyber-Physical Systems Distributed Control - Mariesa

345

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51 - 9060 of 28,905 results. 51 - 9060 of 28,905 results. Download EIS-0157-SA-01: Supplement Analysis Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore, Oakland Operations Office, Oakland, California http://energy.gov/nepa/downloads/eis-0157-sa-01-supplement-analysis Download Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean Energy States Aliance (CESA) hosted a webinar with Connecticut DEEP in conjuction with Sandia National Lab and DOE on State and Federal Energy Storage Technology... http://energy.gov/oe/downloads/webinar-presentation-energy-storage-solutions-microgrids-november-2012 Download Office of Information Resources National Coal Council held on May 1, 2008 http://energy.gov/management/downloads/office-information-resources-1

346

Micro-Grids for Colonias (TX)  

SciTech Connect (OSTI)

This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

2012-07-31T23:59:59.000Z

347

MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES  

E-Print Network [OSTI]

of delivered power and energy capacities. Hydraulic storage or compressed air energy storage (CAES) can be used-turbine to displace a virtual liquid piston for air compression (Figure 1). A dynamic model of the storage system. It is based upon air compression storage using a hydraulic drive, which allows relatively high conversion

Paris-Sud XI, Université de

348

Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Presentation - Energy Storage in State RPS - Dec. 19, 2011 Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery and Energy Reliability presented "Grid Energy Storage: The Big Picture" as one of four guest speakers for a webinar on energy storage and renewable portfolio standards (RPS). The webinar was hosted by the State-Federal RPS Collaborative and the Clean Energy States Alliance (CESA) to explore the role of energy storage in state RPS, including the integration of an increasingly higher penetration of renewables and energy storage as a generation resource. The webinar presentation slides are available below; the recorded webinar may be downloaded from CESA's website. Webinar Presentation - December 19 RPS and Energy Storage.pdf

349

advanced energy storage | OpenEI  

Open Energy Info (EERE)

35 35 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280435 Varnish cache server advanced energy storage Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal

350

Flow Cells for Energy Storage Workshop Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Delivery Electricity Delivery & Energy Reliability Organized by: Energy Efficiency & Renewable Energy W i t h h e l p b y : Agenda Day/Time Speaker Subject Wednesday, March 07, 2012 8:45-9:00 Adam Weber, LBNL Welcome and workshop overview 9:00-9:30 Various, EERE, OFCT Background, approach, and reversible fuel cells 9:30-9:55 Michael Perry, UTRC Renaissance in flow cells: opportunities 9:55-10:20 Joe Eto, LBNL Energy storage requirements for the smart grid 10:20-10:35 AM Break 10:35-11:00 Robert Savinell, CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre Gyuk, DOE OE Research and deployment of stationary storage at DOE

351

Thermochemical energy storage systems: modelling, analysis and design.  

E-Print Network [OSTI]

??Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems.… (more)

Haji Abedin, Ali

2010-01-01T23:59:59.000Z

352

Hydrogen storage and supply system - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

353

Energies 2014, 7, 2027-2050; doi:10.3390/en7042027 OPEN ACCESS  

E-Print Network [OSTI]

, such as renewable energy sources and combined heat and power plants, microgrids can supply electrical and heat loads of the combined heat and power (CHP) plants. The CHP plants can be used to supply both electrical and heat loads-dependent renewable power generation, energy storage devices, such as batteries, heat buffers and plug-in electric

Zhuang, Weihua

354

CERTS Microgrid Laboratory Test Bed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Submitted to IEEE Transactions on Power Delivery Submitted to IEEE Transactions on Power Delivery Abstract--. CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations,

355

Optimal Control of Residential Energy Storage Under Price Fluctuations  

E-Print Network [OSTI]

Optimal Control of Residential Energy Storage Under Price Fluctuations Peter van de ven Department habits. We formulate the problem of minimizing the cost of energy storage purchases subject to both user- gramming, energy storage, threshold policy. I. INTRODUCTION Wholesale energy prices exhibit significant

356

The Economic Case for Bulk Energy Storage in Transmission Systems  

E-Print Network [OSTI]

The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

357

Southern company energy storage study : a study for the DOE energy storage systems program.  

SciTech Connect (OSTI)

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01T23:59:59.000Z

358

Ridge Energy Storage and Grid Services LP | Open Energy Information  

Open Energy Info (EERE)

Energy Storage and Grid Services LP Energy Storage and Grid Services LP Jump to: navigation, search Name Ridge Energy Storage and Grid Services LP Place Houston, Texas Zip 77027 Product Developer of compressed air energy storage projects in the US and England. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Energy Storage R&D Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D Overview Energy Storage R&D Overview 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington...

360

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

flexibility. The DG investment opportunity is similar to aDistributed Generation Investment by a Microgrid Under06 Distributed Generation Investment by a Microgrid Under

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Advanced Microgrid: Integration and Integration and Interoperabili...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Microgrid: Integration and Integration and Interoperability (March 2014) This white paper provides a synopsis of many elements of microgrid component technologies and...

362

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

option on natural gas generation, which increases in valueL ABORATORY Distributed Generation Investment by a MicrogridORMMES’06 Distributed Generation Investment by a Microgrid

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

363

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

364

Energy Storage Research and Development 2006 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnErgy StoragE rESEarch EnErgy StoragE rESEarch and dEvElopmEnt U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2006 Progress Report for Energy Storage Research and Development Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Approved by: David Howell Manager, Energy Storage R&D January 2007 Energy Storage Research and Development FY 2006 Annual Progress Report TABLE OF CONTENTS I. INTRODUCTION ............................................................................................................... 1 I.A FreedomCAR and Vehicle Technologies Program Overview .................................. 1 I.B Energy Storage Research & Development Overview ............................................... 1

365

Test profiles for stationary energy storage applications  

SciTech Connect (OSTI)

Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Cole, J.F. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Taylor, P.A. [Energetics, Inc., Columbia, MD (United States)

1998-09-01T23:59:59.000Z

366

2012 SG Peer Review - Smart Inverter Controls and Microgrid Interoperation at DECC - Tom Rizy, ORNL  

Broader source: Energy.gov (indexed) [DOE]

g g Peer Review Meeting Smart Inverter Controls & Microgrid Interoperation at the Distributed Energy Communications & Controls (DECC) Lab ( ) D. Tom Rizy Oak Ridge National Laboratory (ORNL) June 7 th 2012 June 7 th , 2012 Smart Inverter (SI) Controls and Microgrid (MG) Interoperation Microgrid (MG) Interoperation Objectives * D l d SI l f l i l DECC Microgrid * Develop and test SI controls for multiple renewable/nonrenewable DER. * Develop MG controls and communication requirements for high penetration DER. * I l t MG t DECC L b Technical Scope * Implement MG at DECC Lab. * Transfer technology to industry. Life-cycle Funding Summary ($K) Prior to FY12 FY13 Out- Technical Scope * Develop advanced smart inverter control consisting of local droop (P-f, Q-V) control integrated with secondary closed

