National Library of Energy BETA

Sample records for microgrids energy storage

  1. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012,...

  2. Joint Supply, Demand, and Energy Storage Management Towards Microgrid Cost Minimization

    E-Print Network [OSTI]

    Liang, Ben

    Joint Supply, Demand, and Energy Storage Management Towards Microgrid Cost Minimization Sun Sun balancing in a grid- connected microgrid is studied. We consider a microgrid pow- ered by a conventional) unit. An aggregator operates the microgrid and aims to minimize the long-term system cost, including

  3. Aalborg Universitet Optimal Utilization of Microgrids Supplemented with Battery Energy Storage Systems

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    of Microgrids Supplemented with Battery Energy Storage Systems in Grid Support Applications. In IEEE ICDCM 2015 Energy Storage Systems in Grid Support Applications Amjad Anvari-Moghaddam, Tomislav Dragicevic, Juan C the operating cost of a grid connected micro-grid supplemented by battery energy storage system (BESS). What

  4. Abstract -This paper presents the coordinated control of distributed energy storage systems (DESSs) in DC micro-grids.

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    ) in DC micro-grids. In order to balance the state-of-charge (SoC) of each energy storage unit (ESU--Droop control; distributed energy storage system (DESS); DC micro-grids; state-of-charge (SoC) I. INTRODUCTION and more popularity [1]. Nowadays DC micro-grids are becoming more attractive with the raise of DC power

  5. Integration of Renewable Distributed Energy Resources into Microgrids

    E-Print Network [OSTI]

    Huang, Rui

    2015-01-01

    Microgrids . . . . . . . . . . . . . . . . . . . . . . . .into Microgrids . . . . . . . . . . . . . . . . . . . . . .Energy Re- sources into Microgrids . . . . . . . . . . . . .

  6. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    Optimal Energy Management in Microgrids . . . . . . . . . .Management in Microgrids . . . . . . . . . . . . . . . .Hatziargyriou, and A. Dimeas, “Microgrids management,” IEEE

  7. Energy manager design for microgrids

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    Energy Manager Design for Microgrids Hillier, F. , and G.Energy Manager Design for Microgrids Appendix A: Smart*DER:Manager Design for Microgrids Prepared for the California

  8. Sandia Energy - Recent Sandia Secure, Scalable Microgrid Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy-storage requirements. Energy storage is an important design component in microgrids that include high RE resource penetration levels-to maintain system stability,...

  9. Webinar Presentation: Energy Storage Solutions for Microgrids (November

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.Energy The Weatherization andAt-A-GlanceDepartment

  10. Lightweight Energy Management of Islanded Operated Microgrids for Prosumer Communities

    E-Print Network [OSTI]

    Rossi, Michele

    Lightweight Energy Management of Islanded Operated Microgrids for Prosumer Communities Riccardo storage devices with the distribution grid. The UI acts as the control master for the microgrid strategy is tested on a residential microgrid model, 100 kVA rated, which has been developed and utilized

  11. Online Energy Generation Scheduling for Microgrids with

    E-Print Network [OSTI]

    Zhang, Junshan

    Online Energy Generation Scheduling for Microgrids with Intermittent Energy Sources and Co entitled: Online Energy Generation Scheduling for Microgrids with Intermittent Energy Sources and Co schedul- ing. However, accurate prediction cannot be guaranteed due to the small scale of microgrids

  12. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    the system fulfills the interoperability via energy servicesystem architecture for microgrid energy management that enables interoperabilitysystem architecture for microgrid energy management that enables interoperability

  13. Microgrid Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reliability and resiliency of the grid, help communities better prepare for future weather events, and keep the nation moving toward a clean energy future. Microgrid research...

  14. Renewable Energy Microgrid Testbed at NASA Ames Research

    E-Print Network [OSTI]

    Lee, Herbie

    Renewable Energy Microgrid Testbed at NASA Ames Research Center Joel Kubby, Dan O'Leary, Zachary #12;Goals · Set-up a unique microgrid test-bed for renewable energy generation, monitoring and storage · Use the facility for testing systems integration, optimization and control of new renewable energy

  15. Microgrid Activities | Department of Energy

    Office of Environmental Management (EM)

    Microgrids Microgrid Activities Microgrid Activities Federal programs, institutions, and the private sector are increasing microgrid development and deployment. The number of...

  16. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    Energy Management System . . . . . . . . .An energy management system. . . . . . . . . . . . . .D. Saez, “A microgrid energy management system based on the

  17. Copyright 2014 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration With Large-Scale Energy

    E-Print Network [OSTI]

    Copyright © 2014 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration With Large GRID, VOL. 5, NO. 2, MARCH 2014 937 CERTS Microgrid Demonstration With Large-Scale Energy Storage (CERTS) Microgrid concept captures the emerging po- tential of Distributed Energy Resource (DER) using

  18. Energy Security: Microgrid Planning and Design (Presentation)

    SciTech Connect (OSTI)

    Giraldez, J.

    2012-05-01

    Energy Security: Microgrid Planning and Design presentation to be given at the 2012 WREF in Denver, CO.

  19. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Energy Storage Systems 2014 Peer Review Presentations - Session 11...

  20. International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01

    microgrid simulator with multiple power generation units including solar PV, diesel, energy storage,

  1. 944 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 4, NO. 4, OCTOBER 2013 Robust Energy Management for Microgrids With

    E-Print Network [OSTI]

    Giannakis, Georgios

    for Microgrids With High-Penetration Renewables Yu Zhang, Student Member, IEEE, Nikolaos Gatsis, Member, IEEE in microgrids, which feature distributed generation (DG) and distributed storage (DS). Distributed economic dispatch for a microgrid with high renew- able energy penetration and demand-side management operating

  2. Energy manager design for microgrids

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatch decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.

  3. Providing Microgrid Resilience during Emergencies using Distributed Energy Resources

    E-Print Network [OSTI]

    Eliassen, Frank

    Providing Microgrid Resilience during Emergencies using Distributed Energy Resources Sabita resilience of a microgrid during emergencies. First, we propose the use of electric vehicles (EVs the resilience of the microgrid, by utilizing the locally available renewable energy options, exploiting

  4. Interoperable and Secure Communication for Cyber Physical Systems in the Energy Grid

    E-Print Network [OSTI]

    Lee, Eun Kyu

    2014-01-01

    Microgrid operation with power generation, load, and energy storage. . . . .Microgrid operation with power generation, load, and energy storage.

  5. Bargaining-based Energy Trading Market for Interconnected Microgrids

    E-Print Network [OSTI]

    Huang, Jianwei

    Bargaining-based Energy Trading Market for Interconnected Microgrids Hao Wang, Jianwei Huang trading among mul- tiple connected microgrids, and analyzes the impacts of such trading on the microgrids' costs. In our model, microgrids with excessive power generations can trade with other microgrids

  6. Copyright 2013 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration with Large-Scale Energy Storage and

    E-Print Network [OSTI]

    Copyright © 2013 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration with Large Technology Solutions (CERTS) Microgrid concept captures the emerging potential of using a system approach to distributed generation. CERTS views generation and associated loads as a subsystem or a "Microgrid

  7. The Role of Microgrids in Helping to Advance the Nation's Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid The Role of Microgrids in Helping to Advance the Nation's Energy System The Role of Microgrids in Helping to Advance the Nation's Energy System Microgrids are...

  8. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    None of the dual-typologies microgrids has purchased switch2010, Special Issue on Microgrids and Energy Management,ABORATORY Multi-Building Microgrids for a Distributed Energy

  9. Cooperative Distributed Scheduling for Storage Devices in Microgrids using Dynamic KKT Multipliers and Consensus Networks

    E-Print Network [OSTI]

    Chow, Mo-Yuen

    Cooperative Distributed Scheduling for Storage Devices in Microgrids using Dynamic KKT Multipliers in the proceedings of the conference. #12;1 Abstract--Scheduling of storage devices in microgrids with multiple that can optimally schedule the storage devices in a microgrid solely through peer-to-peer coordination

  10. Microgrids: distributed on-site generation

    E-Print Network [OSTI]

    Watson, Andrew

    of the study is a microgrid of domestic users powered by small Combined Heat and Power generators and energy storage in the microgrid. It is found that a microgrid consisting of around 1.4 kWp PV array perMicrogrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross

  11. August 22 ESTAP Webinar: A Solar Storage Microgrid for the Energy City of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES AT THE IDAHO1997newsletter

  12. Abstract--Increasing concerns about energy security and reliability are intensifying the interest in microgrid and vehicle-

    E-Print Network [OSTI]

    Hiskens, Ian A.

    of the distributed energy storage capacity provided by the vehicle-to- grid (V2G) technology. Microgrids were, can be involved in electric power generation in microgrids. The intermittent characteristics control and management of multiple power sources and storage devices becomes crucial. This paper considers

  13. How Microgrids Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMSHomeMicrogrids Work How Microgrids

  14. Grid Applications for Energy Storage Flow Cells for Energy Storage Workshop

    E-Print Network [OSTI]

    Storage #12;Competitive Electric Market Structure Power Generation Distributed Generation Grid Management Power Mkts. & Reliability Micro-Grids Power Quality Grid Reliability Competitive State Regulated FERCGrid Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7

  15. International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01

    Storage • Hydrogen Fuel Cell • Energy Management • VSE SCADA Test at Idaho National Lab • Entire Installation Smart Micro-Grid •

  16. Sandia Energy - Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &Water Power&Grid Action Network 2014 Award

  17. Sandia Energy - Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &Water Power&Grid Action Network 2014

  18. Technical Report for "Hybrid Renewable Energy Investment in Microgrid"

    E-Print Network [OSTI]

    Huang, Jianwei

    1 Technical Report for "Hybrid Renewable Energy Investment in Microgrid" Hao Wang, Jianwei Huang of Hong Kong, and aim at studying the hybrid renewable energy investment in the microgrid. We jointly the microgrid operator's perspective. In the first period, the operator makes optimal investment decisions

  19. Hybrid Renewable Energy Investment in Microgrid Hao Wang, Jianwei Huang

    E-Print Network [OSTI]

    Huang, Jianwei

    Hybrid Renewable Energy Investment in Microgrid Hao Wang, Jianwei Huang Network Communications the hybrid renewable energy investment in the microgrid. We jointly consider the investment and operation problem, and present a two-period stochastic programming model from the microgrid operator's perspective

  20. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    study the supply-demand balancing problem in microgrids under more realistic conditions and pro- pose algorithms for microgrid

  1. Energy Management Problems Under Uncertainties for Grid-Connected Microgrids

    E-Print Network [OSTI]

    Zhang, Wei

    1 Energy Management Problems Under Uncertainties for Grid-Connected Microgrids : a Chance prob- lems under uncertainties for a grid-connected microgrid. The problems are motivated by practical microgrid problems such as peak power shaving and frequency regulation. The problems require constraints

  2. Breaking the Hierarchy: Distributed Control & Economic Optimality in Microgrids

    E-Print Network [OSTI]

    Bullo, Francesco

    genera- tion and energy storage systems, the concept of a microgrid has recently gained popularity [2 generation, storage, load, and managed au- tonomously from the larger transmission network. Microgrids independently. Distributed energy sources in a microgrid generate either DC or variable frequency AC power

  3. This document is a preprint of the final paper: Savaghebi, M.; Vasquez, J.C.; Jalilian, A.; Guerrero, J.M.; Tzung-Lin Lee; , "Selective harmonic virtual impedance for voltage source inverters with LCL filter in microgrids," Energy Conversion

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    ECENTLY, microgrids have been taken more attention in the power electronics research community due, a microgrid is defined as a group of distributed generators and energy storage systems which could operate, if the grid power quality is not good, the Microgrid Central Controller can decide to disconnect

  4. Hybrid Renewable Energy Investment in Microgrid Hao Wang, Jianwei Huang

    E-Print Network [OSTI]

    Huang, Jianwei

    Hybrid Renewable Energy Investment in Microgrid Hao Wang, Jianwei Huang Network Communications: {haowang, jwhuang}@ie.cuhk.edu.hk Abstract--Both solar energy and wind energy are promising renewable the hybrid renewable energy investment in the microgrid. We jointly consider the investment and operation

  5. Abstract Microgrids are a new concept for future energy dis-tribution systems that enable renewable energy integration and

    E-Print Network [OSTI]

    Collins, Emmanuel

    1 Abstract ­ Microgrids are a new concept for future energy dis- tribution systems that enable renewable energy integration and improved energy management capability. Microgrids consist of multiple power quality and power distribution reliability, microgrids need to operate in both grid

  6. Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use

    E-Print Network [OSTI]

    potential renewable, distributed energy resource, and micro-grid technology initiatives. Specific activities renewable generation technologies. The more energy storage available on the grid, the more intermittent renewables such as wind and solar that can be added to the grid. Currently grids use backup power generators

