National Library of Energy BETA

Sample records for micro pulse lidar

  1. Wind velocity measurements using a pulsed LIDAR system: first results

    E-Print Network [OSTI]

    Peinke, Joachim

    , M K¨uhn3 and J Peinke4 1,4 ForWind Center for Wind Energy Research, University of Oldenburg, Germany 2,3 Endowed Chair of Wind Energy, University of Stuttgart, Germany E-mail: 1 matthias relevance for wind energy utilization. Different technologies are in use in this field, among them LIDAR

  2. Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection F-acting solenoid valves to meet the demands of pulsed detonation fuel injection and other high-frequency devices is presented. The micro-valve was found to performance well above the manufacturer's rated frequency under no

  3. Study on the steady operating state of a micro-pulse electron gun

    SciTech Connect (OSTI)

    Kui, Zhou; Xing, Luo; Xiangyang, Lu; Shengwen, Quan; Jifei, Zhao; Ziqin, Yang

    2014-09-15

    Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856?MHz has been designed, constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.

  4. ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA Contacts ENAProductsHSRL

  5. Polarized Micro Pulse Lidars R. L. Coulter and T. J. Martin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinumtake the 2011|Poemand Performance of

  6. 150K - 200K miniature pulse tube cooler for micro satellites

    SciTech Connect (OSTI)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald [Air Liquide Advanced Technologies (AL-AT) - 38360 Sassenage (France); Daniel, Christophe [Centre National D'Etudes Spatiales (CNES) - 31401 Toulouse (France); Crespin, Maurice; Duvivier, Eric [STEEL électronique - 31220 Martres Tolosane (France)

    2014-01-29

    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 ?m and 2.0 ?m. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.

  7. Tunable Femtosecond Pulse Generation and Applications in Raman Micro-Spectroscopy 

    E-Print Network [OSTI]

    Peng, Jiahui

    2010-10-12

    reported tuning range for efficient nonlinear optical frequency conversion obtained with such a simple and low energy laser. We apply such a Ti:sapphire laser to Raman micro-spectroscopy. Because of the different temporal behaviors of the Raman process...

  8. Doppler Lidar (DL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  9. In situ derivation of sulfur activated TiO{sub 2} nano porous layers through pulse-micro arc oxidation technology

    SciTech Connect (OSTI)

    Bayati, M.R.; Golestani-Fard, F.; Center of Excellence for Advanced Materials, Iran University of Science and Technology, P.O. Box 16845-195, Tehran ; Moshfegh, A.Z.; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran ; Molaei, Roya

    2011-10-15

    Highlights: {yields} S-TiO{sub 2} layers were grown by MAO technique under pulse current for the first time. {yields} Effect of growth parameters on chemical composition, topography, and morphology of the layers was studied. {yields} A correlation between photocatalytic performance and growth conditions was proposed. -- Abstract: Micro arc oxidation technique, as a facile and efficient process, was employed to grow sulfur doped titania porous layers. This research sheds light on the photocatalytic performance of the micro arc oxidized S-TiO{sub 2} nano-porous layers fabricated under pulse current. Morphological and topographical studies, performed by SEM and AFM techniques, revealed that increasing the frequency and/or decreasing the duty cycle resulted in formation of finer pores and smoother surfaces. XRD and XPS results showed that the layers consisted of anatase and rutile phases whose fraction was observed to change depending on the synthesis conditions. The highest anatase relative content was obtained at the frequency of 500 Hz and the duty cycle of 5%. Furthermore, photocatalytic activity of the layers was examined by measuring the decomposition rate of methylene blue under both ultraviolet and visible photo irradiations. Maximum photodegradation reaction rate constants over the pulse-grown S-TiO{sub 2} layers were respectively measured as 0.0202 and 0.0110 min{sup -1} for ultraviolet and visible irradiations.

  10. Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel

    E-Print Network [OSTI]

    Ozel, Tugrul

    is widely used for cutting, drilling, scribing, marking, welding, sintering and heat treatment applications. Hence, it has become a viable alternative to conventional methods for producing complex and micro. Compared with other conventional mechanical processes, laser machining (milling) is a non-contact material

  11. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  12. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-24

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates somemore »of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  13. Heterodyne lidar for chemical sensing

    SciTech Connect (OSTI)

    Oldenborg, R. C. (Richard C.); Tiee, J. J. (Joe J.); Shimada, T. (Tsutomu); Wilson, C. W. (Carl W.); Remelius, D. K. (Dennis K.); Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO{sub 2} transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics have to be validated. The baseline coherent DIAL detection sensitivity that can be achieved averaging multiple laser pulses and by comparisons of different wavelengths will be demonstrated. Factors that are presently limiting performance and attempts to circumvent these issues will be discussed.

  14. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect (OSTI)

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  15. Raman Lidar (RL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  16. Raman Lidar Receives Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.Raman Lidar2

  17. ARCTIC OBSERVATIONS WITH THE UNIVERSITY OF WISCONSIN HIGH SPECTRAL RESOLUTION LIDAR

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    ) as part of the US National Oceanic and At- mospheric Administration (NOAA) SEARCH program. SEARCH seeks- lution Lidar has provided nearly continuous data since its August 2005 deployment at Eureka, Canada (80N. An expanded transmitted beam and low pulse energy make the output beam eye safe. Using molecular scattering

  18. Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects

    E-Print Network [OSTI]

    Singer, Andrew C

    returns from the surrounding water medium and ocean bottom. Our results provide a generalization ocean lidar return, obtained by a CCD array. © 2002 Optical Society of America OCIS codes: 010.3640, 030 a laser to generate a short, high-powered pulse of light. The transmitted laser beam can penetrate the air

  19. 4/5/2014 Micro-windmill Charger | DailyHome Decor Ideas http://www.dailyhomedecorideas.com/stunning-ideas/micro-windmill-charger/ 1/4

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Turbine Education GG Design Inspirations Lidar Power Supply Affordable Area Rugs factoryoutletrugs://www.dailyhomedecorideas.com/stunning-ideas/micro-windmill-charger/ 3/4 Where there is the wind, there is the electrical power. Researchers in University of Texas Arlington have developed a ultra-small micro-windmill that is capable of making enough wind power

  20. Position Announcement Postdoctoral Research Associate Lidar Remote Sensing

    E-Print Network [OSTI]

    Salvaggio, Carl

    Position Announcement Postdoctoral Research Associate ­ Lidar Remote Sensing Department Summary: The employee will provide remote sensing expertise and conduct research in lidar remote sensing from advanced terrestrial, airborne, and satellite remote sensing platforms, including UASs (Unmanned

  1. REFURBISHMENT AND UPGRADE OF FE BOLTZMANN/RAYLEIGH TEMPERATURE LIDAR AT BOULDER FOR A MCMURDO LIDAR CAMPAIGN IN ANTARCTICA

    E-Print Network [OSTI]

    Chu, Xinzhao

    REFURBISHMENT AND UPGRADE OF FE BOLTZMANN/RAYLEIGH TEMPERATURE LIDAR AT BOULDER FOR A MCMURDO LIDAR conditions, refurbishment and upgrade of the system was necessary in order to restore its performance. More

  2. Pulse stretcher

    DOE Patents [OSTI]

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  3. High-speed micro-electro-discharge machining.

    SciTech Connect (OSTI)

    Chandrasekar, Srinivasan Dr. (.School of Industrial Engineering, West Lafayette, IN); Moylan, Shawn P. (School of Industrial Engineering, West Lafayette, IN); Benavides, Gilbert Lawrence

    2005-09-01

    When two electrodes are in close proximity in a dielectric liquid, application of a voltage pulse can produce a spark discharge between them, resulting in a small amount of material removal from both electrodes. Pulsed application of the voltage at discharge energies in the range of micro-Joules results in the continuous material removal process known as micro-electro-discharge machining (micro-EDM). Spark erosion by micro-EDM provides significant opportunities for producing small features and micro-components such as nozzle holes, slots, shafts and gears in virtually any conductive material. If the speed and precision of micro-EDM processes can be significantly enhanced, then they have the potential to be used for a wide variety of micro-machining applications including fabrication of microelectromechanical system (MEMS) components. Toward this end, a better understanding of the impacts the various machining parameters have on material removal has been established through a single discharge study of micro-EDM and a parametric study of small hole making by micro-EDM. The main avenues for improving the speed and efficiency of the micro-EDM process are in the areas of more controlled pulse generation in the power supply and more controlled positioning of the tool electrode during the machining process. Further investigation of the micro-EDM process in three dimensions leads to important design rules, specifically the smallest feature size attainable by the process.

  4. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  5. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  6. Pulse amplitude modulated chlorophyll fluorometer

    DOE Patents [OSTI]

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  7. Micro Hydro 1 Micro Hydro Power.

    E-Print Network [OSTI]

    Micro Hydro 1 Micro Hydro Power. Andrew Cannard, Andrew Gonzales, Candace Kaiser. Using recycled materials we will be building a Mini Micro hydro system. Using a rear bicycle tire for the turbine we and implementation of permanent micro hydro systems on campus. Renewable energy is a key aspect of any plan to make

  8. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect (OSTI)

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  9. Lidar techniques for search and rescue

    SciTech Connect (OSTI)

    Cabral, W.L.

    1985-01-01

    Four techniques for using LIDAR in Search and Rescue Operations will be discussed. The topic will include laser retroreflection, laser-induced fluorescence in the visible, laser-induced fluorescence during daylight hours, and laser-induced fluorescence in the uv. These techniques use high-repetition rate lasers at a variety of frequencies to induce either fluorescence in dye markers or retroreflection from plastic corner cubes on life preservers and other emergency markers.

  10. APPLICATION OF MILLISECOND PULSED LASER WELDING IN MEMS P. Bozorgi*

    E-Print Network [OSTI]

    MacDonald, Noel C.

    APPLICATION OF MILLISECOND PULSED LASER WELDING IN MEMS PACKAGING P. Bozorgi* , C.B. Burgner, Z:YAG pulsed laser is used as a localized heating source to micro-weld a 350 µm titanium cap to the substrate distortion of the welding, several geometries at the cap and substrate interface were investigated

  11. Oil spill fluorosensing lidar for inclined onshore or shipboard operation

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    Oil spill fluorosensing lidar for inclined onshore or shipboard operation Renata Karpicz, Andrej An oil spill detection fluorosensing lidar for onshore or shipboard operation is described. Some the back- ground water column fluorescence from signals such as yellow substance. This enables oil

  12. Ris-R-Report LIDAR Wind Speed Measurements from a

    E-Print Network [OSTI]

    Risø-R-Report LIDAR Wind Speed Measurements from a Rotating Spinner: "SpinnerEx 2009" Nikolas: LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009) Division: Wind Energy Division application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner

  13. Lidar on the Phoenix mission to Mars James Whiteway,1

    E-Print Network [OSTI]

    Duck, Thomas J.

    Lidar on the Phoenix mission to Mars James Whiteway,1 Michael Daly,2 Allan Carswell,3 Thomas Duck,4 from the surface of Mars as part of the Phoenix mission. This will measure the height profile, and C. Cook (2008), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi:10

  14. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    1998-03-01

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  15. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  16. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  17. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2004-10-01

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  18. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  19. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  20. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  1. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  2. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  3. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  4. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  5. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  6. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  7. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  8. Plasma discreteness eects in the presence of an intense, ultrashort laser pulse

    E-Print Network [OSTI]

    Plasma discreteness eects in the presence of an intense, ultrashort laser pulse V.I. Savchenko, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma eects, in certain regimes the energy absorbed in the plasma micro#12

  9. Pulsed hydrojet

    DOE Patents [OSTI]

    Bohachevsky, I.O.; Torrey, M.D.

    1986-06-10

    An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.

  10. Rayleigh lidar observations of mesosphere temperature structure

    SciTech Connect (OSTI)

    Meriwether, J.W.; Dao, P.D.; Mcnutt, R.T.; Klemetti, W.; Moskowitz, W.; Davidson, G. [Hanscom Air Force Base, MA (United States)]|[PhotoMetrics, Inc., Woburn, MA (United States)

    1994-08-01

    Ground-based observations of atmospheric density profiles to 92 km were obtained for four successive seasons between summer 1989 and spring 1990. These results were obtained with a powerful Rayleigh lidar facility located at Wright Patterson Air Force Base (Dayton, Ohio). This instrument combined a 14-W XeF laser transmitter with a 2.54-m receiver mirror to observe returns from altitudes between 40 and 95 km. Analysis of the scale height dependence of the density profiles produced temperatures with a measurement error of about 5 K (approximately 2.5%) at 90 km when the lidar data was averaged for 20 min. and smoothed in height over 2.7 km. Examination of these profiles for the total of 18 nights showed that there often existed in the mesophere a layer of enhanced temperatures when compared with the U.S. standard profile. The layer centroid height was about 85 km for summer and 70 to 75 km for winter. Data obtained for the equinoctial periods showed the amplitude of these layers to be weak. The winter temperature profiles showed evidence for long-period waves passing through the region of the thermal anomaly while the equinox profiles revealed more sporadic wave activity with shorter vertical wavelengths. Both the winter and summer temperature data displayed regions where the observed lapse rate approached the adiabatic lapse rate. In the summer the wave activity near the iversion layer was weak.

  11. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    SciTech Connect (OSTI)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of incoming wind speeds that could be provided by LIDAR. Non-causal series expansion and Preview Control methods reduce blade root loads but increase tower bending in simulation results. The optimized FIR filter reduces loads overall, keeps pitch rates low, and maintains rotor speed regulation and power capture, while using imperfect wind measurements provided by the spinning continuous-wave LIDAR model.

  12. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

  13. Mitigation of Coastal Bluff Instability in San Diego County, California/Evaluating Seacliff Morphology and Erosion Control in San Diego County Using LIDAR and GIS

    E-Print Network [OSTI]

    Ashford, Scott

    2005-01-01

    County Using LIDAR and GIS In order to evaluate seacliffgeographic information systems (GIS) analysis. LIDAR is the

  14. Automatic registration of LIDAR and optical images of urban scenes

    E-Print Network [OSTI]

    Mastin, Dana Andrew

    Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

  15. A motor drive control system for the Lidar Polarimeter 

    E-Print Network [OSTI]

    Leung, Waiming

    1977-01-01

    A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Submitted to the Graduate College of Texas A/M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCF, May 1977 Major... Subject: Electrical Engineering A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Approved as to style and content by: Chairman o Comm' ee ea o epartment Member Mem er May 1977 ABSTRACT A Motor Drive Control...

  16. Fault tolerant pulse synchronization 

    E-Print Network [OSTI]

    Deconda, Keerthi

    2009-05-15

    Pulse synchronization is the evolution of spontaneous firing action across a network of sensor nodes. In the pulse synchronization model all nodes across a network produce a pulse, or "fire", at regular intervals even without access to a shared...

  17. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  18. Long pulse production from short pulses

    DOE Patents [OSTI]

    Toeppen, J.S.

    1994-08-02

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  19. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    and tonal lineaments were used to define possible faults in both the LiDAR and LSA photo data sets.The LiDAR and LSA photo analysis has identified a large number of previously...

  20. THEORETICAL MODELING OF LIDAR RETURN PHENOMENOLOGY FROM SNOW AND ICE SURFACES

    E-Print Network [OSTI]

    Kerekes, John

    THEORETICAL MODELING OF LIDAR RETURN PHENOMENOLOGY FROM SNOW AND ICE SURFACES J. Kerekes, J. Zhang the science of lidar sensing of complex ice and snow surfaces as well as in support of the upcoming ICESat- 2 from snow and ice surfaces. First, the anticipated lidar return characteristics for a sloped non

  1. 6.4 ARCTIC OBSERVATIONS WITH THE UNIVERSITY OF WISCONSIN HIGH SPECTRAL RESOLUTION LIDAR

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    @lidar.ssec.wisc.edu 2 NOAA Earth Systems Research Laboratory, 325 Broadway, Boulder, CO, USA taneil seatainers are joined together as shelter for the lidar, radar, and PAREI instruments. The 35 GHz radar antenna is seen on the near corner of the shelter and the zenith facing lidar window is located

  2. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect (OSTI)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  3. The investigation of high intensity laser driven micro neutron sources

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , access to high temperature states of mat- ter capable of thermonuclear fusion and/or the effi- cientThe investigation of high intensity laser driven micro neutron sources for fusion materials. The application of fast pulse, high intensity lasers to drive low cost DT point neutron sources for fusion

  4. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  5. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  6. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  7. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  8. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  9. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  10. Musical pulse tracking algorithms and applications

    E-Print Network [OSTI]

    Saxton, Ian Arnold

    2008-01-01

    4.1.1. Pulse-Human Pulse Inference . . . . . . . . . . . . . . . . . .Phase Consistency Pulse Tracker . . . . . . . . . . . . .

  11. MicroSight Optics

    ScienceCinema (OSTI)

    None

    2013-05-28

    MicroSight is an innovative gunsight technology that allows a marksman's eye to focus on both the front gunsight and the intended target. The MicroSight improves both firearm safety and performance by imaging two objects at different focal distances. The MicroSight was developed at Idaho National Laboratory, and has been licensed by Apollo Optical Systems. You can learn more about INL's research programs at http://www.facebook.com/idahonationallaboratory.

  12. Micro Actuators Electrostatic actuator

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    is superior to the alloy CuZnAl. ·Most of SMA materials used in micro devices are TiNi (Nitinol). (IV) Work

  13. Laser pulse stacking method

    DOE Patents [OSTI]

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  14. Nerve-pulse interactions

    SciTech Connect (OSTI)

    Scott, A.C.

    1982-01-01

    Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.

  15. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  16. Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro

    E-Print Network [OSTI]

    Sun, Yu

    Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro unmanned aerial vehicles. These micro turbines vary in size and power. They can be hand held producing a fraction

  17. Imaging doppler lidar for wind turbine wake profiling

    DOE Patents [OSTI]

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  18. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    SciTech Connect (OSTI)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  19. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  1. Phase coded, micro-power impulse radar motion sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  2. Phase coded, micro-power impulse radar motion sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  3. Hybrid chirped pulse amplification system

    DOE Patents [OSTI]

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  4. Pulse enhanced fluidized bed combustion

    SciTech Connect (OSTI)

    Mueller, B.

    1996-12-31

    Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.

  5. Automatic Construction of Building Footprints from Airborne LIDAR Data

    E-Print Network [OSTI]

    Chen, Shu-Ching

    1 Automatic Construction of Building Footprints from Airborne LIDAR Data Keqi Zhang, Jianhua Yan. INTRODUCTION BUILDING footprints are one of the fundamental GIS data components that can be used to estimate, and estimation of building base elevation for flood insurance [2]. In addition, footprint data in combination

  6. Airborne lidar detection and characterization of internal waves in a

    E-Print Network [OSTI]

    Shaw, Joseph A.

    on the strength of the wind. This tends to create a layer of less dense water on top of the more dense water below of water with lower density at the surface. This layer is typically mixed with the water below. The airborne lidar detected a thin plankton layer at the bottom of the upper layer of the water

  7. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  8. Lidar fluorosensing of mineral oil spills on the sea surface

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    be discriminated from heavy fuel, and from less harmful substances like fish oil or vegetable oil, Fig. 3, whichLidar fluorosensing of mineral oil spills on the sea surface Theo Hengstermann and Rainer Reuter Airborne .fluorosensor measurements over maritime oil spills show that this method enables a sensitive

  9. Research Article Application of Short-Range LIDAR in

    E-Print Network [OSTI]

    Tang, Wenbo

    a series of meteorological instruments, including long-range LIDAR (light detection and ranging) systems Island of complex terrain to the south. The Lantau Island is composed of rows of northeast- southwest are brought about by strong winds across the Lantau Island to the south of the airport, including the strong

  10. Thermal properties of microscale inorganic light-emitting diodes in a pulsed Yuhang Li, Yan Shi, Jizhou Song, Chaofeng Lu, Tae-il Kim et al.

    E-Print Network [OSTI]

    Rogers, John A.

    LEDs to be operated by pulsed current (or power) to take advantage of their high efficiency, thermal (LEDs) in a pulsed operation offer combined characteristics in efficiency, thermal management and experiments, is developed to study the thermal properties of micro-scale inorganic LEDs (l-ILED) in a pulsed

  11. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    source of neutrinos for MicroBooNE is BNB; however, the NuMI beam will provide higher electron neutrino and antineutrino event rates and a unique opportunity to study these events....

  12. High voltage pulse conditioning

    DOE Patents [OSTI]

    Springfield, Ray M. (Sante Fe, NM); Wheat, Jr., Robert M. (Los Alamos, NM)

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  13. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    SciTech Connect (OSTI)

    Scholbrock, F. A.; Fleming, P.; Wright, A.; Davoust, S.; Jehu, A.; Bouillet, M.; Bardon M.; Vercherin, B.