367

Why Two Grids Can Be Better Than One -How the CERTS Microgrid Evolved  

Broader source: Energy.gov (indexed) [DOE]

Why Two Grids Can Be Better Than One -How the CERTS Microgrid Why Two Grids Can Be Better Than One -How the CERTS Microgrid Evolved from Concept to Practice Why Two Grids Can Be Better Than One -How the CERTS Microgrid Evolved from Concept to Practice Congress, concerned about the reliability of national electricity transmission, turned to the U.S. Department of Energy (DOE) for guidance in the late 1990s. What started as a conversation about maximizing distributed generation to relieve stress on an overtaxed grid has evolved into on-the-ground applications. Proponents envision limitless industrial and commercial applications. Why Two Grids Can Be Better Than One -How the CERTS Microgrid Evolved from Concept to Practice More Documents & Publications Electricity Advisory Committee Meeting Presentations October 2011 -

368

Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations  

Broader source: Energy.gov (indexed) [DOE]

Innovations in ESS Innovations in ESS Presentations Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to innovations in energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Power Electronics ESS 2007 Peer Review - Evaluation of Lead-Carbon Storage Devices for Utility Applications - Enders Dickinson, MeadWestvaco.pdf ESS 2007 Peer Review - High Voltage Electrochemical Capacitor - David

369

A National Grid Energy Storage Strategy - Electricity Advisory Committee -  

Broader source: Energy.gov (indexed) [DOE]

Grid Energy Storage Strategy - Electricity Advisory Grid Energy Storage Strategy - Electricity Advisory Committee - December 2013 A National Grid Energy Storage Strategy - Electricity Advisory Committee - December 2013 The Electricity Advisory Committee (EAC) represents a wide cross section of electricity industry stakeholders. This document presents the EAC's vision for a national energy storage strategic plan. It provides an outline for guidance, alignment, coordination, and inspiration for governments, businesses, advocacy groups, academics, and others who share a similar vision for energy storage. The strategy addresses applications of electric storage technologies that optimize the performance of the power grid once electric power has been generated and delivered to the network. It aims to provide a framework of

370

Energy Storage Technologies: State of Development for Stationary and  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 3

371

Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) |  

Broader source: Energy.gov (indexed) [DOE]

Tehachapi Wind Energy Storage Project (October 2012) Tehachapi Wind Energy Storage Project (October 2012) Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. Southern California Edison (SCE) will test the BESS for 24 months to determine its capability and effectiveness to support 13 operational users. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects Energy Storage Systems 2010 Update Conference Presentations - Day 2,

372

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...  

Office of Environmental Management (EM)

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW...

373

Sandia National Laboratories: DOE OE Energy Storage Safety Strategic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyDOE OE Energy Storage Safety Strategic Plan Webinar Wednesday, Jan. 14 DOE OE Energy Storage Safety Strategic Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV...

374

Vehicle Technologies Office: 2013 Energy Storage R&D Progress...  

Broader source: Energy.gov (indexed) [DOE]

1-3 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 1-3 The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of...

375

Energy Storage Systems 2014 Peer Review and Update Meeting |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Systems 2014 Peer Review and Update Meeting OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. 17-19,...

376

Functionalization of Graphene for Efficient Energy Conversion and Storage  

Science Journals Connector (OSTI)

Functionalization of Graphene for Efficient Energy Conversion and Storage ... Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. ...

Liming Dai

2012-10-03T23:59:59.000Z

377

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...represent an excellent energy storage technology for the integration of renewable resources. Their...available for grid applications, with...issues facing the integration of energy storage into the...identify their challenges, and provide...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

378

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, LawrenceF.P. "Thermal Energy Storage in a Confined Aquifer- Second

Tsang, C.F.

2013-01-01T23:59:59.000Z

379

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

of Aquifer Thermal Energy Storage." Lawrence BerkeleyP, Andersen, "'rhermal Energy Storage in a Confined Aquifer~University Thermal Energy Storage Experiment." Lawrence

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

380

A COMPARISON OF THE CONDUCTOR REQUIREMENTS FOR ENERGY STORAGE DEVICES MADE WITH IDEAL COIL GEOMETRIES  

E-Print Network [OSTI]

Superconducting Magnetic Energy Storage Program," Los AlamosWisconsin Superconductive Energy Storage Project. Y2!.l,J. J. Stekly, "Magnetic Energy Storage Using Superconducting

Hassenzahl, W.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network [OSTI]

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

382

Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions  

E-Print Network [OSTI]

Deployment  of  Thermal  Energy   Storage  under  Diverse  Dincer I. On thermal energy storage systems and applicationsin research on cold thermal energy storage, International

DeForest, Nicolas

2014-01-01T23:59:59.000Z

383

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

384

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

of Aquifer Thermal Energy Storage." Lawrence Berkeleythe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

385

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

386

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

387

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network [OSTI]

D ISSERTATION Solar Energy Storage through the Homogeneousthe development of solar energy storage via liquid fuels isis an attractive solar energy storage solution. The great

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

388

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

389

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect (OSTI)

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

390

Storage/Handling | Department of Energy  

Energy Savers [EERE]

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

391

Hydrogen Storage Challenges | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Current Technology Hydrogen Storage Challenges Hydrogen Storage Challenges For transportation, the overarching technical challenge for hydrogen storage is how to store the...

392

Sandia National Laboratories: renewable energy integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Partnership, Renewable Energy, SMART Grid, Transmission Grid Integration, Transportation Energy Under...

393

BAdvanced adiabatic compressed air energy storage for the article has been accepted for inclusion  

E-Print Network [OSTI]

advantages, only compressed air energy storage (“CAES”) has the storage capacity of pumped hydro, but with

Chris Bullough; Christoph Gatzen; Christoph Jakiel; Martin Koller; Andreas Nowi; Stefan Zunft; Alstom Power; Technology Centre; Leicester Le Lh

2004-01-01T23:59:59.000Z

394

US DRIVE Electrochemical Energy Storage Technical Team Roadmap  

Broader source: Energy.gov [DOE]

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

395

Federal Energy Management Program: Covered Product Category: Gas Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Storage Water Heaters to someone by E-mail Gas Storage Water Heaters to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Google Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Delicious Rank Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

396

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

397

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics  

E-Print Network [OSTI]

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics S. K. Patil, M. Y, USA Modeling of electrostatic field distribution and energy storage in diphasic dielectrics containing to the increased energy storage density. For composites with lower volume fractions of high-permittivity inclusions

Koledintseva, Marina Y.