  7. Integration of Distributed Energy The CERTS MicroGrid Concept

    E-Print Network [OSTI]

    Resources The MicroGrid Concept Appendices Prepared for Transmission Reliability Program Office of PowerIntegration of Distributed Energy Resources The CERTS MicroGrid Concept CALIFORNIA ENERGY;Preface The U.S. Electricity Grid Today The U.S. electric power system is in the midst of a fundamental

  8. Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

  9. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    power generation. Grid-level energy storage can buffer theenergy storage, and the cost of energy purchase from the main grid,energy storage, and the cost of energy purchase from the main grid,

  10. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect (OSTI)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  11. A Secure Energy Routing Mechanism for Sharing Renewable Energy in Smart Microgrid

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    A Secure Energy Routing Mechanism for Sharing Renewable Energy in Smart Microgrid Ting Zhu Sheng, Binghamton, NY, USA Abstract--Due to volatile and rising energy prices, smart microgrids appear to be increasingly popular. Instead of one centrally located power plant, the microgrids will rely on solar panels

  12. Integration of distributed energy resources. The CERTS Microgrid Concept

    SciTech Connect (OSTI)

    Lasseter, Robert; Akhil, Abbas; Marnay, Chris; Stephens, John; Dagle, Jeff; Guttromsom, Ross; Meliopoulous, A. Sakis; Yinger, Robert; Eto, Joe

    2002-04-01

    Evolutionary changes in the regulatory and operational climate of traditional electric utilities and the emergence of smaller generating systems such as microturbines have opened new opportunities for on-site power generation by electricity users. In this context, distributed energy resources (DER)--small power generators typically located at users' sites where the energy (both electric and thermal) they generate is used--have emerged as a promising option to meet growing customer needs for electric power with an emphasis on reliability and power quality. The portfolio of DER includes generators, energy storage, load control, and, for certain classes of systems, advanced power electronic interfaces between the generators and the bulk power provider. This white paper proposes that the significant potential of smaller DER to meet customers' and utilities' needs can be best captured by organizing these resources into MicroGrids.

  13. Energy Department Launches Microgrid Competition to Support Resiliency...

    Broader source: Energy.gov (indexed) [DOE]

    change. The Microgrid 2014 MVP Challenge encourages organizations with operational microgrids, such as hospitals and water treatment plants, to submit their microgrid designs and...

  14. PSCAD/EMTDC-Based Modeling and Analysis of a Microgrid with Renewable Energy Sources 

    E-Print Network [OSTI]

    Chu, Zhengguo

    2010-07-14

    Microgrid is a relatively new concept which has gained significant attention recently due to the increasing penetration of distributed energy sources. It brings many benefits to the traditional distribution system. Couples of microgrid testbeds...

  15. Microgrid Activities | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergyPublicatonsSubstancesproteinGE Researchers

  16. Plug-and-Play Control and Optimization in Microgrids Florian Dorfler, John W. Simpson-Porco, and Francesco Bullo

    E-Print Network [OSTI]

    Bullo, Francesco

    distributed renewable genera- tion and energy storage systems, the concept of a microgrid has recently gained, storage, load, and managed autonomously from the larger transmission network. Microgrids are able. The sources in a microgrid generate either DC or variable frequency AC power, and are interfaced with an AC

  17. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    Gas-Fired Distributed Energy Resource Characterizations”,Energy Reliability, Distributed Energy Program of the U.S.Microgrids for a Distributed Energy Future in Portugal

  18. Aalborg Universitet Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Microgrid Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez). Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid. In Proceedings Microgrid Nelson L. Diaz, Dan Wu, Tomislav Dragicevic, Juan C. Vasquez, and Josep M. Guerrero Abstract

  19. Test report : Milspray Scorpion energy storage device.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  20. Sharing Renewable Energy in Smart Microgrids , Zhichuan Huang

    E-Print Network [OSTI]

    Shenoy, Prashant

    Sharing Renewable Energy in Smart Microgrids Ting Zhu , Zhichuan Huang , Ankur Sharma , Jikui Su § Department of Computer Science, University of Massachusetts Amherst ABSTRACT Renewable energy harvested from the environment is an at- tractive option for providing green energy to homes. Unfor- tunately, the intermittent

  1. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    to a larger value. Energy Storage and Grid Real Power Outputthe energy storage element, and a grid connection toEnergy storage unit can help also decoupled loads and renewable fluctuation within a microgrid from the grid.

  2. Exploring Power-Voltage Relationship for Distributed Peak Demand Flattening in Microgrids

    E-Print Network [OSTI]

    Adali, Tulay

    Exploring Power-Voltage Relationship for Distributed Peak Demand Flattening in Microgrids Zhichuan energy storage units in microgrids, how to regulate peak demand is one of the main challenges. Thus, it is possible that peak demand of the microgrid would not be flattened but only shifted to another period

  3. WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed

    E-Print Network [OSTI]

    Johnson, Eric E.

    Introduction of the Renewable Micro-Grid Test-Bed Dr. Wenxin Liu Smart Micro-grid and Renewable Technology/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage - ± 70A Renewable Microgrid Shipboard Power System ZEDSZEDS ZEDSZEDS ZEDS PDM PDM PMM PMM PDM PMM PMM PDM

  4. Sandia Energy - Energy Surety Microgrid(tm)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLEDPhase Field modelStorageEnergy

  5. Microgrids

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessageFYSummary

  6. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2009-03-10

    Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York, (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage, and (3) to make an initial effort towards adding consideration of power quality and reliability (PQR) to the capabilities of DER-CAM. All of these objectives have been pursued via analysis of the attractiveness of a Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid consisting of multiple nameplate 100 kW Tecogen Premium Power Modules (CM-100). This unit consists of an asynchronous inverter-based variable speed internal combustion engine genset with combined heat and power (CHP) and power surge capability. The essence of CERTS Microgrid technology is that smarts added to the on-board power electronics of any microgrid device enables stable and safe islanded operation without the need for complex fast supervisory controls. This approach allows plug and play development of a microgrid that can potentially provide high PQR with a minimum of specialized site-specific engineering. A notable feature of the CM-100 is its time-limited surge rating of 125 kW, and DER-CAM capability to model this feature was also a necessary model enhancement.

  7. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01

    2010, Special Issue on Microgrids and Energy Management,and Operation of Microgrids in Commercial Buildings," IEEEin buildings and microgrids. Index Terms—distributed energy

  8. Computing architecture for autonomous microgrids

    DOE Patents [OSTI]

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the microgrid.

  9. Complementary Effect of Wind and Solar Energy Sources in a Microgrid

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Complementary Effect of Wind and Solar Energy Sources in a Microgrid M. A. Barik, Student Member. Index Terms--Microgrid, renewable energy sources, reactive power mismatch, solar integration, voltage-mass energy, etc. Of them wind and solar energy is broadly used for their characteristics. This paper presents

  10. Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use

    E-Print Network [OSTI]

    Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use Efficiency of Distributed Energy Resource, Microgrid, and End Use Efficiency Technologies (Task 8) This completes Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies

  11. Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01

    of microgeneration and microgrids, Energy Policy. 36 (2008)2002) 1–9. C. Marnay, Microgrids and Heterogeneous Powerof Commercial-Building Microgrids, IEEE Transactions on

  12. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    H, Iravani R, Marnay C. Microgrids: an overview of ongoingenable the emergence of microgrids, which are energy sourcesparadigm (see [5]). Although microgrids were historically a

  13. Microgrid Workshop Report August 2011 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessageFYSummary ofMicrogrid

  14. Adaptive load control of microgrids with non-dispatchable generation

    E-Print Network [OSTI]

    Brokish, Kevin Martin

    2009-01-01

    Intelligent appliances have a great potential to provide energy storage and load shedding for power grids. Microgrids are simulated with high levels of wind energy penetration. Frequency-adaptive intelligent appliances are ...

  15. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  16. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    Microgrid: A Conceptual Solution”, 35th Annul IEEE Power Elecrronics Specialisrs Conference (2004) [60] R.J. Krane, Energy Storage

  17. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    Energy Management . . . . . . . . . . . . . . . . . . . . .Distributed Energy Management . . . . . . . . . . . . . . .Energy Management . . . . . . . . . . . . . . . . . . . . .

  18. Framework for Advance Sustainable Building Design. Smart Micro-Grid Enabled Buildings and Utility-Side of the Meter Energy Markets

    E-Print Network [OSTI]

    Goldberg, Bennett

    Framework for Advance Sustainable Building Design. Smart Micro-Grid Enabled Buildings and Utility ·BUILDING ENERGY MODEL · HUMAN IN THE LOOP (Societal Nets) · GFAS ·POWER ELECTRONICS · STORAGE ·RESPONSE and Operation of Smart Micro-Grid-Enabled Buildings and Prototype Two-Layer Implementation. Framework Objectives

  19. Test report : Raytheon / KTech RK30 energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

  20. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  1. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    Energy Management . . . . . . . . . . . . . . . . . . . . .116 Energy Scheduling . . . . . .Distributed Energy Management . . . . . . . . . . . . . . .

  2. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  3. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  4. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    of Heat and Electricity Storage and Reliability on MicrogridEPRI-DOE Handbook of Energy Storage for Transmission andLong- vs. Short-Term Energy Storage Technologies Analysis, A

  5. Lessons Learned from Microgrid Demonstrations Worldwide

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01

    T. , 2007, “Real-world microgrids-an overview”, IEEE, pp. 1-S.P. , Paul S. , 2011, “Microgrids: energy management byEuropean Commission More Microgrids website, 2010, “Pilot

  6. Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units power system. Being able to operate in both grid-connected and islanded mode, a microgrid manages and controls distributed energy resources, energy storage systems and loads, most of them are power electronic

  7. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    microgrid increase their output power to match the desired decrease in output from the energy storagemicrogrid’s power demand. This investigation utilized batteries as the energy storagemicrogrid’s power demand. This investigation utilized batteries as the energy storage

  8. Aalborg Universitet A Control Architecture to Coordinate Renewable Energy Sources and Energy Storage

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet A Control Architecture to Coordinate Renewable Energy Sources and Energy architecture to coordinate renewable energy sources and energy storage systems in islanded microgrids," IEEE that energy management system takes into account both the available power in renewable energy sources (RES

  9. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  10. Integration of Renewable Distributed Energy Resources into Microgrids

    E-Print Network [OSTI]

    Huang, Rui

    2015-01-01

    Francisco, “Forecast of hourly average wind speed with armawind turbine with energy storage management, the development of forecast-

  11. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    Smart Grid: Applications, Communications, and Security.security to protect customer energy information in the smart grid,”

  12. A Framework for the Evaluation of the Cost and Benefits of Microgrids

    E-Print Network [OSTI]

    Morris, Greg Young

    2012-01-01

    Iravani, and C. Marnay, "Microgrids," IEEE Power and EnergyA procedure for evaluating microgrids technical and economicand G. Strbac, "Can microgrids provide a new paradigm for

  13. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10-8 mol/s/cm2 were achieved.

  14. Energy storage, Thermal energy storage (TES)

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Energy storage, Thermal energy storage (TES) Ron Zevenhoven Åbo Akademi University Thermal and Flow 8, 20500 Turku 2/32 4.1 Energy storage #12;Energy storage - motivations Several reasons motivate the storage of energy, either as heat, cold, or electricity: ­ Supplies of energy are in many cases

  15. How Microgrids Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,SecurityHome solarEnergy | Department of

  16. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  18. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2008-12-01

    In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage; and (3) to make an initial effort towards adding consideration of PQR into the capabilities of DER-CAM.

  19. Collaborative Energy Conservation in a Microgrid Mohit JainI , Harshad KhadilkarI , Neha SenguptaI, Zainul CharbiwalaI ,

    E-Print Network [OSTI]

    Toronto, University of

    Collaborative Energy Conservation in a Microgrid Mohit JainI , Harshad KhadilkarI , Neha Sengupta station. This paper describes the software and hardware of a microgrid system that was designed and de Design; Experimentation; Performance Keywords Microgrid; Scheduling; Dynamic Programming 1 Introduction

  20. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  1. Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Department of Computer Science

    E-Print Network [OSTI]

    Hwang, Kai

    peak demand periods using pricing incentives. Reliable building energy forecast models can help predictImproving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Saima Aman prasanna@usc.edu Abstract--The rising global demand for energy is best addressed by adopting and promoting

  2. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cybersecurity, energy storage, materials science, advanced controls, and microgrids, and is an integral part of Sandia's larger portfolio of renewable energy technology...