    2014-02-01

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  14. Pulse compression in plasma: generation of femtosecond pulses without CPA

    E-Print Network [OSTI]

    Pulse compression in plasma: generation of femtosecond pulses without CPA G. Shvets and N. J. Fisch Garching, Germany Abstract: Laser pulses can be e#ciently compressed to femto­ second duration when a smaller­ frequency short pulse collides with high frequency long pulse in rare plasma, absorbing most

  15. Photonic generation of UWB pulses with pulse position modulation

    E-Print Network [OSTI]

    Yao, Jianping

    Photonic generation of UWB pulses with pulse position modulation H. Mu and J. Yao A novel photonic approach to generating ultra-wideband (UWB) signals with pulse position modulation (PPM) is proposed delay-line filter for UWB monocycle pulse generation, the second subsystem being a pulse

  16. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S., E-mail: drssatyanarayana.malladi@gmail.com; Satyanarayana, Malladi, E-mail: drssatyanarayana.malladi@gmail.com; Dhaman, Reji K., E-mail: drssatyanarayana.malladi@gmail.com; Motty, G. S., E-mail: drssatyanarayana.malladi@gmail.com [Department of Optoelectronics, University of Kerala, Karyavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  17. Beam dynamics in a long-pulse linear induction accelerator

    SciTech Connect (OSTI)

    Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  18. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-07

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine powermore »performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.« less

  19. Method of fabricating a micro machine

    DOE Patents [OSTI]

    Stalford, Harold L

    2014-11-11

    A micro machine may be in or less than the micrometer domain. The micro machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft is operable to be driven by the micro actuator. A tool is coupled to the micro shaft and is operable to perform work in response to at least motion of the micro shaft.

  20. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  1. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Planar Micro-Optic Solar Collectors," Optics for Solarin planar micro-optic solar collectors,” Optics Express, (inin planar micro-optic solar collectors,” Optics Express (in

  2. Silicon micro-mold

    DOE Patents [OSTI]

    Morales, Alfredo M. (Livermore, CA)

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  3. Micro-machined resonator

    DOE Patents [OSTI]

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  4. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  5. Window Transmission Monitoring and Cleaning Schemes used with the LIDAR Thomson Scattering Diagnostic on the JET Tokamak

    E-Print Network [OSTI]

    Window Transmission Monitoring and Cleaning Schemes used with the LIDAR Thomson Scattering Diagnostic on the JET Tokamak

  6. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  7. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  8. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOE Patents [OSTI]

    Freitas, Barry L. (Livermore, CA)

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  9. Aperiodic dynamical decoupling sequences in presence of pulse errors

    E-Print Network [OSTI]

    Zhi-Hui Wang; V. V. Dobrovitski

    2011-01-12

    Dynamical decoupling (DD) is a promising tool for preserving the quantum states of qubits. However, small imperfections in the control pulses can seriously affect the fidelity of decoupling, and qualitatively change the evolution of the controlled system at long times. Using both analytical and numerical tools, we theoretically investigate the effect of the pulse errors accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G. S. Uhrig, Phys. Rev. Lett. {\\bf 98}, 100504 (2007)], and the Quadratic DD (QDD) protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\\bf 104}, 130501 (2010)]. We consider the implementation of these sequences using the electron spins of phosphorus donors in silicon, where DD sequences are applied to suppress dephasing of the donor spins. The dependence of the decoupling fidelity on different initial states of the spins is the focus of our study. We investigate in detail the initial drop in the DD fidelity, and its long-term saturation. We also demonstrate that by applying the control pulses along different directions, the performance of QDD protocols can be noticeably improved, and explain the reason of such an improvement. Our results can be useful for future implementations of the aperiodic decoupling protocols, and for better understanding of the impact of errors on quantum control of spins.

  10. Micro Contacts and Micro Manipulation with MEMS Actuator Arrays

    E-Print Network [OSTI]

    Richardson, David

    Micro Contacts and Micro Manipulation with MEMS Actuator Arrays Karl­Friedrich B¨ohringer Bruce technology for MEMS (micro electro mechanical systems) increase the availability and diversity out tasks using coordinated systems of MEMS units motivates the development of automated, algorithmic

  11. Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report

    SciTech Connect (OSTI)

    Johnson, David K; Lewis, Matthew J; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

    2013-02-01

    The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

  12. AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA

    E-Print Network [OSTI]

    Schindler, Konrad

    AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA N. Demir* , E. Baltsavias, Detection, 3D Modelling ABSTRACT: In this work, an automated approach for 3D building roof modelling of accurate and complete 3D building models with high degree of automation. Aerial images and LiDAR data

  13. BUILDING ROOF SEGMENTATION AND RECONSTRUCTION FROM LIDAR POINT CLOUDS USING CLUSTERING TECHNIQUES

    E-Print Network [OSTI]

    Shan, Jie

    BUILDING ROOF SEGMENTATION AND RECONSTRUCTION FROM LIDAR POINT CLOUDS USING CLUSTERING TECHNIQUES presents an approach to creating a polyhedral model of building roof from LiDAR point clouds using. The normal vectors are then clustered together to determine the principal directions of the roof planes

  14. 3-D tomographic imaging of ocean mines from real and simulated lidar returns

    E-Print Network [OSTI]

    Singer, Andrew C

    3-D tomographic imaging of ocean mines from real and simulated lidar returns Nail C¸adalli, Peter J of underwater objects, where the trans- mitted laser beam can penetrate the air-water interface and illuminate by using an accurate statistical model that incorporates multiple scattering. Keywords: lidar, ocean optics

  15. Micro acoustic spectrum analyzer

    DOE Patents [OSTI]

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  16. Long Pulse Modulators

    E-Print Network [OSTI]

    Eckoldt, J

    2015-01-01

    Long pulse modulators are used to produce high-voltage, high-power pulses with durations of several hundred microseconds up to some milliseconds. The loads are one or more klystrons for producing RF power to accelerate the particle beam in superconducting cavities. After years of development and improvements in different institutes a variety of topologies exist, and are presented. The basics of modulators, pulse requirements and klystrons are explained. Additionally, the charging of internal energy storage will be addressed. The outlook for future developments is given.

  17. Breakthrough: micro-electronic photovoltaics

    ScienceCinema (OSTI)

    Okandan, Murat; Gupta, Vipin

    2014-06-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  18. Breakthrough: micro-electronic photovoltaics

    SciTech Connect (OSTI)

    Okandan, Murat; Gupta, Vipin

    2012-04-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  19. Pulse measurement apparatus and method

    DOE Patents [OSTI]

    Marciante, John R. (Webster, NY); Donaldson, William R. (Pittsford, NY); Roides, Richard G. (Scottsville, NY)

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  20. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  1. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  2. Digital pulse processing

    E-Print Network [OSTI]

    McCormick, Martin (Martin Steven)

    2012-01-01

    This thesis develops an exact approach for processing pulse signals from an integrate-and-fire system directly in the time-domain. Processing is deterministic and built from simple asynchronous finite-state machines that ...

  3. Pulsed Zeeman spectroscopy 

    E-Print Network [OSTI]

    Cullen, Raymond Paul

    1967-01-01

    PULSED ZEEMAN SPECTROSCOPY A Thesis Raymond P. Cullen Submitted to the Graduate Collepe of the Texas MM University in partial fulfillment of the requirements for the degree of MASTER OE SCIENCE August 1967 Major Subject: Chemistry PULSRD... ZEEHA&'I SPRCTPOSC::)Py A The. ", is by Raymond P. Cullen Approved es to style and content by: (Chairman o~ Commi. tee) August 1967 Pulsed Zceman Spectroscopy (August 1967) Raymond P. Cullen, B. S. , Texas A6M University Directed by: Dr...

  4. Pulse magnetic welder

    DOE Patents [OSTI]

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  5. Methods and systems for micro transmissions

    DOE Patents [OSTI]

    Stalford, Harold L

    2014-12-23

    Methods and systems for micro transmissions for a micro machine may comprise an input shaft assembly coupled to a micro actuator, an output shaft assembly coupled to a micro shaft, and one or more power conversion elements operable to convert a first type of movement from the micro actuator into a second, disparate type of movement for the micro shaft.

  6. Methods and systems for micro bearings

    DOE Patents [OSTI]

    Stalford, Harold L.

    2012-10-09

    A micro drive assembly may comprise a substrate, a micro shall oriented in-plane with the substrate and at least one micro bearing to support rotation of the micro shaft. The micro shaft and micro bearing may be in or less than the micrometer domain.

  7. ARM - Field Campaign - Lidar support for ICECAPS at Summit, Greenland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic- HemisphericCloudsgovCampaignsLidar

  8. Lidar Inter-Comparison Exercise Final Campaign Report A Protat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidentialLensless Imaging ofLibSciTeaming UpLidar

  9. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, Russell B. (Oakland, CA)

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  10. Efficient optical pulse stacker system

    DOE Patents [OSTI]

    Seppala, Lynn G. (Pleasanton, CA); Haas, Roger A. (Pleasanton, CA)

    1982-01-01

    Method and apparatus for spreading and angle-encoding each pulse of a multiplicity of small area, short pulses into several temporally staggered pulses by use of appropriate beam splitters, with the optical elements being arranged so that each staggered pulse is contiguous with one or two other such pulses, and the entire sequence of stacked pulses comprising a single, continuous long pulse. The single long pulse is expanded in area, and then doubly passed through a nonstorage laser amplifier such as KrF. After amplification, the physically separated, angle-encoded and temporally staggered pulses are recombined into a single pulse of short duration. This high intensity output beam is well collimated and may be propagated over long distance, or used for irradiating inertial confinement fusion targets.

  11. Scanning micro-sclerometer

    DOE Patents [OSTI]

    Oliver, W.C.; Blau, P.J.

    1994-11-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

  12. Photoconductive circuit element pulse generator

    DOE Patents [OSTI]

    Rauscher, Christen (Alexandria, VA)

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  13. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    SciTech Connect (OSTI)

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest) from the lidar (the lidar beam path was limited by site constraints and was {approx}100 meters). When one door of each of the cars was opened (sequentially), the lidar was clearly able to determine which vehicles had been tagged and which one was not. The lidar is probably capable of greater than 0.5 kilometer standoff distances based on the extreme amount of signal return achieved (so much that the system had to be de-tuned). The BNL lidar system, while optimized to the extent possible with available parts and budget, was not as sensitive as it could be. Steps to improve the lidar are detailed in this report and include using a better laser system (for more stable power output), dual wavelengths (to improve the sensitivity and allow common mode noise reduction and to allow the use of the lidar in a scanning configuration), heterodyning (for range resolved PFT detection) and an off-axis optical configuration (for improved near field sensitivity).

  14. Complex-optical-field lidar system for range and vector velocity measurement

    E-Print Network [OSTI]

    Gao, Shuang; Sullivan, Maurice O.; Hui, Rongqing

    2012-11-01

    lidar system based on the measurement of complex optical field is demonstrated for the first time. An electro-optic in- phase/quadrature (I/Q) modulator is used in the lidar transmitter to realize carrier-suppressed complex optical field modulation...-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Opt. Lett. 37(11), 2022–2024 (2012). 11. Y. Zhang, M. O’Sullivan, and R. Hui, “Digital subcarrier multiplexing for flexible spectral allocation in optical transport network...

  15. Pulse shaping system

    DOE Patents [OSTI]

    Skeldon, Mark D. (Penfield, NY); Letzring, Samuel A. (Jemez Springs, NM)

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  16. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  17. Laser pulse sampler

    DOE Patents [OSTI]

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  18. Laser pulse sampler

    DOE Patents [OSTI]

    Vann, Charles (Fremont, CA)

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  19. Pulse shaping system

    DOE Patents [OSTI]

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  20. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  1. Aperiodic dynamical decoupling sequences in presence of pulse errors

    E-Print Network [OSTI]

    Wang, Zhi-Hui

    2011-01-01

    Dynamical decoupling (DD) is a promising tool for preserving the quantum states of qubits. However, small imperfections in the control pulses can seriously affect the fidelity of decoupling, and qualitatively change the evolution of the controlled system at long times. Using both analytical and numerical tools, we theoretically investigate the effect of the pulse errors accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G. S. Uhrig, Phys. Rev. Lett. {\\bf 98}, 100504 (2007)], and the Quadratic DD (QDD) protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\\bf 104}, 130501 (2010)]. We consider the implementation of these sequences using the electron spins of phosphorus donors in silicon, where DD sequences are applied to suppress dephasing of the donor spins. The dependence of the decoupling fidelity on different initial states of the spins is the focus of our study. We investigate in detail the initial drop in the DD fidelity, and its long-term saturation. We also demonstra...

  2. Micro-fluidic interconnect

    DOE Patents [OSTI]

    Okandan, Murat (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Benavides, Gilbert L. (Los Ranchos, NM); Hetherington, Dale L. (Albuquerque, NM)

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  3. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergyPublicatons ContactThousandEnergyMicroBooNE

  4. Micro rotary machine and methods for using same

    DOE Patents [OSTI]

    Stalford, Harold L. (Norman, OK)

    2012-04-17

    A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.

  5. Downhole pulse tube refrigerators

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  6. Analog pulse processor

    DOE Patents [OSTI]

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  7. Nondegenerate optical parametric chirped pulse amplifier

    DOE Patents [OSTI]

    Jovanovic, Igor; Ebbers, Christopher A.

    2005-03-22

    A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.

  8. Fully automatic calibration of LIDAR and video streams from a vehicle

    E-Print Network [OSTI]

    Bileschi, Stanley M.

    This work describes a fully automatic technique to calibrate a geometric mapping between lidar and video feeds on a mobile ground-based platform. This data association is a crucial first step for any multi-modal scene ...

  9. Statistical methods for 2D-3D registration of optical and LIDAR images

    E-Print Network [OSTI]

    Mastin, Dana Andrew

    2009-01-01

    Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

  10. USING LIDAR TO MEASURE PERFLUOROCARBON TRACERS FOR THE VERIFICATION AND MONITORING

    E-Print Network [OSTI]

    and pilot-scale indoor experiments using an a continuous wave, line-tunable infrared CO2 laser were used region Using a pilot-scale lidar system in a 40 m indoor hallway air concentrations of PMCH were

  11. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  12. Simulation of Lidar Return Signals Associated with Water Clouds 

    E-Print Network [OSTI]

    Lu, Jianxu

    2010-01-14

    depolarization is not shown and the sensitivity studies on the empirical relationship are not very clear. Thus more details are needed for further research. This thesis will present another way to derive the multiple-scattering lidar equa- tion reported by Rakovi....0?m when 10 million photons are sampled. The idea is from Winker and Poole [9]. 38 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 Ef fec tiv eM ult ipl eS cat ter ing Fa cto r?? Integrated Volume Depolarization Ratio ?acc 3?m4?m 6?m8?m 15?m20?m (1??acc...

  13. Optomechanical Entanglement under Pulse Drive

    E-Print Network [OSTI]

    Qing Lin; Bing He

    2015-08-12

    We report a study of optomechanical entanglement under the drive of one or a series of laser pulses with arbitrary detuning and different pulse shapes. Because of the non-existence of system steady state under pulsed driving field, we adopt a different approach from the standard treatment to optomechanical entanglement. The situation of the entanglement evolution in high temperature is also discussed.

  14. Micro-channel plate detector

    SciTech Connect (OSTI)

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  15. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  16. Chemical micro-sensor

    DOE Patents [OSTI]

    Ruggiero, Anthony J.

    2005-05-03

    An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.

  17. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    planar micro-optic solar collectors," Opt. Express 19, A673-planar micro-optic solar collectors," Opt. Express 19, A673-

  18. Pulsed gas laser

    DOE Patents [OSTI]

    Anderson, Louis W. (Madison, WI); Fitzsimmons, William A. (Madison, WI)

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  19. Petawatt pulsed-power accelerator

    DOE Patents [OSTI]

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  20. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  1. High-speed pulse-shape generator, pulse multiplexer

    DOE Patents [OSTI]

    Burkhart, Scott C. (Livermore, CA)

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  2. Bright X-ray source from a laser-driven micro-plasma-waveguide

    E-Print Network [OSTI]

    Yi, Longqing; Thanh, Phuc Luu; Shen, Baifei

    2015-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  3. Coiled transmission line pulse generators

    DOE Patents [OSTI]

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  4. Development of Electrochemical Micro Machining 

    E-Print Network [OSTI]

    Srinivas Sundarram, Sriharsha

    2008-10-10

    The machining of materials on micrometer and sub-micrometer scale is considered the technology of the future. The current techniques for micro manufacturing mostly are silicon based. These manufacturing techniques are ...

  5. Green Light Pulse Oximeter

    DOE Patents [OSTI]

    Scharf, John Edward (Oldsmar, FL)

    1998-11-03

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  6. Short-Pulse Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top Scientific Impact SinceServiceShipping ToShort-Pulse

  7. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  8. Bipolar pulse forming line

    DOE Patents [OSTI]

    Rhodes, Mark A. (Pleasanton, CA)

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  9. Compensated pulsed alternator

    DOE Patents [OSTI]

    Weldon, William F. (Austin, TX); Driga, Mircea D. (Austin, TX); Woodson, Herbert H. (Austin, TX)

    1980-01-01

    This invention relates to an electromechanical energy converter with inertial energy storage. The device, a single phase, two or multi-pole alternator with stationary field coils, and a rotating armature is provided. The rotor itself may be of laminated steel for slower pulses or for faster pulses should be nonmagnetic and electrically nonconductive in order to allow rapid penetration of the field as the armature coil rotates. The armature coil comprises a plurality of power generating conductors mounted on the rotor. The alternator may also include a stationary or counterrotating compensating coil to increase the output voltage thereof and to reduce the internal impedance of the alternator at the moment of peak outout. As the machine voltage rises sinusoidally, an external trigger switch is adapted to be closed at the appropriate time to create the desired output current from said alternator to an external load circuit, and as the output current passes through zero a self-commutating effect is provided to allow the switch to disconnect the generator from the external circuit.

  10. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, K.

    1983-08-09

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  11. Tides in the mesopause region over Fort Collins, Colorado (41N, 105W) based on lidar temperature observations

    E-Print Network [OSTI]

    - teristics of the westward traveling solar tidal waves in the mesopause region, which can impact thermal hopefully stimulate future tidal studies with lidar temperature, and zonal and meridional wind observations: tides, mesopause region, lidar temperature, midlatitude 1. Introduction [2] Atmospheric solar tides

  12. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing

    E-Print Network [OSTI]

    Baum, Bryan A.

    A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2]. Other studies have compared CO2- slicing cloud heights with those computed from lidar data [Smith in assessing the accuracy of the CO2-slicing cloud height algorithm. Infrared measurements of upwelling

  13. Fast pulse nonthermal plasma reactor

    DOE Patents [OSTI]

    Rosocha, Louis A.

    2005-06-14

    A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.

  14. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  15. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  16. Remote control and telescope auto-alignment system for multiangle LIDAR under development at CEILAP, Argentina

    E-Print Network [OSTI]

    Pallotta, Juan; Otero, Lidia; Chouza, Fernando; Raul, Delia; Gonzalez, Francisco; Etchegoyen, Alberto; Quel, Eduardo

    2013-01-01

    At CEILAP (CITEDEF-CONICET), a multiangle LIDAR is under development to monitor aerosol extinction coefficients in the frame of the CTA (Cherenkov Telescope Array) Project. This is an initiative to build the next generation of ground-based instruments to collect very high energy gamma-ray radiation (>10 GeV). The atmospheric conditions are very important for CTA observations, and LIDARs play an important role in the measurement of the aerosol optical depth at any direction. The LIDAR being developed at CEILAP was conceived to operate in harsh environmental conditions during the shifts, and these working conditions may produce misalignments. To minimize these effects, the telescopes comprising the reception unit are controlled by a self-alignment system. This paper describes the self-alignment method and hardware automation.

  17. Pulsed depressed collector

    DOE Patents [OSTI]

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  18. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  19. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, Kristian (Livermore, CA)

    1983-01-01

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  20. Pulsed Laser Imager for Detecting Hydrocarbon and VOC Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Inventions and Innovation Program, LaSen, Inc., developed the Airborne Lidar Pipeline Inspection System (ALPIS). ALPIS is a helicopter-based, mid-infrared, Differential...

  1. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect (OSTI)

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions. Algorithms were incorporated into LSP to handle secondary electron emission from dielectric materials to enable detailed simulations of flashover phenomenon. Theoretical studies were focused on explaining a possible mechanism for anode initiated surface flashover that involves an electron avalanche process starting near the anode, not a mechanism involving bulk dielectric breakdown. Experiments were performed in Engineering's Pulsed Power Lab using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  2. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect (OSTI)

    S, Motty G, E-mail: mottygs@gmail.com; Satyanarayana, M., E-mail: mottygs@gmail.com; Krishnakumar, V., E-mail: mottygs@gmail.com; Dhaman, Reji k., E-mail: mottygs@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  3. The Pulse Line Ion Accelerator Concept

    E-Print Network [OSTI]

    Briggs, Richard J.

    2006-01-01

    field model of the pulse- line accelerator; relationship to3, 2006 LBNL-59492 The pulse line ion accelerator conceptCalifornia, 94507 The Pulse Line Ion Accelerator concept was

  4. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    SciTech Connect (OSTI)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-15

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  5. Micro-machined calorimetric biosensors

    DOE Patents [OSTI]

    Doktycz, Mitchel J. (Knoxville, TN); Britton, Jr., Charles L. (Alcoa, TN); Smith, Stephen F. (Loudon, TN); Oden, Patrick I. (Plano, TX); Bryan, William L. (Knoxville, TN); Moore, James A. (Powell, TN); Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN)

    2002-01-01

    A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.