398

SRCMap: Energy Proportional Storage using Dynamic Consolidation Akshat Verma  

E-Print Network [OSTI]

SRCMap: Energy Proportional Storage using Dynamic Consolidation Akshat Verma Ricardo Koller Luis-Replicate- Consolidate Mapping (SRCMap), is a storage virtual- ization layer optimization that enables energy propor of SRCMap in minimizing the power con- sumption of enterprise storage systems. 1 Introduction Energy

Rangaswami, Raju

399

SINGLE STAGE GRID CONVERTERS FOR BATTERY ENERGY STORAGE  

E-Print Network [OSTI]

in the power system network such as wind and solar is still a challenge in our days. Energy storage systemsSINGLE STAGE GRID CONVERTERS FOR BATTERY ENERGY STORAGE I. Trintis*, S. Munk-Nielsen*, R presents power converters for battery energy storage systems (BESS) which can interface medium- voltage

Munk-Nielsen, Stig

400

Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications  

Broader source: Energy.gov (indexed) [DOE]

Utility & Commercial Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to utility, commercial, and rail applications of advanced energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Application of Large-Scale ESS in AEP - Ali Nourai, AEP.pdf ESS 2007 Peer Review - Iowa Stored Energy Park - Kent Holst, ISEP.pdf

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

402

Prospects for Microgrids in the Republic of South Africa  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prospects for Microgrids in the Republic of South Africa Prospects for Microgrids in the Republic of South Africa Speaker(s): S.P. Chowdhury Sunetra Chowdhury Date: October 12, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay The South African utility Eskom is the main key player for the energy business in South Africa. Eskom owns the electricity networks and most of the electricity generation, transmission and distribution leading to monopolistic energy market in the country. The South African economy is quite strong in the African Continent and the energy demand has been growing very fast in the country. Most of the current energy mix is coming from coal fired thermal power stations in addition with a small fraction from nuclear as well as open cycle gas turbine and a bit of hydro power.

403

Storage of Energy in Beryllium Oxide  

Science Journals Connector (OSTI)

The photostimulated ultraviolet emission of x-ray excited BeO has been measured as a function of the wavelength of the incident light. A maximum of emission occurs for a stimulating wavelength of ?4100 A. Experiments are described which are interpreted as showing the presence of doubly occupied traps in BeO which are analogous to the F-centers of the alkali halides. Some discussion concerning energy storage in NaCl(Ag) is included.

H. O. Albrecht and C. E. Mandeville

1956-02-15T23:59:59.000Z

404

Design and Performance of Solar Decathlon 2011 High-Penetration Microgrid: Preprint  

SciTech Connect (OSTI)

The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Solar Decathlon 2011 was held in Washington, D.C., from September 23 to October 2, 2011 . A high-penetration microgrid was designed, installed, and operated for the Solar Decathlon 2011 to grid-connect 19 highly energy-efficient, solar-powered competition houses to a single utility connection point. The capacity penetration of this microgrid (defined as maximum PV generation divided by maximum system load over a two-week period) was 74% based on 1-minute averaged data. Temporary, ground-laid conductors and electrical distribution equipment were installed to grid-connect the Solar Decathlon village, which included the houses as well as other electrical loads used by the event organizers. While 16 of the houses were connected to the 60 Hz microgrid, three houses from Belgium, China, and New Zealand were supplied with 50 Hz power. The design of the microgrid, including the connection of the houses powered by 50 Hz and a standby diesel generator, is discussed in this paper. In addition to the utility-supplied net energy meters at each house, a microgrid monitoring system was installed to measure and record energy consumption and PV energy production at 1-second intervals at each house. Bidirectional electronic voltage regulators were installed for groups of competition houses, which held the service voltage at each house to acceptable levels. The design and successful performance of this high-penetration microgrid is presented from the house, microgrid operator, and utility perspectives.

Stafford, B.; Coddington, M.; Butt, R.; Solomon, S.; Wiegand, G.; Wagner, C.; Gonzalez, B.

2012-04-01T23:59:59.000Z

405

Electrical energy storage systems: A comparative life cycle cost analysis  

Science Journals Connector (OSTI)

Abstract Large-scale deployment of intermittent renewable energy (namely wind energy and solar PV) may entail new challenges in power systems and more volatility in power prices in liberalized electricity markets. Energy storage can diminish this imbalance, relieving the grid congestion, and promoting distributed generation. The economic implications of grid-scale electrical energy storage technologies are however obscure for the experts, power grid operators, regulators, and power producers. A meticulous techno-economic or cost-benefit analysis of electricity storage systems requires consistent, updated cost data and a holistic cost analysis framework. To this end, this study critically examines the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs). Moreover, life cycle costs and levelized cost of electricity delivered by electrical energy storage is analyzed, employing Monte Carlo method to consider uncertainties. The examined energy storage technologies include pumped hydropower storage, compressed air energy storage (CAES), flywheel, electrochemical batteries (e.g. lead–acid, NaS, Li-ion, and Ni–Cd), flow batteries (e.g. vanadium-redox), superconducting magnetic energy storage, supercapacitors, and hydrogen energy storage (power to gas technologies). The results illustrate the economy of different storage systems for three main applications: bulk energy storage, T&D support services, and frequency regulation.

Behnam Zakeri; Sanna Syri

2015-01-01T23:59:59.000Z

406

Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flow Cells for Energy Flow Cells for Energy Storage Workshop to someone by E-mail Share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Facebook Tweet about Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Twitter Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Google Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Delicious Rank Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Digg Find More places to share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings

407

Concrete as a thermal energy storage medium for thermocline solar energy storage systems  

Science Journals Connector (OSTI)

Abstract Rising energy costs and the adverse effect on the environment caused by the burning of fossil fuels have triggered extensive research into alternative sources of energy. Harnessing the abundance of solar energy has been one of the most attractive energy alternatives. However, the development of an efficient and economical solar energy storage system is of major concern. According to the Department of Energy (DOE), the cost per kilowatt hour electric from current technologies which utilize solar energy is high, estimated at approximately $0.15–$0.20/kW helectric, while the unit cost to store the thermal energy is approximately $30.00/kW hthermal. Based on traditional means of producing electricity (through burning fossil fuels), the unit cost of electricity is $0.05–$0.06/kW h. Clearly, current solar energy technologies cannot compete with traditional forms of electricity generation. In response, the DOE has established a goal of reducing the cost of solar generated electricity to $0.05–$0.07/kW helectric and achieving thermal storage costs below $15.00/kW hthermal. Reduction in the cost of the storage medium is one step in achieving the stated goal. In this research program economical concrete mixtures were developed that resisted temperatures up to 600 °C. This temperature level represents a 50% increase over the operating temperature of current systems, which is approximately 400 °C. However, long-term testing of concrete is required to validate its use. At this temperature, the unit cost of energy stored in concrete (the thermal energy storage medium) is estimated at $0.88–$1.00/kW hthermal. These concrete mixtures, used as a thermal energy storage medium, can potentially change solar electric power output allowing production through periods of low to no insolation at lower unit costs.

Emerson John; Micah Hale; Panneer Selvam

2013-01-01T23:59:59.000Z

408

Leading experts to speak at battery & energy storage technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leading experts to speak at battery & energy storage technology conference adipex for sale Speakers from US Department of Energy, academia and industry to meet November 5th in...