  3. Energy Surety Microgrid(tm) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy Storage Management forWind Energy Wind

  4. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine the most appropriate means of implementing micro-grids and the costs and processes involved with their extended operation. With the development and availability of fuel cell based stand-alone power plants, an electrical mini-grid, encompassing several connected residential neighborhoods, has become a viable concept. A primary objective of this project is to define the parameters of an economically efficient fuel cell based mini-grid. Since pure hydrogen is not economically available in sufficient quantities at the present time, the use of reforming technology to produce and store excess hydrogen will also be investigated. From a broader perspective, the factors that bear upon the feasibility of fuel cell based micro-grid connected neighborhoods are similar to those pertaining to the electrification of a small town with a localized power generating station containing several conventional generating units. In the conventional case, the town or locality would also be connected to the larger grid system of the utility company. Therefore, in the case of the fuel cell based micro-grid connected neighborhoods, this option should also be available. The objectives of this research project are: To demonstrate that smart energy management of a fuel cell based micro-grid connected neighborhood can be efficient and cost-effective;To define the most economical micro-grid configuration; and, To determine how residential micro-grid connected fuel cell(s) can contribute to America's hydrogen energy future.

  5. Arnold Schwarzenegger CERTS MICROGRID

    E-Print Network [OSTI]

    Figure 3 - Simplified diagram of Test Bed showing Meter and Relay locations .... 5 Figure 4 - DiagramArnold Schwarzenegger Governor CERTS MICROGRID LABORATORY TEST BED Test Plan Section 6.0 Microgrid Test Bed System Checkout (Static Switch) Prepared For: California Energy Commission Public Interest

  6. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  7. Shape of the microgrid

    E-Print Network [OSTI]

    Marnay, Chris; Rubio, F. Javier; Siddiqui, Afzal S.

    2000-01-01

    distinction between microgrids and our familiar arrangementsagreements between microgrids. Fundamentally, theclustered with loads in microgrids that are designed, built,

  8. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  10. DC Microgrids Scoping Study: Estimate of Technical and Economic...

    Broader source: Energy.gov (indexed) [DOE]

    Microgrid demonstrations and deployments have shown the ability of microgrids to provide higher reliability and higher power quality than utility power systems and improved energy...

  11. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    2003. Hatziargyriou, N. et al. , “Microgrids, An Overview ofequipment combination for microgrids at a few promisingthe reliability benefits of microgrids to DER-CAM analysis

  12. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    2003. Hatziargyriou, N. et al. , “Microgrids, An Overview ofand Operation of Microgrids in Commercial Buildings”, IEEEequipment combination for microgrids at a few promising

  13. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  14. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.; O'Keefe, M.

    2010-12-01

    Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

  15. Fuzzy-Logic-Based Gain-Scheduling Control for State-of-Charge Balance of Distributed Energy

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    , demand, storage, and power flow between the microgrid and the main grid [1]. Commonly, primary control units. Primary control in a microgrid is responsible for power sharing among units; and droop control generation and additionally add redundancy to the energy storage system [5], [6]. In a microgrid, like

  16. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  17. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  18. Distribution Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response Smart grid sensing, automation, and microgrids...

  19. 2012 Microgrid Workshop Summary Released

    Broader source: Energy.gov [DOE]

    The Department of Energy has released the summary report from the July 30-31, 2012 Microgrid Workshop presented by the Office of Electricity Delivery and Energy Reliability at the Illinois Institute of Technology in Chicago. The workshop was held in response to discussions at the preceding DOE Microgrid Workshop, held in August 2011, which called for sharing lessons learned and best practices for system integration from existing projects in the U.S. (including military microgrids) and internationally.

  20. Energy Storage | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage SHARE Energy Storage Development Growing popularity and education about the benefits of alternative, sustainable transportation options-such as electric and hybrid...

  1. Design, Operation, and Controlled-Island Operation of the U.S. Department of Energy Solar Decathlon 2013 Microgrid

    SciTech Connect (OSTI)

    Kurnik, C.; Butt, R. S.; Metzger, I.; Lavrova, O.; Patibandla, S.; Wagner, V.; Frankosky, M.; Wiegand, G.

    2015-04-22

    This document reports on the design and operation of a high-capacity and high-penetration-ratio microgrid, which consists of 19 photovoltaic-powered residential houses designed by collegiate teams as part of their participation in the U.S. Department of Energy Solar Decathlon 2013. The microgrid was interconnected with the local utility, and resulting net-power and power-quality events were recorded in high detail (1-minute data sampling or better). Also, a controlled-island operation test was conducted to evaluate the microgrid response to additional events such as increased loads (e.g., from electric vehicles) and bypassing of voltage regulators. This temporary ground-laid microgrid was stable under nominal and island-operation conditions; adverse weather and loads did not lead to power-quality degradation.

  2. Lessons Learned from Microgrid Demonstrations Worldwide

    SciTech Connect (OSTI)

    Marnay, Chris; Zhou, Nan; Qu, Min; Romankiewicz, John

    2012-01-31

    The survey leads to policy recommendations for starting a microgrid demonstration program and overall development of microgrid and distributed energy. Additionally, specific recommendations have been made for China specifically.

  3. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    2010, Special Issue on Microgrids and Energy Management,and Operation of Microgrids in Commercial Buildings,” IEEEIravani, and C. Marnay, “Microgrids, An Overview of Ongoing

  4. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  5. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    tariffs. Electrical battery storage has also considerablerenewable energies and battery storage, in EUR, C elec iscase of electricity, battery storage has also considerable

  6. Workplace Charging Challenge Partner: UCLA Smart Grid Energy...

    Broader source: Energy.gov (indexed) [DOE]

    research on the topics of Electric Vehicle Integration Automated Demand Response Microgrids, and Distributed and Renewable Integration, and Energy Storage Integration. The...

  7. Randomized Auction Design for Electricity Markets between Grids and Microgrids

    E-Print Network [OSTI]

    Li, Zongpeng

    Randomized Auction Design for Electricity Markets between Grids and Microgrids Linquan Zhang Dept power markets with grid-to-microgrid and microgrid-to-grid energy sales are studied, with an auction of algorithms General Terms Algorithms, Design, Economics Keywords Power Grid; Microgrids; Unit Commitment

  8. Moloka`i Secure Renewable Microgrid Project

    E-Print Network [OSTI]

    Moloka`i Secure Renewable Microgrid Project Hawai`i Natural Energy Institute | School of Ocean The Molokai Microgrid Project focuses on improving power system operation with high penetration levels, power system monitoring, modeling, planning, and design support for microgrid components. Challenge

  9. Building Scale DC Microgrids

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01

    ABORATORY Building Scale DC Microgrids Chris Marnay, Stevenemployer. Building Scale DC Microgrids Chris Marnay, IEEEgenerally known as microgrids (or µgrids). The dominance of

  10. Building Scale DC Microgrids

    E-Print Network [OSTI]

    Marnay, Chris

    2013-01-01

    in likely future adoption patterns of microgrids.chairs the annual Symposium on Microgrids, and is Convenorof the CIGRÉ C6.22 Microgrids Evolution Roadmap Working

  11. Aalborg Universitet Power flow analysis for droop controlled LV hybrid AC-DC microgrids with virtual

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Power flow analysis for droop controlled LV hybrid AC-DC microgrids controlled LV hybrid AC-DC microgrids with virtual impedance. In Proceedings of the IEEE Power & Energy Interlinking converter PV WT IBS DC microgrid DC microgrid AC microgrid AC Load Figure 1. Structure

  12. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  13. Testimony of Secretary Ernest Moniz U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficient and flexible through research and development into microgrids and grid-scale energy storage. It also invests in transformation of the distribution system toward higher...

  14. Aalborg Universitet Energy Management System with Equalization Algorithm for Distributed Energy

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Energy Management System with Equalization Algorithm for Distributed Energy for Distributed Energy Storage Systems in PV-Active Generator Based Low Voltage DC Microgrids. In IEEE ICDCM 2015 for Distributed Energy Storage Systems in PV-Active Generator Based Low Voltage DC Microgrids Nelson L. D

  15. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  16. Department of Mechanical Engineering Presents: "Towards Optimal Investment, Planning and Control of Microgrids"

    E-Print Network [OSTI]

    Keaveny, Tony

    on the optimal investment, planning, and control of distributed micro-grids. A micro-grid is characterized by its generation sources (renewables and non-renewables), storage capacity, internal demand and sell back to grid of microgrids quite challenging problems. From the power grid point of view, microgrids are resource nodes

  17. CERTS Microgrid Laboratory Test Bed

    E-Print Network [OSTI]

    Eto, Joe

    2009-01-01

    needed to operate microgrids consisting of generatingdemonstrations involving microgrids that involve one or moreimprovements offered by microgrids. KEYWORDS Field

  18. CERTS Microgrid Laboratory Test Bed

    E-Print Network [OSTI]

    ETO, J.

    2010-01-01

    needed to operate microgrids consisting of generatingdemonstrations involving microgrids that involve one or moreimprovements offered by microgrids. KEYWORDS Field

  19. Sandia Energy - Energy Across America: A Policy Discussion on Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLED LightingEnergy Home

  20. Validation of the CERTS Microgrid Concept The CEC/CERTS MicrogridTestbed

    SciTech Connect (OSTI)

    Nichols, David K.; Stevens, John; Lasseter, Robert H.; Eto,Joseph H.

    2006-06-01

    The development of test plans to validate the CERTSMicrogrid concept is discussed, including the status of a testbed.Increased application of Distributed Energy Resources on the Distributionsystem has the potential to improve performance, lower operational costsand create value. Microgrids have the potential to deliver these highvalue benefits. This presentation will focus on operationalcharacteristics of the CERTS microgrid, the partners in the project andthe status of the CEC/CERTS microgrid testbed. Index Terms DistributedGeneration, Distributed Resource, Islanding, Microgrid,Microturbine

  1. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    microgrid can be fuel cells, PV, solar thermal, stationary storage, absorption cooling, combined heat and power,

  2. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  3. Methodology for Preliminary Design of Electrical Microgrids

    SciTech Connect (OSTI)

    Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.; Henry, Jordan M; Munoz-Ramos, Karina; Abdallah, Tarek

    2015-09-30

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

  4. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  5. Energy Storage: Current landscape for alternative energy

    E-Print Network [OSTI]

    Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

  6. Arnold Schwarzenegger CERTS MICROGRID

    E-Print Network [OSTI]

    Figure 3 - Simplified diagram of Test Bed showing Meter and Relay locations .... 4 Figure 4 - DiagramArnold Schwarzenegger Governor CERTS MICROGRID LABORATORY TEST BED Test Plan Section 9.0 Power Flow Control Tests Prepared For: California Energy Commission Public Interest Energy Research Program Prepared

  7. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    581 times Category Energy Security, Energy Storage, Energy Surety, Energy Surety Microgrid, Fact Sheet report-id SAND-2012-0552P author Mark Allen year 2012 Sandia's Smart...

  8. Integration of Renewable Distributed Energy Resources into Microgrids

    E-Print Network [OSTI]

    Huang, Rui

    2015-01-01

    on Renewable Energy Resources . . . . . . . . . . . . SolarIntegration of Renewable Distributed Energy Re- sources intoIntegration of Renewable Distributed Energy Re- sources into

  9. Integration of Renewable Distributed Energy Resources into Microgrids

    E-Print Network [OSTI]

    Huang, Rui

    2015-01-01

    tems,” Renewable and Sustainable Energy Reviews, vol. 12,Renewable and sustainable energy Reviews, vol. 11, no. 6,review,” Renewable and Sustainable Energy Reviews, vol. 15,

  10. Integration of distributed energy resources. The CERTS Microgrid Concept

    E-Print Network [OSTI]

    2002-01-01

    2001. Integration of Distributed Energy Resources - The C Enew Integration of Distributed Energy Resources - The C E Ron Integration of Distributed Energy Resources The CERTS

  11. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    Venkataramanan, 2006, Microgrids in the Evolving ElectricityN ATIONAL L ABORATORY Microgrids: An emerging paradigm forFrance, 4-9 June 2007 Microgrids: An emerging paradigm for

  12. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1

  13. Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize » Air Sealing »

  14. Integration of Renewable Distributed Energy Resources into Microgrids

    E-Print Network [OSTI]

    Huang, Rui

    2015-01-01

    and future state of art development of hybrid energy system using wind and pv-solar: A review,” Renewable and

  15. Integration of distributed energy resources. The CERTS Microgrid Concept

    E-Print Network [OSTI]

    2002-01-01

    of Distributed Energy Resources - The C E R T S M i c r o Gof Distributed Energy Resources - The C E R T S M i c r o Gof Distributed Energy Resources - The C E R T S M i c r o G

  16. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    microgrid, which may include photovoltaic (PV), solar thermal, stationary batteries, thermal storage, and combined heat and power (

  17. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Energy Savers [EERE]

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  18. Decoding the `Nature Encoded' Messages for Distributed Energy Generation Control in Microgrid

    E-Print Network [OSTI]

    Gong, Shuping; Lai, Lifeng; Qiu, Robert C

    2010-01-01

    The communication for the control of distributed energy generation (DEG) in microgrid is discussed. Due to the requirement of realtime transmission, weak or no explicit channel coding is used for the message of system state. To protect the reliability of the uncoded or weakly encoded messages, the system dynamics are considered as a `nature encoding' similar to convolution code, due to its redundancy in time. For systems with or without explicit channel coding, two decoding procedures based on Kalman filtering and Pearl's Belief Propagation, in a similar manner to Turbo processing in traditional data communication systems, are proposed. Numerical simulations have demonstrated the validity of the schemes, using a linear model of electric generator dynamic system.