  6. Efficient all-solid-state UV lidar sources : from 100's of millijoules to 100's of microjoules.

    SciTech Connect (OSTI)

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2005-07-01

    Sandia National Laboratories has developed high-energy all-solid-state UV sources for use in laboratory tests of the feasibility of satellite-based ozone DIAL. These sources generate 320 nm light by sum-frequency mixing the 532 nm second harmonic of an Nd:YAG laser with the 803 nm signal light derived from a self-injection-seeded image-rotating optical parametric oscillator (OPO). The OPO cavity utilizes the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. Two configurations were developed, one using extra-cavity sum-frequency mixing, where the sum-frequency-generation (SFG) crystal is outside the OPO cavity, and the other intra-cavity mixing, where the SFG crystal is placed inside the OPO cavity. Our goal was to obtain 200 mJ, 10 ns duration, 320 nm pulses at 10 Hz with near-IR to UV (1064 nm to 320 nm) optical conversion efficiency of 25%. To date we've obtained 190 mJ at 320 nm using extra-cavity SFG with 21% efficiency, and >140 mJ by intra-cavity SFG with efficiency approaching 24%. While these results are encouraging, we've determined our conversion efficiency can be enhanced by replacing self-seeding at the signal wavelength of 803 nm with pulsed idler seeding at 1576 nm. By switching to idler seeding and increasing the OPO cavity dimensions to accommodate flat-top beams with diameters up to 10 mm, we expect to generate UV energies approaching 300 mJ with optical conversion efficiency approaching 25%. While our technology was originally designed to obtain high pulse energies, it can also be used to generate low-energy UV pulses with high efficiency. Numerical simulations using an idler-seeded intra-cavity SFG RISTRA OPO scaled to half its nominal dimensions yielded 560 {micro}J of 320 nm light from 2 mJ of 532 nm pump using an idler-seed energy of 100 {micro}J.

  7. Micro-sphere layered targets efficiency in laser driven proton acceleration

    SciTech Connect (OSTI)

    Floquet, V.; Martin, Ph.; Ceccotti, T. [CEA, IRAMIS, SPAM, F-91191 Gif-sur-Yvette (France)] [CEA, IRAMIS, SPAM, F-91191 Gif-sur-Yvette (France); Klimo, O.; Psikal, J.; Limpouch, J.; Proska, J.; Novotny, F.; Stolcova, L. [FNSPE, Czech Technical University in Prague, CR-11519 Prague (Czech Republic)] [FNSPE, Czech Technical University in Prague, CR-11519 Prague (Czech Republic); Velyhan, A. [Institute of Physics v.v.i. ASCR, Na Slovance 1999, Prague (Czech Republic)] [Institute of Physics v.v.i. ASCR, Na Slovance 1999, Prague (Czech Republic); Macchi, A. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit “Adriano Gozzini,” Via G. Moruzzi 1, 56124 Pisa (Italy) [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit “Adriano Gozzini,” Via G. Moruzzi 1, 56124 Pisa (Italy); Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Sgattoni, A. [Dipartimento di Energia, Politecnico di Milano, Milano (Italy) [Dipartimento di Energia, Politecnico di Milano, Milano (Italy); Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit “Adriano Gozzini,” Via G. Moruzzi 1, 56124 Pisa (Italy); Vassura, L. [LULI, UMR7605, CNRS-CEA-Ecole Polytechnique-Paris 6, 91128 Palaiseau (France) [LULI, UMR7605, CNRS-CEA-Ecole Polytechnique-Paris 6, 91128 Palaiseau (France); Dipartimento SBAI, Università di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Roma (Italy); Labate, L.; Baffigi, F.; Gizzi, L. A. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit “Adriano Gozzini,” Via G. Moruzzi 1, 56124 Pisa (Italy)] [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, research unit “Adriano Gozzini,” Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-08-28

    Proton acceleration from the interaction of high contrast, 25 fs laser pulses at >10{sup 19} W/cm{sup 2} intensity with plastic foils covered with a single layer of regularly packed micro-spheres has been investigated experimentally. The proton cut-off energy has been measured as a function of the micro-sphere size and laser incidence angle for different substrate thickness, and for both P and S polarization. The presence of micro-spheres with a size comparable to the laser wavelength allows to increase the proton cut-off energy for both polarizations at small angles of incidence (10?). For large angles of incidence, however, proton energy enhancement with respect to flat targets is absent. Analysis of electron trajectories in particle-in-cell simulations highlights the role of the surface geometry in the heating of electrons.

  8. Dielectric liquid pulsed-power switch

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); Faidas, Homer (Knoxville, TN)

    1990-01-01

    This disclosure identifies dielectric liquids for use as opening and closing switching media in pulsed power technology, and describes a dielectric-liquid-pulsed-power switch empolying flashlamps.

  9. System and method for generating micro-seismic events and characterizing properties of a medium with non-linear acoustic interactions

    DOE Patents [OSTI]

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-12-29

    A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixing zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.

  10. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect (OSTI)

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  11. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Design and Engineering of most components in the Pulsed Atmospheric Fluidized Bed System was completed prior to September 1992. The components remaining to be designed at that time were: Aerovalves for the Pulse Combustor; Gas and coal injectors for the Pulse Combustor; Lines for PC tailpipes; Air plenum and inlet silencer; Refractory lined hot gas duct connecting outlet hot cyclone to boiler; Structure and platforms, and ladders around PAFBC vessel access and major equipment. Design work is currently in progress on all of the above components. Items 1, 2, 3 and 4 are 50% completed, and items 5 6 are 75% complete.

  12. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  13. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOE Patents [OSTI]

    Barty, Christopher P. J. (Hayward, CA)

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  14. Micro-scale Processing of Silk Protein

    E-Print Network [OSTI]

    Breslauer, David Nate

    2010-01-01

    W. Lo, et al. (2006). "Replica molding of high-aspect-ratioand high aspect ratio molding of nano- and micro-structures.Ratio Silk Nano- and Micro-molding .74 6.1

  15. Characteristics of GaAsSb single quantum well lasers emitting near 1.3 {micro}m

    SciTech Connect (OSTI)

    SPAHN,OLGA B.; KLEM,JOHN F.

    2000-02-17

    The authors report data on GaAsSb single quantum well lasers grown on GaAs substrates. Room temperature pulsed emission at 1.275 {micro}m in a 1,250 {micro}m-long device has been observed. Minimum threshold current densities of 535 A/cm{sup 2} were measured in 2000 {micro}m long lasers. The authors also measured internal losses of 2--5 cm{sup {minus}1}, internal quantum efficiencies of 30-38% and characteristic temperature T{sub 0} of 67--77 C. From these parameters a gain constant G{sub 0} of 1,660 cm{sup {minus}1} and a transparency current density J{sub tr} of 134 A/cm{sup 2} were calculated. The results indicate the potential for fabricating 1.3 {micro}m VCSELs from these materials.

  16. Master Thesis: Dual-Doppler technique applied to scanning lidars for the characterization of

    E-Print Network [OSTI]

    Peinke, Joachim

    -lidar system was developed and installed at the offshore wind farm "alpha ventus". This system includes three and wind turbine wakes in large wind farms offshore. Wind Energy, 12(5):431­444, 2009. [2] Brian Hirth, D of multiple wakes in a wind farm M. van Dooren Supervisors: D. Trabucchi, K. S. Hansen University

  17. Estimation of tropical forest structural characteristics using large-footprint lidar

    E-Print Network [OSTI]

    Weishampel, John F.

    Estimation of tropical forest structural characteristics using large-footprint lidar Jason B in identifying the amount of carbon in terrestrial vegetation pools and is central to global carbon cycle studies. Although current remote sensing techniques recover such tropical forest structure poorly, new large-footprint

  18. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore »true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less

  19. Surface-Layer Wind and Turbulence Profiling from LIDAR: Theory and Measurements

    E-Print Network [OSTI]

    Surface-Layer Wind and Turbulence Profiling from LIDAR: Theory and Measurements Régis DANIELIAN (Vestas Wind System) Hans Ejsing JØRGENSEN (Wind Energy Department, Risø. Contact: haej@risoe.dk) Torben MIKKELSEN (Wind Energy Department, Risø. Contact: tomi@risoe.dk) Jacob MANN (Wind Energy Department, Risø

  20. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  1. Remote sensing the wind using Lidars and Sodars Ioannis Antoniou (1)

    E-Print Network [OSTI]

    masts for their mounting and the costs associated with the purchase, erection and instrumentation for wind energy applications. The first reason is that the cost (purchase, erection, instrumentation with power curve and resource assessment measurements. Both SODAR (SOund Detection And Ranging) and LIDAR

  2. Lidars in Wind Energy Jakob Mann, Ferhat Bingl, Torben Mikkelsen, Ioannis Antoniou, Mike

    E-Print Network [OSTI]

    Lidars in Wind Energy Jakob Mann, Ferhat Bingöl, Torben Mikkelsen, Ioannis Antoniou, Mike Courtney, Gunner Larsen, Ebba Dellwik Juan Jose Trujillo* and Hans E. Jørgensen Wind Energy Department Risø of the presentation · Introduction to wind energy · Accurate profiles of the mean wind speed · Wakes behind turbines

  3. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  4. A new 40 MA ranchero explosive pulsed power system

    SciTech Connect (OSTI)

    Goforth, James; Herrera, Dennis; Oona, Hank; Torres, David; Atchison, W L; Colgate, S A; Griego, J R; Guzik, J; Holtkamp, D B; Idzorek, G; Kaul, A; Kirkpatrick, R C; Menikoff, R; Reardon, P T; Reinovsky, R E; Rousculp, C L; Sgro, A G; Tabaka, L J; Tierney, T E; Watt, R G

    2009-01-01

    We are developing a new high explosive pulsed power (HEPP) system based on the 1.4 m long Ranchero generator which was developed in 1999 for driving solid density z-pinch loads. The new application requires approximately 40 MA to implode similar liners, but the liners cannot tolerate the 65 {micro}s, 3 MA current pulse associated with delivering the initial magnetic flux to the 200 nH generator. To circumvent this problem, we have designed a system with an internal start switch and four explosively formed fuse (EFF) opening switches. The integral start switch is installed between the output glide plane and the armature. It functions in the same manner as a standard input crowbar switch when armature motion begins, but initially isolates the load. The circuit is completed during the flux loading phase using post hole convolutes. Each convolute attaches the inner (coaxial) output transmission line to the outside of the outer coax through a penetration of the outer coaxial line. The attachment is made with the conductor of an EFF at each location. The EFFs conduct 0.75 MA each, and are actuated just after the internal start switch connects to the load. EFFs operating at these parameters have been tested in the past. The post hole convolutes must withstand as much as 80 kV at peak dl/dt during the Ranchero load current pulse. We describe the design of this new HEPP system in detail, and give the experimental results available at conference time. In addition, we discuss the work we are doing to test the upper current limits of a single standard size Ranchero module. Calculations have suggested that the generator could function at up to {approx}120 MA, the rule of thumb we follow (1 MA/cm) suggests 90 MA, and simple flux compression calculations, along with the {approx}4 MA seed current available from our capacitor bank, suggests 118 MA is the currently available upper limit.

  5. Micro-machined resonator oscillator

    DOE Patents [OSTI]

    Koehler, D.R.; Sniegowski, J.J.; Bivens, H.M.; Wessendorf, K.O.

    1994-08-16

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a telemetered sensor beacon'' that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20--100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available. 21 figs.

  6. Micro-machined resonator oscillator

    DOE Patents [OSTI]

    Koehler, Dale R. (Albuquerque, NM); Sniegowski, Jeffry J. (Albuquerque, NM); Bivens, Hugh M. (Albuquerque, NM); Wessendorf, Kurt O. (Albuquerque, NM)

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  7. Micro Structures in Thin Coating Layers: Micro Structure Evolution and Macroscopic

    E-Print Network [OSTI]

    Rumpf, Martin

    Micro Structures in Thin Coating Layers: Micro Structure Evolution and Macroscopic Contact Angle J structures of coating surfaces lead to new industrial applications. They allow to steer the wetting the formation of micro structures in the drying process of a coating. Furthermore, for a given micro structured

  8. Low-noise pulse conditioner

    DOE Patents [OSTI]

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  9. Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    SciTech Connect (OSTI)

    Danny L. Anderson

    2012-05-01

    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates a new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.

  10. Local, instantaneous heat transfer in pulse-stabilized fluidization

    SciTech Connect (OSTI)

    Pence, D.V. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Mechanical Engineering and Applied Mechanics; Beasley, D.E. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering

    1996-12-31

    The Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), a hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed, has technical advantages in energy efficiency and emissions. The present study examines the effect of an opposing oscillatory flow on the local, instantaneous heat transfer in a laboratory scale bubbling gas-fluidized bed. This opposing secondary flow consisted of a steady mean component and an oscillating component thereby modeling the flow in the tailpipe of a pulsed combustor. Spectral and contact time analyses of local, instantaneous heat flux measurements from a heated, submerged horizontal cylinder clearly indicate that the bed hydrodynamics were significantly altered by the opposing secondary flow. These heat flux measurements were accomplished by employing an isothermal platinum film heat flux gage. For the present investigation, data were acquired for a monodisperse distribution of particles with a mean diameter of 345 {micro}m and total fluidization ratios ranging from 1.1 through 2.7. Heat transfer observed under conditions of secondary flows with a superimposed waveform exhibit characteristics of globally dominated, as opposed to locally dominated, hydrodynamics. For low primary and secondary flow rates and a forcing frequency of 5 Hz, a substantial enhancement in heat transfer was observed. Increases in the bubble phase and emulsion phase heat transfer coefficients were identified as the primary contributors to the observed increases in time-averaged local heat transfer coefficients.

  11. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional

    E-Print Network [OSTI]

    Daraio, Chiara

    is successfully demonstrated. The micro-power plant consists of micro-SOFCs, a micro-reactor and a gas carrierA thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro l i g h t s g r a p h i c a l a b s t r a c t The assembly and operation of a micro-power plant

  12. Beam Pulse Structure and Targets Roger Bennett

    E-Print Network [OSTI]

    McDonald, Kirk

    Beam Pulse Structure and Targets Roger Bennett Rutherford Appleton Laboratory, Chilton, Didcot jets Thermal shock is not a problem - provided the pulse is short enough. #12;Shock, Pulse Length that there is permanent distortion or failure - shock. Short high intensity beam pulses will give rise to shock

  13. Harold G. Kirk High Field Pulsed Solenoid

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk High Field Pulsed Solenoid 70o K Operation 15 T with 4.5 MW Pulsed Power 15 cm warm bore 1 m long beam pipe Peter Titus, MIT #12;Harold G. Kirk MARS Dose Calculation Pulsed Solenoid Iron Copper Hg Jet #12;Harold G. Kirk Residual Contact Dose Rate Assume: 200 pulses 16 x 1012 protons

  14. Distributedfeedback pulse generator based on nonlinearfibre grating

    E-Print Network [OSTI]

    Sipe,J. E.

    Distributedfeedback pulse generator based on nonlinearfibre grating B.J. Eggleton, C.M. de Sterke pulse generator or reshaper with applications in all-optical communications. Introduction: Fibre. This could form the basis of a pulse reshaper or pulse generator device with applications in future all

  15. Short pulse free electron laser amplifier

    DOE Patents [OSTI]

    Schlitt, Leland G. (Livermore, CA); Szoke, Abraham (Fremont, CA)

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  16. Estimating forest structural characteristics with airborne lidar scanning and a near-real time profiling laser systems 

    E-Print Network [OSTI]

    Zhao, Kaiguang

    2009-05-15

    LiDAR (Light Detection and Ranging) directly measures canopy vertical structures, and provides an effective remote sensing solution to accurate and spatiallyexplicit mapping of forest characteristics, such as canopy height and Leaf Area Index...

  17. Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system

    DOE Patents [OSTI]

    Schmitt, Randal L. (Tijeras, NM); Henson, Tammy D. (Albuquerque, NM); Krumel, Leslie J. (Cedar Crest, NM); Hargis, Jr., Philip J. (Albuquerque, NM)

    2006-06-20

    A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.

  18. Reducing pulse distortion in fast-light pulse propagation through an erbium-doped

    E-Print Network [OSTI]

    Boyd, Robert W.

    Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier, 2007 (Doc. ID 78405); published March 19, 2007 When a pulse superposed on a cw background propagates through an erbium-doped fiber amplifier with a negative group velocity, either pulse broadening or pulse

  19. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    SciTech Connect (OSTI)

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  20. Development of micro analytical devices

    E-Print Network [OSTI]

    Deshpande, Abhishek Girish

    2009-11-17

    be as small as few pico-litres, which is of particular interest in fine chemical industries where reagents are extremely expensive. Using small amounts will not only make the process economical but also reduce the amount of waste produced. • Low Reynolds... of reduced nicotinamide adenine dinucleotide (NADH) that is required for the conversion of pyruvate to L-lactate inside an electrochemical microreactor [33]. 1 . 3 .2.3 Separation Scaling separations by using micro-scale devices is yet another...

  1. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  2. Pulse combustor with controllable oscillations

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Welter, Michael J. (Columbiana, OH); Morris, Gary J. (Morgantown, WV)

    1992-01-01

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  3. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  4. Pulse combustor with controllable oscillations

    SciTech Connect (OSTI)

    Richards, G.A.; Morris, G.J.; Welter, M.J.

    1991-12-31

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  5. Simulation of Double-Pulse Laser Ablation

    SciTech Connect (OSTI)

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R. [Joint Institute for High Temperatures of RAS, Izhorskaya 13 Bldg 2, Moscow, 125412 (Russian Federation); Itina, Tatian E. [Laboratoire Hubert Curien, UMR CNRS 5516, 18 rue Benoit Lauras, Bat. F, 42000, St-Etienne (France)

    2010-10-08

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  6. Pulsed power hydrodynamics : a new application of high magnetic fields.

    SciTech Connect (OSTI)

    Reinovsky, R. E. (Robert E.); Anderson, W. E. (Wallace E.); Atchison, W. L. (Walter L.); Faehl, R. J. (Rickey J.); Keinigs, R. K. (Rhonald K.); Lindemuth, I. R.; Scudder, D. W. (David W.); Shlachter, Jack S.; Taylor, Antoinette J.,

    2002-01-01

    Pulsed Power Hydrodynamics is a new application of high magnetic fields recently developed to explore advanced hydrodynamics, instabilities, fluid turbulences, and material properties in a highly precise, controllable environment at the extremes of pressure and material velocity. The Atlas facility at Los Alamos is the world's first and only laboratory pulsed power system designed specifically to explore this relatively new family of megagauss magnetic field applications. Constructed in 2000 and commissioned in August 2001, Atlas is a 24-MJ high-performance capacitor bank delivering up to 30 MA with a current risetime of 5-6 {micro}sec. The high-precision, cylindrical, imploding liner is the tool most frequently used to convert electrical energy into the hydrodynamic (particle kinetic) energy needed to drive the experiments. For typical liner parameters including initial radius of 5 cm, the peak current of 30 MA delivered by Atlas results in magnetic fields just over 1 MG outside the liner prior to implosion. During the 5 to 10-{micro}sec implosion, the field outside the liner rises to several MG in typical situations. At these fields the rear surface of the liner is melted and it is subject to a variety of complex behaviors including: diffusion dominated andor melt wave field penetration and heating, magneto Raleigh-Taylor sausage mode behavior at the liner/field interface, and azimuthal asymmetry due to perturbations in current drive. The first Atlas liner implosion experiments were conducted in September 2000 and 10-15 experiments are planned in the: first year of operation. Immediate applications of the new pulsed power hydrodynamics techniques include material property topics including: exploration of material strength at high rates of strain, material failure including fracture and spall, and interfacial dynamics at high relative velocities and high interfacial pressures. A variety of complex hydrodynamic geometries will be explored and experiments will be designed to explore uristable perturbation growth and transition to turbulence. This paper will provide an overview of the range of problems to which pulsed power hydrodynamics can be applied and the issues associated with these techniques. Other papers at this Conference will present specifics of individual experiments and elaborate on the liner physics issues.

  7. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR

    E-Print Network [OSTI]

    Bunkin, Alexey F; Lednev, Vasily N; Lushnikov, Dmitry L; Marchenko, Aleksey V; Morozov, Eugene G; Pershin, Sergey M; Yulmetov, Renat N

    2013-01-01

    A compact Raman LIDAR system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the RAS. The developed system is based on a diode pumped solid state YVO4:Nd laser combined with compact spectrograph equipped with gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (~20 kg) and low power consumption (300 W) make possible to install the device on any vehicle including unmanned aircraft or submarine system. The Raman LIDAR presented was used for Svalbard fjords study and analysis of different influence of the open sea and glaciers on the water properties. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It...