409

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

energy storage systems (EES) have been the subject of intense study as they constitute an essential element in the development of sustainable energy

Wang, Hainan

2013-01-01T23:59:59.000Z

410

The Value of Energy Storage for Grid Applications  

Office of Scientific and Technical Information (OSTI)

The Value of Energy Storage for Grid Applications Paul Denholm, Jennie Jorgenson, Marissa Hummon, Thomas Jenkin, and David Palchak National Renewable Energy Laboratory Brendan...

411

Nanostructures for Electrical Energy Storage (NEES) | U.S. DOE...  

Office of Science (SC) Website

Nanostructures for Electrical Energy Storage (NEES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events...

412

2012 Annual Merit Review Results Report - Energy Storage Technologies...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy...

413

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network [OSTI]

energy resources DER Customer Adoption Model traditional reciprocating engine powered generator Institut für Solare

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

414

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Broader source: Energy.gov (indexed) [DOE]

Storage: The Key to a Reliable, Clean Electricity Supply Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

415

The Advanced Microgrid: Integration and Integration and Interoperability (March 2014)  

Broader source: Energy.gov [DOE]

This white paper provides a synopsis of many elements of microgrid component technologies and system configurations that can subsequently be used for an “advanced microgrid” development activity. The paper offers a compilation of microgrid status, advanced microgrid goals and requirements, new challenges and opportunities, tools for designs, and tools to strengthen infrastructure and standards activities.

416

Chapter 12 - Assessment of Thermal Energy Storage Systems  

Science Journals Connector (OSTI)

Abstract The foremost challenges of energy supply in meeting the energy demand apply to the development of energy efficient technologies to achieve energy security and environmental emissions. In the spectrum of energy-efficient technologies, thermal energy storage systems offer huge potential to bridge the mismatch between energy supply and energy demand. The overall operational performance of thermal storage systems depends on the quality of energy content and the energy degradation effects exhibited during the cyclic charging and discharging processes. The assessment pertaining to the exergy efficiency in addition to energy efficiency can have a pivotal role to enable thermal storage systems to outperform on a long-term basis.

S. Kalaiselvam; R. Parameshwaran

2014-01-01T23:59:59.000Z

417

Eurotherm Seminar #99 Advances in Thermal Energy Storage  

E-Print Network [OSTI]

Eurotherm Seminar #99 Advances in Thermal Energy Storage 1 EUROTHERM99-01-103 Convection Energy Storage 2 Nussel number. This study shows that an increase in the convection coefficient leads in this paper consists in horizontal PCM plates separated by an air flow. This is a storage system dedicated

Boyer, Edmond

418

Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II  

SciTech Connect (OSTI)

This document constitutes GE’s final report for the Microgrid Design, Development and Demonstration program for DOE’s Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energy’s Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

Sumit Bose; Michael Krok

2011-02-08T23:59:59.000Z

419

Energy Storage Systems 2009 Peer Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

09 Peer Review 09 Peer Review Energy Storage Systems 2009 Peer Review The DOE Energy Storage Systems Program (ESS) conducted an annual peer review in Seattle, WA on October 8, 2009. The 1-day conference included welcoming remarks from OE's Imre Gyuk as well as a program overview from John Boyes of Sandia National Laboratories and 11 presentations on individual projects. The agenda, program overview, and project presentations are available below. ESS 2009 Peer Review - Agenda.pdf ESS 2009 Peer Review - DOE-ESS Overview - John Boyes, SNL.pdf ESS 2009 Peer Review - Long Island Bus NaS Battery Energy Storage Project - Steve Eckroad, EPRI.pdf ESS 2009 Peer Review - Development of an Integrated Power Controller Based on HT SOI and SiC - Joseph Henfling, SNL.pdf ESS 2009 Peer Review - Large Format Carbon Enhanced VRLA Battery Test

420

Energy Storage Systems 2010 Update Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10 Update Conference 10 Update Conference Energy Storage Systems 2010 Update Conference The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations are available through the individual session links. The agenda and list of attendees are available below. Presentations Day 1 Session 1: Chaired by Imre Gyuk, DOE Session 2: Chaired by Terry Aselage, SNL Session 3: Chaired by Jun Lui, PNNL Session 4: Chaired by John Boyes, SNL Day 2 Session 1: Chaired by Imre Gyuk, DOE Session 2: Chaired by Bill Ayres, NETL

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Heat pumps and energy storage – The challenges of implementation  

Science Journals Connector (OSTI)

The wider implementation of variable renewable energy sources such as wind across the UK and Ireland will demand interconnection, energy storage and more dynamic energy systems to maintain a stable energy system that makes full use of one of our best renewable energy resources. However large scale energy storage e.g. pumped storage may be economically challenging. Therefore can thermal energy storage deployed domestically fulfil an element of such an energy storage role? Current electricity pricing is based on a ½ hourly timeframe which will be demonstrated to have some benefits for hot water heating from electrical water heaters in the first instance. However heat pumps linked to energy storage can displace fossil fuel heating systems and therefore the question is whether a renewable tariff based on “excess” wind for example is sufficient to operate heat pumps. An initial analysis of this scenario will be presented and its potential role in challenging aspects of fuel poverty.

Neil J Hewitt

2012-01-01T23:59:59.000Z

422

NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

2013-06-01T23:59:59.000Z

423

Energy Storage Systems 2014 Peer Review Presentations - Session...  

Energy Savers [EERE]

Storage Systems 2014 Peer Review Presentations - Session 9 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. 17-19,...

424

Energy Storage Systems 2014 Peer Review Presentations - Session...  

Office of Environmental Management (EM)

Storage Systems 2014 Peer Review Presentations - Session 1 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. 17-19,...

425

Energy Storage Systems 2014 Peer Review Presentations - Session...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Systems 2014 Peer Review Presentations - Session 5 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. 17-19,...

426

Latent Heat or Phase Change Thermal Energy Storage  

Science Journals Connector (OSTI)

It has been explained in sections 1.6 and 1.6.2 how phase change materials (PCM) have considerably higher thermal energy storage densities compared to sensible heat storage materials and are able to absorb or rel...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

427

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage  

E-Print Network [OSTI]

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage Pre-Solicitation Meeting, June 19, 2003 Report on Hydrogen Storage Panel Findings inReport on Hydrogen Storage Panel Findings,Basic Research for Hydrogen Production, Storage and UseStorage and Use A follow-on workshop to BESAC

428

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect (OSTI)

Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

None

2012-11-30T23:59:59.000Z

429

Hydrogen Storage Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storing hydrogen include: Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar) Physical storage of cryogenic liquid hydrogen (cooled to -253C, at...