  19. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  20. Cooperative Microgrid Networks for Remote and Rural Areas

    E-Print Network [OSTI]

    Kundur, Deepa

    Cooperative Microgrid Networks for Remote and Rural Areas Eman Hammad, Abdallah Farraj, Deepa: {ehammad, abdallah, dkundur}@ece.utoronto.ca Abstract--Microgrids (MGs) with renewable energy resources cooperation gains for the microgrid network after implementing the proposed algorithm. I. INTRODUCTION

  1. An Electricity Trade Model for Microgrid Communities in Smart Grid

    E-Print Network [OSTI]

    Pedram, Massoud

    An Electricity Trade Model for Microgrid Communities in Smart Grid Tiansong Cui, Yanzhi Wang Los Angeles, CA, USA {tcui, yanzhiwa, shahin, pedram}@usc.edu Abstract--Distributed microgrid network and a small group of energy users. In the distributed power system, each microgrid acts as a "prosumer

  2. Recommendations for Technologies for Microgrids on the Big Island

    E-Print Network [OSTI]

    Recommendations for Technologies for Microgrids on the Big Island Prepared for U.S. Department Island microgrids By Sentech, Inc. Bethesda, Maryland And University of Hawaii Hawaii Natural Energy for technologies to be used in future installation of Big Island microgrids Subtask 2.2 Deliverable #4 Prepared By

  3. Aalborg Universitet Hierarchical Control for Multiple DC Microgrids Clusters

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Hierarchical Control for Multiple DC Microgrids Clusters Shafiee, Qobad). Hierarchical Control for Multiple DC Microgrids Clusters. I E E E Transactions on Energy Conversion, 29(4), 922. Dragicevic, J. C. Vasquez, and J. M. Guerrero, "Hierarchical Control for Multiple DC-Microgrids Clusters

  4. Short-Term Operation Scheduling in Renewable-Powered Microgrids

    E-Print Network [OSTI]

    Bornemann, Jens

    Short-Term Operation Scheduling in Renewable-Powered Microgrids: A Duality-Based Approach Binyan scheduling prob- lem in renewable-powered microgrids, which is used to determine the least-cost unit- ments. The intermittency nature of the renewable energy sources, as well as microgrid's capacity

  5. Microgrid Equipment Selection and Control | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessageFYSummary of

  6. DERIREC 22@Microgrid (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordiaConsumerLEDSEnergy InformationDEFRADEIF A

  7. CERTS Microgrid Laboratory Test Bed

    E-Print Network [OSTI]

    Lasseter, R. H.

    2010-01-01

    Autonomous Control of Microgrids,” IEEE PES Meeting,engineering needed to operate microgrids consisting of smallreduction of cost, meshed microgrids and frequency based

  8. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  9. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    E-Print Network [OSTI]

    Eto, Joseph H.

    2008-01-01

    Interest Energy Research CERTS Microgrid Test Bed Project 30a research project for the New York State Energy Researcha research project for the New York State Energy Research

  10. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    considerable tendency for PV adoption, when this technologythe substantial adoption of PV in building complexes: 1)PV. 4.2 Scale economies 4.1 Benefits from microgrid adoption

  11. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  12. Carbon Nanotube Films for Energy Storage Applications

    E-Print Network [OSTI]

    Kozinda, Alina

    2014-01-01

    Silicon Nanotubes and their Application to Energy Storage,&as an energy storage application of the amorphous-siliconof silicon nanowires hinders the energy storage capability [

  13. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

  14. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01

    based Materials for Energy Storage A dissertation submittedbased Materials for Energy storage by Lynn Margaret Ricewind are intermittent. Energy storage systems, then, that

  15. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    the prob- lem of seasonal storage of thermal energy (Matheyto study seasonal storage of thermal energy: winter storagewithin the Seasonal Thermal Energy Storage Program managed

  16. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

  17. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  18. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

  19. Ice Bear® Storage Module | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Bear Storage Module Ice Bear Storage Module Thermal Energy Storage for Light Commercial Refrigerant-Based Air Conditioning Units The Ice Bear storage technology was...

  20. The advanced microgrid. Integration and interoperability

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Ton, Dan T.; Guttromson, Ross; Glover, Steven F; Stamp, Jason Edwin; Bhatnagar, Dhruv; Reilly, Jim

    2014-02-01

    This white paper focuses on "advanced microgrids," but sections do, out of necessity, reference today's commercially available systems and installations in order to clearly distinguish the differences and advances. Advanced microgrids have been identified as being a necessary part of the modern electrical grid through a two DOE microgrid workshops, the National Institute of Standards and Technology, Smart Grid Interoperability Panel and other related sources. With their grid-interconnectivity advantages, advanced microgrids will improve system energy efficiency and reliability and provide enabling technologies for grid-independence to end-user sites. One popular definition that has been evolved and is used in multiple references is that a microgrid is a group of interconnected loads and distributed-energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode. Further, an advanced microgrid can then be loosely defined as a dynamic microgrid.

  1. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    2009, Special Issue on Microgrids and Energy Management 3.of Commercial-Building Microgrids,” IEEE Transactions on2009, Special Issue on Microgrids and Energy Management 15.

  2. Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaff andState andStorage Storage

  3. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  4. Electrical Energy Storage: Stan Whittingham

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

  5. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  6. National Energy Storage Strategy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram | DepartmentEnergy6 3Energy Storage Strategy

  7. Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming

    SciTech Connect (OSTI)

    Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-05-23

    This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.

  8. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion EfficiencyEnergy

  9. Control and Protection of Power Electronics Interfaced Distri-buted Generation Systems in a Customer-Driven Microgrid

    E-Print Network [OSTI]

    Tolbert, Leon M.

    in a Customer-Driven Microgrid Fang Z. Peng, Yun Wei Li and Leon M. Tolbert Abstract ­ This paper discusses-driven microgrid (CDM). Particularly, the following topics will be addressed: microgrid system configurations); renewable energy source (RES); micro-source; microgrid; customer-driven micro- grid (CDM), power electronics

  10. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  11. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  12. Vehicle to MicroGrid: Leveraging Existing Assets for Reliable Energy Management Mike Simpson, Tony Markel, and Michael O'Keefe

    E-Print Network [OSTI]

    Vehicle to MicroGrid: Leveraging Existing Assets for Reliable Energy Management Mike Simpson, Tony NREL PIX 17631 NREL PIX # 17394 Natural Gas Renewable Energy Truck Fleet Diesel Generators Can the substantial battery packs of the onsite gridconnected vehicles (GCVs) improve the stability and performance

  13. Integrated Building Energy Systems Design Considering Storage Technologies

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  14. Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformationVulnerabilities to Climate ChangeAugustEnergy Storage

  15. Microsoft PowerPoint - DOD Microgrid 102513 SHORT.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in DOE's ARRA Smart Grid Program Steve Bossart, Senior Energy Analyst Smart Grids & Microgrids for Government & Military Symposium October 24-25, 2013, Arlington, VA ...

  16. Microgrid V2G Charging Station Interconnection Testing (Presentation)

    SciTech Connect (OSTI)

    Simpson, M.

    2013-07-01

    This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

  17. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  18. Microgrids for Rural Electrification

    E-Print Network [OSTI]

    Microgrids for Rural Electrification: A critical review of best practices based on seven case studies Carnegie Mellon University University of California, Berkeley #12;B Microgrids for Rural Electrification Microgrids for Rural Electrification: A critical review of best practices based on seven case

  19. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    D. Todd, (1973). Heat storage Systems in the L - Temperaturements for Energy Storage Systems, Los Alamos Scientificdirector for Physi- cal Storage Systems. Under Jim are three

  1. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  2. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  3. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    N. et al. , (2007), “Microgrids, An Overview of Ongoingand Operation of Microgrids in Commercial Buildings”, IEEEsuccessful deployment of microgrids will depend heavily on

  4. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01

    to scheduling in microgridsEnergy, vol. 36, no. 7, pp.of Commercial-Building Microgrids,” IEEE Transactions onfor LV unbalanced microgrids with plugged-in electric

  5. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    A New Concept in Electric Generation and Energy Storage,"A New Concept in Electric Generation and Energy Storage,"of Solar Energy for Electric Power Generation," Proceedings

  6. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

  7. Aalborg Universitet Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids Clusters

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids and Active Stabilization of Multiple DC-Microgrids Clusters. In Proceedings of the 2014 IEEE International of Multiple DC-Microgrid Clusters," in Proc. IEEE International Energy Conference (EnergyCon'14), 2014

  8. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage...

  9. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  10. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1 Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Hawai`i Distributed

  11. Energy Storage | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy Storage Management for VGTechnology

  12. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    20) E. B. Quale. Seasonal storage of thermal energy in waterE.B. , 1976. "Seasonal Storage of Thermal Energy in Water ina truly worthwhile goal. Seasonal Storage of Thermal Energy

  13. Analysis of Industrial Microgrid Power Curves Based on the Theory of Stochastic Variables for

    E-Print Network [OSTI]

    Noé, Reinhold

    Analysis of Industrial Microgrid Power Curves Based on the Theory of Stochastic Variables--Design and control of microgrids require a wide range of considerations and information. A main issue is the sizing, which help to assess power curves and to dimension components of microgrids. I. INTRODUCTION The energy

  14. Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory

    E-Print Network [OSTI]

    Huang, Jianwei

    Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast supply and demand in an isolated microgrid [2], which is an important concept for renewable energy

  15. Modeling and Simulation of a Microgrid as a Stochastic Hybrid System

    E-Print Network [OSTI]

    Abate, Alessandro

    1 Modeling and Simulation of a Microgrid as a Stochastic Hybrid System Martin Strelec, Karel Macek, Alessandro Abate Abstract--Microgrids (MGs) are small-scale local energy grids. While dedicated to cover and on approximate dynamic programming) for typical challenges in MGs. Index Terms--Microgrids, Stochastic Hybrid

  16. Architecture and System Analysis of Microgrids with Peer-to-Peer Electricity Sharing to Create a

    E-Print Network [OSTI]

    Perreault, Dave

    Architecture and System Analysis of Microgrids with Peer-to-Peer Electricity Sharing to Create more electricity at certain times. These ad- hoc microgrids created by sharing of resources provide--Dc microgrids, energy access, Power manage- ment Unit I. INTRODUCTION The lack of electricity is one of the most

  17. Aalborg Universitet Stability Analysis for Isolated AC Microgrids Based on PV-Active Generators

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Stability Analysis for Isolated AC Microgrids Based on PV-Active Generators for Isolated AC Microgrids Based on PV-Active Generators. In Proceedings of the 2015 IEEE Energy Conversion.aau.dk on: november 29, 2015 #12;Stability Analysis for Isolated AC Microgrids Based on PV-Active Generators

  18. CARNEGIE MELLON UNIVERSITY Electric Power Micro-grids: Opportunities and Challenges

    E-Print Network [OSTI]

    CARNEGIE MELLON UNIVERSITY Electric Power Micro-grids: Opportunities and Challenges for an Emerging;Electric Power Micro-grids: Barriers and opportunities for an emerging distributed energy architecture ii, such as engines and micro-turbines. #12;Electric Power Micro-grids: Barriers and opportunities for an emerging

  19. Sandia Energy - DOE International Energy Storage Database Has...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity Home Energy Assurance Infrastructure Security Energy Surety Energy Grid...

  20. SMART FUEL CELL OPERATED RESIDENTIAL MICRO-GRID COMMUNITY

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam University of South Alabama ECE Department, EEB 75 Mobile, AL 36688-0002 Phone: 251-460-6117 Fax: 251-460-6028

    2005-04-13

    To build on the work of year one by expanding the smart control algorithm developed to a micro-grid of ten houses; to perform a cost analysis; to evaluate alternate energy sources; to study system reliability; to develop the energy management algorithm, and to perform micro-grid software and hardware simulations.

  1. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentations - Day 1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS)...

  2. Analytic Challenges to Valuing Energy Storage

    SciTech Connect (OSTI)

    Ma, Ookie; O'Malley, Mark; Cheung, Kerry; Larochelle, Philippe; Scheer, Rich

    2011-10-25

    Electric grid energy storage value. System-level asset focus for mechanical and electrochemical energy storage. Analysis questions for power system planning, operations, and customer-side solutions.