  8. Towards manipulating relativistic laser pulses with 3D printed materials

    E-Print Network [OSTI]

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  9. Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced

    E-Print Network [OSTI]

    Harilal, S. S.

    Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse May 2013 Available online 21 May 2013 Keywords: LIBS Double pulse LIBS Plasma diagnostics LPP Dual-pulse as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental per- formance

  10. Pulse compression and modelocking by using TPA in silicon waveguides

    E-Print Network [OSTI]

    Tien, En-Kuang; Yuksek, Nuh S; Qian, Feng; Boyraz, Ozdal

    2007-01-01

    F. Qian, O. Boyraz, “Pulse Compression and Modelocking byPulse compression and modelocking by using TPA in silicona novel broadband pulse compression and modelocking scheme

  11. Micro-unmanned aerodynamic vehicle

    DOE Patents [OSTI]

    Reuel, Nigel (Rio Rancho, NM); Lionberger, Troy A. (Ann Arbor, MI); Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM); Baker, Michael S. (Albuquerque, NM)

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  12. Pulse enhanced fluidized bed combustion

    SciTech Connect (OSTI)

    Mueller, B.; Golan, L. [South Carolina Energy Research and Development Center, Clemson, SC (United States); Toma, M.; Mansour, M. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1996-12-31

    Various technologies are available for the combustion of high-sulfur, high-ash fuels, particularly coal. From performance, economic and environmental standpoints, fluidized bed combustion (FBC) is the leading candidate for utilization of high sulfur coals. ThermoChem, Inc., and the South Carolina Energy Research and Development Center (SCERDC) are installing a hybrid fluidized bed combustion system at Clemson University. This hybrid system, known as the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), will augment the University`s steam system by providing 50--60,000 lbs/hr of saturated process steam. The PAFBC, developed by Manufacturing and Technology Conversion International, Inc., (MTCI), integrates a pulse combustor with a bubbling-bed-type atmospheric fluidized bed coal combustor. The pulse combustion system imparts an acoustic effect that enhances combustion efficiency, SO{sub 2} capture, low NO{sub x} emissions, and heat transfer efficiency in the fluidized bed. These benefits of pulse combustion result in modestly sized PAFBC units with high throughput rates and lower costs when compared to conventional fluidized bed units.

  13. EIGHT CHANNEL PROGRAMMABLE PULSE GENERATOR

    E-Print Network [OSTI]

    Kleinfeld, David

    Master-8 EIGHT CHANNEL PROGRAMMABLE PULSE GENERATOR Operation Manual A.M.P.I. A.M.P.I. 123Uzlel St and the programming simple and easy to learn. Master-8 is an attractive unit and you will enjoy working with its eight -- Modes of operation 11 -- Setting the parameters 13 -- Triggering 14 -- Eight stored paradigms 14

  14. Smart Microfabricated Preconcentrator (and Other Micro Analytical...

    Office of Scientific and Technical Information (OSTI)

    Smart Microfabricated Preconcentrator (and Other Micro Analytical Detection Components&Systems). Citation Details In-Document Search Title: Smart Microfabricated Preconcentrator...

  15. ULTRASHORT LASER PULSE PROPAGATION IN WATER 

    E-Print Network [OSTI]

    Byeon, Joong-Hyeok

    2010-01-16

    We simulate ultrashort pulse propagation through water by numerical methods, which is a kind of optical communication research. Ultrashort pulses have been known to have non Beer-Lambert behavior, whereas continuous waves ...

  16. Dispersion compensation in chirped pulse amplification systems

    DOE Patents [OSTI]

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  17. THE POTENTIAL FOR MICRO-ALGAE AND OTHER "MICRO-CROPS" TO PRODUCE

    E-Print Network [OSTI]

    Edwards, Paul N.

    THE POTENTIAL FOR MICRO-ALGAE AND OTHER "MICRO-CROPS" TO PRODUCE SUSTAINABLE BIOFUELS A REVIEW INTRODUCTION Biofuel derived from algae and other micro-crops has been proposed as an environmentally benign transportation fuel. Algae can be cultivated on low productivity lands using low quality water. Interest in algae

  18. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration

    E-Print Network [OSTI]

    Marion, M Susan; Wexler, Anthony S; Hull, Maury L

    2013-01-01

    of stimulation frequency versus pulse duration modulation onfatigue induced by electrical stimulation pulse trains asa function of pulse duration. Journal of NeuroEngineering

  19. Elemental imaging of organic matter and associated metals in ore deposits using micro PIXE and micro-EBS

    E-Print Network [OSTI]

    Devernal, Anne

    Elemental imaging of organic matter and associated metals in ore deposits using micro PIXE Uranium Witwatersrand a b s t r a c t Micro-PIXE and micro-EBS analyses were carried out on samples from of organic matter in the formation of this deposit. Micro-PIXE and Micro-EBS shows a very complex metal

  20. for Pulsed Power & erElectronics|Texas

    E-Print Network [OSTI]

    Rock, Chris

    generation, explosive generators, and electric space propulsion engines. Pulsed Power research at Texas Tech for Pulsed Power and Power Electronics Department of Electrical and Computer Engineering Texas Tech- netic generators have also been investigated. The area of pulsed power research involves storing

  1. Pulsed Laser Powered Homogeneous Pyrolysis for

    E-Print Network [OSTI]

    Swihart, Mark T.

    Pulsed Laser Powered Homogeneous Pyrolysis for Reaction Kinetics Studies: Probe Laser Measurement Pulsed laser powered homogeneous pyrolysis ( LPHP) is a technique which can be used to measure rate a number of researchers have shown that pulsed laser powered homogeneous pyrolysis (LPHP) can be used

  2. Pacific and Atlantic herring produce burst pulse

    E-Print Network [OSTI]

    Dill, Lawrence M.

    Pacific and Atlantic herring produce burst pulse sounds Ben Wilson1,2* , Robert S. Batty3 wild-caught herring. Pacific herring pro- duce distinctive bursts of pulses, termed Fast Repetitive Tick (FRT) sounds. These trains of broadband pulses (1.7­22 kHz) lasted between 0.6 s and 7.6 s. Most

  3. The Pulse Protocol: Energy Efficient Infrastructure Access

    E-Print Network [OSTI]

    Awerbuch, Baruch

    The Pulse Protocol: Energy Efficient Infrastructure Access Baruch Awerbuch, David Holmer, herb}@cs.jhu.edu Abstract-- We present the Pulse protocol which is designed for multi-hop wireless. The Pulse protocol utilizes a periodic flood initiated at the network gateways which provides both routing

  4. APPARENT PULSE DIFFUSION DUE TO DISORDERED MICROSTRUCTURE

    E-Print Network [OSTI]

    Solna, Knut

    APPARENT PULSE DIFFUSION DUE TO DISORDERED MICROSTRUCTURE A. Nachbin \\Lambda and K. Sølna y \\Lambda, and it is important to describe when and how fine scale heterogeneities interact with a traveling seismic pulse. We are interested in pulse shaped waves that interact with the rapidly varying features (i.e. microstruture

  5. Optical precursor fields in nonlinear pulse dynamics

    E-Print Network [OSTI]

    Oughstun, Kurt

    . Oughstun and G. C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics (Springer-Verlag, Berlin-Heidelberg, 1994). 7. K. E. Oughstun, Electromagnetic and Optical Pulse Propagation1: Spectral, 2009). 9. K. E. Oughstun and G. C. Sherman, "Propagation of electromagnetic pulses in a linear

  6. Efficient Pulse-Doppler Processing and Ambiguity Functions of Nonuniform Coherent Pulse Trains

    E-Print Network [OSTI]

    Nehorai, Arye

    Efficient Pulse-Doppler Processing and Ambiguity Functions of Nonuniform Coherent Pulse Trains Lafayette, Indiana 47907 Email: {srasool, mrb}@purdue.edu Abstract--We propose a DFT based pulse Doppler processing receiver for staggered pulse trains. The proposed receiver is a simple extension of traditional

  7. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOE Patents [OSTI]

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-16

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  8. Development of high-voltage pulse-slicer unit with variable pulse duration for pulse radiolysis system

    SciTech Connect (OSTI)

    Upadhyay, J.; Sharma, M. L.; Navathe, C. P. [Laser Electronic Support Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Toley, M. A.; Shinde, S. J.; Nadkarni, S. A.; Sarkar, S. K. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2012-02-15

    A high-voltage pulse-slicer unit with variable pulse duration has been developed and integrated with a 7 MeV linear electron accelerator (LINAC) for pulse radiolysis investigation. The pulse-slicer unit provides switching voltage from 1 kV to 10 kV with rise time better than 5 ns. Two MOSFET based 10 kV switches were configured in differential mode to get variable duration pulses. The high-voltage pulse has been applied to the deflecting plates of the LINAC for slicing of electron beam of 2 {mu}s duration. The duration of the electron beam has been varied from 30 ns to 2 {mu}s with the optimized pulse amplitude of 7 kV to get corresponding radiation doses from 6 Gy to 167 Gy.

  9. Micro Laser Personal Projector Wilfrido Sierra Hernandez

    E-Print Network [OSTI]

    Bove Jr., V. Michael

    Micro Laser Personal Projector by Wilfrido Sierra Hern´andez Submitted to the Program in Media Arts by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Andrew B. Lippman Chairman, Department Committee on Graduate Students #12;2 #12;Micro Laser Personal Laser Personal Projector by Wilfrido Sierra Hern´andez Submitted to the Program in Media Arts

  10. Laser MicroChemical Shaping of Silicon

    E-Print Network [OSTI]

    Burns, Michael J.

    Laser MicroChemical Shaping of Silicon MURI Workshop Feb 28, 2005 Michael J. Burns, Ph.D. LMC Product Manager #12;FEI Copyright © 2005 Vectra LMC 9900 2 Laser Micro Chemical (LMC) ·Use of laser light to induce local chemical reactions. ·Both Laser Chemical Etching (LCE) and Laser Chemical Deposition (LCD

  11. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  12. The MicroBooNE Technical Design Report

    E-Print Network [OSTI]

    McDonald, Kirk

    ................................................................................................................20 3 Design Criteria and Parameter TablesThe MicroBooNE Technical Design Report The MicroBooNE Collaboration 2/24/2012 #12;The Micro

  13. TARSHA-KURDI, F., LANDES, T., GRUSSENMEYER, P., (2008). Extended RANSAC algorithm for automatic detection of building roof planes from Lidar data.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2008-01-01

    detection of building roof planes from Lidar data. The Photogrammetric Journal of Finland. Vol. 21, n°1, 2008, pp.97-109. EXTENDED RANSAC ALGORITHM FOR AUTOMATIC DETECTION OF BUILDING ROOF PLANES FROM LIDAR the detection of 3D building roof planes are of crucial importance. For this purpose, this paper studies

  14. Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0856420 LiDAR and optical imaging for 3-D fracture orientations

    E-Print Network [OSTI]

    Maerz, Norbert H.

    #0856420 LiDAR and optical imaging for 3-D fracture orientations Otoo, J. N., Maerz, N. H. Missouri manifest themselves in rock cuts as ,,facets that can be measured by LIDAR or fracture ,,traces that can mechanical break or fracture of negligible tensile strength, it has a low shear strength and high fluid

  15. Unsplit bipolar pulse forming line

    DOE Patents [OSTI]

    Rhodes, Mark A. (Pleasanton, CA)

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  16. Acoustic emission linear pulse holography

    DOE Patents [OSTI]

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  17. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  18. Adaptive control system for pulsed megawatt klystrons

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1992-01-01

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  19. Development of double-decker pulse radiolysis

    SciTech Connect (OSTI)

    Kan, K.; Kondoh, T.; Yang, J.; Ogata, A.; Norizawa, K.; Yoshida, Y. [Institute of Scientific and Industrial Research, Osaka University, Osaka (Japan)

    2012-07-15

    Double-decker pulse radiolysis (DDPR), which utilizes double-decker electron beams, was investigated to develop a new pulse radiolysis with a high time resolution. The double-decker electron beams were generated by injecting two UV pulses into a photocathode radio-frequency gun. In the pulse radiolysis, one electron beam was used as a pump beam, and the other was converted to a probe pulse. Finally, as its first application, the DDPR was successfully used for observing solvated electrons in water, with a 10%-90% rise time of 8.6 ps.

  20. Dual amplitude pulse generator for radiation detectors

    DOE Patents [OSTI]

    Hoggan, Jerry M. (Idaho Falls, ID); Kynaston, Ronnie L. (Blackfoot, ID); Johnson, Larry O. (Island Park, ID)

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  1. Ion Acceleration by Short Chirped Laser Pulses

    E-Print Network [OSTI]

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  2. Intrinsic chirp of single-cycle pulses

    SciTech Connect (OSTI)

    Lin Qiang; Zheng Jian [Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027 (China); Dai Jianming; Ho, I-Chen; Zhang, X.-C. [Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2010-04-15

    The Fourier transform-limited electromagnetic pulse has been regarded to be free of chirps for a long time. This is no longer true if the pulse duration goes down to or less than one optical cycle. We report the experimental observation of intrinsic chirps in such pulses with the sub-single-cycle terahertz (THz) waveforms obtained with a standard THz time-domain spectroscopy system. The results confirm the break down of the carrier-envelope (CE) expression for single-cycle optical pulses, and may influence the experimental measurements and theoretical modeling with single-cycle pulses.

  3. Solid state pulsed power generator

    DOE Patents [OSTI]

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  4. Aerovalve pulse combustion: Technical note

    SciTech Connect (OSTI)

    Richards, G.A.; Gemmen, R.S.; Narayanaswami, L.

    1994-07-01

    The authors present a mathematical model and an experimental investigation of aerodynamically valved pulse combustion. The model uses a control-volume approach to solve conservation laws in several regions of a pulse combustor. Mixing between the fresh charge and combustion products is modeled as a two-step process, with the mixing occurring slowly for a specified eddy time during each cycle, and then changing to a higher rate. Results of model simulations demonstrate that eddy time plays a significant role in determining the frequency and amplitude of combustion oscillation. The authors show that short eddy times produce steady, rather than pulsating, combustion. And they show that changes to the mixing process alter the temperature-species history of combustion gases in a manner that could prevent or promote the formation of nitrogen oxides, depending on specific mixing rates. The relatively simple control-volume approach used in this model allows rapid investigation of a wide range of geometric and operating parameters, and also defines characteristic length and time scales relevant to aerovalve pulse combustion. Experimental measurements compare favorably to model predictions. The authors place particular emphasis on time-averaged pressure differences through the combustor, which act as an indicator of pressure gain performance. They investigate both operating conditions and combustor geometry, and they show that a complex interaction between the inlet and exit flows of a combustor makes it difficult to produce general correlations among the various parameters. They use a scaling rule to produce a combustor geometry capable of producing pressure gain.

  5. Micro-tensile testing system

    DOE Patents [OSTI]

    Wenski, Edward G.

    2006-01-10

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  6. Micro-tensile testing system

    DOE Patents [OSTI]

    Wenski, Edward G. (Lenexa, KS)

    2007-07-17

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  7. Micro-tensile testing system

    DOE Patents [OSTI]

    Wenski, Edward G. (Lenexa, KS)

    2007-08-21

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  8. Investigation of Micro- and Macro-Scale Transport Processes for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance These...

  9. Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...

    Open Energy Info (EERE)

    Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake...

  10. Grain Boundary (GB) Studies in Nano- and Micro- Crystalline Materials

    E-Print Network [OSTI]

    Tanju, Mst Sohanazaman

    2011-01-01

    in Nano- and Micro- Crystalline Materials A Dissertationdense nano and micron crystalline materials were measuredStudies in Nano- and Micro- Crystalline Materials by Mst.

  11. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic...

  12. Pulse Tidal formerly Pulse Generation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmian JumpOpenformerly Pulse

  13. Pulsed laser deposition to synthesize the bridge structure of artificial nacre: Comparison of nano- and femtosecond lasers

    SciTech Connect (OSTI)

    Melaibari, Ammar A. [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, King AbdulAziz University, Jeddah 21589 (Saudi Arabia); Molian, Pal [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2012-11-15

    Nature offers inspiration to new adaptive technologies that allow us to build amazing shapes and structures such as nacre using synthetic materials. Consequently, we have designed a pulsed laser ablation manufacturing process involving thin film deposition and micro-machining to create hard/soft layered 'brick-bridge-mortar' nacre of AlMgB{sub 14} (hard phase) with Ti (soft phase). In this paper, we report pulsed laser deposition (PLD) to mimic brick and bridge structures of natural nacre in AlMgB{sub 14}. Particulate formation inherent in PLD is exploited to develop the bridge structure. Mechanical behavior analysis of the AlMgB{sub 14}/Ti system revealed that the brick is to be 250 nm thick, 9 {mu}m lateral dimensions while the bridge (particle) is to have a diameter of 500 nm for a performance equivalent to natural nacre. Both nanosecond (ns) and femtosecond (fs) pulsed lasers were employed for PLD in an iterative approach that involves varying pulse energy, pulse repetition rate, and target-to-substrate distance to achieve the desired brick and bridge characteristics. Scanning electron microscopy, x-ray photoelectron spectroscopy, and optical profilometer were used to evaluate the film thickness, particle size and density, stoichiometry, and surface roughness of thin films. Results indicated that both ns-pulsed and fs-pulsed lasers produce the desired nacre features. However, each laser may be chosen for different reasons: fs-pulsed laser is preferred for much shorter deposition time, better stoichiometry, uniform-sized particles, and uniform film thickness, while ns-pulsed laser is favored for industrial acceptance, reliability, ease of handling, and low cost.

  14. Pulse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptionsProteinTotal natural gas provedShale natural

  15. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

  16. Quantifying Surface Subsidence along US Highway 50, Reno County, KS using Terrestrial LiDAR

    E-Print Network [OSTI]

    Herrs, Andrew J.

    2010-04-23

    by Brett Bennett of the Kansas Geological Survey. Initial scouting of the study area was done with the help of Bob Henthorne from KDOT. LiDAR acquisition at each project site was accomplished with the help of Nick Laskares, Willy Rittase, Ken Stalder..., Mike Taylor, Lynn Watney, the Hutchinson KDOT maintenance crew, and KDOT’s Salina Regional Geology Department. Kwan Yee Cheng and Richard Styron also helped with plotting data in MATLAB. ArcMap techniques were demonstrated by Prabin Shilpakar from...

  17. Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.Raman Lidar

  18. Micro-sonicator for spore lysis

    DOE Patents [OSTI]

    Miles, Robin R. (Livermore, CA); Belgrader, Phillip (Manteca, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  19. Natural discharge after pulse and cooperative electrodes to enhance droplet velocity in digital microfluidics

    SciTech Connect (OSTI)

    Chen, Tianlan; Dong, Cheng; Gao, Jie; Jia, Yanwei; Mak, Pui-In, E-mail: pimak@umac.mo; Vai, Mang-I; Martins, Rui P. [State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao (China)] [State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao (China)

    2014-04-15

    Digital Microfluidics (DMF) is a promising technology for biological/chemical micro-reactions due to its distinct droplet manageability via electronic automation, but the limited velocity of droplet transportation has hindered DMF from utilization in high throughput applications. In this paper, by adaptively fitting the actuation voltages to the dynamic motions of droplet movement under real-time feedback monitoring, two control-engaged electrode-driving techniques: Natural Discharge after Pulse (NDAP) and Cooperative Electrodes (CE) are proposed. They together lead to, for the first time, enhanced droplet velocity with lower root mean square voltage value.

  20. Chaotic carrier pulse position modulation communication system and method

    DOE Patents [OSTI]

    Abarbanel, Henry D. I. (Del Mar, CA); Larson, Lawrence E. (Del Mar, CA); Rulkov, Nikolai F. (San Diego, CA); Sushchik, Mikhail M. (San Diego, CA); Tsimring, Lev S. (San Diego, CA); Volkovskii, Alexander R. (San Diego, CA)

    2001-01-01

    A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.

  1. Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses

    SciTech Connect (OSTI)

    Doster, J.; Baraldi, G.; Gonzalo, J.; Solis, J.; Hernandez-Rueda, J.; Siegel, J., E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, Serrano 121, 28006 Madrid (Spain)

    2014-04-14

    We demonstrate that the broad surface plasmon resonance (SPR) of a single layer of near-coalescence silver nanoparticles (NPs), embedded in a dielectric matrix can be tailored by irradiation with a single nanosecond laser pulse into a distribution featuring a sharp resonance at 435?nm. Scanning electron microscopy studies reveal the underlying mechanism to be a transformation into a distribution of well-separated spherical particles. Additional exposure to multiple femtosecond laser pulses at 400?nm or 800?nm wavelength induces polarization anisotropy of the SPR, with a peak shift that increases with laser wavelength. The spectral changes are measured in-situ, employing reflection and transmission micro-spectroscopy with a lateral resolution of 4??m. Spectral maps as a continuous function of local fluence can be readily produced from a single spot. The results open exciting perspectives for dynamically tuning and switching the optical response of NP systems, paving the way for next-generation applications.