430

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Systems 2010 Update Conference Presentations - Day Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the first session of Day 2, chaired by DOE's Imre Gyuk, are below. ESS 2010 Update Conference - UltraBattery Grid Storage - John Wood, Ecoult.pdf ESS 2010 Update Conference - PV Plus Storage for Simultaneous Voltage Smoothing and Peak Shifting - Steve Willard, PNM.pdf

431

January EAC Teleconference to Discuss National Energy Storage Strategy |  

Broader source: Energy.gov (indexed) [DOE]

January EAC Teleconference to Discuss National Energy Storage January EAC Teleconference to Discuss National Energy Storage Strategy January EAC Teleconference to Discuss National Energy Storage Strategy January 10, 2014 - 3:18pm Addthis The Electricity Advisory Committee (EAC) will hold a teleconference meeting on January 24, 2014 at 2 p.m. ET to discuss the National Grid Energy Storage Strategy document drafted by the EAC's Energy Storage subcommittee. The public may attend using the following access information: Attendee Link: https://iser.webex.com/iser/onstage/g.php?d=667952835&t=a Event password: energy Call-in Number: Call-in toll number (US/Canada): 1-650-479-3208 Access code: 667 952 835 Addthis Related Articles January EAC Teleconference to Discuss National Energy Storage Strategy Conference Call and Web Chat on Small Businesses and Government Contracting

432

Argonne Chemical Sciences & Engineering - Electrochemical Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage * Basic Research * Applied R&D * Engineering * Battery Testing Electrochemical Energy Storage The Energy Storage Theme The electrochemical Energy Storage (EES) Theme is internationally recognized as a world-class center for lithium battery R&D. It effectively integrates basic research, applied R&D, engineering, and battery testing, as shown in the diagram below. ees chart Its current focus is on developing improved materials and cell chemistries that will enable lithium-ion (Li-Ion) batteries for commercial light-duty vehicle applications, e.g. hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and electric vehicle (EV) applications. Basic Research EES recently won a new Office of Science Energy Frontier Research Center (EFRC) denoted the "Center for Electrical Energy Storage: Tailored Interfaces." This new EFRC will focus on the science of stabilizing electrode/electrolyte interfaces in lithium batteries to achieve longer life and enhanced abuse tolerance.

433

Electric utility applications of hydrogen energy storage systems  

SciTech Connect (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

434

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Research Basic Research * Members * Contact * Publications * Overview * CEES EES Home Electrochemical Energy Storage - Basic Research Electrochemical Energy Storage Chemistry co-op student Sara Busking loads a lithium-ion battery cell in a pouch into a test oven to evaluate its electrochemical performance. EES conducts basic research to support its applied electrochemical energy storage R&D initiatives. EES also leads an Energy Frontier Research Center (EFRC), recently awarded by DOE's Office of Science, with partners at Northwestern University and the University of Illinois (Urbana Champaign). The EFRC, the Center for Electrical Energy Storage: Tailored Interfaces (CEES), focuses on understanding electrochemical phenomena at electrode/electrolyte interfaces

435

Energy Storage Management for VG Integration (Presentation)  

SciTech Connect (OSTI)

This presentation describes how you economically manage integration costs of storage and variable generation.

Kirby, B.

2011-10-01T23:59:59.000Z

436

Flywheel energy and power storage systems  

Science Journals Connector (OSTI)

For ages flywheels have been used to achieve smooth operation of machines. The early models where purely mechanical consisting of only a stone wheel attached to an axle. Nowadays flywheels are complex constructions where energy is stored mechanically and transferred to and from the flywheel by an integrated motor/generator. The stone wheel has been replaced by a steel or composite rotor and magnetic bearings have been introduced. Today flywheels are used as supplementary UPS storage at several industries world over. Future applications span a wide range including electric vehicles, intermediate storage for renewable energy generation and direct grid applications from power quality issues to offering an alternative to strengthening transmission. One of the key issues for viable flywheel construction is a high overall efficiency, hence a reduction of the total losses. By increasing the voltage, current losses are decreased and otherwise necessary transformer steps become redundant. So far flywheels over 10 kV have not been constructed, mainly due to isolation problems associated with high voltage, but also because of limitations in the power electronics. Recent progress in semi-conductor technology enables faster switching and lower costs. The predominant part of prior studies have been directed towards optimising mechanical issues whereas the electro technical part now seem to show great potential for improvement. An overview of flywheel technology and previous projects are presented and moreover a 200 kW flywheel using high voltage technology is simulated.

Björn Bolund; Hans Bernhoff; Mats Leijon

2007-01-01T23:59:59.000Z

437

Sandia National Laboratories: renewable energy power generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security, Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System...

438

Introduction to Distributed Generation and the CERTS Microgrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction to Distributed Generation and the CERTS Microgrid Introduction to Distributed Generation and the CERTS Microgrid Speaker(s): Chris Marnay Date: December 3, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This is a first in a series of at least 5 seminars around the winter break to survey Distributed Energy Resources (DER) research questions and various Berkeley capabilities available to address them. The electricity industry in industrialized countries may be about to reverse a century long trend towards ever larger scale, ever more centrally controlled power systems. The emergence of technologies that are competitive at small scales, close to loads, in large part because of the opportunities created to capture waste heat and locally control power quality might signal a radical

439

Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure  

SciTech Connect (OSTI)

The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

Marnay, Chris; Venkataramanan, Giri

2006-02-01T23:59:59.000Z

440

Fact Sheet: Community Energy Storage for Grid Support (October 2012) |  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet: Community Energy Storage for Grid Support (October Fact Sheet: Community Energy Storage for Grid Support (October 2012) Fact Sheet: Community Energy Storage for Grid Support (October 2012) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to customers whose circuits are often heavily loaded and would benefit from the power conditioning advantages provided from a CES. The performance data of the CES units and control systems will be analyzed under real-world operating conditions to standardize design, installation, and use across the U.S. Fact Sheet: Community Energy Storage for Grid Support (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fact Sheet: Community Energy Storage for Grid Support (October 2012) |  

Broader source: Energy.gov (indexed) [DOE]

Community Energy Storage for Grid Support (October Community Energy Storage for Grid Support (October 2012) Fact Sheet: Community Energy Storage for Grid Support (October 2012) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to customers whose circuits are often heavily loaded and would benefit from the power conditioning advantages provided from a CES. The performance data of the CES units and control systems will be analyzed under real-world operating conditions to standardize design, installation, and use across the U.S. Fact Sheet: Community Energy Storage for Grid Support (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2

442

Energy Storage Systems 2010 Update Conference Presentations - Day 3,  

Broader source: Energy.gov (indexed) [DOE]

1 1 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the first session of Day 3, chaired by SNL's Ross Guttromson, are below. ESS 2010 Update Conference - NYSERDA-DOE Joint Energy Storage Initiative - Georgianne Huff, SNL.pdf ESS 2010 Update Conference - Testing and Evaluation of Energy Storage Devices - Tom Hund, SNL.pdf ESS 2010 Update Conference - SNL Energy Storage Test Pad (ESTP) - Dan