  3. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    Superconducting Magnetic Bearing - Mike Strasik, Boeing.pdf More Documents & Publications Energy Storage Systems 2006 Peer Review - Day 1 morning presentations Energy Storage...

  4. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  5. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    Effect of Heat and Electricity Storage and Reliability onorganized group of electricity generation, storage and loadsprices. In the case of electricity, battery storage has also

  6. Nano- and Microscale Architectures for Energy Storage Systems

    E-Print Network [OSTI]

    Dudek, Lisa

    2014-01-01

    Host for Emerging Energy Storage Systems Introduction Li-ionStorage Systems …………………………………………………………………………………………………………85Architectures for Energy Storage Systems A dissertation

  7. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01

    Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

  8. Microgrids and Heterogeneous Power Quality and Reliability

    E-Print Network [OSTI]

    Marnay, Chris

    2008-01-01

    ed. : special issue on microgrids, International Journal ofG. Venkataramanan: “Microgrids in the evolving electricitymore background on microgrids, please see the presentations

  9. International Microgrid Assessment: Governance, Incentives, and Experience

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    for interconnection of microgrids Consider modifications toFigure 1. Drivers for microgrids across four stakeholderthe economic benefits of microgrids CASE STUDY 1: SANTA RITA

  10. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  11. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    aquifers for heat storage, solar captors for heat productionZakhidov, R. A. 8 1971, Storage of solar energy in a sandy-thermal energy storage for cogeneration and solar systems,

  12. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    associat~ ed with solar thermal storage. Now this system canand R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the

  13. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    Lead-Acid), TS - Thermal storage, ST - Solar thermal, PV –and storage the availability is calculated based on the solar

  14. STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    Foresight Renewable Solutions Integrated Solar PV, Advanced Compressed Air Energy Storage, and Microgrid Power and Smart Building Management for California Communities $1,726,438 $1,726,438 $1,025,822 77

  15. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  16. Addressing the Grand Challenges in Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2013-02-25

    The editorial summarizes the contents of the special issue for energy storage in Advanced Functional Materials.

  17. New York's Energy Storage System Gets Recharged

    Broader source: Energy.gov [DOE]

    Jonathan Silver and Matt Rogers on a major breakthrough for New York state's energy storage capacity.

  18. Breakthrough materials for energy storage

    E-Print Network [OSTI]

    Breakthrough materials for energy storage November 4, 2009 #12;#12;This revolution is happening;Electronics: our early market 5 hours #12;Progress on energy density... #12;Has reached a limit #12;Battery basics Anode Cathode #12;Battery basics Anode Cathode #12;Silicon leads in energy density

  19. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  20. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    Electricity Storage - Sanjoy Banerjee, CUNY.pdf PDF icon ESS 2010 Update Conference - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Venkat Srinivasan,...

  1. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    Systems Security Publications Library Energy Storage Power Electronics Advanced Modeling Grid Research Transmission Reliability Renewable Energy Integration Small Business...

  2. Sandia Energy - Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy StorageAshley Otero2015-10-30T01:37:25+00:00 Environmentally friendly renewable energy sources such as wind and solar are important technology platforms to help reduce power...

  3. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    SciTech Connect (OSTI)

    Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

    2008-07-25

    The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

  4. Copyright 2013 IEEE. Reprinted, with permission from: Real-world Performance of a CERTS Microgrid in Manhattan

    E-Print Network [OSTI]

    Copyright © 2013 IEEE. Reprinted, with permission from: Real-world Performance of a CERTS Microgrid to Special Section on Microgrids for Sustainable Energy: IEEE Transactions on Sustainable Energy microgrid technology enabled the Brevoort, a 1950's era luxury co-op tower in Greenwich Village, NY

  5. Copyright 2014 IEEE. Reprinted, with permission from: Real-world Performance of a CERTS Microgrid in Manhattan

    E-Print Network [OSTI]

    Copyright © 2014 IEEE. Reprinted, with permission from: Real-world Performance of a CERTS Microgrid for publication in Special Section on Microgrids for Sustainable Energy: IEEE Transactions on Sustainable Energy Microgrid technology enabled the Brevoort, a 1950's era luxury co-op tower in Greenwich Village, NY

  6. International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01

    of the Cost and Benefits of Microgrids. ” Lawrence BerkeleyT. 2007. “Real-world microgrids-an overview. ” Institute ofCommission. 2010. “Pilot microgrids: Kythnos microgrid. ”

  7. Arnold Schwarzenegger CERTS MICROGRID

    E-Print Network [OSTI]

    Figure 3 - Simplified diagram of Test Bed showing Meter and Relay locations .... 4 Figure 4 - DiagramArnold Schwarzenegger Governor CERTS MICROGRID LABORATORY TEST BED Test Plan Section 10.0 Difficult in this report. #12;#12;CERTS MICROGRID TEST REPORT SECTION 10.0 "Difficult Load Tests" #12;I Table of Contents 1

  8. The Role of Thermal Energy Storage in Industrial Energy Conservation 

    E-Print Network [OSTI]

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely...

  9. Grid Energy Storage - December 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Energy Storage - December 2013 Grid Energy Storage - December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy...

  10. Energy Department Releases Strategic Plan for Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Releases Strategic Plan for Energy Storage Safety Energy Department Releases Strategic Plan for Energy Storage Safety December 23, 2014 - 10:16am Addthis Dr. Imre Gyuk...

  11. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01

    Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

  12. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Resources Res. 14: 273-280. THERMAL STORAGE OF COLD WATER INR.C. HARE, 1972. Thermal Storage for Eco-Energy Utilities,W.J. MASICA, 1977. "Thermal Storage for Electric Utilities,"

  13. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    R. C. 1 1972 1 Thermal storage for eco=energy utilities: GE-and Harris, w. B. 0 1978 0 Thermal storage of cold water induration EXPERIMENTS Thermal storage radius (m) thickness

  14. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  15. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  16. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    time-varying solar energy inputs and thermal or powerthermal energy becomes apparent with the development of solar

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    or (2) from solar energy collectors, and to retrieve the hotof Hot Water from Solar Energy Collectors," Proceedings of

  18. Increasing renewable energy system value through storage

    E-Print Network [OSTI]

    Mueller, Joshua M. (Joshua Michael), 1982-

    2015-01-01

    Intermittent renewable energy sources do not always provide power at times of greatest electricity demand or highest prices. To do so reliably, energy storage is likely required. However, no single energy storage technology ...

  19. Post regulation circuit with energy storage

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA)

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  20. Matt Rogers on AES Energy Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide...

  1. Status of Overseas Microgrid Programs: Microgrid Research Activities in the U.S.

    E-Print Network [OSTI]

    Marnay, Chris

    2008-01-01

    Introduction Research on microgrids in the U.S. has taken aAutonomous Control of Microgrids,” IEEE Power Engineeringtranslate into a desire for microgrids to seamlessly island

  2. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    SciTech Connect (OSTI)

    Marnay, Chris; Lai, Judy; Stadler, Michael; Siddiqui, Afzal

    2009-05-07

    The Distributed Energy Resources Customer Adoption Model is used to estimate the value an Oakland nursing home, a Riverside high school, and a Sunnyvale data center would need to put on higher electricity service reliability for them to adopt a Consortium for Electric Reliability Technology Solutions Microgrid (CM) based on economics alone. A fraction of each building's load is deemed critical based on its mission, and the added cost of CM capability to meet it added to on-site generation options. The three sites are analyzed with various resources available as microgrid components. Results show that the value placed on higher reliability often does not have to be significant for CM to appear attractive, about 25 $/kWcdota and up, but the carbon footprint consequences are mixed because storage is often used to shift cheaper off-peak electricity to use during afternoon hours in competition with the solar sources.

  3. Design and Verification of Smart and Scalable DC Microgrids for Emerging Regions

    E-Print Network [OSTI]

    Sanders, Seth

    in grid power: A droop voltage power-sharing scheme is implemented, wherein the microgrid voltage droops transmission and distributed storage. Since the PMUs will be able to communicate digitally to the power stationDesign and Verification of Smart and Scalable DC Microgrids for Emerging Regions P. Achintya

  4. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  5. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  6. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  7. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap...

  8. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  9. Hierarchical Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Wang, Xiaolei

    2013-01-01

    and long life energy storage devices for many applications,portable electronics, EVs and grid-scale energy storage.2011). [28] Telcordia Energy Storage Research Group, http://

  10. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01

    in Electrochemical Energy Storage. Science 334, (6058), 917-with supercapacitors storage energy system. Electr. Pow.energy conversion and storage devices. Nat. Mater. 2005,

  11. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01

    portable electronics, EVs and grid-scale energy storage.electronics, EVs and grid-scale energy storage. v Thevehicles and smart grid energy storage, are highly dependent

  12. Energy Storage Systems 2010 Update Conference | Department of...

    Office of Environmental Management (EM)

    Energy Storage Systems 2010 Update Conference Energy Storage Systems 2010 Update Conference The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

  13. Energy Storage Activities in the United States Electricity Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies...

  14. Energy Storage Systems 2012 Peer Review and Update Meeting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems 2012 Peer Review and Update Meeting Energy Storage Systems 2012 Peer Review and Update Meeting OE's Energy Storage Systems Program (ESS) conducted a peer...

  15. Fact Sheet: Energy Storage Database (October 2012) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Database (October 2012) Fact Sheet: Energy Storage Database (October 2012) DOE and Sandia National Laboratories are developing a database of energy storage projects...

  16. Energy Storage Systems 2014 Peer Review and Update Meeting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems 2014 Peer Review and Update Meeting Energy Storage Systems 2014 Peer Review and Update Meeting OE's Energy Storage Systems (ESS) Program conducted a peer...

  17. ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01

    temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

  18. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  19. Nano- and Microscale Architectures for Energy Storage Systems

    E-Print Network [OSTI]

    Dudek, Lisa

    2014-01-01

    electrospun PIM-1 for energy storage applications. J. Mater.necessary for electrical energy storage on the nanoscale andnanoarchitectures for energy storage and conversion. Chem.

  20. De Novo Nanostructures and Their Applications in Energy Storage

    E-Print Network [OSTI]

    Wang, Wei

    2014-01-01

    candidates for alternative energy storage applications sincetowards high performance energy storage devices. ReferencesApplications in Energy Storage A Dissertation submitted in

  1. Hierarchical Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Wang, Xiaolei

    2013-01-01

    high power, and long life energy storage devices for manyportable electronics, EVs and grid-scale energy storage.2011). [28] Telcordia Energy Storage Research Group, http://

  2. Modeling and simulations of electrical energy storage in electrochemical capacitors

    E-Print Network [OSTI]

    Wang, Hainan

    2013-01-01

    3D nanoarchitec- tures for energy storage and conversion,”functionality in energy storage materials and devices byto electrochemical energy storage in TiO 2 (anatase)

  3. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Broader source: Energy.gov (indexed) [DOE]

    Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage...

  4. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies...

  5. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

  6. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01

    in Electrochemical Energy Storage. Science 334, (6058), 917-for electrochemical energy storage. Adv. Funct. Mater. 2009,electrochemical capacitive energy storage. Angew. Chem. Int.

  7. Storage Solutions for Hawaii's Smart Energy

    E-Print Network [OSTI]

    Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University of Hawaii at Manoa Hawaii Natural Energy Institute #12;Current Energy Storage Projects in Hawaii · 15 (2) · Spinning reserve/reserve support (2) #12;· Select and deploy Grid-scale energy storage systems

  8. Energy Storage Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    merit08duong.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Battery R&D Program Energy Storage R&D Overview...

  9. Energy Proportionality for Disk Storage Using Replication

    E-Print Network [OSTI]

    Kim, Jinoh

    2010-01-01

    acquisition. In particular, saving energy for storage is ofreplication can help saving energy because when a data itemFREP exploits replications, saving energy over 90% of the

  10. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    optimal could be acquired. Battery storage costs are roughlylead/acid battery) and thermal storage, capabilities, withcell electric storage heat storage flow battery abs. chiller

  11. Microgrid modeling using the stochastic Distributed Energy Resources Customer Adoption Model DER-CAM

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    fuel cells, heat exchangers, PV, solar thermal, absorption chillers, stationary electric storage, and electric vehicles Cost optimization

  12. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  13. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Key to Large-Scale Cogeneration?" Public Power, v, 35, no.Thermal Energy Storage for Cogeneration and Solar Systems,"Energy Storage for Cogeneration and Solar Systems, tion from

  14. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    2, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

  15. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  16. Prestressed elastomer for energy storage

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI); Speranza, Donald (Canton, MI)

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  17. Electrochemical Energy Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  18. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.

  19. Energy Storage 101

    Broader source: Energy.gov (indexed) [DOE]

    by the same process as fossil fuels) is a form of energy stored in chemical form. BATTERIES LEAD-ACID BATTERY Typical battery used to start a car with an internal...

  20. Energy Storage Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizonaAugust 16,Security 40 YearsEnergyJune Energy

  1. A Green Prison: The Santa Rita Jail Campus Microgrid

    E-Print Network [OSTI]

    Marnay, Chris

    2013-01-01

    presented in the Campus Microgrids Panel, 2012 IEEE PESstorage and generation, microgrids, PV, fuel cells, power

  2. Energy Storage Structural Composites: TONY PEREIRA

    E-Print Network [OSTI]

    Guo, John Zhanhu

    Energy Storage Structural Composites: a Review TONY PEREIRA 1, *, ZHANHU GUO 1 , S. NiEH 2 , J: This study demonstrates the construction of a multifunctional composite structure capable of energy storage) composites were laminated with energy storage all-solid-state thin- film lithium cells. The processes

  3. Nanotubular metalinsulatormetal capacitor arrays for energy storage

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Nanotubular metal­insulator­metal capacitor arrays for energy storage Parag Banerjee1,2 , Israel be possible to scale devices fabricated with this approach to make viable energy storage systems that provide, with speeds limited only by external circuit RCs. However, energy storage is limited because only surface

  4. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  5. OE Announces Awardees Under the Remote Off-Grid Microgrid Design...

    Energy Savers [EERE]

    decision support analysis on alternating current and direct current remote off-grid microgrids to meet user-defined objectives and constraints for costs and energy system...

  6. Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with

    E-Print Network [OSTI]

    Saldin, Dilano

    ;Power Electronics and Motor Drives Laboratory Wind and Solar Energy Outlook The U.S. wind power industry Introduction Wind Energy Profile Solar Energy Profile Energy Storage Options Role of Industrial Electronics Energy Storage Integrated with Renewable Energy Energy Storage Analysis for Wind and Solar #12;Power

  7. Sandia Energy - Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLEDPhase Field modelStorage Systems

  8. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    power, photovoltaics and solar thermal, small dispatchableThermal storage, ST - Solar thermal, PV – Photovoltaics,of the continuous solar thermal technology (depicted in

  9. Hierarchical Control and Management of Virtual Microgrids for Vehicle Electrification

    E-Print Network [OSTI]

    Zhang, Hongwei

    Hierarchical Control and Management of Virtual Microgrids for Vehicle Electrification Feng Lina microgrids (VMGs). Unlike microgrids studied before, virtual microgrids are flexible and cover the entire network. Keywords: Smart Grids, vehicle electrification, microgrids, control, distribution networks

  10. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Energy Conversion and Storage Systems By Andrew Mark DuffinEnergy Conversion and Storage Systems by Andrew Mark Duffin

  11. Energy Storage Safety Strategic Plan - December 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Safety Strategic Plan - December 2014 Energy Storage Safety Strategic Plan - December 2014 Energy storage is emerging as an integral component to a resilient and efficient...

  12. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  13. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  14. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  15. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  16. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    with Electric and Thermal Storage Technologies”, ACEEE 2008CAM 5 decoupling by thermal storage decoupling by electric2007. Please note that thermal storage contains also heat

  17. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    load electricity (kW) thermal storage storage charging non-avoidable electrical and thermal storage costs are set tototal electric load thermal storage solar thermal storage

  18. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  19. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Heat Wind Power Grid Solar Power ENERGY STORAGE P2G (HES) THE NEED THE MARKET RE curtailment is a growing occurrence Storage is required not just for hours but...

  20. Energy Storage & Power Electronics 2008 Peer Review - Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Systems Security Publications Library Energy Storage Power Electronics Advanced Modeling Grid Research Transmission Reliability Renewable Energy Integration Small Business...

  1. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 Thanks forEnergy ScienceEnergyStorage

  2. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    storage, thermal storage, solar thermal collectors, PVs, andis disallowed; 5. a low storage, PV, and solar thermal priceW run 4 force low storage / PV and solar thermal results run

  3. Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

  4. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    environmentally sound method of using thermal energy storageconcept of thermal energy of energy conversion methods tothermal energy, particularly cavern storage, appears to offer a promising near-term method

  5. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  6. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    electric energies from photovoltaic, wind, wood, biofuels and hydroelectrics to create a utility scale energy generation andgeneration and storage technologies is important for increasing the share of renewable energy sources and wider use of the plug-in electricgeneration and storage technologies are important for increas- ing the share of renewable energy sources and wider use of the plug-in electric

  7. Microgrid modeling using the stochastic Distributed Energy Resources Customer Adoption Model DER-CAM

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    using the stochastic Distributed Energy Resources CustomerEnergy Reliability, Distributed Energy Program of the U.S.Lab • Motivation • The Distributed Energy Resources Customer

  8. Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage

    E-Print Network [OSTI]

    Ulukus, Sennur

    Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage Omur Ozel Khurram with an energy harvesting transmitter which has a hybrid energy storage unit composed of a perfectly efficient super-capacitor (SC) and an inefficient battery. The SC has finite space for energy storage while

  9. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    Issue on Microgrids and Energy Management 3. Marnay, C. , G.Issue on Microgrids and Energy Management 15. PG&E tariffs (Issue on Microgrids and Energy Management Figures Figure 1.

  10. Sandia Energy - Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin HumphreysDETLEC SSLSRecentCapabilitiesEnergy

  11. Energy Storage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Incsource History View NewRecommerceBuildingEnergy

  12. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy Storage Management for VG

  13. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    Electrochemical Capacitor Energy Storage Using Direct WriteD. O. Energy, “Energy Storage-A Key Enabler of the Smartof storage [electric energy storage],” Power and Energy

  14. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    D. O. Energy, “Energy Storage-A Key Enabler of the Smartof storage [electric energy storage],” Power and EnergyJ. Østergaard, “Battery energy storage technology for power

  15. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    electric load thermal storage solar thermal storage chargingcombustion solar thermal CHP heat storage charging generateof solar thermal collectors, 1100 kWh of electrical storage,

  16. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    23) Knipp, R. "Marketing Thermal Storage," In Proceedings:1986. Tejl, D.S. , "Thermal Storage Strategies for Energy14) Ott, V,J. , "Thermal Storage Air Conditioning with

  17. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Vehicular Hydrogen Storage http://www.hydrogen.energy.gov/et al. , Reversible hydrogen storage in calcium borohydridereversible hydrogen storage. Chemical Communications, 2010.

  18. Matt Rogers on AES Energy Storage

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  19. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  20. Battery storage for supplementing renewable energy systems

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  1. Water Heaters (Storage Electric) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE rulemakings, and enforcement of the federal energy conservation standards. waterheaterstorageelectricv1.0.xlsx More Documents & Publications Water Heaters (Storage...

  2. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    ESS 2010 Update Conference - Seneca Advanced CAES 150 MW Plant Using an Existing Salt Cavern - James Rettberg, NYSEG.pdf More Documents & Publications Energy Storage...

  3. Analytic Challenges to Valuing Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analytical task. Market Conditions - Markets are continually evolving, and the long-term value of energy storage is difficult to capture. Niche markets have emerged, but...

  4. Electrochemical Energy Storage | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemical Energy Storage Apr 16 2014 08:00 AM - 05:00 PM Multiple Speakers, in multiple disciplines, from multiple institutions ASM International, Oak Ridge Chapter,...

  5. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  6. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  7. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    energy storage for cogeneration and solar systems, inTwin City district cogeneration system, in Proceedings,proposed system, based on cogeneration of power and heat by

  8. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    ESS 2010 Update Conference - Dynamic Islanding, Improving Service Reliability with Energy Storage - Emeka Okafor, AEP.pdf More Documents & Publications Overview of Gridscale...

  9. Energy Storage - Advanced Technology Development Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the...

  10. Emerging Technologies: Energy Storage for PV Power

    SciTech Connect (OSTI)

    Ponoum, Ratcharit; Rutberg, Michael; Bouza, Antonio

    2013-11-30

    The article discusses available technologies for energy storage for photovoltaic power systems, and also addresses the efficiency levels and market potential of these strategies.

  11. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    2003. Hatziargyriou, N. et al. , “Microgrids, An Overview ofand Operation of Microgrids in Commercial Buildings”, IEEEsuccessful deployment of microgrids will depend heavily on

  12. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    July weekday low storage & PV cost (run 3) .. 31 Figure 22.July Weekday Low Storage & PV Cost (run 3) . 32 FigureJan. weekday low storage & PV cost (run 3) 33

  13. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    with Electric and Thermal Storage Technologies”, ACEEE 2008DER-CAM decoupling by thermal storage decoupling by electricor $/kWh) lifetime (a) thermal storage 1 flow battery 220$/

  14. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    TK Effect of Heat and Electricity Storage and Reliability oninclude both heat and electricity storage, and 3. to make anIn this case, electricity storage costs are reduced from 193

  15. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    forms/instr63a.pdf Electricity Storage Association, MorganEffect of Heat and Electricity Storage and Reliability onEffect of Heat and Electricity Storage and Reliability on

  16. Energy Harvesting Communications with Energy and Data Storage Limitations

    E-Print Network [OSTI]

    Yener, Aylin

    Energy Harvesting Communications with Energy and Data Storage Limitations Burak Varan Aylin Yener time minimization problem with finite data and energy storage. The communication set up in [10] does limited energy and data storage. The data transmission policies allow the transmitter to drop some

  17. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

  18. COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable Energy Future Mr. Al Cavallo Consultant Compressed air energy storage (CAES) is a proven,...

  19. Comments by the Energy Storage Association to the Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments by the Energy Storage Association to the Department of Energy Electricity Advisory Council - March 13, 2014 Comments by the Energy Storage Association to the Department of...

  20. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, J; Yang, Christopher

    2005-01-01

    to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

  1. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and...

  2. Panel 4, CPUCs Energy Storage Mandate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ix CPUC's Energy Storage Mandate: Hydrogen Energy Storage Workshop May 15, 2014 Melicia Charles California Public Utilities Commission ix Overview of CPUC Energy Oversight * The...

  3. De Novo Nanostructures and Their Applications in Energy Storage

    E-Print Network [OSTI]

    Wang, Wei

    2014-01-01

    candidates for alternative energy storage applications sinceare promising alternative energy storage systems due tourge us to pursue alternative energy sources with small "

  4. International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01

    form of payment, however, otherwise the microgrid customerResolution: microgrid “Land of penalties” “Land of payments”Resolution: microgrid “Land of penalties” “Land of payments”

  5. Microgrids in the Evolving Electricity Generation and Delivery Infrastructure

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri

    2006-01-01

    N ATIONAL L ABORATORY Microgrids in the Evolving Electricityopportunity employer. Microgrids in the Evolving Electricityembedded with the load in microgrids. Development and decay

  6. Microgrids and Heterogeneous Security, Quality, Reliability, and Availability

    E-Print Network [OSTI]

    Marnay, Chris

    2007-01-01

    G. Venkataramanan, “Microgrids in the evolving electricitymore background on microgrids, please see the presentationsthe two Symposiums on Microgrids held at Berkeley, USA in

  7. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01

    with commercial building microgrids Michael Stadler, Gonçalocommercial building microgrids *) Michael Stadler GonçaloSVOW), http://der.lbl.gov/microgrids-lbnl/current-project-

  8. International Microgrid Assessment: Governance,INcentives, and Experience (IMAGINE)

    E-Print Network [OSTI]

    Romankiewicz, John

    2014-01-01

    Canada. Symposium on Microgrids. Jeju Island, South Korea:2008). Policymaking for Microgrids: Economic and RegulatoryAuthority. (2010). Microgrids: An Assessment of the Value,

  9. Web-Based Economic and Environmental Optimization of Microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    Optimization of Microgrids M. Stadler, C. Marnay, N.Our contribution to microgrids / global concept • What isOur Contribution to Microgrids Technology research Testing

  10. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01

    more background on microgrids, please see the presentationsthe two Symposiums on Microgrids held at Berkeley, USA ined. , special issue on microgrids, International Journal of

  11. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    E-Print Network [OSTI]

    Eto, Joseph H.

    2008-01-01

    3 pages. Lasseter, R.H. 2007. “Microgrids and Distributed3 pages. Lasseter, R.H. 2007. “Microgrids and Distributed2006. Autonomous Control of Microgrids. IEEE PES Meeting,

  12. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    network applications. For grid energy storage applicationelectronics for grid energy storage applications. DedicationGrid Energy Storage..

  13. Distributed energy resources customer adoption modeling with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    Alex Farrell of the Energy and Resources Group, UniversityMicrogrid Distributed Energy Resource Potential Using DER-of Distributed Energy Resources: The CERTS MicroGrid

  14. Arnold Schwarzenegger CERTS MICROGRID

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor CERTS MICROGRID LABORATORY TEST BED Test Bed Design Schematics Park Waitsfield, VT 05673 802-496-2955 www.northernpower.com CERTS Test Bed Schematic - PRELIMINARY (including Relay 1) T11 500kVA L11A,B,C CB12 CB13 Feeder C 75 yds cable Load Bank Zone 6 (Sheet 16, 17) A12 B

  15. Energy Storage Systems 2007 Peer Review - International Energy...

    Broader source: Energy.gov (indexed) [DOE]

    international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications...

  16. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    SciTech Connect (OSTI)

    Lasseter, Robert; Eto, Joe

    2010-05-15

    The CERTS Microgrid concept is an advanced approach for enabling integration of, in principle, an unlimited quantity of distributed energy resources into the electricity grid. A key feature of a microgrid, is its ability, during a utility grid disturbance, to separate and isolate itself from the utility seamlessly with no disruption to the loads within the microgrid (including no reduction in power quality). Then, when the utility grid returns to normal, the microgrid automatically resynchronizes and reconnects itself to the grid, in an equally seamless fashion. What is unique about the CERTS Microgrid is that it can provide this technically challenging functionality without extensive (i.e., expensive) custom engineering. In addition, the design of the CERTS Microgrid also provides high system reliability and great flexibility in the placement of distributed generation within the microgrid. The CERTS Microgrid offers these functionalities at much lower costs than traditional approaches by incorporating peer-to-peer and plug-and-play concepts for each component within the Microgrid. The predecessor to the current project involved the construction of and completion of initial testing using the world's first, full-scale, inverter-based, distributed generation test bed. The project demonstrated three advanced techniques, collectively referred to as the CERTS Microgrid concept, which collectively significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques are: (1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; (2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and (3) a method for microgrid control that achieves voltage and frequency stability under both grid and islanded conditions without requiring high-speed communications. The work conducted in this phase of RD&D on the CERTS Microgrid Concept builds upon this base of technical accomplishments to prioritize, develop, and then demonstrate technology enhancements to further enhance the business case for microgrids. That is, having demonstrated the technical feasibility of microgrid functions, RD&D optimization efforts are now needed to accelerate commercial deployment. The current phase is a contribution to these efforts. This project involved seven distinct analysis, bench-, and full-scale testing tasks. The first five tasks were described in the original proposal submitted and awarded through DOE's solicitation. Two additional tasks were added to address issues that had been identified in the earlier, first phase of testing.

  17. Storage Solutions for Hawaii's Smart Energy

    E-Print Network [OSTI]

    Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University demonstrations ­ Smart grid demonstrations ­ Other utility and University / HCEI research priorities · Variety Smart-grid Project 8 Altairnano (ALTI) 2 MW/333kWhr Battery Energy Storage System (BESS) #12;HELCO Wind

  18. SMARTSTORAGE: STORAGE-AWARE SMARTPHONE ENERGY SAVINGS

    E-Print Network [OSTI]

    Zhou, Gang

    SMARTSTORAGE: STORAGE-AWARE SMARTPHONE ENERGY SAVINGS DAVID T. NGUYEN. COLLEGE OF WILLIAM & MARY owners is the poor battery life. To many such users, being re- quired to charge the smartphone after of smartphone storage techniques on total energy consumption and we answer two key research questions: How does

  19. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  20. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  1. Analysis of electric vehicle interconnection with commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Mendes, Goncalo; Marnay, Chris; Mé gel, Olivier; Lai, Judy

    2011-04-01

    The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  2. Mechanical energy storage in carbon nanotube springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2011-01-01

    Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

  3. Carbon Capture and Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil Energy Research Benefits - Carbon...

  4. Energy Storage Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 Thanks forEnergy ScienceEnergyStorage »

  5. Energy Storage Computational Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of theClimateElgin,WindMap: CleanEnergyEnergy Storage

  6. Original article Energy balance storage terms and big-leaf

    E-Print Network [OSTI]

    Boyer, Edmond

    for the determination of big leaf forest evapotranspiration are not of the utmost importance. energy storage / deciduous. The available energy is defined as the net radiation (Rn), from which the net change in energy storage within), biomass heat storage (Sv) and photosynthetic energy storage (Sp). Soil heat storage Sg can be further

  7. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01

    In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

  8. Hierarchical Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Wang, Xiaolei

    2013-01-01

    portable electronics, EVs and grid-scale energy storage.electronics, EVs and grid-scale energy storage. iv v Theelectronics, EVs and grid-scale energy storage. To achieve

  9. Nano- and Microscale Architectures for Energy Storage Systems

    E-Print Network [OSTI]

    Dudek, Lisa

    2014-01-01

    ion: Silicon as a Host for Emerging Energy Storage SystemsBeyond Li-ion: Silicon as a Host for Emerging Energy StorageLi-ion: Silicon as a Host for Emerging Energy Storage xv

  10. Vehicle Technologies Office: 2013 Energy Storage R&D Progress...

    Office of Environmental Management (EM)

    Energy Storage R&D Progress Report, Sections 1-3 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 1-3 The FY 2013 Progress Report for Energy Storage...

  11. Carbon Nanotube-based MEMS Energy Storage Devices

    E-Print Network [OSTI]

    Jiang, Yingqi

    2011-01-01

    and P.M. Ajayan, Flexible energy storage devices based onand P.M. Ajayan, Flexible energy storage devices based onP.M. Ajayan, Flexible energy storage devices based on

  12. ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01

    underground thermal energy storage. In Proc. Th~rmal1980), 'I'hermal energy storage? in a confined aquifer·--al modeling of thermal energy storage in aquifers. In ~~-

  13. Energy Harvesting Broadcast Channel with Inefficient Energy Storage

    E-Print Network [OSTI]

    Yener, Aylin

    Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

  14. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    SciTech Connect (OSTI)

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  15. System and method for controlling microgrid

    DOE Patents [OSTI]

    Bose, Sumit (Niskayuna, NY); Achilles, Alfredo Sebastian (Bavaria, DE); Liu, Yan (Ballston Lake, NY); Ahmed, Emad Ezzat (Munich, DE); Garces, Luis Jose (Niskayuna, NY)

    2011-07-19

    A system for controlling a microgrid includes microgrid assets and a tieline for coupling the microgrid to a bulk grid; and a tieline controller coupled to the tieline. At least one of the microgrid assets comprises a different type of asset than another one of the microgrid assets. The tieline controller is configured for providing tieline control signals to adjust active and reactive power in respective microgrid assets in response to commands from the bulk grid operating entity, microgrid system conditions, bulk grid conditions, or combinations thereof.

  16. Assessment of the Economic Potential of Microgrids for Reactive Power Supply

    E-Print Network [OSTI]

    Appen, Jan von

    2012-01-01

    loses for the microgrid, since the payment is connected toa microgrid’s advantages, the following price This payment

  17. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    a) thermal storage 1 flow battery 220$/kWh and 2125$/kWlead-acid batteries flow battery thermal n/a n/a xiv Thestorage heat storage flow battery abs. chiller photovoltaic

  18. Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation

    E-Print Network [OSTI]

    Kemner, Ken

    Batteries and electrochemical energy storage are central to any future alternative energy energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all electrochemical energy storage devices, these corrosive reactions are not always detrimental to the operation

  19. U.S. CHP Installations Incorporating Thermal Energy Storage ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES)...

  20. Project Profile: Novel Thermal Energy Storage Systems for Concentratin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems for Concentrating Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The...

  1. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  2. Project Profile: Innovative Phase Change Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

  3. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014)...

  4. Fact Sheet: Isothermal Compressed Air Energy Storage (August...

    Office of Environmental Management (EM)

    Isothermal Compressed Air Energy Storage (August 2013) Fact Sheet: Isothermal Compressed Air Energy Storage (August 2013) SustainX will demonstrate an isothermal compressed air...

  5. Energy Storage Solutions Industrial Symposium | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

  6. Fact Sheet: Energy Storage Testing and Validation (October 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Validation (October 2012) Fact Sheet: Energy Storage Testing and Validation (October 2012) At Sandia National Laboratories, the Energy Storage Analysis Laboratory, in...

  7. USABC Energy Storage Testing - High Power and PHEV Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

  8. PLZT film capacitors for power electronics and energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLZT film capacitors for power electronics and energy storage applications Title PLZT film capacitors for power electronics and energy storage applications Publication Type Journal...

  9. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

  10. Thermal Energy Storage Technology for Transportation and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

  11. Energy Storage Systems 2007 Peer Review - Utility & Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems...

  12. Energy Storage & Power Electronics 2008 Peer Review - Agenda...

    Energy Savers [EERE]

    AgendaPresentation List Energy Storage & Power Electronics 2008 Peer Review - AgendaPresentation List The 2008 Peer Review Meeting for the DOE Energy Storage and Power...

  13. A National Grid Energy Storage Strategy - Electricity Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The...

  14. ARPA-E Announces $43 Million for Transformational Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies ARPA-E Announces 43 Million for Transformational Energy Storage Projects...

  15. Extreme Temperature Energy Storage and Generation, for Cost and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk...

  16. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Office of Environmental Management (EM)

    Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) The...

  17. Webinar Presentation - Energy Storage in State RPS - Dec. 19...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery...

  18. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    north of Los Angeles, California, will host the demonstration. Overview The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8...

  19. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  20. Sandia's research spans generation, storage, and load management at

    E-Print Network [OSTI]

    kW diesel genset, fuel cells, and additional interchangeable generators. Storage capabilities technology integration, microgrid communications, enhanced efficiency, load control, and specialized tests

  1. The Energy Harvesting Multiple Access Channel with Energy Storage Losses

    E-Print Network [OSTI]

    Yener, Aylin

    The Energy Harvesting Multiple Access Channel with Energy Storage Losses Kaya Tutuncuoglu and Aylin considers a Gaussian multiple access channel with two energy harvesting transmitters with lossy energy storage. The power allocation policy maximizing the average weighted sum rate given the energy harvesting

  2. Energy Storage Architecture Northwest Power and Conservation Council Symposium

    E-Print Network [OSTI]

    Modular Energy Storage Architecture (MESA) Northwest Power and Conservation Council Symposium: Innovations in Energy Storage Technologies February 13, 2013 Portland, OR #12;2 Agenda 2/13/2013 Renewable energy challenges Vision for energy storage Energy storage barriers MESA ­ Standardization & software

  3. The Economic Case for Bulk Energy Storage in Transmission Systems

    E-Print Network [OSTI]

    of using energy storage, optimized for multiple objectives, including cost, congestion, and emissions: Optimal Generation Expansion Planning with Integration of Variable Re- newables and Bulk Energy Storage Systems Pumped-hydroelectric energy storage has proven to be valuable as bulk energy storage for energy

  4. The Role of Microgrids in Helping to Advance the Nation's Energy System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopmentDepartmentof Energy TheThe

  5. Aalborg Universitet Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    ., & Guerrero, J. M. (2014). Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy-of-Charge Balance of Distributed Energy Storage in DC Microgrids," in Proc. IEEE International Energy Conference (EnergyCon'14), 2014. Voltage Scheduling Droop Control for State-of- Charge Balance of Distributed Energy

  6. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Gap...

  7. Project Profile: CSP Energy Storage Solutions — Multiple Technologies Compared

    Broader source: Energy.gov [DOE]

    US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial, utility-scale thermal energy storage technologies and provide a path to cost-effective energy storage for CSP plants >50 MW.

  8. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01

    K" and Hare, R, C" Thermal Storage for Eco-energy utilities,Current aquifer thermal storage projects are sum- marized inIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

  9. Could Solar Energy Storage be Key for Residential Solar? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? October 26, 2010 - 4:52pm Addthis This is the silent power storage...

  10. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  11. Predictive control and thermal energy storage for optimizing a multi-energy district boiler

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Predictive control and thermal energy storage for optimizing a multi- energy district boiler Julien energy storage. 1. Introduction Managing energy demand, promoting renewable energy and finding ways

  12. AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01

    within the Seasonal Thermal Energy Storage Program managedof a seasonal aquifer thermal energy storage experiment

  13. THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, C.F.

    2013-01-01

    within the Seasonal Thermal Energy Storage program managedwithin the Seasonal Thermal Energy Storage program managed

  14. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01

    nanostructured transition metal oxides for energy storage devicesnanostructured transition metal oxides for energy storage devices

  15. Energy Proportionality for Disk Storage Using Replication

    E-Print Network [OSTI]

    Kim, Jinoh

    2010-01-01

    energy consumed in a datacenter. Recent work introduced theoperational costs in a datacenter, and if we consider power-the many components in the datacenter, storage is the next

  16. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NC State.pdf ESS 2010 Update Conference - A 10-MVA ETO-based StatCom - Harshad Mehta, Silicon Power.pdf More Documents & Publications Energy Storage & Power Electronics 2008...

  17. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  18. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    chaired by ARPA-E's Mark Johnson, are below. ESS 2010 Update Conference - Electrochemical Energy Storage for the Grid - Yet-Ming Chiang, MIT.pdf ESS 2010 Update Conference - DOE...

  19. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    of Day 2, chaired by NETL's Kim Nuhfer, are below. ESS 2010 Update Conference - Low Cost Energy Storage - Ted Wiley, Aquion.pdf Ess 2010 Update Conference - Solid State Li Metal...

  20. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  1. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  2. Hydrogen-based electrochemical energy storage

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  3. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Schoenung, Susan M.

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  4. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect (OSTI)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO? nanowires, which are a promising replacement for RuO?, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm?¹, a maximum energy density of approximately 15 Jcm?³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m?¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  5. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with ?”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  6. J.M. Tarascon, et al. , Electrochemical energy storage

    E-Print Network [OSTI]

    Canet, Léonie

    J.M. Tarascon, et al. , Electrochemical energy storage for renewable energies CNRS, Jeudi 3 Octobre 28 TW Renewable EnergiesRenewable EnergiesRenewable Energies WHY ENERGY STORAGE ? Billionsdebarils Integration of RES requires massive energy storage to improve grid , reliability, quality and utilization

  7. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    with heat recovery, solar thermal collection, and thermallynatural gas combustion solar thermal CHP heat storageelectric load thermal storage solar thermal storage charging

  8. Kauai Island Utility Cooperative energy storage study.

    SciTech Connect (OSTI)

    Akhil, Abbas Ali; Yamane, Mike; Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into the KIUC grid. General Electric is presently conducting such a study and results of this study will be available in the near future. Another study conducted by Electric Power Systems, Inc. (EPS) in May 2006 took a broader approach to determine the causes of KIUC system outages. This study concluded that energy storage with batteries will provide stability benefits and possibly eliminate the load shedding while also providing positive voltage control. Due to the lack of fuel diversity in the KIUC generation mix, SNL recommends that KIUC continue its efforts to quantify the dynamic benefits of storage. The value of the dynamic benefits, especially as an enabler of renewable generation such as wind energy, may be far greater than the production cost benefits alone. A combination of these benefits may provide KIUC sufficient positive economic and operational benefits to implement an energy storage project that will contribute to the overall enhancement of the KIUC system.

  9. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

  10. The Role of Energy Storage in Helping Global Energy Problems

    E-Print Network [OSTI]

    Powell, Warren B.

    of an individual wind farm, via storage technologies, so that the energy can be infused into the grid at a later

  11. Sandia Energy - Sandia to Discuss Energy-Storage Test Protocols...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    communication within the power system. These protocols will provide for evaluation of energy storage interoperability and functionality, providing frequency and voltage stability...

  12. Lower-Energy Energy Storage System (LEESS) Component Evaluation...

    Office of Scientific and Technical Information (OSTI)

    LEESS; COMPONENT EVALUATION; LITHIUM ION; CAPACITORS; Transportation Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs)...

  13. Underground-Energy-Storage Program, 1982 annual report

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1983-06-01

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  14. Project Profile: CSP Energy Storage Solutions - Multiple Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings, under the Thermal Storage FOA, is aiming to...

  15. FY06 DOE Energy Storage Program PEER Review

    Broader source: Energy.gov (indexed) [DOE]

    9 DOE Energy Storage PEER Review John D. Boyes Sandia National Laboratories Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for...

  16. Energy Storage Technologies: State of Development for Stationary...

    Broader source: Energy.gov (indexed) [DOE]

    Storage Handbook in Collaboration with NRECA (July 2013) Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage Enhancing the Smart Grid:...

  17. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect (OSTI)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  18. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    capabilities for storage and PV adoption and scheduling, andfew isolated cases, but PV adoption at its full unsubsidizedlevels of $1000/tC no PV adoption takes place. At extreme

  19. Energy Storage Systems 2007 Peer Review - International Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducationNevada |Storage ActivitiesDepartment

  20. Sandia Energy - Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSampleLignin-Feasting MicrobeMesa del Sol Unveils First

  1. Sandia Energy » Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of Minnesota's VirtualSandia

  2. Voltage control for interconnected microgrids under adversarial actions

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    in renewable energy sources is growing worldwide. Most of these sources are small-scale inverter- based a local integration of renewable energy sources, which las led to the concept of microgrids (MGs) [1], [2. I. INTRODUCTION Motivated by environmental, economic and technological aspects, interests

  3. On the Energy Overhead of Mobile Storage Systems Anirudh Badam*

    E-Print Network [OSTI]

    Narasayya, Vivek

    On the Energy Overhead of Mobile Storage Systems Jing Li Anirudh Badam* Ranveer Chandra* Steven the energy consumption of the storage stack on mobile platforms. We conduct several experiments on mobile plat- forms to analyze the energy requirements of their re- spective storage stacks. Software storage

  4. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01

    and . Mehling, Review on thermal energy storage with phaseModelling of thermal energy storage in industrial energyOptimal deployment of thermal energy storage under diverse

  5. A Review of Energy Storage Technologies for Marine Current Energy Systems A Review of Energy Storage Technologies for Marine Current Energy Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Review of Energy Storage Technologies for Marine Current Energy Systems 1 A Review of Energy reliable, energy storage systems can play a crucial role. In this paper, an overview and the state of art of energy storage technologies are presented. Characteristics of various energy storage technologies

  6. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  7. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    Distributed Energy Resource Characterizations”, National Renewable EnergyDelivery and Energy Reliability’s Renewable and Distributed

  8. Solar energy in the context of energy use, energy transportation, and energy storage

    E-Print Network [OSTI]

    MacKay, David J.C.

    Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans­ portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

  9. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    Delivery and Energy Reliability, Renewable and DistributedDistributed Energy Resource Characterizations”, National Renewable EnergyDelivery and Energy Reliability’s Renewable and Distributed

  10. International Microgrid Assessment: Governance, Incentives, and Experience

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    microgrid controls Uniform pricing, time of use pricing, CO 2 price, net metering, feed-in tariff, demand response paymentspayments using policy and technology Figure 2. Overview of the main components in a common microgrid

  11. Impact of load type on microgrid stability

    E-Print Network [OSTI]

    Monnin, Jared P

    2012-01-01

    Microgrids show great promise as a means of integrating distributed generation sources into the public grid distribution system. In order to provide uninterrupted,high quality power to local loads, microgrids must have the ...

  12. Dynamics and challenges of microgrids implementation

    E-Print Network [OSTI]

    Sabhlok, Vikalp Pal

    2013-01-01

    Microgrids have the capability of operating on an island mode as well as an integrated mode with the smart grid, depending on the requirement and objectives. Recently, microgrids projects have gained popularity both in ...

  13. ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01

    temperature underground thermal energy storage. In Proc. Th~1980), Aquifer Thermal Energy Sto:t'age--·a survey, Invit.edal modeling of thermal energy storage in aquifers. In ~~-

  14. Energy Storage: The Key to a Reliable, Clean Electricity Supply...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy...

  15. The assessment of battery-ultracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    He, Yiou

    2014-01-01

    Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

  16. Microgrid cyber security reference architecture.

    SciTech Connect (OSTI)

    Veitch, Cynthia K.; Henry, Jordan M.; Richardson, Bryan T.; Hart, Derek H.

    2013-07-01

    This document describes a microgrid cyber security reference architecture. First, we present a high-level concept of operations for a microgrid, including operational modes, necessary power actors, and the communication protocols typically employed. We then describe our motivation for designing a secure microgrid; in particular, we provide general network and industrial control system (ICS)-speci c vulnerabilities, a threat model, information assurance compliance concerns, and design criteria for a microgrid control system network. Our design approach addresses these concerns by segmenting the microgrid control system network into enclaves, grouping enclaves into functional domains, and describing actor communication using data exchange attributes. We describe cyber actors that can help mitigate potential vulnerabilities, in addition to performance bene ts and vulnerability mitigation that may be realized using this reference architecture. To illustrate our design approach, we present a notional a microgrid control system network implementation, including types of communica- tion occurring on that network, example data exchange attributes for actors in the network, an example of how the network can be segmented to create enclaves and functional domains, and how cyber actors can be used to enforce network segmentation and provide the neces- sary level of security. Finally, we describe areas of focus for the further development of the reference architecture.

  17. Energy Storage System Sizing for Smoothing Power Generation , P. Bydlowski

    E-Print Network [OSTI]

    Boyer, Edmond

    Energy Storage System Sizing for Smoothing Power Generation of Direct J. Aubry1 , P. Bydlowski 1 E-mail: judicael.aubry Abstract This paper examines the sizing energy storage system (ESS) for energy converter. Keywords: Energy Storage System (ESS), power smoothing, Direct Wave Energy Converter, Supercapacitor, Power

  18. Control Algorithms for Grid-Scale Battery Energy Storage Systems

    E-Print Network [OSTI]

    Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

  19. STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-14A NA7.5.13 Distributed Energy Storage DX AC DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

  20. STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-15A NA7.5.14 Thermal Energy Storage (TES) System THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION

  1. Multiagent Coordination in Microgrids via Wireless Networks

    E-Print Network [OSTI]

    Zhuang, Weihua

    Multiagent Coordination in Microgrids via Wireless Networks Hao Liang, BBCR Group, University of Waterloo Abstract The future smart grid is expected to be an integration of intelligent microgrids featured to facilitate pervasive microgrid monitoring and control at a high flexibility and low deployment cost. In order

  2. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  3. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  4. LiH thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  5. Sharing local energy infrastructure : organizational models for implementing microgrids and district energy systems in urban commercial districts

    E-Print Network [OSTI]

    Sherman, Genevieve Rose

    2012-01-01

    There is a growing trend in cities toward establishing localized, shared energy infrastructure. As existing energy infrastructure ages and demand increases, cities face rising energy costs and security risks combined with ...

  6. International Microgrid Assessment: Governance,INcentives, and Experience (IMAGINE)

    E-Print Network [OSTI]

    Romankiewicz, John

    2014-01-01

    land of payments is the last step in a country’s microgridmicrogrid development to get from the “land of penalties” to the “land of payments”payments can be used to incentivize the sale of energy and services from the microgrid

  7. Appendix A: Energy storage technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  8. Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions

    E-Print Network [OSTI]

    DeForest, Nicolas

    2014-01-01

    Optimal  Deployment  of  Thermal  Energy   Storage  under  2012. [8] Dincer I. On thermal energy storage systems andin research on cold thermal energy storage, International

  9. SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01

    Aspects of Aquifer Thermal Energy Storage." Lawrencethe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

  10. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    Power Devices and Energy Storage Applications A dissertationfor Power Devices and Energy Storage Applications by Ya-5 On-Chip Energy Storage

  11. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    Quantum Capture and Energy Storage. Photochem. Photobio.D ISSERTATION Solar Energy Storage through the Homogeneousxxi form of massive energy storage will be necessary. The

  12. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01

    Figure 1.1. Ragone plot of various energy storage systems [metal oxides for energy storage devices A dissertationmetal oxides for energy storage devices by Jong Woung Kim

  13. AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01

    University Thermal Energy Storage , LBL No. 10194. Edwards,modeling of thermal energy storage in aquifers, ProceedingsAquifer Thermal Energy Storage Programs (in preparation).

  14. Fabrication and Optimization of Nano-Structured Composites for Energy Storage

    E-Print Network [OSTI]

    Carrington, Kenneth Russell

    2009-01-01

    Structured Composites for Energy Storage by Kenneth RussellStructured Composites for Energy Storage By Kenneth RussellStructured Composites for Energy Storage By Kenneth Russell

  15. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

  16. SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01

    of Aquifer Thermal Energy Storage." Lawrence Berkeleythe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

  17. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    J. Østergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

  18. Nanoscale metals and semiconductors for the storage of solar energy in chemical bonds

    E-Print Network [OSTI]

    Manthiram, Karthish

    2015-01-01

    for the storage of solar energy in chemical bonds Byfor the storage of solar energy in chemical bonds Copyrightfor the storage of solar energy in chemical bonds By

  19. Utilization of CO2 as cushion gas for porous media compressed air energy storage

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2014-01-01

    of compressed air energy storage electric power systems.RH, Compressed Air Energy Storage: Theory, Resources, andmedia compressed air energy storage (PM-CAES): theory and

  20. Characterization Studies of Materials and Devices used for Electrochemical Energy Storage

    E-Print Network [OSTI]

    Membreno, Daniel Eduardo

    2014-01-01

    Introduction and Objectives Energy storage is becoming theBatteries have been the energy storage of choice forto manufacture energy storage is becoming a necessity [2].