Powered by Deep Web Technologies
Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Microcrack technology. Progress report, 1 October 1978--31 March 1979 |  

Open Energy Info (EERE)

Microcrack technology. Progress report, 1 October 1978--31 March 1979 Microcrack technology. Progress report, 1 October 1978--31 March 1979 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Microcrack technology. Progress report, 1 October 1978--31 March 1979 Details Activities (2) Areas (2) Regions (0) Abstract: The microcracks were observed in core samples from Coso and Raft River Geothermal Areas. A set of observable characteristics of microcracks were discovered in racks from geothermal regions that appears to be unique and to have considerable potential for exploration for geothermal regions. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. Author(s): Simmons, G.; Batzle, M. L.; Shirey, S.

2

Microcrack technology. Progress report, 1 October 1978--31 March 1979  

DOE Green Energy (OSTI)

The microcracks were observed in core samples from Coso and Raft River Geothermal Areas. A set of observable characteristics of microcracks were discovered in racks from geothermal regions that appears to be unique and to have considerable potential for exploration for geothermal regions. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. (MHR)

Simmons, G.; Batzle, M.L.; Shirey, S.

1979-04-01T23:59:59.000Z

3

Microcrack technology. Progress report, 1 April 1979-29 February 1980  

SciTech Connect

Microcracks in samples of core from a 3000-foot hole in the Conway granite, near North Conway, New Hampshire, are abundant and most of them are sealed with siderite, chlorite, quartz, hematite, clay, or microbreccia. The sealed cracks are 1 to 100..mu.. wide, intersect many grain boundaries, often coincide with grain boundaries, and both intersect and contain minerals that are normally rich in U and Th. The abundances of U and Th in 100-gm-bulk samples range from 0.1 to 30 ppM and from 6 to 100 ppM, respectively. The working hypothesis that U and Th have migrated through the microcracks in CO/sub 2/-rich waters is proposed. In the Redstone Quarry core, the presently open microcracks are preferentially oriented; most open cracks have horizontal surfaces. Samples of Devonian shales have been obtained for the purpose of examining microcracks in relation to the production of natural gas. The problems of sample preparation for fissile shale have been largely solved. Samples from the NTS have been prepared for the examination of microcracks in relation to possible disposal sites for radioactive waste.

Simmons, G.; Caruso, L.; Padovani, E.

1980-03-01T23:59:59.000Z

4

Fuel Cell Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Reports to someone by E-mail Share Fuel Cell Technologies Office: Annual Progress Reports on Facebook Tweet about Fuel Cell Technologies Office: Annual Progress Reports on...

5

Vehicle Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Reports Annual Progress Reports to someone by E-mail Share Vehicle Technologies Office: Annual Progress Reports on Facebook Tweet about Vehicle Technologies Office: Annual Progress Reports on Twitter Bookmark Vehicle Technologies Office: Annual Progress Reports on Google Bookmark Vehicle Technologies Office: Annual Progress Reports on Delicious Rank Vehicle Technologies Office: Annual Progress Reports on Digg Find More places to share Vehicle Technologies Office: Annual Progress Reports on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports Success Stories Conferences Proceedings Newsletters Analysis Software Tools Awards & Patents Glossary Annual Progress Reports 2013 DOE Vehicle Technologies Office Annual Merit Review

6

Navigation drilling technology progresses  

SciTech Connect

This article reports that navigation drilling - an approach that combines advanced drill bit, downhole motor, measurement-while-drilling, and well planning technology into an integrated, steerable drilling system - has reduced drilling time for operating companies worldwide. A major operating advantage of navigation drilling is the ability to drill both straight and directional intervals with a single assembly. In conventional directional drilling, a bent sub and downhole motor (or a bent housing motor) are used to initiate kick-offs and make course corrections. The bent sub is made-up above the motor, tilting the motor's axis 1 to 3 degrees compared to the axis of the drill string. The assembly toolface can be aligned in the desired direction with a single-shot, a steering tool or an MWD system.

Bayne, R.

1986-11-01T23:59:59.000Z

7

Tracking Clean Energy Progress Energy Technology Perspectives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Perspectives 2012 excerpt as IEA input to the Clean Energy Ministerial Tracking Clean Energy Progress Energy Technology Perspectives 2012 Pathways to a Clean Energy...

8

Vehicle Technologies Office: FY 2005 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on

9

Vehicle Technologies Office: FY 2006 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Progress Report 6 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on

10

2010 Annual Progress Report for Fuels Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

annual progress report 2010 Fuels Technologies i FY 2010 Progress Report Fuels Technologies Approved by Kevin Stork Team Leader, Fuels Technologies Vehicle Technologies Program FY 2010 Progress rePort For Fuels technologies Energy Efficiency and Renewable Energy Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 February 2011 DOE-FT-2010AR ii Fuels Technologies FY 2010 Progress Report Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the

11

FY 2005 Progress Report for Fuels Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Report Progress rePort for fuels technologies Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2005 Progress Report for Fuels Technologies Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen January 2006 Fuels Technologies FY 2005 Progress Report Contents I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 II Fuels and Lubricants to Enable High Efficiency Engine Operation while Meeting 2007 - 2010 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

12

Vehicle Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Reports Annual Progress Reports 2013 DOE Vehicle Technologies Office Annual Merit Review 2012 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Fuel & Lubricant Technologies Lightweight Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2011 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Lightweighting Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2010 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors

13

Progress in parabolic dish technology  

DOE Green Energy (OSTI)

This report describes the current status of parabolic dish technology. Its purpose is to communicate the principal outcomes of DOE's parabolic dish technology RandD efforts carried out at the Solar Energy Research Institute; Sandia National Laboratory, Albuquerque; the Jet Propulsion Laboratory; and other DOE national laboratories. It is written for those in industry, academia, and government who have a special interest in solar thermal systems that use parabolic dishes as collectors. The evolution of parabolic technology is described, and examples of projects in operation and under construction are included. Solar thermal dish technology can supply either electric or thermal energy to various applications over a broad range of system sizes and temperatures. These solar energy systems will be available by the time this country needs additional electric generation capacity -- in the mid to late 1990s -- at costs competitive with other energy sources. 9 refs., 54 figs., 6 tabs.

Stine, W.B.

1989-06-01T23:59:59.000Z

14

Characterization of wind technology progress  

SciTech Connect

US DOE`s Wind Energy Program, NREL, and Sandia periodically re-evaluate the state of wind technology. Since 1995 marked the conclusion of a number of DOE-supported advanced turbine design efforts, and results from the next major round of research are expected near the latter part of the century, this paper discusses future trends for domestic wind farm applications (bulk power), incorporating recent turbine research efforts under different market assumptions from previous DOE estimates. Updated cost/performance projections are presented along with underlying assumptions and discussions of potential alternative wind turbine design paths. Issues on market valuation of wind technology in a restructured electricity market are also discussed.

Cadogan, J B [USDOE, Washington, DC (United States); Parsons, B [National Renewable Energy Lab., Golden, CO (United States); Cohen, J M; Johnson, B L [Princeton Economic Research, Inc., Rockville, MD (United States)

1996-07-01T23:59:59.000Z

15

Vehicle Technologies Office: FY 2005 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on AddThis.com...

16

Vehicle Technologies Office: FY 2003 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on AddThis.com...

17

Vehicle Technologies Office: FY 2006 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Progress Report 6 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on AddThis.com...

18

Fuel Cell Technologies Office: Accomplishments and Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments and Progress Accomplishments and Progress The U.S. Department of Energy's (DOE's) efforts have greatly advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming many of the key challenges to widespread commercialization. DOE has also made major advances by demonstrating and validating the technologies under real-world conditions, supporting early markets through Recovery Act deployments, and leveraging domestic and international partnerships to advance the pace of commercialization. See the Fuel Cell Technologies Office's accomplishments fact sheet. Reducing the Cost and Improving the Durability and Performance of Fuel Cells Chart showing the cost of the automotive fuel cell system, which is projected to a high-volume manufacturing of 500,000 units per year. In 2002, the cost of the automotive fuel cell system (including balance of plant and stack) was $275/kW. The cost decreased to $108/kW in 2006, to $94/kW in 2007, to $73/kW in 2008, $61/kW in 2009, to $51/kW in 2010, and to $49/kW in 2011. The target cost for 2017 is $30/kW.

19

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

20

Vehicle Technologies Office: FY 2004 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

22

Vehicle Technologies Office: FY 2005 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on

23

Vehicle Technologies Office: FY 2004 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Advanced Combustion Engine Research and Development to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Digg Find More places to share Vehicle Technologies Office: FY 2004

24

Fuel Cell Technologies Office: Accomplishments and Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies starts at about 2 before 2000 and gradually increases to 33 in 2012. DOE funding has led to 363 patents, 35 commercial technologies, and >65 emerging technologies....

25

IEA: Tracking Clean Energy Progress: Energy Technology Perspectives 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IEA: Tracking Clean Energy Progress: Energy Technology Perspectives IEA: Tracking Clean Energy Progress: Energy Technology Perspectives 2012 IEA: Tracking Clean Energy Progress: Energy Technology Perspectives 2012 This report, released by International Energy Agency at the third Clean Energy Ministerial in London, measures progress in the global development and deployment of energy-efficient and clean energy technologies in the industry, building, power generation, and transport sectors. The report also analyzes each technology's chances of achieving the Energy Technology Perspectives 2012 2°C objectives -which outline how each technology can make a difference in limiting global temperature rise to 2°C above preindustrial levels - by 2050; identifies barriers and enablers to the technology's increased deployment; and, provides specific recommendations

26

IEA: Tracking Clean Energy Progress: Energy Technology Perspectives 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IEA: Tracking Clean Energy Progress: Energy Technology Perspectives IEA: Tracking Clean Energy Progress: Energy Technology Perspectives 2012 IEA: Tracking Clean Energy Progress: Energy Technology Perspectives 2012 This report, released by International Energy Agency at the third Clean Energy Ministerial in London, measures progress in the global development and deployment of energy-efficient and clean energy technologies in the industry, building, power generation, and transport sectors. The report also analyzes each technology's chances of achieving the Energy Technology Perspectives 2012 2°C objectives -which outline how each technology can make a difference in limiting global temperature rise to 2°C above preindustrial levels - by 2050; identifies barriers and enablers to the technology's increased deployment; and, provides specific recommendations

27

FY 2012 Progress Report for Fuel & Lubricant Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

911 911 Fuels & Lubricant Technologies VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2012 PROGRESS REPORT FOR FUEL & LUBRICANT TECHNOLOGIES Energy Efficiency and Renewable Energy Vehicle Technologies Office Approved by Kevin Stork Team Leader, Fuel & Lubricant Technologies Vehicle Technologies Office June 2013 DOE/EE-0911 Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report.

28

RECOVERY ACT: MULTIMODAL IMAGING FOR SOLAR CELL MICROCRACK DETECTION  

DOE Green Energy (OSTI)

Undetected microcracks in solar cells are a principal cause of failure in service due to subsequent weather exposure, mechanical flexing or diurnal temperature cycles. Existing methods have not been able to detect cracks early enough in the production cycle to prevent inadvertent shipment to customers. This program, sponsored under the DOE Photovoltaic Supply Chain and Cross-Cutting Technologies program, studied the feasibility of quantifying surface micro-discontinuities by use of a novel technique, thermoreflectance imaging, to detect surface temperature gradients with very high spatial resolution, in combination with a suite of conventional imaging methods such as electroluminescence. The project carried out laboratory tests together with computational image analyses using sample solar cells with known defects supplied by industry sources or DOE National Labs. Quantitative comparisons between the effectiveness of the new technique and conventional methods were determined in terms of the smallest detectable crack. Also the robustness of the new technique for reliable microcrack detection was determined at various stages of processing such as before and after antireflectance treatments. An overall assessment is that the new technique compares favorably with existing methods such as lock-in thermography or ultrasonics. The project was 100% completed in Sept, 2010. A detailed report of key findings from this program was published as: Q.Zhou, X.Hu, K.Al-Hemyari, K.McCarthy, L.Domash and J.Hudgings, High spatial resolution characterization of silicon solar cells using thermoreflectance imaging, J. Appl. Phys, 110, 053108 (2011).

Janice Hudgings; Lawrence Domash

2012-02-08T23:59:59.000Z

29

Reactor technology. Progress report, January-March 1980  

Science Conference Proceedings (OSTI)

Progress is reported concerning space reactor (SPAR) electric power supply; GCFR reactor safety experiments; structural analysis of HTGR, PWR, and BWR containment vessels and pressure vessels; heat pipe technology development; and nuclear criticality experiments and safety.

Breslow, M.; Sullivan, S. (eds.)

1980-06-01T23:59:59.000Z

30

Microsoft PowerPoint - Progress in Battery Swapping Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress&127;in&127;Battery&127;Swapping&127; Technology&127;and&127;Demonstration&127;in&127;China Jianfeng Hua Email: huajf@tsinghua.edu.cn Tel: 010-62789570 2 Outline Background Battery Swapping Demonstration...

31

Progress in Developing and Extending RM Heterogeneous Integration Technologies  

E-Print Network (OSTI)

This paper describes recent progress in a continuing program to develop and apply RM (recess mounting with monolithic metallization) technologies for heterogeneous integration. Particular emphasis is placed on the APB ...

Fonstad, Clifton G. Jr.

32

LFCM vitrification technology: Quarterly progress report, July-September 1987  

SciTech Connect

This report describes the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the fourth quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, canister filling and handling systems, and process/product modeling and control.

Brouns, R.A.; Allen, C.R.; Powell, J.A. (comps.); Bates, S.O.; Bray, L.A.; Budden, M.J.; Dierks, R.D.; Elliott, M.L.; Elmore, M.R.; Faletti, D.W.; Farnsworth, R.K.; Holton, L.K. Jr.; Kuhn, W.L.; Mellinger, G.B.; Nakaoka, R.K.; Peterson, M.E.; Piepel, G.F.; Powell, J.A.; Pulsipher, B.A.; Reimus, M.A.H.; Surma, J.E.; Wiemers, K.D.

1988-09-01T23:59:59.000Z

33

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

34

Office of Industrial Technologies research in progress  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

Not Available

1993-05-01T23:59:59.000Z

35

Accelerator Technology Division progress report, FY 1992  

SciTech Connect

This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-07-01T23:59:59.000Z

36

Accelerator Technology Division progress report, FY 1993  

Science Conference Proceedings (OSTI)

This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-12-31T23:59:59.000Z

37

Energy technology progress for sustainable development  

SciTech Connect

Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

Arvizu, D.E.; Drennen, T.E.

1997-03-01T23:59:59.000Z

38

DOE NHI: Progress in Nuclear Connection Technologies  

DOE Green Energy (OSTI)

The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

Steven R. Sherman

2007-06-01T23:59:59.000Z

39

Advanced evaporator technology progress report FY 1992  

SciTech Connect

This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

1995-01-01T23:59:59.000Z

40

LFCM vitrification technology. Quarterly progress report, October-December 1985  

SciTech Connect

This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1986 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies.

Burkholder, H.C.; Jarrett, J.H.; Minor, J.E. (comps.)

1986-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coal technology program. Progress report, October 1977  

DOE Green Energy (OSTI)

Two blocks of Pittsburgh seam bituminous coal were pyrolyzed under reducing gas in the project in support of in situ gasification. Higher heating rates appear to reduce swelling of the block during pyrolysis, and higher final pyrolysis temperature results in lower boiling tars. Three pressurized residue carbonization tests were completed at 1100/sup 0/F and 400 psi of methane with three feed materials. Work is in progress on the fracture toughness of thick sections of steels for piping and pressure vessels in coal conversion plants. Modifications to experimental techniques have been made to allow the heat treatment of tension specimens and simulated heat treatment of thick plate sections. Exposure of heat exchanger tubes in the Fluidyne Corporation atmospheric fluidized bed has reached a maximum of 1500 hr. Tube samples have been recovered and are being characterized. In the gas-fired potassium boiler project, three preliminary runs of short duration were made in which the boiler was filled with potassium and heated up to or near the boiling temperature with the main burner. Operating problems that were encountered in these runs have been resolved. ORNL has been requested by DOE-FE to develop a program for testing coal feeders currently under development. In the project for landfill storage of solid wastes, samples of solid wastes from all pilot plants are being obtained. (LTN)

None

1977-12-01T23:59:59.000Z

42

Hydrogen, Fuel Cells and Infrastructure Technologies Program, 2002 Annual Progress Report  

DOE Green Energy (OSTI)

The Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies program's 2002 annual progress report.

Not Available

2002-11-01T23:59:59.000Z

43

Micro-crack Damage Evolution of Fracturing Rock Chaotic Characteristics  

Science Conference Proceedings (OSTI)

Chaotic theory and bifurcation of modern nonlinear science were used to study the evolution of micro-cracks under the hydraulic fracturing of the rock mass characteristics, the tensor damage variable which described the chao evolution of micro-cracks ... Keywords: chaos theory, bifurcation theory, damage evolution

Zhaowan Chun; Wang Tingting

2010-06-01T23:59:59.000Z

44

Coal technology program progress report, February 1976  

DOE Green Energy (OSTI)

Final testing of the 20-atm bench-scale system is underway in preparation for experiments with hydrogen. Laboratory-scale testing of a number of inexpensive pure compounds to improve the settling rate of solids in Solvent Refined Coal (SRC) unfiltered oil (UFO), bench-scale testing of the effect of the Tretolite additive on settling, and characterization tests on a new sample of UFO from the PAMCO-SRC process are reported. Experimental engineering support of an in situ gasification process include low-temperature pyrolyses at exceptionally low heating rates (0.3/sup 0/C/min). Highly pyrophoric chars were consistently produced. Aqueous by-products from coal conversion technologies and oil shale retorting have been analyzed directly to determine major organic components. A report is being prepared discussing various aspects of the engineering evaluations of nuclear process heat for coal. A bench-scale test program on thermochemical water splitting for hydrogen production is under consideration. In the coal-fueled MIUS program, preparations for procurement of tubing for the matrix in the fluidized-bed furnace and for fabrication of the furnace continued. Analyses of the AiResearch gas turbine and recuperator under coal-fueled MIUS operating conditions are near completion. Process flow diagrams and heat and material balances were completed for most of the units in the synthoil process. Overall utilities requirements were calculated and the coal preparation flowsheets were finalized. For hydrocarbonization, the flowsheet was revised to include additional coal data. Flowsheets were finalized for the acid gas separation and recycle, and the oil-solids separation. (LTN)

None

1976-04-01T23:59:59.000Z

45

Ceramic Technology Project semiannual progress report, October 1992--March 1993  

Science Conference Proceedings (OSTI)

This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

Johnson, D.R.

1993-09-01T23:59:59.000Z

46

FY2000 Progress Report for the Advanced Technology Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2000 Progress Report for the Advanced Technology Development Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader December 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

47

Progress in The Lost Circulation Technology Development Program  

DOE Green Energy (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50{percent} through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1990--March, 1991. 4 refs., 15 figs., 1 tab.

Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Wright, E.K.

1991-01-01T23:59:59.000Z

48

Ceramic Technology Project semiannual progress report, April 1992--September 1992  

DOE Green Energy (OSTI)

This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

Johnson, D.R.

1993-07-01T23:59:59.000Z

49

CHEMICAL TECHNOLOGY DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING MAY 31, 1963  

SciTech Connect

Progress in chemical technology is reported under 24 topics. Separate abstracts were prepared for each topic. (M.C.G.)

1963-09-20T23:59:59.000Z

50

Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Progress Report FY 2012 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

51

Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Progress Report 11 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

52

Vehicle Technologies Office: FY 2003 Progress Report for High-Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for High-Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on

53

Liquid fossil-fuel technology. Quarterly technical progress report, October-December 1982  

Science Conference Proceedings (OSTI)

Progress accomplished for the quarter ending December 1982 is reported for the following research areas: liquid fossil fuel cycle; extraction (technology assessment, gas research, oil research); liquid processing (characterization, thermodynamics, processing technology); utilization; and project integration and technology transfer. (ATT)

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

54

Energy technology X: a decade of progress. Proceedings  

DOE Green Energy (OSTI)

The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described.

Hill, R.F. (ed.)

1983-06-01T23:59:59.000Z

55

Coal Technology Program progress report for August 1977  

DOE Green Energy (OSTI)

The projects reported this month include those for coal conversion process development, materials engineering, alkali metal vapor topping cycles, a coal equipment test facility, a fluidized bed combustor technology test unit, engineering and support studies, process and program assistance, and environmental assessment studies. In hydrocarbonization research, material balance results from Run HC-21 confirm earlier tests with Wyodak coal, showing an oil yield of 21% based on MAF coal. In the coal-solvent-hydrogen mixing work, experiments were completed with the Kenics mixer reactor and with the packed-bed reactor. The fracture toughness characterization of 25.4-cm-thick ASTM A543 Class 1 plate is in progress. In the gas-fired potassium boiler project, we completed and leak-tested all of the potassium piping for the system and made preparations for loading the drain tank with potassium. The design work on the fluidized-bed, alkali-metal-vapor cycle system has been completed. In the engineering studies and evaluations project, work was continued on process modeling, the preparation of a Synthetic Fuels Research Digest, a survey of industrial coal conversion equipment capabilities, and studies of flash hydropyrolysis, hot gas purification processes, processes for heat recovery, and hydrogen production by the steam/molten iron process. In the process and program analysis studies, studies were continued on low-Btu gasification, direct combustion, advanced power conversion systems, liquefaction, high-Btu gasification, in situ gasification, and coal beneficiation. The Environmental Monitoring Handbook is being used extensively by contractors and their environmental subcontractors in designing monitoring programs for the nation's first fossil demonstration plants.

None

1977-10-01T23:59:59.000Z

56

FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle Technology AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities FY 2006 Annual Report CONTENTS I. INTRODUCTION............................................................................................................................ 1 II. MODELING AND SIMULATION ................................................................................................ 9

57

The Progress of Tritium Science & Technology in China  

Science Conference Proceedings (OSTI)

Plenary / Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001

Sun Ying

58

FY2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Vehicle Technology Analysis and Evaluation Activities Bringing you a prosperous future where energy is clean, abundant, reliable and affordable 2003 Annual Progress Report freedomCAR & vehicle technologies program Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle U.S. Department of Energy FreedomCAR & Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities

59

Automobiles on steroids: Product attribute trade-offs and technological progress in the automobile sector  

E-Print Network (OSTI)

This paper estimates the technological progress that has occurred since 1980 in the automobile industry and the trade-offs faced when choosing between fuel economy, weight, and engine power characteristics. The results ...

Knittel, Christopher Roland

60

LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, October-December 1986  

SciTech Connect

This report describes the progress in developing, testing, applying, and documenting liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1987 is discussed. Topics include melting process chemistry and glass development, feed preparation and transfer systems, melter systems, off-gas systems, canister filling and handling systems, and process/product modeling.

Brouns, R.A.; Allen, C.R.; Powell, J.A. (comps.)

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heat Source Technology Program monthly progress report, July 1993  

DOE Green Energy (OSTI)

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

George, T.G. [comp.

1993-10-01T23:59:59.000Z

62

Monthly progress report: Heat source technology programs, October 1995  

Science Conference Proceedings (OSTI)

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

George, T.G. [comp.

1997-11-01T23:59:59.000Z

63

Monthly progress report heat source technology programs, June 1994  

SciTech Connect

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the U.S. Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

George, T.G. [comp.

1994-06-01T23:59:59.000Z

64

Monthly progress report Heat Source Technology Programs, April 1995  

DOE Green Energy (OSTI)

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

George, T.G. [comp.

1996-03-01T23:59:59.000Z

65

Heat Source Technology Program monthly progress report, June 1993  

DOE Green Energy (OSTI)

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

George, T.G. [comp.

1993-09-01T23:59:59.000Z

66

Heat source technology programs. Monthly progress report, December 1993  

SciTech Connect

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

George, T.G. [comp.