  2. Printed electronics and micro-electromechanical systems

    E-Print Network [OSTI]

    Wilhelm, Eric Jamesson, 1977-

    2004-01-01

    Current electronics and micro-electromechanical systems (MEMS) manufacture is optimized for the production of very high-volume parts on a limited range of substrates. These processes are long, consume large amounts of ...

  3. Numerical simulation of electrokinetically driven micro flows 

    E-Print Network [OSTI]

    Hahm, Jungyoon

    2005-11-01

    are systematically studied. As a first application, flow and species transport control in a grooved micro-channel using local electrokinetic forces are studied. Locally applied electric fields, zeta potential patterned grooved surfaces, and geometry are manipulated...

  4. Dropwise Condensation on Micro- and Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    In this review we cover recent developments in the area of surface- enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro- ...

  5. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  6. Evolutionary analysis of animal microRNAs

    E-Print Network [OSTI]

    Guerra Martins dos Santos Assunção, José Afonso

    2013-01-08

    In recent years, microRNAs (miRNAs) have been recognised as important genetic regulators of gene expression in Animals and Plants. They can potentially target a large fraction of the cellular transcriptome, having been shown to be important...

  7. Diet, MicroRNAs and Prostate Cancer

    E-Print Network [OSTI]

    Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir

    2010-01-01

    deregulation in human cancer. Cell Cycle. 2008;7:2643–6. 25.genomic regions involved in cancers. Proc Natl Acad Sci USA.A, Jacks T. MicroRNAs and cancer: short RNAs go a long way.

  8. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    PV cell behind each lens tracking the sun with only lateralclimbing required for tracking the sun, and experimentalin a fixed frame tracking the sun with only micro-tracking.

  9. Micro windmills to recharge your mobile phone

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    interest from Taiwanese Oven Fresh Latest Updates Downloads Become a member, today! Login with Facebook or installed anywhere,41yrs Small MILL-Lathe-Drill Solar Water Well Pumps Siemens Wind Energy Page 3 of 4Micro

  10. Heuristic Algorithm for Coordinating Smart Houses in MicroGrid.

    E-Print Network [OSTI]

    Zito, Michele

    Heuristic Algorithm for Coordinating Smart Houses in MicroGrid. Mohamed Arikiez 1 , Floriana Grasso connected in a micro- grid configuration. The micro-grid consists of houses and local renewable plants, each, power generation, and smart appliances [4]. Smart micro-grids [5] can be defined as a set of houses

  11. Micro-blogging as Online Word of Mouth Branding

    E-Print Network [OSTI]

    Jansen, James

    Micro-blogging as Online Word of Mouth Branding Abstract In this paper, we report research results investigating micro-blogging as a form of online word of mouth branding. We analyzed 149,472 micro-blog postings containing branding comments, sentiments, and opinions. We investigated the overall structure of these micro-blog

  12. Micro Windmills to Recharge Cell Leave a reply

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Micro Windmills to Recharge Cell Phones Leave a reply The Windmill in Action At the University of Texas Arlington, scientists J.C. Chiao and Smitha Rao have developed micro-windmills which recharge Page 1 of 2Micro Windmills to Recharge Cell Phones | MADE 2/3/2014http://themadeblog.com/micro-windmills

  13. Pulse design without rotating wave approximation

    E-Print Network [OSTI]

    S. Ibáñez; Yi-Chao Li; Xi Chen; J. G. Muga

    2015-10-21

    We design realizable time-dependent semiclassical pulses to invert the population of a two-level system faster than adiabatically when the rotating-wave approximation cannot be applied. Different approaches, based on the counterdiabatic method or on invariants, may lead to singularities in the pulse functions. Ways to avoid or cancel the singularities are put forward when the pulse spans few oscillations. For many oscillations an alternative numerical minimization method is proposed and demonstrated.

  14. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  15. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  16. Observation of the 0-fs pulse

    E-Print Network [OSTI]

    Zare, Richard N.

    Observation of the 0-fs pulse By W.H. Knox, R.S. Knox,J.F.Hoose, and R.N. Zare T he quest for the world's shor test laser pulse has led to a re markable pace of develop ment in ultrafast laser technology. Al though pulses of only a few cycles duration have been made, clearly the observation of a 0-fs

  17. Pulse Areas in Multi-Soliton Propagation

    E-Print Network [OSTI]

    Elizabeth Groves; B. D. Clader; J. H. Eberly

    2008-11-12

    The prospect of self-consistent propagation of more than two pulses contemporaneously through multi-resonant media raises open questions: whether soliton solutions exist, and whether a useful generalization of two-level pulse Area can be found. We answer these questions positively for the case of four pulses interacting in combined V and Lambda fashion with an idealized pair of atomic D-lines.

  18. Pulsed source ion implantation apparatus and method

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  19. Pulsed source ion implantation apparatus and method

    DOE Patents [OSTI]

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  20. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  1. LANL: AOT & LANSCE The Pulse February 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions, transmembrane ionic transport, membrane structure, and membrane-based biosensors that continued on page 3 Workshop. . . continued from page 1 The Pulse-Newsletter of...

  2. Pulse Pressure Forming of Lightweight Materials, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials, Development of High Strength Superplastic Al Sheet, Friction Stir Spot Welding of Advanced High Strength Steels Pulse Pressure Forming of Lightweight Materials,...

  3. LANL: AOT & LANSCE The Pulse September 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division More than 30...

  4. bia-pulse | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inc. Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Demonstration of Pulse Combustion in an Application for Steam...

  5. Marine boundary layer structure as observed by space-based Lidar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, T.; Wang, Z.; Zhang, D.

    2015-12-03

    The marine boundary layer (MBL) structure is important to the exchange of heat, momentum, and moisture between oceans and the low atmosphere and to the marine low cloud processes. This paper explores MBL structure over the eastern Pacific region with a new 4 year satellite-based dataset. The MBL aerosol lidar backscattering from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) was used to identify the MBL top (BLH) and the mixing layer height (MLH). Results showed that MBL is generally decoupled with MLH / BLH ratio ranging from ? 0.5 to ? 0.8 and the MBL decoupling magnitude ismore »mainly controlled by estimated inversion strength (EIS) that affects the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops, which may relate to the meso-scale circulations or gravity wave in MBL, also show dependence on EIS. Further analysis indicated that the MBL shows similar decoupled structure for clear sky and cumulus cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  6. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore »sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing. « less

  7. The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces

    SciTech Connect (OSTI)

    Negres, R A; Norton, M A; Liao, Z M; Cross, D A; Bude, J D; Carr, C W

    2009-10-29

    Past work in the area of laser-induced damage growth has shown growth rates to be primarily dependent on the laser fluence and wavelength. More recent studies suggest that growth rate, similar to the damage initiation process, is affected by a number of additional parameters including pulse duration, pulse shape, site size, and internal structure. In this study, we focus on the effect of pulse duration on the growth rate of laser damage sites located on the exit surface of fused silica optics. Our results demonstrate, for the first time, a significant dependence of growth rate at 351 nm on pulse duration from 1 ns to 15 ns as {tau}{sup 0.3} for sites in the 50-100 {micro}m size range.

  8. 1/17/2014 micro-windmills | Layman's Terms Media http://laymanstermsmedia.com/tag/micro-windmills/ 1/3

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    1/17/2014 micro-windmills | Layman's Terms Media http://laymanstermsmedia.com/tag/micro-windmills/ 1/3 (http://laymanstermsmediadotcom.files.wordpress.com/2014/01/67108_web.jpg) A micro-windmill is pictured on the face of a penny. Photo courtesy of UT Arlington Tag Archives: micro-windmills New device

  9. Using LiDAR and normalized difference vegetation index to remotely determine LAI and percent canopy cover at varying scales 

    E-Print Network [OSTI]

    Griffin, Alicia Marie Rutledge

    2009-05-15

    The use of airborne LiDAR (Light Detection and Ranging) as a direct method to evaluate forest canopy parameters is vital in addressing both forest management and ecological concerns. The overall goal of this study was to develop the use of airborne...

  10. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  11. Plant Species Classification using a 3D LIDAR Sensor and Machine Learning Ulrich Weiss and Peter Biber

    E-Print Network [OSTI]

    Zell, Andreas

    Plant Species Classification using a 3D LIDAR Sensor and Machine Learning Ulrich Weiss and Peter of the plant and species. Automatically distinguishing between plant species is a challenging task, because of the appearances and the differences between the plants used by humans, into a formal, computer understandable form

  12. Radar/Lidar Sensor Fusion for Car-Following on Highways Daniel Gohring, Miao Wang, Michael Schnurmacher, Tinosch Ganjineh

    E-Print Network [OSTI]

    Rojas, Raúl

    Radar/Lidar Sensor Fusion for Car-Following on Highways Daniel G¨ohring, Miao Wang, Michael Schn-time algorithm which enables an autonomous car to comfortably follow other cars at various speeds while keeping that depends on the position as well as the velocity of the followed car. Radar sensors provide reliable

  13. CLOUD FRACTION STATISTICS DERIVED FROM 2YEARS OF HIGH SPECTRAL RESOLUTION LIDAR DATA ACQUIRED AT EUREKA, CANADA.

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    CLOUD FRACTION STATISTICS DERIVED FROM 2YEARS OF HIGH SPECTRAL RESOLUTION LIDAR DATA ACQUIRED(AHSRL) and the NOAA 8.6 mm wavelength cloud radar (MMCR). Both instruments have operated nearly continuously since Sept 2005. This paper presents a record of cloud cover, cloud altitude and cloud phase derived

  14. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    SciTech Connect (OSTI)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  15. Laser system using ultra-short laser pulses

    DOE Patents [OSTI]

    Dantus, Marcos (Okemos, MI); Lozovoy, Vadim V. (Okemos, MI); Comstock, Matthew (Milford, MI)

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  16. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  17. Generation of Femtosecond Electron Pulses

    SciTech Connect (OSTI)

    Jinamoon, V.; Kusoljariyakul, K.; Rimjaem, S.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Chumphongphan, S.; Wiedemann, H.; /SLAC, SSRL

    2005-05-09

    At the Fast Neutron Research Facility (FNRF), Chiang Mai University (Thailand), the SURIYA project has been established aiming to produce femtosecond electron pulses utilizing a combination of an S-band thermionic rf gun and a magnetic bunch compressor ({alpha}-magnet). A specially designed rf-gun has been constructed to obtain optimum beam characteristics for the best bunch compression. Simulation results show that bunch lengths as short as about 50 fs rms can be expected at the experimental station. The electron bunch lengths will be determined using autocorrelation of coherent transition radiation (TR) through a Michelson interferometer. The paper discusses beam dynamics studies, design, fabrication and cold tests of the rf-gun as well as presents the project current status and forth-coming experiments.

  18. Chaos in thermal pulse combustion

    SciTech Connect (OSTI)

    Daw, C.S.; Thomas, J.F. [Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Richards, G.A. [U.S. Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia 26505 (United States)] [U.S. Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia 26505 (United States); Narayanaswami, L.L. [Embry-Riddle Aeronautical University, Department of Aerospace Engineering, Daytona Beach, Florida 32114 (United States)] [Embry-Riddle Aeronautical University, Department of Aerospace Engineering, Daytona Beach, Florida 32114 (United States)

    1995-12-01

    An experimental thermal pulse combustor and a differential equation model of this device are shown to exhibit chaotic behavior under certain conditions. Chaos arises in the model by means of a progression of period-doubling bifurcations that occur when operating parameters such as combustor wall temperature or air/fuel flow are adjusted to push the system toward flameout. Bifurcation sequences have not yet been reproduced experimentally, but similarities are demonstrated between the dynamic features of pressure fluctuations in the model and experiment. Correlation dimension, Kolmogorov entropy, and projections of reconstructed attractors using chaotic time series analysis are demonstrated to be useful in classifying dynamical behavior of the experimental combustor and for comparison of test data to the model results. Ways to improve the model are suggested. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. The Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing

    E-Print Network [OSTI]

    Rotkowitz, Michael C.

    The Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing Larry Lipera i 2000. This paper describes the vehicle, control system, and ground and flight-test results. Presented at the American Helicopter Society 57th Annual forum, Washington, DC, May 9-11, 2001. Copyright 2001

  20. Detailed balance in micro-and macrokinetics and micro-distinguishability of macro-processes

    E-Print Network [OSTI]

    Detailed balance in micro- and macrokinetics and micro-distinguishability of macro-processes A. N a general framework for the discussion of detailed balance and analyse its microscopic background. We find of detailed balance. Keywords: kinetic equation, random process, microreversibility, detailed balance

  1. Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools

    SciTech Connect (OSTI)

    ADAMS,DAVID P.; VASILE,M.J.; KRISHNAN,A.S.M.

    1999-11-05

    This paper presents techniques for fabricating microscopic, nonplanar features in a variety of materials. Micro-grooving and micro-threading tools having cutting dimensions of 10-30{micro}m are made by focused ion beam sputtering and used in ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide. This creates cutting edges having radii of curvature less than 0.4 {micro}m, and rake features similar to conventional lathe tools. Clearance for minimizing frictional drag of a tool results from the sputter yield dependence on ion herd target incidence angle. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close matching between tool width and feature size. Microtools controllably machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061-T6 Al cylindrical substrates. Micro-grooving tools also fabricate sinusoidal waveform features in polished metal substrates.

  2. Biological Micro-Electrical Mechanical Systems Micro-electrical mechanical systems (MEMS) created new

    E-Print Network [OSTI]

    Hill, Wendell T.

    Biological Micro-Electrical Mechanical Systems (bioMEMS) Micro-electrical mechanical systems (MEMS beginning to be explored. bioMEMS combine the potential of cell-sized systems with the advantages in cutting edge research in bioMEMS to revolutionize mechanized drug discovery processes, non- invasive

  3. Micro-Grooving and Micro-Threading Tools for Fabricating Curvilinear Features

    SciTech Connect (OSTI)

    ADAMS,DAVID P.; VASILE,MICHAEL J.; KRISHNAN,A.S.M.

    2000-07-24

    This paper presents techniques for fabricating microscopic, curvilinear features in a variety of workpiece materials. Micro-grooving and micro-threading tools having cutting widths as small as 13 {micro}m are made by focused ion beam sputtering and used for ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide to create a number of critically aligned facets. Sputtering produces rake facets of desired angle and cutting edges having radii of curvature equal to 0.4 {micro}m. Clearance for minimizing frictional drag of a tool results from a particular ion beam/target geometry that accounts for the sputter yield dependence on incidence angle. It is believed that geometrically specific cutting tools of this dimension have not been made previously. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close match between tool width and feature size. Microtools are used to machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061 Al cylindrical workplaces. Micro-grooving tools are also used to fabricate sinusoidal cross-section features in planar metal samples.

  4. Harmonic generation with temporally focused ultrashort pulses

    E-Print Network [OSTI]

    Silberberg, Yaron

    Harmonic generation with temporally focused ultrashort pulses Dan Oron and Yaron Silberberg of harmonic generation with temporally focused ultrashort pulses are explored both theoreti- cally and experimentally. Analyzing the phase-matching conditions for harmonic generation we find a corre- spondence

  5. Stably operating pulse combustor and method

    DOE Patents [OSTI]

    Zinn, Ben T. (Atlanta, GA); Reiner, David (Haifa, IL)

    1990-01-01

    A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

  6. HEAT TRANSFER ANALYSIS OF A PULSE DETONATION

    E-Print Network [OSTI]

    Texas at Arlington, University of

    HEAT TRANSFER ANALYSIS OF A PULSE DETONATION ENGINE by NEELIMA KALIDINDI Presented to the Faculty support. November 23, 2009 #12;iv ABSTRACT HEAT TRANSFER ANALYSIS OF A PULSE DETONATION ENGINE NEELIMA thermal conductivity. The study showed a slow temperature rise along the walls of the combustion chamber

  7. Improving Pulsar Timing Precision with Single Pulses

    E-Print Network [OSTI]

    Kerr, Matthew

    2015-01-01

    The measurement error of pulse times of arrival (TOAs) in the high S/N limit is dominated by the quasi-random variation of a pulsar's emission profile from rotation to rotation. Like measurement noise, this noise is only reduced as the square root of observing time, posing a major challenge to future pulsar timing campaigns with large aperture telescopes, e.g. the Five-hundred-metre Aperture Spherical Telescope and the Square Kilometre Array. We propose a new method of pulsar timing that attempts to approximate the pulse-to-pulse variability with a small family of 'basis' pulses. If pulsar data are integrated over many rotations, this basis can be used to measure sub-pulse structure. Or, if high-time resolution data are available, the basis can be used to 'tag' single pulses and produce an optimal timing template. With realistic simulations, we show that these applications can dramatically reduce the effect of pulse-to-pulse variability on TOAs. Using high-time resolution data taken from the bright PSR J0835-...

  8. Stably operating pulse combustor and method

    DOE Patents [OSTI]

    Zinn, B.T.; Reiner, D.

    1990-05-29

    A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

  9. High reliability low jitter pulse generator

    DOE Patents [OSTI]

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  10. MODEL DG535 Digital Delay / Pulse Generator

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    MODEL DG535 Digital Delay / Pulse Generator 1290-D Reamwood Avenue Sunnyvale, CA 94089 U.S.A. Phone/2000 #12;i DG535 DIGITAL DELAY / PULSE GENERATOR OPERATION AND SERVICE MANUAL Table of Contents CONDENSED Sequence Sheet #4 Rate Generators Sheet #5 Power Supply and Dropout Detection Sheet #6 System Connectors

  11. Optimization of the LCLS Single Pulse Shutter

    SciTech Connect (OSTI)

    Adera, Solomon; /Georgia Tech., Atlanta /SLAC

    2010-08-25

    A mechanical shutter which operates on demand is used to isolate a single pulse from a 120 Hz X-ray source. This is accomplished with a mechanical shutter which is triggered on demand with frequencies ranging from 0 to 10 Hz. The single pulse shutter is an iron blade that oscillates on a pivot in response to a force generated by a pair of pulsed electromagnets (current driven teeter-totter). To isolate an individual pulse from the X-ray beam, the motion of the mechanical shutter should be synchronized in such a way that it allows a single pulse to pass through the aperture and blocks the other incoming pulses. Two consecutive pulses are only {approx} 8 ms apart and the shutter is required to complete one full cycle such that no two pulses pass through the opening. Also the opening of the shutter blade needs to be at least 4 mm so that a 1 mm diameter rms Gaussian beam can pass through without modulation. However, the 4 mm opening is difficult to obtain due to blade rebound and oscillation of the blade after colliding with the electromagnet. The purpose of this project is to minimize and/or totally eliminate the rebound of the shutter blade in pursuit of maximizing the aperture while keeping the open window interval < {approx}12 ms.

  12. A programmable Fresnel transform pulse shaper

    E-Print Network [OSTI]

    Purdue University

    A programmable Fresnel transform pulse shaper G. M´inguez-Vega1, J.D. McKinney2 and A.M. Weiner2 1@purdue.edu Abstract: We demonstrate the first reprogrammable Fresnel transform pulse shaper based on a modified direct a free-space Fresnel transform which causes quadratic dispersion of the output temporal waveform. When

  13. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect (OSTI)

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800?nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400?nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1??m to 18??m. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  14. Mechanisms for impulsive energy dissipation and small scale effects in micro-granular media

    E-Print Network [OSTI]

    Jonathan Bunyan; Alexander F. Vakakis; Sameh Tawfick

    2015-08-04

    We study impulse response in 1-D homogeneous micro-granular chains on a linear elastic substrate. Micro-granular interactions are analytically described by the Schwarz contact model which includes nonlinear compressive as well as snap-to/from-contact adhesive effects forming a hysteretic loop in the force deformation relationship. We observe complex transient dynamics, including disintegration of solitary pulses, local clustering and low- to high-frequency energy transfers resulting in enhanced energy dissipation. We study in detail the underlying dynamics of cluster formation in the impulsively loaded medium, and relate enhanced energy dissipation to the rate of cluster formation. These unusual and interesting dynamical phenomena are shown to be robust over a range of physically feasible conditions, and are solely scale effects, since they are attributed to surface forces, which have no effect at the macro-scale. We establish a universal relation between the re-clustering rate and the effective damping in these systems. Our findings demonstrate that scale effects generating new nonlinear features can drastically affect the dynamics and acoustics of micro-granular materials.

  15. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    E-Print Network [OSTI]

    Umstadter, Donald

    Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses by the ionizing electron pulses is monitored with 0.3 s time resolution. Hydrated electron concentrations as high

  16. 668 OPTICS LETTERS / Vol. 21, No. 9 / May 1, 1996 Generation of 18-fs, multiterawatt pulses by regenerative pulse

    E-Print Network [OSTI]

    Guo, Ting

    668 OPTICS LETTERS / Vol. 21, No. 9 / May 1, 1996 Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C-limited, 18-fs pulses of 4.4-TW peak power are produced in a Ti:sapphire-based chirped-pulsed amplification

  17. 140 GHz pulsed fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, William F. (Oakland, CA); Leskovar, Branko (Moraga, CA)

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  18. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  19. Generation of Femtosecond Electron And Photon Pulses

    SciTech Connect (OSTI)

    Thongbai, C.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Rimjaem, S.; Saisut, J.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    Femtosecond (fs) electron and photon pulses become a tool of increasing importance to study dynamics in ultrafast processes. Such short electron pulses can be generated from a system consisting of a thermionic-cathode RF-gun and a magnetic bunch compressor. The fs electron pulses can be used directly or used as a source to produce equally short electromagnetic radiation pulses via certain kind of radiation production processes. At the Fast Neutron Research Facility (FNRF), Thailand, we are especially interested in production of radiation in Farinfrared and X-ray regime. In the far-infrared wavelengths, the radiation emitted from fs electron pulses is emitted coherently resulting high intensity radiation. In the X-ray regime, development of fs X-ray sources is crucial for application in ultrafast sciene.

