National Library of Energy BETA

Sample records for microelectronics development laboratory

  1. High Strength Gold Wire for Microelectronics Miniaturization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Strength Gold Wire for Microelectronics Miniaturization Ames Laboratory Contact AMES About This Technology Technology Marketing Summary ISU and Ames Laboratory researchers...

  2. Microelectronics plastic molded packaging

    SciTech Connect (OSTI)

    Johnson, D.R.; Palmer, D.W.; Peterson, D.W.

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  3. Kamkorp Microelectronics | Open Energy Information

    Open Energy Info (EERE)

    Microelectronics Jump to: navigation, search Name: Kamkorp Microelectronics Place: Switzerland Sector: Solar Product: Electric and solar-assisted vehicle manufacturer. References:...

  4. Raz Microelectronics | Open Energy Information

    Open Energy Info (EERE)

    Microelectronics Jump to: navigation, search Name: Raz Microelectronics Place: Cupertino, California Zip: 95014-0701 Product: String representation "RMI Corporation ... ecurity...

  5. Laboratory Directed Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Book Jobs Laboratory Directorate - Strategic Planning Office Laboratory Directed Research and Development (LDRD) LBNL LDRD Program Guidelines LDRD FY 2017 Call for...

  6. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  7. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  8. 1996 Laboratory directed research and development annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  9. Lab Breakthrough: Microelectronic Photovoltaics | Department of Energy

    Office of Environmental Management (EM)

    Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. View the entire YouTube Lab Breakthroughs playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are MEMS? MEMS are

  10. Summit Microelectronics Inc | Open Energy Information

    Open Energy Info (EERE)

    Microelectronics Inc Jump to: navigation, search Name: Summit Microelectronics, Inc Place: Sunnyvale, California Zip: 94085-2909 Product: Summit Microelectronics designs...

  11. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  12. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  13. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-22

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Supersedes DOE O 413.2B.

  14. Leadership Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by UChicago Argonne, LLC, develops future leaders at Argonne. Each year, the Laboratory Director selects 15 employees to participate in the program along with staff from Fermi...

  15. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.2B. Certified 7-14-2011.

  16. National Laboratory Impacts and Developments

    Broader source: Energy.gov [DOE]

    The Technology-to-Market program supports U.S. Department of Energy (DOE) initiatives that make access to laboratory-developed technologies and capabilities easier and increase partnerships with the clean energy private sector.

  17. biswasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 1976 Professional Appointments: Senior Scientist Ames Laboratory and Microelectronics Research Center, 2013- present Adjunct Professor, Dept. of Physics & Astronomy;...

  18. National Laboratory Research and Development Funding Opportunities

    Broader source: Energy.gov [DOE]

    Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving...

  19. Development Shop | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Shop The Ames Laboratory operates a complete machine shop. Our shop consists of the modern equipment needed to fabricate almost any conceivable device required for research project. If you have a need or any questions about the fabrication of items to support your mission in research please contact us. Our machining equipment includes: Lathes CNC Bridgeport Mills Shears Press Brake (for bending) EDM (Electronic Discharge Machining) Grinders Saws We are capable of welding nearly any

  20. LDRD - Laboratory Directed Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LDRD - Laboratory Directed Research and Development LDRD Calls Current LDRD Call FY2017 Previous Calls (FY2016, FY2015, FY2014, FY2013) LDRD Frequently Asked Questions Funded LDRD Projects (FY2016, FY2015, FY2014, FY2013) Annual LDRD Report (FY2015, FY2014, FY2013) Ames Laboratory LDRD Plan Laboratory Directed Research and Development (LDRD) funds enable creative and innovative R&D projects at Ames Laboratory (AMES) that directly support our mission. Selection of projects is the

  1. Laboratory Directed Research and Development - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2C, Laboratory Directed Research and Development by Russell Ames Functional areas: Energy Research & Technology To establish Department of Energy (DOE) requirements for laboratory...

  2. Argonne National Laboratory's Solar Energy Development Programmatic...

    Open Energy Info (EERE)

    Laboratory's Solar Energy Development Programmatic EIS Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Argonne National Laboratory's Solar...

  3. Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program

    Office of Environmental Management (EM)

    Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program OAS-L-15-04 November 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 24, 2014 MEMORANDUM FOR THE MANAGER, LIVERMORE FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Lawrence Livermore National Laboratory's Laboratory

  4. Laboratory Directed Research and Development Mission | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research and Development Mission LABORATORY MISSION Ames Laboratory's mission is to create materials, inspire minds to solve problems and address global challenges. The mission of the Energy Department is to ensure America's security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions. AMES serves DOE and supports its mission by applying world-class science and engineering expertise to complex

  5. Arctic Energy Technology Development Laboratory

    SciTech Connect (OSTI)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  6. ORISE: Cytogenetic Biodosimetry Laboratory Helps Develop International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytogenetic Biodosimetry Laboratory Helps Develop International Web-Based, ... role in the development of an entirely Web-based scoring system, which is being funded ...

  7. Laboratory Directed Research and Development Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research and Development Plan Version Number: 0.1 Document Number: Plan 30000.001 Effective Date: 01/2014 File (public): PDF icon plan_30000.001_rev0.1.pdf

  8. SRNL Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects LDRD Technologies LDRD Contacts LDRD Home SRNL Home SRNL Laboratory Directed Research & Development (LDRD) Resources LDRD Annual Reports * 2013 * 2012 * 2011 * 2010...

  9. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  10. Leadership Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for a Job Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media » Leadership Development Argonne's excellence and innovation is driven by exemplary leadership. At Argonne, select scientific and support staff are actively identified for, developed into, and recognized in leadership positions. Leadership Development programs are offered for first-level supervisors through executive leaders and focus on developing proficiency in an array of relevant skill sets and

  11. Microelectronic superconducting crossover and coil

    DOE Patents [OSTI]

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1994-03-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

  12. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development The SunShot National Laboratory...

  13. Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs » LDRD /science-innovation/_assets/images/icon-science.jpg Laboratory Directed Research & Development National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Gang Wu, left, and Piotr Zelenay examine a new non-precious-metal catalyst that can significantly reduce the cost of hydrogen fuel cells while maintaining performance.

  14. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  15. NREL: Process Development and Integration Laboratory - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and e-mail address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Process Development & Integration Laboratory Home About the Process Development & Integration Laboratory Capabilities Working with Us Did you find what you needed? Yes 1 No 0

  16. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an LDRD Proposal or LOI View Submitted FY16 LDRD Proposals Proposals from Previous Years Create an LDRD Project Report Mid-year Report Template Mid-year Report Instructions Annual Report Template Annual Report Instructions LDRD Reports LDRD Publications The JLab LDRD program documentation has been modeled on the material developed by SLAC for its LDRD program Laboratory Directed Research & Development LDRD Home Lab Directed Research and Development An important element of Jefferson Lab's

  17. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  18. NREL: Process Development and Integration Laboratory - Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Platform Capabilities Atmospheric Processing Platform Capabilities The Atmospheric Processing platform in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for depositing, processing, and characterizing photovoltaic materials and devices. In particular, this platform focuses on different methods to deposit ("write") materials onto a variety of substrates and then further process into optoelectronic materials using rapid

  19. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an LDRD Proposal or LOI View Submitted FY16 LDRD Proposals Proposals from Previous Years Create an LDRD Project Report Mid-year Report Template Mid-year Report Instructions Annual Report Template Annual Report Instructions LDRD Reports LDRD Publications The JLab LDRD program documentation has been modeled on the material developed by SLAC for its LDRD program Laboratory Directed Research & Development Formal LDRD Plans FT16 Plan FY15 Plan FY14 Plan

  20. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current...

  1. DOE Laboratories Help Develop Promising New Cancer Fighting Drug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories Help Develop Promising New Cancer Fighting Drug, Vemurafenib DOE Laboratories Help Develop Promising New Cancer Fighting Drug, Vemurafenib August 18, 2011 - 1:03pm ...

  2. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for FY17 LDRD Proposals An important element of Jefferson Lab's Strategic Plan is the implementation of a Laboratory Directed Research and Development (LDRD) program. The lab began such a program in FY14 and it has already provided a substantial return on the investments made. We are now soliciting proposals for new LDRD projects that would begin in October 2016 (and continuation proposals from projects underway that will not be completed this year). A draft calendar for the FY2017 program,

  3. Laboratory Directed Research and Development FY 2000

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  4. Laboratory Directed Research and Development FY 1992

    SciTech Connect (OSTI)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  5. Laboratory Directed Research and Development Plan - FY2013 | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Laboratory Directed Research and Development Plan - FY2013 Document Number: NA Effective Date: 10/2014 File (public): PDF icon plan_ldrd_fy

  6. National Laboratory Research and Development Funding Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Performance Sandia National Laboratories: Low-Cost Solar Variability Sensor for Ubiquitous Deployment Sandia National Laboratories: Optimization of a Virtual Power Plant to ...

  7. Research Highlights, Recent Developments at Elettra Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Trieste Monday, January 9, 2012 - 2:30pm SSRL Conference Room 137-322 Maya Kiskinova Ph.D. Sc.D., Coordinator of Research Projects Elettra Laboratory Elettra laboratory...

  8. Protection of microelectronic devices during packaging

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Conley, William R. (Tijeras, NM)

    2002-01-01

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  9. Pyrotechnic component development at Sandia National Laboratory

    SciTech Connect (OSTI)

    Wilcox, P.D.

    1987-01-01

    Pyrotechnic and explosive devices are designed at Sandia National Laboratories, SNL, which must satisfy high reliability requirements for reliable function and storage life. Since only a small number of devices may be built, high standards of quality of both the explosive and structural materials are necessary. We have developed special alloys and glass-ceramic seals for headers and structural parts of these devices to satisfy requirements for minimum size and weight but with increased ruggedness and safety. Hermetic sealing is used extensively to aid in the control of corrosion and aging effects. There is an increasing demand for the integration of these devices with safer (less sensitive) materials, better handling methods, and the use of electrical or fiber optic logic input elements. This paper addresses the trends in active materials, structural materials and a new method of ignition which enhances device designs compatible with low voltage and digital electronics.

  10. Laboratory Directed Research and Development Plan - FY2013 |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research and Development Plan - FY2013 Document Number: NA Effective Date: 102014 File (public): PDF icon planldrdfy...

  11. NREL: Process Development and Integration Laboratory - About the Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Integration Laboratory About the Process Development and Integration Laboratory The Process Development and Integration Laboratory (PDIL) is located within the Science and Technology Facility at the National Renewable Energy Laboratory (NREL). The PDIL brings together technical experts from NREL, the solar industry, and universities to access unique process development and integration capabilities. The focus of their research includes gaining a deeper understanding of

  12. Laboratory Directed Research & Development (LDRD) Tri-Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security AdministrationLaboratory Directed Research and Development Securing the future of our nation through cutting-edge science and technology Laboratory Directed Research and Development Laboratory Directed Research and Development Menu Performance Metrics Annual Reports Nuclear Security Global Security Scientific Security Energy Security Innovation for our nation The Laboratory Directed Research and Development (LDRD) program was authorized by Congress in 1991 to fund

  13. Laboratory Directed Research Development (LDRD) Annual Reports

    Broader source: Energy.gov [DOE]

    DOE’s national laboratories annual reports of long-term national missions and unique scientific and technical capabilities beyond the scope of academic and industrial institutions.

  14. Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requires collaborations with crime laboratories, both to ensure that research problems emerge from forensic science practice and to increase the likelihood that successful projects...

  15. National Laboratory Concentrating Solar Power Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current concentrating solar power projects working through the National Laboratory R&D program under the SunShot Initiative. PDF icon csp_natl_lab_rd_fact_sheet.pdf More Documents & Publications National Laboratory Concentrating Solar Power Research and Development Particle Receiver Integrated

  16. Geothermal materials development at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1997-06-01

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  17. Microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  18. Breakthrough: micro-electronic photovoltaics

    ScienceCinema (OSTI)

    Okandan, Murat; Gupta, Vipin

    2014-06-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  19. DOE Laboratories Help Develop Promising New Cancer Fighting Drug,

    Energy Savers [EERE]

    Vemurafenib | Department of Energy Laboratories Help Develop Promising New Cancer Fighting Drug, Vemurafenib DOE Laboratories Help Develop Promising New Cancer Fighting Drug, Vemurafenib August 18, 2011 - 1:03pm Addthis Powerful X-Rays Enable Development of Successful Treatment for Melanoma and Other Life-Threatening Diseases WASHINGTON, DC - Powerful X-ray technology developed at the U.S. Department of Energy's (DOE's) national laboratories is revealing new insights into diseases ranging

  20. Laboratory Directed Research and Development Annual Reports | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laboratory Directed Research and Development Annual Reports Laboratory Directed Research and Development Annual Reports Formally, these Reports respond to the Conference Report (H.R. Rep. No. 106-988 (Conf. Rep.)) accompanying the Fiscal Year (FY) 2001 Energy and Water Development Appropriations Act, which requested the DOE Chief Financial Officer "develop and execute a financial accounting report of LDRD expenditures by laboratory and weapons production plant." They also

  1. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  2. National Laboratory Concentrating Solar Power Research and Development |

    Office of Environmental Management (EM)

    Department of Energy National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development The SunShot National Laboratory Concentrating Solar Power Research and Development Fact Sheet provides a synopsis of the 12 projects funded to address the technical barriers toward achieving the technoeconomic targets of the SunShot Initiative. Significant cost and performance improvements across all major concentrating CSP

  3. SRNL Laboratory Directed Research and Development Poster Session |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SRNL Laboratory Directed Research and Development Poster Session SRNL Laboratory Directed Research and Development Poster Session Addthis Description On October 15, 2014, Savannah River National Lab researchers and scientists met for the Laboratory Directed Research and Development, or LDRD, Program Year End Review and Poster Session. The DOE program provides the Lab's only discretionary funding to support high-risk, potentially high-value research

  4. Argonne National Laboratory Develops New Model to Quantify the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Develops New Model to Quantify the Impacts of Variable Energy ... and analyze different potential market design solutions to ensure long-term resource ...

  5. Laboratory directed research and development. Annual report, fiscal year 1995

    SciTech Connect (OSTI)

    1996-02-01

    This document is a compilation of the several research and development programs having been performed at the Pacific Northwest National Laboratory for the fiscal year 1995.

  6. Argonne National Laboratory Develops New Model to Quantify the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Variable Energy Resources on Generation Expansion and System Reliability Argonne National Laboratory Develops New Model to Quantify the Impacts of Variable Energy ...

  7. Arctic Energy Technology Development Laboratory (Part 3)

    SciTech Connect (OSTI)

    See OSTI ID Number 960443

    2008-12-31

    Various laboratory tests were carried at the R & D facility of BJ Services in Tomball, TX with BJ Services staff to predict and evaluate the performance of the Ceramicrete slurry for its effective use in permafrost cementing operations. Although other standards such as those of the American Standard for Testing Materials (ASTM) and Construction Specification Institute (CSI) exist, all these tests were standardized by the API. A summary of the tests traditionally used in the cement slurry design as well as the API tests reference document are provided in Table 7. All of these tests were performed within the scope of this research to evaluate properties of the Ceramicrete.

  8. Laboratory Directed Research and Development annual report, fiscal year 1997

    SciTech Connect (OSTI)

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  9. Photovoltaic module certification/laboratory accreditation criteria development

    SciTech Connect (OSTI)

    Osterwald, C.R. [National Renewable Energy Lab., Golden, CO (United States); Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L. [Arizona State Univ., Tempe, AZ (United States); Zerlaut, G.A. [SC-International Inc., Phoenix, AZ (United States); D`Aiello, R.V. [RD Associates, Tempe, AZ (United States)

    1995-04-01

    This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

  10. NREL: Process Development and Integration Laboratory - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most of these research and development (R&D) capabilities are associated with specific cluster tools for modular deposition, processing, and characterization techniques. The...

  11. Aircraft wire system laboratory development : phase I progress report.

    SciTech Connect (OSTI)

    Dinallo, Michael Anthony; Lopez, Christopher D.

    2003-08-01

    An aircraft wire systems laboratory has been developed to support technical maturation of diagnostic technologies being used in the aviation community for detection of faulty attributes of wiring systems. The design and development rationale of the laboratory is based in part on documented findings published by the aviation community. The main resource at the laboratory is a test bed enclosure that is populated with aged and newly assembled wire harnesses that have known defects. This report provides the test bed design and harness selection rationale, harness assembly and defect fabrication procedures, and descriptions of the laboratory for usage by the aviation community.

  12. NREL: Process Development and Integration Laboratory - Video on How Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Integration Works Video on How Process Development and Integration Works In this video, we provide a narrated animation that explains the process development and integration approach being used by the National Center for Photovoltaics at the National Renewable Energy Laboratory. The video shows how we are implementing this research approach in the Process Development and Integration Laboratory. This video is a narrated animation that explains process integration and shows how

  13. Accelerator Design and Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics. In order to further develop our understanding of matter and the fabric of the cosmos, we must continue to expand the horizon of accelerator technology. We need to be able...