1994-05-01T23:59:59.000Z

67

Heat source technology programs monthly progress report, February 1994  

SciTech Connect

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

George, T.G. [comp.

1994-07-01T23:59:59.000Z

68

Heat source technology programs: Monthly progress report, March 1994  

SciTech Connect

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may changes as the work progresses.

George, T.G. [comp.

1994-08-01T23:59:59.000Z

69

Heat source technology programs. Monthly progress report, March 1995  

DOE Green Energy (OSTI)

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

Tomlinson, L.J. [comp.

1996-02-01T23:59:59.000Z

70

Heat Source Technology Program monthly progress report, August 1993  

DOE Green Energy (OSTI)

This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

George, T.G. [comp.

1993-11-01T23:59:59.000Z

71

Ceramic Technology Project. Semiannual progress report, April 1991--September 1991  

DOE Green Energy (OSTI)

The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

Not Available

1992-03-01T23:59:59.000Z

72

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

73

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

Science Conference Proceedings (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

74

Low-cost hydrogen sensors: Technology maturation progress  

SciTech Connect

The authors are developing a low-cost, solid-state hydrogen sensor to support the long-term goals of the Department of Energy (DOE) Hydrogen Program to encourage acceptance and commercialization of renewable energy-based technologies. Development of efficient production, storage, and utilization technologies brings with it the need to detect and pinpoint hydrogen leaks to protect people and equipment. The solid-state hydrogen sensor, developed at Oak Ridge National Laboratory (ORNL), is potentially well-suited to meet cost and performance objectives for many of these applications. Under a cooperative research and development Agreement and license agreement, they are teaming with a private company, DCH Technology, Inc., to develop the sensor for specific market applications related to the use of hydrogen as an energy vector. This report describes the current efforts to optimize materials and sensor performance to reach the goals of low-cost fabrication and suitability for relevant application areas.

Hoffheins, B.S.; Rogers, J.E.; Lauf, R.J.; Egert, C.M. [Oak Ridge National Lab., TN (United States); Haberman, D.P. [DCH Technology, Inc., Sherman Oaks, CA (United States)

1998-04-01T23:59:59.000Z

75

Progress in amorphous silicon PV technology: An update  

DOE Green Energy (OSTI)

To reach the 15% stabilized efficiency goal for amorphous silicon (a-Si) modules by the year 2005, the National Renewable Energy Laboratory has established four research teams. The teams -- with members from industry, universities, and NREL -- have been in operation for 2.5 years now. Consensus has been reached that a triple-junction a-Si structure is needed to reach the efficiency goal. Performance parameter goals for the overall structure and the three component cells have been formulated. All four teams have generated their own development plans. Individual team progress relative to the plans is reported.

Luft, W.; Branz, H.M. [National Renewable Energy Lab., Golden, CO (United States); Dalal, V.L. [Iowa State Univ., Ames, IA (United States); Hegedus, S.S. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion; Schiff, E.A. [Syracuse Univ., NY (United States)

1995-07-01T23:59:59.000Z

76

Progress on the Development of Reversible SOFC Stack Technology  

E-Print Network (OSTI)

W gasoline SOFC technology development program APU applications can provide entry markets for fuel cell & Select APU Systems 2 · Summarize PEM and SOFC performance parameters · Determine most promising future Task 3: Develop design concepts · Truck Cab/SOFC/diesel · Transit bus/SOFC/CNG or diesel · Police

77

Nuclear technology programs; Semiannual progress report, October 1989--March 1990  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Harmon, J.E. [ed.

1992-01-01T23:59:59.000Z

78

Nuclear technology programs semiannual progress report, April--September 1989  

SciTech Connect

This document reports on the work done by the Nuclear Technology Program of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1989. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with developing a process for separating the organic and inorganic constitutents of the red-water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 154 refs., 154 figs., 100 tabs.

Harmon, J.E. (ed.)

1991-08-01T23:59:59.000Z

79

Nuclear technology programs. Semiannual progress report, April--September 1991  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Not Available

1993-07-01T23:59:59.000Z

80

Nuclear Technology Programs semiannual progress report, April-- September 1990  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear Technology Programs semiannual progress report, April-- September 1990  

SciTech Connect

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Harmon, J.E. [ed.

1992-06-01T23:59:59.000Z

82

Nuclear Technology Programs semiannual progress report, October 1988--March 1989  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

Harmon, J.E. [ed.

1990-12-01T23:59:59.000Z

83

Nuclear Technology Programs semiannual progress report, October 1990--March 1991  

SciTech Connect

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

1992-12-01T23:59:59.000Z

84

Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-05-01T23:59:59.000Z

85

Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-04-01T23:59:59.000Z

86

Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-11-01T23:59:59.000Z

87

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

88

Geothermal drilling and completion technology development program. Semi-annual progress report, October 1978-March 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drill bits, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1979-09-01T23:59:59.000Z

89

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

90

Nuclear Technology Programs semiannual progress report, April--September 1987  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April-September 1987. Work in applied physical chemistry included investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy storage systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 15 refs., 60 figs., 40 tabs.

Harmon, J.E. (ed.)

1989-07-01T23:59:59.000Z

91

Nuclear Technology Programs semiannual progress report, October 1987--March 1988  

SciTech Connect

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1987--March 1988. Work in applied physical chemistry included investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1990-08-01T23:59:59.000Z

92

Accelerator technology program. Progress report, July-December 1980  

SciTech Connect

The activities of Los Alamos National Laboratory's Accelerator Technology Division are discussed. This report covers the last six months of calendar 1980 and is organized around the Division's major projects. These projects reflect a wide variety of applications and sponsors. The major technological innovations promoted by the Pion Generator for Medical Irradiation (PIGMI) program have been developed; accelerator technologies relevant to the design of a medically practical PIGMI have been identified. A new group in AT Division deals with microwave and magnet studies; we describe the status of some of their projects. We discuss the prototype gyrocon, which has been completed, and the development of the radio-frequency quadrupole linear accelerator, which continues to stimulate interest for many possible applications. One section of this report briefly describes the results of a design study for an electron beam ion source that is ideally suited as an injector for a heavy ion linac; another section reports on a turbine engine test facility that will expose operating turbine engines to simulated maneuver forces. In other sections we discuss various activities: the Fusion Materials Irradiation Test program, the free-electron laser program, the racetrack microtron project, the Proton Storage ring, and H/sup -/ ion sources and injectors.

Knapp, E.A.; Jameson, R.A. (comp.)

1982-01-01T23:59:59.000Z

93

Solarization/conservation technology development for existing housing. Progress report  

DOE Green Energy (OSTI)

The project objectives are: to develop a method for evaluationg existing residences for their energy solarization/conservation potential as well as carrying out the solarization/conservation work within context of the Community Development program; and to demonstrate appropriate methods of utilizing solar energy in existing Ann Arbor residences beyond that obtainable in a good conservation program. A general progress update is presented covering tasks related to community solarization/conservation characteristics and community system analysis and development. The process of selection and technical evaluation of houses for solarization/conservation project directed retrofit is described. A detailed report on the survey of utility data and a report on the solarization/conservation site audits are included. A detailed comparison of the audit data for both the audit and control group are appended. (LEW)

Oberdick, W.

1981-06-01T23:59:59.000Z

94

Polycrystalline thin-film technology: Recent progress in photovoltaics  

DOE Green Energy (OSTI)

Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

1991-12-01T23:59:59.000Z

95

Geothermal Injection Technology Program: Annual progress report, Fiscal Year 1986  

DOE Green Energy (OSTI)

This report summarizes the Geothermal Injection Technology Program major activities in fiscal year 1986. The Idaho Engineering Laboratory (INEL) and the University of Utah Research Institute (UURI) have been conducting injection research and testing for this program, which was initiated in 1983. Activities at the INEL, representative element nodeling of fracture systems based on stochastic analysis, dual permeability modeling of flow in a fractured geothermal reservoir, and dual permeability model - laboratory and FRACSL-validation studies, are presented first, followed by the University of Utah Research Institute tracer development - experimental studies, which includes a brief description of activities planned for FY-1987.

Not Available

1987-07-01T23:59:59.000Z

96

A Progressive Network Management Architecture Enabled By Java Technology  

E-Print Network (OSTI)

This paper proposes a framework based completely on Java technology. The advantages brought about by the use of Java in network management answer some critical problems existing in current systems. With this work we address several factors concerning interoperability and security in heterogeneous network environments. Specifically, we present a manager application and a multithreaded agent engine that make use of a lightweight communication mechanism for message exchange. A MIB parser is introduced to accelerate handling of incoming management requests, and the RSA public-key cryptosystem is implemented to provide both encryption and authentication features. Results, measured in terms of response time, compare favourably with other published work and standard management frameworks.

Gavalas, Damianos; Ghanbari, Mohammed; O'Mahony, Mike

2010-01-01T23:59:59.000Z

97

Recent progress in tubular solid oxide fuel cell technology  

DOE Green Energy (OSTI)

The tubular design of solid oxide fuel cells (SOFCs) and the materials used therein have been validated by successful, continuous electrical testing over 69,000 h of early technology cells built on a calcia-stabilized zirconia porous support tube (PST). In the latest technology cells, the PST has been eliminated and replaced by a doped lanthanum manganite air electrode tube. These air electrode supported (AES) cells have shown a power density increase of about 33% with a significantly improved performance stability over the previously used PST type cells. These cells have also demonstrated the ability to thermally cycle over 100 times without any mechanical damage or performance loss. In addition, recent changes in processes used to fabricate these cells have resulted in significant cost reduction. This paper reviews the fabrication and performance of the state-of-the-art AES tubular cells. It also describes the materials and processing studies that are underway to further reduce the cell cost, and summarizes the recently built power generation systems that employed state-of-the-art AES cells.

Singhal, S.C.

1997-12-31T23:59:59.000Z

98

Accelerator technology program. Progress report, January-June 1981  

Science Conference Proceedings (OSTI)

This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report.

Knapp, E.A.; Jameson, R.A. (comps.)

1982-05-01T23:59:59.000Z

99

Progress on the Development of Reversible SOFC Stack Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

the Development of the Development of Reversible SOFC Stack Technology Presented by: Casey Brown 19 April 2011 Copyright © 2011 Versa Power Systems - All Rights Reserved Versa Power Systems * Versa Power Systems is a developer of planar solid oxide fuel cells (SOFCs) * Privately held company headquartered in Littleton, Colorado, United States * SOFC development facility in Calgary, Alberta, Canada * Activities in both stationary and mobile SOFC development Copyright © 2011 Versa Power Systems - All Rights Reserved * Anode supported cells * Operating temperature range of 650 C to 800°C * Ferritic stainless steel sheet interconnect * Cross-flow gas delivery * Stack can be integrated into stack towers for various power applications VPS Planar SOFC Cell and Stack Anode Cathode Electrolyte

100

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1981  

Science Conference Proceedings (OSTI)

Progress accomplished during the quarter ending September 1981 is reported under the following headings: liquid fossil fuel cycle; extraction (reservoir characterization and evaluation, recovery projects, reservoir access, extraction technology, recovery processes and process implementation); liquid processing (characterization, thermodynamics, and process technology); utilization (energy conversion - adaptive engineering, combustion systems assessment, and heat engines/heat recovery); and project integration and technology transfer. Special reports include: air drilling research; fluid injection in reservoirs; target reservoirs in Permian Basin suitable for CO/sub 2/ flooding; heavy oil technology; and the fate of used motor oil/results of a survey.

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coal technology program progress report for May 1976  

DOE Green Energy (OSTI)

In the Hydrocarbonization project, two successful experiments were completed in the bench-scale hydrocarbonizer. In the Solids-Liquid Separations project, initial filtration runs on the bench-scale filter employed a 40-..mu.. metal disc filter. Filtration rates for PAMCO-SRC at 500/sup 0/F were as high as 165 lb/hr . ft/sup 2/, but decreased rapidly with cake thickness. High-temperature pyrolysis studies of large coal blocks were significantly interrupted by equipment problems which developed. Several tests at 800/sup 0/C were completed, however, with the continued production of pyrophoric chars at external heating rates of 0.3 and 3.0/sup 0/C/min. Samples of Synthoil, shale oil, crude petroleum, and by-product waters from oil shale retorting and Synthane coal gasification have been chemically fractionated and are being examined for biological activity. Normal alkanes in oil shale and by-product retort water have been determined. Polycyclic aromatic hydrocarbon (PAH) fractions have been prepared from extracted organics removed from shale oil by-product water and Synthane condensate water. In the conceptual design study of the Synthoil process, preliminary figures indicate that the overall capital cost estimate for the commercial-scale (100,000 bbl/day) plant will be in the neighborhood of $2 billion. Work continued on the estimation of operating costs. In the Hydrocarbonization conceptual design study, the major effort was placed upon capital and operating cost estimation. In Coal-Fueled MIUS, because of excellent progress in preparation of tube bundle drawings and specifications, it was decided to hold the furnace housing bid request in order to send out a combined furnace and tube bundle bid package.

Not Available

1976-06-01T23:59:59.000Z

102

Technical progress in the development of zero emission coal technologies.  

DOE Green Energy (OSTI)

We present an update on the development of technologies required for the Zero Emission Carbon (ZEC) concept being pursued by ZECA Corporation. The concept has a highly integrated design involving hydrogasification, a calcium oxide driven reforming step that includes simultaneous C02 separation, coal compatible fuel cells for electricity production and heat recovery, and a closed loop gas system in which coal contaminants are removed either as liquids or solids. The process does not involve any combustion and as such has neither smokestack nor air emissions. An independent assessment of the concept by Nexant, a Bcchtel affiliated company, suggests a net efficiency of approximately 70% for conversion of the higher heat value fuel energy into electrical output. This is even after the penalties of carbon dioxide separation and pressurization to 1000 psi are taken into account. For carbon dioxide sequestration a variety of options are being considered, which include enhanced oil recovery in the near-term and mineral carbonation as a long-term approach. We report on our early results in the development of sulfur tolerant anode materials for solid oxide fuel cells; a critical analysis of the calcium oxide - calcium carbonate cycle; trace element removal; and the recent results of hydrogasification tests.

Ziock, H. J. (Hans-Joachim); Anthony, E. J.; Brosha, E. L. (Eric L.); Garzon, F. H. (Fernando H.); Guthrie, G. D. (George D.); Johnson, A. A. (Alan A.); Kramer, A. (Andrew); Lackner, K. S. (Klaus S.); Lau, Francis,; Mukundan, R. (Rangachary); Robison, Thomas W.; Roop, B. J. (Bobbi J.); Ruby, J. D. (John D.); Smith, B. F. (Barbara F.); Wang, J. (Joseph)

2002-01-01T23:59:59.000Z

103

Technical Progress Report for the Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2005 through September 30, 2005. During this time period efforts were directed toward (1) receiving proposals in response to the RFP, and (2) organizing and hosting the proposal selection meeting on August 30-31, 2005.

Joel L. Morrison

2005-10-24T23:59:59.000Z

104

Technical Progress Report for the Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of October 1, 2005 through December 31, 2005. Activities during this time period were: (1) Nomination and election of Executive Council members for 2006-07 term, (2) Release the 2006 GSTC request-for-proposals (RFP), (3) Recruit and invoice membership for FY2006, (4) Improve communication efforts, and (5) Continue planning the GSTC spring meeting in San Diego, CA on February 21-22, 2006.

Joel L. Morrison; Sharon L. Elder

2006-02-27T23:59:59.000Z

105

Liquid-fossil-fuel technology. Quarterly technical progress report, July-September 1982  

SciTech Connect

Progress reports for the quarter ending September 1982 are presented for the following major tasks: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum, coal liquids, thermodynamics, process technology); utilization; project integration and technology transfer. Feature articles for this quarter are: new laboratory enhances BETC capability in mass spectrometry; and BETC tests on diesel particulate extracts indicate potential health risks. (ATT)

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

106

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage  

E-Print Network (OSTI)

. Hydrogen Storage #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 200 #12 square inch (psi) 7.5 wt % and 8.5 wt% Type IV composite hydrogen storage tanks of specified sizes for DOE Future Truck and Nevada hydrogen bus programs · Demonstrate 10,000 psi storage tanks Approach

107

Relationship of technology level of progress to school district demographic variables  

E-Print Network (OSTI)

An exploratory study, using Texas public school district data, was conducted to determine the relationship between each of two demographic characteristics, student enrollment and the percentage of economically disadvantaged students, and the technology level of progress. In addition, the relationship between the two demographic characteristics, taken together, and the technology level of progress was investigated. The researcher found that across each of the six Educator Preparation and Development (EPD) focus areas, student enrollment, and the percentage of economically disadvantaged students were not related to the technology level of progress. The researcher also found that there was no meaningful multivariate relationship for linking student enrollment and the percentage of economically disadvantaged students, taken together, to the technology level of progress. A major finding that emerged from the analyses was the fact that the majority of school districts across the student enrollment and percentage of economically disadvantaged students categories were at the same level of technology progress, Developing Tech. Moreover, the percent of school districts not progressing beyond theDeveloping Tech level was differential for each of the six EPD focus areas. Two conclusions emerged from the empirical evidence. First, although the Target Tech level percentages were all small, two of the 20 types of Texas school districts consistently yielded the highest percents across the six EPD focus areas. These were school district type four (SE Under 500, PEDS 75% or Greater) and school district type twelve (SE 1,001-5,000, PEDS 75% or Greater). Second and more significant in terms of creating future interventions, programs, and incentives, empirical evidence in this study suggests that much work still remains to be done if all Texas school districts are to reach the ultimate objective where all school districts reach the Target Tech level on all six focus areas. The current study informs the digital divide literature as it relates to school district characteristics. The findings from this study suggest that long-range technology planning and funding initiatives in recent years have been successful, in beginning to address digital divide issues related to Educator Preparation and Development technology progress in public school districts.

Davis, Trina Joy

2005-05-01T23:59:59.000Z

108

Ceramic Technology Project. Semiannual progress report for April 1993 through September 1993  

DOE Green Energy (OSTI)

The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. During the course of the Ceramic Technology Project, remarkable progress has been made in the development of reliable structural ceramics. However, further work is needed to reduce the cost of ceramics to facilitate their commercial introduction, especially in the highly cost-sensitive automotive market. The work described in this report is organized according to the following WBS project elements: Project Management and Coordination; Materials and Processing; Materials Design Methodology; Data Base and Life Prediction; and Technology Transfer. This report includes contributions from all currently active project participants. Separate abstracts were prepared for the 47 projects reported here.

Not Available

1994-04-01T23:59:59.000Z

109

Microsoft PowerPoint - Progress in Battery Swapping Technology and Demonstration in China  

NLE Websites -- All DOE Office Websites (Extended Search)

ProgressinBatterySwapping ProgressinBatterySwapping TechnologyandDemonstrationinChina Jianfeng Hua Email: huajf@tsinghua.edu.cn Tel: 010-62789570 2 Outline Background Battery Swapping Demonstration in China Conclusion 3 HowtorefuelforElectricalVehicle? AC Charging DC Charging Battery Swapping  Duetothelimiteddrivingrangeofelectricalvehicle, therefuelforalongdistancedrivingisanessential

110

Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988  

SciTech Connect

This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included.

1989-02-01T23:59:59.000Z

111

Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

112

Chemical Technology Division progress report, January 1, 1993--September 30, 1995  

SciTech Connect

This progress report presents a summary of the missions and activities of the various sections and administrative groups in this Division for this period. Specific projects in areas such as energy research, waste and environmental programs, and radiochemical processing are highlighted, and special programmatic activities conducted by the Division are identified and described. The administrative summary portion features information about publications and presentations of Chemical Technology Division staff, as well as a listing of patents awarded to Division personnel during this period.

NONE

1996-09-01T23:59:59.000Z

113

Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986  

SciTech Connect

This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs.

1987-08-01T23:59:59.000Z

114

Solar-thermal technology. Annual technical progress report FY 1981. Volume II. Technical  

DOE Green Energy (OSTI)

After a brief description of the Solar Thermal Technology Program, its goals, objectives, and benefits, progress is reported in the five technologies addressed by the program: central receiver, parabolic dish, parabolic trough, hemispherical bowl, and salt-gradient solar ponds. Component technology development and systems experiments and analyses are reported for the central receiver, parabolic dish, and parabolic trough concepts. Also reported are test programs at the Central Receiver Test Facility, Parabolic Dish Test Site support to dish development, and experiments at test facilities supporting parabolic trough program. Research on hemispherical bowl and salt-gradient solar ponds is briefly summarized, including the Crosbyton Solar Power Project (hemispherical bowl) and the Salton Sea Project (solar pond). Also reported are research and advanced development efforts in materials research, fuels and chemicals, and applied thermal research, and supporting programs, including the Solar Thermal Test Facilities Users Association activities, environmental control studies, and solar thermal insolation assessment. (LEW)

Not Available

1982-06-01T23:59:59.000Z

115

FY2001 Progress Report for the Batteries for Advanced Transportation Technologies (High-Energy Battery)  

NLE Websites -- All DOE Office Websites (Extended Search)

FOR ADVANCED FOR ADVANCED TRANSPORTATION TECHNOLOGIES (HIGH-ENERGY BATTERY) 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Lawrence Berkeley National Laboratory, to Argonne National Laboratory, and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2001 Progress Report for the

116

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 28  

SciTech Connect

Highlights of progress during the quarter ending September 30, 1981 are summarized. Field projects and supporting research in the following areas are reported: chemical flooding; carbon dioxide injection; thermal processes/heavy oil (steam and in-situ combustion); resource assessment technology; extraction technology; environmental; petroleum technology; microbial enhanced oil recovery; and improved drilling technology. A list of BETC publications with abstracts, published during the quarter is included. (DMC)

Linville, B.

1982-01-01T23:59:59.000Z

117

Chemical Technology Division progress report, October 1, 1989--June 30, 1991  

SciTech Connect

This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

Not Available

1992-04-01T23:59:59.000Z

118

Chemical Technology Division progress report, October 1, 1989--June 30, 1991  

SciTech Connect

This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

Not Available

1992-04-01T23:59:59.000Z

119

Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division  

SciTech Connect

This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

Larry G. Hoffman

2000-12-01T23:59:59.000Z

120

MHD air heater technology development. Annual technical progress report, January 1, 1980-December 31, 1980  

DOE Green Energy (OSTI)

Progress on the technology development of the directly-fired high temperature air heater (HTAH) for MHD power plants is described in detail. The objective of task 1 is to continue development of ceramic materials technology for the directly-fired HTAH. The objectives of task 2 are to demonstrate the technical feasibility of operating a directly-fired HTAH (including both the heater matrix and valves), to continue obtaining information on life and corrosion resistance of HTAH materials, and to obtain design information for full-scale studies and future design work. The objectives of task 3 are to begin the identification of HTAH control requirements and control system needs, and to continue full-scale study efforts incorporating updated materials and design information in order to identify development needs for the HTAH development program. (WHK)

None

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recent progress in the photovoltaic manufacturing technology project (PVMaT)  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

Witt, C.E.; Mitchell, R.L.; Thomas, H. (National Renewable Energy Lab., Golden, CO (United States)); Herwig, L.O. (USDOE, Washington, DC (United States)); Ruby, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Sellers, R.

1994-12-09T23:59:59.000Z

122

Ceramic Technology Project, semiannual progress report for October 1993 through March 1994  

DOE Green Energy (OSTI)

The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Conservation and Renewable Energy. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. In July 1990, the original plan was updated through the estimated completion of development in 1993. The original objective of the project was to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. During the course of the Ceramic Technology Project, remarkable progress has been made in the development of reliable structural ceramics. The direction of the Ceramic Technology Project is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned.

Johnson, D.R.