  20. Generation of Femtosecond Electron and Photon Pulses

    E-Print Network [OSTI]

    Thongbai, Chitrlada; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Rimjaem, Sakhorn; Saisut, Jatuporn; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    Femtosecond electron and photon pulses become a tool of interesting important to study dynamics at molecular or atomic levels. Such short pulses can be generated from a system consisting of an RF-gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The femtosecond electron pulses can be used directly or used as sources to produce electromagnetic radiation of equally short pulses by choosing certain kind of radiation pruduction processes. At the Fast Neutron Research Facility (Thailand), we are especially interested in production of radiation in Far-infrared and X-ray regime. In the far-infrared wavelengths which are longer than the femtosecond pulse length, the radiation is emitted coherently producing intense radiation. In the X-ray regime, development of femtosecond X-ray source is crucial for application in ultrafast science.

  1. AN UPDATE ON NIF PULSED POWER

    SciTech Connect (OSTI)

    Arnold, P A; James, G F; Petersen, D E; Pendleton, D L; McHale, G B; Barbosa, F; Runtal, A S; Stratton, P L

    2009-06-22

    The National Ignition Facility (NIF) is a 192-beam laser fusion driver operating at Lawrence Livermore National Laboratory. NIF relies on three large-scale pulsed power systems to achieve its goals: the Power Conditioning Unit (PCU), which provides flashlamp excitation for the laser's injection system; the Power Conditioning System (PCS), which provides the multi-megajoule pulsed excitation required to drive flashlamps in the laser's optical amplifiers; and the Plasma Electrode Pockels Cell (PEPC), which enables NIF to take advantage of a fourpass main amplifier. Years of production, installation, and commissioning of the three NIF pulsed power systems are now complete. Seven-day-per-week operation of the laser has commenced, with the three pulsed power systems providing routine support of laser operations. We present the details of the status and operational experience associated with the three systems along with a projection of the future for NIF pulsed power.

  2. Femtosecond pulse shaping using plasmonic snowflake nanoantennas

    SciTech Connect (OSTI)

    Tok, Ruestue Umut; Sendur, Kuersat [Sabanci University, Orhanli-Tuzla, 34956, Istanbul (Turkey)

    2011-09-15

    We have theoretically demonstrated femtosecond pulse manipulation at the nanoscale using the plasmonic snowflake antenna's ability to localize light over a broad spectrum. To analyze the interaction of the incident femtosecond pulse with the plasmonic nanoantenna, we first decompose the diffraction limited incident femtosecond pulse into its spectral components. The interaction of each spectral component with the nanoantenna is analyzed using finite element technique. The time domain response of the plasmonic antenna is obtained using inverse Fourier transformation. It is shown that the rich spectral characteristics of the plasmonic snowflake nanoantenna allow manipulation of the femtosecond pulses over a wide spectrum. Light localization around the gap region of the nanoantenna is shown for femtosecond pulses. As the alignment of incident light polarization is varied, different antenna elements oscillate, which in turn creates a different spectrum and a distinct femtosecond response.

  3. Digital gate pulse generator for cycloconverter control

    DOE Patents [OSTI]

    Klein, Frederick F. (Monroeville, PA); Mutone, Gioacchino A. (Pleasant Hills, PA)

    1989-01-01

    The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.

  4. From quantum pulse gate to quantum pulse shaper -- enigneered frequency conversion in nonlinear optical waveguides

    E-Print Network [OSTI]

    Benjamin Brecht; Andreas Eckstein; Andreas Christ; Hubertus Suche; Christine Silberhorn

    2011-07-28

    Full control over the spatio-temporal structure of quantum states of light is an important goal in quantum optics, to generate for instance single-mode quantum pulses or to encode information on multiple modes, enhancing channel capacities. Quantum light pulses feature an inherent, rich spectral broadband-mode structure. In recent years, exploring the use of integrated optics as well as source-engineering has led to a deep understanding of the pulse-mode structure of guided quantum states of light. In addition, several groups have started to investigate the manipulation of quantum states by means of single-photon frequency conversion. In this paper we explore new routes towards complete control of the inherent pulse-modes of ultrafast pulsed quantum states by employing specifically designed nonlinear waveguides with adapted dispersion properties. Starting from our recently proposed quantum pulse gate (QPG) we further generalize the concept of spatio-spectral engineering for arbitrary $\\chitwo$-based quantum processes. We analyse the sum-frequency generation based QPG and introduce the difference-frequency generation based quantum pulse shaper (QPS). Together, these versatile and robust integrated optics devices allow for arbitrary manipulations of the pulse-mode structure of ultrafast pulsed quantum states. The QPG can be utilized to select an arbitrary pulse mode from a multimode input state, whereas the QPS enables the generation of specific pulse modes from an input wavepacket with Gaussian-shaped spectrum.

  5. Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse

    SciTech Connect (OSTI)

    Xu Junjie; Zeng Bin; Yu Yongli [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2010-11-15

    We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecond pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.

  6. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  7. Methods for fabricating a micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  8. The Homopolar Generator as a Pulsed Industrial Power Supply 

    E-Print Network [OSTI]

    Weldon, J. M.; Weldon, W. F.

    1979-01-01

    power supply for numerous industrial applications such as large metal cross section pulsed resistance welding, pulsed billet heating for subsequent hot working processes, pulsed heating for localized forging processes, and magnetic metal forming. Each...

  9. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    E-Print Network [OSTI]

    Cole, Lord Kahil

    2012-01-01

    Combustion and Magnetohydrodynamic Processes in Advanced PulseCombustion and Magnetohydrodynamic Processes in Advanced PulseCombustion Theory and Modeling, 9:159170, [16] Jean-Luc Cambier. Development of numerical tools for pulse

  10. PICOSECOND PULSE SHORTENING USING DYE #5 AS A SATURABLE ABSORBER

    E-Print Network [OSTI]

    George, S.M.

    2012-01-01

    G.H.C. New, "Ultrashort pulse measure- ments", Proc. IEEE,of single picosecond pulses", Opt~ Commun. , vol. Z, pp.h)Lpicosecond light pulses'], Appl. Pbys. Lett. , vol;~ll,-

  11. Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered

    E-Print Network [OSTI]

    Oughstun, Kurt

    Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered Biological Media- cally rigorous, physically correct description of the propagation of pulsed electromagnetic fields pulses through multilayered biological media consisting of three biological tissue layers rep- resenting

  12. Sedimentological Reinterpretation of Surficial Unconsolidated Debris Flows and Stream Deposits of the Southern Flanks of Grand Mesa, CO: An Integrated LiDAR Approach 

    E-Print Network [OSTI]

    Blakeley, Mitchell W.

    2014-08-08

    . This study developed a sedimentological description and interpretation of these deposits and tested the capabilities of terrestrial LiDAR (Light Detection and Ranging) for use in sedimentological studies. This research addressed the origin of the deposits...

  13. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the

    E-Print Network [OSTI]

    Protat, Alain

    -term meteorological measurements by active (radar and lidar) and passive (infrared and visible fluxes) remote sensing effect is governed primarily by the equi- librium between their albedo effect and their green- house

  14. Analytical estimation of neutron yield in a micro gas-puff X pinch

    SciTech Connect (OSTI)

    Derzon, M. S.; Galambos, P. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Hagen, E. C. [NSTec, North Las Vegas, Nevada 89031 (United States)

    2012-12-01

    In this paper, we present the basic concepts for developing a micro x pinch as a small-scale neutron source. For compact sources, these concepts offer repetitive function at higher yields and pulsing rates than competing methods. The uniqueness of these concepts arises from the use of microelectronic technology to reduce the size of the target plasma and to efficiently heat the target gas. The use of repetitive microelectromechanical systems (MEMs) gas puff technology, as compared to cryogenic wires or solid targets (for the beam-target alternatives), has the potential to be robust and have a long lifetime because the plasma is not created from solid surfaces. The modeling suggests that a 50 J at the wall plug pulse could provide >10{sup 5} tritium (DT) neutrons and 10{sup 3} deuterium (DD) neutrons at temperatures of a few keV. At 1 kHz, this would be >10{sup 8} and 10{sup 6} neutrons per second, DT and DD, respectively, with a 250 {mu}m anode-cathode gap. DT gas puff devices may provide >10{sup 12} neutrons/s operating at 1 kHz and requiring 100 kW. The MEMs approach offers potentially high pulse rates and yields.

  15. Micro-machined thermo-conductivity detector

    DOE Patents [OSTI]

    Yu, Conrad (Antioch, CA)

    2003-01-01

    A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.

  16. Micro-CHP Systems for Residential Applications

    SciTech Connect (OSTI)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the homeowner. In its proposed embodiment, the system has a 2kW prime mover integrated to a furnace platform. The second version is a Micro-Trigen system with heating, cooling and power. It has the same Micro-Cogen platform integrated with a 14kW thermally activated chiller. A Stirling engine is suggested as a promising path for the prime mover. A LiBr absorption chiller is today's best technology in term of readiness level. Paybacks are acceptable for the Micro-Cogen version. However, there is no clear economically viable path for a Micro-Trigen version with today's available technology. This illustrates the importance of financial incentives to home owners in the initial stage of micro-CHP commercialization. It will help create the necessary conditions of volume demand to start transitioning to mass-production and cost reduction. Incentives to the manufacturers will help improve efficiency, enhance reliability, and lower cost, making micro-CHP products more attractive. Successful development of a micro-CHP system for residential applications has the potential to provide significant benefits to users, customers, manufacturers, and suppliers of such systems and, in general, to the nation as a whole. The benefits to the ultimate user are a comfortable and healthy home environment at an affordable cost, potential utility savings, and a reliable supply of energy. Manufacturers, component suppliers, and system integrators will see growth of a new market segment for integrated energy products. The benefits to the nation include significantly increased energy efficiency, reduced consumption of fossil fuels, pollutant and CO{sub 2} emissions from power generation, enhanced security from power interruptions as well as enhanced economic activity and job creation. An integrated micro-CHP energy system provides advantages over conventional power generation, since the energy is used more efficiently by means of efficient heat recovery. Foreign companies are readily selling products, mostly in Europe, and it is urgent to react promptly to these offerings that will soon emerge on the U.S

  17. Pulse transit time and the pulse wave contour as measured by photoplethysmography: the effect of drugs and exercise 

    E-Print Network [OSTI]

    Payne, Rupert Alistair

    2009-07-07

    Photoplethysmography (PPG) is a simple means of measuring the pulse wave in humans, exploitable for the purposes of timing the arrival of the pulse at a particular point in the arterial tree, and for pulse contour analysis. ...

  18. Transverse pulse shaping and optimization of a tapered hard X...

    Office of Scientific and Technical Information (OSTI)

    Transverse pulse shaping and optimization of a tapered hard X-ray free electron laser Citation Details In-Document Search Title: Transverse pulse shaping and optimization...

  19. Pulse of the Profession - Mike Morgan - Government Relations...

    Broader source: Energy.gov (indexed) [DOE]

    from global organizations and governments around the world Workshop 2015 - PMI 2015 Pulse Knowledge Transfer Presentation for DOE.pdf More Documents & Publications Pulse of the...

  20. Spiraling Laser Pulses Could Change Nature of Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spiraling Laser Pulses Could Change Nature of Graphene Spiraling Laser Pulses Could Change Nature of Graphene Simulations Run at NERSC Show It Could Transform from Metal to...

  1. Micro/nanofabricated environments for synthetic biology

    SciTech Connect (OSTI)

    Collier, Pat [ORNL; Simpson, Michael L [ORNL

    2011-01-01

    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial micro- and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of micro- and nanofabricated topological constraints.

  2. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOE Patents [OSTI]

    Skupsky, S.; Kessler, T.J.; Letzring, S.A.

    1993-11-16

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.

  3. Apparatus and method for optical pulse measurement

    DOE Patents [OSTI]

    Trebino, Rick P. (Livermore, CA); Tsang, Thomas (Brooklyn, NY); Fittinghoff, David N. (San Diego, CA); Sweetser, John N. (Livermore, CA); Krumbuegel, Marco A. (Danville, CA)

    1999-12-28

    Practical third-order frequency-resolved optical grating (FROG) techniques for characterization of ultrashort optical pulses are disclosed. The techniques are particularly suited to the measurement of single and/or weak optical pulses having pulse durations in the picosecond and subpicosecond regime. The relative quantum inefficiency of third-order nonlinear optical effects is compensated for through i) use of phase-matched transient grating beam geometry to maximize interaction length, and ii) use of interface-enhanced third-harmonic generation.

  4. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  5. Pulse propagation in decorated random chains

    E-Print Network [OSTI]

    Upendra Harbola; Alexandre Rosas; Aldo H. Romero; Katja Lindenberg

    2010-05-05

    We study pulse propagation in one-dimensional chains of spherical granules decorated with small randomly-sized granules placed between bigger monodisperse ones. Such "designer chains" are of interest in efforts to control the behavior of the pulse so as to optimize its propagation or attenuation, depending on the desired application. We show that a recently proposed effective description of simple decorated chains can be extended to predict pulse properties in chains decorated with small granules of randomly chosen radii. Furthermore, we also show that the binary collision approximation can again be used to provide analytic results for this system.

  6. SANSPOL at a pulsed source.

    SciTech Connect (OSTI)

    Bleuel, M.; Lang, E.; Krist, T.; Wagner, W.; Lal, J.; Intense Pulsed Neutron Source; Hahn Meitner Inst.; PSI

    2007-07-15

    Neutron polarization has not been implemented successfully on a time-of-flight small angle neutron scattering (TOF-SANS) machine to this date anywhere in the world. Designing a suitable one for the small angle scattering instrument (SASI) at IPNS, and implementing it, is an important first on a pulsed source. To achieve this, the installation of a solid-state supermirror-based polarizer, a gradient field adiabatic spin flipper, and a new collimator package were required. A polarizing solid-state bender without adsorbing layers, designed to transmit one polarized spin state and reflect the other has been purchased from Neutron Optics Berlin (NOB). By placing this package upstream of the collimation only the transmitted spin-state passes through to the sample. The polarization achieved with this technique up to now is 80% for neutrons in a wavelength range of 3-8 Angstroms and 67% for larger wavelengths. The polarizer is placed on a linear translator so it can be easily removed from the beam, when regular SANS measurements are desired. The first experimental results from a two-phase CuNiFe alloy sample are reported here.

  7. Raman Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.

  8. Process window and variation characterization of the micro embossing process

    E-Print Network [OSTI]

    Wang, Qi, S.M. Massachusetts Institute of Technology

    2006-01-01

    The micro embossing process on polymethylmethacrylate (PMMA) is demonstrated experimentally to be a useful process to produce micro fluidic and optical devices. Because this process is a one step thermoplastic deformation ...

  9. Micro-bioreactor design for Chinese hamster ovary cells

    E-Print Network [OSTI]

    Goh, Shireen

    2013-01-01

    The research objective is to design a micro-bioreactor for the culture of Chinese Hamster Ovary (CHO) cells. There is an increasing demand for upstream development in high-throughput micro-bioreactors specifically for the ...

  10. Optically controlled delays for broadband pulses 

    E-Print Network [OSTI]

    Sun, Q. Q.; Rostovtsev, Y. V.; Dowling, J. P.; Scully, Marlan O.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme that provides large controllable delays for broadband optical pulses. The system is based on the steep dispersion of a coherently driven medium, in which the narrow electromagnetically induced transparency (EIT) band is overcome...

  11. Performance of a tapered pulse tube

    SciTech Connect (OSTI)

    Swift, G.; Allen, M.; Woolan, J.J.

    1998-02-01

    In a well instrumented pulse tube refrigerator having 1,500 W of cooling power at 125 K, the authors have measured the figure of merit of a tapered pulse tube at several operating points. At operating points near the operating point for which the taper was designed, the figure of merit is 0.96. This is close to the theoretical optimum figure of merit 0.97 calculated for this pulse tube considering only two loss mechanisms: heat conduction in the metal pulse tube wall and ordinary thermoacoustic heat transport in the gas within a few thermal penetration depths of the wall. At operating points farther from the design operating point, the measured figure of merit is much lower, as streaming driven convection adds a third loss mechanism.

  12. Ultrashort Pulse Propagation in the Linear Regime 

    E-Print Network [OSTI]

    Wang, Jieyu

    2010-07-14

    First, we investigate the Bouguer-Lambert-Beer (BLB) law as applied to the transmission of ultrashort pulses through water in the linear absorption regime. We present a linear theory for propagation of ultrashort laser ...

  13. Ultrasonic unipolar pulse/echo instrument

    DOE Patents [OSTI]

    Hughes, Michael S. (Ames, IA); Hsu, David K. (Ames, IA); Thompson, Donald O. (Ames, IA); Wormley, Samuel J. (Ames, IA)

    1993-01-01

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  14. Ultrasonic unipolar pulse/echo instrument

    DOE Patents [OSTI]

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  15. Observations of Radio Giant Pulses with GAVRT

    E-Print Network [OSTI]

    Jones, Glenn

    2015-01-01

    Radio giant pulses provide a unique opportunity to study the pulsar radio emission mechanism in exquisite detail. Previous studies have revealed a wide range of properties and phenomena, including extraordinarily high brightness temperatures, sub-nanosecond emission features, and banded dynamic spectra. New measurements of giant pulse characteristics can help guide and test theoretical emission models. To this end, an extensive observation campaign has begun which will provide more than 500 hours on the Crab with a 34-meter antenna located in California, USA. The observations are being done as part of an educational outreach program called the Goldstone-Apple Valley Radio Telescope (GAVRT). This antenna has a novel wide bandwidth receiver which provides up to 8 GHz of instantaneous bandwidth in the range of 2.5 to 14 GHz. These observations will provide detailed information about the variability, amplitude distribution, and detailed frequency structure of radio giant pulses. In addition, a database of pulses ...

  16. Medical applications of ultrashort pulse lasers

    SciTech Connect (OSTI)

    DaSilva, L.B.; Feit, M.D.; Kim, B.M.; Rubenchil, A.M.

    1999-03-16

    The characteristics of the ultrashort pulse laser (USPL, < 1 ps) ablation of biological tissues are investigated both theoretically and experimentally. Effective USPL parameters for minimal damage and high ablation rates are discussed.

  17. LANL: AOT & LANSCE The Pulse March 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 Tajima...

  18. LANL: AOT & LANSCE The Pulse July 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From...

  19. LANL: AOT & LANSCE The Pulse June 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E Singh to...

  20. Post pulse shutter for laser amplifier

    DOE Patents [OSTI]

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  1. Post pulse shutter for laser amplifier

    DOE Patents [OSTI]

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  2. LANL: AOT & LANSCE The Pulse April 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From...

  3. Optimal arbitrarily accurate composite pulse sequences

    E-Print Network [OSTI]

    Low, Guang Hao

    Implementing a single-qubit unitary is often hampered by imperfect control. Systematic amplitude errors ?, caused by incorrect duration or strength of a pulse, are an especially common problem. But a sequence of imperfect ...

  4. Single mode pulsed dye laser oscillator

    DOE Patents [OSTI]

    Hackel, Richard P. (Livermore, CA)

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  5. Robust 1550-nm single-frequency all-fiber ns-pulsed fiber amplifier for wind-turbine predictive control by wind lidar

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    Oldenburg, Germany ABSTRACT Scaling of the power yield of offshore wind farms relies on the capacity powers [1]. To reach the ambitious and politically motivated aims of Multi-GW offshore wind farms belongs to this category. Clustered in wind farms, today's wind turbines produce Megawatt-level output

  6. Diagnostic system for profiling micro-beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA); Walton, Chris C. (Berkeley, CA)

    2007-10-30

    An apparatus for characterization of a micro beam comprising a micro modified Faraday cup assembly including a first layer of material, a second layer of material operatively connected to the first layer of material, a third layer of material operatively connected to the second layer of material, and a fourth layer of material operatively connected to the third layer of material. The first layer of material comprises an electrical conducting material and has at least one first layer radial slit extending through the first layer. An electrical ground is connected to the first layer. The second layer of material comprises an insulating material and has at least one second layer radial slit corresponding to the first layer radial slit in the first layer of material. The second layer radial slit extends through the second layer. The third layer of material comprises a conducting material and has at least one third layer radial slit corresponding to the second layer radial slit in the second layer of material. The third layer radial slit extends through the third layer. The fourth layer of material comprises an electrical conducting material but does not have slits. An electrical measuring device is connected to the fourth layer. The micro modified Faraday cup assembly is positioned to be swept by the micro beam.