  14. MFRC Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MFRC Research and Development 2013 Research Project Summaries 2012 Research Project Summaries 2011 Research Project Summaries 2010 Research Project Summaries 2009 Research Project Summaries 2008 Research Project Summaries 2007 Research Project Summaries 2006 Research Project Summaries 2005 Research Project Summaries

  15. Research Highlights, Recent Developments at Elettra Laboratory in Trieste |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Research Highlights, Recent Developments at Elettra Laboratory in Trieste Monday, January 9, 2012 - 2:30pm SSRL Conference Room 137-322 Maya Kiskinova Ph.D. Sc.D., Coordinator of Research Projects Elettra Laboratory Elettra laboratory operates two light sources: a synchrotron radiation facility (since 1993) and a seeded free electron laser facility under commissioning. Using selected exemplary systems, the talk will address the most recent

  16. Laboratory directed research and development program, FY 1996

    SciTech Connect (OSTI)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  17. Laboratory- Directed Research and Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directed Research and Development (LDRD) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  18. Laboratory-directed research and development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    directed research and development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  19. Sandia National Laboratories: Cooperative Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement (CRADA) Potential Suppliers Current Suppliers Agreements Licensing/Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with Sandia Cooperative Research and Development Agreement (CRADA) Pocket-Sized Anthrax Detector Potential Partners Becoming a partner Funding Terms and Conditions Small Business Express Your Interest Click here to learn more... Potential Partners Our Process Documents Process Flow Click here to learn more...

  20. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect (OSTI)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  1. Laboratory directed research and development 2006 annual report.

    SciTech Connect (OSTI)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  2. Van Andel Research Institute, Los Alamos National Laboratory to develop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detailed computational model to study lung cancer Computational model to study lung cancer Van Andel Research Institute, Los Alamos National Laboratory to develop detailed computational model to study lung cancer Scientists are developing a new tool to better study one of the deadliest types of lung cancer. September 14, 2015 Even the most carefully crafted science projects starts with a rough brainstorm session. This whiteboard is from an early Los Alamos National Laboratory and Van Andel

  3. DOE and Sandia National Laboratories Develop National Rotor Testbed |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE and Sandia National Laboratories Develop National Rotor Testbed DOE and Sandia National Laboratories Develop National Rotor Testbed August 1, 2013 - 3:05pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) are designing a modern, research-quality wind turbine rotor for use at the new Scaled Wind Farm Technology (SWiFT) site at Texas Tech

  4. Fuel Cell Development and Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

  5. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    SciTech Connect (OSTI)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  6. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect (OSTI)

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  7. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  8. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  9. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect (OSTI)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

  10. 1995 Laboratory-Directed Research and Development Annual report

    SciTech Connect (OSTI)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  11. Cooperative Research & Development Agreements (CRADA) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Research Cooperative Research & Development Agreements (CRADA) CRADAs enable the Ames Laboratory and one or more partners (usually from industry or academia) to collaborate, share costs and pool the results of a particular R&D program. The Laboratory may provide personnel, facilities, equipment or other resources to these R&D collaborations. Collaborating partners may provide funds, personnel, equipment or other resources. Key features of CRADA's and CRADA negotiations

  12. Single level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-12-09

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.

  13. Bi-level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  14. Laboratory directed research and development: FY 1997 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  15. Laboratory Directed Research and Development FY 1998 Progress Report

    SciTech Connect (OSTI)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  16. Photovoltaic module certification/laboratory accreditation criteria development: Implementation handbook

    SciTech Connect (OSTI)

    Osterwald, C.R. [National Renewable Energy Laboratory, Golden, CO (United States); Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L. [Arizona State Univ., Tempe, AZ (United States); Zerlaut, G.A. [SC-International, Inc., Tempe, AZ (United States); D`Aiello, R.V. [RD Associates, Tempe, AZ (United States)

    1996-08-01

    This document covers the second phase of a two-part program. Phase I provided an overview of the structure and function of typical product certification/laboratory accreditation programs. This report (Phase H) provides most of the draft documents that will be necessary for the implementation of a photovoltaic (PV) module certification/laboratory accreditation program. These include organizational documents such as articles of incorporation, bylaws, and rules of procedure, as well as marketing and educational program documents. In Phase I, a 30-member criteria development committee was established to guide, review and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories. A similar committee was established for Phase II; the criteria implementation committee consisted of 29 members. Twenty-one of the Phase I committee members also served on the Phase II committee, which helped to provide program continuity during Phase II.

  17. Laboratory Directed Research and Development Program FY 2005 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

  18. Laboratory Directed Research and Development Program FY 2007 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

  19. Laboratory Directed Research and Development Program FY 2004 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

  20. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  1. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  2. Laboratory Directed Research and Development annual report, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  3. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  4. Laboratory Directed Research & Development | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Laboratory Directed Research & Development | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery

  5. Laboratory directed research development annual report. Fiscal year 1996

    SciTech Connect (OSTI)

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  6. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    SciTech Connect (OSTI)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    2001-04-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  7. NREL: Process Development and Integration Laboratory - Copper Indium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallium Diselenide Cluster Tool Capabilities Copper Indium Gallium Diselenide Cluster Tool Capabilities The Copper Indium Gallium Diselenide (CIGS) cluster tool in the Process Development and Integration Laboratory offers powerful capabilities with integrated chambers for depositing, processing, measuring, and characterizing photovoltaic materials and devices. You can read more on the rationale for developing this cluster tool and its capabilities, and check out the National Solar Technology

  8. NREL: Process Development and Integration Laboratory - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us The Process Development and Integration Laboratory (PDIL), which accommodates the process development and integration approach, facilitates collaborative projects with other scientists from industry and universities. We welcome you to join us in tapping into the wide range of capabilities available for various research areas-from silicon and thin-film technologies, to measurements and characterization, to atmospheric processing. The PDIL may help you meet business objectives by

  9. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect (OSTI)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address National needs within the overall mission of the DOE and BNL.

  10. Laboratory directed research and development annual report. Fiscal year 1994

    SciTech Connect (OSTI)

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  11. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect (OSTI)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

  12. Laboratory Directed Research and Development Program FY98

    SciTech Connect (OSTI)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  13. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect (OSTI)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2002. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All Fy 2002 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2003. The BNL LDRD budget authority by DOE in FY 2002 was $7 million. The actual allocation totaled $6.7 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

  14. Laboratory-directed research and development: FY 1996 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  15. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect (OSTI)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

  16. Multilayered Microelectronic Device Package With An Integral Window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-10-26

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  17. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect (OSTI)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  18. Laboratory Directed Research and Development FY2008 Annual Report

    SciTech Connect (OSTI)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  19. Laboratory Directed Research and Development FY2010 Annual Report

    SciTech Connect (OSTI)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  20. Laboratory Directed Research and Development 1998 Annual Report

    SciTech Connect (OSTI)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  1. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Builders place final beam in first phase of CMRR project at Los Alamos National Laboratory July 22, 2008 LOS ALAMOS, New Mexico, July 22, 2008- Workers hoisted the final steel beam atop the skeleton of what will be the Radiological Laboratory Utility Office Building at Los Alamos National Laboratory Tuesday morning, marking a milestone for the first of three phases in the multiyear Chemistry and Metallurgy Research Replacement Project (CMRR). At the "topping-out" ceremony, Laboratory

  2. Laboratory directed research and development program FY 1999

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  3. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  4. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect (OSTI)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  5. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect (OSTI)

    Hansen , Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  6. NEW - DOE O 413.2C, Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  7. FY2007 Laboratory Directed Research and Development Annual Report

    SciTech Connect (OSTI)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  8. Temporary coatings for protection of microelectronic devices during packaging

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Conley, William R.

    2005-01-18

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, temporary protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  9. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Soloiu, Valentin

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  10. Laboratory Directed Research and Development LDRD-FY-2011

    SciTech Connect (OSTI)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  11. Laboratory Directed Research and Development Program, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  12. 1997 Laboratory directed research and development. Annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  13. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12 miles southwest of the boundary of Los Alamos National Laboratory has not entered Laboratory property at this time. All radioactive material is appropriately accounted for and protected. LANL staff is coordinating the onsite response and supporting the county and federal fire response. Lab Closely Monitoring Las Conchas

  14. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17,...

  15. Laboratory Directed Research and Development Program FY2004

    SciTech Connect (OSTI)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

  16. Laboratory Directed Research and Development (LDRD) | U.S. DOE...

    Office of Science (SC) Website

    its energy, environmental, and nuclear challenges through transformative science ... accounting report of LDRD expenditures by laboratory and weapons production plant. ...

  17. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

  18. Laboratory directed research and development program FY 2003

    SciTech Connect (OSTI)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  19. The Development of A Human Systems Simulation Laboratory: Strategic Direction

    SciTech Connect (OSTI)

    Jacques Hugo; Katya le Blanc; David Gertman

    2012-07-01

    The Human System Simulation Laboratory (HSSL) at the Idaho National Laboratory is one of few facilities of its kind that allows human factors researchers to evaluate various aspects of human performance and human system interaction for proposed reactor designs and upgrades. A basic system architecture, physical configuration and simulation capability were established to enable human factors researchers to support multiple, simultaneous simulations and also different power plant technologies. Although still evolving in terms of its technical and functional architecture, the HSSL is already proving its worth in supporting current and future nuclear industry needs for light water reactor sustainability and small modular reactors. The evolution of the HSSL is focused on continual physical and functional refinement to make it a fully equipped, reconfigurable facility where advanced research, testing and validation studies can be conducted on a wider range of reactor technologies. This requires the implementation of additional plant models to produce empirical research data on human performance with emerging human-system interaction technologies. Additional beneficiaries of this information include system designers and HRA practitioners. To ensure that results of control room crew studies will be generalizable to the existing and evolving fleet of US reactors, future expansion of the HSSL may also include other SMR plant models, plant-specific simulators and a generic plant model aligned to the current generation of pressurized water reactors (PWRs) and future advanced reactor designs. Collaboration with industry partners is also proving to be a vital component of the facility as this helps to establish a formal basis for current and future human performance experiments to support nuclear industry objectives. A long-range Program Plan has been developed for the HSSL to ensure that the facility will support not only the Department of Energys Light Water Reactor Sustainability Program, but also to provide human factors guidance for all future developments of the nuclear industry.

  20. Update on Ultrasonic Thermometry Development at Idaho National Laboratory

    SciTech Connect (OSTI)

    Joshua Daw; Joy Rempe; John Crepeau

    2012-07-01

    The Idaho National Laboratory (INL) has initiated an effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing of advanced fuels proposed within the Fuel Cycle Research and Development (FCR&D) program sponsored by the U.S. Department of Energy (US DOE). Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependent on the temperature of the material. UTs have several advantages over other types of temperature sensors . UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made up to very high temperature (near the melting point of the sensor material) and, as no electrical insulation is required, shunting effects observed in traditional high temperature thermocouple applications are avoided. Most attractive, however, is the ability to introduce multiple acoustic discontinuities into the sensor, as this enables temperature profiling with a single sensor. The current paper presents initial results from FCR&D UT development efforts. These developments include improved methods for fabricating magnetostrictive transducers and joining them to waveguides, characterization of candidate sensor materials appropriate for use in FCR&D fuels irradiations (both ceramic fuels in inert gas and sodium bonded metallic fuels), enhanced signal processing techniques, and tests to determine potential accuracy and resolution.

  1. Sealed symmetric multilayered microelectronic device package with integral windows

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.

  2. DRAFT - DOE O 413.2C, Laboratory Directed Research and Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13.2C, Laboratory Directed Research and Development by Website Administrator The Order establishes DOE requirements for laboratory directed research and development. DOE O 413.2C,...

  3. Heavy-ion Accelerators for Testing Microelectronic Components at LBNL |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000

  4. High reliability plastic packaging for microelectronics

    SciTech Connect (OSTI)

    Sweet, J.N.; Peterson, D.W.; Hsia, A.H.; Tuck, M.

    1997-07-01

    Goal was Assembly Test Chips (ATCs) which could be used for evaluating plastic encapsulation technologies. Circuits were demonstrated for measuring Au-Al wirebond and Al metal corrosion failure rates during accelerated temperature and humidity testing. The test circuits on the ATC02.5 chip were very sensitive to extrinsic or processing induced failure rates. Accelerated aging experiments were conducted with unpassivated triple track Al structures on the ATC02.6 chip; the unpassivated tracks were found to be very sensitive to particulate contamination. Some modifications to existing circuitry were suggested. The piezoresistive stress sensing circuitry designed for the ATC04 test chip was found suitable for determining the change in the state of mechanical stress at the die when both initial and final measurements were made near room temperature (RT). Attempt to measure thermal stress between RT and a typical polymer glass transition temperature failed because of excessive die resistor- substrate leakage currents at the high temperature end; suitable circuitry changes were developed to overcome this problem. One temperature and humidity experiment was conducted with Sandia developed static radom access memory parts to examine non-corrosion CMOS failures; this objective was not achieved, but corrosion failure at the metal to Si contacts on the die surface could be detected. This 2-year effort resulted in new designs for test circuits which could be used on an advanced ATC for reliability assessment in Defense Programs electronics development projects.

  5. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  6. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research focus at the INL. These sections begin with the DOE-NE Nuclear Science and Technology mission support area, followed by the National and Homeland Security and the Energy and Environmental Science and Technology areas. The major INL initiatives and the INL's Distinctive Signatures areas complete the project summaries. The appendices provide information on project relevance to DOE missions and major national programs as well as an author index, list of refereed publications and index of key terms.

  7. Laboratory Directed Research and Development Program FY2011

    SciTech Connect (OSTI)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  8. High Density Sensor Network Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Density Sensor Network Development

  9. Overview of Sandia National Laboratories and Antenna Development Department

    SciTech Connect (OSTI)

    Brock, B.C.

    1994-04-01

    Sandia is a multiprogram R & D laboratory. It has responsibilities in the following areas: (1) defense programs; (2) energy and environment; and (3) work for others (DOD, NSA, etc.). In 1989, the National Competitiveness Technology Transfer Act added another responsibility -- contributions to industrial competitiveness. Sandia has two major laboratory locations, New Mexico and California, and two flight testing locations, Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii. The last part of this talk was dedicated to antenna research at Sandia.

  10. Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

    1999-01-08

    Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

  11. Argonne and Los Alamos national laboratories team up to develop more

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    affordable fuel cell components March » Laboratories team up to develop affordable fuel cell components Argonne and Los Alamos national laboratories team up to develop more affordable fuel cell components Laboratories have teamed up to support a DOE initiative through the creation of the Electrocatalysis Consortium (ElectroCat). March 1, 2016 Inside the Los Alamos National Laboratory fuel cell test lab, graduate students and a post-doctoral researcher work on ElectroCat technology-at rear,

  12. Multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.

  13. Using SDI-12 with ST microelectronics MCUs

    SciTech Connect (OSTI)

    Saari, Alexandra; Hinzey, Shawn Adrian; Frigo, Janette Rose; Proicou, Michael Chris; Borges, Louis

    2015-09-03

    ST Microelectronics microcontrollers and processors are readily available, capable and economical processors. Unfortunately they lack a broad user base like similar offerings from Texas Instrument, Atmel, or Microchip. All of these devices could be useful in economical devices for remote sensing applications used with environmental sensing. With the increased need for environmental studies, and limited budgets, flexibility in hardware is very important. To that end, and in an effort to increase open support of ST devices, I am sharing my teams experience in interfacing a common environmental sensor communication protocol (SDI-12) with ST devices.

  14. Microelectronic superconducting device with multi-layer contact

    DOE Patents [OSTI]

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1993-10-26

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3] ; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps. The photolithographic process is used to separately pattern the high T[sub c] superconductor thin films. 14 figures.

  15. SOURCE OF MICROBUNCHING AT BNL NSLS SOURCE DEVELOPMENT LABORATORY

    SciTech Connect (OSTI)

    Seletskiy, S.; Hidaka, Y.; Murphy, J.B.; Podobedov, B.; Qian, H.; Shen, Y.; Wang, J.; Yang, X.