443

Fact Sheet: Community Energy Storage for Grid Support (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Detroit Edison Detroit Edison American Recovery and Reinvestment Act (ARRA) Community Energy Storage for Grid Support Demonstrating advanced implementation of community energy storage technologies for grid support Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory, and two of the CES units will utilize secondary- use electric vehicle batteries. The CES system will use a number of battery energy storage units utilizing lithium batteries with the required electronics and energy conditioning devices to locate backup power near to the customer. The energy storage system consists of 20 separate 25 kW (50 kWh) CES units and a 500 kW lithium battery storage device integrated with a photovoltaic solar module. At just under 1 MW the CES units, coupled

444

FY06 DOE Energy Storage Program PEER Review  

Broader source: Energy.gov (indexed) [DOE]

7 DOE Energy Storage Program 7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Make energy storage ubiquitous ESS Program Makeup ESS Program Makeup ESS Base Program - CEC/DOE Data Acquisition and Project Support - NYSERDA/DOE Data Acquisition and Project Support - BPA ETO based STATCOM Project - ETO Development Project - Boeing Superconducting Flywheel - ACONF Coast Guard Project - Iowa Stored Energy Project - Electrolyte Research

445

Biomass energy with carbon capture and storage (BECCS): a review  

E-Print Network [OSTI]

Biomass energy with carbon capture and storage (BECCS): a review Claire Gough, Paul Upham December are alternative terms for the coupling of bioenergy with carbon capture and storage (CCS). The paper follows from a workshop held in December 2009, hosted by the Scottish Centre for Carbon Capture and Storage

Matthews, Adrian

446

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

447

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage  

Science Journals Connector (OSTI)

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Ground-state energy barriers along the NN torsional coordinates were also computed, along with excitation energies and intensities for the species that can contribute to the photostationary state. ...

E. Durgun; Jeffrey C. Grossman

2013-03-04T23:59:59.000Z

448

A Green Prison: The Santa Rita Jail Campus Microgrid  

SciTech Connect (OSTI)

A large microgrid project is nearing completion at Alameda County’s twenty-two-year-old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources (DER) including an eight-year old 1.2 MW PV array, a five-year old 1 MW fuel cell with heat recovery, and considerable efficiency investments. A current US$14 M expansion adds a 2 MW-4 MWh Li-ion battery, a static disconnect switch, and various controls upgrades. During grid blackouts, or when conditions favor it, the Jail can now disconnect from the grid and operate as an island, using the on-site resources described together with its back-up diesel generators. In other words, the Santa Rita Jail is a true microgrid, or ?grid, because it fills both requirements, i.e. it is a locally controlled system, and it can operate both grid connected and islanded. The battery’s electronics includes Consortium for Electric Reliability Technology (CERTS) Microgrid technology. This enables the battery to maintain energy balance using droops without need for a fast control system.

Marnay, Chris; DeForest, Nicholas; Lai, Judy

2012-01-22T23:59:59.000Z

449

300kW Energy Storage Demonstration Project  

Broader source: Energy.gov (indexed) [DOE]

kW Energy Storage Demonstration kW Energy Storage Demonstration Project Technical Overview Presented at: Annual Doe Peer Review Meeting ─ 2008 DOE Energy Storage & Power Electronics Research Programs By Ib I. Olsen September 29, 2008 116 John Street - Suite 2320 New York, New York 10038 (p) 1.212.732.5507 (f) 1.212.732.5597 www.gaiapowertech.com This project is part of the Joint Energy Storage Initiative between the New York State Energy Research and Development Authority (NYSERDA) and the Energy Storage Systems Program of the U.S. Department of Energy (DOE/ESS), and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000

450

2012 Transmission and Energy Storage Peer Review Presentations...  

Broader source: Energy.gov (indexed) [DOE]

by DOE at the Lawrence Berkeley National Lab. DOE's Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on September 26 - 28,...

451

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Broader source: Energy.gov [DOE]

The Energy Storage Technology Advancement Partnership (ESTAP) is a cooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the...

452

Carbon Foam Infused with Pentaglycerine for Thermal Energy Storage Applications.  

E-Print Network [OSTI]

??A thermal energy storage device that uses pentaglycerine as a phase change material was developed. This solid-state phase change material was embedded in a carbon… (more)

Johnson, Douglas James

2011-01-01T23:59:59.000Z

453

Performance investigation of various cold thermal energy storages.  

E-Print Network [OSTI]

??This study deals with solidification and melting of some typical encapsulated ice thermal energy storage geometries. Using ANSYS GAMBIT and FLUENT 6.0 software, HTF fluid… (more)

MacPhee, David

2008-01-01T23:59:59.000Z

454

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies  

Broader source: Energy.gov [DOE]

Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

455

Solar energy storage: A possible use of inclusion compounds  

Science Journals Connector (OSTI)

Valence isomerization of norbornadiene to quadricyclene has been studied under different experimental conditions in order to develop a suitable system for solar energy storage.

A. Guarino; E. Possagno; R. Bassanelli

1987-10-01T23:59:59.000Z

456

Energy Storage System Safety Reports - August 2014 and September...  

Energy Savers [EERE]

Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) DOE-TSPP-3-2013, Using Voluntary Consensus Standards and Interacting With Standards...

457

Project Profile: Novel Thermal Energy Storage Systems for Concentratin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal...

458

Chapter 9 - Large-Scale Hydrogen Energy Storage  

Science Journals Connector (OSTI)

Abstract Storage technologies are essential for the integration of fluctuating renewable energies. Large scale storage provides grid stability, which are fundamental for a reliable energy systems and the energy balancing in hours to weeks time ranges to match demand and supply. Our system analysis showed that storage needs are in the two-digit terawatt hour and gigawatt range. Other reports confirm that assessment by stating that by 2040, 40 TWh would be required for this application. The present chapter outlines the general components and functions as well as the economics of a large-scale hydrogen energy storage system.

Erik Wolf

2015-01-01T23:59:59.000Z

459

Carbon cryogel based nanomaterials for efficient energy storage.  

E-Print Network [OSTI]

??As demand for fossil fuel alternatives intensifies, energy storage will be a growing concern especially for portable power needs such as automobiles and portable electronic… (more)

Feaver, Aaron

2007-01-01T23:59:59.000Z

460

NREL: Energy Storage - Innovative Way to Test Batteries Fills...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

prototypes to a commercial product," said Ahmad Pesaran, manager of NREL's Battery and Energy Storage Research Group. "NETZSCH has a proven track record of developing and...

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project Profile: High-Efficiency Thermal Energy Storage System...  

Office of Environmental Management (EM)

the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system...

462

Overview on Energy Storage Projects at ARPA-E  

Broader source: Energy.gov (indexed) [DOE]

Dane Boysen - Program Director (BEEST, SBIR) Ilan Gur - Program Director (AMPED) Mark Johnson, Dane Boysen, John Lemmon (SBIR) EV Everywhere Energy Storage Workshop Chicago, IL...