1994-09-01T23:59:59.000Z

123

Evaluation of stress in bmi-carbon fiber laminate to determine the onset of microcracking  

E-Print Network (OSTI)

In this work the conditions for which a (0,90,90,0,0,90)s BMI-carbon fiber laminate will initiate transverse microcracking are determined for the fabrication of a cryogenic fuel tank for use in a Reusable Launch Vehicle (RLV). This is accomplished using a quadratic interaction criterion failure analysis on the total stress state at possible launch conditions. There are three major sources of stress, that is, thermal residual stress, internal pressure stress, and applied load stress, that are evaluated at the launch stage to determine the total stress state. To assess the accuracy of the analysis the well known X-33 cryogenic fuel tank failure was analyzed as an example. The results of the X-33 example show that the analysis accurately portrays the failure of the X-33 and provides evidence that the analysis can be used to provide reliable conditions for the initiation of microcracking. The final result of this study is a range of launch conditions that can be used without the initiation of microcracking and a limiting range of conditions that cause complete microcracking throughout the laminate.

Pickle, Brent Durrell

2004-12-01T23:59:59.000Z

124

MHD air heater development technology. Technical progress report, April 1, 1980-June 30, 1980  

DOE Green Energy (OSTI)

Technology development for the directly-fired high temperature air heater (HTAH) for MHD power plants is described. Work is being done under three tasks as described in the following. (1) materials selection, evaluation, and development: The objective of this task is to continue development of ceramic materials technology for the directly-fired HTAH. The scope of the work will include compilation of materials data, materials selection for testing and design studies, materials property determination, liaison with refractory manufacturers and other organizations to encourage development of materials and fabrication technology, establishment of preliminary HTAH material specifications, analyses of test materials, and development of criteria for thermal stress limits for crack-tolerant refractory materials. (2) operability, performance, and materials testing: The objectives of this task are to demonstrate the technical feasibility of operating a directly-fired HTAH (including both the heater matrix and valves), to continue obtaining information on life and corrosion resistance of HTAH materials, and to obtain design information for full-scale studies and future design work. (3) full-scale design concepts: The objectives of this task are to begin the identification of HTAH control requirements and control system needs, and to continue full-scale study efforts incorporating updated materials and design information in order to identify development needs for the HTAH development program. Progress is described. (WHK)

None

1980-07-01T23:59:59.000Z

125

Engines of Liberation: The Impact of Technological Progress in an Imperfect Competition Setting  

E-Print Network (OSTI)

We present some evidence from the U.S. Census about the market concentration in the home appliances sector (e.g., four-firm concentration ratio and Herfindahl-Hirshman index) which suggests that competition in this sector, rather than being perfect, is better described by an oligopoly structure. We develop a general equilibrium three-sector growth model (home, market, appliances) where the price of home appliances is endogenous and firms in the appliances sector interact strategically. We assess the qualitative importance of technological progress at home and in the market for the decline in the relative price of home appliances. Due to the presence imperfectly competitive markets, the price of home appliances declines relative to the market wage even when total factor productivity at home and in the market grow at the same rate. Finally, we calibrate our model to match key facts of the economy in 1900. We analyze the quantitative impact of changes in the relative price of home appliances on womens employment and the appliances adoption decisions under the following two (opposite) scenarios. First, technology at home and in the market grow at a common rate equal to the historical average value of total factor productivity. Second, technology at home grow at a faster rate. In the first case, our model captures slightly less than half of the decline in the appliance price and slightly more than half of the increase in employment rate of married women.

Sebastien Buttet

2007-01-01T23:59:59.000Z

126

Spent Fuel and Waste Management Technology Development Program. Annual progress report  

SciTech Connect

This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

Bryant, J.W.

1994-01-01T23:59:59.000Z

127

Technical Change Theory and Learning Curves: Patterns of Progress in Energy Technologies  

E-Print Network (OSTI)

to electricity 1990-1998 3,528 11,338 18,928 5407 9 Nuclear light water reactor 1989-1998 3,090 328,391 97,211 13,198 10 Wind - onshore 1980-1998 2,094 2,913 7,099 1,634 11 Solar thermal power 1985-2001 4,990 256 4,498 - 12 Wind offshore 1994-2001 2,066 82... and offshore wind energy. The emerging technologies have existed for a relatively short time and have achieved a lesser degree of technical progress during the period under consideration. The estimated learning rates for thermal solar power and offshore wind...

Jamasb, Tooraj

128

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983  

SciTech Connect

Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

129

Development of Advanced Manufacturing Technologies for Renewable Energy Applications, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

65 65 FY 2007 Annual Progress Report DOE Hydrogen Program Objectives This project will address selected key manufacturability issues needing solution in two hydrogen technology areas: storage and the production of components. NCMS will evaluate, identify, and develop manufacturing technologies vital to affordable hydrogen-powered systems. NCMS will leverage manufacturing technologies from other industrial sectors and work with its extensive industrial membership to do feasibility projects on those technologies identified as key to reducing production cost by rendering a system component or subcomponent of the targeted hydrogen-powered systems producible in volume. Technical Barriers This project addresses the following technical barriers from the Manufacturing R&D section of the

130

Advanced converter technology. Technical progress report, May 23, 1979-May 22, 1980  

DOE Green Energy (OSTI)

The overall objective of this program is to define an advanced converter system employing 1980's technology in all subsystem and component areas for use in electrochemical energy storage systems. Additional experimental effort will validate elements of the advanced commutation circuitry on a full-scale breadboard basis. Improved models of battery electrical characteristics are beng defined and experimental apparatus is being designed to measure these characteristics and to enable better definition of the battery-power conditioner interface. Improvement of energy-storage system performance through modification of battery converter characteristics will also be investigated. During this first year of the contract, a new more advanced concept for power conditioning based on a concept defined by United Technologies Corporation for fuel cell use was evaluated. This high switching frequency concept has the potential for significantly reducing the size and cost of battery plant power conditioners. As a result, the Department of Energy authorized redirection of the program to first evaluate this new concept and then to reorient the program to adopt this concept as the primary one. Progress is reported. (WHK)

Banic, C. V.; Eckhouse, S. A.; Kornbrust, F. J.; Lipman, K.; Peterson, J. L.; Rosati, R. W.

1980-01-01T23:59:59.000Z

131

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1981  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following major areas of investigation: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum and synthetic crude, thermodynamics; process technology); utilization; project integration and technology transfer. Highlights for this period in research studies are listed as those in extraction research and processing and thermodynamics research. Searches for microorganisms that will be useful in enhanced oil recovery have produced two promising leads. At Oklahoma State University, bacteria of the genus Clostridia have been found which can live in a brine solution as found in most petroleum reservoirs. These bacteria produce carbon dioxide, acetic acid, alcohols, and ketones as metabolic products. At the University of Georgia, a culture of bacteria has been found which will reduce the viscosity of a 10/sup 0/ API gravity oil by 95 percent. The analysis of heavy oils requires differentiation of sulfur, nitrogen, and oxygen-containing compounds from hydrocarbons. The most effective way to do this is with a high-resolution mass spectrometer that can distinguish between compounds having molecular weights only a fractional unit apart. These molecular weights are calculated from the computer acquired time-moments of the various ions in a mass spectrum. Thus, the accuracy of results reflects, in part, the numerical methods used in data processing. Consequently, the effect of the mathematical functions on the accuracy of mass measurement is being determined.

Not Available

1981-01-01T23:59:59.000Z

132

Technology Validation Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Technology Validation sub-program demonstrates, tests, and validates hydrogen and fuel cell technologies and uses the results to provide feedback to the Program's research and development (R&D) activities. This year, the sub-program concluded the National Fuel Cell Electric Vehicle Learning Demonstration, the principal emphasis of the sub-program over the past decade, which encompassed the co- development and integration of hydrogen infrastructure with hydrogen fuel cell-powered vehicles, allowing industry to assess progress toward technology readiness. In addition, the Technology Validation sub-program completed a project on combined hydrogen, heat, and power (tri-generation or CHHP). Continuing efforts

133

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 26, quarter ending March 31, 1981  

SciTech Connect

Objectives and technical progress are summarized for field projects and supporting research in chemical flooding, CO/sub 2/ injection, thermal/heavy oil recovery, resource assessment, extraction technology, microbial enhanced oil recovery, and improved drilling technology. (DLC)

Linville, B. (ed.)

1981-07-01T23:59:59.000Z

134

Geothermal technology development program. Quarterly progress report, April-June 1981  

Science Conference Proceedings (OSTI)

The status of ongoing research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology is reported. (MHR)

Kelsey, J.R. (ed.)

1981-10-01T23:59:59.000Z

135

Geothermal Technology Development Program annual progress report, October 1982-September 1983  

DOE Green Energy (OSTI)

The program emphasizes research in rock penetration mechanics, fluid technology, borehold mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1984-05-01T23:59:59.000Z

136

DOE/JPL Advanced Thermionic Technology Program. Progress report No. 40, July-August-September 1979  

DOE Green Energy (OSTI)

The primary long-term goal of the DOE effort at Thermo Electron Corporation is to improve TEC performance to the level that thermionic topping of fossil fuel steam powerplants becomes technically possible and economically attractive. The focus of the JPL program is to develop thermionic conversion technology appropriate for nuclear electric propulsion (NEP) missions. This report covers progress made during the three-month period from July through September 1979. During this period, significant accomplishments in the DOE program include: (1) Demonstration of 2300 hours of stable operation (Silicon Carbide Converter No. 1) in a combustion environment at emitter temperatures at, or above, 1600 K. This test is continuing. (2) Fabrication of two leaktight composite CVD (SiC/C/W) hot shell-emitter structures two inches in diameter. (3) Reproduction of W(100)/O/Zr emitter work function obtained at the Oregon Graduate Center. (4) Formation of an analytical model of the ignited mode thermionic diode which predicts the operating conditions associated with the onset of a double sheath at the emitter. Significant accomplishments in the JPL program include: (1) Demonstration of oxygen enhancement of a molybdenum emitter from a tungsten oxide collector. (2) Development of a technique for casting sapphire prototypic of NEP thermionic reactor system design. (3) Development of a technique for bonding lanthanum hexaboride to rhenium that was stable for 150 hours at temperatures ranging between 1600 and 1700 K. (4) Formulation of an assembly procedure for fabricating thermionic converters on an emitter heat pipe. (WHK)

Not Available

1979-01-01T23:59:59.000Z

137

DOE Advanced Thermionic Technology Program. Progress report No. 48, July, August, September 1981  

DOE Green Energy (OSTI)

The advanced Thermionic Technology Program at Thermo Electron Corporation is sponsored by the Department of Energy (DOE). The primary long-term goal is to improve thermionic performance to the level that thermionic topping of fossil-fuel powerplants becomes technically possible and economically attractive. An intermediate goal is to operate a thermionic module in a powerplant during the mid-1980's. A short-term goal is to demonstrate reliable thermionic operation in a combustion environment. Progress made during the three-month period from July through September 1981 is reported. Significant accomplishments include: (1) continuing stable output from the combustion test of the one-inch diameter hemispherical silicon carbide diode (Converter No. 239) at an emitter temperature of 1730/sup 0/K for a period of over 9800 hours; (2) measurement of a barrier index of 2.15 eV during the initial testing of Converter No. 266 (two-inch diameter torispherical silicon carbide diode); and (3) successful thermal cycle test of a CVD silicon carbide coating inside a sintered molybdenum tube.

Not Available

1981-01-01T23:59:59.000Z

138

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress Review No. 31, quarter ending June 30, 1982  

Science Conference Proceedings (OSTI)

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental, petroleum technology, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

139

Geothermal technology development program. Annual progress report, October 1981-September 1982  

DOE Green Energy (OSTI)

The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1983-08-01T23:59:59.000Z

140

DOE/JPL Advanced Thermionic Technology Program. Progress report No. 41  

DOE Green Energy (OSTI)

The primary long-term goal of the DOE effort is to improve TEC performance to the level that thermionic topping of fossil fuel steam powerplants becomes technically possible and economically attractive. An intermediate goal is to demonstrate an in-boiler thermionic module in the early 1980's. A short-term goal is the demonstration of the reliability of thermionic operation in a combustion environment. The focus of the JPL program is to develop thermionic conversion technology appropriate for nuclear electric propulsion (NEP) missions. These missions require operation at collector temperatures substantially higher than those associated with terrestrial applications. The DOE and JPL tasks for developing thermionic energy conversion (TEC) are complementary and synergistic. Converter performance improvement is an area in which one agency's program supports the effort of the other. Progress in the DOE program is reported including: (1) demonstration of over 3600 hours of stable operation (Quarter Scale Silicon Carbide Converter No. 1) in a combustion environment at emitter temperatures at, or above, 1600/sup 0/K; (2) calculation of a complete current density-voltage characteristics in the power quadrant which includes both double valued sheath effects at the emitter and the spatial distribution of electron temperature in the interelectrode plasma; and (3) successful operation of Converter No. 222 with a cesium-graphite reservoir. JPL program accomplishments reported include: (1) performance data have been obtained on three planar variable spaced converters with molybdenum emitters (Converter Nos. 223, 227 and 228); and (2) system calculations indicate that long term thermionic performance demonstrated at Thermo Electron should yield a power system specific mass less than 22 kg/kWe.

Not Available

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MHD air heater development technology. Progress report, November 26, 1979-March 31, 1980  

DOE Green Energy (OSTI)

Work on the development of the directly-fired high temperature air heater (HTAH) for MHD power plants is reported. Progress is reported on three tasks: (1) materials selection, evaluation, and development, (2) operability, performance, and materials testing, and (3) full-scale design concepts. Under Task 1, efforts were carried out in several areas. Work on the computer data base for material properties was begun. Data were compiled for several HTAH materials. Materials selections for Valve Test 3 and full-scale studies were made. Test conditions were defined for and creep results obtained from Montana College of Mineral Science and Technology concerning candidate matrix and hot liner materials. Liaison efforts with refractory manufacturers were continued, and information was provided to Argonne National Laboratory and Babcock and Wilcox concerning the HRSR design. Analyses of materials samples from previous matrix and valve tests were completed. Finally, a thermal stress cycling experiment to be carried out at Montana Tech was designed. Under Task 2, efforts were directed toward running Valve Test 3. Problems were encountered with the VTF hot gas supply duct which necessitated two intermediate shutdowns without reaching the final test goal of 300 hours. Modifications necessary to complete the test were begun. Under Task 3, an example HTAH system was defined which will be used as a focal point for screening and definition of control systems and determination of operating methods. The system was defined using the size/cost and other HTAH computer codes. A layout of the system was made, and steady state performance was calculated with the SCAMP code. (WHK)

None

1980-05-01T23:59:59.000Z

142

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999  

Science Conference Proceedings (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

Bechtel Jacobs Company LLC

2000-03-01T23:59:59.000Z

143

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 2000  

Science Conference Proceedings (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 2000. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 2000). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 2000, these goals were extended to CY 2001 for all waste streams that generated waste in 2000. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 50 waste streams met or exceeded their reduction goal based on the CY 2000 data.

Bechtel Jacobs Company LLC

2001-03-01T23:59:59.000Z

144

Projects at the Western Environmental Technology Office. Quarterly technical progress report, April 1--June 30, 1995  

Science Conference Proceedings (OSTI)

This report contains brief outlines of the multiple projects under the responsibility of the Western Environmental Technology Office in Butte Montana. These projects include biomass remediation, remediation of contaminated soils, mine waste technology, and several other types of remediation.

NONE

1995-08-01T23:59:59.000Z

145

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 33, quarter ending December 31, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-04-01T23:59:59.000Z

146

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 32, quarter ending September 30, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

147

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 35, quarter ending June 30, 1983  

Science Conference Proceedings (OSTI)

Progress reports are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

148

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 36 for quarter ending September 30, 1983  

SciTech Connect

Progress reports for the quarter ending September 30, 1983, are presented for field projects and supported research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovery by gravity mining; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1984-03-01T23:59:59.000Z

149

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

DOE Green Energy (OSTI)

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

150

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1981  

SciTech Connect

The Bartlesville Energy Technology Center's research activities are summarized under the following headings: liquid fossil fuel cycle; extraction which is subdivided into resource assessment and production; liquid processing which includes characterization of liquids from petroleum, coal, shale and other alternate sources, thermodynamics and process technology; utilization; and project integration and technology transfer. (ATT)

Not Available

1981-08-01T23:59:59.000Z

151

Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981  

DOE Green Energy (OSTI)

This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

Bradley, R.A. (comp.) [comp.

1981-12-01T23:59:59.000Z

152

CHEMICAL TECHNOLOGY DIVISION, CHEMICAL DEVELOPMENT SECTION B, QUARTERLY PROGRESS REPORT, JULY-SEPTEMBER 1961  

SciTech Connect

Research and development progress is reported on fuel dissolution, solvent extraction studies, corrosion studies, mechanisms of foam separation, waste treatment, ion exchange, and chemical applications of nuclear explosions. (M.C.G.)

Blaneo, R.E.

1962-01-26T23:59:59.000Z

153

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1979  

Science Conference Proceedings (OSTI)

Activities and progress are reported in: liquid fossil fuel cycle, extraction (enhanced recovery of oil and gas), processing (of petroleum and alternate fuels), utilization (transportation and energy conversion), and systems integration. BETC publications and finances are listed in appendices. (DLC)

Not Available

1980-04-01T23:59:59.000Z

154

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1982  

Science Conference Proceedings (OSTI)

Highlights of research activities at Bartlesville Energy Technology Center for the quarter ending March 1982 are summarized. Major research areas are: liquid fossil fuel cycle; extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, processing technology); utilization; and product integration and technology transfer. Special reports include: EOR data base - major new industry tool; properties of crude oils available via telephone hookup; alternative fuels data bank stresses transportation. (ATT)

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

155

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 29, quarter ending December 31, 1981  

SciTech Connect

Highlights of progress accomplished during the quarter ending December, 1981, are summarized in this report. Discussion is presented under the following headings: chemical flooding - field projects; chemical flooding - supporting research; carbon dioxide injection - field projects; carbon dioxide injection - supporting research; thermal/heavy oil - field projects and supporting research; resource assessment technology; extraction technology; environmental aspects; petroleum processing technology; microbial enhanced oil recovery; and improved drilling technology. (DMC)

Linville, B. (ed.)

1982-05-01T23:59:59.000Z

156

In situ transmission electron microscopy study of electric-field-induced microcracking in single crystal Pb,,Mg13Nb23...O3 PbTiO3  

E-Print Network (OSTI)

In situ transmission electron microscopy study of electric-field-induced microcracking in single March 2000; accepted for publication 2 May 2000 In this letter, we report in situ transmission electron microscopy TEM study of effect of a cyclic electric field on microcracking in a single crystal piezoelectric

Chen, Haydn H.

157

Chemical Technology Division progress report, April 1, 1983-March 31, 1985  

SciTech Connect

The status of the following programs is reported: fission energy; nuclear and chemical waste management; environmental control technology; basic science and technology; biotechnology programs; transuranium-element processing; Nuclear Regulatory Commission programs; Consolidated Edison Uranium Solidification Project; radioactive materials production; computer 1 engineering applications; and miscellanous programs.

1985-10-01T23:59:59.000Z

158

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1979  

Science Conference Proceedings (OSTI)

The in-house results at Bartlesville Energy Technology Center on the liquid fossil fuel cycle are presented. The cycle covers extraction, processing, utilization, and environmental technology of the liquid fuels derived from petroleum, heavy oils, tar sands, oil shale, and coal.

Linville, B. (ed.)

1980-02-01T23:59:59.000Z

159

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1980  

Science Conference Proceedings (OSTI)

Highlights of research activities at BETC during the past quarter are summarized in this document. Major research areas include: liquid fossil fuel cycle, extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, and process technology); utilization; and product integration and technology transfer.

Not Available

1981-05-01T23:59:59.000Z

160

Cost of energy from some renewable and conventional technologies. Progress report, FY 1980  

DOE Green Energy (OSTI)

Up-to-date, consistent, and transparent estimates of the cost of delivered energy from a selected number of solar and renewable technologies were developed and these were compared with the costs of conventional alternatives meeting the energy needs in comparable applications. Technology characterizations and cost assessments of representative systems relating to 23 solar and renewable resource technology/application pairs were performed. For each pair, identical assessments were also made for representative conventional (e.g., fossil fuel) competing systems. Section 2 summarizes the standardized methodology developed to do the technology characterizations and cost assessments. Assessments of technology/application pairs relating to distributed applications are presented in Section 3. Central system assessments are presented in Section 4. (MCW)

Not Available

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE/JPL advanced thermionic technology program. Progress report No. 38, February-March 1979  

DOE Green Energy (OSTI)

Progress on DOE tasks is reported including (1) surface and plasma investigations (surface characterization chamber experiments, spectroscopic plasma measurements, and converter theory), (2) low temperature converter development (tungsten emitter, lanthanum hexaboride collector and tungsten emitter, tungsten oxide collector), and (3) component hardware development. JPL tasks reported include high-temperature converter evaluation, advanced converter studies, and correlation of design interfaces. (WHK)

Not Available

1979-01-01T23:59:59.000Z

162

ERDA/NASA advanced thermionic technology program. Progress report No. 20  

DOE Green Energy (OSTI)

Progress is reported in the areas of surface studies (surface theory and activation chamber experiments), plasma studies (converter theory and enhanced mode conversion experiments), converter development (low temperature conversion experiments and high efficiency conversion experiments), and component hardware (hot shell development). (WHK)

Not Available

1977-02-01T23:59:59.000Z

163

NASA/DOE advanced thermionic technology program. Progress report No. 28  

DOE Green Energy (OSTI)

Surface studies of thermionic emitters and collectors in the surface characterization chamber are described. Plasma studies including converter theory, experimental plasma analyses, and enhanced mode conversion experiments are discussed. Progress in thermionic converter development, the component hardware program, and the combustion-heated thermionic device program are outlined. (WHK)

Not Available

1977-10-01T23:59:59.000Z

164

DOE/JPL advanced thermionic technology program. Progress report No. 42  

DOE Green Energy (OSTI)

Progress is reported on the following tasks: (I) surface and plasma investigations, (II) low-temperature converter development, (III) enhanced mode converter experiments, (IV) component hardware development, (V) thermionic power module system studies, (VI) thermionic array module development, (VII) high-temperature converter evaluation, (VIII) advanced converter studies, (IX) postoperational diagnostics, (X) cylindrical converter component development, and (XI) correlation of design interfaces. (WHK)

Not Available

1980-01-01T23:59:59.000Z

165

Finite element analysis of grain-matrix micro-cracking in shale within the context of a multiscale modeling  

E-Print Network (OSTI)

, hydrofracturing, or oil shale production. Current macro- scale and multiscale models do not account simultaneouslyFinite element analysis of grain-matrix micro-cracking in shale within the context of a multiscale-cracking in shale at grain-matrix inter- faces, assuming constituents are composed of quart silt grains

Regueiro, Richard A.

166

Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988  

SciTech Connect

The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

Not Available

1989-01-01T23:59:59.000Z

167

Chemical Technology Division annual progress report for period ending March 31, 1978  

SciTech Connect

Separate abstracts were prepared for the various sections on fission energy, coal conversion and utilization, waste management, basic science and technology, biotechnology and environmental studies, special isotope production and separations, Nuclear Regulatory Commission programs, and miscellaneous programs.

Ferguson, D.E.

1978-08-01T23:59:59.000Z

168

Technical and economic feasibility of membrane technology. Fourth technical progress report, June 17-September 16, 1980  

DOE Green Energy (OSTI)

Progress is reported on the investigation of the potential application of reverse osmosis, ultrafiltration and electrodialysis to the system of solids concentration in beet sugar process streams. During this period, emphasis was put on running reverse osmosis tests with a new prototype machine to select the most suitable membranes for the concentrating of sugar solutions. An economic analysis of using reverse osmosis in a factory producing 10/sup 6/ gal/day of thin juice is discussed. (DMC)

Sandre, A.

1980-10-01T23:59:59.000Z

169

Monthly Progress Report Heat Source Technology Programs January to March 1997  

SciTech Connect

This quarterly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2}in radioisotope power systems carried out for the Office of Special Applications of the U.S. Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

T. G. George

1999-05-01T23:59:59.000Z

170

Monthly Progress Report Heat Source Technology Programs October through December 1996  

SciTech Connect

This quarterly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of 238Pu02 in radioisotope power systems carried out for the Office of Special Applications of the U.S. Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

T. G. George

1998-12-01T23:59:59.000Z

171

Modeling, analysis and experiments for fusion nuclear technology: FNT progress report: Modeling and FINESSE  

Science Conference Proceedings (OSTI)

This document is a progress report on two technical studies carried out during 1986, both of which relate to the implementation phase of FNT. The first, which is a follow-up to FINESSE, focuses on specific key questions for: (1) very near-term (0 to 3 years) non-fusion experiments and facilities, and (2) FNT testing in a fusion facility. The second is the initial stage of a detailed effort to develop theory, models and computer codes for predicting the performance of nuclear components. Chapters are presented on (1) introduction and chapter summaries, (2) non-fusion experiments and facilities, (3) fusion testing issues, and (4) theory and modeling. Chapter 2 is an assessment of the relative advantages of many solid breeders, neutron multipliers and configurations. Various issues affecting design and cost of the blanket are examined in Chapter 3. Chapter 4 reports on the progress of the initial stage of an effort to develop theory and analytical and numerical models for nuclear components. A major part of the effort has focused on modeling of MHD effects for liquid metal blankets. Progress has also been made on modeling tritium transport and inventory in solid breeder blankets and the thermomechanical behavior of liquid-metal-cooled limiters. (MOW)

Abdou, M.A.; Tillack, M.S.; Raffray, A.R.; Hadid, A.H.; Bartlit, J.R.; Bell, C.E.C.; Gierszewski, P.J.; Gordon, J.D.; Iizuka, T.; Kim, C.N.

1987-01-01T23:59:59.000Z

172

Separations Science and Technology, Semiannual progress report, October 1991--March 1992  

SciTech Connect

This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1991--March 1992. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Two other projects are underway with the objective of developing (1) a membrane-assisted solvent extraction method for treating natural and process waters contaminated by volatile organic compounds and (2) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process.

Vandegrift, G.F.; Betts, S.; Chamberlain, D.B. [and others

1994-01-01T23:59:59.000Z

173

Separation Science and Technology semiannual progress report, October 1992--March 1993  

SciTech Connect

This document reports on the work done by the Separations Science and Technology Section of the Chemical Technology Division, Argonne National Laboratory, in the period October 1992--March 1993. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Two other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process and (2) treatment schemes for liquid wastes stored or being generated at Argonne.

Vandegrift, G.F. [Argonne National Lab., IL (United States); Betts, S. [Illinois Univ., Chicago, IL (United States); Bowers, D.L. [Argonne National Lab., IL (United States)] [and others

1995-01-01T23:59:59.000Z

174

Ceramic technology report. Semi-annual progress report, April 1994--September 1994  

SciTech Connect

The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Energy Efficiency and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

Johnson, D.R.

1995-06-01T23:59:59.000Z

175

Ceramic Technology Project semiannual progress report for October 1991--March 1992  

DOE Green Energy (OSTI)

Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work is organized into the following elements: materials and processing (monolithics [SiC, SiN], ceramic composites, thermal and wear coatings, joining), materials design methodology, data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, NDE), and technology transfer. Individual abstracts were prepared for the individual contributions.

Not Available

1992-09-01T23:59:59.000Z

176

CHEMICAL TECHNOLOGY DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING MAY 31, 1961  

SciTech Connect

Activities in research programs are summarized in the areas of power reactor fuel processing, fluoride volatility processing, molten salt reactor fuel processing, homogeneous reactor fuel processing, waste treatment and disposal pilot plant decontamination, GCR coolant purification studies, equipment decontamination, HRP thoria blanket development, fuel cycle development, transuranium element studies, production of U/sup 232/, uranium processing, fission product recovery, thorium recovery from granite, solvent extraction technology, mechanisms of separation processes, radiation effects on catalysts, ion exchange technology, chemical engineering research, chemical applications of nuclear explosions, reactor evaluation studies, and assistance programs. (J.R.D.)

1961-09-21T23:59:59.000Z

177

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report I. INTRODUCTION  

E-Print Network (OSTI)

, and Infrastructure Technologies Program. This new program office integrates activities in hydrogen production Secretary for Energy Efficiency and Renewable Energy (EERE), the new Office of Hydrogen, Fuel Cells-effective thermal energy needs for some or all of the building's heating/cooling requirements In FY 2003, a study

178

Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982  

SciTech Connect

This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

179

Smart-Grid Technologies and Progress in Europe and the USA  

E-Print Network (OSTI)

1 Smart Grid Security and Research Challenges Yi Deng, Sandeep Shukla, James Thorp November 30 or during the Smart Grid deployment ­ Smart Grid security investment $14 Billion during 2011-2018 ­ 63 and deployment of Smart Grid prototype systems Bad · By adding two-way digital communication technology

Simões, Marcelo Godoy

180

Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

Science Conference Proceedings (OSTI)

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.

Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Ben Poulter; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

2006-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Liquid fossil fuel technology. Quarterly technical progress rport, April-June 1983  

Science Conference Proceedings (OSTI)

Highlights of research activities for the quarter ending June 1983 are summarized under the following headings: liquid fossil fuel; extraction; processing; utilization; and project integration and technology transfer. BETC publications are listed. Titles of featured articles are: (1) chemical flooding field test produces 975,000 barrels of oil; (2) chemicals boost recovery in steam-drive tests; (3) North Dakota carbon dioxide minitest successful; (4) carbon dioxide EOR reports issued; and (5) BETC slated for new management and new name. (ATT)

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

182

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

DOE Green Energy (OSTI)

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

183

Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint  

DOE Green Energy (OSTI)

In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.

Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; von Roedern, B.; Symko-Davies, M.; Kane, V.

2011-07-01T23:59:59.000Z

184

Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base  

SciTech Connect

In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.

Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; Von Roedern, B.; Symko-Davies, M.; Kane, V.

2011-01-01T23:59:59.000Z

185

Composite Technology for Hydrogen Pipelines - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact), Barbara J. Frame and Lawrence M. Anovitz Oak Ridge National Laboratory (ORNL) P. O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Start Date: January 2005 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Complete high-pressure cyclic fatigue tests to verify that * a combination of H 2 environment and stress does not adversely affect composite pipeline integrity and service life. Identify the requisite data, provide data, and contribute * to the codification of hydrogen composite pipelines, in

186

DOE/JPL advanced thermionic technology program. Progress report No. 45, October, November, December 1980  

DOE Green Energy (OSTI)

This report covers progress made during the three-month period from October through December 1980. During this period, significant accomplishments include: (1) continuing stable output from the combustion life test of the one-inch diameter hemispherical silicon carbide diode (Converter No. 239) at an emitter temperature of 1730 K for a period of over 4200 hours; (2) construction of four diode module completed; (3) favorable results obtained from TAM combustor-gas turbine system analyses; (4) a FERP work function of 2.3 eV was obtained with the W(100)-O-Zr-C electrode; and (5) the average minimum barrier index of the last six research diodes built with sublimed molybdenum oxide collectors was 2.0 eV.

Not Available

1980-01-01T23:59:59.000Z

187

DOE advanced thermionic technology program. Progress report No. 46, January, February, March 1981  

SciTech Connect

The primary long-term goal is to improve thermionic performance to the level that thermionic topping of fossil-fuel powerplants becomes technically possible and economically attractive. An intermediate goal is to operate a thermionic module in a powerplant during the mid-1980's. A short-term goal is to demonstrate reliable thermionic operation in a combustion environment. This report covers progress made during the three-month period from January through March 1981. During this period, significant accomplishments include: (1) continuing stable output from the combustion test of the one-inch diameter hemispherical silicon carbide diode at an emitter temperature of 1730 K for a period of over 6400 hours; (2) demonstration of an additive oxygen effect in a research diode with a cesium-graphite reservoir located in the collector; (3) preliminary testing of the four-diode module; and (4) evaluation of a research diode with ZrO/sub 2/-Mo cermet electrodes.

Not Available

1981-01-01T23:59:59.000Z

188

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983  

DOE Green Energy (OSTI)

Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

189

Development of Kilowatt-Scale Coal Fuel Cell Technology - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Steven S.C. Chuang (Primary Contact), Tritti Siengchum, Jelvehnaz Mirzababaei, Azadeh Rismanchian, and Seyed Ali Modjtahedi The University of Akron 302 Buchtel Common Akron, OH 44310-3906 Phone: (330) 972-6993 Email: schuang@uakron.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-08GO0881114 Project Start Date: June 1, 2008 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives To develop a kilowatt-scale coal-based solid oxide fuel cell (SOFC) technology. The outcome of this research effort

190

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

191

Effects of Technology Cost Parameters on Hydrogen Pathway Succession - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark F. Ruth* (Primary Contact), Victor Diakov*, Brian James † , Julie Perez ‡ , Andrew Spisak † *National Renewable Energy Laboratory 15013 Denver West Pkwy. Golden, CO 80401 Phone: (303) 817-6160 Email: Mark.Ruth@nrel.gov and Victor.Diakov@nrel.gov † Strategic Analysis, Inc. ‡ New West Technologies DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Subcontractor: Strategic Analysis, Inc., Arlington, VA Project Start Date: February 1, 2009 Project End Date: October 31, 2011 Fiscal Year (FY) 2012 Objectives Develop a macro-system model (MSM): * Aimed at performing rapid cross-cutting analysis - Utilizing and linking other models - Improving consistency between models -

192

Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

1998-08-01T23:59:59.000Z

193

Progress review No. 24: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending September 30, 1980  

Science Conference Proceedings (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection and thermal/heavy oil, as well as for the following areas of research: extraction technology; resource assessment technology; environmental; petroleum technology; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-02-01T23:59:59.000Z

194

CHEMICAL TECHNOLOGY DIVISION UNIT OPERATIONS SECTION MONTHLY PROGRESS REPORT, APRIL 1962  

DOE Green Energy (OSTI)

Bubble size measurements in the foam column showed that a spinnerette with 50 mu holes gave a nearly normal distribution of bubbles sizes while a coarse fritted glass gas sparger had a tail of large bubbles which did not fit the normal curve. A set of equations solvable by a finite difference technique are presented which completely describe the irreversible reaction rate of H/sub 2/ or CO with a fixed bed of CuO pellets. Radiation damage tests are in progress to evaluate plastics for the Transuranium program. All dejacketed SRE Core I U fuel slugs were reeanned and shipped to Savannah River. Installation of the shear-leach complex is complete. The shortest practical length into which a tubular fuel element assembly may be sheared appears to be 1/2 in. Tests showed difficulties with shearing assemblies containing tube sheets. The stepped shear blade used for Mark I prototype fuel elements produced chunks of porcelain filled Yankee prototypes. Flow capacities of nozzle plate pulsed columns operated under dilute Purex fiowsheet conditions were determined. Fuel pins made with compacted sol-gel ThO/sub 2/ and U/sup 235/ were irradiated without difficulty to 17,000 Mwd/t. Routine operation of the rotary denitrator to give ThO/sub 2/ product was demonstrated. (auth)

Whatley, M.E.; Haas, P.A.; Horton, R.W.; Ryon, A.D.; Suddath, J.C.; Watson, C.D.

1962-10-01T23:59:59.000Z

195

DOE advanced thermionic technology program, progress report No. 46, January, February, March 1981  

DOE Green Energy (OSTI)

The primary long-term goal is to improve thermionic performance to the level that thermionic topping of fossil-fuel power plants becomes technically possible and economically attractive. An intermediate goal is to operate a thermionic module in a powerplant during the mid-1980's. A short-term goal is to demonstrate reliable thermionic operation in a combustion environment. Progress made during the three-month period from January through March 1981 is reported. During this period, significant accomplishments include: 1) continuing stable output from the combustion test of the one-inch diameter hemispherical silicon carbide diode (Converter No. 239) at an emitter temperature of 1730 K for a period of over 6400 hours; 3) demonstration of an additive oxygen effect in a research diode (Converter No. 258) with a cesium-graphite reservoir locate in the collector; 3) preliminary testing of the four-diode module; and 4) evaluation of a research diode (Converter No. 261) with ZrO/sub 2/-Mo cermet electrodes.

Not Available

1981-01-01T23:59:59.000Z

196

DOE/JPL advanced thermionic technology program. Progress report No. 43  

DOE Green Energy (OSTI)

Progress made during the three-month period from April through June 1980 is described, significant accomplishments include: 1) demonstration of over 3000 hours of stable operation (Converter No. 228: CVD Silicon Carbide No. 2) in a combustion atmosphere at a hot shell temperature of around 1650 K with a barrier index of 2.1 eV; 2) TRW analysis of the hot shell-emitter temperature of Converter No. 218 (5120 hours of flame-heated operation at emitter temperature at, or above, 1600 K) showed no life-limiting degradation mechanism; 3) Development of a protective coating for the braze between the molybdenum flange and the CVD hot shell-emitter structure for the flame-heated diodes which permits extended operation at cold end temperatures up to 850 K; 4) Completion of a Topical Report by C.C. Wang, The Formation of Double Sheaths and the J-V Characteristics in the Obstructed Region; 5) Demonstration of over 1100 hours of stable operation with Converter No. 232 (JPL Converter No. 4 - Molybdenum Emitter and Sublimed Molybdenum Oxide Collector) at a barrier index < 2.0 eV; and 6) Definition of oxygen transport mechanism from an oxide collector to the emitter.

Not Available

1980-01-01T23:59:59.000Z

197

Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009  

SciTech Connect

A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

2009-04-14T23:59:59.000Z

198

DOE/JPL advanced thermionic technology program. Progress report No. 44, July, August, September 1980  

DOE Green Energy (OSTI)

The primary long-term goal of the DOE effort is to improve TEC performance to the level that thermionic topping of fossil fuel powerplants becomes technically possible and economically attractive. An intermediate goal is to demonstrate an in-boiler thermionic module in the early 1980's. A short-term goal is the demonstration of the reliability of thermionic operation in a combustion environment. The focus of the JPL program is to develop thermionic conversion technology appropriate for nuclear electric propulsion missions. These missions require operation at collector temperatures that are substantially higher than those associated with terrestrial applications. The DOE and JPL tasks for developing thermionic energy conversion are complementary and synergistic. Converter performance improvement is an area in which one agency's program supports the effort of the other. Significant accomplishments in this reporting period are described.

Not Available

1980-01-01T23:59:59.000Z

199

Technology development for iron Fischer-Tropsch catalysts. Technical progress report No. 9, September 26, 1992--December 26, 1992  

SciTech Connect

The objectives of this contract are to develop a technology for the production of active and stable iron Fischer-Tropsch catalysts for use in slurry-phase synthesis reactors and to develop a scaleup procedure for large-scale synthesis of such catalysts for process development and long-term testing in slurry bubble-column reactors. With a feed containing hydrogen and carbon monoxide in the molar ratio of 0.5 to 1.0 to the slurry bubble-column reactor, the catalyst performance target is 88% CO + H{sub 2} conversion at a minimum space velocity of 2.4 NL/hr/gFe. The desired sum of methane and ethane selectivities is no more than 4%, and the conversion loss per week is not to exceed 1%. Contract Tasks are as follows: 1.0--Catalyst development, 1.1--Technology assessment, 1.2--Precipitated catalyst preparation method development, 1.3--Novel catalyst preparation methods investigation, 1.4--Catalyst pretreatment, 1.5--Catalyst characterization, 2.0--Catalyst testing, 3.0--Catalyst aging studies, and 4.0--Preliminary design and cost estimate of a catalyst synthesis facility. This paper reports progress on Task 1.3.

Frame, R.R.; Gala, H.B.

1992-12-31T23:59:59.000Z

200

Environmental control technology for atmospheric carbon dioxide. Quarterly progress report No. 1, June 20, 1977--September 30, 1977  

DOE Green Energy (OSTI)

The primary objective of the subject program is to assess the potential options for controlling atmospheric CO/sub 2/. Accordingly, CO/sub 2/ control scenarios based on conventional technology and applied to the larger industrial emitters will be prepared. The studies will include preliminary cost estimates of selected processes, to identify fruitful areas for environmental control technology (ECT) programmatic development as related to CO/sub 2/ release control. BNL's prior experience in this area includes the development and evaluation of a number of processes for removing CO/sub 2/ from the atmosphere for the purpose of producing synthetic carbonaceous fuels including methanol, gasoline, and methane. Background information from other DOE programs will be used to determine the limitations for the control studies. This progress report presents background information on: (1) the concentration levels of CO/sub 2/ in the atmosphere during the last one hundred years; (2) the possible effects of rising CO/sub 2/ levels; (3) the impact of fossil fuel use in the United States on overall worldwide CO/sub 2/ emissions; (4) the impact of increased coal utilization on CO/sub 2/ emissions; and (5) process considerations for controlling CO/sub 2/.

Steinberg, M.; Albanese, A.S.; Dang, V.D.

1977-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FY2005 - Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m Acknowledgement We would like to express our sincere appreciation to QSS Group, Inc., Oak Ridge National Laboratory, and Argonne National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the pro- grams and all the authors who prepared the project abstracts that comprise this report. This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any

202

DOE/JPL Advanced Thermionic Technology Program. Progress report No. 45, October-November-December 1980  

DOE Green Energy (OSTI)

The primary long-term goal of the DOE effort is to improve TEC performance to the level that thermionic topping of fossil fuel powerplants becomes technically possible and economically attractive. An intermediate goal is to demonstrate an in-boiler thermionic module in the early 1980's. A short-term goal is the demonstration of the reliability of thermionic operation in a combustion environment. The focus of the JPL program is to develop thermionic conversion technology appropriate for nuclear electric propulsion (NEP) missions. Accomplishments in the DOE program include: (1) continuing stable output from the combustion life test of the one-inch diameter hemispherical silicon carbide diode (Converter No. 239) at an emitter temperature of 1730/sup 0/K for a period of over 4200 hours; (2) construction of four diode module completed; (3) favorable results obtained from TAM combustor-gas turbine system analyses; and (4) obtained a FERP work function of 2.3 eV with the W(100)-O-Zr-C electrode. JPL program accomplishments include: the average minimum barrier index of the last six research diodes built with sublimed molybdenum oxide collectors was 2.0 eV. (WHK)

Not Available

1980-01-01T23:59:59.000Z

203

Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report, 1996  

DOE Green Energy (OSTI)

The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low- or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the ``standard-catalyst`` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, select and aging characteristics. The research is divided into four major topical areas: (a) catalyst preparation and characterization, (b) product characterization, (c) reactor operations, and (d) data assessment. Accomplishments for this period are described.

Davis, B.H.

1996-11-01T23:59:59.000Z

204

DOE/JPL Advanced Thermionic Technology Program. Progress report No. 44, July-August-September 1980  

DOE Green Energy (OSTI)

The primary long-term goal of the DOE effort is to improve TEC performance to the level that thermionic topping of fossil fuel powerplants becomes technically possible and economically attractive. The focus of the JPL program is to develop thermionic conversion technology appropriate for nuclear electric propulsion (NEP) missions. DOE program accomplishments include: (1) continuing combustion life test of the one-inch diameter hemispherical silicon carbide diode (Converter No. 239) at an emitter temperature of 1730/sup 0/K for a period of over 2200 hours; (2) thermal shock tests of a composite CVD hot shell-emitter structure by heating to 1875/sup 0/K and quenching with water (10 times) and liquid nitrogen (10 times); (3) thermal cycle tests of a composite CVD hot shell-emitter structure with heating and cooling periods less than 30 seconds; and (4) successful pressure test of composite CVD hot shell-emitter structure to 500 psi for three hours. JPL program accomplishments include: (1) the average minimum barrier index of the last five research diodes built with sublimed molybdenum oxide collectors was 2.0 eV; and (2) the converters constructed with sublimed molybdenum oxide collectors have activated in a rapid and well defined manner and given favorable output characteristics which are reproducible after a change in operating point. (WHK)

Not Available

1980-01-01T23:59:59.000Z

205

Materials technology for coal-conversion processes. Progress report, July-September 1980  

SciTech Connect

Failure analysis of the refractory lining of the Grand Forks Energy Technology Center slagging gasifier revealed that sodium hydroxide had reacted with the refractory, causing a large volume change and consequent spallation. Laboratory studies on pressure coupling of acoustic waveguides to pressure boundaries for long-term erosive wear measurements show that the use of annealed copper foil (0.25-0.76 mm (10-30 mil) thick) with a contact pressure of 50-70 MPa (7-10 ksi) can yield satisfactory coupling in the presence of thermal cycling. High-temperature corrosion studies have been initiated to investigate effects of deposits such as CaO and CaSO/sub 4/ on corrosion rates of Fe-2-1/4Cr-1Mo and Fe-9Cr-1Mo ferritic steels. Erosion studies at room temperature and atmospheric pressure were conducted on 1015 carbon steel, 304 and 310 stainless steel, Incoloy 800, and Stellite 6B. Impact particles were 150-..mu..m Al/sub 2/O/sub 3/ with impact angles of 16-81/sup 0/. Weight-loss measurements are in good agreement with prior work. Materials studies for instrumentation included studies of thermowells at the U-Gas plant run by IGT. Analysis of a product gas line from Bi-Gas indicates that failure was caused by caustic- or oxygen-assisted stress-corrosion cracking. A product gas line expansion joint from U-gas was also examined; at present, chloride-induced pitting seems to have been the cause of this failure, which was initiated at the inner surface.

Not Available

1980-12-01T23:59:59.000Z

206

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 22, quarter ending March 31, 1980  

Science Conference Proceedings (OSTI)

This report contains statements of objectives and summaries of technical progress on all DOE contracts pertaining to enhanced oil recovery and improved drilling techniques. Subject categories include chemical flooding; carbon dioxide injection; thermal recovery of heavy oil; resource assessment; improved drilling technology; residual oil; environmental; petroleum technology; and microbial enhanced oil recovery. An index containing the names of the companies and institutions involved is included. Current publications resulting from the DOE contractual program are listed. (DMC)

Linville, B. (ed.)

1980-07-01T23:59:59.000Z

207

Progress review No. 25: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending December 31, 1980  

Science Conference Proceedings (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improving drilling technology; and general supporting research.

Linville, B. (ed.)

1981-05-01T23:59:59.000Z

208

A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993  

Science Conference Proceedings (OSTI)

West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

Berg, M.T.; Reed, B.E.; Gabr, M.

1993-07-01T23:59:59.000Z

209

Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Zhili Feng (Primary Contact), Wei Zhang, John Wang and Fei Ren Oak Ridge National Laboratory (ORNL) 1 Bethel Valley Rd, PO Box 2008, MS 6095 Oak Ridge, TN 37831 Phone: (865) 576-3797 Email: fengz@ornl.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Subcontractors: * Global Engineering and Technology LLC, Camas, WA * Ben C. Gerwick Inc., Oakland, CA * MegaStir Technologies LLC, Provo, UT * University of Michigan, Ann Arbor, MI Project Start Date: October 1, 2010 Project End Date: Project continuation and direction

210

SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011  

SciTech Connect

This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators and stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.

Williams, D N

2011-04-02T23:59:59.000Z

211

Research Note---Does Technological Progress Alter the Nature of Information Technology as a Production Input? New Evidence and New Results  

Science Conference Proceedings (OSTI)

Prior research at the firm level finds information technology (IT) to be a net substitute for both labor and non-IT capital inputs. However, it is unclear whether these results hold, given recent IT innovations and continued price declines. In this study ... Keywords: IT business value, capital services, complement, hedonic, organizational decentralization, price index, productivity, rental price, substitute, technological change

Paul Chwelos; Ronald Ramirez; Kenneth L. Kraemer; Nigel P. Melville

2010-06-01T23:59:59.000Z

212

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

213

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

214

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

215

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

216

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

217

ERDA/NASA Advanced Thermionic Technology Program. Progress report No. 25. Report No. TE4220/4233-14-78  

SciTech Connect

Progress is reported in the areas of (1) surface studies (surface theory, surface characterization chamber, activation chamber), (2) plasma studies (converter theory, enhanced mode conversion), (3) converter development (low-temperature conversion experiments, high-efficiency converter experiments), and (4) hot shell development. (WHK)

Toy, A.

1977-07-01T23:59:59.000Z

218

The progress and challenges of threshold voltage control of high-k/metal-gated devices for advanced technologies (Invited Paper)  

Science Conference Proceedings (OSTI)

This paper discusses recent progress in and challenges of threshold voltage control for advanced high-k/metal-gated (HKMG) devices. It presents the impact on threshold voltage (V"t) control of incorporating La and Al into HKMG devices. A dipole moment ... Keywords: CMOS, Capping layer, EOT, High-k, Metal gate, Threshold voltage control

Hsing-Huang Tseng; Paul Kirsch; C. S. Park; Gennadi Bersuker; Prashant Majhi; Muhammad Hussain; Raj Jammy

2009-07-01T23:59:59.000Z

219

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

220

Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. 25242 Arctic Ocean Drive Lake Forest, CA 92630 Phone: (949) 399-4584 Email: mleavitt@qtww.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FG36-08GO18055 Subcontractors: * Boeing Research and Technology, Seattle, WA * Pacific Northwest National Laboratory (PNNL), Richland, WA Project Start Date: September 1, 2008 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Develop new methods for manufacturing Type IV

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chemical Technology Division progress report for the period April 1, 1981-March 31, 1983. [Oak Ridge National Laboratory  

SciTech Connect

Separate abstracts were prepared for eight sections of the report: nuclear waste management; fossil energy; basic science and technology; biotechnology and environmental programs; transuranium-element processing; Nuclear Regulatory Commission programs; Three Mile Island support studies; and miscellaneous programs.

1983-09-01T23:59:59.000Z

222

Advanced Technology Section semiannual progress report, April 1-September 30, 1977. Volume 1. Biotechnology and environmental programs. [Lead Abstract  

DOE Green Energy (OSTI)

Research efforts in six areas are reported. They include: centrifugal analyzer development; advanced analytical systems; environmental research; bioengineering research;bioprocess development and demonstration; and, environmental control technology. Individual abstracts were prepared for each section for ERA/EDB. (JCB)

Pitt, W.W. Jr.; Mrochek, J.E. (comps.)

1980-06-01T23:59:59.000Z

223

Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998  

DOE Green Energy (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

Jubin, R.T.

1999-04-01T23:59:59.000Z

224

Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis  

SciTech Connect

The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility.

Brandyberry, M.D.; Baker, W.H.; Wittman, R.S. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N. [Science Applications International Corp., Albuquerque, NM (United States)

1993-12-31T23:59:59.000Z

225

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

226

Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998  

Science Conference Proceedings (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

Jubin, R.T.

1999-03-01T23:59:59.000Z

227

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

228

HIGH-TEMPERATURE LIQUID-METAL TECHNOLOGY REVIEW. A Bimonthly Technical Progress Review. Vol. 1, No. 1  

SciTech Connect

Unclassified technical reports and papers in the hightemperature liquid- metal field are reviewed. All phases of liquid-metal technology pertinent to the space power development program are covered, including materials development, corrosion, heat transfer, fluid dynamics, instrumentation, component development, physical properties, and power systems. Twelve reviews are included. (M.C.G.)

Dwyer, O.E. ed.

1963-02-01T23:59:59.000Z

229

Energy from the west: a progress report of a technology assessment of western energy resource development. Executive summary  

SciTech Connect

This report covers a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period from the present to the year 2000.

White, I.L.; Chartock, M.A.; Leonard, R.L.; LaGrone, F.S.; Bartosh, C.P.

1977-10-01T23:59:59.000Z

230

Will Progress in Science and Technology Avert or Accelerate Global Collapse? A Critical Analysis and Policy Recommendations  

Science Conference Proceedings (OSTI)

Industrial society will move towards collapse if its total environmental impact (I), expressed either in terms of energy and materials use or in terms of pollution, increases with time, i.e., dI/dt > 0. The traditional interpretation of the I=PAT equation reflects the optimistic belief that technological innovation, particularly improvements in eco-efficiency, will significantly reduce the technology (T) factor, and thereby result in a corresponding decline in impact (I). Unfortunately, this interpretation of the I=PAT equation ignores the effects of technical change on the other two factors: population (P) and per capita affluence (A). A more heuristic formulation of this equation is I=P(T)?A(T)?T in which the dependence of P and A on T is apparent. From historical evidence, it is clear that technological revolutions (tool-making, agricultural, and industrial) have been the primary driving forces behind successive population explosions, and that modern communication and transportation technologies have been employed to transform a large proportion of the worlds inhabitants into consumers of material- and energy-intensive products and services. In addition, factor analysis from neoclassical growth theory and the rebound effect provide evidence that science and technology have played a key role in contributing to rising living standards. While technological change has thus contributed to significant increases in both P and A, it has at the same time brought about considerable eco-efficiency improvements. Unfortunately, reductions in the T-factor have generally not been sufficiently rapid to compensate for the simultaneous increases in both P and A. As a result, total impact, in terms of energy production, mineral extraction, land-use and CO2 emissions, has in most cases increased with time, indicating that industrial society is nevertheless moving towards collapse. The belief that continued and even accelerated scientific research and technological innovation will automatically result in sustainability and avert collapse is at best mistaken. Innovations in science and technology will be necessary but alone will be insufficient for sustainability. Consequently, what is most needed are specific policies designed to decrease total impact, such as (a) halting population growth via effective population stabilization plans and better access to birth control methods, (b) reducing total matter-energy throughput and pollution by removing perverse subsidies, imposing regulations that limit waste discharges and the depletion of non-renewable resources, and implementing ecological tax reform, and (c) moving towards a steady-state economy in which per-capita affluence is stabilized at lower levels by replacing wasteful conspicuous material consumption with social alternatives known to enhance subjective well-being. While science and technology must play an important role in the implementation of these policies, none will be enacted without a fundamental change in societys dominant values of growth and exploitation. Thus, value change is the most important prerequisite for avoiding global collapse.

Huesemann, Michael H.; Huesemann, Joyce A.

2008-12-01T23:59:59.000Z

231

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997  

DOE Green Energy (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-01-01T23:59:59.000Z

232

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997  

SciTech Connect

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-07-01T23:59:59.000Z

233

Design of a novel conduction heating based stress-thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds  

E-Print Network (OSTI)

The objective of this research was to determine the effect of thermal cycling combined with mechanical loading on the development of microcracks in M40J/PMR-II- 50, the second generation aerospace application material. The objective was pursued by finding the critical controlling parameters for microcrack formation from mechanical stress-thermal cycling test. Three different in-plane strains (0%, 0.175~0.350%, and 0.325~0.650%) were applied to the composites by clamping composite specimens (M40J/PMR-II-50, [0,90]s, a unitape cross-ply) on the radial sides of half cylinders having two different radii (78.74mm and 37.96mm). Three different thermal loading experiments, 1) 23oC to â??196oC to 250oC, 2) 23oC to 250oC, and 3) 23oC to -196oC, were performed as a function of mechanical inplane strain levels, heating rates, and number of thermal cycles. The apparatus generated cracks related to the in-plane stresses (or strains) on plies. The design and analysis concept of the synergistic stress-thermal cycling experiment was simplified to obtain main and interaction factors by applying 2k factorial design from the various factors affecting microcrack density of M40J/PMR-II-50. Observations indicate that the higher temperature portion of the cycle under load causes fiber/matrix interface failure. Subsequent exposure to higher stresses in the cryogenic temperature region results in composite matrix microcracking due to the additional stresses associated with the fiber-matrix thermal expansion mismatch.

Ju, Jaehyung

2005-08-01T23:59:59.000Z

234

The development of coal-based technologies for Department of Defense facilities. Technical progress report, September 1995 - March 1996  

Science Conference Proceedings (OSTI)

The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, the Phase I final report was completed. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included completing a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work continued on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filtering device will be used to demonstrate a smaller and more efficient filtering device for retrofit applications. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

Miller, B.G.; Pisupati, S.V.; Scaroni, A.W. [and others

1996-10-01T23:59:59.000Z

235

SP-100 thermionic technology program annual integrated technical progress report for the period ending September 30, 1984  

DOE Green Energy (OSTI)

The thermionic technology program addresses the feasibility issues of a seven-year-life thermionic fuel element (TFE) for the SP-100 Thermionic Reactor Space Power System. These issues relate to the extension of TFE lifetime from three to seven years, one of the SP-100 requirements. The technology to support three-year lifetimes was demonstrated in the earlier TFE development program conducted in the late-1960s and 1970s. Primary life-limiting factors were recognized to be thermionic emitter dimensional increases due to swelling of the nuclear fuel and electrical structural damage from fast neutrons. The 1984-85 technology program is investigating the fueled emitter and insulator lifetime issues, both experimentally and analytically. The goal is to analytically project the lifetime of the fueled emitter and insulator and to experimentally verify these projection methods. In 1984, the efforts were largely devoted to the design and building of fueled emitters for irradiation in 1985, validation of fuel-emitter models, development of irradiation-resistant metal-ceramic seal and sheath insulator, modeling of insulator lifetime, and development of wide-spread, high-performance thermionic converters.

Holland, J.W. (ed.)

1984-11-01T23:59:59.000Z

236

Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for January 2000 through March 2000  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides radioisotope Power Systems (BPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of .I 997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at OBNL.

Moore, J.P.

2000-08-18T23:59:59.000Z

237

Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for April 2000 through June 2000  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at ORNL.

Moore, J.P.

2000-10-23T23:59:59.000Z

238

SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010  

Science Conference Proceedings (OSTI)

This report summarizes work carried out by the ESG-CET during the period October 1, 2009 through March 31, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities).

Williams, D N; Foster, I T; Middleton, D E; Ananthakrishnan, R; Siebenlist, F; Shoshani, A; Sim, A; Bell, G; Drach, R; Ahrens, J; Jones, P; Brown, D; Chastang, J; Cinquini, L; Fox, P; Harper, D; Hook, N; Nienhouse, E; Strand, G; West, P; Wilcox, H; Wilhelmi, N; Zednik, S; Hankin, S; Schweitzer, R; Bernholdt, D; Chen, M; Miller, R; Shipman, G; Wang, F; Bharathi, S; Chervenak, A; Schuler, R; Su, M

2010-04-21T23:59:59.000Z

239

Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Joseph W. Reiter (Primary Contact), Alexander Raymond, Channing C. Ahn (Caltech), Bret Naylor, Otto Polanco, Rajeshuni Ramesham, and Erik Lopez Jet Propulsion Laboratory (JPL) 4800 Oak Grove Drive, Mail Stop 79-24 Pasadena, CA 91109-8099 Phone: (818) 354-4224; Email: Joseph.W.Reiter@jpl.nasa.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractor: California Institute of Technology, Pasadena, CA Project Start Date: February, 2009 Project End Date: September, 2014 Fiscal Year (FY) 2012 Objectives Identify state-of-art concepts and designs for * cryosorbent-based hydrogen storage systems

240

Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Bart van Hassel (Primary Contact), Jose Miguel Pasini, Andi Limarga, John Holowczak, Igor Fedchenia, John Khalil, Reddy Karra, Ron Brown, Randy McGee United Technologies Research Center (UTRC) 411 Silver Lane East Hartford, CT 06108 Phone: (860) 610-7701 Email: vanhasba@utrc.utc.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19006 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Collaborate closely with the Hydrogen Storage * Engineering Center of Excellence (HSECoE) partners to advance materials-based hydrogen storage system

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993  

Science Conference Proceedings (OSTI)

This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

Not Available

1993-05-01T23:59:59.000Z

242

Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

1997-12-31T23:59:59.000Z

243

Progress Report for Advanced Automotive Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies

244

HIGH-TEMPERATURE LIQUID-METAL TECHNOLOGY REVIEW. A Bimonthly Technical Progress Review. Volume 1, No. 6  

SciTech Connect

Information is included on: sodium-heated steam generntor development; thermodynamic properties of K and Nb- Zr alloy; engineering properties of K and Cs; research on cavitation and cavitation damage in liquid metals, Hg and H/sub 2/ O, and mechanical pump impellers operating in liquid metal space power loops; sodium pumps and loops; 15 kw solar mechanical engine; sodium cold traps; reactor development; liquid metals technology of Hg, K, Na, NaK, Rb, and Cs; liquid metal heat and mass transfe r; heat rejection problems in nuclear space power plants; SPUR program; effects of high temperature Na on austenitic and ferritic steels; structural materials in LASL liquid sodium systems; LAMPRE program; twostage potassium test turbine; and application of nuclear electrical power to manned orbiting space stations. (P.C.H.)

1963-12-01T23:59:59.000Z

245

Technology development for iron Fischer-Tropsch catalysts. Technical progress report No. 12, June 26, 1993--September 26, 1993  

DOE Green Energy (OSTI)

The objectives of this contract are to develop a technology for the production of active and stable iron Fischer-Tropsch catalysts for use in slurry-phase synthesis reactors and to develop a scale-up procedure for large-scale synthesis of such catalysts for process development and long-term testing in slurry bubble-column reactors. With a feed containing hydrogen (H{sub 2}) and carbon monoxide (CO) in the molar ratio of 0.5 to 1.0 to the slurry bubble column reactor, the catalyst performance target is 88% CO + H{sub 2} conversion at a minimum space velocity of 2.4 NL/hr/g Fe. The desired sum of methane and ethane selectivities is no more than 4%, and the conversion loss per week is not to exceed 1%.

Frame, R.R.; Gala, H.B.

1994-07-01T23:59:59.000Z

246

HIGH-TEMPERATURE LIQUID-METAL TECHNOLOGY REVIEW. A Bimonthly Technical Progress Review. Volume 1, Number 2  

SciTech Connect

Metals ---technology of high-temperature liquid, review; Systems for Nuclear Auxiliary Power (SNAP-2) ---coolant boiling research for; Nuclear Power Plants ---development research on thermionic, Los Alamos Molten Plutonium Reactor Experiments ---fuel element analysis; Heat Transfer Systems ---conference on liquid metal; Bearings --coating for liquid metal, performance of; Systems for Nuclear Auxiliary Power (SNAP-8) ---component development; Sodium---heat transfer research on; Mercury --heat transfer research on; Potassium ---heat transfer research on; Nitrogen Systems ---Hg --N, flow characteristics for two-phase; Mercury Systems ---Hg --N, flow characteristics for two-phase; Nuclear Power Plants ---heat transfer rejection by space, research on; Alkali Metals ---heat transfer research on; Turbines ---development of twostage potassium; Bearings --- development of liquid-metal lubricated; Niobium Alloys ---properties for alkali metal containment, research on; Rubidium ---thermophysical properties of; Los Alamos Molten Plutonium Reactor Experiments ---design of LAMPRE-1. (D.C.W.)

Dwyer, O.E. ed.

1963-04-01T23:59:59.000Z

247

Geothermal direct-heat utilization assistance. Federal Assistance Program: Quarterly project progress report, October--December 1992  

DOE Green Energy (OSTI)

Progress on technical assistance, R&D activities, technology transfer, and geothermal progress monitoring is summarized.

Not Available

1992-12-31T23:59:59.000Z

248

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

249

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

250

Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 7, April 1, 1994--June 30, 1994  

DOE Green Energy (OSTI)

This project`s goal is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column (SBC) reactor. During the seventh quarter, significant progress in several areas has enabled us to make a number of important conclusions. Preliminary catalyst preparation of 3 batches of a Ru-promoted 20% Co/Al{sub 2}O{sub 3} has confirmed the similarity in catalysts prepared by Energy International and by Calsicat using the same procedure. This similarity was evident in both fixed and SBC reactor studies. All TiO{sub 2}-supported Co catalysts have been found to have poor F-T properties in both the fixed-bed and SBC reactors. These catalysts had been prepared following exactly the procedures given in the Exxon patents. One of the main problems in using TiO{sub 2} as a support is the fact that it has low surface area for supporting a 20 wt % Co catalyst. Another problem is that it does not seem to be robust enough for use in a SBC reactor. Ru promotion of Co/SiO{sub 2} does not have as dramatic an effect on catalyst activity as seen for Co/Al{sub 2}O{sub 3}. However, it does play a major role in maintaining higher activity (factor of 2 in the SBCR) when K is added to Co/Sr/SiO{sub 2}. Zr has been clearly shown by us to significantly enhance the F-T activity of Co/SiO{sub 2}. Such promotion is a basis for many of the Shell cobalt F-T patents. Latest results indicate that Zr also improves the activity of Co/Al{sub 2}O{sub 3}, although the methane selectivity is also slightly elevated. Finally, for our design of a ``benchmark`` Co F- T catalyst, research has now shown using both fixed-bed and SBC reactors that 0.3 wt % K is the optimum amount to use with Ru- promoted 20 wt % Co/Al{sub 2}O{sub 3}. This amount of K greatly improves higher hydrocarbon selectivity without causing an unacceptable loss of activity.

Singleton, A.H.

1995-05-31T23:59:59.000Z

251

Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report No. 6, January 1, 1996--March 31, 1996  

DOE Green Energy (OSTI)

The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low- or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the ``standard-catalyst`` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics. The research is divided into four major topical areas: (a) catalyst preparation and characterization, (b) product characterization, (c) reactor operations, and (d) data assessment. Accomplishments for this period are discussed.

Davis, B.H.

1996-05-01T23:59:59.000Z

252

Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report No. 5, October 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low- or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the ``standard-catalyst`` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics. The research is divided into four major topical areas: (a) catalyst preparation and characterization, (b) product characterization, (c) reactor operations, and (d) data assessment. Accomplishments to date are described.

Davis, B.H.

1996-01-19T23:59:59.000Z

253

Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979  

SciTech Connect

This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

Bergman, H.L.

1980-01-04T23:59:59.000Z

254

Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates. Annual technical progress report, July 5, 1996--December 31, 1997  

DOE Green Energy (OSTI)

Iowa Thin Film Technologies, Inc.`s (ITF) goal is to develop the most cost effective PV manufacturing process possible. To this end the authors have chosen a roll based manufacturing process with continuous deposition and monolithic integration. Work under this program is designed to meet this goal by improving manufacturing throughput and performance of the manufactured devices. Significant progress was made during Phase 2 of this program on a number of fronts. A new single pass tandem deposition machine was brought on line which allows greatly increased and improved throughput for rolls of tandem material. The TCO deposition process was improved resulting in an increase in throughput by 20%. A new alignment method was implemented on the printing process which improves throughput six fold while improving alignment from 100 {micro}m to 10 {micro}m. A roll based lamination procedure was developed and implemented on selected products which improves throughput from 20 sq. ft./hr. to 240 sq. ft./hr. A wide range of lower cost encapsulants were evaluated. A promising material was selected initially to be introduced in 5 year lifetime type products. The sum of these improvements bring the overall cost reduction resulting from this program to 49%.

Jeffrey, F. [Iowa Thin Film Technologies, Inc., Ames, IA (United States)

1998-08-01T23:59:59.000Z

255

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 21, quarter ending December 31, 1979  

Science Conference Proceedings (OSTI)

Individual report are presented of contracts for field projects and supporting research on chemical flooding, CO/sub 2/ injection, thermal/heavy oil, resource assessment technology, improved drilling technology, residual oil, environment, and petroleum technology. (DLC)

Linville, B. (ed.)

1980-04-01T23:59:59.000Z

256

SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period April 1, 2009 through September 30, 2009  

Science Conference Proceedings (OSTI)

This report summarizes work carried out by the ESG-CET during the period April 1, 2009 through September 30, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities). During this semi-annual reporting period, the ESG-CET team continued its efforts to complete software components needed for the ESG Gateway and Data Node. These components include: Data Versioning, Data Replication, DataMover-Lite (DML) and Bulk Data Mover (BDM), Metrics, Product Services, and Security, all joining together to form ESG-CET's first beta release. The launch of the beta release is scheduled for late October with the installation of ESG Gateways at NCAR and LLNL/PCMDI. Using the developed ESG Data Publisher, the ESG II CMIP3 (IPCC AR4) data holdings - approximately 35 TB - will be among the first datasets to be published into the new ESG enterprise system. In addition, the NCAR's ESG II data holdings will also be published into the new system - approximately 200 TB. This period also saw the testing of the ESG Data Node at various collaboration sites, including: the British Atmospheric Data Center (BADC), the Max-Planck-Institute for Meteorology, the University of Tokyo Center for Climate System Research, and the Australian National University. This period, a total of 14 national and international sites installed an ESG Data Node for testing. During this period, we also continued to provide production-level services to the community, providing researchers worldwide with access to CMIP3 (IPCC AR4), CCES, and CCSM, Parallel Climate Model (PCM), Parallel Ocean Program (POP), and Cloud Feedback Model Intercomparison Project (CFMIP), and NARCCAP data.

Williams, D N; Foster, I T; Middleton, D E

2009-10-15T23:59:59.000Z

257

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 37, quarter ending December 31, 1983  

SciTech Connect

Project reports are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; thermal methods; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; and general supporting research.

Linville, B. (ed.)

1984-08-01T23:59:59.000Z

258

Contracts and grants for cooperative research on enhanced oil recovery and improved drilling technology. Progress review No. 20, quarter ending September 30, 1979  

SciTech Connect

The contracts and grants for field projects and supporting research on enhanced oil recovery and improved drilling technology are arranged according to: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; improved drilling technology; residual oil; environmental; and petroleum techology.

Linville, B. (ed.)

1980-01-01T23:59:59.000Z

259

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 27, for quarter ending June 30, 1981  

Science Conference Proceedings (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-09-01T23:59:59.000Z

260

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 30, quarter ending March 31, 1982  

SciTech Connect

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; microbial enhanced oil recovery; improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995  

SciTech Connect

Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

NONE

1996-01-22T23:59:59.000Z

262

SunShot Initiative: Forecasting and Influencing Technological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecasting and Influencing Technological Progress in Solar Energy to someone by E-mail Share SunShot Initiative: Forecasting and Influencing Technological Progress in Solar Energy...

263

Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program  

Science Conference Proceedings (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. [comps.

1992-04-01T23:59:59.000Z

264

Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991  

Science Conference Proceedings (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. (comps.)

1992-04-01T23:59:59.000Z

265

DOE/JPL advanced thermionic technology program. Progress report No. 39, April-June 1979. Report No. TE4258/4247-2-80  

DOE Green Energy (OSTI)

DOE tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low-temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); and flame-fired CVD silicon carbide converters. JPL tasks include high temperature and advanced converter studies, postoperational diagnostics, and correlation of design interfaces. Progress on each of these tasks is reported. (WHK)

Not Available

1979-01-01T23:59:59.000Z

266

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-05-15T23:59:59.000Z

267

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-09-30T23:59:59.000Z

268

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2005-11-04T23:59:59.000Z

269

Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 9, October 1, 1981-December 31, 1981  

DOE Green Energy (OSTI)

The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, activity continued in three of the four task areas: Task 2-cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas. Progress is reported. (WHK)

Not Available

1981-01-01T23:59:59.000Z

270

Continuous roll-to-roll a-Si photovoltaic manufacturing technology. Semiannual technical progress report, 1 April 1992--30 September 1992  

DOE Green Energy (OSTI)

This report describes work performed by ECD to advance its roll-to-roll, triple-junction photovoltaic manufacturing technologies; to reduce the module production costs; to increase the stabilized module performance; and to expand the commercial capacity utilizing ECD technology. The 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1/W{sub p}. Major efforts during Phase I are (1) the optimization of the high-performance back-reflector system, (2) the optimization of a-Si-Ge narrow band-gap solar cell, and (3) the optimization of the stable efficiency of the module. The goal is to achieve a stable 8% efficient 0.3-m {times} 1.2-m (1-ft {times} 4-ft) module. Also, the efforts include work on a proprietary, high-deposition-rate, microwave plasma, CVD manufacturing technology; and on the investigation of material cost reduction.

Izu, M. [Energy Conversion Devices, Inc., Troy, MI (United States)

1993-04-01T23:59:59.000Z

271

The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1992--March 27, 1993  

Science Conference Proceedings (OSTI)

The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (MC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and pre-combustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash and high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase I are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil- designed watertube boiler located on a DOD installation to fire either MCWM or MC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; (5) Final Report/Submission of Design Package.

Miller, B.G.; Scaroni, A.W.; Hogg, R. [and others

1993-05-13T23:59:59.000Z

272

1992 PVUSA progress report  

DOE Green Energy (OSTI)

Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic (PV) electric generating systems. This report updates the progress of the PVUSA project, reviews the status and performance of the various PV installations during 1992, and summarizes key accomplishments and conclusions from work to date. Fall PV module costs and rising environmental pressures could make PV a significant source of large-scale power within the next decade. However, utility acceptance of this technology requires knowledge of PV operational characteristics in a utility system and confidence in predicting PV performance, reliability, and economics. PVUSA consists of two types of demonstrations: Emerging Module Technologies (EMTs), which are unproven but promising state-of-the-art PV technologies in 20-kW (nominal) arrays; and Utility Scale (US) systems, which represent more mature PV technologies in 200- to 500-kW (nominal) turnkey systems.

NONE

1992-12-31T23:59:59.000Z

273

Center for Power Electronics Systems PROGRESS REPORT  

E-Print Network (OSTI)

PROGRESS REPORT 2010 SMES program S uperconducting magnetic energy storage (SMES) is a way of storing TECHNOLOGIES Standard-Cell Passive IPEMs Motor and Converter Integration Control and Sensor Integration Thermal;CPES 10 YEAR PROGRESS REPORT 2010 CPES 10 YEAR PROGRESS REPORT Chapter 1: Introduction Outlines

Beex, A. A. "Louis"

274

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration phase 3. Quarterly progress report, October 1--December 31, 1995  

DOE Green Energy (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-05-01T23:59:59.000Z

275

Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 24, July 1, 1994--September 30, 1994  

SciTech Connect

A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

NONE

1995-04-01T23:59:59.000Z

276

The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1995--September 27, 1995  

SciTech Connect

The U.S. Department of Defense (DOD), through the Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Mixture Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, preparation of the Phase I final report continued. Work on Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included initiating a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work started on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filter device will be used to demonstrate a more compact and efficient filtering device for retrofit applications. Coal preparation and utilization activities, and the economic analysis were completed and work focused on preparing the final report. Work on Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on selecting incentives for commercialization of coal using technologies, community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

Miller, B.G.; Hatcher, P.; Knicker, H. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

1996-10-21T23:59:59.000Z

277

The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1993--March 27, 1994  

Science Conference Proceedings (OSTI)

The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. To achieve the objectives of the program, a team of researchers was assembled. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFS) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phases I and II are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

Miller, B.G.; Morrison, J.L.; Sharifi, R.; Shepard, J.F.; Scaroni, A.W.; Hogg, R.; Chander, S.; Cho, H.; Ityokumbul, M.T.; Klima, M.S. [and others

1994-11-30T23:59:59.000Z

278

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

279

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-12-31T23:59:59.000Z

280

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Semi-Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2001 Through March 31, 2002  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2002. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

J. P. Moore, JPM

2002-05-22T23:59:59.000Z

282

Semi-Annual Technical Progress Report of the Radioisotope Power System Materials Production and Technology Program Tasks for September 2000 through March 2001  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) and weld shields (WS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2001. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, CVS, and WS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials. or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

Moore, J.P.

2001-05-22T23:59:59.000Z

283

Semi-Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for April 1, 2002 Through September 20, 2002  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2002. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

Moore, J.P.

2002-12-03T23:59:59.000Z

284

Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2002 Through September 30, 2003  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2003. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

King, J.F.

2004-05-18T23:59:59.000Z

285

Analysis of Laboratory Fuel Cell Technology Status … Voltage Degradation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jennifer Kurtz (Primary Contact), Keith Wipke, Sam Sprik, Genevieve Saur, Huyen Dinh National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4061 Email: jennifer.kurtz@nrel.gov DOE Manager HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.dog.gov Project Start Date: July 1, 2009 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Conduct an independent assessment to benchmark * state-of-the-art fuel cell durability in a non-proprietary method Leverage analysis experience from the Fuel Cell Electric * Vehicle Learning Demonstration project Collaborate with key fuel cell developers on the analysis

286

The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995  

SciTech Connect

This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

1996-10-15T23:59:59.000Z

287

The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1994--September 27, 1994  

SciTech Connect

The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. Activities this reporting period included performing coal beneficiation/preparation studies, conducting combustion performance evaluations, preparing retrofit engineering designs, determining retrofit economics, and installing a micronized coal-water mixture (MCWM) circuit.

Miller, B.G.; Bartley, D.A.; Morrison, J.L. [and others

1995-04-14T23:59:59.000Z

288

ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEMS MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2010 THROUGH SEPTEMBER 30, 2011  

Science Conference Proceedings (OSTI)

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. These components were also produced for the Pluto New Horizons and Mars Science Lab missions launched in January 2006 and November 2011respectively. The ORNL has been involved in developing materials and technology and producing components for the DOE for nearly four decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2011. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS. Work has also been initiated to establish fabrication capabilities for the Light Weight Radioisotope Heater Units.

King, James F [ORNL

2012-05-01T23:59:59.000Z

289

Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2004 through September 30, 2005  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

None listed

2006-08-03T23:59:59.000Z

290

ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEM MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2005 THROUGH SEPTEMBER 30, 2006  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

King, James F [ORNL

2007-04-01T23:59:59.000Z

291

Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2004 Through September 30, 2005  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

King, James F [ORNL

2006-06-01T23:59:59.000Z

292

Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2003 through September 30, 2004  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2004. Production and production maintenance activities for flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

None listed

2005-06-01T23:59:59.000Z

293

Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2006 Through September 30, 2007  

DOE Green Energy (OSTI)

The Office of Radioisotope Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Radioisotope Power Systems for fiscal year (FY) 2007. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

King, James F [ORNL

2008-04-01T23:59:59.000Z

294

Annual Technical Progress Report of the Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2008 through September 30, 2009  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems of the U. S. Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators (RTG) were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. ORNL has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2009. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

King, James F [ORNL

2010-05-01T23:59:59.000Z

295

Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2007 Through September 30,2008  

DOE Green Energy (OSTI)

The Office of Radioisotope Power Systems (RPS) of the Department of Energy (DOE) provides RPS for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2008. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

King, James F [ORNL

2009-04-01T23:59:59.000Z

296

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

297

Quarterly Progress Report  

DOE Green Energy (OSTI)

The Federal Energy Technology Center (FETC) at Pittsburgh contracted with the MJTRE Corporation to perform Research Guidance Studies that will assist the Center and other relevant offices in the Department of Energy in evaluating and prioritizing research in the areas of coal and natural gas conversion. MITRE was reorganized in December 1995, which resulted in the formation of Mitretek Systems Inc. Mitretek has been performing this work on MITRE's behalf awaiting completion of contract novation to Mitretek. The contract was novated in February 1998 to Mitretek Systems. The overall objectives of this contract are to provide support to DOE in the following areas: (1) technical and economic analyses of current and future coal-based energy conversion technologies and other similar emerging technologies such as coal-waste coprocessing, natural gas conversion, and biomass conversion technologies for the production of fuels, chemicals and electric power,(2) monitor progress in these technologies with respect to technical, economic, and environmental impact (including climate change), (3) conduct specific and generic project economic and technical feasibility studies based on these technologies, (4) identify long-range R&D areas that have the greatest potential for process improvements, and (5) investigate optimum configurations and associated costs for production of high quality energy products via refining and their performance in end-use applications.

David Gray; Glen Tomlinson

1998-11-12T23:59:59.000Z

298

Plasma Science Committee (PLSC) and the Panel on Opportunities in Plasma Science and Technology (OPST). Technical progress report, June 1, 1992--May 31, 1993  

SciTech Connect

The Plasma Science Committee (PLSC) of the National Research Council (NRC) is charged with monitoring the health of the field of plasma science in the United States and identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the PLSC to meet its charge. During July 1992, the PLSC sponsored a workshop on nonneutral plasmas in traps. Although no written report on the workshop results, was prepared for public distribution, a summary of highlights was provided to the OPST Subpanel on Nonneutral Plasmas. The PLSC also continued its follow-up briefings and discussions on the results of the results of the report Plasma Processing of materials. Scientific and Technological Opportunities. As a result of these activities, the Committee is now working with the NRC Committee on Atomic, Molecular, and Optical Sciences (CAMOS) to organize a symposium on database needs in plasma processing of materials.

1993-08-01T23:59:59.000Z

299

PVUSA progress report, 1991  

DOE Green Energy (OSTI)

Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic (PV) electric generating systems. PVUSA participants include Pacific Gas & Electric (PG&E), the US Department of Energy (DOE), the Electric Power Research Institute (EPRI), the California Energy Commission (CEC), and eight utilities and other agencies. This report updates the progress of the PVUSA project, reviews the status and performance of the various PV installations during 1991, and summarizes key findings and conclusions from work to date. PVUSA offers utilities hands-on experience needed to evaluate and utilize maturing PV technology. The project also provides manufacturers a test bed for their products, encourages technology improvement and cost reductions in PV modules and other system components, and establishes communication channels between utilities and the PV industry. The project consists of two types of demonstrations: Emerging Module Technology (EMT) arrays, which are unproven but promising state-of-the-art PV technologies in 20-kW (nominal) arrays; and Utility Scale (US) systems, which represent more mature PV technologies in 200- to 500-kW turnkey systems.

Ellyn, W. [ed.] [Nesbit (William) and Associates, Santa Rosa, CA (United States); Jennings, C. [ed.] [Pacific Gas and Electric Co., San Ramon, CA (United States)

1991-12-31T23:59:59.000Z

300

FY 2009 Annual Progress Report for Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRESS REPORT PROGRESS REPORT FOR ADVANCED POWER ELECTRONICS annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 U.S. Department of Energy FreedomCAR and Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2009 Annual Progress Report for Advanced Power Electronics Prepared by: Susan A. Rogers, Technology Development Manager Submitted to: Energy Efficiency and Renewable Energy Vehicle Technologies Program January 2010 Advanced Power Electronics FY 2009 Progress Report Contents Page Acronyms and Abbreviations ..............................................................................................................v

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, MAY 1962  

SciTech Connect

Research progress is reported on water-cooled reactors, liquid-metal- cooled reactors, general reactor technology, plutonium recycle, advanced systems research and development, and nuclear safety. (M.C.G.)

1962-06-15T23:59:59.000Z

302

Progress Report Schedule  

COMPANY PROPRIETARY INFORMATION 1 PROGRESS REPORT (Before First Commercial Sale) Progress Report Schedule Due date For period

303

The improvement of near-term CdTe processing and product capabilities and establishment of next-generation CdTe technology. Annual technical progress report, September 1, 1995--August 31, 1996  

DOE Green Energy (OSTI)

The potential of photovoltaics to become a major global business enterprise still lingers outside the limits of industrial capabilities. For the Cadmium Sulfide/Cadmium Telluride (CdS/CdTe) system this potential has continued to focus on improvements in efficiency, stability, and cost reduction. This triad is the primary objective of the present subcontract with NREL entitled {open_quotes}The Improvement of Near-term CdTe Processing and Product Capabilities & Establishment of Next Generation CdTe Technology{close_quotes}. This subcontract represents an intermediate stage of NREL`s plan to assist the growth of the photovoltaic industry in overcoming the scientific and technical barriers to commercialization. This report outlines the progress that has been made during the period of August 1995 through August 1996. The objectives of this subcontract are to improve processing methods, quantify and understand efficiency improvement mechanisms, meet life-testing goals, and address cadmium safety concerns. Task and subtask goals are defined to meet these objectives in specific areas. The approach to fulfilling the subcontract goals is through a balanced plan of process improvement and mechanism identification. These are carried out and continued through monitoring under various long term and accelerated stress conditions. GPI maintains an on-going awareness of all safety related issues, can in particular, those involving cadmium.

Kester, J.; Albright, S. [Golden Photon, Inc., CO (United States)

1997-07-01T23:59:59.000Z

304

Nuclear Waste Management. Semiannual progress report, October 1984-March 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

McElroy, J.L.; Powell, J.A. (comps.)

1985-06-01T23:59:59.000Z

305

Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Page 1 Hydrogen and Fuel Cell Activities, Progress, and Plans: Report to Congress o Developing technologies for the production of hydrogen from coal that will enable...

306

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reinvestment Act (ARRA) This section of the 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on the fuel cell technologies America Recovery and Reinvestment...

307

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Biofuels Biofuels Biotechnology and Medecine Biotechnology & Medicine Chemistry Developing World Energy Efficient Technologies Energy Environmental Technologies...

308

Progress Details 1. 1 Renewable Energy Technologies  

E-Print Network (OSTI)

it without permission. 9-59 9-80E An ideal Stirling engine with air as the working fluid is consideredRT P 9-81 An ideal Stirling engine with air as the working fluid operates between specified pressure

Guo, Zaoyang

309

Research Progress on Perfume Wastewater Treatment Technology  

Science Conference Proceedings (OSTI)

Improvement of Spectrometric Determination of COD by Microwave ... Influence of sewage pipe network on COD reduction efficiency in sewage treatment plant.

310

Coal Technology Program progress report, July 1977  

DOE Green Energy (OSTI)

In hydrocarbonization research cold model tests are being conducted to determine conditions that will enhance mixing in the recirculating fluidized bed reactor and make it more suitable for the hydrocarbonization of caking coals. In the pressurized carbonization of Consol Synthetic Fuel residue, five runs were completed that show a desirably low rate of coking of the recycle solvent that is used to slurry the residue. Fracture toughness studies of thick steel plates are continuing. The effects of important welding variables such as current, travel speed, and torch oscillation on the depth of penetration and dilution of type 320 Cb stainless steel cladding deposits have been evaluated for deposits made by the submerged-arc process. A 1000 hr exposure of heat exchanger tubes to the fluidized bed combustion conditions of a Fluidyne bed was started. Inconel 600 tubing failed by catastrophic sulfidation after a few days. In the gas-fired potassium boiler project, the major portion of the potassium piping installation was completed and connections of the electrical and instrument wiring between the control room and the system are being made. In the coal-fired alkali metal power system design study, several variations of the cycle arrangement for the selected atmospheric pressure fluidized bed combustor were completed, a preferred concept for the furnace developed, the coal feed and ash handling system was designed, and work continued on the alkali metal condenser-steam generator.

None

1977-08-01T23:59:59.000Z

311

Coal technology program. Progress report, September 1977  

DOE Green Energy (OSTI)

A successful hydrocarbonization experiment at 300 psi of hydrogen and approximately 1050/sup 0/F was completed with Illinois No. 6 coal that had been chemically pretreated with aqueous CaO and NaOH. In pressurized carbonization, one successful experiment at approximately 1100/sup 0/F and 415 psi of methane was completed with vacuum distillation residue from the H-Coal process. In the thick section pressure vessel work, procedures are being developed with the DATA TRAK heat treating facility to allow preparation of relatively large heat treated samples of 2 /sup 1///sub 4/ Cr-1 Mo steel. In the Gas-Fired Potassium Boiler Project, the potassium system installation was completed, the fill and drain tank was filled with potassium, and the checkout of the instruments and controls was nearly completed. The Coal-Fired Alkali Metal Power System Design Study was completed and a draft report describing the design was issued. Cesium was selected as the working fluid for the topping cycle. For the reference design, the furnace operated at atmospheric pressure and the cycle conditions for the power conversion systems were 1500/sup 0/F (1089 K) to 900/sup 0/F (756 K) for the topping cycle and 2400 psi (16.5 MPa)/1000/sup 0/F (811 K)/1000/sup 0/F (811 K) to 1 /sup 1///sub 2/ in. Hg (5079 Pa) for the steam system. ORNL was requested by DOE to develop a program for testing coal feeders currently under development. Work was continued on process modeling, the preparation of a Synthetic Fuels Research Digest, a survey of industrial coal conversion equipment capabilities, and studies of flash hydropyrolysis, hot gas purification processes, processes for heat recovery, and hydrogen production by the steam/molten iron process. Process and program analysis studies were continued on low-Btu gasification, direct combustion, advanced power conversion systems, liquefaction, high-Btu gasification, in-situ gasification, and coal beneficiation.

None

1977-10-01T23:59:59.000Z

312

Progress in solar thermal distributed receiver technology  

DOE Green Energy (OSTI)

The author reports the status of research on distributed receivers, which are solar thermal collectors which concentrate sunlight on an absorber and do not employ the central receiver concept. Point-focusing collectors such as the parabolic dish, line-focusing collectors such as the parabolic trough, and the fixed-mirror distributed-focus of hemispheric bowl collectors are the most common receivers. Following an overview of fundamental principals, there is a description of several installations and of the organic Rankine Cycle engine and the Solarized Automotive Gas Turbine projects. Future development will explore other types of power cycles, new materials, and other components and designs. 5 references, 6 figures.

Leonard, J.A.; Otts, J.V.

1985-08-01T23:59:59.000Z

313

Coal technology program. Progress report, May 1977  

DOE Green Energy (OSTI)

Two successful operability tests with sustained operation of the bench-scale hydrocarbonizer were achieved with Illinois No. 6 coal diluted with char. Several activities in the area of nondestructive testing of coatings are reviewed. Failure analysis activities included examination of several components from the solvent refined coal plants at Wilsonville, Alabama, and Tacoma, Washington. In the gas-fired potassium boiler project, all of the design work were completed except for several of the instrument and control drawings. In the design studies of a coal-fired alkali metal vapor topping cycle, the first phase of a cycle analysis and the design and analysis of a metal vapor turbine were completed. A report entitled ''Critical Component Test Facility--Advance Planning for Test Modules'' presents the planning study for the conceptual design of component test modules on a nonsite-specific basis. Engineering studies, project evaluation and process and program analysis of coal conversion processes were continued. A report on the landfill storage of solid wastes from coal conversion is being finalized. In the coal-fueled MIUS project, a series of successful tests of the coal feeding system and a report on the analysis of 500-hr fire-side corrosion tests in a fluidized bed combustor were completed.

None

1977-07-01T23:59:59.000Z

314

Coal Technology Program progress report, March 1976  

DOE Green Energy (OSTI)

Shakedown tests of the bench-scale hydrocarbonization system were successfully completed. Wyodak coal was fed to the reactor at a rate of 9.9 lb/hr where it was hydrocarbonized at 1050/sup 0/F under 20-atm hydrogen pressure. Laboratory results including settling tests, bench-scale settling tests, and sample ageing tests were continued. Two of ten compounds tested with the laboratory-scale apparatus were effective in increasing settling rates of solids in Solvent Refined Coal unfiltered oil, but bench-scale tests failed to show any improvements in the settling rate over the untreated SRC-UFO. Analytical chemistry efforts involved the removal and concentration of organic components in by-product waters from fossil fuel conversion processes. A sephadex gel is being used to achieve hydrophilic-lipophilic separations in organic mixtures as a step in the analysis of fossil fuel related materials. Engineering Evaluations of the Synthiol and Hydrocarbonization Processes continued with the Synthiol process flow diagrams, heat and material balances, and utilities requirements being completed. Inspection techniques were developed for wear- and process-resistant coatings. Orders were placed for the Incoloy 800 tubing and a smaller quantity of Inconel 600 tubing for the tube matrix in the coal-fueled MIUS fluidized bed. An engineering feasibility review of General Atomic's proposal to ERDA for a bench-scale test program on thermochemical water splitting for hydrogen production was completed. (auth)

Not Available

1976-05-01T23:59:59.000Z

315

Progress Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Update FALL 2013 Learn more at eere.energy.gov/manufacturing/tech_assistance/betterplants/ The Better Buildings, Better Plants Program is a national partnership initiative that challenges industry to set and meet ambitious energy-saving targets. Across the United States, manufacturers spend more than $200 billion each year to power their plants. 1 The industrial sector has the potential to invest more than $100 billion in cost-effective, energy-efficiency technologies by 2020, which would result in annual energy savings of almost $50 billion. 2 U.S. Department of Energy (DOE) data demonstrates that many facilities can save 15% or more annually through projects with payback periods of less than three years. 3 Better Plants Partners are working with DOE

316

Technology studies and technical communication: substantive rhetoric revisited.  

E-Print Network (OSTI)

??Technical communication scholars often study and contribute to studies of technology. By understanding the process of technological progression, a communicator may be placed in a (more)

Garrison, Kevin Glenn

2009-01-01T23:59:59.000Z

317

ITER Progress  

E-Print Network (OSTI)

With nearly 700 FED members and a strong financial balance sheet, I am pleased to report that the state of our Fusion Energy Division is strong. I would like to take this opportunity to thank our previous Chair, Professor Jake Blanchard (University of Wisconsin-Madison) for his tireless efforts on behalf of FED. This letter summarizes some of the ongoing activities at ANS, plans for the 17 th ANS Topical Meeting on the Technology of Fusion Energy (TOFE), and activities related to the Fusion Energy Science Advisory Committee (FESAC). FESAC As Chair of the ANS Fusion Energy Division, I am honored to serve as an Ex-Officio member of FESAC. During my tenure on the Committee, FESAC has so far met only once (July 19, 2005). Among the presentations given at that meeting was a report by the Facilities Panel chaired by Dr. Jill Dahlberg of NRL. The Panel was appointed following a request from Dr. Orbach in April of 2005 and charged with identifying the unique and complimentary characteristics of each of the three major US toroidal fusion facilities (C-MOD, DIII-D, and NSTX), how the three facilities contribute to fusion science and the

Miley Hora; Strait Taylor

2005-01-01T23:59:59.000Z

318

Technology Transfer Awards 2012  

Science Conference Proceedings (OSTI)

EPRI's 2012 Technology Transfer Awards recognize the leaders and the innovators who have transferred research into applied results. The 2012 award winners have shown exceptional application of EPRI research and technology to solve a problem of size and significance, to champion a technology both within their companies and across the industry, to drive progress in the electricity sector, and to provide meaningful benefits for stakeholders and for society.

2013-01-23T23:59:59.000Z

319

Broadening Uses Put MEMS Technology on the Map(s)  

Science Conference Proceedings (OSTI)

... Industry roadmaps are forecasts of technology advances and processing improvements necessary to sustain progress in enhancing the ...

2011-10-03T23:59:59.000Z

320

Geothermal Progress Monitor report No. 8. Progress report  

SciTech Connect

Geothermal Progress Monitor (GPM) Report Number 8 presents information concerning ongoing technology transfer activities and the mechanisms used to support these activities within geothermal R and D programs. A state-by-state review of major geothermal development activities for the reporting period 1 February 1983 through 31 July 1983 is provided. Recent drilling and exploration efforts and the current status of geothermal electric power plant development in the United States are summarized.

1983-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CCUS Demonstrations Making Progress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, First Quarter, 2013 9, First Quarter, 2013 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 CCUS Demonstrations Making Progress A Column from the Director of Clean Energy Sys- tems, Office of Clean Coal 4 LNG Exports DOE Releases Third Party Study on Impact of Natural Gas Exports 5 Providing Emergency Relief Petroleum Reservers Helps Out with Hurricane Relief Efforts 7 Game-Changing Membranes FE-Funded Project Develops Novel Membranes for CCUS 8 Shale Gas Projects Selected 15 Projects Will Research Technical Challenges of Shale Gas Development A project important to demonstrat- ing the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of inject-

322

10897_JGI_Progress_CR  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Report 2002-2005 Progress Report 2002-2005 U.S. DEPARTMENT OF ENERGY JOINT GENOME INSTITUTE JGI's Mission To develop and exploit new sequencing and other high-throughput, genome-scale, and computational technologies as a means for discovering and charac- terizing the basic principles and relationships underly- ing the organization, function, and evolution of living systems. What is Sequencing? Just as computer software is rendered in long strings of 0s and 1s, the "software" of life is represented by a string of four chemicals, abbreviated as A, T, C, and G. To understand the software of either a computer or a living organism, we must know the order, or sequence, of these informative bits. JGI PROGRESS REPORT 2002-2005 * TABLE OF CONTENTS table of contents Director's Perspective

323

IEA Clean Energy Progress Report | Open Energy Information  

Open Energy Info (EERE)

IEA Clean Energy Progress Report IEA Clean Energy Progress Report Jump to: navigation, search Tool Summary Name: IEA Clean Energy Progress Report Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Energy Efficiency, Biomass, - Biofuels, Solar, Wind Topics: Market analysis, Pathways analysis, Technology characterizations Resource Type: Publications Website: www.iea.org/papers/2011/CEM_Progress_Report.pdf IEA Clean Energy Progress Report Screenshot References: IEA Clean Energy Progress Report[1] "This report analyses - for the first time - progress in global clean energy technology deployment against the pathways needed to achieve shared goals for sustainable, affordable energy. It provides an overview of technology deployment status, key policy developments and public spending

324

Elegant Parallelization Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Elegant Parallelization Progress Report 102407 Yusong Wang Michael Borland Hairong Shang Robert Soliday Elegant Parallelization Progress Report Y. Wang, 102407 Simulations with...

325

JGI Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Report report cover The 2012 DOE Joint Genome Institute Progress Report, highlighting the achievements of the previous year, has been released and can be downloaded here....

326

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four origin, gender, age, marital status, sexual orientation, status as a Vietnam-era veteran, or disability

327

Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

328

1993 PVUSA progress report  

DOE Green Energy (OSTI)

Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic (PV) electric generation systems and recent developments in module technology. This report updates the progress of the PVUSA project, review the status and performance of all PV installations during 1993, and summarizes key accomplishments and conclusions for the year. The PVUSA project has five objectives designed to narrow the gap between a large utility industry that is unfamiliar with PV, and a small PV industry that is aware of a potentially large utility market but unfamiliar with how to meet its requirements. The objectives are: to evaluate the performance, reliability, and cost of promising PV modules and balance-of-system (BOS) components side-by-side at a single location; to assess PV system operation and maintenance (O and M) in a utility setting; to compare PV technologies in diverse geographic areas; to provide US utilities with hands-on experience in designing, procuring, and operating PV systems; and to document and disseminate knowledge gained from the project.

NONE

1993-12-31T23:59:59.000Z

329

Vehicle Technologies Office: Program Plans, Implementation, and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Motors Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and...

330

Vehicle Technologies Office: Program Plans, Implementation, and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle and Systems Simulation and Testing Annual Progress Report Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments Fuel Technologies: Goals, Strategies,...

331

Solar Photovoltaics Research and Technology: The Revolution ...  

Science Conference Proceedings (OSTI)

Moreover, technology progress and ownership for next-generation solar PV mandates a ... Dislocations in Si-Doped LEC GaAs Revisited: A Spectrum Image

332

Polycrystalline Thin Film Solar Cell Technologies: Preprint  

DOE Green Energy (OSTI)

Rapid progress is being made by CdTe and CIGS-based thin-film PV technologies in entering commercial markets.

Ullal, H. S.

2008-12-01T23:59:59.000Z

333

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 52 quarter ending September 30, 1987  

Science Conference Proceedings (OSTI)

This progress review on enhanced oil recovery covers: Chemical Flooding /emdash/ Supporting Research; Gas Displacement /emdash/ Supporting Research; Thermal Recovery /emdash/ Supporting Research; Resource Assessment Technology; Geoscience Technology; Environmental Technology; Microbial Technology.

Not Available

1988-07-01T23:59:59.000Z

334

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 43, quarter ending June 30, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field projects and supporting research for the following: (1) chemical flooding; gas displacement thermal recovery/heavy oil; resource assessment technology; extraction technology;environmental technology; and microbial technology. (AT)

Not Available

1986-05-01T23:59:59.000Z

335

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 47, Quarter ending June 1986  

SciTech Connect

Progress reports are presented for field projects and supporting research for the following: chemical flooding; gas displacement; thermal recovery; resource assessment; environmental technology; and microbial technology. (AT)

Not Available

1987-07-01T23:59:59.000Z

336

Geothermal progress monitor. Progress report No. 1  

DOE Green Energy (OSTI)

Progress is reported on the following: electrical uses, direct-heat uses, drilling activities, leases, geothermal loan guarantee program, general activities, and legal, institutional, and regulatory activites. (MHR)

Not Available

1979-12-01T23:59:59.000Z

337

Technology@TMS: Online Article  

Science Conference Proceedings (OSTI)

Nuclear science and technology has made steady progress leading to the current ... field, quite evident from the fact that no new commercial nuclear reactor had been ... New research, both experimental and theoretical, on nanoscale design is ...

338

Technology Search  

home \\ technologies \\ search. Technologies: Ready-to-Sign Licenses: Software: Patents: Technology Search. ... Operated by Lawrence Livermore National Security, LLC, ...

339

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

340

FY2003 Progress Report for Automotive Propulsion Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR and Vehicle Technologies FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 CONTENTS 1. INTRODUCTION ........................................................................................................... 1

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Technology Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeland Security & Defense Homeland Security & Defense Information Technology & Communications Information Technology & Communications Sensors, Electronics &...

342

Energy and technology review  

SciTech Connect

Brief discussions of research progress on the following topics are given: (1) lasers and laser applications, (2) advanced energy systems, (3) science and technology, and (4) national security. Some experiments on the in- flight laser irradiation of ammonia pellets are discussed. (MOW)

Carr, R.B.; McCleb, C.S.; Prono, J.K. (eds.)

1976-01-01T23:59:59.000Z

343

Electrolyzer Manufacturing Progress and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

344

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT  

SciTech Connect

Progress on reactor programs and in general engineering research and development programs is summarized. Research and development are reported on water-cooled reactors including EBWR and Borax-V, sodium-cooled reactors including ZPR-III, IV, and IX, Juggernaut, and EBR-I and II. Other work included a review of fast reactor technology, and studies on nuclear superheat, thermal and fast reactor safety, and reactor physics. Effort was also devoted to reactor materials and fuels development, heat engineering, separation processes and advanced reactor concepts. (J.R.D.)

1961-04-01T23:59:59.000Z

345

Geothermal direct-heat utilization assistance. Quarterly progress report, April--June 1993  

DOE Green Energy (OSTI)

Progress is reported on the following R&D activities: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Other activities are reported on technical assistance, technology transfer, and the geothermal progress monitor.

Not Available

1993-08-01T23:59:59.000Z

346

Better Buildings Neighborhood Program: Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress on Twitter Bookmark Better Buildings Neighborhood Program: Progress on Google Bookmark Better Buildings Neighborhood Program: Progress on Delicious Rank Better...

347

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, FEBRUARY 1962  

SciTech Connect

Progress is reported on EBWR, BORAX-V, and development of liquid metal cooled reactors including EBR-I and -II. Developments in general reactor technology are reported in sections on physics, fuels, components, materials, engineering, and chemical separations. Other research and development is reported in advanced systems and nuclear ssfety. (J.R.D.)

1962-02-01T23:59:59.000Z

348

Introduction to Solidia Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilization of CO Utilization of CO 2 in High Performance Building and Infrastructure Products DE-FE0004222 Dr. Richard Riman Rutgers, The State University of New Jersey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO2 Storage August 21-23, 2012 2 1. Quick Introduction 2. Progress on DE-FE0004222 3. Progress toward commercialization Presentation Outline 3 1. Quick Introduction 4 Solidia offers a low-cost inorganic material manufactured using a scalable and energy efficient process. Its properties can be controlled to engineer outstanding performance for a broad spectrum of building material applications. Our Technology Enables production of versatile building and construction materials

349

HTGR safety research program. Progress report, April--June 1975  

SciTech Connect

Progress in HTGR safety research is reported under the following headings: fission product technology; primary coolant impurities; structural investigation; safety instrumentation and control systems; phenomena modeling and systems analysis. (JWR)

Kirk, W.L.

1975-09-01T23:59:59.000Z

350

FY06 High Strength Weight Reduction Materials Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HigH StrengtH HigH StrengtH WeigHt reduction MaterialS U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2006 Progress Report for High Strength Weight Reduction Materials Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Advanced Materials Technologies Edward Wall Program Manager, OFCVT Rogelio Sullivan Advanced Materials Technologies Team Leader James Eberhardt Chief Scientist March 2006 High Strength Weight Reduction Materials FY 2006 Progress Report CONTENTS 1. INTRODUCTION................................................................................................................................... 1 2. MATERIALS DEVELOPMENT .......................................................................................................... 3

351

EERE News: EERE Progress Alerts http://www1.eere.energy.gov/news/progress_alerts/progress_alert.asp... 1 of 1 4/3/07 12:29 PM  

E-Print Network (OSTI)

EERE News: EERE Progress Alerts http://www1.eere.energy.gov/news/progress_alerts/progress_alert.asp... 1 of 1 4/3/07 12:29 PM Search Help More Search Options EERE Information Center Printable Version New Industrial Technologies Program within EERE, are run by 26 universities and provide no-cost energy

Washington at Seattle, University of

352

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

353

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

354

Faience Technology  

E-Print Network (OSTI)

by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

Nicholson, Paul

2009-01-01T23:59:59.000Z

355

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 44, quarter ending September 30, 1985  

SciTech Connect

Progress reports are presented for: field projects and supporting research for chemical flooding and gas displacement; supporting research for thermal methods; microbial technology; research assessment technology; and environmental technology.

Not Available

1986-09-01T23:59:59.000Z

356

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 48, Quarter ending September 30, 1986  

SciTech Connect

Progress reports are presented for: (1) chemical flooding (field projects and supporting research); (2) gas displacement (supporting research); (3) thermal methods (supporting research); (4) resource assessment technology; (5) environmental technology; and (5) microbial technology.

Not Available

1987-09-01T23:59:59.000Z

357

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 68, quarter ending September 30, 1991  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following tasks: chemical flooding-supporting research; gas displacement-supporting research; thermal recovery-supporting research; geoscience technology; resource assessment technology; and microbial technology. A list of available publications is also included.

Not Available

1992-11-01T23:59:59.000Z

358

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 41, quarter ending December 31, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-07-01T23:59:59.000Z

359

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 42, quarter ending March 31, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-11-01T23:59:59.000Z

360

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 51 quarter ending June 30, 1987  

Science Conference Proceedings (OSTI)

This Progress review on enhanced oil recovery covers: Chemical Flooding /emdash/ Field Projects; Chemical Flooding /emdash/ Supporting Research; Gas Displacement /emdash/ Supporting Research; Thermal Recovery /emdash/ Supporting Research; Resource Assessment Technology; Geoscience; Environmental Technology; Microbial Technology.

Not Available

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 40, quarter ending September 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial technology.

Linville, B. (ed.)

1985-05-01T23:59:59.000Z

362

DOE Hydrogen Program FY2004 Progress Report Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report CONTENTS I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II Hydrogen Production and Delivery Sub-Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Overview.....................................................................................................................................................9 II.A Distributed Production Technologies ..............................................................................................13 II.A.1 Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen and Synthesis Gas (ITM Syngas) ....................................................................13

363

New Progress on Application of NEUI400kA Family High Energy ...  

Science Conference Proceedings (OSTI)

Presentation Title, New Progress on Application of NEUI400kA Family High Energy Efficiency Aluminum Reduction Pot (HEEP) Technology. Author(s)...

364

Geothermal direct-heat utilization assistance. Quarterly project progress report, June--July 1992  

DOE Green Energy (OSTI)

Activities are summarized on the following: technical assistance to 57 information requests, R & D activities, technology transfer, and progress monitoring. (MHR)

Not Available

1992-09-01T23:59:59.000Z

365

Research and ecology semiannual progress report, January--June 1972. Chemistry research and development  

SciTech Connect

Research progress is reported in the following areas: chemistry research and development, chemistry instrumentation, process chemistry, chemical technology, and environmental research. (DHM)

Thompson, M.A.

1973-08-30T23:59:59.000Z

366

Technology Search Results | Brookhaven Technology ...  

There are no technology records available that match the search query. Find a Technology. Search our technologies by categories or by keywords.

367

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

368

2007 Propulsion Materials Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle t echnologies Progra M Less dependence on foreign oil today, and transition to a petroleum-free, emissions-free vehicle tomorrow. 2 0 0 7 a n n u a l p r o g r e s s r e p o r t U.S. Department of Energy Office of Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2007 Progress Report for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle Technologies Advanced Materials Technologies Edward J. Wall Program Manager, OVT Rogelio A. Sullivan Advanced Materials Technologies Team Leader Jerry L. Gibbs Technology Manager January 2008 CONTENTS INTRODUCTION..................................................................................................................................... 1 PROJECT 18518 - MATERIALS FOR HIGH EFFICIENCY ENGINES......................................... 9

369

Technology Search Results | Brookhaven Technology ...  

Staff Directory; BNL People Technology Commercialization & Partnerships. Home; For BNL Inventors; ... a nonprofit applied science and technology organization. ...

370

Technology Search Results | Brookhaven Technology ...  

Non-Noble Metal Water Electrolysis Catalysts; Find a Technology. Search our technologies by categories or by keywords. Search ...

371

Technology Search Results | Brookhaven Technology ...  

BSA 08-04: High Temperature Interfacial Superconductivity; Find a Technology. Search our technologies by categories or by keywords. Search ...

372

Technology Search Results | Brookhaven Technology ...  

Receive Technology Updates. Get email notifications about new or improved technologies in your area of interest. Subscribe

373

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

374

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

375

INAL Office of Fossil Energy Oil & Natural Gas Technology DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

INAL Office of Fossil Energy Oil & Natural Gas Technology DOE Award No.: DE-FE0010175 Quarterly Research Performance Progress Report (Period ending 06302013) PLANNING OF A MARINE...

376

Savannah River Technology Center monthly report, January 1994  

SciTech Connect

This is the monthly progress report for the Savannah River Technology Center, which covers the following areas of interest, Tritium, Separation processes, Environmental Issues, and Waste Management.

Not Available

1994-01-01T23:59:59.000Z

377

Profiling 1366 Technologies: One Year Later | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress...

378

Core Analysis At Coso Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1979) Coso Geothermal Area (1979) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Core Analysis Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis Compare microcracks between Coso and Raft River geothermal areas Notes Microcracks were observed in core samples from Coso. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. References Simmons, G.; Batzle, M. L.; Shirey, S. (1 April 1979) Microcrack technology. Progress report, 1 October 1978--31 March 1979 Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Coso_Geothermal_Area_(1979)&oldid=473689

379

Integral Fast Reactor Program. Annual progress report, FY 1993  

Science Conference Proceedings (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D.

Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

1994-10-01T23:59:59.000Z

380

Integral Fast Reactor Program annual progress report, FY 1994  

Science Conference Proceedings (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R&D.

Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Integral Fast Reactor Program. Annual progress report, FY 1992  

Science Conference Proceedings (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

1993-06-01T23:59:59.000Z

382

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

States Energy Advisory Board (STEAB) States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel cells - convert chemical energy directly into electrical energy, bypassing inefficiencies associated with thermal energy conversion. Available energy is equal to the Gibbs free energy. Combustion Engines - convert chemical energy into thermal energy and

383

Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010  

DOE Green Energy (OSTI)

Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

Fatemi, H.

2012-07-01T23:59:59.000Z

384

Transformational Energy Technologies  

SciTech Connect

Broad Funding Opportunity Announcement Project: In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agencys inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The 37 projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-Es investment in these projects catalyzed an additional $33 million in investments.

None

2010-09-01T23:59:59.000Z

385

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

386

Progress in Paleoclimate Modeling  

Science Conference Proceedings (OSTI)

This paper briefly surveys areas of paleoclimate modeling notable for recent progress. New ideas, including hypotheses giving a pivotal role to sea ice, have revitalized the low-order models used to simulate the time evolution of glacial cycles ...

Mark A. Cane; Pascale Braconnot; Amy Clement; Hezi Gildor; Sylvie Joussaume; Masa Kageyama; Myriam Khodri; Didier Paillard; Simon Tett; Eduardo Zorita

2006-10-01T23:59:59.000Z

387

Progress on Yindjibarndi ethnophysiography  

Science Conference Proceedings (OSTI)

This paper reviews progress on the Ethnophysiography study of the Yindjibarndi language from the Pilbara region of Western Australia. Concentrating on terms for water-related features, it concludes that there are significant differences to the way such ...

David M. Mark; Andrew G. Turk; David Stea

2007-09-01T23:59:59.000Z

388

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

389

Vehicle Technologies Office: Discover Magazine Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Discover Magazine Awards Discover Magazine Awards to someone by E-mail Share Vehicle Technologies Office: Discover Magazine Awards on Facebook Tweet about Vehicle Technologies Office: Discover Magazine Awards on Twitter Bookmark Vehicle Technologies Office: Discover Magazine Awards on Google Bookmark Vehicle Technologies Office: Discover Magazine Awards on Delicious Rank Vehicle Technologies Office: Discover Magazine Awards on Digg Find More places to share Vehicle Technologies Office: Discover Magazine Awards on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports Success Stories Conferences Proceedings Newsletters Analysis Software Tools Awards & Patents Glossary Discover Magazine Awards 1999 Microplasmatron (Onboard Refinery) for Technological Innovation in

390

2010 Annual Progress Report: DOE Hydrogen Program  

DOE Green Energy (OSTI)

In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

Not Available

2011-02-01T23:59:59.000Z

391

Geothermal Progress Monitor. Report No. 15  

DOE Green Energy (OSTI)

Two themes dominate this issue of the Geothermal Progress Monitor, the 15th since its inception in 1980. The first of these is the significance of the government/industry partnership role in geothermal development. This joint effort is reflected in the continued, measured growth in the use of geothermal energy, for both power generation and direct use applications, in this country and abroad, as well as in the development of new, innovative technologies to ensure a bright future for the resource. The second theme is the growing popularity of geothermal heat pumps (GHPs) among utilities, their customers, and federal agencies, all with disparate interests in the technology.

Not Available

1993-12-01T23:59:59.000Z

392

FY 2004 Annual Progress Report for Heavy Vehicle Systems Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

HEAVY HEAVY VEHICLE SYSTEMS OPTIMIZATION FreedomCAR and Vehicle Technologies Program U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2004 Annual Progress Report for Heavy Vehicle Systems Optimization Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Approved by Dr. Sidney Diamond Technology Area Development Specialist February 2005 Heavy Vehicle Systems Optimization Program FY 2004 Annual Report iii Contents Foreword by Dr. Sidney Diamond, FreedomCAR and Vehicle Technologies Program, Energy Efficiency and Renewable Energy, U.S. Department of Energy ................................. 1 I. Aerodynamic Drag Reduction......................................................................................................

393

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

394

1995 PVUSA progress report. Final report  

DOE Green Energy (OSTI)

Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale (US) photovoltaic (PV) electric generation systems and recent developments in PV module technology. This report updates the project`s progress, reviews the status and performance of the various PV installations during 1995, summarizes key accomplishments and conclusions, and serves as the final report under Pacific Gas and Electric Company`s project management.

NONE

1996-03-01T23:59:59.000Z

395

Tools & Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Weprovide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

396

Available Technologies  

The technologys subnanometer resolution is a result of superior ... Additional R&D will be required ... U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE ...

397

Technological development and innovation : selected policy implications  

E-Print Network (OSTI)

Technological development is one of the main drivers in economic progress throughout the world and is strongly linked to the creation of new industries, jobs, and wealth. This thesis attempts to better understand how a ...

Benson, Christopher L

2012-01-01T23:59:59.000Z

398

Savannah River Technology Center monthly report  

Science Conference Proceedings (OSTI)

This document contains many small reports from personnel at the technology center under the umbrella topics of reactors, tritium, separations, environment, waste management, and general engineering. Progress and accomplishments are given.

Not Available

1992-10-01T23:59:59.000Z

399

FY2008 Annual Progress Report for the Advanced Power Electronics and Electric Machinery Program  

NLE Websites -- All DOE Office Websites (Extended Search)

AnnuAl Progress rePort for AnnuAl Progress rePort for the AdvAnced Power electronics And electric MAchinery technology AreA annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy FreedomCAR and Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W.

400

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

402

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 67, quarter ending June 30, 1991  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following tasks: chemical flooding-supporting research; gas displacement-supporting research; thermal recovery-supporting research; geoscience technology; resource assessment technology; microbial technology; environmental technology; and novel technology. A list of available publications is also included.

Not Available

1992-07-01T23:59:59.000Z

403

Office of Industrial Technologies: Industry partnerships  

SciTech Connect

US industries are making progress in turning the vision of the future into reality: More effective competition in global markets, increased industrial efficiency, more jobs, reduced waste generation and greenhouse gas emissions (to 1990 levels), improved environment. DOE`s Office of Industrial Technologies is catalyzing and supporting industry progress in many ways. This pamphlet gives an overview of OIT.

1995-04-01T23:59:59.000Z

404

Photonic Technologies for Quantum Information Processing  

E-Print Network (OSTI)

The last several years have seen tremendous progress toward practical optical quantum information processing, including the development of single- and entangled-photon sources and high-efficiency photon counting detectors, covering a range of wavelengths. We review some of the recent progress in the development of these photonic technologies. KEY WORDS: Quantum dot; entanglement; down-conversion; single-photon detector.

Prem Kumar; Paul Kwiat; Alan Migdall; Sae Woo Nam; Jelena Vuckovic; Franco N. C. Wong

2004-01-01T23:59:59.000Z

405

Chemistry - Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

406

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

407

Artificial Retina Project Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Technological Challenges in Engineering a Retinal Implant Photo of Eye with Silicon Chip The artificial retina consists of an electrode-studded soft polymer array (shown) that is...

408

Available Technologies  

APPLICATIONS OF TECHNOLOGY: Thermal management for: microelectronic devices; solar cells and solar energy management systems ; refrigerators

409

Available Technologies  

Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging & Lasers.

410

Elegant Parallelization Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Elegant Parallelization Progress Report Elegant Parallelization Progress Report 10/24/07 Yusong Wang Michael Borland Hairong Shang Robert Soliday Elegant Parallelization Progress Report Y. Wang, 10/24/07 Simulations with a Large Number of Particles  Recent development  Each slave is allocated memory only for the portion of particles it owns, instead of the memory required for all the particles  On a cluster of quad-cores, configured master to be run on a single node without sharing memory with other slave nodes to allow maximal number of particles to be simulated ( master holds all the particles information for reading and writing)  Current capability and limitations  Simulated with 60 million particles on apex cluster  Can't simulate with 100 million or more particles because of the

411

Back-Surface Passivation for High-Efficiency Crystalline Silicon Solar Cells: Final Technical Progress Report, September 2010 -- May 2012  

DOE Green Energy (OSTI)

Final technical progress report for TetraSun, a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's (DOE) SunShot Program.

Schultz-Wittmann, O.

2012-07-01T23:59:59.000Z

412

Fuel Cell Technologies Office: Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Technology Validation to someone by E-mail Share Fuel Cell Technologies Office: Technology Validation on Facebook Tweet about Fuel Cell Technologies...

413

Vehicle Technologies Office: 2004 Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Success Stories to 4 Success Stories to someone by E-mail Share Vehicle Technologies Office: 2004 Success Stories on Facebook Tweet about Vehicle Technologies Office: 2004 Success Stories on Twitter Bookmark Vehicle Technologies Office: 2004 Success Stories on Google Bookmark Vehicle Technologies Office: 2004 Success Stories on Delicious Rank Vehicle Technologies Office: 2004 Success Stories on Digg Find More places to share Vehicle Technologies Office: 2004 Success Stories on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports Success Stories Conferences Proceedings Newsletters Analysis Software Tools Awards & Patents Glossary 2004 Success Stories The following documents are available as Adobe Acrobat PDFs. Download Adobe

414

Vehicle Technologies Office: 2003 Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Success Stories to 3 Success Stories to someone by E-mail Share Vehicle Technologies Office: 2003 Success Stories on Facebook Tweet about Vehicle Technologies Office: 2003 Success Stories on Twitter Bookmark Vehicle Technologies Office: 2003 Success Stories on Google Bookmark Vehicle Technologies Office: 2003 Success Stories on Delicious Rank Vehicle Technologies Office: 2003 Success Stories on Digg Find More places to share Vehicle Technologies Office: 2003 Success Stories on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports Success Stories Conferences Proceedings Newsletters Analysis Software Tools Awards & Patents Glossary 2003 Success Stories The following documents are available as Adobe Acrobat PDFs. Download Adobe

415

1992 PVUSA progress report  

DOE Green Energy (OSTI)

Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic (PV) electric generating systems. This report updates the progress of the PVUSA project, reviews the status and performance of the various PV installations during 1992, and summarizes key accomplishments and conclusions from work to date.

Ellyn, W. [ed.] [Nesbit (William) and Associates, Santa Rosa, CA (United States)

1992-12-31T23:59:59.000Z

416

The progressive transmission disadvantage  

Science Conference Proceedings (OSTI)

The disadvantage of progressive transmission, compared to transmission in a single step, is analyzed for the high-rate case using a polytope that is self-similar under binary subdivision. This disadvantage is calculated to be 0.3424 dB or 0.057 bit compared ...

M. J. Durst

1997-01-01T23:59:59.000Z

417

Solar Thermal Electric Technology: 2009  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the solar thermal and concentrating solar power (CSP) industry in 2009. It addresses relevant policies in the United States and internationally, technology status, trends, companies and organizations involved in the field, and modeling activities supported by the Electric Power Research Institute (EPRI) and the Solar Thermal Electric Project (STEP).

2010-06-23T23:59:59.000Z

418

Solar Thermal Electric Technology: 2008  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the solar thermal and concentrating solar power (CSP) industry in 2008. It addresses technology status, trends, companies and organizations involved in the field, and modeling activities supported by EPRI and the Solar Thermal Electric Project (STEP).

2009-03-31T23:59:59.000Z

419

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 69, quarter ending December 31, 1991  

SciTech Connect

Progress reports are presented for the following tasks: chemical flooding supporting research; gas displacement supporting research; thermal recovery supporting research; geoscience technology; resource assessment; and microbial technology. A list of available publications is also included.

Not Available

1993-02-01T23:59:59.000Z

420

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 39, quarter ending June 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1984-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Smart Grid Investment Grant Program - Progress Report (October 2013) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Investment Grant Program - Progress Report (October Smart Grid Investment Grant Program - Progress Report (October 2013) Smart Grid Investment Grant Program - Progress Report (October 2013) The Smart Grid Investment Grant (SGIG) Program is structured as a public-private partnership to accelerate investments in grid modernization. The $3.4 billion in federal Recovery Act funds are matched on a one-to-one basis (at a minimum) with private sector resources-bringing the total investment in SGIG projects to $7.8 billion. DOE used a merit-based, competitive process to select and fund 99 projects that are now deploying smart grid technologies and systems across the power grid, from transmission system to end-use customer, in almost every U.S. state. The SGIG Program Progress Report II, which updates the SGIG Progress

422

Smart Grid Investment Grant Program - Progress Report (October 2013) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Investment Grant Program - Progress Report (October Smart Grid Investment Grant Program - Progress Report (October 2013) Smart Grid Investment Grant Program - Progress Report (October 2013) The Smart Grid Investment Grant (SGIG) Program is structured as a public-private partnership to accelerate investments in grid modernization. The $3.4 billion in federal Recovery Act funds are matched on a one-to-one basis (at a minimum) with private sector resources-bringing the total investment in SGIG projects to $7.8 billion. DOE used a merit-based, competitive process to select and fund 99 projects that are now deploying smart grid technologies and systems across the power grid, from transmission system to end-use customer, in almost every U.S. state. The SGIG Program Progress Report II, which updates the SGIG Progress

423

Anisotropic yielding of rocks at high temperatures and pressures: Technical progress report No. 2, 16 December 1987--15 December 1988  

DOE Green Energy (OSTI)

Progress has been made towards the quantitative determination of anisotropic yield criteria for several foliated and lineated rocks, towards developing models for their mechanical properties based upon interactions between deformation mechanisms and preexisting fabric elements, and towards the characterization of fabrics resulting from diapiric emplacement of magma bodies within shallow portion of the earth's crust. The suite of extension and compression experiments on Four-mile gneiss is nearly complete. Samples cored along six different orientations have been tested at temperatures ranging from 25/degree/ to 800/degree/C and confining pressures of 0 to 400 MPa at a strain rate of 10/sup /minus/5//s, and we are currently investigating the influence of strain rate on yield strength over the range 10/sup /minus/4/less than or equal to/dot /var epsilon//less than or equal to10/sup /minus/6//s. We have examined deformation microstructures of deformed gneiss samples and identified those processes at the grain scale which are associated with its inelastic response. The orthorhombic anisotropy of fracture strength exhibited by the gneiss may be explained by a simple model involving localized slip within micas and microcracking within the stronger, surrounding framework silicates. Micas appear to interact in much the same way as do Mode II shear cracks, and their density, distribution, and preferred orientation affect the nucleation of microcracks which ultimately lead to failure. Ten material parameters of a generalized anisotropic yield function for Four-mile gneiss at room temperature have been determined using nonlinear fitting methods applied to the completed room temperature data. 45 refs.

Kronenberg, A.K.; Russell, J.E.; Carter, N.L.; Handin, C.J.; Gottschalk, R.R.; Shea, W.T.

1989-01-01T23:59:59.000Z

424

Processing Technology  

Science Conference Proceedings (OSTI)

Aug 5, 2013... relevant polymers and hybrid nanocomposite material systems. ... technology to perform lightweight manufacturing of car components.

425

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

426

Technology Transfer  

Science Conference Proceedings (OSTI)

... get started on understanding accessibility in elections and voting technology. ... bibliography was created by the Georgia Tech Research Institute ...

2013-09-17T23:59:59.000Z

427

Docking automation related technology, Phase 2 report  

SciTech Connect

This report generalizes the progress for Phase II of the Docking Automated Related Technologies task component within the Modular Artillery Ammunition Delivery System (MAADS) technology demonstrator of the Future Armored Resupply Vehicle (FARV) project. This report also covers development activity at Oak Ridge National Laboratory (ORNL) during the period from January to July 1994.

Jatko, W.B.; Goddard, J.S.; Gleason, S.S.; Ferrell, R.K.

1995-04-01T23:59:59.000Z

428

Technology Strategies  

Science Conference Proceedings (OSTI)

From the Book:PrefaceTechnology as the Strategic AdvantageWhen I began writing this book I struggled with the direction I wanted it to take. Is this book to be about business, technology, or even the business of technology? I ...

Cooper Smith

2001-07-01T23:59:59.000Z

429

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

430

Building Technologies Office: 2013 DOE Building Technologies Office Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review 2013 DOE Building Technologies Office Program Review The 2013 Department of Energy (DOE) Building Technologies Office Program Review was held April 2-4, 2013 in Washington, DC. This inaugural review encompassed active work done by the Building Technologies Office (BTO), with a total of 59 individual activities reviewed. Sixty independent experts assessed the progress and contributions of each project toward BTO's mission and goals, and these assessments will be used to enhance the management of existing efforts, gauge the effectiveness of projects, and design future programs. The meeting also provided an opportunity to promote collaborations, partnerships, and technology transfers. 2013 Program Peer Review Report | 2013 Program Peer Review Presentations

431

Summary of the particle physics and technology working group  

SciTech Connect

Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

Stephan Lammel et al.

2002-12-10T23:59:59.000Z

432

November 2004 Phase 2 Progress Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

06 Phase 2 Progress Report: 06 Phase 2 Progress Report: 100kW LOW COST ENERGY STORAGE INVERTER Larry Rinehart Managing Director Rinehart Motion Systems, LLC This work is sponsored by US Department of Energy Grant DE-FG02- 03ER83768 Technical support and management provided by Sandia Labs R S M TM Rinehart Motion Systems, LLC 4/8/2010 DOE Grant DE-FG02-03ER83768 2 Background Rinehart Motion completed Phase 1 R&D activities July 2003 thru April 2004 * In Phase 1 we worked on the Inverter hardware, substantially reducing the size and cost of future Inverters Phase 2 activities began in July 2004 and were scheduled to end June 2006 (a 9 month no-cost extension has been granted) * Phase 2 work is focused on the Inverter / PCS system design The Phase 2 work plan includes: * Determine the scalability boundaries of the technology. Target down

433

Energy Storage Research and Development 2007 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

and dEvElopmEnt vEhiclE tEchnologiES program Less dependence on foreign oil today, and transition to a petroleum-free, emissions-free vehicle tomorrow. 2 0 0 7 a n n u a l p r o g r e s s r e p o r t U.S. Department of Energy Office of Vehicle Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2007 Progress Report for Energy Storage Research and Development Energy Efficiency and Renewable Energy Vehicle Technologies David Howell Manager, Energy Storage R&D January 2008 Energy Storage Research and Development FY 2007 Annual Progress Report TABLE OF CONTENTS I. INTRODUCTION ........................................................................................................... 1 I.A Vehicle Technologies Program ............................................................................. 1

434

Emerging Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Emerging Technologies Emerging Technologies Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made. Featured Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. A pilot project that will generate electricity from Maine's ocean tides could be a game-changer for America's tidal energy industry at-large. Advanced Battery Manufacturing Making Strides in Oregon EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program

435

FY 2012 Annual Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

844 844 Energy Storage VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FISCAL YEAR 2012 ANNUAL PROGRESS REPORT FOR ENERGY STORAGE R&D January 2013 Approved by David Howell, Hybrid Electric Systems Team Lead Vehicle Technologies Program, Energy Efficiency and Renewable Energy FY 2012 Annual Progress Report i Energy Storage R&D Table of Contents I. INTRODUCTION ................................................................................................................................................. 1 I.A Vehicle Technologies Program Overview ..................................................................................................... 1

436

FY 2005 Annual Progress Report for the DOE Hydrogen Program  

DOE Green Energy (OSTI)

In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

None

2005-10-01T23:59:59.000Z

437

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 71, quarter ending June 30, 1992  

SciTech Connect

Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

Not Available

1993-06-01T23:59:59.000Z

438

Technology '90  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

Not Available

1991-01-01T23:59:59.000Z

439

Direct conversion technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

440

Building Technologies Office: Technology Research, Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Building Technologies Office: Technology Research, Standards, and Codes in Emerging Technologies on Facebook Tweet about Building Technologies...

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

6 News Stories (and older) 6 News Stories (and older) 12.21.2005___________________________________________________________________ Genzyme acquires gene therapy technology invented at Berkeley Lab. Read more here. 07.19.2005 _________________________________________________________________ Symyx, a start up company using Berkeley Lab combinatorial chemistry technology licensed by the Technology Transfer Department and developed by Peter Schultz and colleagues in the Materials Sciences Division, will be honored with Frost & Sullivan's 2005 Technology Leadership Award at their Excellence in Emerging Technologies Awards Banquet for developing enabling technologies and methods to aid better, faster and more efficient R&D. Read more here. 07.11.2005 _________________________________________________________________ Nanosys, Inc., a Berkeley Lab startup, is among the solar nanotech companies investors along Sand Hill Road in Menlo Park hope that thinking small will translate into big profits. Read more here.

442

MEIC Design Progress  

SciTech Connect

This paper will report the recent progress in the conceptual design of MEIC, a high luminosity medium energy polarized ring-ring electron-ion collider at Jefferson lab. The topics and achievements that will be covered are design of the ion large booster and the ERL-circulator-ring-based electron cooling facility, optimization of chromatic corrections and dynamic aperture studies, schemes and tracking simulations of lepton and ion polarization in the figure-8 collider ring, and the beam-beam and electron cooling simulations. A proposal of a test facility for the MEIC electron cooler will also be discussed.

Zhang, Y; Douglas, D; Hutton, A; Krafft, G A; Li, R; Lin, F; Morozov, V S; Nissen, E W; Pilat, F C; Satogata, T; Tennant, C; Terzic, B; Yunn, C; Barber, D P; Filatov, Y; Hyde, C; Kondratenko, A M; Manikonda, S L; Ostroumov, P N

2012-07-01T23:59:59.000Z

443

Progress in Heat WatchWarning System Technology  

Science Conference Proceedings (OSTI)

Among all atmospheric hazards, heat is the most deadly. With such recent notable heat events as the Chicago Heat Wave of 1995, much effort has gone into redeveloping both the methods by which it is determined whether a day will be oppressive, ...

Scott C. Sheridan; Laurence S. Kalkstein

2004-12-01T23:59:59.000Z

444

Geothermal injection technology program. Annual progress report, FY-85  

DOE Green Energy (OSTI)

This report summarizes injection research conducted during FY-1985. The objective was to develop a better understanding of the migration and impact of fluids injected in geothermal reservoirs. Separate abstracts have been prepared for individual project summaries. (ACR)

Not Available

1986-02-01T23:59:59.000Z

445

Vehicle Technologies Office: FY 2007 Progress Report for Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

meet future Federal emissions regulations. The primary goal of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion...

446

Vehicle Technologies Office: FY 2005 Progress Report for Heavy...  

NLE Websites -- All DOE Office Websites (Extended Search)

(PDF 137 KB) 3g. Catalysis of First Principles(PDF 4.1 MB) 3h. Durability of Diesel Particulate Filters (PDF 769 KB) 4. Materials for Air Handling, Hot Section, and Structural...

447

Annual Progress Report for Advanced Vehicle Technology Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

can expect, fuel economy gains are greater for driving cycles that have a high level of regenerative braking energy available (the Federal Urban Driving Schedule, or FUDS) and...

448

Project Mountain Valley Sunshine?Progress in Science and Technology  

Science Conference Proceedings (OSTI)

In order to improve the cloud seeding reaction, the basic processes in cloud microphysics and dynamics were critically examined. The disadvantage of the large temperature dependence in heterogeneous ice nucleation, as well as the advantage of ...

Norihiko Fukuta

1996-09-01T23:59:59.000Z

449

Vehicle Technologies Office: FY 2004 Progress Report for Automotive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Next-Generation Programmable Preforming Process (PDF 385 KB) 5. Low-Cost Carbon Fiber 5a. Low-Cost Carbon Fibers from Renewable Resources (PDF 376 KB) 5b. Low-Cost...

450

Active Burner Balancing Technology Review: Interim Progress Report  

Science Conference Proceedings (OSTI)

In an effort to reduce NOx emissions and improve unit performance, EPRI has been investigating combustion optimization on large power plant boilers. Achieving proper balance among all burners in a furnace is one of the primary ways to improve the combustion process. Currently, burner balancing is performed only periodically and not continuously.

2000-12-08T23:59:59.000Z

451

Innovation Technology Transfer 2005-2006 Progress Report Credits  

NLE Websites -- All DOE Office Websites (Extended Search)

unattended operations. In addition, the company will validate the use of a handheld, battery-operated, multiplicity shift register already developed by Newell and his team. Both...

452

FY2001 Progress Report for the Advanced Technology Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

of ATD Cell Performance and Life Evaluations Chet Motloch, Jon Christophersen, Randy Wright, Roger Richardson, Chinh Ho, David Glenn, Kevin Gering, Tim Murphy Idaho National...

453

NETL: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

projects are designed to: enhance domestic oil and natural gas supplies through advanced exploration and production technology; examine water related concerns; investigate...

454

Technology Update  

Science Conference Proceedings (OSTI)

A Novel Solvent Extraction Process With Bottom Gas Injection for Liquid Waste ... Membrane Technology for Treatment of Wastes Containing Dissolved Metals:...

455

Microwave Technology  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... These wastes are found in the market. ... Cherian1; Michael Kirksey1; Sandwip Dey2; 1Spheric Technologies Inc; 2Arizona State University

456

Transmission Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

electronically (shift-by-wire) and performed by a hydraulic system or electric motor. In addition, technologies can be employed to make the shifting process smoother than...

457

Decontamination Systems Information and Research Program. Quarterly technical progress report, July 1--September 30, 1993  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following projects: systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies--drain-enhanced soil flushing (DESF) for organic contaminants removal; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors--monolayer and multilayer self-assembled films for chemical sensors; Winfield Lock and Dam remediation; Winfield cleanup survey; assessment of technologies for hazardous waste site remediation--non-treatment technologies and pilot scale test facility implementation; assessment of environmental remediation storage technology; assessment of environmental remediation excavation technology; assessment of environmental remediation monitoring technology; and remediation of hazardous sites with steam reforming.

Not Available

1993-10-01T23:59:59.000Z

458

Geothermal Progress Monitor. System status and operational experience  

DOE Green Energy (OSTI)

The Geothermal Progress Monitor (GPM) system was designed and implemented by MITRE for DOE's Division of Geothermal Energy (now the Division of Geothermal and Hydropower Technologies). This report summarizes MITRE's operational experience with the system during fiscal year 1983 and provides a qualitative assessment of its data sources.

Gerstein, R.E.; Medville, D.M.

1983-11-01T23:59:59.000Z

459

Progressing UK Energy Research for a Coherent Structure with Impact  

E-Print Network (OSTI)

the deployment of affordable green energy technologies that decarbonise our energy supply and increase energy with their collaborators in industry who are so vital to the health of UK Energy research, for rising to the challengesProgressing UK Energy Research for a Coherent Structure with Impact Report of the International

Berzins, M.

460

Groundwater Cleanup Progresses at Paducah Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Progresses at Paducah Site Cleanup Progresses at Paducah Site Groundwater Cleanup Progresses at Paducah Site October 30, 2013 - 12:00pm Addthis Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. The belowground heating system operates in front of the C-400 Cleaning Building. The belowground heating system operates in front of the C-400 Cleaning

Note: This page contains sample records for the topic "microcrack technology progress" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrogen and Fuel Cell Activities, Progress, and Plans  

E-Print Network (OSTI)

(a) not later than 2 years after the date of enactment of this Act, and triennially thereafter, the Secretary shall submit to Congress a report describing--(1) activities carried out by the Department under this title, for hydrogen and fuel cell technology; (2) measures the Secretary has taken during the preceding 3 years to support the transition of primary industry (or a related industry) to a fully commercialized hydrogen economy; (3) any change made to the strategy relating to hydrogen and fuel cell technology to reflect the results of learning demonstrations; (4) progress, including progress in infrastructure, made toward achieving the goal of producing and deploying not less than- (A) 100,000 hydrogen-fueled vehicles in the United States by 2010; and (B) 2,500,000 hydrogen-fueled vehicles in the United States by 2020; (5) progress made toward achieving the goal of supplying hydrogen at a

unknown authors

2009-01-01T23:59:59.000Z

462

Liquid fossil fuel technology  

Science Conference Proceedings (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

463

Oakland Operations Office, Oakland, California: Technology summary  

SciTech Connect

DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

1994-11-01T23:59:59.000Z

464

Metering Technology  

Science Conference Proceedings (OSTI)

Utilities are looking to replace meters that only measure kilowatt-hours with advanced meters with greater features and functions. This White Paper describes the smart metering technology that is already available or will be available in the near future. It also provides a high-level overview of the wired and wireless communication technologies used in the metering industry.

2008-06-20T23:59:59.000Z

465

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

Hugh W. Rimmer

2004-05-12T23:59:59.000Z

466

Technology Search Results | Brookhaven Technology ...  

BSA 11-30: Enhanced Alkane production by Aldehyde Decarbonylase Fusion Constructs; BSA 12-36: Oil Accumulation in Plant Leaves; Find a Technology.

467

Technology Search Results | Brookhaven Technology ...  

There are 9 technologies tagged "cancer". BSA 01-02: ... a limited-liability company founded by the Research Foundation for the State University of ...

468

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Courtesy of ZCorp The Rapid Prototyping Laboratory (RPL) supports internal design, manufacturing, and process development with three rapid prototyping (RP) technologies:...

469

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

parts Brazing large complex parts The joining and heat-treating technologies in the Thin Film, Vacuum, & Packaging department include brazing, heat-treating, diffusion...

470

DOE Reports Progress on Loan Guarantee Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Progress on Loan Guarantee Program Reports Progress on Loan Guarantee Program DOE Reports Progress on Loan Guarantee Program June 20, 2007 - 2:07pm Addthis Forms Credit Review Board, Names Temporary Staff, and Establishes Guidelines for Financial and Technical Reviews WASHINGTON, DC - The U.S Department of Energy (DOE) this week reported progress in implementing its Loan Guarantee program for promising projects that employ clean energy technologies, as authorized by the Energy Policy Act of 2005 (EPAct). DOE has established a Credit Review Board to make recommendations to the Secretary of Energy, named experts to work in the Loan Guarantee program office, and developed guidelines for the financial and technical review of loan guarantee applications. Additionally last month, DOE issued draft loan guarantee regulations that once final, will

471

FY 2012 Annual Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

35 Energy Storage R&D FY 2012 Annual Progress Report 1 Energy Storage R&D I. INTRODUCTION I.A Vehicle Technologies Program Overview The Department of Energy's (DOE's) Vehicle...

472

Advanced high-? dielectric stacks with polySi and metal gates: recent progress and current challenges  

Science Conference Proceedings (OSTI)

The paper reviews our recent progress and current challenges in implementing advanced gate stacks composed of high-? dielectric materials and metal gates in mainstream Si CMOS technology. In particular, we address stacks of doped polySi gate electrodes ...

E. P. Gusev; V. Narayanan; M. M. Frank

2006-07-01T23:59:59.000Z

473

Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995  

SciTech Connect

This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

Gill, D.

1995-09-01T23:59:59.000Z

474

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVI-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Sunita Satyapal, Director DOE Hydrogen and Fuel Cells Program Fuel Cell Technologies Program DOE Office of...

475

HEALTH PHYSICS DIVISION ANNUAL PROGRESS REPORT, FOR PERIOD ENDING JULY 31, 1961  

SciTech Connect

Progress is reported in 26 papers on radioactive waste disposal, ecologicah research, radiation physics and dosimetry, internal dosimetry, and health physics technology. Twenty-five separate abstracts were prepared. One paper was previously abstracted for NSA. (M.C.G.)

none,

1961-10-31T23:59:59.000Z

476

Recent Progress in Redox Flow Battery Research and Development  

SciTech Connect

With the increase need to seamlessly integrate the renewable energy with the current grid which itself is evolving into a more intelligent, efficient, and capable electrical power system, it is envisioned that the energy storage system will play a more prominent role in bridging the gap between the current technology and a clean sustainable future in grid reliability and utilization. Redox flow battery technology is leading the way in this perspective in providing a well balanced approach for current challenges. Recent progress in the research and development of redox flow battery technology is reviewed here with a focus on new chemistries and systems.

Wang, Wei; Luo, Qingtao; Li, Bin; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

2013-02-20T23:59:59.000Z