    2011-03-28

    We report experimental studies of the origins of electron beam microbunching instability at BNL Source Development Laboratory (SDL). We eliminated laser-induced microbunching by utilizing an ultra-short photocathode laser. The measurements of the resulting electron beam led us to conclude that, at SDL, microbunching arising from shot noise is not amplified to any significant level. Our results demonstrated that the only source of microbunching instability at SDL is the longitudinal modulation of the photocathode laser pulse. Our work shows that assuring a longitudinally smoothed photocathode laser pulse allows mitigating microbunching instability at a typical FEL injector with a moderate microbunching gain. In this paper we investigated the source of microbunching instability at the SDL. To distinguish microbunching induced by shot noise from that arising from the longitudinal modulation of the photocathode laser, we studied the beam created by a very short laser pulse, thus eliminating the possibility of laser-induced microbunching. While the measured energy spectra of compressed beam did reveal severe longitudinal fragmentation, an analysis of the beam dynamics proved this to be due to self-fields acting on a beam with an initially smooth longitudinal profile, and not due to microbunching instability. Such fragmentation only was possible with the very short bunch chosen for these studies, and is absent in routine SDL operations. Our experiment shows that in the absence of the initial laser-induced beam modulation, microbunching instability at the SDL is not observed, and must be well below the levels that would limit the FEL performance. This result agrees with assumption of previous SDL studies that (when present under different machine conditions) microbunching instability at the SDL was laser-induced. Microbunching instability gain at the SDL is moderate. This is mainly because the SDL utilizes a single stage bunch compressor as well as due to the small compression ratio. Since the design of the SDL injector is typical of the majority of FEL injectors, our experiment proves that one possible way to control microbunching instability in such machines (that by design have a moderate microbunching gain) is to maintain a sufficiently smooth longitudinal profile of the photo-cathode laser. We note that the general principles for designing a machine with a moderate microbunching instability gain are presented in [12]. In conclusion, our experiment demonstrates that microbunching instability can be eliminated from a typical FEL injector with single stage bunch compressor (and operating without a laser heater) as long as the photocathode laser is longitudinally smooth. For machines with multi-stage bunch compressors, our results offer an important benchmark to establish a minimal laser heater power for instability-free operation.

  16. Laboratory Directed Research and Development Annual Report for 2009

    SciTech Connect (OSTI)

    Hughes, Pamela J.

    2010-03-31

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  17. Gold-based electrical interconnections for microelectronic devices

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.

    2002-01-01

    A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.

  18. National Laboratory Concentrating Solar Power Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

  19. Los Alamos National Laboratory, LANS develop new mentor-protg...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and assurance operations management. LANS also will mentor PMI in enhancing its eCommerce capabilities, computer systems networking, development of a supplier hosted web...

  20. The second-phase development of the China JinPing underground laboratory

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The second-phase development of the China JinPing underground laboratory Citation Details In-Document Search Title: The second-phase development of the China JinPing underground laboratory During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000

  1. Argonne Child Development Center Open House | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Child Development Center Open House March 21, 2016 9:00AM to March 25, 2016 4:00PM Presenter Gayle Burgher, ACDC Director Location Building Offsite Type Other The Argonne Child Development Center (ACDC) will host a special week-long Open House Monday, March 21, through Friday, March 25, 2016, from 9 a.m. to 4 p.m. at Building 952. Contact Gayle Burgher or call (630) 252-9601 to schedule a personal visit and learn more about upcoming center events. Related Sites Argonne Child Development Center

  2. Argonne and Los Alamos National Laboratories Team Up To Develop More

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affordable Fuel Cell Components | Argonne National Laboratory Argonne and Los Alamos National Laboratories Team Up To Develop More Affordable Fuel Cell Components March 2, 2016 Tweet EmailPrint Researchers at the U.S. Department of Energy's (DOE) Argonne and Los Alamos national laboratories have teamed up to support a DOE initiative through the creation of the Electrocatalysis Consortium (ElectroCat), a collaboration devoted to finding an effective but cheaper alternative to platinum in

  3. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  4. Exploratory Development of Theoretical Methods | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploratory Development of Theoretical Methods Research Personnel Updates Publications Calculating Plutonium and Praseodymium Structural Transformations Read More Genetic Algorithm for Grain Boundary and Crystal Structure Predictions Read More Universal Dynamical Decoupling of a Single Solid-state Spin from a Spin Bath Read More Previous Pause Next Modeling The purpose of this FWP is to generate new theories, models, and algorithms that will be beneficial to the research programs at the Ames

  5. National Laboratory Concentrating Solar Power Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make unsubsidized solar energy cost competitive with other forms of energy on the grid by the end of the decade. Significant cost and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the SunShot cost goal of

  6. FY 1999 Laboratory Directed Research and Development annual report

    SciTech Connect (OSTI)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  7. Leadership Development Updates and Opportunities | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Development Updates and Opportunities It is amazing how quickly the academic year is disappearing. We are a little more than half way through the 12+ Supervisory Leadership series and moving towards the spring Leadership at Any Level series. Below is an update on what has been happening with the leadership series that University Human Resources (UHR) offers. 12+ Supervisory Leadership - Again this year, there are two classes of 25 participants each. Attendance has been exceptional and

  8. Sandia National Laboratories: Research: Research & Development 100 Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research & Development 100 Awards R&D Magazine honors inventors by identifying the 100 most technologically significant products and advancements for each year and recognizing the winning innovators and their organizations. One hundred winners are chosen from an international pool of contestants from universities, private corporations, and government labs. In 2014, Sandia researchers and their collaborators earned three R&D 100 awards. Since 1976, Sandia has earned 104 of

  9. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  10. Argonne National Laboratory Develops New Model to Quantify the Impacts of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable Energy Resources on Generation Expansion and System Reliability | Department of Energy Argonne National Laboratory Develops New Model to Quantify the Impacts of Variable Energy Resources on Generation Expansion and System Reliability Argonne National Laboratory Develops New Model to Quantify the Impacts of Variable Energy Resources on Generation Expansion and System Reliability September 16, 2015 - 6:45pm Addthis The penetration level of variable energy resources, such as wind and

  11. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    SciTech Connect (OSTI)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  12. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  13. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  14. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  15. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  16. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  17. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  18. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Paul Dodd Researcher, Sandia National Laboratories Paul Dodd Paul Dodd Role: Researcher, Sandia National Laboratories Award: Fellow of the Institute of Electrical & Electronics Engineers (IEEE) Profile: Paul Dodd, a Sandia National Laboratories researcher, has been named a Fellow of the Institute of Electrical & Electronics Engineers (IEEE) "for contributions to the understanding and simulation of single-event effects in microelectronic," according to a

  19. The second-phase development of the China JinPing underground laboratory

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The second-phase development of the China JinPing underground laboratory Citation Details In-Document Search Title: The second-phase development of the China JinPing underground laboratory × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  20. EA-1958: Future Development in proximity to the William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington

    Broader source: Energy.gov [DOE]

    This Environmental Assessment (EA) evaluates U.S. Department of Energy (DOE) activities associated with proposed future development on the South Federal Campus of the DOE Pacific Northwest National Laboratory (PNNL) Site, in Benton County, Washington.

  1. Electromechanical battery research and development at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Baldwin, D.E.; Bender, D.A.; Fowler, T.K.

    1993-06-01

    The concepts undergirding a funded program to develop a modular electromechanical battery (EMB) at the Lawrence Livermore National Laboratory are described. Example parameters for EMBs for electric and hybrid-electric vehicles are given, and the importance of the high energy recovery efficiency of EMBs in increasing vehicle range in urban driving is shown.

  2. Research and Development Program for transportation packagings at Sandia National Laboratories

    SciTech Connect (OSTI)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-02-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support.

  3. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    SciTech Connect (OSTI)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon sequestration, energy efficiency, and other energy security research projects that are being conducted under the LDRD Program at the DOE/NNSA national laboratories and under the Site Directed Research and Development Program (SDRD) at the Nevada Test Site. Speakers from DOE/NNSA, other federal agencies, the NNSA laboratories, and the private sector will provide their insights into the national security implications of emerging energy and environmental issues, and the LDRD investments in energy security at the national laboratories. Please take this opportunity to reflect upon the science and engineering needs of our country's energy demands, including those issues posed by climate change, paying attention to the innovative contributions that LDRD is providing to the nation.

  4. Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directed Research & Development Page National Energy Research Scientific Computing Center T3E Individual Node Optimization Michael Stewart, SGI/Cray, 4/9/98 * Introduction * T3E Processor * T3E Local Memory * Cache Structure * Optimizing Codes for Cache Usage * Loop Unrolling * Other Useful Optimization Options * References 1 Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center Introduction * Primary topic will be single processor

  5. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    SciTech Connect (OSTI)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  6. Development of a low background liquid scintillation counter for a shallow underground laboratory

    SciTech Connect (OSTI)

    Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.; Douglas, Matthew; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Williams, Russell O.; Wright, Michael E.

    2015-08-20

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunity for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.

  7. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    SciTech Connect (OSTI)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2001. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2001 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2002. The BNL LDRD budget authority by DOE in FY 2001 was $6 million. The actual allocation totaled $5.3 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

  8. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    SciTech Connect (OSTI)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2004. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2004 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2005. The BNL LDRD budget authority by DOE in FY 2004 was $9.5 million. The actual allocation totaled $8.5 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.

  9. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    SciTech Connect (OSTI)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2003. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2003 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2004. The BNL LDRD budget authority by DOE in FY 2003 was $8.5 million. The actual allocation totaled $7.8 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

  10. NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes. Heat pump water heaters (HPWHs) remove heat from the air and use it to heat water, presenting an energy-saving opportunity for homeowners. Researchers at the National Renewable Energy Laboratory (NREL) developed a simulation model to study the inter- actions of HPWHs and space conditioning equipment, related to climate and installa- tion location in the home. This model was created in TRNSYS

  11. Anne LaPointe > Director, Catalyst Discovery and Development Laboratory >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers, Postdocs & Graduates > The Energy Materials Center at Cornell Anne LaPointe Director, Catalyst Discovery and Development Laboratory aml329@cornell.edu Dr. LaPointe received her PhD from the Massachusetts Institute of Technology and then went on to a Postdoc at University of North Carolina, Chapel Hill. He research interests are in catalysis, high throughput experimentation, organometallic chemistry and polymer chemistry

  12. Argonne National Laboratory Develops Extreme-Scale Wind Farm Simulation Capabilities

    Broader source: Energy.gov [DOE]

    Researchers at DOE's Argonne National Laboratory are developing a computational simulation tool to conduct studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy. Simulations on a wind-plant-scale require accurate simultaneous resolution of multiple flow scales, from mesoscale weather to turbine-blade scale turbulence, which presents special demands on the computational solver efficiency and requires extreme scalability.

  13. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    SciTech Connect (OSTI)

    Onar, Omer C; Miller, John M; Campbell, Steven L; Coomer, Chester; White, Cliff P; Seiber, Larry Eugene

    2013-01-01

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  14. Development and pilot demonstration program of a waste minimization plan at Argonne National Laboratory

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.; Thuot, J.R.

    1991-01-01

    In response to US Department of Energy directives, Argonne National Laboratory (ANL) has developed a waste minimization plan aimed at reducing the amount of wastes at this national research and development laboratory. Activities at ANL are primarily research- oriented and as such affect the amount and type of source reduction that can be achieved at this facility. The objective of ANL's waste minimization program is to cost-effectively reduce all types of wastes, including hazardous, mixed, radioactive, and nonhazardous wastes. The ANL Waste Minimization Plan uses a waste minimization audit as a systematic procedure to determine opportunities to reduce or eliminate waste. To facilitate these audits, a computerized bar-coding procedure is being implemented at ANL to track hazardous wastes from where they are generated to their ultimate disposal. This paper describes the development of the ANL Waste Minimization Plan and a pilot demonstration of the how the ANL Plan audited the hazardous waste generated within a selected divisions of ANL. It includes quantitative data on the generation and disposal of hazardous waste at ANL and describes potential ways to minimize hazardous wastes. 2 refs., 5 figs., 8 tabs.

  15. Improving Scientific Communication and Publication Output in a Multidisciplinary Laboratory: Changing Culture Through Staff Development Workshops

    SciTech Connect (OSTI)

    Noonan, Christine F.; Stratton, Kelly G.

    2015-07-13

    Communication plays a fundamental role in science and engineering disciplines. However, many higher education programs provide little, if any, technical communication coursework. Without strong communication skills scientists and engineers have less opportunity to publish, obtain competitive research funds, or grow their careers. This article describes the role of scientific communication training as an innovative staff development program in a learning-intensive workplace a national scientific research and development laboratory. The findings show that involvement in the workshop has increased overall participating staff annual publications by an average of 61 percent compared to their pre-workshop publishing performance as well as confidence level in their ability to write and publish peer-reviewed literature. Secondary benefits include improved information literacy skills and the development of informal communities of practice. This work provides insight into adult education in the workplace.

  16. Valentina Kutepova | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valentina Kutepova Cleanroom Manager Ph.D., Moscow Tech University, Russia 30 years experience in research and professional engineering development in the field of advanced technologies for thin-film growth and microelectronic devices fabrication and characterization. Numerous innovations in both materials and devices development, and utilization of research results. Telephone 630.252.4290 Fax 630.252.5739 E-mail kutepova@anl.gov CV/Resume PDF icon kutepova.pdf

  17. Bi-level multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A bi-level, multilayered package with an integral window for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that the light-sensitive side is optically accessible through the window. A second chip can be bonded to the backside of the first chip, with the second chip being wirebonded to the second level of the bi-level package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed.

  18. Method of fabricating a microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.

  19. Survey and analysis of materials research and development at selected federal laboratories

    SciTech Connect (OSTI)

    Reed, J.E.; Fink, C.R.

    1984-04-01

    This document presents the results of an effort to transfer existing, but relatively unknown, materials R and D from selected federal laboratories to industry. More specifically, recent materials-related work at seven federal laboratories potentially applicable to improving process energy efficiency and overall productiviy in six energy-intensive manufacturing industries was evaluated, catalogued, and distributed to industry representatives to gauge their reaction. Laboratories surveyed include: Air Force Wright Aeronautical Laboratories Material Laboratory (AFWAL). Pacific Northwest Laboratory (PNL), National Aeronautics and Space Administration Marshall Flight Center (NASA Marshall), Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), Idaho National Engineering Laboratory (INEL), and Jet Propulsion Laboratory (JPL). Industries included in the effort are: aluminum, cement, paper and allied products, petroleum, steel and textiles.

  20. The Development of a Human Systems Simulation Laboratory at Idaho National Laoboratory: Progress, Requirements and Lessons Learned

    SciTech Connect (OSTI)

    David I Gertman; Katya L. LeBlanc; William phoenix; Alan R Mecham

    2010-11-01

    Next generation nuclear power plants and digital upgrades to the existing nuclear fleet introduce potential human performance issues in the control room. Safe application of new technologies calls for a thorough understanding of how those technologies affect human performance and in turn, plant safety. In support of advancing human factors for small modular reactors and light water reactor sustainability, the Idaho National Laboratory (INL) has developed a reconfigurable simulation laboratory capable of testing human performance in multiple nuclear power plant (NPP) control room simulations. This paper discusses the laboratory infrastructure and capabilities, the laboratory s staffing requirements, lessons learned, and the researchers approach to measuring human performance in the simulation lab.

  1. Progress on the Development of XRF Imaging and Analysis at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Saengsuwan, V.; Klysubun, W.; Wongprachanukul, N.; Bovornratanaraks, T.; Srisatit, T.

    2010-06-23

    XRF imaging and analysis at the Siam Photon Laboratory have been recently developed for supporting various applications in x-ray micro analysis. An experimental setup for white beam x-ray fluorescent imaging has been installed at the beamline BL2 for elemental and quantitative analyses. A white micro beam of 163x170 {mu}m{sup 2}(FWHM) measured by wire scanning has been delivered to samples using a polycapillary x-ray half-lens. The fluorescent emissions of characteristic x-rays (1 keV and above) are detected by a Si-PIN detector. XRF imaging of Ni grids on supporting glass and XRF analysis on a trace-element standard were conducted for testing the apparatus. The test results on these samples as well as the necessary software developed for elemental identification and imaging are presented.

  2. Faculty and Student Teams and National Laboratories: Expanding the Reach of Research Opportunities and Workforce Development

    SciTech Connect (OSTI)

    Blackburn,N.; White, K.; Stegman, M.

    2009-08-05

    The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-represented in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.

  3. Sandia National Laboratories: Ion Beam Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high energy ion microscopes to determine the radiation hardness and softness of microelectronics; identifying potential weaknesses. In situ Ion Irradiation Microscopy (I3M) Real...

  4. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  5. Laboratory Directed Research & Development program. Annual report to the Department of Energy

    SciTech Connect (OSTI)

    Ogeka, G.J.; Romano, A.J.