463

Energy Storage Monitoring System and In-Situ Impedance Measurement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Monitoring System and In-Situ Impedance Measurement Modeling Energy Storage Monitoring System and In-Situ Impedance Measurement Modeling 2012 DOE Hydrogen and Fuel Cells Program...

464

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The results yielded important new insights into a material of high interest for electrochemical energy storage. Lithium iron phosphate is widely studied for its use as a...

465

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS  

Broader source: Energy.gov (indexed) [DOE]

energy storage curriculum including vehicle configurations, advanced combustion, fuel cells, power electronics, controls, alternative fuels and vehicle fuel efficiency to prepare...

466

Two New Energy Storage Safety Reports Now Available | Department...  

Office of Environmental Management (EM)

increases. The issue of safety affects all aspects of a storage system, from battery chemistry, to devices, installation, and operation. Addthis Related Articles Energy Department...

467

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Broader source: Energy.gov (indexed) [DOE]

4 4 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the fourth session of Day 2, chaired by NETL's Kim Nuhfer, are below. ESS 2010 Update Conference - Low Cost Energy Storage - Ted Wiley, Aquion.pdf Ess 2010 Update Conference - Solid State Li Metal Batteries for Grid-Scale Storage - Mohit Singh, Seeo.pdf ESS 2010 Update Conference - Utility Scale Flywheel Energy Storage Demonstration - Edward Chiao, Amber Kinetics.pdf

468

Integration of Electric Energy Storage into Power Systems with Renewable Energy Resources  

E-Print Network [OSTI]

strategy is proposed to optimally manage the charging and discharging operation of energy storage in order to minimize the energy purchasing cost for a distribution system load aggregator in power markets. Different operation strategies of energy storage...

Xu, Yixing 1985-

2012-10-26T23:59:59.000Z

469

Composite materials for thermal energy storage  

DOE Patents [OSTI]

The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

1986-01-01T23:59:59.000Z

470

Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

SustainX SustainX American Recovery and Reinvestment Act (ARRA) Isothermal Compressed Air Energy Storage Demonstrating a modular, market-ready energy storage system that uses compressed air as a storage medium SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. Energy can be stored in compressed air, with minimal energy losses, and released when the air is later allowed to expand. Many traditional compressed air energy storage (CAES) projects store energy in underground geological formations such as salt caverns. However, in these systems, the air warms when it is compressed and cools when it is expanded. CAES systems generally use gas combustion turbines to reheat the cooled air before expansion. This process creates inefficiencies and emissions.

471

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

HAUSZ, W. , 1977. "Seasonal Storage in District Heating,"District Heating, July-August-September, 1977, pp. 5-11.aquifer storage for district heating and cooling. C. W.

Authors, Various

2011-01-01T23:59:59.000Z

472

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

FUTURE CONSIDERATIONS FOR CAVERN STORAGE Some of the topicsgravel or sand into the cavern in order to reduce the volumeAbove ground equipment for cavern storage opera- tions.

Authors, Various

2011-01-01T23:59:59.000Z

473

NREL: Energy Storage - Modeling and Simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling and Simulation Modeling and Simulation Two NREL researchers are silhouetted in front of computer screens displaying thermal model images. NREL modeling and simulation experts use an extensive portfolio of validated tools to assess ES solutions for advanced vehicles. Photo by Dennis Schroeder, NREL/PIX 22009 Multi-physics simulation of energy storage (ES) devices provides a less expensive, faster, and more controlled alternative to in-lab testing in the early stages of research and development (R&D)-which eventually leads to longer lasting, dependable and powerful batteries. NREL is a recognized leader in systems-level thermal design, performance, lifespan, reliability, and safety modeling and simulation. The lab's 1-D and 3-D steady-state and transient multi-physics models are used to examine heat transfer,

474

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect (OSTI)

This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

None

2012-11-30T23:59:59.000Z

475

Neutral current compensation techniques in autonomous wind energy sources  

Science Journals Connector (OSTI)

The problem of neutral current compensation has to be addressed in Wind Energy integrated weak micro-grids. This study analyses two types of techniques ... same wind energy conversion system. The hybrid micro-grid

Aarti Gupta; Dinesh Jain; Surender Dahiya

2014-12-01T23:59:59.000Z

476

Porous media compressed air energy storage (PM-CAES): Theory and simulation of the coupled wellbore-reservoir system  

E-Print Network [OSTI]

of selected compressed air energy storage studes, Pacificaspects of compressed-air energy storage in aquifers, J. ofresources and compressed air energy storage (CAES), Energy,

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

477

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

seasonal storage in phase change material, by collecting andof incorporating phase-change materials (PCM) in con- crete

Authors, Various

2011-01-01T23:59:59.000Z

478

Hydrogen Storage - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal hydrides,...

479

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Broader source: Energy.gov (indexed) [DOE]

1 1 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the first session of Day 2, chaired by DOE's Imre Gyuk, are below. ESS 2010 Update Conference - UltraBattery Grid Storage - John Wood, Ecoult.pdf ESS 2010 Update Conference - PV Plus Storage for Simultaneous Voltage Smoothing and Peak Shifting - Steve Willard, PNM.pdf ESS 2010 Update Conference - Tehachapi Wind Energy Storage - Loic Gaillac,

480

Molten Oxide Glass Materials for Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Halotechnics, Inc. is developing an energy storage system utilizing a low melting point molten glass as the heat transfer and thermal storage material. This work is supported under a grant from the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E). Advanced oxide glasses promise a potential breakthrough as a low cost, earth abundant, and stable thermal storage material. The system and new glass material will enable grid scale electricity storage at a fraction of the cost of batteries by integrating the thermal storage with a large heat pump device. Halotechnics is combining its proven expertise in combinatorial chemistry with advanced techniques for handling molten glass to design and build a two-tank thermal energy storage system. This system, operating at a high temperature of 1200 °C and a low temperature of 400 °C, will demonstrate sensible heat thermal energy storage using a uniquely formulated oxide glass. Our molten glass thermal storage material has the potential to significantly reduce thermal storage costs once developed and deployed at commercial scale. Thermal storage at the target temperature can be integrated with existing high temperature gas turbines that significantly increase efficiencies over today's steam turbine technology. This paper describes the development and selection of Halotechnics’ molten glass heat transfer fluids with some additional systems considerations.

B. Elkin; L. Finkelstein; T. Dyer; J. Raade

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microgrids energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar energy in the context of energy use, energy transportation and energy storage  

Science Journals Connector (OSTI)

...average primary energy consumption per unit area, which for...as a national unit of energy storage. (Dinorwig...4], and area measurements using Google maps...Average powers per unit area are sometimes...meteorology and Solar Energy (eosweb.larc...

2013-01-01T23:59:59.000Z

482

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network [OSTI]

storage with phase change materials and applications,"sensible vs phase change material (PCM) heat storage,"energy storage with phase change: materials, heat transfer

Steen, David

2014-01-01T23:59:59.000Z

483

Advanced Materials and Devices for Stationary Electrical Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Materials and Devices for Stationary Electrical Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to provide reliable, affordable electricity, jeopardizing the transformational changes envisioned for a modernized grid. Investment in energy storage is essential for keeping pace with the increasing demands for electricity arising from continued growth in U.S. productivity, shifts in and continued expansion of national cultural imperatives (e.g., the distributed

484

Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster  

Broader source: Energy.gov (indexed) [DOE]

: Poster Session : Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster Session The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from Day 3's poster session are below. ESS 2010 Update Conference - Fuel-Free, Ubiquitous, Compressed Air Energy Storage and Power Conditioning - David Marcus, General Compression.pdf ESS 2010 Update Conference - Transformative Renewable Energy Storage Devices Based on Neutral Water Input - Luke Dalton, Proton Energy.pdf

485

Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications  

Broader source: Energy.gov (indexed) [DOE]

7 Peer Review - Utility & Commercial 7 Peer Review - Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to utility, commercial, and rail applications of advanced energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Application of Large-Scale ESS in AEP - Ali Nourai, AEP.pdf ESS 2007 Peer Review - Iowa Stored Energy Park - Kent Holst, ISEP.pdf

486

The Application of Flywheels in Short-term Energy Storage  

Science Journals Connector (OSTI)

ABSTRACT In many alternative energy systems there is a requirement for energy storage over periods of up to 20 seconds in order to match supply and demand at times when these are changing rapidly and independently. The flywheel forms an ideal basis for such storage because of its relatively high cycle life and potential power and energy density. Wind energy conversion is taken as an example and the requirement for energy storage in WTG systems is assessed. Flywheel energy storage is compared with other forms of storage and is shown to be potentially suitable for this requirement. Power transmission between the flywheel and the WTG grid system requires a variable speed regenerative drive and associated frequency conversion. Such a scheme might permit variable speed WTG operation. A DC link converter is described.

C.M. Jefferson; N. Larsen

1984-01-01T23:59:59.000Z

487

Electromagnetic energy storage and power dissipation in nanostructures  

E-Print Network [OSTI]

The processes of storage and dissipation of electromagnetic energy in nanostructures depend on both the material properties and the geometry. In this paper, the distributions of local energy density and power dissipation in nanogratings are investigated using the rigorous coupled-wave analysis. It is demonstrated that the enhancement of absorption is accompanied by the enhancement of energy storage both for material at the resonance of its dielectric function described by the classical Lorentz oscillator and for nanostructures at the resonance induced by its geometric arrangement. The appearance of strong local electric field in nanogratings at the geometry-induced resonance is directly related to the maximum electric energy storage. Analysis of the local energy storage and dissipation can also help gain a better understanding of the global energy storage and dissipation in nanostructures for photovoltaic and heat transfer applications.

Zhao, J M

2014-01-01T23:59:59.000Z

488

Chongqing Wanli Storage Battery Co | Open Energy Information  

Open Energy Info (EERE)

Wanli Storage Battery Co Wanli Storage Battery Co Jump to: navigation, search Name Chongqing Wanli Storage Battery Co. Place Chongqing Municipality, China Sector Solar, Vehicles, Wind energy Product The scope of Wanli's power storage business includes batteries made for electric motorcycles and industrial vehicles, boats, and cars. It also includes batteries to store power from solar or wind power plants. References Chongqing Wanli Storage Battery Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chongqing Wanli Storage Battery Co. is a company located in Chongqing Municipality, China . References ↑ "Chongqing Wanli Storage Battery Co." Retrieved from "http://en.openei.org/w/index.php?title=Chongqing_Wanli_Storage_Battery_Co&oldid=34358

489

Preliminary survey and evaluation of nonaquifer thermal energy storage concepts for seasonal storage  

SciTech Connect (OSTI)

Thermal energy storage enables the capture and retention of heat energy (or cold) during one time period for use during another. Seasonal thermal energy storage (STES) involves a period of months between the input and recovery of energy. The purpose of this study was to make a preliminary investigation and evaluation of potential nonaquifer STES systems. Current literature was surveyed to determine the state of the art of thermal energy storage (TES) systems such as hot water pond storage, hot rock storage, cool ice storage, and other more sophisticated concepts which might have potential for future STES programs. The main energy sources for TES principally waste heat, and the main uses of the stored thermal energy, i.e., heating, cooling, and steam generation are described. This report reviews the development of sensible, latent, and thermochemical TES technologies, presents a preliminary evaluation of the TES methods most applicable to seasonal storage uses, outlines preliminary conclusions drawn from the review of current TES literature, and recommends further research based on these conclusions. A bibliography of the nonaquifer STES literature review, and examples of 53 different TES concepts drawn from the literature are provided. (LCL)

Blahnik, D.E.

1980-11-01T23:59:59.000Z

490

Characterization Studies of Materials and Devices used for Electrochemical Energy Storage  

E-Print Network [OSTI]

solar and wind energy requires some form of energy storage,solar cells, fuel cells, redox flow batteries and electrochemical energy storage.energy generation and storage technologies. Dye Sensitized Solar

Membreno, Daniel Eduardo

2014-01-01T23:59:59.000Z

491

Energy Department Announces First-of-its-Kind, High-Temperature, Downhole Rechargeable Energy Storage Device  

Broader source: Energy.gov [DOE]

The Energy Department today announced commercialization of a rechargeable energy storage device capable of operating in the extreme temperatures necessary for geothermal energy production. Industry...

492

Storage Tanks (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

493

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

494

Modeling the Performance and Energy of Storage Arrays  

E-Print Network [OSTI]

, it is desirable that techniques provide their energy savings while minimizing their impact on performance. DespiteModeling the Performance and Energy of Storage Arrays Sankaran Sivathanu Georgia Institute techniques for power optimization in storage. Given an ar- bitrary trace of disk requests, we split

Liu, Ling

495

Alkaline regenerative fuel cell systems for energy storage  

SciTech Connect (OSTI)

This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

Schubert, F.H.; Reid, M.A.; Martin, R.E.

1981-01-01T23:59:59.000Z

496

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Broader source: Energy.gov (indexed) [DOE]

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

497

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Broader source: Energy.gov (indexed) [DOE]

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

498

Hydrogen Energy Storage for Grid and Transportation Services Workshop  

Broader source: Energy.gov [DOE]

View presentations from the U.S. Department of Energy (DOE) and Industry Canada Hydrogen Energy Storage for Grid and Transportation Services Workshop, held on May 14–15, 2014, in Sacramento, California.

499

Energy storage in carbon nanotube super-springs  

E-Print Network [OSTI]

A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental ...

Hill, Frances Ann

2008-01-01T23:59:59.000Z

500

COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 30, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable Energy Future Mr. Al Cavallo Consultant Compressed...