  7. MicroReview Bistability in bacteria

    E-Print Network [OSTI]

    Mekalanos, John

    MicroReview Bistability in bacteria David Dubnau1 * and Richard Losick2,3 * 1 Public Health 94720, USA. Summary Gene expression in bacteria is traditionally studied from the average behaviour expression in individual cells reveals, however, that populations of genetically identical bacteria

  8. MicroRNA Regulation of IGF-1 

    E-Print Network [OSTI]

    McEnery, Kayla Anne Filan

    2013-02-04

    an incredible learning experience. Finally, I would like to thank my friends and family for their continuous love and support. 4 ABSTRACT MicroRNA Regulation of IGF. (May 2013) Kayla Anne Filan McEnery Department of Biochemistry & Biophysics Texas A...

  9. MEMS micropump for a Micro Gas Analyzer

    E-Print Network [OSTI]

    Sharma, Vikas, 1979-

    2009-01-01

    This thesis presents a MEMS micro-vacuum pump designed for use in a portable gas analysis system. It is designed to be pneumatically-driven and as such does not have self-contained actuation (the focus of future work). ...

  10. Dumbbell micro-robot driven by flow oscillations

    E-Print Network [OSTI]

    Dumbbell micro-robot driven by flow oscillations By V. A. V l a d i m i r o v Dept of Mathematics-propulsion of a dumbbell micro-robot submerged in a viscous fluid. The micro-robot consists of two rigid spherical beads of each sphere differs from the density of a fluid, while the whole micro-robot has neutral buoyancy

  11. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    Deposition," Journal of MicroElectroMechanical Systems, vol.Chair MEMS (Microelectromechanical Systems) technologiesby MEMS (Microelectromechanical Systems) technologies many

  12. Applications of non-imaging micro-optic systems

    E-Print Network [OSTI]

    Baker, Katherine Anne

    2012-01-01

    planar micro-optic solar collectors," Opt. Express 19, A673-A. Rabl. Active Solar Collectors and Their Applications. (

  13. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-02-04

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  14. Semianalytic model of electron pulse propagation: Magnetic lenses and rf pulse compression cavities

    SciTech Connect (OSTI)

    Berger, Joel A.; Schroeder, W. Andreas [Department of Physics, University of Illinois at Chicago, 845 W. Taylor (M/C 273), Chicago, Illinois 60607 (United States)

    2010-12-15

    The analytical Gaussian electron pulse propagation model of Michalik and Sipe [J. Appl. Phys. 99, 054908 (2006)] is extended to include the action of external forces on the pulse. The resultant ability to simulate efficiently the effect of electron optical elements (e.g., magnetic lenses and radio-frequency cavities) allows for the rapid assessment of electron pulse delivery systems in time-resolved ultrafast electron diffraction and microscopy experiments.

  15. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2009-10-02

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  16. Modeling pulse profiles of accreting millisecond pulsars

    E-Print Network [OSTI]

    Juri Poutanen

    2008-09-14

    I review the basic observational properties of accreting millisecond pulsars that are important for understanding the physics involved in formation of their pulse profiles. I then discuss main effects responsible for shaping these profiles. Some analytical results that help to understand the results of simulations are presented. Constraints on the pulsar geometry and the neutron star equation of state obtained from the analysis of the pulse profiles are discussed.

  17. Multiple laser pulse ignition method and apparatus

    DOE Patents [OSTI]

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  18. Ultrashort pulse propagation and the Anderson localization

    E-Print Network [OSTI]

    Silvia Gentilini; Andrea Fratalocchi; Luca Angelani; Giancarlo Ruocco; Claudio Conti

    2008-10-09

    We investigate the dynamics of a 10 fs light pulse propagating in a random medium by the direct solution of the 3D Maxwell equations. Our approach employs molecular dynamics to generate a distribution of spherical scatterers and a parallel finite-difference time-domain code for the vectorial wave propagation. We calculate the disorder-averaged energy velocity and the decay time of the transmitted pulse Versus the localization length for an increasing refractive index.

  19. Electromagnetic or other directed energy pulse launcher

    DOE Patents [OSTI]

    Ziolkowski, Richard W. (Livermore, CA)

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  20. Fast pulsed excitation wiggler or undulator

    DOE Patents [OSTI]

    van Steenbergen, Arie (Shoreham, NY)

    1990-01-01

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  1. Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium

    SciTech Connect (OSTI)

    Kozlov, Victor V. [Department of Information Engineering, Universita degli Studi di Brescia, Via Branze 38, I-25123 Brescia (Italy); Department of Physics, St. Petersburg State University, Petrodvoretz, St. Petersburg, 198504 (Russian Federation); Rosanov, Nikolay N. [Institute of Laser Physics, Vavilov State Optical Institute, Birzhevaya liniya, 12, St. Petersburg, 199034 (Russian Federation); St. Petersburg State University of Information Technologies, Mechanics and Optics, St. Petersburg, 197101 (Russian Federation); De Angelis, Costantino; Wabnitz, Stefan [Department of Information Engineering, Universita degli Studi di Brescia, Via Branze 38, I-25123 Brescia (Italy)

    2011-08-15

    A unipolar electromagnetic pulse is a pulse with nonzero value of the static component of the Fourier spectrum of its real electric field (and not its envelope). We show how to efficiently generate unipolar pulses through propagation of an initially nonunipolar pulse in a nonlinear optical medium. One of the major results is the demonstration that the static component can only be generated in equal portions between the forward- and backward-traveling waves in the presence of nonlinear backscattering in a nonlinear medium.

  2. Dissociative ionization of H{sub 2} in an attosecond pulse train and delayed laser pulse

    SciTech Connect (OSTI)

    He Feng; Thumm, Uwe [James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506-2604 (United States)

    2010-05-15

    The ionization of H{sub 2} in a single attosecond extreme ultraviolet (XUV) pulse generates a nuclear wave packet in H{sub 2}{sup +}, which is entangled with the emitted photoelectron wave packet. The nuclear wave-packet dynamics can be observed by dissociating H{sub 2}{sup +} in a delayed IR laser pulse. If H{sub 2} is ionized by a sequence of XUV pulses of an attosecond pulse train, whether or not the corresponding sequence of nuclear wave packets in H{sub 2}{sup +} is detected as a coherent or incoherent superposition depends on whether and how the photoelectrons are observed. We simulate the nuclear dynamics in this XUV-pump-IR-probe scenario and analyze our numerical results for both single attosecond pump pulses and pump-pulse trains of different lengths and temporal spacings between individual XUV pulses. By superimposing nuclear wave packets in H{sub 2}{sup +} generated by individual pulses in the pump-pulse train incoherently, we calculate proton kinetic energy release spectra that are in good qualitative agreement with the recent experiment of Kelkensberg et al. [Phys. Rev. Lett. 103, 123005 (2009)].

  3. Tunable pulsed narrow bandwidth light source

    DOE Patents [OSTI]

    Powers, Peter E. (Dayton, OH); Kulp, Thomas J. (Livermore, CA)

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  4. Interaction between two stopped light pulses

    SciTech Connect (OSTI)

    Chen, Yi-Hsin, E-mail: yhchen920@gmail.com; Lee, Meng-Jung, E-mail: yhchen920@gmail.com; Hung, Weilun, E-mail: yhchen920@gmail.com; Yu, Ite A., E-mail: yu@phys.nthu.edu.tw [Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Ying-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan and Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yong-Fan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-03-05

    The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 ?s. This can be analogous to the scheme of trapping light pulses by an optical cavity with a Q factor of 8×10{sup 9}. With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons.

  5. The Role of Micro-Mechanics in Soil Mechanics

    E-Print Network [OSTI]

    Bolton, Malcolm

    The Role of Micro-Mechanics in Soil Mechanics M.D.Bolton CUED/D-Soils/TR313 September 2000;1 The Role of Micro-Mechanics in Soil Mechanics Malcolm Bolton Summary It is suggested that observations of the changing microstructure of soils will permit the selection and refinement of relevant micro-mechanisms

  6. Grid Simulator for Power Quality Assessment of Micro-Grids

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 Grid Simulator for Power Quality Assessment of Micro-Grids Joaqu´in Eloy-Garc´iaa , Juan C of the simulator. Finally, a case study is presented by testing a micro-grid. Index Terms Grid Simulator, Power for power quality assessment of micro-grids". Published in IET Power Electronics. doi: 10.1049/iet-pel.2012

  7. Technology uses micro-windmills to recharge cell phones

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Technology uses micro-windmills to recharge cell phones A micro-windmill is pictured on the face designed a micro-windmill that generates wind energy and may become an innovative solution to cell phone batteries constantly in need of recharging and home energy generation where large windmills

  8. A study of micro fiber dispersion using digital image analysis 

    E-Print Network [OSTI]

    Hendrarsakti, Jooned

    2004-11-15

    of this dissertation is to investigate the use of texture analysis as a tool to micro fiber dispersion measurement. Micro fiber dispersion can be found in many applications such as in paper and industry powder engineering. Three cases related to micro fiber...

  9. Design of a micro-Functional Testing System for process characterization of a hot micro-embossing machine

    E-Print Network [OSTI]

    Thaker, Kunal H. (Kunal Harish)

    2006-01-01

    Growth in industrial, commercial, and medical applications for micro-fluidic devices has fueled heightened research and development into micro-fluidic design, materials, and increasingly manufacturing. Polymers (Poly(methyl ...

  10. Experimental Study on the Demolding Force in Micro Metal Injection Molding

    E-Print Network [OSTI]

    Tor, Shu Beng

    In this paper experimental study on the demolding force needed to eject micro structures in Micro Metal Injection

  11. Pulse combustion: an assessment of opportunities for increased efficiency

    SciTech Connect (OSTI)

    Brenchley, D.L.; Bomelburg, H.J.

    1984-12-01

    The results of a literature review on pulse combustion are discussed. Current, near-future, and potential opportunities for pulse combustion applications are summarized, and the barriers to developing and using pulse combustion technology are discussed, along with research and development needs. Also provided are the proceedings of a pulse combustion workshop held in May, 1984 in Seattle, Washington. (LEW)

  12. SLAC-PUB-7130 PICOSECOND TIMING OF TERAWATT LASER PULSES

    E-Print Network [OSTI]

    pulses and the appropriate diagnostics are described. The jitter between the laser and electron pulses point (IP). The laser pulse crosses the electron beam at an angle of 17-degrees in the horizontal plane delivered pulses of 6 x 109 e­; while the electron beam operated at 10 Hz, collisions occurred at a rate

  13. Pulse Programming for Qubit Transitions Ryan Bowler & Viki Mirgon

    E-Print Network [OSTI]

    Blinov, Boris

    Pulse Programming for Qubit Transitions Ryan Bowler & Viki Mirgon University of Washington Department of Physics Energy levels of Barium 137 Oscilloscope output of the Pulse Programmer Envelope for the microwave control pulses Pulses! Quantum computers have been theorized for many years and are now

  14. Long Pulse Fusion Physics Experiments Without Superconducting Electromagnets

    E-Print Network [OSTI]

    Long Pulse Fusion Physics Experiments Without Superconducting Electromagnets Robert D. Woolley) 243­3130 *Supported by U.S.Department of Energy Contract No. DE­AC02­76CH03073. ABSTRACT Long pulse pulse ignition with DT fuel. 1,2,3,4 Long pulse resistive electromagnets are alternatives to today

  15. COLLIDING PULSE INJECTION CONTROL IN A LASER-PLASMA ACCELERATOR

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    COLLIDING PULSE INJECTION CONTROL IN A LASER-PLASMA ACCELERATOR C.G.R. Geddes , G.R. Plateau, M is presented using the beat between two 'collid- ing' laser pulses to kick electrons into the plasma wake laser pulses [12, 13, 14, 15]. In the colliding pulse technique, the ponderomotive force of the beat

  16. Long Pulse Fusion Physics Experiments Without Superconducting Electromagnets

    E-Print Network [OSTI]

    Long Pulse Fusion Physics Experiments Without Superconducting Electromagnets Robert D. Woolley) 243-3130 *Supported by U.S.Department of Energy Contract No. DE-AC02-76CH03073. ABSTRACT Long pulse pulse ignition with DT fuel. 1,2,3,4 Long pulse resistive electromagnets are alternatives to today

  17. Time-spatial drift of decelerating electromagnetic pulses

    E-Print Network [OSTI]

    Nerukh, Dmitry

    Time-spatial drift of decelerating electromagnetic pulses Alexander G. Nerukh1* and Dmitry A dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time

  18. Publish date: 06/27/2011 ECE 4345: Pulsed Power

    E-Print Network [OSTI]

    Gelfond, Michael

    switches. 2. Design basic pulsed power systems including pulse forming lines. 3. Design basic pulsed power of this course students should be able to do the following: 1. Design basic pulsed power systems including (gas, vacuum, liquid, solid, and surface) - 3 hours High power switching (closing and opening) - 5

  19. Deuterium-Tritium Pulse Propulsion with Hydrogen as Propellant and the Entire Spacecraft as a Gigavolt Capacitor for Ignition

    E-Print Network [OSTI]

    Friedwardt Winterberg

    2012-07-31

    A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: 1. By letting the thermonuclear micro-explosion take place in the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ~ 105 K. 2. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus.

  20. Pulse transmission transceiver architecture for low power communications

    DOE Patents [OSTI]

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-05

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  1. A Rapid Micro Polymerase Chain Reaction System (GenSpector Micro PCR) for Hepatitis B Virus DNA Detection

    E-Print Network [OSTI]

    Oh, Kwang W.

    A Rapid Micro Polymerase Chain Reaction System (GenSpector® Micro PCR) for Hepatitis B Virus DNA reaction) system (GenSpector® Micro PCR) for the application of Hepatitis B virus (HBV) DNA detection of Hepatitis B virus (HBV) DNA detection [1]. Silicon micromachining technology has been utilized

  2. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  3. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    SciTech Connect (OSTI)

    Newsom, Rob K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2011-04-14

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds show that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.

  4. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    SciTech Connect (OSTI)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrents around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.

  5. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrentsmore »around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.« less

  6. Micro- and Nanoscale Heat Transfer in Femtosecond Laser Processing of Metals

    E-Print Network [OSTI]

    Zhang, Yuwen; Chen, J K

    2015-01-01

    Ultrafast laser material processing has received significant attention due to a growing need for the fabrication of miniaturized devices at micro- and nanoscales. The traditional phenomenological laws, such as Fourier's law of heat conduction, are challenged in the microscale regime and a hyperbolic or dual phase lag model should be employed. During ultrafast laser interaction with metal, the electrons and lattices are not in equilibrium. Various two-temperature models that can be used to describe the nonequilibrium heat transfer are presented. A semi-classical two-step heating model to investigate thermal transport in metals caused by ultrashort laser heating is also presented. The main difference between the semiclassical and the phenomenological two-temperature models is that the former includes the effects of electron drifting, which could result in significantly different electron and lattice temperature response from the latter for higher-intensity and shorter-pulse laser heating. Under higher laser flu...

  7. Pulse transmission receiver with higher-order time derivative pulse generator

    DOE Patents [OSTI]

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-12

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  8. Multi-pulse particle tracking velocimetry (multi-pulse PTV) is a recently proposed flow measurement technique aiming to improve the performance of conventional PTV/PIV. In this work, multi-pulse PTV

    E-Print Network [OSTI]

    Multi-pulse particle tracking velocimetry (multi-pulse PTV) is a recently proposed flow measurement technique aiming to improve the performance of conventional PTV/PIV. In this work, multi-pulse PTV and acceleration measurement are analytically calculated and compared among quadruple-pulse, triple-pulse and dual-pulse

  9. Micro electro mechanical system optical switching

    DOE Patents [OSTI]

    Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

    2013-12-17

    The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

  10. Micro-system inertial sensing technology overview.

    SciTech Connect (OSTI)

    Allen, James Joe

    2009-02-01

    The purpose of this report is to provide an overview of Micro-System technology as it applies to inertial sensing. Transduction methods are reviewed with capacitance and piezoresistive being the most often used in COTS Micro-electro-mechanical system (MEMS) inertial sensors. Optical transduction is the most recent transduction method having significant impact on improving sensor resolution. A few other methods are motioned which are in a R&D status to hopefully allow MEMS inertial sensors to become viable as a navigation grade sensor. The accelerometer, gyroscope and gravity gradiometer are the type of inertial sensors which are reviewed in this report. Their method of operation and a sampling of COTS sensors and grade are reviewed as well.

  11. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  12. INNOVATIVE EDDY CURRENT PROBE FOR MICRO DEFECTS

    SciTech Connect (OSTI)

    Santos, Telmo G.; Vilaca, Pedro; Quintino, Luisa [IDMEC, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Santos, Jorge dos [GKSS, Max-Planck-Street 1, D-21502 Geesthacht (Germany); Rosado, Luis [IST, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2010-02-22

    This paper reports the development of an innovative eddy current (EC) probe, and its application to micro-defects on the root of the Friction Stir Welding (FSW). The new EC probe presents innovative concept issues, allowing 3D induced current in the material, and a lift-off independence. Validation experiments were performed on aluminium alloys processed by FSW. The results clearly show that the new EC probe is able to detect and sizing surface defects about 60 microns depth.

  13. Micro -Thermonuclear AB-Reactors for Aerospace

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-08

    The author offers several innovations that he first suggested publicly early in 1983 for the AB multi-reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB-Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. The Lawson criterion increases by hundreds of times. The author also suggests a new method of heating the power-making fuel pellet by outer electric current as well as new direct method of transformation of ion kinetic energy into harvestable electricity. These offered innovations dramatically decrease the size, weight and cost of thermonuclear reactor, installation, propulsion system and electric generator. Non-industrial countries can produce these researches and constructions. Currently, the author is researching the efficiency of these innovations for two types of the micro-thermonuclear reactors: multi-reflection reactor (ICF) and self-magnetic reactor (MCF).

  14. Pulse energy measurement at the SXR instrument

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; et al

    2015-04-14

    A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of datamore »normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.« less

  15. Double pulse Thomson scattering system at RTP

    SciTech Connect (OSTI)

    Beurskens, M.N.; Barth, C.J.; Chu, C.C.; Donne, A.J.; Herranz, J.A.; Lopes Cardozo, N.J.; van der Meiden, H.J.; Pijper, F.J. [FOM-Instituut voor Plasmafysica `Rijnhuizen`, Associatie Euratom-FOM, 3430 BE Nieuwegein (The Netherlands)] [FOM-Instituut voor Plasmafysica `Rijnhuizen`, Associatie Euratom-FOM, 3430 BE Nieuwegein (The Netherlands)

    1997-01-01

    In this article a double pulse multiposition Thomson scattering diagnostic, under construction at RTP, is discussed. Light from a double pulsed ruby laser (pulse separation: 10{endash}800 {mu}s, max. 2{times}12.5 J) is scattered by the free electrons of the tokamak plasma and relayed to a Littrow polychromator for spectral analysis. The spectrally resolved light is recorded by two ICCD detectors. Simulations show that the system sensitivity will be such that electron temperatures in the range of 100 eV{endash}7 keV can be determined with an accuracy as good as 2{percent}{endash}3{percent} for electron densities of 10{sup 20} m{sup {minus}3}, with a spatial resolution down to 2.6 mm. With this diagnostic the dynamics of small scale structures in the electron temperature profile will be studied. {copyright} {ital 1997 American Institute of Physics.}

  16. A Self-Biasing Pulsed Depressed Collector

    SciTech Connect (OSTI)

    Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC

    2014-05-29

    Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

  17. Pulse propagation in a hyper-lattice

    E-Print Network [OSTI]

    Joseph W. Dickey

    2009-07-21

    The classical dynamics and pulse propagation are presented for a series of lattice-like structures whose spatial dimensionality ranges from one to four: four representing a hyper lattice. The lattices are connected one-dimensional wave bearing systems of varying lengths and can illuminate some aspects of higher dimension structures. Short pulses are launched at an arbitrary point, reverberate throughout the entire structure, and detected at another point. Some aspects of increasing dimensionality are illustrated with particular emphasis on the transition from three to four spatial dimensions. In a hypothetical four dimension world where only three are observable, the classical conservation laws and causality do not hold. The lack of causality is illustrated at each step in dimensionality by showing the unexpected pulse returns from the next higher dimension.

  18. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect (OSTI)

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H. [Sandia National Laboratories, Livermore, CA 94550 (United States)

    2013-04-19

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  19. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  20. Classical Dynamics of Free Electromagnetic Laser Pulses

    E-Print Network [OSTI]

    Goto, S; Walton, T J

    2015-01-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Lande and Podolsky.

  1. Classical Dynamics of Free Electromagnetic Laser Pulses

    E-Print Network [OSTI]

    S. Goto; R. W. Tucker; T. J. Walton

    2015-08-21

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Lande and Podolsky.