    1995-12-01

    This report briefly discusses the following projects coordinated at Brookhaven National Laboratory: investigation of the utility of max-entropy methods for the analysis of powder diffraction data; analysis of structures and interactions of nucleic acids and proteins by small angle x-ray diffraction; relaxographic MRI and functional MRI; very low temperature infra-red laser absorption as a potential analytical tool; state-resolved measurements of H{sub 2} photodesorption: development of laser probes of H{sub 2} for in-situ accelerator measurements; Siberian snake prototype development for RHIC; synthesis and characterization of novel microporous solids; ozone depletion, chemistry and physics of stratospheric aerosols; understanding the molecular basis for the synthesis of plant fatty acids possessing unusual double bond positions; structure determination of outer surface proteins of the Lyme disease spirochete; low mass, low-cost multi-wire proportional chambers for muon systems of collider experiments; theory of self-organized criticality; development of the PCR-SSCP technique for the detection, at the single cell level, of specific genetic changes; feasibility of SPECT in imaging of F-18 FDG accumulation in tumors; visible free electron laser oscillator experiment; study of possible 2 + 2 TeV muon-muon collider; ultraviolet FEL R & D; precision machining using hard x-rays; new directions in in-vivo enzyme mapping: catechol-O-methyltransferase; proposal to develop a high rate muon polarimeter; development of intense, tunable 20-femtosecond laser systems; use of extreme thermophilic bacterium thermatoga maritima as a source of ribosomal components and translation factors for structural studies; and biochemical and structural studies of Chaperon proteins from thermophilic bacteria and other experiments.

  6. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  7. The second-phase development of the China JinPing underground laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jianmin; Ji, Xiangdong; Haxton, Wick; Wang, Joseph S.Y.

    2015-03-24

    During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 m³, which can be compared to the existing CJPL-I volume of ~ 4,000 m³. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. There are additional possibilities for furthermore » expansions at a nearby second bypass tunnel and along the entrance and exit branches of both bypass tunnels, potentially leading to an expanded CJPL comparable in size to Gran Sasso. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germanium detector array of the China Darkmatter EXperiment (CDEX) collaboration and of the duel-phase xenon detector of the Panda-X collaboration, as well as possible new detector initiatives for dark matter studies, low-energy solar neutrino detection, neutrinoless double beta searches, and geoneutrinos. JinPing was also discussed as a site for a low-energy nuclear astrophysics accelerator. Geophysics/engineering opportunities include acoustic and micro-seismic monitoring of rock bursts during and after excavation, coupled-process in situ measurements, local, regional, and global monitoring of seismically induced radon emission, and electromagnetic signals. Additional ideas and projects will likely be developed in the next few years, driven by China’s domestic needs and by international experiments requiring access to very great depths.« less

  8. Development of site-specific soil cleanup criteria: New Brunswick Laboratory, New Jersey site

    SciTech Connect (OSTI)

    Veluri, V.R.; Moe, H.J.; Robinet, M.J.; Wynveen, R.A.

    1983-03-01

    The potential human exposure which results from the residual soil radioactivity at a decommissioned site is a prime concern during D and D projects. To estimate this exposure, a pathway analysis approach is often used to arrive at the residual soil radioactivity criteria. The development of such a criteria for the decommissioning of the New Brunswick Laboratory, New Jersey site is discussed. Contamination on this site was spotty and located in small soil pockets spread throughout the site area. Less than 1% of the relevant site area was contaminated. The major contaminants encountered at the site were /sup 239/Pu, /sup 241/Am, normal and natural uranium, and natural thorium. During the development of the pathway analysis to determine the site cleanup criteria, corrections for the inhomogeneity of the contamination were made. These correction factors and their effect upon the relevant pathway parameters are presented. Major pathways by which radioactive material may reach an individual are identified and patterns of use are specified (scenario). Each pathway is modeled to estimate the transfer parameters along the given pathway, such as soil to air to man, etc. The transfer parameters are then combined with dose rate conversion factors (ICRP 30 methodology) to obtain soil concentration to dose rate conversion factors (pCi/g/mrem/yr). For an appropriate choice of annual dose equivalent rate, one can then arrive at a value for the residual soil concentration. Pathway modeling, transfer parameters, and dose rate factors for the three major pathways; inhalation, ingestion and external exposure, which are important for the NBL site, are discussed.

  9. Argonne National Laboratory Partners with Advanced Magnet Lab to Develop First Fully Superconducting Direct-Drive Generator

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Argonne National Laboratory (ANL) is partnering with Advanced Magnet Lab, in Palm Bay, Florida, on one of six projects recently awarded by DOE to help develop next generation wind turbines and accelerate the deployment of advanced turbines for offshore wind energy in the United States.

  10. Independent Oversight Review of the Los Alamos National Laboratory Transuranic Waste Facility Safety Basis and Design Development, July 2014

    Office of Environmental Management (EM)

    Los Alamos National Laboratory Transuranic Waste Facility Safety Basis and Design Development July 2014 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Independent Enterprise Assessments U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................ 1 2.0 Scope ...

  11. Audit Report - Cooperative Research and Development Agreements at National Nuclear Security Administration Laboratories, OAS-M-13-02

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooperative Research and Development Agreements at National Nuclear Security Administration Laboratories OAS-M-13-02 March 2013 Department of Energy Washington, DC 20585 March 15, 2013 MEMO MEMORANDUM FOR THE ACTING ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cooperative Research and Development Agreements at National Nuclear Security

  12. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    SciTech Connect (OSTI)

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no-cost extension period) of our grant, we extended our studies to perform experiments on the controlled production and characterization of secondary organic aerosol.

  13. Porous electrode apparatus for electrodeposition of detailed metal structures or microelectronic interconnections

    DOE Patents [OSTI]

    Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.

    2002-01-01

    An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.

  14. Development of a Fan-Filter Unit Test Standard, LaboratoryValidations, and its Applications across Industries

    SciTech Connect (OSTI)

    Xu, Tengfang

    2006-10-20

    Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrial Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products under a variety of operating conditions.[1] In the course of the project, the standard laboratory method previously developed at LBNL has been under continuous evaluation and update.[2][3] Based upon the updated standard, it becomes feasible for users and suppliers to characterize and evaluate energy performance of FFUs in a consistent way.

  15. An SAR-compliant radionuclide inventory management system for a DOE research and development laboratory

    SciTech Connect (OSTI)

    O'Kula, K.R.; Lux, C.R.; Clements, J.A.

    2000-07-01

    The US Department of Energy Complex contains many laboratories that require inventory management and control of large stores of radionuclides. While the overall quantities of radionuclides are bounded by Authorization-Basis (AB) documents, the spatial distribution may change rapidly according to facility experimentation and storage limits. Thus, the consequences of postulated accident events may be difficult to quantify as the location of radiological species becomes uncertain. Furthermore, a situation of this nature may be compounded by management of fissile materials in the same laboratory. Although radionuclide inventory management, fissile material control, and compliance with AB limits may be handled individually, a systematic and consistent approach would be to integrate all three functions. A system with these characteristics, an upgraded Radionuclide Inventory and Administrative Control (RI-AC) System, has been implemented for the Savannah River Technology Center (SRTC) located on the Savannah River Site (SRS), and is summarized in this paper.

  16. New Pathway Developed to Silicon Quantum Dot Devices (Fact Sheet), Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers create a way to prepare doped nanocrystal solutions for solar thin films that are nontoxic and less expensive than heavy metal-based thin films. Scientists at the National Renewable Energy Laboratory (NREL) and the University of Minnesota have developed a method for preparing doped colloids (solutions) of silicon nanocrystals (NCs) as potential nontoxic infrared-absorbing and -emitting alternatives to metal chalcogenide quantum dots. Significant progress in the methods for preparing

  17. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Expanded research, development, and testing activities will help advance fuel cell electric vehicle technology. The National Renewable Energy Laboratory (NREL) has acquired four Fuel Cell Hybrid Vehicle-Advanced (FCHV-adv) sport utility vehicles on loan from Toyota. Over the next two years the lab will use the FCHVs, also known as fuel cell electric vehicles or

  18. 94-1 Research and development project lead laboratory support. Status report, January 1--March 31, 1997

    SciTech Connect (OSTI)

    Rink, N.A.

    1997-08-01

    This status report is published for Los Alamos National Laboratory 94-1 Research and Development Project Support. The Department of Energy Office of Environmental Management funds these projects in order to support the storage or disposal of legacy plutonium and plutonium-bearing materials that resulted from weapons production throughout the DOE complex. This report summarizes status and technical progress for Los Alamos 94-1 projects during the second quarter of fiscal year 1997.

  19. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  20. Sandia National Laboratories Develops Tool for Evaluating Wind Turbine-Radar Impacts

    Broader source: Energy.gov [DOE]

    The TSPEAR toolkit supports energy developers that wish to design, analyze, track the progress of wind energy projects. Initially designed to support wind energy development by assessing the interaction between turbines and constraining factors, such as the NAS radar systems, TSPEAR is partially populated with information from existing databases and can integrate custom models and tools used throughout the development process.

  1. JEDI: Jobs and Economic Development Impact Model (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JEDI: Jobs and Economic Development Impact Model The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the gross economic impacts of constructing and operating power generation, transmission, and biofuel plants at the state or national level. First developed by NREL's researchers to model wind energy jobs and impacts, JEDI has been expanded to also estimate the economic impacts of biofuels and biopower, coal, conventional hydro, concentrating solar power,

  2. JEDI: Jobs and Economic Development Impact Model (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Wind Powering America (EERE)

    JEDI: Jobs and Economic Development Impact Model The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the gross economic impacts of constructing and operating power generation, transmission, and biofuel plants at the state or national level. First developed by NREL's researchers to model wind energy jobs and impacts, JEDI has been expanded to also estimate the economic impacts of biofuels and biopower, coal, conventional hydro, concentrating solar power,

  3. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  4. Federal Laboratory Consortium | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Laboratory Consortium The Federal Laboratory Consortium for Technology Transfer (FLC) is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. The FLC is divided up into 6 geographical regions. The Ames Laboratory is a member of the Mid-Continent region. The Mid-Continent Region consists of 14 states: Arkansas, Colorado, Iowa, Kansas, Missouri, Montana,

  5. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  6. Hardware Development of a Laboratory-Scale Microgrid Phase 2: Operation and Control of a Two-Inverter Microgrid

    SciTech Connect (OSTI)

    Illindala, M. S.; Piagi, P.; Zhang, H.; Venkataramanan, G.; Lasseter, R. H.

    2004-03-01

    This report summarizes the activities of the second year of a three-year project to develop control software for microsource distributed generation systems. In this phase, a laboratory-scale microgrid was expanded to include: (1) Two emulated distributed resources; (2) Static switchgear to allow rapid disconnection and reconnection; (3) Electronic synchronizing circuitry to enable transient-free grid interconnection; (4) Control software for dynamically varying the frequency and voltage controller structures; and (5) Power measurement instrumentation for capturing transient waveforms at the interconnect during switching events.

  7. Final report for the virtual channel encryptor laboratory directed research and development project

    SciTech Connect (OSTI)

    Gibson, D.J.; Sarfaty, R.A.

    1997-08-01

    A workstation with a single physical connection to a data communications network may have a requirement for simultaneous `virtual` communication channels to more than one destination. This report describes the development of techniques based on the Data Encryption Standard (DES) which encrypt these virtual channels to secure the data being transmitted against unauthorized access. A software module has been developed for the UNIX operating system using these techniques for encryption, and some development has also been done on a hardware device to be included between the workstation and network which can also provide these functions. The material presented in this report will be useful to those with a need to protect information in data communications systems from unauthorized access.

  8. JEDI: Jobs and Economic Development Impact Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL’s researchers to model wind energy jobs and impacts, JEDI has been expanded to also estimate the economic impacts of biofuels, coal, conventional hydro, concentrating solar power, geothermal, marine and hydrokinetic power, natural gas, photovoltaics, and transmission lines. This fact sheet focuses on JEDI for wind energy projects.

  9. Leadership development study :success profile competencies and high-performing leaders at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Becker, Katherine M.; Mulligan, Deborah Rae; Szenasi, Gail L.; Crowder, Stephen Vernon

    2005-04-01

    Sandia is undergoing tremendous change. Sandia's executive management recognized the need for leadership development. About ten years ago the Business, Leadership, and Management Development department in partnership with executive management developed and implemented the organizational leadership Success Profile Competencies to help address some of the changes on the horizon such as workforce losses and lack of a skill set in the area of interpersonal skills. This study addresses the need for the Business, Leadership, and Management Development department to provide statistically sound data in two areas. One is to demonstrate that the organizational 360-degree success profile assessment tool has made a difference for leaders. A second area is to demonstrate the presence of high performing leaders at the Labs. The study utilized two tools to address these two areas. Study participants were made up of individuals who have solid data on Sandia's 360-degree success profile assessment tool. The second assessment tool was comprised of those leaders who participated in the Lockheed Martin Corporation Employee Preferences Survey. Statistical data supports the connection between leader indicators and the 360-degree assessment tool. The study also indicates the presence of high performing leaders at Sandia.

  10. JEDI: Jobs and Economic Development Impacts Model, National Renewable Energy Laboratory (NREL) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal, and natural gas power plants. Based on project-specific and default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area (usually a state) that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction jobs from a new wind farm. This fact sheet provides an overview of the JEDI model as it pertains to wind energy projects.

  11. Next Generation Safeguards Initiative Efforts at Los Alamos National Laboratory: Developing Our Human Capital FY2015

    SciTech Connect (OSTI)

    Stevens, Rebecca S.; Hawkins Erpenbeck, Heather

    2015-10-13

    This report documents the accomplishments of the Safeguards HCD Fiscal Year 2015 (FY15) Project Work Plan, highlighting LANL’s work as well as the accomplishments of our NGSI-sponsored students, graduate and postdoctoral fellows, and mid-career professionals during this past year. While fiscal year 2015 has been a year of transition in the Human Capital Development area for LANL, we are working to revitalize our efforts to promote and develop Human Capital in Safeguards and Non-proliferation and are looking forward to implementing new initiatives in the coming fiscal year and continuing to transition the knowledge of staff who have been on assignment at IAEA and Headquarters to improve our support to HCD.

  12. Cold Crucible Induction Melter Technology: Results of Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Gombert, Dirk; Richardson, John Grant

    2001-09-01

    This report provides a review of cold crucible induction melter (CCIM) technology and presents summaries of alternatives and design issues associated with major system components. The objective in this report is to provide background systems level information relating to development and application of cold crucible induction-heated melter technology for radiological waste processing. Included is a detailed description of the bench-top melter system at the V. G. Khlopin Radium Institute currently being used for characterization testing

  13. NREL's Water Power Software Makes a Splash; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    WEC-Sim is a DOE-funded software tool being jointly developed by NREL and SNL. WEC-Sim computationally models wave energy converters (WEC), devices that generate electricity using movement of water systems such as oceans, rivers, etc. There is great potential for WECs to generate electricity, but as of yet, the industry has yet to establish a commercially viable concept. Modeling, design, and simulations tools are essential to the successful development of WECs. Commercial WEC modeling software tools can't be modified by the user. In contrast, WEC-Sim is a free, open-source, and flexible enough to be modified to meet the rapidly evolving needs of the WEC industry. By modeling the power generation performance and dynamic loads of WEC designs, WEC-Sim can help support the development of new WEC devices by optimizing designs for cost of energy and competitiveness. By being easily accessible, WEC-Sim promises to help level the playing field in the WEC industry. Importantly, WEC-Sim is also excellent at its job! In 2014, WEC-Sim was used in conjunction with NREL’s FAST modeling software to win a hydrodynamic modeling competition. WEC-Sim and FAST performed very well at predicting the motion of a test device in comparison to other modeling tools. The most recent version of WEC-Sim (v1.1) was released in April 2015.

  14. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  15. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    SciTech Connect (OSTI)

    MacKinnon, Robert J.

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  16. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

  17. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect (OSTI)

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  18. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  19. haberer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haberer Ames Laboratory Profile Charles Haberer Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: haberer

  20. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect (OSTI)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  1. Development of a waste dislodging and retrieval system for use in the Oak Ridge National Laboratory gunite tank

    SciTech Connect (OSTI)

    Randolph, J.D.; Lloyd, P.D.; Burks, B.L.

    1997-03-01

    As part of the Gunite And Associated Tanks (GAAT) Treatability Study the Oak Ridge National Laboratory (ORNL) has developed a tank waste retrieval system capable of removing wastes varying from liquids to thick sludges. This system is also capable of scarifying concrete walls and floors. The GAAT Treatability Study is being conducted by the Department of Energy Oak Ridge Environmental Restoration Program. Much of the technology developed for this project was cosponsored by the DOE Office of Science and Technology through the Tanks Focus Area (TFA) and the Robotics Technology Development Program. The waste dislodging and conveyance (WD&C) system was developed jointly by ORNL and participants from the TFA. The WD&C system is comprised of a four degree-of-freedom arm with back driveable motorized joints. a cutting and dislodging tool, a jet pump and hose management system for conveyance of wastes, confined sluicing end-effector, and a control system, and must be used in conjunction with a robotic arm or vehicle. Other papers have been submitted to this conference describing the development and operation of the arm and vehicle positioning systems. This paper will describe the development of the WD&C system and its application for dislodging and conveyance of ORNL sludges from the GAAT tanks. The confined sluicing end-effector relies on medium pressure water jets to dislodge waste that is then pumped by the jet pump through the conveyance system out of the tank. This paper will describe the results of cold testing of the integrated system. At the conference presentation there will also be results from the field deployment. ORNL has completed fabrication of the WD&C system for waste removal and is full-scale testing, including testing of the confined sluicing end-effector.

  2. Sandia National Laboratories: News: Publications: Labs Accomplishments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities; governance, management, and leadership; materials; military programs; microelectronics and microsystems; nuclear weapons engineering; product realization; partnerships...

  3. National Laboratory Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Contacts National Laboratory Contacts The Geothermal Technologies Office works closely with several DOE national laboratories in managing and contributing to research and development projects. Below are the primary contacts at these laboratories. Laboratory Name Idaho National Laboratory Greg Mines, Lead Manager Lawrence Berkeley National Laboratory Mack Kennedy, Lead Scientist Lawrence Livermore National Laboratory Jeff Roberts, Lead Scientist National Renewable Energy Laboratory Tom

  4. Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

  5. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  6. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  7. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  8. NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones. Heat pump water heaters (HPWHs) have the potential to significantly reduce energy use in homes compared to traditional electric resistance water heaters. Researchers at the National Renewable Energy Laboratory (NREL) completed thorough laboratory testing of five integrated HPWHs-all available in the U.S. market-to evaluate the cost of saved energy as a function of climate. The performance of

  9. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories NREL has laboratories available to industry and other organizations for researching, developing, and testing renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's laboratories. A | B | C | D | E | F | G | H | I | J | K | L | M | N |O | P | Q |R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Researchers use temperature- and humidity-controlled chambers in this lab to study weathering

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory i Table of Contents Letter from the Division Director 1 Innovation Prize Nominations 2 Innovation Prize Winner 5 About the Feynman Center for Innovation 6 Innovation Assets 7 Strategic Sponsored Work 8 National High Magnetic Field Laboratory 9 Licensing 10 SOLVE 11 Economic Development 12 STAR Cryoelectronics 13 Partnership 14 Verdesian Life Sciences 15 R&D 100 Awards 16 Federal Laboratory Consortium Awards 17 Los Alamos National Laboratory 1 As scientists and

  11. bcleland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcleland Ames Laboratory Profile Beth Cleland Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: bcleland

  12. burghera | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burghera Ames Laboratory Profile Alexander Burgher Facil Mechanic III Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: burghera

  13. byrd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    byrd Ames Laboratory Profile David Byrd Asst Scientist I Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: byrd

  14. cmarquardt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cmarquardt Ames Laboratory Profile Cynthia Marquardt Secretary II Facilities Services 158 Metals Development Phone Number: 515-294-3756 Email Address: cmarquardt@ameslab.gov

  15. crossm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crossm Ames Laboratory Profile Jeanine Crosman Secretary III Facilities Services 158H Metals Development Phone Number: 515-294-3496 Email Address: crossm

  16. dabrice | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dabrice Ames Laboratory Profile David Brice Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: dabrice

  17. dmeyer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dmeyer Ames Laboratory Profile Dale Meyer Engr Tech II Facilities Services 158D Metals Development Phone Number: 515-294-3614 Email Address: dmeyer@ameslab.gov

  18. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  19. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aboesenb Ames Laboratory Profile Adam Boesenberg Associate Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5903 Email Address: aboesenb

  20. aklekner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aklekner Ames Laboratory Profile Alon Klekner Engr Tech I Facilities Services 167C Metals Development Phone Number: 515-294-1589 Email Address: aklekner@ameslab.gov

  1. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  2. antropov | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Education: Ph.D. Condensed Matter Physics, Institute of Physics of Metals, Yekaterinburg,...

  3. carter | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carter Ames Laboratory Profile Steven Carter Engr IV Facilities Services 158 Metals Development Phone Number: 515-294-7889 Email Address: carter@ameslab.gov...

  4. grootvel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grootvel Ames Laboratory Profile Mark Grootveld Mgr Facility Serv Facilities Services 158 Metals Development Phone Number: 515-294-7895 Email Address: grootveld@ameslab.gov

  5. hcelliott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hcelliott Ames Laboratory Profile Henrietta Elliott Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: hcelliott

  6. herrman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herrman Ames Laboratory Profile Terrance Herrman Engr V Facilities Services 167 Metals Development Phone Number: 515-294-7896 Email Address: herrman

  7. hoenig | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hoenig Ames Laboratory Profile Douglas Hoenig Mgr Facility Serv Facilities Services 158J Metals Development Phone Number: 515-294-0930 Email Address: hoenig@ameslab.gov

  8. long | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    long Ames Laboratory Profile Catherine Long Supv-Custodial Svc Facilities Services 158G Metals Development Phone Number: 515-294-4360 Email Address: long

  9. mhenely | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mhenely Ames Laboratory Profile Michael Henely Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: mhenely

  10. olsenjro | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    olsenjro Ames Laboratory Profile Jarrett Olsen Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: olsenjro@ameslab.gov

  11. rfry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rfry Ames Laboratory Profile Robert Fry Electronics Tech I Facilities Services 258 Metals Development Phone Number: 515-294-4823 Email Address: rfry

  12. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seliger Ames Laboratory Profile Victoria Seliger Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: seliger

  13. tkales | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tkales Ames Laboratory Profile Thomas Ales Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: tkales

  14. vaclav | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vaclav Ames Laboratory Profile Michael Vaclav Engr IV Facilities Services 158E Metals Development Phone Number: 515-294-7891 Email Address: vaclav

  15. valery | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    valery Ames Laboratory Profile Valery Borovikov Postdoc Res Associate Division of Materials Science & Engineering 205 Metals Development Phone Number: 515-294-4312 Email Address: valery

  16. bspire | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bspire Ames Laboratory Profile Bruce Spire Erd Machinist Sr Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bspire...

  17. dboeke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dboeke Ames Laboratory Profile David Boeke Research Tech Sr Division of Materials Science & Engineering 123 Metals Development Phone Number: 515-294-5816 Email Address: dboeke...

  18. bwing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bwing Ames Laboratory Profile William Wing Erd Machinist Sr Division of Materials Science & Engineering Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email...

  19. tdball | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tdball Ames Laboratory Profile Teresa Ball Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: tdball...

  20. vanmarel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vanmarel Ames Laboratory Profile Ross Vanmarel Facil Mechanic III Facilities Services 158 Metals Development Phone Number: 515-294-1746 Email Address: vanmarel...

  1. andersoi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andersoi Ames Laboratory Profile Iver Anderson Adj Prof Division of Materials Science & Engineering 222 Metals Development Phone Number: 515-294-9791 Email Address:...

  2. rdanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rdanders Ames Laboratory Profile Ross Anderson Research Tech Sr Division of Materials Science & Engineering 108 Metals Development Phone Number: 515-294-5816 Email Address:...

  3. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directors Laboratory Directors A gallery of Laboratory leadership, 1943 to the present. Laboratory historian Alan B. Carr Email Laboratory directors Charles McMillan (2011-present) Michael R. Anastasio (2006-2011) Robert Kuckuck (2005-2006) G. Peter Nanos (2003-2005) John C. Browne (1997-2003) Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew

  4. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions. With at least three major auto manufacturers expected to release fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable U.S. hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL), with fund- ing from the U.S. Department of Energy Fuel Cell Technologies Office, is using a robot in the Energy Systems Integration

  5. NREL Improves Window Heat Transfer Calculations (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of algorithm discrepancies helps to promote market confidence in EnergyPlus and DOE-2. Heat loss through windows represents a significant amount of the overall energy use in homes. To address discrepancies in building simulation software-and market barriers impeding building energy use analysis-researchers at the National Renewable Energy Laboratory (NREL) identified and resolved window-related energy predictions of EnergyPlus and DOE-2, thereby improving the accuracy of both simulation

  6. NREL Tests Dehumidifiers, Defines Simplified Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    residential dehumidifiers results in practical performance curves for use in whole-building simulation tools. Dehumidifiers remove moisture from a home's indoor environment, thereby increasing occupant comfort, improving air quality, and reducing the likelihood of mold, rot, and dust mites. To help energy professionals more easily evaluate this technology for the market, National Renewable Energy Laboratory (NREL) researchers tested the efficiency and capacity of a variety of dehumidifiers and

  7. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  8. Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team

  9. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    SciTech Connect (OSTI)

    Erickson, Michael Charles

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  10. Distant Observer Tool Quickly Identifies Costly Flaws in CSP Fields (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control digital photography and metrology are combined to accurately define optical efficiency problems in concentrating solar power (CSP) plants. In a typical 100-megawatt (MW) CSP plant, an optical efficiency gain or loss of a mere 1% is worth about $600,000 in annual revenue. Hence, optimizing optical efficiency is key to the plant's economic viability. The Distant Observer (DO) tool, developed by the National Renewable Energy Laboratory (NREL), quickly and accurately measures the efficiency

  11. NREL Technical Reports Guide the Way to 50% Energy Savings in Hospitals, Office Buildings (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing technologies, designers and operators of large buildings could slash national energy use across a broad range of climates. Researchers at the National Renewable Energy Laboratory (NREL) have developed two technical reports that provide recommendations to help designers and opera- tors of large office buildings and hospitals achieve at least a 50% energy savings using existing technology. Strategies for 50% Energy Savings in Large Office Buildings found that a 50% energy savings can be

  12. Making Fuel Cells Cleaner, Better, and Cheaper(Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helps reduce contaminants in fuel cells, enabling the industry to cut costs and commercialize state-of-the-art technologies. As fuel cell systems become more commercially com- petitive, and as automo- tive fuel cell research and development trend toward decreased catalyst loadings and thinner membranes, fuel cell operation becomes even more susceptible to contaminants. Therefore, the National Renewable Energy Laboratory (NREL) and its partners have performed research on contaminants derived from

  13. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  14. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    design, microelectronics, materials, ceramics, precision fabrication, ion gas loading, engineering, and detection calibration, Juan says. He also credits manager Mike Eatough...

  15. Education | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Education The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better casework, research, and development partners for crime laboratories; and to engage crime laboratories in university efforts. These efforts can better-prepare the next generation of forensic scientists, advance the state-of-the-art in forensic science research, and influence students whose

  16. 1998 Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

    1999-09-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the US Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs. SNL/NM also conducts fundamental research and development to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safety for hazardous and nuclear components. In support of SNL's mission, the Environment, Safety and Health (ES&H) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist SNL's line organizations in meeting all applicable local, State, and Federal environmental regulations and DOE requirements. This annual report for calendar year 1998 (CY98) summarizes the compliance status of environmental regulations applicable to SNL site operations. Environmental program activities include terrestrial surveillance; ambient air and meteorological monitoring hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental remediation; oil and chemical spill prevention; and National Environmental Policy Act (NEPA) activities. This report has been prepared in compliance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990).

  17. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Director Laboratory Director Charles F. McMillan has demonstrated success at balancing mission performance with security and safety. Contact Operator Los Alamos National Laboratory (505) 667-5061 McMillan has nearly 30 years of scientific and management experience in weapons science and stockpile certification, hands-on experience in both experimental physics and computational science, and demonstrated success at balancing mission performance with security and safety. Charles F.

  18. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  19. Los Alamos National Laboratory A National Science Laboratory (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Los Alamos National Laboratory A National Science Laboratory Citation Details In-Document Search Title: Los Alamos National Laboratory A National Science Laboratory Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national

  20. devo | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devo Ames Laboratory Profile Deborah Schlagel Asst Scientist III Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-3924 Email Address: schlagel@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Research Interests: Synthesis of single crystals of Huesler alloys, magneto-responsive materials, superconductors, elements and alloys Single crystal characterization and property analysis

  1. riedemann | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    riedemann Ames Laboratory Profile Trevor Riedemann Asst Scientist III Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-1366 Email Address: riedemann@ameslab.gov Assistant Scientist III Website(s): Novel Materials Preparation & Processing Methodologies Materials Preparation Center Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: Masters of Science, Metallurgy, Iowa State University, 1996

  2. baik | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baik Ames Laboratory Profile Kamalakar Baikerikar Assoc Scientist Division of Materials Science & Engineering 221 Metals Development Phone Number: 515-294-7995 Email Address: baik@ameslab.gov

  3. bcarsten | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcarsten Ames Laboratory Profile Beverly Carstensen Secretary II Division of Materials Science & Engineering 105 Metals Development Phone Number: 515-294-4071 Email Address: bcarsten@ameslab.gov

  4. ambrose | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambrose Ames Laboratory Profile Michael Ambrose Lab Assistant-X Division of Materials Science & Engineering 258 Metals Development Phone Number: 515-294-1602 Email Address: ambrose@iastate.edu

  5. pmberge | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pmberge Ames Laboratory Profile Paul Berge Industrial Spec Division of Materials Science & Engineering 111 Metals Development Phone Number: 515-294-5972 Email Address: pmberge@iastate.edu

  6. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Highlights 2 SANDIA NATIONAL LABORATORIES From the Chief Technology O cer The Laboratory Directed Research and Development (LDRD) program is the sole discretionary research and development (R&D) investment program at Sandia. LDRD provides the opportunity for our technical sta to contribute to our Nation's future, to our collective ability to address and nd solutions to a range of daunting scienti c and technological challenges. The results of their work will shape the course of science

  7. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better engage with the community LOS ALAMOS, N.M., Nov. 27, 2013-Podcasts and webinars are among the new communications tools being rolled out by Los Alamos National Laboratory's Community Programs Office to reach a broader audience. The first podcast discusses economic development and the Northern New Mexico 20/20 Campaign, a

  8. Matthew Tirrell | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matthew Tirrell Deputy Laboratory Director for Science Matthew Tirrell is Deputy Laboratory Director for Science at Argonne National Laboratory. He is responsible for integrating the laboratory's research and development efforts and science and technology capabilities. He develops and drives strategy to support integrated teams across disciplines in support of Argonne's strategic initiatives. Dr. Tirrell also serves as Founding Pritzker Director of the Institute for Molecular Engineering (IME)

  9. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at...

  10. Remote sensing data exploiration for geologic characterization of difficult targets : Laboratory Directed Research and Development project 38703 final report.

    SciTech Connect (OSTI)

    Costin, Laurence S.; Walker, Charles A.; Lappin, Allen R.; Hayat, Majeed M. (University of New Mexico, Albuquerque, NM); Ford, Bridget K.; Paskaleva, Biliana (University of New Mexico, Albuquerque, NM); Moya, Mary M.; Mercier, Jeffrey Alan; Stormont, John C.; Smith, Jody Lynn

    2003-09-01

    Characterizing the geology, geotechnical aspects, and rock properties of deep underground facility sites can enhance targeting strategies for both nuclear and conventional weapons. This report describes the results of a study to investigate the utility of remote spectral sensing for augmenting the geological and geotechnical information provided by traditional methods. The project primarily considered novel exploitation methods for space-based sensors, which allow clandestine collection of data from denied sites. The investigation focused on developing and applying novel data analysis methods to estimate geologic and geotechnical characteristics in the vicinity of deep underground facilities. Two such methods, one for measuring thermal rock properties and one for classifying rock types, were explored in detail. Several other data exploitation techniques, developed under other projects, were also examined for their potential utility in geologic characterization.

  11. Boosting Accuracy of Testing Multijunction Solar Cells (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has developed a more precise technology for measuring efficiency of concentrating solar cells, enabling the industry to advance. Solar researchers have long been unable to reduce an error that occurs during efficiency measurements of triple-absorber, concentrating photovoltaic (CPV) cells- one that is caused by too much spectral irradiance from unfiltered, pulsed xenon solar simulators entering into the bottom subcell during testing. This condition causes an artificial increase in the measured

  12. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    SciTech Connect (OSTI)

    Polsky, Yarom; Bingham, Philip R; Bilheux, Hassina Z; Carmichael, Justin R

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  13. National Security Photo Gallery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RFID Nuclear engineer Yung Liu, with Argonne National Laboratory examines data on his laptop from the radio frequency identification device developed at the laboratory. The...

  14. Finding of No Significant Impact and Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FINDING OF NO SIGNIFICANT IMPACT AND FINAL ENVIRONMENTAL ASSESSMENT OF THREE SITE DEVELOPMENT PROJECTS AT THE NATIONAL RENEWABLE ENERGY LABORATORY SOUTH TABLE MOUNTAIN SITE July 2007 U . S . D e p a r t m e n t o f E n e r g y G o l d e n F i e l d O f f i c e N a t i o n a l R e n e w a b l e E n e r g y L a b o r a t o r y 1 6 1 7 C o l e B o u l e v a r d G o l d e n , C o l o r a d o 8 0 4 0 1 DOE/EA-1573 Final Environmental Assessment of Three Site Development Projects at the National

  15. Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Snake River Geothermal Consortium (SRGC) is a research partnership focused on advancing geothermal energy. Hosted by the Idaho National Laboratory (INL), SRGC proposes establishing FORGE as a resource for technology development, deployment, and validation. Their team includes members from national laboratories, universities, industry, and state and federal agencies. The technical team consists of members from Baker Hughes, the Center for Advanced Energy Studies (CAES) – Idaho National Laboratory, University of Idaho, Idaho State University, Boise State University, University of Wyoming - Campbell Scientific, Chena Power, Geothermal Resources Group, Idaho Department of Water Resources, Idaho Geologic Survey, Lawrence Livermore National Laboratory, Mink GeoHydro, National Renewable Energy Laboratory, University of Oklahoma, University of Utah, U.S. Geothermal, and the U.S. Geological Survey (USGS).

  16. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety

  17. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect (OSTI)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  18. Ames Laboratory Conflict of Interest Policy | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Conflict of Interest Policy The Ames Laboratory has developed a conflict of interest and consulting policy for Laboratory employees. The Policy is more stringent than Iowa State University's (Laboratory Contractor) policy as a result of integrating requirements stipulated in the University's contract with the Department of Energy (DE-AC02-07CH11358) with the University's conflict of interest policies. Please take time to review the policy to make sure you are complying with its

  19. Working with SRNL - Our Facilities - Metal Hydride Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Hydride Laboratories Working with SRNL Our Facilities - Metal Hydride Laboratories The Metal Hydride Laboratories are used for research and development on metal hydride...

  20. Status of coal liquefaction in the United States and related research and development at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Salmon, R.; Cochran, H.D. Jr.; McNeese, L.E.

    1982-10-05

    We divide coal liquefaction processes into four categories: (1) indirect liquefaction, such as Fischer-Tropsch and methanol synthesis, in which coal is fist gasified to produce a synthesis gas which is then recombined to produce liquids; (2) direct liquefaction processes, typified by H-Coal, Exxon Donor Solvent (EDS), and SRC-I and II, in which a slurry of coal and solvent is subjected to high severity liquefaction conditions, either with or without added catalyst; (3) two-stage liquefaction, such as Conoco's CSF process, in which an initial dissolution at mild conditions is followed by a more severe catalytic hydrogenation-hydrocracking step; or the short contact time two-stage liquefaction processes being developed currently by groups which include Chevron, Electric Power Research Institute (EPRI), Department of Energy/Fossil Energy (DOE/FE); and (4) pyrolysis and hydropyrolysis processes, such as COED and Cities Service-Rockewell, in which coal is carbonized to produce liquids, gases, and char. Pilot plant experience with the various processes is reviewed (including equipment problems, corrosion and abrasion, refractory life, heat recovery, coke deposits, reactor kinetics, scale-up problems, health hazards, environmental impacts, upgrading products, economics, etc.). Commercialization possibilities are discussed somewhat pessimistically in the light of reduction of US Oil imports, weakening oil prices, conversion to coal, smaller automobiles, economics and finally, some uncertainty about SFC goals and policies. (LTN)

  1. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2016 Articles 25 years of Laboratory-Directed Research and Development Headlights of a laboratory Sandia total spending, economic impact up in 2015 A driving force Sandia researchers break down lightning strikes into microseconds When lightning strikes Enormous blades for offshore energy A mighty wind CSI: Dognapping program honored for science outreach CSI: Dognapping Program helps new Sandians get started on the right path ANGLEing toward success

  2. jonesll | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jonesll Ames Laboratory Profile Lawrence Jones Assoc Scientist Division of Materials Science & Engineering Facilities Services 121 Metals Development Phone Number: 515-294-5236 Email Address: jonesll@ameslab.gov Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: M.S. Metallurgical Engineering, Iowa State University, 1985 B.S. Metallurgical Engineering, Iowa State University, 1983 Professional Appointments: Iowa State University; Ames

  3. kmh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kmh Ames Laboratory Profile Kai-ming Ho Associate Division of Materials Science & Engineering A502 Zaffarano Phone Number: 515-294-1960 Email Address: kmh@ameslab.gov Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Photonic Systems Structures and Dynamics in Condensed Systems Surface Structures Far-from-Equilibrium Education: Ph.D. Physics, University of California, Berkeley (thesis advisor: Marvin Cohen), 1978 B.Sc., B.Sc(Sp) University of Hong Kong, 1973

  4. mjkramer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mjkramer Ames Laboratory Profile Matthew Kramer Director III Division of Materials Science & Engineering 125 Metals Development Phone Number: 515-294-0276 Email Address: mjkramer@ameslab.gov Ames Laboratory Research Projects: Structures and Dynamics in Condensed Systems Nanotwinned Materials for Energy Technologies Education: Ph.D. Geology, Iowa State University, 1988 M.S. Geology, University of Rochester, 1983 B.S. Geomechanics, University of Rochester, 1979 Professional Appointments:

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning work activities with the environment in mind LOS ALAMOS, N.M., March 1, 2013-The Department of Energy and Los Alamos National Laboratory have developed a long-term strategy for environmental stewardship and sustainability that provides a blueprint for protecting the environment while accomplishing the Laboratory's national security missions. "This plan represents a significant amount of effort on the

  6. Sandia National Laboratories | Department of Energy

    Energy Savers [EERE]

    Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories | July 2009 Aerial View Sandia National Laboratories | July 2009 Aerial View Sandia National Laboratories' (SNL) primary mission is to provide scientific and technology support to national security programs. SNL focuses on developing technologies to sustain, modernize, and protect the nuclear arsenal; prevent the spread of weapons of mass destruction; defend against terrorism; protect the national

  7. Budget Office | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget Office The Budget Office is responsible for the following: Providing overall direction to the budget formulation and budget execution functions of the Ames Laboratory Developing procedures to meet the financial requirements of the Department Of Energy Assuring that the Laboratory uses sound financial practices Assuring that the Laboratory complies with all Department Of Energy cost controls Providing decision-making support to senior Laboratory management Providing support to the

  8. About Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    successfully address some of this century's most significant challenges. Argonne National Laboratory leads the development of new ways of seeing materials by connecting techniques...

  9. ja762 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ja762 Ames Laboratory Profile Jordan Anderson Facilities Services 167 Metals Development Phone Number: 515-294-5428 Email Address: ja762

  10. Balu Balachandran | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011, R&D 100 Award for the development of advanced ceramic capacitors for power inverters Federal Laboratory Consortium (FLC) Awards for Excellence in Technology Transfer -...

  11. Success Stories | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories Touching The Lives Of Billions Worldwide: Lead Free Solder A lead free solder, developed at Ames Laboratory by Iver Anderson, John Smith, Chad Miller, and Robert...

  12. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect (OSTI)

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  13. Process Development and Integration Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    qualified to collaborate with industry, manufacturing, university, and government enterprises. Our subject-matter experts in each of the areas listed below are capable of...

  14. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects....

  15. Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanics Laboratory - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  16. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  17. Tiger Team assessment of the Sandia National Laboratories, Albuquerque

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    This report documents the Tiger Team Assessment of Sandia National Laboratories (SNL), Albuquerque, located in Albuquerque, New Mexico. SNL, Albuquerque, is operated by the Sandia Corporation (a wholly owned subsidiary of the American Telephone and Telegraph Company) for the US Department of Energy (DOE). The environmental assessment also included DOE tenant facilities at Ross Aviation, Albuquerque Microelectronics Operation, and the Central Training Academy. The assessment was conducted from April 15 to May 24, 1991, under the auspices of DOE's Office of Special Projects under the Assistant Secretary for Environment, Safety and Health (ES H). The assessment was comprehensive, encompassing ES H disciplines, management, self-assessments, and quality assurance; transportation; and waste management operations. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal SNL, Albuquerque, requirements were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and SNL, Albuquerque management of ES H programs was conducted.

  18. Compositional Analysis Laboratory (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Analysis Laboratory * Provide customized analytical method development for a wide variety of feedstocks and process intermediates * Derive comprehensive biomass analysis results backed by 20 years of experience supporting the biomass conversion industry * Write publicly available Laboratory Analytical Procedures, several of which have been adapted by ASTM International and used and referenced worldwide * Provide training classes on biomass analysis and method development to help

  19. Development of the Symbolic Manipulator Laboratory modeling package for the kinematic design and optimization of the Future Armor Rearm System robot

    SciTech Connect (OSTI)

    March-Leuba, S.; Jansen, J.F.; Kress, R.L.; Babcock, S.M. ); Dubey, R.V. . Dept. of Mechanical and Aerospace Engineering)

    1992-08-01

    A new program package, Symbolic Manipulator Laboratory (SML), for the automatic generation of both kinematic and static manipulator models in symbolic form is presented. Critical design parameters may be identified and optimized using symbolic models as shown in the sample application presented for the Future Armor Rearm System (FARS) arm. The computer-aided development of the symbolic models yields equations with reduced numerical complexity. Important considerations have been placed on the closed form solutions simplification and on the user friendly operation. The main emphasis of this research is the development of a methodology which is implemented in a computer program capable of generating symbolic kinematic and static forces models of manipulators. The fact that the models are obtained trigonometrically reduced is among the most significant results of this work and the most difficult to implement. Mathematica, a commercial program that allows symbolic manipulation, is used to implement the program package. SML is written such that the user can change any of the subroutines or create new ones easily. To assist the user, an on-line help has been written to make of SML a user friendly package. Some sample applications are presented. The design and optimization of the 5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the kinematic and static models of two different 7-DOF manipulators are calculated symbolically.

  20. Development of the Symbolic Manipulator Laboratory modeling package for the kinematic design and optimization of the Future Armor Rearm System robot. Ammunition Logistics Program

    SciTech Connect (OSTI)

    March-Leuba, S.; Jansen, J.F.; Kress, R.L.; Babcock, S.M.; Dubey, R.V.

    1992-08-01

    A new program package, Symbolic Manipulator Laboratory (SML), for the automatic generation of both kinematic and static manipulator models in symbolic form is presented. Critical design parameters may be identified and optimized using symbolic models as shown in the sample application presented for the Future Armor Rearm System (FARS) arm. The computer-aided development of the symbolic models yields equations with reduced numerical complexity. Important considerations have been placed on the closed form solutions simplification and on the user friendly operation. The main emphasis of this research is the development of a methodology which is implemented in a computer program capable of generating symbolic kinematic and static forces models of manipulators. The fact that the models are obtained trigonometrically reduced is among the most significant results of this work and the most difficult to implement. Mathematica, a commercial program that allows symbolic manipulation, is used to implement the program package. SML is written such that the user can change any of the subroutines or create new ones easily. To assist the user, an on-line help has been written to make of SML a user friendly package. Some sample applications are presented. The design and optimization of the 5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the kinematic and static models of two different 7-DOF manipulators are calculated symbolically.

  1. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  2. Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory Oak Ridge National Laboratory An aerial view of the Oak Ridge National Laboratory campus. An aerial view of the Oak Ridge National Laboratory campus. The U.S. Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) is the nation's largest multi-program science and technology laboratory. ORNL's mission is to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy and global

  3. Lawrence Livermore National Laboratory | Department of Energy

    Office of Environmental Management (EM)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of

  4. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Applications What are contaminants normally found in hydrogen from fueling nozzle? JP Hsu SmartChemistry.com Particulates are most common found in Hydrogen - 96% hydrogen fuel contains particulates in 108 Particulate Samplings. Typical Particulate filter - 0.035mg/kg SmartChemistry.com H 2 Station X Particulate Sample Particulate Concentration at 700 Bar: 2.0 mg/kg Particulate filter after sampling, in which 4.001mg particulates are found in 2 kilogram hydrogen SmartChemistry.com H 2

  5. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    , -QAlamos NATIONAL LABORATORY - - - Ut."., - - - memorandum Environmental Protection Division Water Quality & RCRA Group (ENV-RCRA) To/MS: From /MS: Phone/Fax: Symbol: Date: Davis Christensen, ADEP-LTP-PTS, J910 Mark Haagenstad, ENV-RCRA K404 41,// 5-2014 '11fI ENV-RCRA-12-0053 February 29,2012 SUBJECT: LEGACY TA-55 NITRATE SALT WASTES AT TA-54 - POTENTIAL APPLICABILITY OF RCRA DOOlID002ID003 WASTE CODES This memorandum was prepared in response to your request to provide ENV-RCRA's

  6. Sandia National Laboratories: Explore Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore Sandia Potential Partners Sandia has worked with a wide variety of Sponsors, including large companies and small businesses based in New Mexico. Projects involve a broad range of technologies including materials and materials processing, advanced manufacturing and precision engineering, microelectronics and photonics, advanced computing and information technologies, modeling and simulation, nanotechnologies, vulnerability analysis, robotics and intelligent systems, failure analysis and

  7. Working with SRNL - Our Facilities - Remote Systems Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Systems Laboratory Remote Systems Laboratory Working with SRNL Our Facilities - Remote Systems Laboratory The Remote Systems Laboratory is used for the design, development, fabrication, and testing of unique equipment systems for use in radioactive, hazardous or inaccessible environments

  8. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  9. Competitions | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Learning Experiences School Competitions Middle School Science Bowl Middle School Electric Car Competition High School Rube

  10. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Capabilities Argonne offers a wide range of R&D capabilities that collaborators from private industry, federal agencies, and state and local

  11. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Blog Postdoctoral Programs Lab-Corps Program Life at Argonne Benefits Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Careers Apply for a Job External Applicants Internal Applicants Postdoctoral Applicants Fellowships Students Faculty Programs Why Argonne Your Career Leadership Development Mentoring Mentoring Blog Postdoctoral

  12. Sandia National Laboratories: About Sandia: Leadership: Acting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy research and development laboratory. The Business Operations Division Jennifer leads encompasses finance, accounting, procurement, property and ...

  13. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  14. IDAHO NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s

  15. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Argonne's Technology Development & Commercialization (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy. Argonne licenses a broad range of cutting-edge technologies to private industry. The TDC team seeks as licensees companies that can manage the requisite financial, research and development, manufacturing, marketing, and management functions necessary to

  16. Argonne National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Argonne National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Argonne National Laboratory (ANL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Argonne National Laboratory 69 Technology Marketing Summaries Category Title and Abstract Laboratories Date Advanced Materials Industrial Technologies Find More

  17. Brookhaven National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Brookhaven National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Brookhaven National Laboratory (BNL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Brookhaven National Laboratory 56 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial Technologies Find More Like This

  18. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2015 objectives and targets. Item 1: The EMSSC recommends creating a list of excess property and posting it on the Laboratory's webpage by April 1, 2015. Such a list will allow staff to view Laboratory assets that are available for free reuse for Laboratory purposes. This target has been met. The Ames Laboratory encompasses all the aspects of the Site Sustainability Plan into the Laboratory's efforts to meet DOE's sustainability goals. See the

  19. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Institutes The National Security Education Center has formed several institutes, each with a partner university or consortia of universities. The formation of these institutes serves the need for LANL to recruit new staff and provide educational opportunities that will enhance retention at the Laboratory. This is accomplished by:  Developing long-term collaborative relationships with universities whose research interests are important to the Laboratory. 

  20. Sandia National Laboratories- Fallon

    Broader source: Energy.gov [DOE]

    The Fallon FORGE team seeks to establish and manage a well characterized and highly instrumented field test site dedicated to advancing EGS research, enabling the broader engineering and science community to accelerate the deployment of EGS. The team is working in partnership with the U.S. Department of Defense to reduce our Nations dependency on fossil fuels and to safeguard the military readiness for the United States. Prior geothermal exploration at the proposed site has identified attractive temperatures but sub-commercial permeabilities have prevented conventional geothermal development in the area. Led by Sandia National Laboratories, the Fallon FORGE team is strongly committed to the underground R&D laboratory and includes: Lawrence Berkeley National Laboratory, U.S. Navy & the U.S. Navy Geothermal Program Office, Ormat Nevada, Inc., U.S. Geological Survey (Menlo Park, California), University of Nevada, Reno (UNR), GeothermEx / Schlumberger, and Itasca Consulting Group, Inc.

  1. Environmental Assessment for Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    SciTech Connect (OSTI)

    N /A

    1997-10-07

    As part of its initiative to fulfill its responsibilities to provide support for the incorporated County of Los Alamos (the County) as an Atomic Energy Community, while simultaneously fulfilling its obligations to enhance the self-sufficiency of the County under authority of the Atomic Energy Community Act of 1955 and the Defense Authorization Act, the U.S. Department of Energy (DOE) proposes to lease undeveloped land in Los Alamos, New Mexico, to the County for private sector use as a research park. The Proposed Action is intended to accelerate economic development activities within the County by creating regional employment opportunities through offering federal land for private sector lease and use. As a result of the proposed land lease, any government expenditures for providing infrastructure to the property would be somewhat supplemented by tenant purchase of Los Alamos National Laboratory (LANL) expertise in research and development activities. The presence of a research park within LANL boundaries is expected to allow private sector tenants of the park to be able to quickly and efficiently call upon LANL scientific expertise and facility and equipment capabilities as part of their own research operations and LANL research personnel, in turn, would be challenged in areas complementary to their federally funded research. In this way a symbiotic relationship would be enjoyed by both parties while simultaneously promoting economic development for the County through new job opportunities at the Research Park and at LANL, new indirect support opportunities for the community at large, and through payment of the basic building space leases. A ''sliding-scale'' approach (DOE 1993) is the basis for the analysis of effects in this Environmental Assessment (EA). That is, certain aspects of the Proposed Action have a greater potential for creating adverse environmental effects than others; therefore, they are discussed in greater detail in this EA than those aspects of the action that have little potential for effect. The Proposed Action would result in an increase of as many as 1,500 new direct jobs and, as many as 2,565 indirect jobs could be created from the development of a research park. Lease of the tract would not reduce the size of LANL or change its site boundary. However, approximately 30 ac (12 ha) of a 60-ac (24-ha) tract would be changed from an undeveloped to a developed status. Under the No Action Alternative, no transfer or lease of Federal lands would occur. LANL would not have the benefit of its research personnel working on a variety of complementary research efforts beyond their federally funded responsibilities. No new jobs would be created from proposed development activities. Undeveloped lands would remain in their current condition. Two hypothetical accidents were analyzed that evaluated a potential chemical release and radiological doses to the public from hypothetical accidents at the proposed Research Park. Neither accident scenario resulted in potentially serious health effects for workers or the public at the proposed Research Park. The cumulative effects of the Proposed Action as well as reasonably foreseeable related actions could result in potential adverse health effects. Environmental effects would be limited to the loss of a small amount of wildlife habitat. Additional economic development would be expected to occur.

  2. EA-1212: Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to lease undeveloped land that is part of the U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico, to...

  3. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  4. Oak Ridge National Laboratory | Department of Energy

    Energy Savers [EERE]

    Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory (ORNL) conducts research and development to create scientific knowledge and solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security. ORNL also performs

  5. Laboratories and Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  6. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  7. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Our research supports and develops technology to provide innovation for a sustainable future, both for our society and the businesses that drive our economy. Our goal is to to improve the efficiency of resource and energy utilization, to minimize our dependence on imported energy and to enhance our national security. In addition, Argonne provides many ways for researchers from academia, industry and other government laboratories to work with our staff and gain access to our facilities

  8. Biofuels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Image Biofuels from Algae: Algae is widely touted as one of the next best sources for fueling the world's energy needs. But one of the greatest challenges in creating biofuels from algae is how to economically extract and isolate fuel-related chemicals from algae. Ames Laboratory researchers are developing nanoscale "sponges" that soak up the oil produced by the algae without killing the algae, thus dramatically reducing production costs. Ethanol from Syngas: Ethanol

  9. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Latest News Louise Lerner March 8, 2016 Women in STEM careers: Breaking down barriers March 7, 2016 Carolyn Phillips February 19, 2016 Mentoring "All staff is mentored to develop their full potential and recognize the value of others." - Rick Stevens, Associate Laboratory Director, Computing, Environment & Life Sciences Argonne is committed to cultivating a climate that promotes meaningful relationships that enable individuals to reach their highest potential in carrying out

  10. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  11. smc1 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smc1 Ames Laboratory Profile Stephanie Choquette Grad Asst-RA Division of Materials Science & Engineering 158 Metals Development Phone Number: 515-294-1602 Email Address: smc1

  12. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Leading the charge in energy storage R&D Argonne National Laboratory is a global leader in the development of advanced energy storage technologies and has a ...

  13. Independent Oversight Inspection, Oak Ridge National Laboratory- October 2008

    Broader source: Energy.gov [DOE]

    Inspection of Nuclear Safety at the Oak Ridge National Laboratory Radiochemical Engineering Development Center, Building 7920

  14. About Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Technology Development and Commercialization (TDC) is a division of the U.S. Department of Energy's (DOE's) Argonne National Laboratory, a leading scientific and engineering center that conducts energy, environmental, national security, and technology research and development. TDC forges productive R&D partnerships and collaborations with government agencies and private-sector companies, including small businesses. It is the gateway into the laboratory for organizations that want to

  15. Development of Green Box sensor module technologies for rail applications

    SciTech Connect (OSTI)

    Rey, D.; Breeding, R.; Hogan, J.; Mitchell, J.; McKeen, R.G.; Brogan, J.

    1996-04-01

    Results of a joint Sandia National Laboratories, University of New Mexico, and New Mexico Engineering Research Institute project to investigate an architecture implementing real-time monitoring and tracking technologies in the railroad industry is presented. The work, supported by the New Mexico State Transportation Authority, examines a family of smart sensor products that can be tailored to the specific needs of the user. The concept uses a strap-on sensor package, designed as a value-added component, integrated into existing industry systems and standards. Advances in sensor microelectronics and digital signal processing permit us to produce a class of smart sensors that interpret raw data and transmit inferred information. As applied to freight trains, the sensors` primary purpose is to minimize operating costs by decreasing losses due to theft, and by reducing the number, severity, and consequence of hazardous materials incidents. The system would be capable of numerous activities including: monitoring cargo integrity, controlling system braking and vehicle acceleration, recognizing component failure conditions, and logging sensor data. A cost-benefit analysis examines the loss of revenue resulting from theft, hazardous materials incidents, and accidents. Customer survey data are combined with the cost benefit analysis and used to guide the product requirements definition for a series of specific applications. A common electrical architecture is developed to support the product line and permit rapid product realization. Results of a concept validation, which used commercial hardware and was conducted on a revenue-generating train, are also reported.

  16. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  17. Jeff Griffin, Ph. D. Associate Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Griffin, Ph. D. Associate Laboratory Director Environmental Stewardship Savannah River National Laboratory DOE-EM Robotics Team Visit to SRNL SRNL-MS-2015-00246 Rev. 0 December 7, 2015 SRNL Development and Adaptation of Technologies for Nuclear Applications 2 SRNL - National Laboratory for Environmental Management Multi-program national laboratory with broad portfolio Key role to translate basic science and technology to deployable and operable solutions * Develop detailed understanding of

  18. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  19. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  20. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 13.0 Document Number: Plan 46300.001 Effective Date: 11/2014

  1. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  2. Development of the front end test stand and vessel for extraction and source plasma analyses negative hydrogen ion sources at the Rutherford Appleton Laboratory

    SciTech Connect (OSTI)

    Lawrie, S. R.; Faircloth, D. C.; Letchford, A. P.; Perkins, M.; Whitehead, M. O.; Wood, T.; Gabor, C.; Back, J.

    2014-02-15

    The ISIS pulsed spallation neutron and muon facility at the Rutherford Appleton Laboratory (RAL) in the UK uses a Penning surface plasma negative hydrogen ion source. Upgrade options for the ISIS accelerator system demand a higher current, lower emittance beam with longer pulse lengths from the injector. The Front End Test Stand is being constructed at RAL to meet the upgrade requirements using a modified ISIS ion source. A new 10% duty cycle 25 kV pulsed extraction power supply has been commissioned and the first meter of 3 MeV radio frequency quadrupole has been delivered. Simultaneously, a Vessel for Extraction and Source Plasma Analyses is under construction in a new laboratory at RAL. The detailed measurements of the plasma and extracted beam characteristics will allow a radical overhaul of the transport optics, potentially yielding a simpler source configuration with greater output and lifetime.

  3. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  4. NREL Evaluates Thermal Performance of Uninsulated Walls to Improve Accuracy of Building Energy Simulation Tools (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers discover ways to increase accuracy in building energy simulations tools to improve predictions of potential energy savings in homes. Uninsulated walls are typical in older U.S. homes where the wall cavities were not insulated during construction or where the insulating material has settled. Researchers at the National Renewable Energy Laboratory (NREL) are investigating ways to more accurately calculate heat transfer through building enclosures to verify the benefit of energy

  5. NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evalu- ated the performance of high sidewall air supply inlets and

  6. NREL Studies Carrier Separation and Transport in Perovskite Solar Cells (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The discovery of a p-n junction in these solar devices may help to advance R&D toward better cell performance. Studies by scientists at the National Renewable Energy Laboratory (NREL) are exploring the detailed physics involved in the operations of perovskite solar cells. These cells have shown increasingly high power conversion efficiencies over the last few years; however, the continued improvement in cell performance requires a deeper understanding of the basic physics and chemistry

  7. NETL Researcher Honored with 2013 Federal Laboratory Consortium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development for his...

  8. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  9. of Energy's Los Alamos National Laboratory and Brookhaven National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produce transparent, light- harvesting material November 3, 2010 Breakthrough could lead to solar-power-generating windows LOS ALAMOS, New Mexico, NOVEMBER 3, 2010-Scientists at the U.S. Department of Energy's Los Alamos National Laboratory and Brookhaven National Laboratory have fabricated transparent thin films capable of absorbing light and generating electric charge over a relatively large area. The material, described in the journal Chemistry of Materials, could be used in development of

  10. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  11. Working with SRNL - Our Facilities- High Pressure Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Pressure Laboratory Working with SRNL Our Facilities - High Pressure Laboratory The High Pressure Laboratory provides a comprehensive test facility providing the annual testing certification of various nuclear material shipping packages and leak testing program development for other DOE sites.

  12. NREL: Resource Assessment and Forecasting - Metrology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrology Laboratory Photo of Solar Radiation Research Laboratory researchers inspecting radiometers mounted to calibration tables at the outside test site. Researchers at the Solar Radiation Research Laboratory use pyranometers, pyrheliometers, pyrgeometers, photometers, and spectroradiometers to provide the solar resource information necessary for renewable energy research and development. Metrology, the science of measurement, is a critical part of providing accurate and repeatable data.

  13. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  14. NREL, CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. A joint effort between the National Renewable Energy Laboratory (NREL) and the Swiss Center for Electronics and Microtechnology (CSEM) has resulted in a novel tandem solar cell that operates at 29.8% conversion efficiency under 1-sun conditions. The new solar cell technology combines NREL's 1.8-eV gallium indium phosphide (GaInP) technology as a top cell and

  15. Readiness Review | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Readiness Review The Ames Laboratory Readiness Review process provides strong support for Integrated Safety Management. Readiness Review is begun during initial project planning and the scoping and allocation of resources. Line management utilizes tools such as an Activity ES&H Hazard Identification Checklist, developed by the Laboratory's Safety Review Committee, to analyze and document the identification of hazards. Safety representatives and coordinators receive Hazard Identification

  16. WIST Brochure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIST Brochure Argonne's Women in Science and Technology (WIST) program was created in 1990 to recruit, retain, and promote women in an effort to diversify and strengthen the Laboratory's scientific workforce. The program aims to promote the success of women in scientific and technical positions at Argonne, and outside as well. Through WIST, the Laboratory strives to encourage and develop the full potential of women in science and technology. PDF icon WIST_Brochure

  17. Idaho National Laboratory April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho National Laboratory April 24, 2015 CCN 235661 Mr. Jeffrey C. Fogg DOE-ID Contracting Officer U.S. Department of Energy Idaho Operations Office (DOE-ID) 1955 Fremont Avenue Idaho Falls, ID 83415-1221 SUBJECT: Contract No. DE-ACO7-051D14517 - Battelle Energy Alliance, LLC Response to Department of Energy, Idaho Operations Office Request for Information to Support Supplement Analysis of Proposed Commercial Fuel Research and Development Efforts Reference: J. C. Fogg letter to D. M. Storms,

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issue 1 * June 2014 RESEARCH QUARTERLY Th 90 Ac 89 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 Collaboration is a hallmark of actinide research and is a thread that runs through the five articles in this issue of the ARQ. The cover story is on the new Advanced Simulation Capacity for Environmental Management (ASCEM) program of the US Department of Energy. ASCEM is a multi- laboratory effort joining actinide, environmental, and computing sciences to develop a

  19. Idaho National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Idaho National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Idaho National Laboratory (INL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Idaho National Laboratory 36 Technology Marketing Summaries Category Title and Abstract Laboratories Date Vehicles and Fuels Find More Like This Cermet Materials,

  20. Independent Oversight Inspection, Oak Ridge National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    8 Inspection of Nuclear Safety at the Oak Ridge National Laboratory Radiochemical Engineering Development Center, Building 7920 This report provides the results of an inspection of...

  1. Plant Metabolic Imaging | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Metabolic Imaging The Ames Laboratory has developed state-of-the-art processes for imaging plant metabolites. Identifying and understanding plant chemicals will lead to the...

  2. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  3. DOE National Laboratory Releases Annual Accomplishments Report

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory has released its annual accomplishments report, highlighting breakthroughs in research and technology development to address the nation's energy, economic, and environmental challenges.

  4. Princeton Plasma Physics Laboratory Honors Three Researchers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory Honors Three Researchers March 12, 2012 Tweet Widget ... the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. ...

  5. HID Laboratories Inc | Open Energy Information

    Open Energy Info (EERE)

    Park, California Zip: 94025 Product: HID Laboratories develops commercial-grade, high intensity lighting products that manage lighting demand and reduce energy use. References:...

  6. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove

  7. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  8. CASL - Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Los Alamos, NM A world-class, multi-disciplinary research and development institution focused on national security missions, Los Alamos brings to CASL particular strengths in computational and material sciences. Fission and fusion energy Advanced materials Nuclear radiation technologies Science policy Key Contributions Materials science and multiscale leadership Models and numerical methods leadership Advanced computational architectures Advanced code development

  9. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our institution...

  10. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  11. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  12. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request...

  13. ARM - Laboratory Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OrganizationLaboratory Partners Laboratory Partners Nine DOE national laboratories share the responsibility of managing and operating the ARM Climate Research Facility. ARM Group Links Science Board SISC Charter Data Archive Data Management Facility Data Quality Program Engineering Support External Data Center Laboratory Partners Nine DOE national laboratories share the responsibility of managing and operating the ARM Climate Research Facility. This unique partnership supports the DOE mission to

  14. National Laboratories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories Name Address City, State Ames Laboratory Ames Laboratory Ames, IA Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL Brookhaven National...

  15. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  16. Advanced Energy Design Guides Slash Energy Use in Schools and Retail Buildings by 50% (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Results Achievement NREL's Commercial Buildings Group executed advanced energy modeling simulations and optimized the design of schools and retail buildings to develop recommendations that result in 50% energy savings over code. NREL developed the simulation tools and led the committee that produced the guides. Key Result The Advanced Energy Design Guides, based on the work of NREL's researchers, provide owners, contractors, engineers, and architects user-friendly, how-to guidance by

  17. New Version of BEopt Software Provides Analysis Capabilities for Existing Homes (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers enhanced this building energy optimization tool to analyze existing homes and identify upgrade packages that achieve specified energy efficiency levels at the lowest possible cost. A new version of NREL's Building Energy Optimization (BEopt) software has been developed with significantly expanded capabilities to analyze energy efficiency upgrades for existing homes. Like the original BEopt software-developed for analysis of new construction homes targeting zero net energy-the new

  18. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  19. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  20. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  1. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  2. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  3. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  4. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  5. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  6. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  7. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  8. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  9. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  10. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  11. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2016 Princeton Plasma Physics Laboratory. A ...

  12. aeschoff | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aeschoff Ames Laboratory Profile Adare Schoff Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: aeschoff

  13. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  14. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  15. islowing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    islowing Ames Laboratory Profile Igor Slowing Assoc Scientist Chemical & Biological Sciences 2756 Gilman Phone Number: 515-294-1959 Email Address: islowing@iastate.edu Ames Laboratory Associate Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Nanorefinery Education: Ph.D., Iowa State University, 2003-2008 Licenciate in Chemistry, San Carlos University, Guatemala, 1988-1995 Professional Appointments: Staff Scientist, Ames Laboratory,

  16. levin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levin Ames Laboratory Profile Evgenii Levin Scientist I Division of Materials Science & Engineering 107 Spedding Phone Number: 515-294-6093 Email Address: levin@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Professional Appointments: Scientist I & Adj. Associate Professor, Ames Laboratory U.S. DOE, and Department of Physics and Astronomy, Iowa State University, 2010- present Associate Scientist & Lecturer, Ames Laboratory

  17. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Peter B. Littlewood Peter B. Littlewood, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Peter B. Littlewood is the Director of Argonne National Laboratory, one of the nation's largest science and engineering research

  18. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  19. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    DOE Tribal Energy Program Review Roger Taylor Manger State, Local & Tribal Integrated Application Group National Renewable Energy Laboratory November 5-8, 2007 Major DOE National Laboratories Brookhaven Brookhaven Pacific Northwest Pacific Northwest Lawrence Berkeley Lawrence Berkeley Lawrence Livermore Lawrence Livermore h h h h h INEL INEL National Renewable National Renewable Energy Laboratory Energy Laboratory Los Alamos Los Alamos Sandia Sandia Argonne Argonne Oak Ridge Oak Ridge

  20. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a wide range of mechanical systems and vehicle cooling applications. Understanding how materials behave when subjected to anticipated thermal conditions is critical to increasing their performance range and longevity. Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat transfer fluids Characterize heat transfer fluids Test convection-related heat transfer Test boiling heat

  1. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet lab is located in Rm 109 of the Far Experimental Hall near the MEC, CXI, and XCS hutches. It conveniently serves all LCLS hutches and is available for final stage sample preparation. Due to space limitations, certain types of activities may be restricted and all access must be scheduled in advance. User lab bench

  2. DEP COOP Web | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website Content Developer CO-OP Argonne National Laboratory's Education Department is looking for a part-time website content developer (CO-OP Student) starting Summer 2015. This...

  3. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  4. Car Competition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Learning Experiences School Competitions Middle School Science Bowl Middle School Electric Car Competition High School Rube

  5. Catalysis Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Research Areas Facilities and Equipment Intellectual Property Publications Staff Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Research Areas Facilities and Equipment Intellectual Property

  6. Community Outreach | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Experiences School Competitions Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Hour of Code Introduce a Girl to Engineering Science Careers in Search of Women

  7. Cooperative Education | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooperative Education Frequently Asked Questions Program Openings National School on Neutron and X-ray Scattering Givens Summer Associate Program Summer Strategic Trade Control Program Next Generation Safeguards Initiative Summer Internship Program Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty

  8. Standard Hydrogen Test Protocols for the NREL Sensor Testing Laboratory (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Test Protocols for the NREL Sensor Testing Laboratory December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Photo by Robert Burgess, NREL/PIX 18420 0 1 Standard Test Protocols for the NREL Hydrogen Sensor Test Laboratory Researchers at the NREL Hydrogen Safety Sensor Test Laboratory 1 developed a variety of test protocols to quantitatively assess critical

  9. National Renewable Energy Laboratory (NREL) Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About Us » Business Operations » Golden Field Office » Golden Field Office Reading Room » National Renewable Energy Laboratory (NREL) Documents National Renewable Energy Laboratory (NREL) Documents The National Renewable Energy Laboratory (NREL), located in Golden, Colorado, is the United States' primary laboratory for renewable energy and energy efficiency research and development. NREL is the only federal laboratory dedicated to the research, development, commercialization, and

  10. NREL Launches Collaborative Resource for Field Test Best Practices (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic portal documents and shares state-of-the-art residential field test tools and techniques. Field testing is a science and an art-a tricky process that develops through a lot of trial and error. Researchers in the Advanced Residential Buildings group at the National Renewable Energy Labora- tory (NREL) regularly conduct field experiments and long-term monitoring in occupied and unoc- cupied houses throughout the United States. The goal is to capture real-world performance of energy-

  11. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods developed at NREL disclose the impact of ethanol on gasoline blend heat of vaporization with potential for improved efficiency of spark-ignition engines. More stringent standards for fuel economy, regulation of greenhouse gas emissions, and the mandated increase in the use of renew- able fuel are driving research to improve the efficiency of spark ignition engines. When fuel properties such as octane number and evaporative cooling (heat of vaporization or HOV) are insufficient, they

  12. High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A new, less toxic, NREL-developed deacetylation and mechanical refining (DMR) process achieves unexpectedly high sugar titers and yields for fermentation into advanced biofuels and chemicals. Reducing biomass resistance to deconstruction of its biopolymers to fermentable and catalyti- cally upgradeable sugars and lignin monomers with various thermal, chemical, and mechanical treatments has been a focus of intense research for the past century. However, most of the pretreatment methods utilize

  13. Savannah River National Laboratory Homepage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image1 image2 image3 image4 image1 1 image2 2 image3 3 image4 4 News from SRNL 03.07.16 Dr. Ralph James Joins SRNL as New Associate Laboratory Director 03.07.16 SRS Begins Cleanup of Building Used to Produce Fuel for Space Program Click here for additional SRNL News Releases Videos from SRNL 11.02.15 SRNL Laboratory Directed Research & Development 09.24.15 SRNL Interns & Postdocs Click here for additional SRNL Video Releases Events at SRNL DOE-EM Robotics Team Meeting, Dec. 7-10, 2015

  14. Joshua Bergerson | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joshua Bergerson Postdoctoral Researcher & President, Postdoctoral Society of Argonne Personal Statement/Research Interests Joshua Bergerson is currently a Postdoctoral Appointee in Energy Systems at Argonne National Laboratory. His research has focused on agent-based modeling, working on the Argonne-developed Commercial Building Agent Model (CoBAM), a program developed to obtain marketplace adoption rates and energy savings potential of various energy efficiency technologies. Dr.

  15. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  16. Laboratory Equipment Donation Program - About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department of Energy (DOE) to grant surplus and available used energy-related laboratory equipment to universities and colleges in the United States for use in energy oriented educational programs. This grant program is sponsored by the Office of Workforce Development for Teachers and Scientists (WDTS). The listing of equipment

  17. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Us / Our Locations / Sandia National Laboratories Sandia National Laboratories NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, NM; Livermore, CA; Kauai, HI; and Tonopah, NV. The labs are operated by Sandia Corporation. Visit our website Z-Machine Related News NNSA labs and

  18. Round-Robin Verification and Final Development of the IEC 62788-1-5 Encapsulation Size Change Test; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Bokria, J.; Gu, X.; Honeker, C.; Murua, N.; Nickel, N.; Sakurai, K.; Shioda, T.; Tamizhmani, G.; Wang, E.; Yang, S.; Yoshihara, T.

    2015-02-23

    Polymeric encapsulation materials may a change size when processed at typical module lamination temperatures. The relief of residual strain, trapped during the manufacture of encapsulation sheet, can affect module performance and reliability. For example, displaced cells and interconnects threaten: cell fracture; broken interconnects (open circuits and ground faults); delamination at interfaces; and void formation. A standardized test for the characterization of change in linear dimensions of encapsulation sheet has been developed and verified. The IEC 62788-1-5 standard quantifies the maximum change in linear dimensions that may occur to allow for process control of size change. Developments incorporated into the Committee Draft (CD) of the standard as well as the assessment of the repeatability and reproducibility of the test method are described here. No pass/fail criteria are given in the standard, rather a repeatable protocol to quantify the change in dimension is provided to aid those working with encapsulation. The round-robin experiment described here identified that the repeatability and reproducibility of measurements is on the order of 1%. Recent refinements to the test procedure to improve repeatability and reproducibility include: the use of a convection oven to improve the thermal equilibration time constant and its uniformity; well-defined measurement locations reduce the effects of sampling size -and location- relative to the specimen edges; a standardized sand substrate may be readily obtained to reduce friction that would otherwise complicate the results; specimen sampling is defined, so that material is examined at known sites across the width and length of rolls; and encapsulation should be examined at the manufacturers recommended processing temperature, except when a cross-linking reaction may limit the size change. EVA, for example, should be examined 100 C, between its melt transition (occurring up to 80 C) and the onset of cross-linking (often at 100 C).

  19. Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

    2006-09-01

    Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsins 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800C.

  20. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  1. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design ...

  2. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

  3. Visa Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    must be processed in iStart, the Ames Laboratory host must contact Ames Laboratory Human Resources to process this request. Ames Laboratory Human Resources will work with...

  4. Smart Power Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Smart Power Laboratory at the Energy Systems Integration Facility. Research at NREL's Smart Power Laboratory in the Energy Systems Integration Facility (ESIF) focuses on the development and integration of smart technologies including the integration of distributed and renewable energy resources through power electronics and smart energy management for building applications. The 5,300 sq. ft. laboratory is designed to be highly flexible and configurable, essential for a large variety of smart power applications that range from developing advanced inverters and power converters to testing residential and commercial scale meters and control technologies. Some application scenarios are: (1) Development of power converters for integration of distributed and renewable energy resources; (2) Development of advanced controls for smart power electronics; (3) Testing prototype and commercially available power converters for electrical interconnection and performance, advanced functionality, long duration reliability and safety; and (4) Hardware-in-loop development and testing of power electronics systems in smart distribution grid models.

  5. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  6. Workshops | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops September 17-18, 2015 Argonne National Laboratory and the Interdisciplinary Consortium for Research and Education and Access in Science and Engineering (INCREASE) Argonne National Laboratory The goal of this partnership was to increase the participation in and diversity of the user base at Argonne's scientific user facilities by providing awareness of tools freely available at national laboratories. Within tailored conversations about writing competitive proposals, INCREASE members and

  7. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McMillan to lead Los Alamos National Laboratory's Weapons Program July 28, 2009 Los Alamos, New Mexico, July 28, 2009- Charles McMillan has been appointed the new principal associate director for Weapons Programs at Los Alamos National Laboratory. McMillan succeeds Glenn Mara, who recently retired. McMillan has been the Laboratory's associate director for weapons physics. In his new capacity, he will provide oversight and direction for the nuclear weapons program at Los Alamos to accomplish the

  8. jevans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jevans Ames Laboratory Profile James Evans Associate Chemical & Biological Sciences 505 Zaffarano Phone Number: 515-294-1638 Email Address: evans@ameslab.gov Ames Laboratory Associate and Professor, Iowa State University Website(s): Evans Research Group Ames Laboratory Research Projects: Chemical Physics Theoretical/Computational Tools for Energy-Relevant Catalysis Education: Postdoctoral Fellow, Chemical Physics, Iowa State University, 1979-81 Ph.D. Mathematical Physics, University of

  9. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwang Ames Laboratory Profile Jigang Wang Associate Division of Materials Science & Engineering B15 Spedding Phone Number: 515-294-2964 Email Address: jgwang@iastate.edu Ames Laboratory Research Projects: Metamaterials Education: Ph.D. Electrical Engineering, Rice University, Houston, TX, 2005 M.S. Electrical Engineering, Rice University, Houston, TX, 2002 B.S. Physics, Jilin University, Changchun, P. R. China, 2000 Professional Appointments: Associate Scientist, Ames Laboratory, Iowa State

  10. makinc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    makinc Ames Laboratory Profile Mufit Akinc Associate Division of Materials Science & Engineering 2220C Hoover Phone Number: 515-294-0738 Email Address: makinc@iastate.edu Ames Laboratory Associate and Professor, Iowa State University Ames Laboratory Research Projects: Bioinspired Materials Education: Post-doc Materials Sciences, Argonne National Lab., Argonne, IL, 1977 Ph.D. Ceramic Engineering, Iowa State University, Ames IA, 1977 M.S. Chemistry, Middle East Technical University, Ankara,

  11. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mark Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-0452 Email Address: mark@si.msg.chem.iastate.edu Ames Laboratory Associate and Distinguished Professor, Iowa State University Website(s): Mark Gordon's Quantum Theory Group Ames Laboratory Research Projects: Chemical Physics Theoretical/Computational Tools for Energy-Relevant Catalysis Education: Postdoctoral Associate, Iowa State University, 1967-1970 Ph.D. Carnegie-Mellon

  12. sadow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sadow Ames Laboratory Profile Aaron Sadow Assoc Prof Chemical & Biological Sciences 2101B Hach Phone Number: 515-294-8069 Email Address: sadow@iastate.edu Scientist, Ames Laboratory and Associate Professor, Iowa State University Website(s): Sadow's Group Page Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Education: Postdoctoral Associate, Swiss Federal Institute of Technology (ETH), 2003-2005 PhD., University of California, Berkeley,

  13. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab announces 2008 Fellows Laboratory announces 2008 Fellows Robert C. Albers, Paul A. Johnson and Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in

  14. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchases nearly $1 billion in goods and services last fiscal year December 6, 2010 Surpasses goals for small business procurements LOS ALAMOS, New Mexico, December 6, 2010-Los Alamos National Laboratory purchased nearly $1 billion in goods and services in the 2010 fiscal year ending September 30, 2010. The $925 million in purchases was helped in part by funding from the American Reinvestment and Recovery Act the Laboratory received for environmental remediation and basic research.The Laboratory

  16. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  17. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timothy Hackett and Kathryn White are the SULI students for spring semester 2016. Ames Laboratory's fall Science Undergraduate Laboratory Internship (SULI) students began their program with the start of fall semester Aug. 24. The students are, left to right, Kathryn White, Shannon Goes, Kaiser Aguirre, and Adam Dziulko. Department of Energy Deputy Secretary Elizabeth Sherwood-Randall poses with SULI and CCI students who participated in a roundtable discussion during her visit to Ames Laboratory

  18. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    8 Annual Review Roger Taylor November 17, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future Major DOE National Laboratories Brookhaven Pacific Northwest Lawrence Berkeley Lawrence Livermore          INEL National Renewable Energy Laboratory Los Alamos Sandia Argonne Oak Ridge   Defense Program Labs  Office of Science Labs  Energy Efficiency and Renewable Energy Lab  Environmental Management Lab  Fossil Energy Lab NETL 

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  20. Sustainability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability "Much of Argonne's cutting-edge research is dedicated to discovery and ... Argonne's Sustainability and Environmental Program embodies the laboratory's commitment to ...

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  2. ackerman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ackerman Ames Laboratory Profile David Ackerman Associate Chemical & Biological Sciences 2025 Black Engineering Phone Number: 515-294-1638 Email Address: ackerman...

  3. carraher | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carraher Ames Laboratory Profile Jack Carraher Postdoc Res Associate Chemical & Biological Sciences 2118 BRL Phone Number: 515-294-5826 Email Address: carraher@iastate.edu...

  4. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andresg Ames Laboratory Profile Andres Garcia Grad Asst-RA Chemical & Biological Sciences 307 Wilhelm Phone Number: 515-294-6027 Email Address: andresg

  5. angiemcg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angiemcg Ames Laboratory Profile Angela Mcguigan Secretary II Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: angiemcg

  6. ashheath | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashheath Ames Laboratory Profile Ashley Heath Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: ashheath

  7. bartine | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bartine Ames Laboratory Profile Jeffrey Bartine Program Coord III Environmental, Safety, Health, and Assurance G40 TASF Phone Number: 515-294-4743 Email Address: bartine

  8. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bastaw Ames Laboratory Profile Ashraf Bastawros Associate Chemical & Biological Sciences 2347 Howe Phone Number: 515-294-3039 Email Address: bastaw

  9. bbergman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bbergman Ames Laboratory Profile Brian Bergman Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: bbergman@ameslab.gov

  10. bboote | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bboote Ames Laboratory Profile Brett Boote Grad Asst-RA Chemical & Biological Sciences 712 Gilman Phone Number: 515-294-8586 Email Address: bboote@iastate.edu

  11. boehmer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boehmer Ames Laboratory Profile Anna Boehmer Postdoc Res Associate Division of Materials Science & Engineering A15 Zaffarano Phone Number: 515-294-3246 Email Address: boehmer

  12. boersma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boersma Ames Laboratory Profile Stephanie Boersma Budget Analyst V Budget Office 231 TASF Phone Number: 515-294-8785 Email Address: boersma

  13. bondarenko | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bondarenko Ames Laboratory Profile Volodymyr Bondarenko Division of Materials Science & Engineering 219 Zaffarano Phone Number: 515-294-4072 Email Address: bondarenko

  14. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbenetti Ames Laboratory Profile Caleb Benetti Student Associate Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: cbenetti

  15. ccelania | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccelania Ames Laboratory Profile Christopher Celania Grad Asst-TA/RA Division of Materials Science & Engineering 260 Spedding Phone Number: 515-294-3630 Email Address: ccelania

  16. chenx | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chenx Ames Laboratory Profile Xiang Chen Division of Materials Science & Engineering 249 Spedding Phone Number: 515-294-4446 Email Address: chenx

  17. cmcarlin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cmcarlin Ames Laboratory Profile Caleb Carlin Student Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-4604 Email Address: cmcarlin@iastate.edu

  18. dbaldwin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dbaldwin Ames Laboratory Profile David Baldwin Director II Chemical & Biological Sciences 130 Spedding Phone Number: 515-294-2069 Email Address: dbaldwin

  19. dballal | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dballal Ames Laboratory Profile Deepti Ballal Division of Materials Science & Engineering 112 Wilhelm Phone Number: 515-294-9636 Email Address: dballal

  20. djchadde | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djchadde Ames Laboratory Profile David Chadderdon Grad Asst-RA Division of Materials Science & Engineering 2140 BRL Phone Number: 515-294-4446 Email Address: djchadde