  2. Device for generation of pulsed corona discharge

    DOE Patents [OSTI]

    Gutsol, Alexander F. (San Ramon, CA); Fridman, Alexander (Marlton, NJ); Blank, Kenneth (Philadelphia, PA); Korobtsev, Sergey (Moscow, RU); Shiryaevsky, Valery (Moscow, RU); Medvedev, Dmitry (Moscow, RU)

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  3. LANSCE | News & Media | The Pulse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask2 J.N.openNeutronUser ResourcesPulsePulse

  4. GaAs micro-pyramids serving as optical micro-cavities

    SciTech Connect (OSTI)

    Karl, M.; Beck, T.; Li, S.; Hu, D. Z.; Schaadt, D. M.; Kalt, H.; Hetterich, M.

    2010-01-04

    An efficient light-matter coupling requires high-quality (Q) micro-cavities with small mode volume. We suggest GaAs micro-pyramids placed on top of AlAs/GaAs distributed Bragg reflectors to be promising candidates. The pyramids were fabricated by molecular-beam epitaxy, electron-beam lithography and a subsequent wet-chemical etching process using a sacrificial AlAs layer. Measured Q-factors of optical modes in single pyramids reach values up to 650. A finite-difference time-domain simulation assuming a simplified cone-shaped geometry suggests possible Q-factors up to 3600. To enhance the light confinement in the micro-pyramids we intend to overgrow the pyramidal facets with a Bragg mirror--results of preliminary tests are given.

  5. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    SciTech Connect (OSTI)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-15

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  6. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    SciTech Connect (OSTI)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-22

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  7. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode

    SciTech Connect (OSTI)

    Pushkarev, A. I., E-mail: aipush@mail.ru; Isakova, Y. I.; Khaylov, I. P. [Laboratory of Beam and Plasma Technologies, Tomsk Polytechnic University, 2a Lenin Ave., Tomsk 634028 (Russian Federation)

    2014-07-15

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1–1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250–300 kV) and bipolar-pulse mode with the first negative (300–600 ns, 100–150 kV) followed by a second positive (120 ns, 250–300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode the shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1?) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3–4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9–0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.

  8. Nonlinear pulse propagation and phase velocity of laser-driven plasma waves

    E-Print Network [OSTI]

    Schroeder, Carl B.

    2011-01-01

    of California. Nonlinear pulse propagation and phasea relativistically-intense short-pulse laser in un- derdenseinvestigated in the broad pulse limit, including the e?ects

  9. Standing-wave enhanced electroabsorption modulator for 40-GHz optical pulse generation

    E-Print Network [OSTI]

    Chou, H F; Chiu, Y J; Bowers, J E

    2003-01-01

    pulse generation, simulation, traveling-wave devices. I. IWAVE ENHANCED EAM FOR 40-GHz OPTICAL PULSE GENERATION (a) (Wave Enhanced Electroabsorption Modulator for 40-GHz Optical Pulse Generation

  10. Pressure wave charged repetitively pulsed gas laser

    DOE Patents [OSTI]

    Kulkarny, Vijay A. (Redondo Beach, CA)

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  11. Haykin Chapter 4 Baseband Pulse Transmission

    E-Print Network [OSTI]

    Al-Ghadhban, Samir

    1/30/2014 1 Haykin Chapter 4 Baseband Pulse Transmission EE571 Dr. Samir Alghadhban KFUPM 1 · In this chapter we study the transmission of digital data (of whatever origin) over a baseband channel. · Baseband transmission of digital data requires the use of a lowpass channel with a bandwidth large enough

  12. Ultrafast Optical Pulses: Synthesis and Applications 

    E-Print Network [OSTI]

    Wang, Kai

    2013-12-11

    scattering, which provides the required optical bandwidth. This technique is capable of producing a pulse whose duration can be shorter than one optical ?eld cycle in the visible-UV range, providing a potential for non-sinusoidal ?eld synthesis. We produce...

  13. Transient Pulse Formation in Jasmonate Signaling Pathway

    E-Print Network [OSTI]

    Subhasis Banerjee; Indrani Bose

    2010-03-03

    The jasmonate (JA) signaling pathway in plants is activated as defense response to a number of stresses like attacks by pests or pathogens and wounding by animals. Some recent experiments provide significant new knowledge on the molecular detail and connectivity of the pathway. The pathway has two major components in the form of feedback loops, one negative and the other positive. We construct a minimal mathematical model, incorporating the feedback loops, to study the dynamics of the JA signaling pathway. The model exhibits transient gene expression activity in the form of JA pulses in agreement with experimental observations. The dependence of the pulse amplitude, duration and peak time on the key parameters of the model is determined computationally. The deterministic and stochastic aspects of the pathway dynamics are investigated using both the full mathematical model as well as a reduced version of it. We also compare the mechanism of pulse formation with the known mechanisms of pulse generation in some bacterial and viral systems.

  14. TECH pulse Light stopped for a minute

    E-Print Network [OSTI]

    Rotter, Stefan

    TECH pulse · Light stopped for a minute DARMSTADT, Germany - At 186,000 miles per second, the speed of light is unparalleled, so slowing it down is a for- midable challenge - and stopping it seems impossible. But physicists in Germany report using a glasslike crystal to stop light for about one minute, which could have

  15. Pulse thermal energy transport/storage system

    DOE Patents [OSTI]

    Weislogel, Mark M. (23133 Switzer Rd., Brookpark, OH 44142)

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  16. Proca Equation for Attosecond Electron Pulses

    E-Print Network [OSTI]

    Magdalena Pelc; Janina Marciak-Kozlowska; Miroslaw Kozlowski

    2008-03-03

    In this paper the heat transport of attosecond electron pulses is investigated. It is shown that attosecond electrons can propagate as thermal waves or diffused as particle conglommerates, Proca equation as type equation for the thermal transport of the attosecond electron pulsem is formulated

  17. Numerical Simulation of Pulse-Tube Refrigerators

    E-Print Network [OSTI]

    Tijsseling, A.S.

    . . . . . . . . . . . . . . . . . . 51 3.3.1 A model problem . . . . . . . . . . . . . . . . . 52 3.3.2 Two-grid LUGR with fixed refinement area . . . . . . . . 53 3.3.3 Two-grid LUGR with moving refinement area . . . . . . . 55 4 in fully developed pipe flow . . . . 76 5 Flow and heat transfer computations for the pulse tube 81 5.1 One

  18. Long Pulse Physics via International Stellarator Collaboration

    E-Print Network [OSTI]

    systems · Magnetic island divertor · 30 minute pulse at full power · LHD has been operating since 1998 Impurity transport studies · Island physics studies · Confinement studies at high density US XICS partnership in W7-X. #12;3D Magnetics on W7-X : Island Divertors · Exhaust heat from the W7-X plasma

  19. Ultimate Energy Densities for Electromagnetic Pulses

    E-Print Network [OSTI]

    Mankei Tsang

    2008-03-06

    The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.

  20. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  1. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  2. Micro-combustor for gas turbine engine

    DOE Patents [OSTI]

    Martin, Scott M. (Oviedo, FL)

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  3. Polygonal micro-whirlpools induced in ferrofluids

    E-Print Network [OSTI]

    Marcin Bacia; Weronika Lamperska; Jan Masajada; Slawomir Drobczynski; Maciej Marc

    2015-04-23

    We report on the observation of the polygonal whirlpools in the thin layer of ferrofluid under illumination with a laser beam carrying optical vortex and in the presence of a vertical magnetic field. This kind of structures have attracted attention after discovering a hexagonal storm in Saturns atmosphere. Our polygonal whirlpools were created in a closed system (no free surfaces) in micro scale (whirlpool diameter less than 20 micrometers) by the use of holographic optical tweezers. The polygonal shape was changed by varying the magnetic field strength or value of the optical vortex topological charge.

  4. The Durham Micro-Optics Programme

    E-Print Network [OSTI]

    J. Schmoll; C. M. Dubbeldam; D. J. Robertson; J. Yao

    2005-09-22

    The Durham Microoptics Programme was established to develop key components to be used for integral field spectrographs for upcoming instrumentation projects, focussing on currently existing telescopes as well as on the next generation of ELTs. These activities include monolithic multi-optics machining and grinding, optical surface improvement using various post polishing techniques and replication of micro-optical components. While these developments have mostly slicer-type IFUs in mind, also new types of microlens arrays are in development for fiber based high contrast IFU systems.

  5. Theory of a triangular micro-robot

    E-Print Network [OSTI]

    Vladimir A. Vladimirov

    2012-10-02

    In this paper we study the self-propulsion of a triangular micro-robot (or triangle-robot) which consists of three spheres connected by three rods; the rods' lengths are changing independently and periodically. Using the asymptotic procedure containing the two-timing method and distinguished limit arguments, we obtain analytic expressions for self-propulsion velocity the angular velocity. Our calculations show that a triangle-robot rotates with constant angular velocity around its centroid, while the centroid moves in a circle. The important special case of zero angular velocity represents rectilinear translational self-propulsion with constant velocity.

  6. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel: Name:Department ofThe DOE Tours MicroBooNE! -

  7. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment TopMetathesisSediments and Related J.TheMicroBooNE In the

  8. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment TopMetathesisSediments and Related J.TheMicroBooNE In

  9. ARM - Evaluation Product - Micro-ARSCL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA Contacts ENAProductsHSRL CorrectedVaporProductsMicro-ARSCL

  10. ARM - Campaign Instrument - uav-proteus-micro

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you! Send us a notegovInstrumentstdmaaltus Comments? We wouldproteus-micro

  11. Helio Micro Utility Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, California | Open Energyreport |Helio Micro

  12. Webel Micro Power JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh KiepeWebel Micro Power JV Jump to:

  13. Category:Micro-Earthquake | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia:Geothermal RegulatoryMicro-Earthquake Jump to:

  14. MicroBooNE Proposal Addendum March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillionStockpile StewardshipO'ConnorFirstMicroBooNE Proposal

  15. CHARACTERIZATION OF MAGNETRON SPUTTERED COATINGS BY PULSED EDDY CURRENT TECHNIQUES

    E-Print Network [OSTI]

    Danon, Yaron

    CHARACTERIZATION OF MAGNETRON SPUTTERED COATINGS BY PULSED EDDY CURRENT TECHNIQUES Chris Mulligan1, Troy, NY 12180 ABSTRACT. A method that uses induced pulsed eddy currents for characterization of thick

  16. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Wednesday, 29 November 2006 00:00 Researchers at...

  17. Place Pulse : measuring the collaborative image of the city

    E-Print Network [OSTI]

    Salesses, Mark Philip

    2012-01-01

    This thesis presents Place Pulse, a tool capable of conducting large crowdsourced visual preference surveys. The data collected with Place Pulse was used to create quantitative measures of the perceptions people hold of ...

  18. Detailed characteristics of intermittent current pulses due to positive corona

    SciTech Connect (OSTI)

    Liu, Yang, E-mail: liuyangwuh520@sina.com; Cui, Xiang; Lu, Tiebing; Wang, Zhenguo; Li, Xuebao; Xiang, Yu; Wang, Xiaobo [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China)

    2014-08-15

    In order to get detailed characteristics of intermittent current pulses due to positive corona such as the repetition rate of burst-pulse trains, the peak value ratio of the primary pulse to the secondary pulse, the number of pulses per burst, and the interval of the secondary pulses, a systematic study was carried out in a coaxial conductor-cylinder electrode system with the conductor electrode being set with a discharge point. Empirical formulae for the number of pulses per burst and the interval of the secondary pulses are first presented. A theoretical model based on the motion of the space-charge clouds is proposed. Analysis with the model gives explanations to the experimental results and reveals some new insights into the physical mechanism of positive intermittent corona.

  19. Lorentz-Dirac equation in the delta-function pulse

    E-Print Network [OSTI]

    Miroslav Pardy

    2012-08-01

    We formulate the Lorentz-Dirac equation in the plane wave and in the Dirac delta-function pulse. The discussion on the relation of the Dirac delta-function to the ultrashort laser pulse is involved.

  20. Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz

    E-Print Network [OSTI]

    Yavuz, Deniz

    Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz Department pulses inside an atomic medium using electromag- netically induced transparency. Extending the suggestion.65. k Over the last decade, counterintuitive optical effects using electromagnetically induced

  1. Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Micro-Structural Mitigation Strategies for PEM Fuel Cells, originally presented on November 19, 2013.

  2. Micro- & Nano-Technologies Enabling More Compact, Lightweight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance and cost of micro-honeycombs to conventional heat exchange structures to highlight performance enhancement mechanisms hendricksam.pdf More Documents &...

  3. A probabilistic approach to microRNA-target binding

    SciTech Connect (OSTI)

    Ogul, Hasan; Umu, Sinan U.; Bioinformatics Program, Informatics Institute, Middle East Technical University, Cankaya TR-06800, Ankara ; Tuncel, Y. Yener; Akkaya, Mahinur S.

    2011-09-16

    Highlights: {yields} A new probabilistic model is introduced for microRNA-target binding. {yields} The new model significantly outperforms RNAHybrid and miRTif. {yields} The experiments can unveil the effects of the type and directions of distinct base pairings. -- Abstract: Elucidation of microRNA activity is a crucial step in understanding gene regulation. One key problem in this effort is how to model the pairwise interactions of microRNAs with their targets. As this interaction is strongly mediated by their sequences, it is desired to set-up a probabilistic model to explain the binding preferences between a microRNA sequence and the sequence of a putative target. To this end, we introduce a new model of microRNA-target binding, which transforms an aligned duplex to a new sequence and defines the likelihood of this sequence using a Variable Length Markov Chain. It offers a complementary representation of microRNA-mRNA pairs for microRNA target prediction tools or other probabilistic frameworks of integrative gene regulation analysis. The performance of present model is evaluated by its ability to predict microRNA-target mRNA interaction given a mature microRNA sequence and a putative mRNA binding site. In regard to classification accuracy, it outperforms two recent methods based on thermodynamic stability and sequence complementarity. The experiments can also unveil the effects of base pairing types and non-seed region in duplex formation.

  4. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  5. Transfer Printed Microcells with Micro-Optic Concentrators for...

    Office of Scientific and Technical Information (OSTI)

    Printed Microcells with Micro-Optic Concentrators for Low Cost, High Performance Photovoltaic Modules Citation Details In-Document Search Title: Transfer Printed Microcells with...

  6. Evaluation of Biomaterials Using Micro-Computerized Tomography

    SciTech Connect (OSTI)

    Torris, A. T. Arun; Columbus, K. C. Soumya; Saaj, U. S.; Krishnan, Kalliyana V. [Dental Products Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala-695012 (India); Nair, Manitha B. [Transmission Electron Microscopy Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala-695012 (India)

    2008-09-26

    Micro-computed tomography or Micro-CT is a high resolution, non-invasive, x-ray scanning technique that allows precise three-dimensional imaging and quantification of micro-architectural and structural parameters of objects. Tomographic reconstruction is based on a cone-beam convolution-back-projection algorithm. Micro-architectural and structural parameters such as porosity, surface area to volume ratio, interconnectivity, pore size, wall thickness, anisotropy and cross-section area of biomaterials and bio-specimens such as trabecular bone, polymer scaffold, bio-ceramics and dental restorative were evaluated through imaging and computer aided manipulation of the object scan data sets.

  7. Assessment of the Technical Potential for Micro-Cogeneration...

    Open Energy Info (EERE)

    Assessment of the Technical Potential for Micro-Cogeneration in Small Commercial Buildings across the United States Jump to: navigation, search Name Assessment of the Technical...

  8. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    Journal of MicroElectroMechanical Systems, vol. 20, pp. 9-Chair MEMS (Microelectromechanical Systems) technologiesby MEMS (Microelectromechanical Systems) technologies many

  9. Applications of non-imaging micro-optic systems

    E-Print Network [OSTI]

    Baker, Katherine Anne

    2012-01-01

    A. Rabl. Active Solar Collectors and Their Applications. (planar micro-optic solar collectors," Opt. Express 19, A673-Luminescent greenhouse collector for solar radiation," Appl.

  10. Overview of Tritium Betavoltaic Power for Micro Sensors | Department...

    Office of Environmental Management (EM)

    Tritium Betavoltaic Power for Micro Sensors More Documents & Publications Studies on Lithium Manganese Rich MNC Composite Cathodes Vehicle Technologies Office Merit Review 2014:...

  11. MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...

    Open Energy Info (EERE)

    LibraryAdd to library Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Abstract High...

  12. USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...

    Open Energy Info (EERE)

    USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI...

  13. Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

    Open Energy Info (EERE)

    Using Micro-Seismicity and Seismic Velocities to Map Subsurface Geologic and Hydrologic Structure Within the Coso Geothermal Field California Jump to: navigation, search OpenEI...

  14. Micro-Modular Biopower System for Cooling, Heating and Power

    SciTech Connect (OSTI)

    2006-08-01

    This Congressionally-mandated project seeks to test a micro-modular biopower system for use on the Mount Wachusett Community College (MWCC) campus.

  15. Green Bank Telescope Studies of Giant Pulses from Millisecond Pulsars

    E-Print Network [OSTI]

    H. S. Knight; M. Bailes; R. N. Manchester; S. M. Ord; B. A. Jacoby

    2005-12-13

    We have conducted a search for giant pulses from four millisecond pulsars using the 100m Green Bank Telescope. Coherently dedispersed time-series from PSR J0218+4232 were found to contain giant pulses of very short intrinsic duration whose energies follow power-law statistics. The giant pulses are in phase with the two minima of the radio integrated pulse profile but are phase aligned with the peaks of the X-ray profile. Historically, individual pulses more than 10-20 times the mean pulse energy have been deemed to be ``giant pulses''. As only 4 of the 155 pulses had energies greater than 10 times the mean pulse-energy, we argue the emission mechanism responsible for giant pulses should instead be defined through: (a) intrinsic timescales of microsecond or nanosecond duration; (b) power-law energy statistics; and (c) emission occurring in narrow phase-windows coincident with the phase windows of non-thermal X-ray emission. Four short-duration pulses with giant-pulse characteristics were also observed from PSR B1957+20. As the inferred magnetic fields at the light cylinders of the millisecond pulsars that emit giant pulses are all very high, this parameter has previously been considered to be an indicator of giant pulse emissivity. However, the frequency of giant pulse emission from PSR~B1957+20 is significantly lower than for other millisecond pulsars that have similar magnetic fields at their light cylinders. This suggests that the inferred magnetic field at the light cylinder is a poor indicator of the rate of emission of giant pulses.

  16. Ultraslow Propagation of Squeezed Vacuum Pulses with Electromagnetically Induced Transparency

    E-Print Network [OSTI]

    Daisuke Akamatsu; Yoshihiko Yokoi; Manabu Arikawa; Satoshi Nagatsuka; Takahito Tanimura; Akira Furusawa; Mikio Kozuma

    2008-01-27

    We have succeeded in observing ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency. Squeezed vacuum pulses (probe lights) were incident on a laser cooled 87Rb gas together with an intense coherent light (control light). A homodyne method sensitive to the vacuum state was employed for detecting the probe pulse passing through the gas. A delay of 3.1us was observed for the probe pulse having a temporal width of 10 us.

  17. Power limitations and pulse distortions in an Yb : KGW chirped-pulse amplification laser system

    SciTech Connect (OSTI)

    Kim, G H; Yang, J; Kulik, A V; Sall, E G; Chizhov, S A; Kang, U [KERI, Russia Science Seuol, 612, DMC, Hi-Tech Industry Center, 1580 Sangam-dong, Mapo-gu, 121-835 Seoul (Korea, Republic of); Yashin, V E [Federal State Unitary Enterprise ' Scientific and Industrial Corporation 'Vavilov State Optical Institute', St. Petersburg (Russian Federation)

    2013-08-31

    We have studied self-action effects (self-focusing and self-phase modulation) and stimulated Raman scattering in an Yb : KGW chirped-pulse amplification laser system. The results demonstrate that self-focusing in combination with thermal lensing may significantly limit the chirped pulse energy in this system (down to 200 ?J) even at a relatively long pulse duration (50 ps). Nonlinear lenses in the laser crystals in combination with thermal lenses bring the regenerative amplifier cavity in the laser system to the instability zone and limit the average output power at pulse repetition rates under 50 kHz. Self-phase modulation, a manifestation of self-action, may significantly distort a recompressed femtosecond pulse at energies near the self-focusing threshold. Stimulated Raman scattering in such a laser has a weaker effect on output parameters than do self-focusing and thermal lensing, and Raman spectra are only observed in the case of pulse energy instability. (nonlinear optical phenomena)

  18. A nanoparticle bed micro-reactor with high syngas yield for moderate temperature micro-scale SOFC power plants

    E-Print Network [OSTI]

    Daraio, Chiara

    . c The micro-reactor is able to achieve higher syngas yield for n-butane and propane than state systems. It is shown that the presented micro-reactor is able to produce syngas (COþH2) efficiently from n-butane. The present micro-reactor is able to achieve syngas yield as high as 60% for n-butane and 50% for propane

  19. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control G. R. Plateau, , C. G. R acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy

  20. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer

    E-Print Network [OSTI]

    Blake, Geoffrey

    A direct digital synthesis chirped pulse Fourier transform microwave spectrometer Ian A. Finneran OF SCIENTIFIC INSTRUMENTS 84, 083104 (2013) A direct digital synthesis chirped pulse Fourier transform microwave pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice