National Library of Energy BETA

Sample records for michael brookhaven national

  1. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  2. Brookhaven National Laboratory Federal Facility Agreement, February...

    Office of Environmental Management (EM)

    Brookhaven National Laboratory Agreement Name Brookhaven National Laboratory Federal Facility Agreement Under CERCLA Section 120, February 28, 1992 State New York Agreement Type...

  3. Brookhaven National Laboratory - HFBR Tritium | Department of...

    Office of Environmental Management (EM)

    HFBR Tritium Brookhaven National Laboratory - HFBR Tritium January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report...

  4. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The Muon Collider/Neutrino Factory Solenoid Capture System Solenoid Capture Workshop Brookhaven National Lab November 29-30, 2010 #12;Harold G. Kirk 2 gradient rf for rapid acceleration #12;Harold G. Kirk 3 The Neutrino Factory The muons in a storage ring

  5. Brookhaven National Laboratory - OU VI VOC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brookhaven National Laboratory - OU VI VOC Brookhaven National Laboratory - OU VI VOC January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater...

  6. DOE - Office of Legacy Management -- Brookhaven National Laboratory...

    Office of Legacy Management (LM)

    Brookhaven National Laboratory Buildings 353 354 467 and 468 - NY 14 FUSRAP Considered Sites Site: Brookhaven National Laboratory Buildings 353 354 467 and 468 (NY.14 ) Designated...

  7. Brookhaven National LaboratoryBrookhaven National Laboratory ENERGY INNOVATIONENERGY INNOVATION

    E-Print Network [OSTI]

    Ohta, Shigemi

    ;NEW CATALYSTS FOR FUEL CELLS AND HYDROGEN GENERATION Engineering nanostructured compounds to power: · Increase vehicle efficiency · Electrify the vehicle fleet · Deploy alternative hydrocarbon fuels · Increase building and industrial efficiency · Modernize the grid · Deploy clean electricity Brookhaven Lab and its

  8. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Future Targetry Plans NFMCC Collaboration Meeting Lawrence Berkeley National Laboratory January 26, 2009 #12;Harold G. Kirk Focus of Future Targetry Efforts Post-MERIT Magneto hydrodynamics IDS-NF #12;Harold G. Kirk MERIT Nozzle performance: The Issue #12

  9. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory MERIT Infrastructure at CERN NuMu Collaboration Friday Phone Meeting August 4, 2006 #12;Harold G. Kirk Surface above the ISR 6000 l Dewar Access Route One 18kV Sub-station #12;Harold G. Kirk Relocation of the Power Supply Building 193 #12;Harold G. Kirk

  10. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Recent MAP Reviews Front End Recommendations Front End Studies Meeting September 25, 2012 #12;Harold G. Kirk 2 MuPac Recommendations General but also gradient. #12;Harold G. Kirk 3 MuPac Recommendations II Front End Specific: · Study the robustness

  11. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The IDS-NF Target Baseline IDS-NF Plenary Meeting Rutherford Appleton Lab September 20-25, 2010 #12;Harold G. Kirk 2 The Neutrino Factory Target Concept/GeV/interactingproton) - + Palmer, PAC97 #12;Harold G. Kirk 3 The Study 2 Target System Neutrino

  12. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The High-power Target Experiment at CERN Friday Phone Meeting April 8, 2005 #12;Harold G. Kirk Proposal to Isolde and nToF Committee Participating Institutions;Harold G. Kirk Approval--March 3, 2005 #12;Harold G. Kirk Target Test Site at CERN #12;Harold G. Kirk #12

  13. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Targetry Plans and Status MUTAC Review FNAL March 17, 2006 #12;Harold G. Kirk International Scoping Study Question: Given a "Green Field" what are the most is the "preferred" proton driver energy? #12;Harold G. Kirk Achieving Intense Muon Beams Maximize Pion

  14. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The 2003 Targetry Workshop High-power Targetry for Future Accelerators Ronkonkoma, NY September 8-12, 2003 #12;Harold G. Kirk Workshop Participation Over 40 Factory NUMI NLC RIA SINQ SNS #12;Harold G. Kirk Workshop Organization Facilities Overview Summary by John

  15. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The High-power Target Experiment at CERN BENE'04 DESY, Hamburg November 2, 2004 #12;Harold G. Kirk Multi-MW New Proton Machines SNS at 1.2 MW 2.0 MW JPARC 0.7 MW. Kirk High-power Targetry Challenges High-average power and high-peak power issues Thermal management

  16. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Meson Production Calculations 1st Princeton/Oxford High-Power Targets Workshop Oxford May 1-2, 2008 #12;Harold G. Kirk The Study2 Target System Count all #12;Harold G. Kirk Optimizing Soft-pion Production 0 3 6 9 12 15 Target radius (mm) 0.15 0.20 0.25 0

  17. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory MERIT Installation Issues CERN Meeting June 20, 2006 #12;Harold G. Kirk The MERIT Experiment (3/3) To be installed in the TT2A tunnel upstream of the n to TT10 #12;Harold G. Kirk Experiment at CERN TT10 TT2 TT2A ISR Tunnel MERIT Hyd Pump & Controls in TT2

  18. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The High-Power Target Experiment at CERN Muon Collaboration Meeting LBNL February 16, 2005 #12;Harold G. Kirk Proposal to Isolde and nToF Committee 26, 2004 #12;Harold G. Kirk Target Test Site at CERN #12;Harold G. Kirk #12;Harold G. Kirk

  19. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Summary of Engineering Meetings High Power Target Experiment CERN March 30-April 2, 2004 #12;Harold G. Kirk Main characteristics of power converter type ALICE forced cooling; - Fed by two18 kV lines #12;Harold G. Kirk Main technical details still to be verified

  20. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory High-Power Targets for Muon Production Low Emittance Muon Collider Workshop FNAL June 11, 2009 #12;Harold G. Kirk 2 The Neutrino Factory Target Concept/GeV/interactingproton) - + Palmer, PAC97 #12;Harold G. Kirk 3 Iron Plug Proton Beam Nozzle Tube SC-1

  1. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Targetry Program in the US NUFACT'03 Columbia University June 7, 2003 #12;Harold G. Kirk Interest in High-power Proton Drivers High average power damage Thermal shock #12;Harold G. Kirk Superbeams Carbon is a good target candidate Higher momentum

  2. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Summary of Dose Calculations High Power Target Experiment CERN April 23, 2004 #12;Harold G. Kirk MARS Dose Calculation Pulsed Solenoid Iron Copper Hg Jet #12;Harold G. Kirk Residual Contact Dose Rate Assume: 40 pulses 20 x 1012 protons/pulse 14 days

  3. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Target System Update IDS-NF Plenary Meeting Arlington, VA October 18, 2011 #12;Harold G. Kirk 2 Target Baseline: Proton Beam Assumptions Proton Beam Energy (rms) Beam * 30 cm Beam Power 4 MW (3.125 1015 protons/sec) #12;Harold G. Kirk 3 Target System

  4. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory A MW Class Target System for Muon Beam Production AAC 2014 San Jose, Ca July 14-18, 2014 #12;Harold G. Kirk 2 AAC 2014 San Jose, Ca July 14-18 High shock Beam-induced pressure waves Material properties #12;Harold G. Kirk 3 AAC 2014 San Jose, Ca July

  5. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Meson Production Calculations ISS Meeting RAL April 22, 2006 #12;Harold G. Kirk International Scoping Study Question: Given a "Green Field" what energy? #12;Harold G. Kirk The Study2 Target System Count all the pions and muons that cross

  6. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Capture Radiation Management Muon Collider 2011 Telluride, Colorado June 27­July 1, 2011 #12;Harold G. Kirk 2 The Study 2 Target System Neutrino Factory Study 2 Target Concept #12;Harold G. Kirk 3 STUDY II SOLENOID GEOMETRY SC#1 -120

  7. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The High-Power Target Experiment MUTAC Meeting BNL April 28, 2004 #12;Harold G. Kirk Neutrino Factory Targetry Concept length (cm) 0 250 500 750 -100 -50 0 as beam dump Engineered solution--P. Spampinato, ORNL #12;Harold G. Kirk High-Z Materials Key Properties

  8. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory MERIT Experiment Status NFMCC Collaboration Meeting FNAL March 17-20, 2008 #12;Harold G. Kirk NFMCC Mar. 17-20, 2008 The Collaborating Institutions U Europe CERN Rutherford Appleton Laboratory #12;Harold G. Kirk NFMCC Mar. 17-20, 2008 MERIT Experiment

  9. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The High-Power Target Experiment INTC Meeting CERN May 24, 2004 #12;Harold G. Kirk Intense Proton Sources World wide interest in the development of new Neutrinos Superbeams Neutrino Factories Beta-beams #12;Harold G. Kirk Multi-MW New Proton Machines SNS at 1

  10. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Hg Jet Quadrupole Distortions MERIT Collaboration Meeting Princeton November 17, 2005 #12;Harold G. Kirk The Pulsed Solenoid Bz Field 0 2 4 6 8 10 12 14 16. Kirk The Pulsed Solenoid Br Field -1 -0.5 0 0.5 1 -100 -50 0 50 100 MagneticFieldBr,T Axial Length, cm

  11. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Solenoid Focus of Pions for Superbeams NUFACT06 Irvine, Ca. August 28, 2006 #12;Harold G. Kirk Compare Solenoid to Horn Focusing Solenoid DC operation between positive and negatives Horn More cost effective More easily replaced #12;Harold G. Kirk First

  12. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The MERIT High-Power Target Experiment Muon Collider Design Workshop BNL December 3-7, 2007 #12;Harold G. Kirk MC Workshop Dec. 3-7 The Collaborating Laboratory Princeton Europe CERN Rutherford Appleton Laboratory #12;Harold G. Kirk MC Workshop Dec. 3

  13. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Post-Irradiation Properties of Candidate Materials for High-Power Targets PAC05 Knoxville, TN May 16-20, 2005 #12;Harold G. Kirk Pressure Wave Amplitude then target rupture can occur. This limit is material dependant. #12;Harold G. Kirk E951: Graphite & Carbon

  14. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The MERIT Experiment NFMCC Collaboration Meeting UCLA January 29, 2007 #12;Harold G. Kirk Experimental Goals Study single beam pulses with intensities up to 30. Kirk The MERIT (nTOF11) Experiment MERcury Intense Target #12;Harold G. Kirk Target Test Site at CERN

  15. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Target Baseline IDS-NF Plenary CERN March 23-24, 2009 #12;Harold G. Kirk The Neutrino Factory Target Concept #12;Harold G. Kirk Iron Plug Proton Beam Nozzle toward a Target System Design #12;Harold G. Kirk Alternative Collection System Another containment

  16. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The High-power Target Experiment at CERN International Scoping Study CERN September 22, 2005 #12;Harold G. Kirk The Goal: Intense Secondary Beams World ­ BNL Meco ­ BNL Sindrum--PSI Prism- JPARC Neutrino Factory/Muon Collider #12;Harold G. Kirk Achieving

  17. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The High-Power Target Experiment NUFACT'04 Osaka, Japan July 27, 2004 #12;Harold G. Kirk Intense Proton Sources World wide interest in the development Neutrinos Superbeams Neutrino Factories Beta-beams #12;Harold G. Kirk Multi-MW New Proton Machines SNS at 1

  18. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Pion Production with MARS14 Neutrino Factory Muon Collider Collaboration Meeting Illinois Institute of Technology March 13, 2006 #12;Harold G. Kirk The Study.00e+03 5.00e+035.00e+03 cm #12;Harold G. Kirk Process mesons through Cooling 0 0 0 1 1 1 0000 00 1111

  19. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Targetry Program 5 Year Plan H.G. Kirk Muon Collaboration Meeting LBNL February 16, 2005 #12;Harold G. Kirk The CERN Experiment The target effort for FY05 the power supply for the 15T pulsed solenoid and install the cryo infrastructure. #12;Harold G. Kirk CERN

  20. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Meson Production Efficiencies IDS Target Meeting CERN December 17, 2008 #12;Harold G. Kirk Proton Driver Parameters Proton driver power: 4 MW Proton driver at 10 GeV Bunch length 1­3 ns Train length at least 200 s #12;Harold G. Kirk The Neutrino Factory Target

  1. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory High-Power Targets H.G. Kirk Applications of High-Intensity Proton Accelerators FNAL October 20, 2009 #12;Harold G. Kirk AHIPA, FNAL Oct. 19-21, 2009 2 Subject Colliders and Neutrino Factories #12;Harold G. Kirk AHIPA, FNAL Oct. 19-21, 2009 3 The Challenge: Convert

  2. Brookhaven National Laboratory Consent Order, November 30, 2009

    Energy Savers [EERE]

    Washington DC 20585 November 30, 2009 Dr. Samuel Aronson Director Brookhaven National Laboratory 40 Brookhaven Avenue Upton, New York 11973-5000 WCO-2009-01 Dear Dr. Aronson: This...

  3. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory High-power Targets LINAC 2004 Lbeck, Germany August 19, 2004 #12;Harold G. Kirk Intense Secondary Beams New physics opportunities are generating world;Harold G. Kirk Multi-MW New Proton Machines SNS at 1.2 MW 2.0 MW JPARC 0.7 MW 4.0 MW FNAL 0.4 MW 1.2 MW 2

  4. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Proton Beam Spot Size MERIT EVO Meeting September 18, 2008 #12;Harold G. Kirk Beam envelope (1-sigma) - =0.25 (mm.mrad), Dp=0.1% 2 Without dispersion term;Harold G. Kirk 1 Spot Sizes g = 0.25mm-mrad dp/p=0.1 No Dispersion Dispersion Position (x) (y) (x) (y) mm

  5. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Viewport 3 at 26msViewport 1 at 2ms Hg Jet 15m Beam Pulse at 8:39pm Central European Daylight Time #12;Harold G. Kirk BENE'07 Oct. 29-30 Beam 5016, Hg. Kirk BENE'07 Oct. 29-30 Beam 5020, Hg 15m/s, 100s/frame, Total 1.6ms 20TP 14GeV Proton Beam Oct. 27

  6. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory Targetry Concept for a Neutrino Factory EMCOG Meeting CERN November 18, 2003 #12;Harold G. Kirk Intense Proton Sources World wide interest in the development #12;Harold G. Kirk Multi-MW New Proton Machines SNS at 1.2 MW 2.0 MW JPARC 0.7 MW 4.0 MW FNAL 0.4 MW 1

  7. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  8. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  9. Brookhaven National Laboratory (BNL): Advanced Electrocatalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels ResearchofDerivative ClassifiersBrookhaven National Laboratory

  10. Brookhaven National Laboratory site environmental report for calendar year 1994

    SciTech Connect (OSTI)

    Naidu, J.R.; Royce, B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  11. Brookhaven National Laboratory - OU III VOC | Department of Energy

    Office of Environmental Management (EM)

    III VOC Brookhaven National Laboratory - OU III VOC January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName,...

  12. Brookhaven National Laboratory - OU I/IV VOC | Department of...

    Office of Environmental Management (EM)

    IIV VOC Brookhaven National Laboratory - OU IIV VOC January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName,...

  13. Brookhaven National Laboratory - Sr90 - Chemical Holes | Department...

    Office of Environmental Management (EM)

    - Chemical Holes Brookhaven National Laboratory - Sr90 - Chemical Holes January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report...

  14. Meeting National Needs, Creating Opportunities for Growth Brookhaven National Laboratory

    E-Print Network [OSTI]

    from 2006 to 2009 $74.7 Millioninvested in new facilities and renovations 314jobs directly supported.S. looks for new sources of growth while facing major challenges in areas as diverse as health, energy in Upton, New York, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory is one of just six

  15. Brookhaven National Laboratory site environmental report for calendar year 1996

    SciTech Connect (OSTI)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  16. National Laboratory]; Chertkov, Michael [Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Chertkov, Michael Los Alamos National Laboratory Construction and Facility Engineering; Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  17. Memorandum Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

    Broader source: Energy.gov [DOE]

    Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

  18. Brookhaven National Laboratory - OU I VOC | Department of Energy

    Office of Environmental Management (EM)

    I VOC Brookhaven National Laboratory - OU I VOC January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State:...

  19. Brookhaven National Laboratory - OU V VOC | Department of Energy

    Office of Environmental Management (EM)

    V VOC Brookhaven National Laboratory - OU V VOC January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State:...

  20. Geothermal materials development at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1997-06-01

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  1. Independent Verification Survey Report for the Long Island Solar Farm, Brookhaven National Laboratory, Upton, New York

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-11-15

    5119-SR-01-0 INDEPENDENT VERIFICATION SURVEY REPORT FOR THE LONG ISLAND SOLAR FARM, BROOKHAVEN NATIONAL LABORATORY

  2. Brookhaven National Laboratory site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L.

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  3. Brookhaven National Laboratory Solar Energy and Smarter Grid

    E-Print Network [OSTI]

    Brookhaven National Laboratory Solar Energy and Smarter Grid Research Update Presented to BNL CAC on Market Barriers #12;5 BNL's research agenda for solar energy and smarter electric grid focuses on two key areas Advancement of Solar Energy Generation in Northeast · Characterization of renewable generation

  4. Memorandum, Approval of a Permanent Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 102 1)

    Broader source: Energy.gov [DOE]

    Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

  5. Brookhaven National Laboratory Economic Impact Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    economic climate, the greatest opportunities for local, national, and global growth rest with the time-tested National Laboratory The Economic Engine of World-Class Science National Synchrotron Light Sources NSLS Media & Communications Office (631) 344-2345 Relativistic Heavy Ion Collider RHIC smashes particles

  6. BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.

    SciTech Connect (OSTI)

    NAIDU,J.R.; ROYCE,B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public or to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  7. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    SciTech Connect (OSTI)

    2003-06-10

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

  8. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    SciTech Connect (OSTI)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  9. Brookhaven National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence JumpJerseyEconomyBridgerNational Laboratory Jump to:

  10. Brookhaven National Laboratory site environmental report for calendar year 1991

    SciTech Connect (OSTI)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  11. Brookhaven National Laboratory site environmental report for calendar year 1991

    SciTech Connect (OSTI)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL`s environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  12. Brookhaven National Laboratory site environmental report for calendar year 1990

    SciTech Connect (OSTI)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  13. Cleaning Up Groundwater in Areas South and Southeast of Brookhaven National Laboratory

    E-Print Network [OSTI]

    Cleaning Up Groundwater in Areas South and Southeast of Brookhaven National Laboratory This pamphlet summarizes the questions you or your neighbors raised about groundwater treatment systems National Laboratory have been listening to the concerns of the community about groundwater

  14. Summary of failure analysis activities at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Cowgill, M.G.; Czajkowski, C.J.; Franz, E.M.

    1996-10-01

    Brookhaven National Laboratory has for many years conducted examinations related to the failures of nuclear materials and components. These examinations included the confirmation of root cause analyses, the determination of the causes of failure, identification of the species that accelerate corrosion, and comparison of the results of nondestructive examinations with those obtained by destructive examination. The results of those examinations, which had previously appeared in various formats (formal and informal reports, journal articles, etc.), have been collected together and summarized in the present report. The report is divided into sections according to the general subject matter (for example, corrosion, fatigue, etc.). Each section presents summaries of the information contained in specific reports and publications, all of which are fully identified as to title, authors, report number or journal reference, date of publication, and FIN number under which the work was performed.

  15. Laser ion source activities at Brookhaven National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 1010more »of C6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.« less

  16. EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

  17. Park, Y.J.; Hofmayer, C.H. [Brookhaven National Lab., Upton,...

    Office of Scientific and Technical Information (OSTI)

    Understanding seismic design criteria for Japanese nuclear power plants Park, Y.J.; Hofmayer, C.H. Brookhaven National Lab., Upton, NY (United States); Costello, J.F. US Nuclear...

  18. DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

    SciTech Connect (OSTI)

    BOWERMAN, B.S.; SULLIVAN, P.T.

    2001-08-13

    The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies when the sources were shipped for disposal. The decommissioning project included packaging, transport, and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual occupational exposures experienced during the work were within the planned levels. Disposal of the pool water required addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant. After the BNL evaluation procedure for discharge to the sewage treatment plant was revised and reviewed by regulators and BNL's Community Advisory Council, the pool water was discharged to the Building 830 sanitary system. Because the sources were sealed and the pool water contamination levels were low, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris.

  19. Tiger Team assessment of the Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the Laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL.

  20. Brookhaven National Laboratory 2008 Site Environment Report Volume 1

    SciTech Connect (OSTI)

    Brookhaven National Laboratory

    2009-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report.

  1. Tiger Team assessment of the Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL. This volume contains appendices.

  2. CULTURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    DAVIS, M.

    2005-04-01

    The Cultural Resource Management Plan (CRMP) for Brookhaven National Laboratory (BNL) provides an organized guide that describes or references all facets and interrelationships of cultural resources at BNL. This document specifically follows, where applicable, the format of the U.S. Department of Energy (DOE) Environmental Guidelines for Development of Cultural Resource Management Plans, DOE G 450.1-3 (9-22-04[m1]). Management strategies included within this CRMP are designed to adequately identify the cultural resources that BNL and DOE consider significant and to acknowledge associated management actions. A principal objective of the CRMP is to reduce the need for additional regulatory documents and to serve as the basis for a formal agreement between the DOE and the New York State Historic Preservation Officer (NYSHPO). The BNL CRMP is designed to be a ''living document.'' Each section includes identified gaps in the management plan, with proposed goals and actions for addressing each gap. The plan will be periodically revised to incorporate new documentation.

  3. Wildland Fire Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Green,T.

    2009-10-23

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel. The BNL Fire Department is the lead on wildfire suppression. However, the BNL Natural Resource Manager will be assigned to all wildland fires as technical resource advisor.

  4. Brookhaven National Laboratory site environmental report for calendar year 1993

    SciTech Connect (OSTI)

    Naidu, J.R.; Royce, B.A.

    1994-05-01

    This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1993. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, two instances, of pH exceedances were observed at recharge basins, possible related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded on five occasions, three for residual chlorine and one each for iron and ammonia nitrogen. The chlorine exceedances were related to a malfunctioning hypochlorite dosing pump and ceased when the pump was repaired. While the iron and ammonia-nitrogen could be the result of disturbances to the sand filter beds during maintenance. The environmental monitoring data has identified site-specific contamination of ground water and soil. These areas are subject to Remedial Investigation/Feasibility Studies (RI/FS) under the Inter Agency Agreement (IAG). Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484. 1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  5. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  6. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-07-15

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  7. EIS-0291: High Flux Beam Reactor (HFBR) Transition Project at the Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    The EIS evaluates the range of reasonable alternatives and their impacts regarding the future management of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL).

  8. Natural Resource Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    green, T.

    2011-08-15

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in significant changes to this plan warranting the delay. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL in a sustainable manner. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B, respectively), and lists of actions in tabular format - including completed items as well as ongoing and new action items (Appendices C and D, respectively).

  9. EA-1928: White-Tailed Deer Management at Brookhaven National Lab, Upton, New York

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the potential environmental impacts of a proposal to lower, then maintain the deer herd on the 5,265 acre Brookhaven National Laboratory to levels protective of the ecosystem (estimated to be between 80 and 250 animals) using one or more methods for population growth.

  10. Michael Papka | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergyPublicatons Contact Us Ring StatusNorthMichael

  11. 452nd Brookhaven Lecture

    ScienceCinema (OSTI)

    Nikolaos Simos

    2010-09-01

    Nikolaos Simos of Brookhaven?s Energy Sciences and Technology Department and the National Synchrotron Light Source II Project presents ?Extreme Environments of Next-Generation Energy Systems and Materials: Can They Peacefully Co-Exist??

  12. BROOKHAVEN NATIONAL LABORATORYS CAPABILITIES FOR ADVANCED ANALYSES OF CYBER THREATS

    SciTech Connect (OSTI)

    DePhillips M. P.

    2014-06-06

    BNL has several ongoing, mature, and successful programs and areas of core scientific expertise that readily could be modified to address problems facing national security and efforts by the IC related to securing our nation’s computer networks. In supporting these programs, BNL houses an expansive, scalable infrastructure built exclusively for transporting, storing, and analyzing large disparate data-sets. Our ongoing research projects on various infrastructural issues in computer science undoubtedly would be relevant to national security. Furthermore, BNL frequently partners with researchers in academia and industry worldwide to foster unique and innovative ideas for expanding research opportunities and extending our insights. Because the basic science conducted at BNL is unique, such projects have led to advanced techniques, unlike any others, to support our mission of discovery. Many of them are modular techniques, thus making them ideal for abstraction and retrofitting to other uses including those facing national security, specifically the safety of the nation’s cyber space.

  13. Assessment of Energy Efficiency Project Financing Alternatives for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Hunt, W. D.; Hail, John C.; Sullivan, Gregory P.

    2000-02-14

    This document provides findings and recommendations that resulted from an assessment of the Brookhaven National Laboratory by a team from Pacific Northwest National Laboratory to assess the site's potential for various alternative financing options as a means to implement energy-efficiency improvements. The assessment looked for life-cycle cost-effective energy-efficiency improvement opportunities, and through a series of staff interviews, evaluated the various methods by which these opportunities may be financed, while considering availability of funds, staff, and available financing options. This report summarizes the findings of the visit and the resulting recommendations.

  14. Brookhaven Science Associates, LLC

    Broader source: Energy.gov (indexed) [DOE]

    into the facts and circumstances associated with the meteorological tower electrical shock event that occurred at the Brookhaven National Laboratory on November 12,...

  15. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-12-15

    5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

  16. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-11-03

    5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

  17. Consent Order, Brookhaven Science Associates, LLC | Department...

    Energy Savers [EERE]

    Consent Order issued to Brookhaven Science Associates, LLC relating to an electrical shock event that occurred at the Brookhaven National Laboratory. On November 23,...

  18. eRHIC - A precision electron-proton/ion collider facility at Brookhaven National Laboratory

    E-Print Network [OSTI]

    Surrow, B

    2005-01-01

    An electron-proton/ion collider facility (eRHIC) is under consideration at Brookhaven National Laboratory (BNL). Such a new facility will require the design and construction of a new optimized detector profiting from the experience gained from the H1 and ZEUS detectors operated at the HERA collider at DESY. The details of the design will be closely coupled to the design of the interaction region, and thus to the machine development work in general. An overview of the accelerator and detector design concepts will be provided.

  19. eRHIC - A precision electron-proton/ion collider facility at Brookhaven National Laboratory

    E-Print Network [OSTI]

    Bernd Surrow

    2006-02-02

    An electron-proton/ion collider facility (eRHIC) is under consideration at Brookhaven National Laboratory (BNL). Such a new facility will require the design and construction of a new optimized detector profiting from the experience gained from the H1 and ZEUS detectors operated at the HERA collider at DESY. The details of the design will be closely coupled to the design of the interaction region, and thus to the machine development work in general. An overview of the accelerator and detector design concepts will be provided.

  20. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H. Zinn, 1969 The8,April2BISfuelBrookhaven National

  1. 429th Brookhaven Lecture

    ScienceCinema (OSTI)

    Robert P. Crease

    2010-09-01

    Robert P. Crease, historian for Brookhaven National Laboratory and Chair of the Philosophy Department at Stony Brook University, presents "How Big Science Came to Long Island: The Birth of Brookhaven Lab," covering the founding of the Laboratory, the key figures involved in starting BNL, and the many problems that had to be overcome in creating and designing its first big machines.

  2. Type B Accident Investigation Board Report of the Brookhaven...

    Energy Savers [EERE]

    of the Brookhaven National Laboratory Employee Injury at Building 1005H on October 9, 2009 Type B Accident Investigation Board Report of the Brookhaven National Laboratory Employee...

  3. Energy Department Awards New Contract to Manage and Operate Brookhaven...

    Energy Savers [EERE]

    Contract to Manage and Operate Brookhaven National Laboratory Energy Department Awards New Contract to Manage and Operate Brookhaven National Laboratory November 12, 2014 -...

  4. Brookhaven highlights

    SciTech Connect (OSTI)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.

    1992-01-01

    This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

  5. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H. Zinn, 1969 The8,April2BISfuelBrookhavenBrookhaven

  6. The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Homeland Security

    E-Print Network [OSTI]

    -sponsored with the Department of Energy's National Nuclear Security Administration (NNSA), the Environmental Measurement Energy, Environment, and National Security Directorate (631) 344-4420, cjc@bnl.gov Port securityThe U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973

  7. DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY*

    E-Print Network [OSTI]

    McDonald, Kirk

    954 DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN, New York 11973 and K. McDonald Princeton [Jniversity Abstract An electron gun utilizing a radio). Here we report on the de;$n of the electron gun which will provide r.f. bunches of up to 10 electrons

  8. Gulf Stream Locale P. Michael and M. L. Daum Brookhaven National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— WeUpdate JonGuided 8/12/15 v3 Assumptions:MTBEP.

  9. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H. Zinn, 1969 The8,April2BISfuelBrookhaven

  10. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4OfficeArizonaScienceDOE OfficeU.S.Brookhaven

  11. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4OfficeArizonaScienceDOEBrookhavenBrookhaven

  12. The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Nuclear Physics

    E-Print Network [OSTI]

    the Office of Nuclear Physics within the U.S. Department of Energy's Office of Science, RHIC gives physicists of Nuclear Physics within the U.S. Department of Energy's Office of Science Total Upgrade Cost: $ 700 millionThe U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973

  13. Brookhaven Women in Science Lecture

    ScienceCinema (OSTI)

    Johanna Levelt Sengers

    2010-09-01

    Sponsored by Brookhaven Women in Science (BWIS), Johanna Levelt Sengers, Scientist Emeritus at the National Institute of Standards & Technology (NIST), presents a talk titled "The World's Science Academies Address the Under-Representation of Women in Science and Technology."

  14. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect (OSTI)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  15. Improved Techniques Used at Brookhaven National Laboratory to Package and Dispose of Radioisotope Production Waste Lowers Worker Exposure

    SciTech Connect (OSTI)

    Sullivan, P.

    2003-02-24

    This paper describes the operations that generate Radioisotope Production Waste at Brookhaven National Laboratory (BNL) and the improved techniques used to handle and dispose of this waste. Historically, these wastes have produced high worker exposure during processing, packaging and disposal. The waste is made up of accelerator-produced nuclides of short to mid-length half-lives with a few longer-lived nuclides. However, because radiopharmaceutical research and treatment requires a constant supply of radioisotopes, the waste must be processed and disposed of in a timely manner. Since the waste cannot be stored for long periods of time to allow for adequate decay, engineering processes were implemented to safely handle the waste routinely and with ALARA principles in mind.

  16. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect (OSTI)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others] [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  17. Comparative Analysis of Brookhaven National Laboratory Nuclear Decay Data and Super-Kamiokande Neutrino Data: Indication of a Solar Connection

    E-Print Network [OSTI]

    Sturrock, P A

    2015-01-01

    An experiment carried out at the Brookhaven National Laboratory from February 1982 to December 1989 acquired 364 measurements of the beta-decay rates of a sample of 36Cl and of a sample of 32Si. The experimenters reported finding small periodic annual deviations of the data points from an exponential decay - of uncertain origin. We here analyze this dataset by power spectrum analysis and by forming spectrograms and phasegrams. We confirm the occurrence of annual oscillations but we also find evidence of oscillations in a band of frequencies appropriate for the internal rotation of the Sun. Both datasets show clear evidence of a transient oscillation with a frequency of 12.7 cycles per year that falls in the range of rotational frequencies for the solar radiative zone. We repeat these analyses for 358 neutrino measurements acquired by Super-Kamiokande over the interval May 1986 to August 2001. Spectrogram analysis yields a strong and steady oscillation at about 9.5 cycles per year and an intermittent oscillati...

  18. TYPE A VERIFICATION REPORT FOR THE HIGH FLUX BEAM REACTOR STACK AND GROUNDS, BROOKHAVEN NATIONAL LABORATORY, UPTON, NEW YORK DCN 5098-SR-08-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-11-30

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA).

  19. CSEWG SYMPOSIUM, A CSWEG RETROSPECTIVE. 35TH ANNIVERSARY CROSS SECTION EVALUATION WORKING GROUP, NOV. 5, 2001, BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    DUNFORD, C.; HOLDEN, N.; PEARLSTEIN, S.

    2001-11-05

    This publication has been prepared to record some of the history of the Cross Section Evaluation Working Group (CSEWG). CSEWG is responsible for creating the evaluated nuclear data file (ENDF/B) which is widely used by scientists and engineers who are involved in the development and maintenance of applied nuclear technologies. This organization has become the model for the development of nuclear data libraries throughout the world. The data format (ENDF) has been adopted as the international standard. On November 5, 2001, a symposium was held at Brookhaven National Laboratory to celebrate the 50 th meeting of the CSEWG organization and the 35 th anniversary of its first meeting in November 1966. The papers presented in this volume were prepared by present and former CSEWG members for presentation at the November 2001 symposium. All but two of the presentations are included. I have included an appendix to list all of the CSEWG members and their affiliations, which has been compiled from the minutes of each of the CSEWG meetings. Minutes exist for all meetings except the 4 th meeting held in January 1968. The list includes 348 individuals from 71 organizations. The dates for each of the 50 CSEWG meetings are listed. The committee structure and chairmen of all committees and subcommittees are also included in the appendix. This volume is dedicated to three individuals whose foresight and talents made CSEWG possible and successful. They are Henry Honeck who lead the effort to develop the ENDF format and the CSEWG system, Ira Zartman, the Atomic Energy Commission program manager who provided the programmatic direction and support, and Sol Pearlstein who led the development of the CESWG organization and the ENDF/B evaluated nuclear data library.

  20. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4OfficeArizonaScienceDOEBrookhaven National

  1. EA-1321: Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to upgrade the facilities of the U.S. Department of Energy's National Synchrotron Light Source Complex, namely the National Synchrotron...

  2. Assessment of energy efficiency project financing alternatives for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    WDM Hunt; JC Hail; GP Sullivan

    2000-03-13

    Energy reduction goals for Federal agencies were first established in the National Energy Conservation Policy Act of 1988, and directed 10{percent} reduction in facility energy use based on a 1985 baseline. Since that time, Federal sites have been actively seeking and implementing a wide variety of energy-efficiency measures in facilities across the Federal sector. In the intervening years this energy reduction goal has been progressively increased to 20{percent} through legislation (Public Law 102-486, The Energy Policy Act of 1992) and a number of Executive Orders. Executive Order 13123, Greening the Government Through Efficient Energy management (signed June 3, 1999), further increased the facility energy-efficiency improvement goal from 30{percent} in 2005 to 35{percent} by 2010 relative to the 1985 baseline.

  3. 427th Brookhaven Lecture

    ScienceCinema (OSTI)

    Gene-Jack Wang

    2010-09-01

    The increasing number of obese individuals in the U.S. and other countries world-wide adds urgency to the need to understand the mechanisms underlying pathological overeating. Research by the speaker and others at Brookhaven National Laboratory and elsewhere is compiling evidence that the brain circuits disrupted in obesity are similar to those involved in drug addiction. Using positron emission tomography (PET), the speaker and his colleagues have implicated brain dopamine in the normal and the pathological intake of food by humans.

  4. Michael Hickman receives NNSA Gold Medal, announces retirement | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergy InnovationPortalMichaelMichael Hess About

  5. Michael Lempke receives NNSA's Gold Medal of Excellence | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergy InnovationPortalMichaelMichael

  6. ___________________ BROOKHAVEN NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup! ! NUG___________________

  7. Enforcement Notice of Intent to Investigate, Brookhaven Science...

    Office of Environmental Management (EM)

    to Investigate potential worker safety and health noncompliances associated with an electrical shock event that occurred at the Brookhaven National Laboratory. On May 21, 2015,...

  8. Brookhaven Highlights, October 1, 1987--September 30, 1988

    SciTech Connect (OSTI)

    Rowe, M.S.; Cohen, A.; Seubert, L.; Horner Kuper, J.B. (eds.)

    1988-01-01

    This report highlights Brookhaven National Laboratory's research activities for fiscal year 1988. Research programs range from physics and chemistry to medical and biology. (JF)

  9. Type A verification report for the high flux beam reactor stack and grounds, Brookhaven National Laboratory, Upton, New York

    SciTech Connect (OSTI)

    Harpenau, Evan M.

    2012-01-13

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2?2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity identified were investigated further with a collimated NaI detector. The uncollimated average gamma count rate was less than 15,000 counts per minute (cpm) for the SU 6, 7, and 8 composite area (BNL 2011a). Elevated count rates were observed in portions of each survey unit. The general areas of elevated counts near the Building 801 ventilation and operations and the entry to the Stack were determined to be directly related to the radioactive processes in those structures. To compensate for this radioactive shine, a collimated or shielded detector was used to lower the background count rate (BNL 2011b and c). This allowed the surveyor(s) to distinguish between background and actual radioactive contamination. Collimated gamma survey count rates in these shine affected areas were below 9,000 cpm (BNL 2011a). The average background count rate of 7,500 cpm was reported by BSA for uncollimated NaI detectors (BNL 2011d). The average collimated background ranged from 4,500-6,500 cpm in the westernmost part of SU 8 and from 2,000-3,500 cpm in all other areas (BNL 2011e). Based on these data, no further investigations were necessary for these general areas. SU 8 was the only survey unit that exhibited verified elevated radioactivity levels. The first of two isolated locations of elevated radioactivity had an uncollimated direct measurement of 50,000 cpm with an area background of 7,500 cpm (BNL 2011f). The second small area exhibiting elevated radiation levels was identified at a depth of 6 inches from the surface. The maximum reported count rate of 28,000 cpm was observed during scanning (BNL 2011g). The affected areas were remediated, and the contaminated soils were placed in an intermodal container for disposal. BSA's post-remediation walkover surveys were expanded to include a 10-foot radius around the excavated locations, and it was determined that further investigation was not required for these areas (BNL 2011 f and g). The post-remediation soil samples were collected and analyzed with onsite gamma spectroscopy equipment. These samples were also included with the FSS s

  10. Michael Coble, PhD National Institute of Standards and Technology

    E-Print Network [OSTI]

    Michael Coble, PhD National Institute of Standards and Technology HITA / AABB Workshop SNP Antonio Torroni #12;http://blogs.nature.com/boboh/2010/04/06/more-on-branch-lengths-and-species-1) Me 16189 T-C 16192 C-T 16270 C-T 73 A-G 150 C-T 263 A-G 315.1 C No Clan Mother #12;http://blogs

  11. Brookhaven Science Associates U.S. Department of Energy

    E-Print Network [OSTI]

    McDonald, Kirk

    .S. Department of Energy 2 Talk Outline Brief summary of modeling and simulation of hydro and MHD processesBrookhaven Science Associates U.S. Department of Energy MERIT Project Review December 12, 2005, BNL National Laboratory U.S. Department of Energy rosamu@bnl.gov #12;Brookhaven Science Associates U

  12. Preliminary Notice of Violation, Brookhaven Science Associates...

    Office of Environmental Management (EM)

    Brookhaven Science Associates, LLC - WEA-2013-01 Preliminary Notice of Violation, Brookhaven Science Associates, LLC - WEA-2013-01 August 29, 2013 Issued to Brookhaven Science...

  13. Investigation of the March 5, 2011, Building 488, Brookhaven...

    Broader source: Energy.gov (indexed) [DOE]

    April 2011 On Saturday, March 5, 2011 at approximately 10:20 a.m., a Brookhaven National Laboratory Building and Grounds Utility Worker was felling a pine tree while elevated in a...

  14. Type B Accident Investigation of the Arc Flash at Brookhaven...

    Broader source: Energy.gov (indexed) [DOE]

    event and causal factor analysis. Type B Accident Investigation of the Arc Flash at Brookhaven National Laboratory, April 14, 2006 More Documents & Publications DOE-HDBK-1092-1998...

  15. It's No Secret: Fifty-eight Years of National Security Programs at BNL (463rd Brookhaven Lecture)

    SciTech Connect (OSTI)

    Indusi, Joseph (BNL Nonproliferation and National Security Department) [BNL Nonproliferation and National Security Department

    2010-11-17

    Prepare for a true tale of suspense and international intrigue. A tale that began in 1952, continued through the Cold War, and is not yet complete today. A tale of unexpected allies. Hear the true tale of one Laboratory’s efforts to keep nuclear materials out of the hands of evildoers. Freidlander. Higinbotham. Dodson. Kouts. And many more! See some of BNL’s all-star cast in the defining roles that shaped their careers as they worked toward keeping the nation and the world safe from the proliferation of nuclear weapons.

  16. 431st Brookhaven Lecture

    ScienceCinema (OSTI)

    Robert Crease

    2010-09-01

    Crease presents "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," a lecture that follows on the 429th Brookhaven Lecture, in which Crease talked about the early history of BNL. Both lectures are part of the ongoing celebration of BNL's 60th anniversary year.

  17. 412th Brookhaven Lecture

    ScienceCinema (OSTI)

    Peter Vanier

    2010-09-01

    With new radiation detectors, finding smuggled nuclear materials in a huge container among thousands of others in a busy port becomes possible. To learn about these new detectors from a specialist who has spent several years developing these technologies, watch the 412th Brookhaven Lecture, "Advanced Neutron Detection Methods: New Tools for Countering Nuclear Terrorism."

  18. 423rd Brookhaven Lecture

    ScienceCinema (OSTI)

    Mei Bai

    2010-09-01

    Among other things, scientists at BNL's Relativistic Heavy Ion Collider (RHIC) are studying a fundamental question of particle physics: What is responsible for proton "spin"? Physicist Mei Bai discusses this topic at the 423rd Brookhaven Lecture, "RHIC: The Worlds First High-Energy, Polarized-Proton Collider."

  19. 428th Brookhaven Lecture

    ScienceCinema (OSTI)

    Kenneth Evans-Lutterodt

    2010-09-01

    At Brookhaven Lab, a team of researchers has overcome a major x-ray focusing obstacle to allow the study of molecules, atoms, and advanced materials at the nanoscale, which is on the order of billionths of a meter. Their innovative method uses a type of refractive lens called a kinoform lens --similar to the kind found in lighthouses -- in order to focus the x-rays down to the extremely small spots needed for a sharp image at small dimensions.

  20. The Amtex DAMA Project: The Brookhaven contribution

    SciTech Connect (OSTI)

    Peskin, A.M.

    1995-01-01

    The Amtex Partnership organized in 1993 as a Technology Transfer Collaboration among members of the integrated textile industry, the DOE National Laboratories, a number of universities, and several research/education/technology transfer organizations (RETTs). Under the Amtex umbrella organization, a number of technology areas were defined and individual projects were launched addressing various aspects of improving the health and competitiveness of the American textile industry. The first and, to date, the largest of these has been the computer-based Demand Activated Manufacturing Architecture (DAMA) project. Brookhaven National Laboratory became involved in DAMA beginning in March of 1993 and remained an active participant through January of 1995. It was staffed almost exclusively with personnel of the Computing and Communications Division. This document summarizes the activities and accomplishments of the Brookhaven team in working with the larger collaboration. Detailed information about the Amtex Partnership, the DAMA Project, and specific BNL contributions are documented elsewhere.

  1. Vasilis Fthenakis Brookhaven National Laboratory

    E-Print Network [OSTI]

    , Switzerland PWR Dones et al, 2005, Switzerland BWR GHG(gCO2-eq./kWh) Waste Disp. Operation Const Germany (ExternE, 2003) US (BNL, 2005) Japan (Hondo, 2005) Switzerland (Dones, 2005) Australia (ACA, 2001

  2. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    & Screening of Fuel Cycle Options Advanced Fuel Development · Thorium Fuel Cycles · Silicon Carbide - 1996* Advanced Nuclear Fuels* Materials in Radiation Environments* * Continuing program within NS Nuclear Safety Advanced Nuclear Systems · Radiation Resistant Materials · Accident Tolerant Fuels

  3. Introduction to Brookhaven National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergy Introduction SCADA Security for Managers

  4. Brookhaven National Lab Energy Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio CentersBreaking Up (Hydrogen) NoBrochureEnergy

  5. 418th Brookhaven Lecture

    ScienceCinema (OSTI)

    Timur Shaftan

    2010-09-01

    The NSLS-II project will establish a third-generation light source at Brookhaven Lab, increasing beam-line brightness by 10,000. Achieving and maintaining this will involve tightly focusing the electron beam, providing the most efficient insertion devices, and achieving and maintaining a high electron current. In this talk, the various sub-systems of NSLS-II will be reviewed, and the requirements and key elements of their design will be discussed. In addition, the a small prototype of a light source of a different kind that was developed by the NSLS will also be discussed.

  6. Brookhaven Symposium Biology 32

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransen Plasma Asher An O2Brookhaven Site Office EA /

  7. PROCEEDINGS OF THE 2001 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY CONFERENCE HELD AT BROOKHAVEN NATIONAL LABORATORY, UPTON, N.Y., APRIL 30 - MAY 1, 2001.

    SciTech Connect (OSTI)

    MCDONALD, R.J.

    2001-04-30

    BNL is proud to acknowledge all of our 2001 sponsors, with their help and support this has correctly become an oilheat industry conference. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole and to celebrate the beginning of the National Oilheat Research Alliance. This meeting is the fourteenth oil heat industry technology conference to be held since 1984 and the first under a new name, NORA, the National Oilheat research Alliance, and the very first in the new century. The conference is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Program. The Oilheat Research Program at BNL is under the newly assigned program management at the Office of Power Technology within the US DOE. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation. Seventeen technical presentations will be made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Europe, including: (1) High-flow Fan Atomization Burner (HFAB) Development and Field Trials; (2) Field Test of the Flame Quality Monitor; (3) NORA/DOE/ BNL Oilheat Five-Year Research Plan; (4) US Department of Energy's Building Cooling Heating and Power for Buildings Program; (5) NORA Education Committee Report; (6) Marketing Oil Heat in Europe: A study in contrasts; (7) Diagnosing Burner Problems with Recorded Data ''The solution to any problem is obvious.. . once it is found''; (8) Variable Firing Rate Oil Burner Using Pulse Fuel Flow Control; (9) Oil-Fired Hydronic Heating Appliances with Reduced Electric Power Consumption and Battery Backup; (10) Peep Into The Nozzle Using Computational Fluid Dynamics; (11) Results of a Parametric Investigation of Spray Characteristics Using a HFAB Type Atomizer; (12) Progression and Improvements in the Design of Blue-flame Oil Burners; (13) Biodiesel as a Heating Oil Blend Stock; (14) Lab Tests of Biodiesel Blends in Residential Heating Equipment; (15) Alternative Fuel Oils and the Effect of Selected Properties in Combustion; (16) New York State Premium Low-Sulfur Heating Fuel Marketplace Demonstration; and (17)The Need for a New Fuel Oil Stability Specification.

  8. Brookhaven Graphite Research Reactor Workshop

    Broader source: Energy.gov [DOE]

    The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

  9. BNL Compressed Natural Gas Release Investigation

    Broader source: Energy.gov [DOE]

    Presenter: Michael Kretschmann, P.E., Manager, Fire Protection Engineering - Brookhaven National Laboratory

  10. Brookhaven Lab Captures E. coli’s Sticky Fingers on Film

    Broader source: Energy.gov [DOE]

    Scientists at Brookhaven use the National Synchrotron Light Source (NSLS) to take a look at how the urinary-tract-infection causing strain of E. coli extends its sticky fingers.

  11. Michael H. Schlender- Biography

    Broader source: Energy.gov [DOE]

    Michael Schlender is Chief Operations Officer and Associate Laboratory Director for Operational Systems at Pacific Northwest National Laboratory, a VPP Star Site operated by Battelle for the U.S. Department of Energy.

  12. Michael Dopheide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillionStockpile Stewardship NationalMEMS:Mfg &Michael

  13. Small Modular Reactors (468th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Bari, Robert

    2011-04-20

    With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

  14. 402nd Brookhaven Lecture

    ScienceCinema (OSTI)

    Ben Burr

    2010-09-01

    "Genetically Modified Plants: What's the Fuss?" Burr explains that the risks presented by conventional plant improvement and gene-transfer technology have been reviewed by the National Academy of Sciences, the U.S. Department of Agriculture, and the Food & Drug Administration. These groups have concluded that gene-transfer technology poses no risk or danger above that present in conventional plant breeding.

  15. 401st Brookhaven Lecture

    ScienceCinema (OSTI)

    Marcelo Vasquez

    2010-09-01

    "Hazards of the Deep: Killing the Dragons -- Neurobiological Consequences of Space Radiation Exposures." Vazquez discusses his research projects and how scientists from NASA, national laboratories, and other institutions worldwide have expanded the understanding of the link between ionizing radiation and neurodegeneration.

  16. PCR Bartsch, Michael S. [Sandia National Lab. (SNL-CA), Livermore...

    Office of Scientific and Technical Information (OSTI)

    short tandem repeat (STR) amplification, and second strand cDNA synthesis. Public Library of Science Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA...

  17. Department of Energy Cites Brookhaven Science Associates, LLC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker...

  18. Department of Energy Cites Brookhaven Science Associates, LLC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations...

  19. Demonstration of In-Situ Stabilization of Buried Waste at Pit G-11 at the Brookhaven National laboratory Glass Pits Disposal Site

    SciTech Connect (OSTI)

    Dwyer, B.P.; Gilbert, J.; Heiser, J.

    1999-01-01

    In 1989 BNL was added to the EPAs National Priorities List. The site is divided into seven operable units (OU). OU-I includes the former landfill area. The field task site is noted as the AOC 2C Glass Holes location. Beginning in the 1960s and continuing into the 1980s, BNL disposed of laboratory waste (glassware, chemicals and animal carcasses) in numerous shallow pits. The drivers for remediating the pits are; historical records that indicate hazardous materials may have been disposed of in the pits; ground water contamination down gradient of the pits; a test excavation of one of the glass holes that unearthed laboratory glass bottles with unidentified liquids still contained; and the fact that BNL rests atop an EPA designated sole-source aquifer. The specific site chosen for this demonstration was pit G-11. The requirements that lead to choosing this pit were; a well characterized pit and a relatively isolated pit where our construction operations would not impact on adjacent pits. The glass holes area, including pit G-11, was comprehensively surveyed using a suite of geophysical techniques (e.g., EM-31, EM-61, GPR). Prior to stabilizing the waste form a subsurface barrier was constructed to contain the entire waste pit. The pit contents were then stabilized using a cement grout applied via jet grouting. The stabilization was performed to make removal of the waste from the pit easier and safer in terms of worker exposure. The grouting process would mix and masticate the waste and grout and form a single monolithic waste form. This large monolith would then be subdivided into smaller 4 foot by 4 foot by 10-12 foot block using a demolition grout. The smaller blocks would then be easily removed from the site and disposed of in a CERCLA waste site.

  20. Brookhaven National Laboratory's low cost solar technology

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1984-09-01

    The problems identified in early study - cost, architectural compatibility, and reliability - were not likely to be solved with conventional practices in the solar industry. BNL then embarked upon an iterative development process towards a solution founded on the methodology which establish a set of key guidelines for the research. With the derivation of cost goals ($5 to $6 per square foot, installed) and performance targets (consistent with conventional technology) it was considered important to use sophisticated industrial product development technologies to achieve the desired results. The normal industrial practice to reduce cost, for example, is to reduce material intensity, strive for simplicity in design and apply as much mass production as possible. This approach revealed the potential of polymer films as a basic construction material for solar collectors. Further refinements to reduce cost were developed, including the perfection of a non-pressurized absorber/heat exchanger and the adaptability of a printable optical selective surface. Additional significant advantages were acquired through application of a monocoque construction technique borrowed from the aircraft industry. The procedures used, including important support from industry to help identify materials and guide fabrication techniques, eventually resulted in construction and successful testing of a thin polymer film solar collector. To achieve the overall objectives of viable solar economics some system concepts have been explored by BNL. Consistent with the cost goals mentioned, it is believed that the low pressure designs pursued will be successful. Designs for the storage tank and distribution system that have been pursued include the use of polymer film lined sheet metal for the storage tanks and plastic pipe.

  1. Brookhaven National Laboratory presentation 2007 Peer Review

    E-Print Network [OSTI]

    Homes, Christopher C.

    for texture analysis Clear waxClear wax Exposed filmExposed film SubstrateSubstrate Clear waxClear wax Film wedge SubstrateSubstrate YBCO 2YBCO 2 µµµµµµµµmm Clear waxClear wax 200200 µµµµµµµµmm EDS, Auger, Raman

  2. SPDES Permit Modification Study Brookhaven National Laboratory

    E-Print Network [OSTI]

    Homes, Christopher C.

    Cooling Tower Blowdown and maintenance Bldg. 488, 555, 600, 902 Boiler Blowdown, Boiler Wash, Condensate

  3. Page 1 of 3 Brookhaven National Laboratory

    E-Print Network [OSTI]

    Ohta, Shigemi

    -Aperture High- Gradient Superconducting Coils B. Parker SMD/902A 03-026 Developing a New, Unified Systems Theory. Fuhrmann ESD/830 03-039 Integrated Analysis of Carbon and Nitrogen Metabolism in Plants and Subsequent of Acetaldehyde Distribution and Metabolism to Better Understand Alcohol Related Diseases Zizhong Li MED/490 03

  4. BROOKHAVEN NATIONAL LABORATORY ENVIRONMENTAL MONITORING PLAN

    SciTech Connect (OSTI)

    DAUM,M.; DORSCH,WM.; FRY,J.; GREEN,T.; LEE,R.; NAIDU,J.; PAQUETTE,D.; SCARPITTA,S.; SCHROEDER,G.

    1999-09-22

    Triennial update that describes the BNL Environmental Monitoring Program for all media (air, surface water, ground water, etc.) in accordance with DOE ORDER 5400.5

  5. BROOKHAVEN NATIONAL LABORATORY Alternating Gradient Synchrotron Department

    E-Print Network [OSTI]

    McDonald, Kirk

    the existing coax through a shielding wall. · All the 8973's are supplied with ion pumps. These pumps have all oscillator would be used as the LLRF source locked to the tank resonance. The frequency would remain within

  6. 2009 Site Environmental Report Brookhaven National Laboratory

    E-Print Network [OSTI]

    Homes, Christopher C.

    and 5400.5 Official record of BNL's environmental impact for calendar year 2009 ­ Serves as an historical Solar Farm · Natural Resource Management to be covered during a future meeting. #12;Environmental07 FY08 FY09 Science Operations #12;Waste Generation ­ Ch. 2 In 2009, BNL generated the following

  7. Small Business Standouts at Brookhaven National Laboratory |...

    Broader source: Energy.gov (indexed) [DOE]

    photo shows ongoing removal of the below grade ducts beneath Bldg. 704, used to exhaust cooling air. Photo by P.W. Grosser. Read more M.S. Hi-Tech M.S. Hi-Tech M.S. Hi-Tech is is...

  8. 2008 Site Environmental Report Brookhaven National Laboratory

    E-Print Network [OSTI]

    Homes, Christopher C.

    - Environmental Management System (EMS) ISO 14001 BNL certified to the ISO 14001 standard since 2001 · Certification requires annual audit by independent registrar · In 2008 BNL's EMS was determined to be in conformance with the ISO standard Three Environmental Awards in 2008 · Two awards for Electronics Stewardship

  9. "TRANSFORMATIVE HADRON BEAMLINES" WORKSHOP BROOKHAVEN NATIONAL LABORATORY

    E-Print Network [OSTI]

    McDonald, Kirk

    to reach the assigned life duration. - to license a LBE in relevant conditions - to operate a LBE target/s, 1.2 m/s 380°C Heat Exchanger (Oil) 10 i/s, 5.5 m/s 140-175°Cinside Design parameters: p-beam energy Integral tests Operation Dismantling Quality Assurance Licensing Post Test Analysis PIE Waste Management

  10. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    management Radiation damage High peak power--NLC, Superbeams, NUFACT Thermal management Radiation damage;Harold G. Kirk Battery Power Supply R&D Battery/Charger 12V 1400A Mech. Switch 1500V 1600 A Load

  11. Brookhaven National Laboratory FY 2008 LDRD PROJECTS

    E-Print Network [OSTI]

    Ohta, Shigemi

    -025 Precision Assembly of Nano-Objects ­ Approaching Artificial Photosynthesis W. Sherman CFN/463 07

  12. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    capacitors self capacitors DC output Strategy: · Refurbishment of the West Area Power Converter, making

  13. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    : · Refurbishment of the West Area Power Converter, making it compatible with the project requirements #12;Harold G

  14. BNL-52351-2003 Brookhaven National Laboratory's

    E-Print Network [OSTI]

    Ohta, Shigemi

    ..................................................................................................................................... 1 Management Process-Enhancementof Brain Patterns in PET Images .................................................................................................... 21 Development of CZT Array Detector Technology for Synchrotron Radiation Applications.......25 New

  15. BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura BeaneCardwell, ScottGreat:10,-2014 SignJ UINITIAL6328

  16. Brookhaven National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury Science Museum - ScienceBrendanBrochuresInnovation

  17. Brookhaven National Laboratory Technologies Available for Licensing -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActToolsFor Physicists TheseTechnologies |Energy

  18. Brookhaven National Laboratory: A Brief Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio CentersBreaking Up (Hydrogen) NoBrochureEnergy State

  19. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Energy Savers [EERE]

    National Laboratory - November 5, 1999 Enforcement Letter, EG&G Mound Applied Technologies - August 22, 1996 Enforcement Letter, Brookhaven National Laboratory - December 18, 1996...

  20. Michael J. Banda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillionStockpile Stewardship NationalMEMS:MfgMichaelMichael

  1. Top 10 Things You Didn't Know About the National Labs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    by making measurements over a large area. | Photo courtesy of Brookhaven National Lab. Top 10 Things You Didn't Know About Brookhaven National Laboratory From nuclear physics to...

  2. Michael Contreras

    Broader source: Energy.gov [DOE]

    Michael Contreras joined the SunShot Initiative motivated by the office's unique approach to driving down the cost of solar energy through strategic technology investments. He is a co-founder...

  3. Michael Colbert

    Broader source: Energy.gov [DOE]

    Michael Colbert is the Deputy Director of the Office of Diversity and Inclusion at the Department of Energy, where he is working to create and sustain an organizational culture that values...

  4. Michael Rencheck

    Broader source: Energy.gov [DOE]

    Michael Rencheck was appointed the president and chief executive officer of AREVA Inc. in March 2012.  In January 2010, Mike was named the Chief Operating Officer of AREVA Inc., as part of...

  5. Michael Milner

    Broader source: Energy.gov [DOE]

    Michael S. Milner became the Assistant Inspector General for Investigation in July 2012.  Prior to this he was Director of the Computer Crime Investigative Unit with the U.S. Army Criminal...

  6. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    ScienceCinema (OSTI)

    Gerry Stokes; Jim Misewich

    2013-07-19

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  7. 2012 Annual Planning Summary for Brookhaven Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Brookhaven Site Office.

  8. Commission to Review the Effectiveness of the National Energy...

    Energy Savers [EERE]

    Development, Brookhaven National Laboratory (Lanny Bates presented on behalf of) Jeff Smith, Deputy Director of Operations, Oak Ridge National Laboratory 11:00 - 11:15 AM Break...

  9. Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Rowe, M.S.; Belford, M.; Cohen, A.; Greenberg, D.; Seubert, L. [eds.

    1993-12-31

    This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.

  10. THE MOBIUS GEOMETRY OF HYPERSURFACES MICHAEL BOLT

    E-Print Network [OSTI]

    Bolt, Michael

    THE M¨OBIUS GEOMETRY OF HYPERSURFACES MICHAEL BOLT 1. Introduction Suppose r is a defining function that requires the Date: March 3, 2008. This is based on work supported by the National Science Foundation under Grant No. DMS- 0702939. 1 #12;2 MICHAEL BOLT hypersurface to be eight times differentiable was given

  11. Fermi National Accelerator Laboratory November 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an international collaboration between U.S. universities, Fermilab in Illinois, Brookhaven National Laboratory in New York, and nine international labs and universities. It is...

  12. Cultures of quarantine : race, U.S. empire, and the biomedical discourse of national security, 1893-1960

    E-Print Network [OSTI]

    Ahuja, Neel

    2008-01-01

    George E. Burch Papers, National Library of Medicine. AnimalE. Burch Papers, National Library of Medicine. MichaelE. Burch Papers, National Library of Medicine. Werthessen,

  13. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Lenci,S.J.; Eisen, E. L.; Dickey, D. L.; Sainz, J. E.; Utay, P. F.; Zaltsman, A.; Lambiase, R.

    2009-05-04

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system.

  14. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  15. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  16. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  17. of Energy's Los Alamos National Laboratory and Brookhaven National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the journal Chemistry of Materials, could be used in development of transparent solar panels. "Potentially, with future refinement of this technology, windows in a home...

  18. of Energy's Los Alamos National Laboratory and Brookhaven National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port m fm f m T m jm tm r nproduce

  19. Laboratory Directed Research and Development Program FY 2009 for Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Hansen, Todd C.

    2010-01-01

    Brookhaven national Laboratory, Upton, NY, USA. AFRD-Berkeley National Laboratory,” LBNL Report LBNL 2670-E,performed in the laboratory and in-situ at-wavelength,”

  20. MEMORANDUM FOR JOHN M. SATTLER DIRECTOR BROOKHAVEN FEDERAL PROJECT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l 4 2011 MEMORANDUM FOR JOHN M. SATTLER DIRECTOR BROOKHAVEN FEDERAL PROJECT OFFICE FROM: SUBJECT: Designation of Federal Project Director and Deputy Federal Project Director for...

  1. Brookhaven-Built Magnet Will Catch Subatomic Debris

    ScienceCinema (OSTI)

    Peter Wanderer

    2013-07-22

    Peter Wanderer, head of Brookhaven's Superconducting Magnet Division, describes the magnet that's being built for the Facility for Rare Isotope Beams at Michigan State University

  2. Michael Ravnitzky

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing Swimming PoolCommercial IndustrialDepartmentG.Michael Pesin,9

  3. Michael Urashka

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillionStockpile StewardshipO'Connor AboutMichael Urashka

  4. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  5. Brookhaven Science Associates U.S. Department of Energy

    E-Print Network [OSTI]

    McDonald, Kirk

    Target Simulations Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu Center for Data Intensive with a proton pulse. Left: B = 0. Right: Stabilizing effect of the magnetic field. #12;Brookhaven Science) and numerical simulation (right) of the mercury jet. #12;Brookhaven Science Associates U.S. Department of Energy

  6. Engineering the computational economy Michael Wooldridge

    E-Print Network [OSTI]

    Woolridge, Mike

    Engineering the computational economy Michael Wooldridge Department of Computer Science, University, such as that of an industrialised nation. The economy is generally designed/engineered by the government of the nation in order of software agents, and agent­oriented software engineering. The purpose of this presentation is first

  7. Engineering the computational economy Michael Wooldridge

    E-Print Network [OSTI]

    Woolridge, Mike

    Engineering the computational economy Michael Wooldridge Department of Computer Science, University, such as that of an industrialised nation. The economy is generally designed/engineered by the government of the nation in order of software agents, and agent-oriented software engineering. The purpose of this presentation is first

  8. Michael Baechler

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mr. Baechler is a Senior Program Manager in the Electricity Infrastructure and Buildings Division at Pacific Northwest National Laboratory (PNNL). He has been at PNNL since 1984 and currently...

  9. THE MOBIUS GEOMETRY OF HYPERSURFACES, II MICHAEL BOLT

    E-Print Network [OSTI]

    Bolt, Michael

    THE M¨OBIUS GEOMETRY OF HYPERSURFACES, II MICHAEL BOLT 1. Introduction Let r be a defining function|2 + Re (z2 2) = 0} Date: September 18, 2009. This is based on work supported by the National Science;2 MICHAEL BOLT under an affine map of the form F(z) = Az + b where 0 = det A R. The converse of Theorem 1

  10. Status of the visible Free-Electron Laser at the Brookhaven Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fisher, A.S.; Friedman, A.; Gallardo, J.; Ingold, G.; Kirk, H.; Kramer, S.; Lin, L.; Rogers, J.T.; Sheehan, J.F.; van Steenbergen, A.; Woodle, M.; Xie, J.; Yu, L.H.; Zhang, R. ); Bhowmik, A. . Rocketdyne Div.)

    1991-01-01

    The 500 nm Free-Electron Laser (ATF) of the Brookhaven National Laboratory is reviewed. We present an overview of the ATF, a high-brightness, 50-MeV, electron accelerator and laser complex which is a users' facility for accelerator and beam physics. A number of laser acceleration and FEL experiments are under construction at the ATF. The visible FEL experiment is based on a novel superferric 8.8 mm period undulator. The electron beam parameters, the undulator, the optical resonator, optical and electron beam diagnostics are discussed. The operational status of the experiment is presented. 22 refs., 7 figs.

  11. Depolarizing 'beat' resonances in the Brookhaven AGS

    SciTech Connect (OSTI)

    Terwilliger, K.M.; Courant, E.D.; Krisch, A.D.; Ratner, L.D.

    1985-10-01

    While accelerating polarized protons in the Brookhaven AGS we found a variant of the standard imperfection and intrinsic depolarizing resonances which has some of the properties of both types. Imperfection resonances occur at G..gamma.. = k, when the number of spin precessions per revolution, G gamma, equals a harmonic of the depolarizing field, k. Intrinsic resonances occur at G..gamma.. = nP + or - ..nu.. /SUB Z/ , when the AGS gradient periodicities, nP, modulate free vertical betatron oscillations to create the sum and difference frequencies. The variant resonance is a beat between nP and an imperfection driven betatron oscillation of periodicity k'. These occur at G..gamma.. = nP + or - k', and are strongest when the driven betatron oscillation is largest. The effect was most dramatic at the strong G..gamma.. = 27 resonance. Since ..nu.. /SUB Z/ = 8.8 for the AGS, and there is a major nP = 36 AGS periodicity, a strong beat resonance should exist at G gamma = 36-9 = 27. Applying a 27 /SUP th/ harmonic correction directly was unsuccessful, but a 9 /SUP th/ harmonic correction removed the depolarization.

  12. Michael North | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergyPublicatons Contact Us Ring StatusNorth

  13. Michael Papka | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergyPublicatons Contact Us Ring

  14. Michael Wang | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergyPublicatons Contact Us RingStewart! NERSC

  15. The Great Disconnection? Michael F. Schwartz

    E-Print Network [OSTI]

    Schwartz, Michael F.

    interconnected with interorganizational networks [National Research Council 1991]. There are a numberThe Great Disconnection? Michael F. Schwartz CU-CS-521-91 February 1991 Department of Computer of well publicized events, such as a series of espionage attempts directed at U.S. government research

  16. Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996

    SciTech Connect (OSTI)

    Naidu, J.R.; Paquette, D.; Lee, R. [and others

    1996-10-01

    As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities.

  17. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    SciTech Connect (OSTI)

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  18. Brookhaven National Laboratory LIPA Solar RFP and Proposed BP Project

    E-Print Network [OSTI]

    Homes, Christopher C.

    ;14 http://www.lipasolarrfp.org/ #12;15 Potential Solar Photovoltaic Generating Project Site Hosts who wish respondent's financial responsibility or suitability or fitness to install Solar Photovoltaic Generating a total of 50MW of power produced by solar photovoltaics..." · LIPA to purchase the energy output for up

  19. R and D energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Litvinenko,V.N.; Beavis, D.; Ben-Zvi, I.; Blaskiewicz, M.; Burrill, A.; Calaga, R.; Cameron, P.; Chang, X.; Drees, A.; Ganetis, G.; Gassner, D.; Hahn, H.; Hammons, L.; Hershcovitch, A.; Hseuh, H-C.; Jain, A.; Kayran, D.; Kewisch, J.; Lambiase, R.; Lederle, D.; Mahler, G.; McIntyre, G.; Meng, W.; Nehring, T.; Oerter, B.; Pai, C.; Pate, D.; Phillips, D.; Pozdeyev, E.; Rao, T.; Reich, J.; Roser, T.; Russo, T.; Smith, K.; Tuozzolo, J.; Weiss, D.; Williams, N.; Yip, K.; Zaltsman, A.; Favale, A.; Bluem, H.; Cole, M.; Holmes, D.; Rathke, J.; Schultheiss, T.; Todd, A.; Delayen, J.; Funk, L.; Phillips, L.; Preble, J.

    2008-06-23

    Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R and D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel ZigZag-type merger. Recent development in the R and D ERL plans include gun and 5-cell cavity (G5) test and possibility of using R and D ERL for proof-of-principle test of Coherent Electron Cooling at RHIC.

  20. R&D Energy Recovery Linac at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Litvinenko, Vladimir; Beavis, D.; Ben-Zvi, Ilan; Blaskiewicz, Michael; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Drees, K.A.; Ganetis, G.; Gamble, Michael; Hahn, H.; Hammons, L.R.; Hershcovitch, A.; Hseuh, H.C.; Jain, A.K.; Kayran, A.; Kewisch, Jorg; Lambiase, R.F.; Lederle, D.L.; Mahler, G.J.; McIntyre, G.; Meng, W.; Nehring, T.C.; Oerter, B.; Pai, C.; Pate, D.; Phillips, Daniel; Pozdeyev, Eduard; Rao, Triveni; Reich, J.; Roser, Thomas; Russo, T.; Smith, K.; Tuozzolo, Joseph; Weiss, D.; Williams, N.W.W.; Yip, Kin; Zaltsman, A.; Bluem, Hans; Cole, Michael; Favale, Anthony; Holmes, D.; Rathke, John; Schultheiss, Tom; Delayen, Jean; Funk, L.; Phillips, H.; Preble, Joseph

    2008-07-01

    Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R&D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel Zigzag-type merger. We present the performance of the R&D ERL elements and detailed commissioning plan.

  1. Brookhaven National Laboratory - Sr90-Former HWMF | Department...

    Office of Environmental Management (EM)

    30 Plume Information Source: Not Present Area of Plume (acres): 3 Plume Status: Plume static or shrinking in size Remedial Approach Remedy Name Status Start Date End Date...

  2. Brookhaven National Laboratory - Sr-90 BGGR/WCF | Department...

    Office of Environmental Management (EM)

    30 Plume Information Source: Controlled Area of Plume (acres): 10 Plume Status: Plume static or shrinking in size Remedial Approach Remedy Name Status Start Date End Date...

  3. Operational status of the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Malone, R.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; van Steenbergen, A.; Woodle, M.; Zhang, R.S. (Brookhaven National Lab., Upton, NY (USA)); Bigio, I.; Kurnit, N.; Shimada, T. (Los Alamos National Lab., NM (USA)); McDonald, K.T.; Russel, D.P. (Princeton Univ., NJ (USA)); Jiang,

    1990-01-01

    Initial design parameters and early operational results of a 50 MeV high brightness electron linear accelerator are described. The system utilizes a radio frequency electron gun operating at a frequency of 2.856 GHz and a nominal output energy of 4.5 MeV followed by two, 2{pi}/3 mode, disc loaded, traveling wave accelerating sections. The gun cathode is photo excited with short (6 psec) laser pulses giving design peak currents of a few hundred amperes. The system will be utilized to carry out infra-red FEL studies and investigation of new high gradient accelerating structures.

  4. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program.

  5. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-10-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program.

  6. BROOKHAVEN NATIONAL LABORATORY Global and Regional Solutions (GARS) Directorate

    E-Print Network [OSTI]

    Ohta, Shigemi

    the trip · Make travel arrangements through BNL Travel and verify their accuracy. · If performing work Monitoring Records. SolarTAC test facility in Aurora, CO (Image courtesy of NREL) 3 #12;Before the trip Assistant in your Group for entry into the Foreign Travel Management System. Allow enough lead time

  7. Wildland Fire Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Schwager, K.; Green, T. M.

    2014-10-01

    The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.

  8. 2009 Brookhaven National Laboratory Annual Illness and Injury Surveillance Report

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2010-11-24

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  9. 2010 Brookhaven National Laboratory Annual Illness and Injury Surveillance Report

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2011-08-16

    The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

  10. DOE - Office of Legacy Management -- Brookhaven National Laboratory

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratory - CT 06 Bridgeport Brass Co

  11. Shipping Radioactive Waste by Rail from Brookhaven National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith Ultra-Deepwater AdvisoryShiningDepartment of

  12. Small Business Standouts at Brookhaven National Laboratory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretary Moniz'sSeparationNanowireResearch

  13. Enforcement Letter, Brookhaven National Laboratory - December 18, 1996 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartment ofDepartment2 Issued to BechtelDepartment

  14. Brookhaven National Laboratory Consent Order, November 30, 2009

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De pEnergy Industrialofof EnergyDC 20585 November 30, 2009

  15. Technical Sessions P. Daum L. Kleinman Brookhaven National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliersmillion Technical SessionsM.P. Daum L.

  16. Investigation of the March 5, 2011, Building 488, Brookhaven National

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public CommentInverted Attic Bulkhead for HVACDepartment

  17. Type B Accident Investigation Board Report of the Brookhaven National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy Two CompaniesRappel

  18. Michael Himmel - Research Fellow | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillionStockpile Stewardship NationalMEMS:MfgMichael

  19. Brookhaven highlights. [Fiscal year 1992, October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.

    1992-12-31

    This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

  20. Michael W. Locatis, III

    Broader source: Energy.gov [DOE]

    As the Chief Information Officer (CIO) for the Department of Energy (DOE), Michael Locatis serves as the principal information management advisor to the Secretary of Energy and as the senior IT...

  1. Fire at Michael Colliery, Fife 

    E-Print Network [OSTI]

    Stephenson, H. S.

    MINISTRY OF POWER FIRE AT MICHAEL COLLIERY FIFE RE PORT On the causes of, and circumstances attending, the fire which occurred at Michael Colliery, Fife, on 9th September, 1967 by H. S. STEPHENSON, B.Sc., C.Eng., ...

  2. Commissioning of the EBIS-based heavy ion preinjector at Brookhaven

    SciTech Connect (OSTI)

    Alessi, J.; Beebe, E.; Binello, S.; Hoff, L.; Kondo, K.; Lambiase, R.; LoDestro, V.; Mapes, M.; McNerney, A.; Morris, J.; Okamura, M.; Pikin, A.I.; Raparia, D.; Ritter, J.; Smart, L.; Snydstrup, L.; Wilinski, M.; Zaltsman, A.; Schempp, A.; Ratzinger, U.; Kanesue, T.

    2010-09-12

    The status is presented of the commissioning of a new heavy ion preinjector at Brookhaven National Laboratory. This preinjector uses an Electron Beam Ion Source (EBIS), and an RFQ and IH Linac, both operating at 100.625 MHz, to produce 2 MeV/u ions of any species for use, after further acceleration, at the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL). Among the increased capabilities provided by this preinjector are the ability to produce ions of any species, and the ability to switch between multiple species in 1 second, to simultaneously meet the needs of both science programs. For initial setup, helium beam from EBIS was injected and circulated in the Booster synchrotron. Following this, accelerated Au{sup 32+} and Fe{sup 20+} beams were transported to the Booster injection point, fulfilling DOE requirements for project completion.

  3. Brookhaven Accelerator Test Facility photocathode gun and transport beamline

    SciTech Connect (OSTI)

    Parsa, Z.; Young, L.

    1990-01-01

    We present an analysis of the electron beam emitted from a laser driven photocathode injector (Gun, operating at 2856 MHZ), through a Transport beamline, to the LINAC entrance for the Brookhaven Accelerator Test Facility (ATF). The beam parameters including beam energy, and emittance are calculated. Some of our results, are tabulated and the phase plots of the beam parameters, from Cathode, through the Transport line elements, to the LINAC entrance, are shown.

  4. National Synchrotron Light Source II

    ScienceCinema (OSTI)

    Steve Dierker

    2010-01-08

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  5. Michael Johnson Oral History

    E-Print Network [OSTI]

    Johnson, Michael; Albin, Tami

    2009-12-16

    support groups or whatever like that and then it just turned into, Well there's Michael Johnson January 4, 2009 5 Under the Rainbow: Oral Histories of GLBTIQ People in Kansas porn online too. (laugh) So it's like—it's like you just kind... stepmother had found my Xanga site as well. Along with that she had found, on his computer, links to porn site—like gay porn Michael Johnson January 4, 2009 7 Under the Rainbow: Oral Histories of GLBTIQ People in Kansas sites, right...

  6. Michael J. Banda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergy InnovationPortalMichaelMichael Hess

  7. [Los Alamos National Laboratory]; Durakiewicz, Tomasz [Los Alamos...

    Office of Scientific and Technical Information (OSTI)

    Time-resolved carrier distributions in graphene Gilbertson, Steve Michael Los Alamos National Laboratory; Durakiewicz, Tomasz Los Alamos National Laboratory; Zhu, Jian - Xin...

  8. VOLUME 84, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 27 MARCH 2000 Bombarding Energy Dependence of p2 Interferometry at the Brookhaven AGS

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    43210 2 Departments of Chemistry and Physics, SUNY, Stony Brook, New York 11794-3400 3 University Columbia University, New York, New York 10027 6 Brookhaven National Laboratory, Upton, New York 11973 7 interferometry at Alternating Gradient Syn- chrotron (AGS) energies (2­8 A GeV). The sensitivity

  9. Work is supported at BNL by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

    E-Print Network [OSTI]

    these objectives, large-scale power plants will be necessary. So far, the largest photovoltaics solar farm have solar photovoltaics power plant constructed on Brookhaven National Laboratory grounds to estimate of the solar plant and production over the next 30 years and the beneficial impact of the farm in terms

  10. Work is supported in part by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 under the U.S. Department of Energy.

    E-Print Network [OSTI]

    10886 under the U.S. Department of Energy. BNL-98017-2012-AB Direct Te Mining: Resource Availability/Renewable Energy Group Brookhaven National Laboratory U.S. Department of Energy Office of Energy, Efficiency States Government or any agency thereof. #12;Direct Te mining: Resource availability and impact on Cd

  11. Learning Noise Michael Schmidt

    E-Print Network [OSTI]

    Fernandez, Thomas

    Learning Noise Michael Schmidt Computational Synthesis Laboratory Cornell University Ithaca NY to learning stochastic models with unsymmetrical noise distributions. Most learning algorithms try to learn from noisy data by modeling the maximum likelihood output or least squared error, assuming that noise

  12. Complexity eory Michael Strevens

    E-Print Network [OSTI]

    Strevens, Michael

    Complexity eory Michael Strevens For the Oxford Handbook of the Philosophy of Science, edited, is entirely determined by the exact state of the parts and the fundamental laws of nature, there is little of their parts. You might therefore wonder whether sciences of complex systems are possible. Complexity theory

  13. Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Liu, Ping

    2010-12-15

    Catalysts have been used to speed up chemical reactions as long as yeast has been used to make bread rise. Today, catalysts are used everywhere from home kitchens to industrial chemical factories. In the near future, new catalysts being developed at Brookhaven Lab may be used to speed us along our roads and highways as they play a major role in solving the world’s energy challenges. During the lecture, Liu will discuss how theorists and experimentalists at BNL are working together to formulate and test new catalysts that could be used in real-life applications, such as hydrogen-fuel cells that may one day power our cars and trucks.

  14. Michael Garcia, March 2009, Stanford/KIPAC 1 Michael Garcia

    E-Print Network [OSTI]

    Garcia, Michael

    , cost savings substantial, implementation combines best of both ­ going to 2010 Decadal! #12;Michael resolution ­ E very nearly constant with E ­ High intrinsic quantum efficiency ­ Imaging detectors Micro direct measurements of redshift and source diagnostics #12;Michael Garcia, March 2009 13 Evolution

  15. Acceleration of polarized protons in the Brookhaven AGS

    SciTech Connect (OSTI)

    Terwilliger, K.M.; Crabb, D.G.; Krisch, A.D.

    1981-01-01

    A multi-laboratory-university collaborative project involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to accelerate polarized protons at the AGS. The success of the now turned off 12 GeV/c ZGS polarized beam and the design studies for the AGS made us confident of the feasibility of achieving a polarization of about 60% at 26 GeV/c with an intensity 10/sup 11/ to 10/sup 12/ protons/pulse. Such a beam would be a potential source of polarized protons for ISABELLE. This report gives a brief discussion of the overall project and describes the tests of a prototype of the fast pulsed ferrite quadrupole magnets which will jump the intrinsic depolarizing resonances.

  16. Michael Gross | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillionStockpile Stewardship NationalMEMS:MfgMichael Gross

  17. The Front End Fermi National Accelerator Lab

    E-Print Network [OSTI]

    McDonald, Kirk

    The Front End MAP Review Fermi National Accelerator Lab August 24-26, 2010 Harold G. Kirk Brookhaven National Laboratory #12;August 2426, 2010 MAP ReviewFront End Harold G. Kirk ReviewFront End Harold G. Kirk 3 The Muon Collider/Neutrino Factory

  18. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    Mendelsohn, and Bethany Speer National Renewable Energy Laboratory Roger Hill Sandia National Laboratories, Solutions, and Implications Travis Lowder, Michael Mendelsohn, and Bethany Speer National Renewable Energy

  19. Employee Spotlight: Michael Torrez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES ScienceInformation CompanyEmployeeJon Engle JonathanJoséMichael

  20. Employee Spotlight: Michael Torrez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M.EmilioDave Keller JuneMichael Torrez

  1. Michael Demkowicz: MIT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergy InnovationPortalMichael DeSantis

  2. Ten Things You Didn't Know About the Electron Racetrack at Brookhaven...

    Office of Environmental Management (EM)

    of the light source. We haven't spotted any baseball players back there, but deer and turkey sometimes wander in from the nearby woods. Image: Photo Courtesy of Brookhaven...

  3. Managed for the U.S. Department of Energy by Brookhaven Science Associates

    E-Print Network [OSTI]

    Homes, Christopher C.

    Managed for the U.S. Department of Energy by Brookhaven Science Associates Bill Dorsch, Manager (typically monitoring and extraction wells) Petition Regulators for system Original Operations Updated Operations Monitoring Only #12;77 Groundwater Cleanup Completion System

  4. Michael Levitt and Computational Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergy InnovationPortalMichaelMichaelMichael Levitt

  5. Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X3A

    E-Print Network [OSTI]

    Johnson, Peter D.

    chest level Using the LN2 Fill Station or pressurized transfer Y Y LS-PROC-LN2FILL-MANL training for fill station Use full face shield along with goggles or safety glasses Long pants and sleeves - avoid is operating Ergonomics concerns ­ pinch points/sharp edges ­ Lift table Training Cutting/razor blades Y Y

  6. X22B SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    ) downstream of Bremsstrahlung shield (BS #1) 5. Lead shield downstream of Exclusion Zone (EZ #2) 6. Vacuum Bellows #1 wrapped in lead upstream of Exclusion Zone (EZ #3) 7. Exclusion Zone (EZ #3) upstream downstream of Bremsstrahlung shield (BS # 2). X23A2/A3 SIDE OF BEAMLINE 10. Vacuum Bellows #2 wrapped

  7. U15A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    from the TGM monochromator tank to Bremsstrahlung shielding #2; in place, secure, and photographed shielding and exclusion zones are in place and secured. Refer to U15A Beamline Diagram. Note: Bremsstrahlung Shielding #1 is not part of the Safety checklist and can only be viewed from the VUV mezzanine staircase

  8. X24A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    by checking the document effective date on the NSLS QA website. 1. Bremsstrahlung shield (BS #1) between GV1 tank is covered by lead glass. 4. Exclusion Zone # 2 (EZ#2) between monochromator and GV4, defined by polystyrene is identified and secured. 5. Bremsstrahlung shield (BS # 2) between the monochromator and GV4

  9. X15B SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    1. 4. Scatter shield on parts of Slits tank as per photo 1. 5. Three viewports on Slits tank on X16 side of X15. 6. Bremsstrahlung shield (BS # 2) secured in place. 7. Pre mirror tank covered on some parts with scatter shield as per photo 2. 8. Five viewports on pre mirror tank. All VP covered

  10. X9A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    as per photo. 8. Leaded glass on 6 mirror tank view ports and shielded as per photo. 9. Bremsstrahlung. Bremsstrahlung shield (BS-1) banded in place as per photo 4. Scatter shield on bellows secured as per photo. 5. Bremsstrahlung shield (BS-2) banded in place as per photo. 7. Perforated metal barrier in place and secure

  11. X16A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    shielding on Mirror tank in place and secure as per photo. 8. Exclusion Zone # 2 (EZ - 2) in place. 16. Mono tank shielded as per photo. 17. Bremsstrahlung Shielding # 5 (BS -5) banded and secure 2. Lead Exclusion Zone # 1 (EZ - 1) in place and secure as per photo. 3. Bremsstrahlung Shielding

  12. X1A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    shielding wrapped around the rear section of the X1B mirror tank and the initial section of the X1A beam the X1A mirror tank and valve V2 and the lead shield covering the 8" bellows between the X1A and X1B line. 1. Check from X1A side. Optical covers over the 2.75" and 8" viewports on the X1A mirror tank

  13. X21A3 SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    2. Exclusion Zone (EZ # 1) between the front end and the graphite tank in place and secure. 3. Lead wrapped around graphite filter tank as per photo, and view port covered with leaded glass. 4. Water and secure 6. Lead shielding covering burst disk. 7. Lead shielding on Monochromator #1 including leaded

  14. X21A1 SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    2. Exclusion Zone (EZ # 1) between the front end and the graphite tank in place and secure. 3. Lead wrapped around graphite filter tank as per photo, and view port covered with leaded glass. 4. Water and secure 6. Lead shielding covering burst disk. 7. Lead shielding on Monochromator #1 including leaded

  15. X25A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    2. Scatter shield with Exclusion Zone #1 and Vacuum Bellows under lead. See photo 1 3. Lead wrapped around graphite filter tank, lead glass covering viewport secured. See photo 1 4. Water cooled Beryllium wrapped around mirror tank flange port tubing and water feed through bellows (on the top of the mirror

  16. X22C SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    shielding. see photo 6 21. Water cooled Beryllium window #2C wrapped in lead upstream of Monochrometer tank and log, no locks open. 2. Exclusion Zone (EZ #1) between Isolation Valve and Bremsstrahlung shield (BS #1). 3. Bremsstrahlung shield (BS #1) in place and banded see photo 1. 4. Exclusion Zone (EZ #2

  17. X7B SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    of the beamline. 6. Viewport on T section covered with leaded glass. 7. Shielding on Slit tank assembly 3. Bremsstrahlung shield (BS # 1) in place and banded. 4. Bremsstrahlung shield (BS # 2) in place and banded. 5. Bremsstrahlung shield (BS # 3) in place and banded. Checkpoints 6-10 are on the X8 side

  18. X1B SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    shielding wrapped around the rear section of the X1B mirror tank and the initial section of the X1A beam the X1A mirror tank and valve V2 and the lead shield covering the 8" bellows between the X1A and X1B line. 1. Check from X1A side. Optical covers over the 2.75" and 8" viewports on the X1A mirror tank

  19. X14A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    of mirror tank) as per photo. 6. Lead shielding on Mirror tank in place as per photo 7. Lead shielding of the monochromator tank). 15. Bremsstrahlung shield #3 (mounted on the stand downstream of the monochromator see open 2. Bremsstrahlung shield (BS #1) imbedded in the concrete shield wall 3. Exclusion zone # 1

  20. X6A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    . Bremsstrahlung shield (BS #2) in place and secured. as per photo 3. 11. Phosphor Screen tank wrapped in lead shield wall to Bremsstrahlung shield (BS #1) As per photo 1 3. Bremsstrahlung shield (BS #1) in place. Located on mirror tank. 9. View port (VP #3) covered with lead and secured. Located on mirror tank. 10

  1. X3A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    photo 10. Mirror tank view ports (2) covered with leaded glass. 11. Lead shielding in place around X3B open. THE FOLLOWING MUST BE CHECKED STARTING FROM THE SHIELD WALL 2. Bremsstrahlung shield (BS-1) in place and secure. 5. Bremsstrahlung shield (BS-2) in place and secure as per photo. 6. Exclusion Zone

  2. X19C SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    in lead and banded and Scatter Shield as in photo 5. 9. Mirror tank and 4 Viewports with lead glass and banded as in photo 1. 3. Bremsstrahlung shield (BS #1) in place and banded as in photo 1. 4. Vacuum as in photo 2. 5. Bremsstrahlung shield (BS # 2), Vacuum Bellows (VB #2) wrapped in lead and banded

  3. X20C SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    on observation cross #1 and spacer cross, as in photo 7. 10. Lead shielding on mirror tank, as in photo 8. 11 at upstream end. Best access to 2-7 is between X19&X20. 2. Bremsstrahlung shield 1A, B, C (BS #1) (built into ring sawtooth wall), as in photo 1. 3. Lead scatter shielding A, B, C around beamline pipes

  4. X11A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    shields BS # 2 and BS #3 under lead, not visible), 7. Lead shielding above the monochromator tank covered with lead sheet. 3. Bremsstrahlung shield (BS #1) in place and banded as per photo 4. Lead scatter shielding as per photo 5. Exclusion Zones (EZ #3) and (EZ #4) in place and secured. 6. Viewport

  5. U1A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    . 8. Bremsstrahlung shielding (BS # 2) banded and secure. 9. Refocusing Mirror Tank view port covered by checking the document effective date on the NSLS QA website. 1. Mirror Tank glass view port covered 2. Mirror Tank glass view port covered 3. Exclusion Zone (EZ#1) in place and secure. 4. Bremsstrahlung

  6. X19A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    and banded 2. Bremsstrahlung shield BS#3 in place and banded, as in photograph 3. Straight-through Valve V1A open 4. Perforated aluminum exclusion zone EZ#1 in place and banded 5. Collimating mirror tank wrapped. Straight-through Valve V2A open 8. Bremsstrahlung shield BS#4 in place and banded, as in photograph 9

  7. X20A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    , as in photo 8. 11. Lead shielding on mirror tank, as in photo 9. 12. Bremsstrahlung shield (BS # 5 at upstream end. Best access to 2-17 is between X19&X20. 2. Bremsstrahlung shield 1A, B, C (BS #1) (built into ring sawtooth wall), as in photo 1. 3. Lead scatter shielding A, B, C around beamline pipes

  8. X13A/B SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    and secure, as per photo. 3. Mirror Tank shielded and (3) view ports secured with screwed lead covers as per. Bremsstrahlung shield (BS #3) in place and banded as per photo. 9. Leaded glass on X13B monochromator tank view hutch) On X12 side of beamline: 2. Exclusion Zone #1 (EZ1) and Bremsstrahlung shield (BS #1) in place

  9. U3C SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    are covered (5 on U2 side of tank, 2 on top) 3. Bremsstrahlung Shielding (BS #2A, 2B, 2C) in place and secure Shielding (BS #1)/Front end shielding in place as per photo. 2. Glass View ports on mirror chamber. 4. Exclusion Zone (EZ #1), blue cage, in place and secure. 5. Bremsstrahlung Shielding (BS #3A

  10. X29A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    around bellows downstream of mirror tank. 7. Bremsstrahlung shields (BS #1) and lead bricks around white. 2. Exclusion Zone (EZ #1) metal encasement in place and locked. See photo 1 3. Scatter Shield covering Exclusion Zone (EZ #2) lead shield in place and banded around bellows upstream of monochromator

  11. X11B SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    assembly tank in place and secured as per photo 6. Bremsstrahlung shield (BS #2) in place and banded photo 4. Bremsstrahlung shield (BS #1) in place and banded as per photo 5. Lead shielding of slit as per photo 7. Lead shielding of 3-way cross in place and secured as per photo 8. Lead shielding of 5

  12. X22A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    #1. 5. Lead shield on mask tank. 6. Lead shield on bellows between Mask Tank and Mirror Tank. 7. Lead shield on mirror tank. 8. Exclusion Zone (EZ #2) upstream of Bremsstrahlung shield (BS #2). Lead upstream of monochromator tank. 14. Lead shield skirt and leaded glass on Viewport on monochromator tank

  13. U3B SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    are covered (5 on U2 side of tank, 2 on top) 3. Bremsstrahlung Shielding (BS #2A, 2B, 2C) in place and secure Shielding (BS #1)/Front end shielding in place as per photo. 2. Glass View ports on mirror chamber. 4. Exclusion Zone (EZ #1), blue cage, in place and secure. 5. Bremsstrahlung Shielding (BS #3A

  14. Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X8A

    E-Print Network [OSTI]

    Johnson, Peter D.

    Y Y Limit quantities at beamline to Ergonomics concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics

  15. Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X16A

    E-Print Network [OSTI]

    Johnson, Peter D.

    Y Y Limit quantities at beamline to Ergonomics concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics

  16. Brookhaven National Laboratory -Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X14A

    E-Print Network [OSTI]

    Johnson, Peter D.

    a cylinder cart Properly secure cylinders Wear safety glasses with side shields while connecting lines Leak-out, turbo pump set- up, set-up displex Y Y Be aware of body posture, Ask for help in moving or lifting

  17. X18A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    aperture and the Beryllium window in place and secure. 5. Water cooled Beryllium window #1 wrapped in lead and banded. 6. Perforated metal scatter barrier acting as Exclusion Zone (EZ #3) in place between Beryllium and secured as per photo. 14. Mirror chamber View port covered with leaded plastic. 15. Exclusion Zone (EZ

  18. X12A SAFETY CHECKLIST BROOKHAVEN NATIONAL LABORATORY NATIONAL SYNCHROTRON LIGHT SOURCE

    E-Print Network [OSTI]

    Johnson, Peter D.

    exclusion zone EZ1 (part 1) in place and secure. 5. Water is flowing through the beryllium window (check Bremsstrahlung shield in place and secure (acts as X12A exclusion zone) 7. Perforated aluminum exclusion zone EZ1 shield. 3. Bremsstrahlung shield BS1 in place and secure, as in photograph 4. Perforated aluminum

  19. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  20. Demonstration Scale Projects Michael Cooney

    E-Print Network [OSTI]

    investigated the application of anaerobic digestion to primary clarifier treatment as a means to lower bulk packing material in anaerobic digesters. #12;Demonstration Scale Projects Michael Cooney With a grant from the DOE, a 3,000 gallon anaerobic

  1. Operational Signature Schemes Michael Backes

    E-Print Network [OSTI]

    Operational Signature Schemes Michael Backes CISPA, Saarland University ¨Ozg¨ur Dagdelen TU] transferred the idea of functional encryption to signatures. They basically say that, with knowledge

  2. Compound and Elemental Analysis At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

  3. Michael Starke, Oak Ridge National Laboratory

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessageFY 2010

  4. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect (OSTI)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by worker due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  5. Alternative Futures for Particle Physics Michael Dine

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Alternative Futures for Particle Physics Michael Dine Department of Physics University of California, Santa Cruz Neve Shalom, October, 2013 Michael Dine Alternative Futures for Particle Physics #12;A for the elementary particle masses. Michael Dine Alternative Futures for Particle Physics #12;Higgs Discovery; LHC

  6. Alternative Futures for Particle Physics Michael Dine

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Alternative Futures for Particle Physics Michael Dine Department of Physics University of California, Santa Cruz Higgs and Beyond, Sendai, JAPAN June, 2013 Michael Dine Alternative Futures understanding of QCD is exquisite as is our understanding of the electroweak theory. Michael Dine Alternative

  7. THE UNIVERSITY OF EDINBURGH. Michael Swann Building.

    E-Print Network [OSTI]

    Edinburgh, University of

    THE UNIVERSITY OF EDINBURGH. Michael Swann Building. King's Buildings. A GUIDE TO ACCESS AND FACILITIES. Address. Michael Swann Building. University of Edinburgh. King's Buildings. Edinburgh. E, H, 9, 3, J, R, Telephone. 0, 1, 3, 1, 6, 5, 0, 7, 0, 2, 6, Website. http://www.ed.ac.uk/maps/buildings/michael-swann-building

  8. Fermi National Accelerator Laboratory Accelerator Division

    E-Print Network [OSTI]

    Fermilab Experiment E831

    are carefully monitored using toroids and a data acquisition system. Results are then analyzed and compared for the proposed multi-mega-watt 8-GeV proton driver and booster system, which uses multiturn charge that are thought to be suitable. Brookhaven National Laboratory (BNL) data, simulating the Spallation Neutron

  9. Michael Reed | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease | Department of0 Inspection BEFORE9DepartmentandFieldG.Michael Pesin,Michael

  10. Michael Hess | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergy InnovationPortalMichaelMichael Hess About Us

  11. Delegatable Functional Signatures Michael Backes

    E-Print Network [OSTI]

    Delegatable Functional Signatures Michael Backes MPI-SWS Saarland University Germany Sebastian (from FS) . . . . 36 B Blind signatures 38 B.1 Basic security notions for blind signatures, such as the delegation of computation on authenticated data, the basic notion is insufficient. Consider as an example

  12. Michael James Harte Curriculum Vitae

    E-Print Network [OSTI]

    Kurapov, Alexander

    Michael James Harte Curriculum Vitae 104 C0AS Administration Building, Oregon State University, J., J. Cone, L. Jodice, M. Harte, P. Corcoran. (2009) An Analysis of a Survey of Oregon Coast-001 Harte, M., Larkin, S. Sylvia, G. Huppert D, Kailis G, and Jodice L. (2009) IFQs and Responsible

  13. 4. Manufacturing Isovolumes Michael Bailey

    E-Print Network [OSTI]

    Bailey, Mike

    4. Manufacturing Isovolumes Michael Bailey 4.1 Introduction Displaying a single isosurface provides and then manufactures them, providing a non-volatile display of several isosurfaces. The inspiration for this idea, tetrahedralization produces more information than is necessary for prototype manufacturing. Prototype manufacturing

  14. Michael De Angelo Professional Summary

    E-Print Network [OSTI]

    Yang, Zong-Liang

    at El Paso, 1983 M.S. Geophysics, The University of Texas at El Paso, 1988 Areas of Expertise A. 2-D/3-D. Development of seismic vector-wavefield technologies. D. Seismic data acquisition and 3D acquisition design, Pamphlets, Bulletins De Angelo, Michael, and Hardage, B. A., 2001, Using 3-D seismic coherency and stratal

  15. CURRICULUM VITAE Michael C. Mossing June 20, 2006 Michael C. Mossing

    E-Print Network [OSTI]

    Mossing, Mike

    CURRICULUM VITAE Michael C. Mossing June 20, 2006 Michael C. Mossing Department of Chemistry systems. #12;Mossing, Curriculum Vitae - Page 2 June 20, 2006 PUBLICATIONS 1. Record, M. T. Jr, Anderson

  16. Universally Composable Cryptographic Library Michael Backes, Birgit Pfitzmann, and Michael Waidner

    E-Print Network [OSTI]

    Universally Composable Cryptographic Library Michael Backes, Birgit Pfitzmann, and Michael Waidner message from the basic message space the term E(E(m)). typical cancellation D(E(m)) all In cryptographic

  17. A Universally Composable Cryptographic Library Michael Backes, Birgit Pfitzmann, and Michael Waidner

    E-Print Network [OSTI]

    Guttman, Joshua

    A Universally Composable Cryptographic Library Michael Backes, Birgit Pfitzmann, and Michael, encrypting a message m twice does not yield another message from the basic message space but the term E

  18. COVER: Part of the drift-tube linear accelerator designed and built by Los Alamos National Laboratory for the Spallation Neutron Source at ORNL (see article on p.13). Photograph by Leroy N. Sanchez of LANL.

    E-Print Network [OSTI]

    #12;COVER: Part of the drift-tube linear accelerator designed and built by Los Alamos National, Brookhaven, Jefferson, and Los Alamos. No single laboratory possessed the resources needed to design

  19. Michael Tsapatsis | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Tsapatsis Previous Next List tsapatsis Michael Tsapatsis Professor of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis Email: tsapa001 at...

  20. DESIGNING AN ENVIRONMENTAL SHOWCASE: THE SAN FRANCISCO Dale Sartor, Rick Diamond, Lawrence Berkeley National Laboratory,

    E-Print Network [OSTI]

    Diamond, Richard

    have conducted energy audits, reviewed retrofit design strategies and renovation plans and recommended, Lawrence Berkeley National Laboratory, Andy Walker, National Renewable Energy Laboratory Michael Giller, National Park Service Karl Brown, California Institute for Energy Efficiency Anne Sprunt Crawley, US

  1. Michael R. Maraya (Acting) | Department of Energy

    Office of Environmental Management (EM)

    R. Maraya (Acting) About Us Michael R. Maraya (Acting) - Deputy CIO for Enterprise Policy, Portfolio Management & Governance Mike Maraya is the Acting Deputy CIO for Enterprise...

  2. Michael M. Johnson | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergy InnovationPortalMichaelMichaelMichaelMichael

  3. Michael Baskin | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessageFY 2010Michael Baskin

  4. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    SciTech Connect (OSTI)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.

    2011-08-02

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the second one following the Berkeley Summer Program taken place in June of 2009. This program at BNL focused on theory and had many presentations on a wide range of theoretical aspects on nucleon spin, from perturbative-QCD calculations to models, and to the first principle lattice calculation. It also had a good number of summary talks from all major experimental collaborations on spin physics. The program facilitated many discussions between theorists as well as experimentalists. With five transparencies from each presentation at the Summer Program, this proceedings provides a valuable summary on the status and progress, as well as the future prospects of spin physics.

  5. Bounds on the kdimension of products of special posets Michael Baym # Douglas B. West +

    E-Print Network [OSTI]

    West, Douglas B.

    Bounds on the k­dimension of products of special posets Michael Baym # Douglas B. West + Abstract, west@math.uiuc.edu. Research par­ tially supported by the National Security Agency under Awards H98230­dimensional poset. Reuter [15] extended Trotter's result (using ``concept analysis'') to show that dim(Sm ×S n ) = m

  6. Bounds on the k-dimension of products of special posets Michael Baym

    E-Print Network [OSTI]

    West, Douglas B.

    Bounds on the k-dimension of products of special posets Michael Baym Douglas B. West Abstract, University of Illinois, Urbana, IL 61801, west@math.uiuc.edu. Research par- tially supported by the National that Sn is the smallest n-dimensional poset. Reuter [15] extended Trotter's result (using "concept

  7. Formal Methods and Cryptography Michael Backes1

    E-Print Network [OSTI]

    Backes, Michael

    Formal Methods and Cryptography Michael Backes1 , Birgit Pfitzmann2 , and Michael Waidner3 1 Saarland University, Saarbr¨ucken, Germany, backes@cs.uni-sb.de 2 IBM Research, Rueschlikon, Switzerland methods for distributed systems have a notion of secure channels as a basic communication mechanism

  8. Michael J. Alexander Propulsion Systems Research Lab,

    E-Print Network [OSTI]

    Papalambros, Panos

    along with the selection of motor performance curves such that maxi- mum energy efficiency is achievedMichael J. Alexander Propulsion Systems Research Lab, General Motors Technical Center, 330500 Mound Road, Warren, MI 48090 e-mail: michael.j.alexander@gm.com James T. Allison Department of Industrial

  9. Method for promoting Michael addition reactions

    DOE Patents [OSTI]

    Shah, Pankaj V. (Crystal Lake, IL); Vietti, David E. (Cary, IL); Whitman, David William (Harleysville, PA)

    2010-09-21

    Homogeneously dispersed solid reaction promoters having an average particle size from 0.01 .mu.m to 500 .mu.m are disclosed for preparing curable mixtures of at least one Michael donor and at least one Michael acceptor. The resulting curable mixtures are useful as coatings, adhesives, sealants and elastomers.

  10. Alternative Futures for Particle Physics Michael Dine

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Alternative Futures for Particle Physics Michael Dine Department of Physics University Alternative Futures for Particle Physics #12;A tension between naturalness and simplicity The decades prior unobserved) degrees of freedom which can account for the elementary particle masses. Michael Dine Alternative

  11. BNL National Synchrotron Light Source activity report 1997

    SciTech Connect (OSTI)

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

  12. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect (OSTI)

    Lettry J.; Alessi J.; Faircloth, D.; Gerardin, A.; Kalvas, T.; Pereira, H.; Sgobba, S.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  13. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect (OSTI)

    Lettry, J.; Gerardin, A.; Pereira, H.; Sgobba, S.; Alessi, J.; Faircloth, D.; Kalvas, T.

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  14. BROOKHAVEN NATIONAL LABORATORY Number:4.0.3 PHYSICS DEPARTMENT Effective:07/16/2007

    E-Print Network [OSTI]

    ATF Handbook 1.0.1 linear Accelerator General Systems Guide 1.0.2 The Radiofrequency Systems Guide 1 Facility ATF Radiation Fault Response Procedure ATF Response to Modulator Malfunction ATF Vacuum Work.00 4.01 Linear Accelerator General Systems Guide The Radiofrequency Systems Guide General Requirements

  15. STATUS OF R AND D ENERGY RECOVERY LINAC AT BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    LITVINENKO,V.; BEN-ZVI, I.; ALDUINO, J.M.; BARTON, D.S.; BEAVIS, D.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    In this paper we present status and plans for the 20-MeV R&D energy recovery linac (ERL), which is under construction at Collider Accelerator Department at BNL. The facility is based on high current (up to 0.5 A of average current) super-conducting 2.5 MeV RF gun, single-mode super-conducting 5-cell RF linac and about 20-m long return loop with very flexible lattice. The R&D ERL, which is planned for commissioning in early 2009, aims to address many outstanding questions relevant for high current, high brightness energy recovery linacs.

  16. Brookhaven National Lab Postdoc Opening for Surface Science Studies of 2D-Zeolites

    E-Print Network [OSTI]

    Alpay, S. Pamir

    and Chemistry Department of BNL. The work also involves the design and implementation of PM-IRAS in an ambient, Skills and Abilities: Requires a Ph.D. in chemistry, materials science, physics or a related discipline-high vacuum systems will be a plus. For more information or to submit an application, please go to: https://www.bnl.gov/hr/careers/jobs

  17. Brookhaven National Laboratory/ PHOTON SCIENCES Subject: Frequently Asked Questions about Environmental Management Systems

    E-Print Network [OSTI]

    Homes, Christopher C.

    , radioactive, mixed, medical or industrial wastes · emissions into the atmosphere · liquid discharges · storage is to ensure that the Directorate does not impact the environment. Question 2 - What is BNL's Environmental with Laboratory operations that have the potential to create significant impact to the environment in or outside

  18. Genomic Sequence or Signature Tags (GSTs) from the Genome Group at Brookhaven National Laboratory (BNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dunn, John J.; McCorkle, Sean R.; Praissman, Laura A.; Hind, Geoffrey; Van der Lelie, Daniel; Bahou, Wadie F.; Gnatenko, Dmitri V.; Krause, Maureen K.

    Genomic Signature Tags (GSTs) are the products of a method we have developed for identifying and quantitatively analyzing genomic DNAs. The DNA is initially fragmented with a type II restriction enzyme. An oligonucleotide adaptor containing a recognition site for MmeI, a type IIS restriction enzyme, is then used to release 21-bp tags from fixed positions in the DNA relative to the sites recognized by the fragmenting enzyme. These tags are PCR-amplified, purified, concatenated and then cloned and sequenced. The tag sequences and abundances are used to create a high resolution GST sequence profile of the genomic DNA. [Quoted from Genomic Signature Tags (GSTs): A System for Profiling Genomic DNA, Dunn, John J.; McCorkle, Sean R.; Praissman, Laura A.; Hind, Geoffrey; Van der Lelie, Daniel; Bahou, Wadie F.; Gnatenko, Dmitri V.; Krause, Maureen K., Revised 9/13/2002

  19. WHY HASN'T EARTH WARMED AS MUCH AS EXPECTED? Stephen Schwartz, Brookhaven National Laboratory

    E-Print Network [OSTI]

    of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others

  20. Preliminary Notice of Violation, Brookhaven National Laboratory - EA-97-13

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment of Energy 8 Issued to|

  1. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4OfficeArizonaScienceDOE OfficeU.S.

  2. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4OfficeArizonaScienceDOE

  3. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4OfficeArizonaScienceDOEBrookhaven

  4. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter

  5. Labs at-a-Glance: Brookhaven National Laboratory | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 rz machineBrochures,Programs »AboutLPScience

  6. Top 10 Things You Didn't Know About Brookhaven National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings forTitle XVII FinalRenewables

  7. Type B Accident Investigation of the Arc Flash at Brookhaven National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy Two CompaniesRappelInjury

  8. Eric Rus > Postdoc - Brookhaven National Laboratory > Center Alumni > The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4th QuarterEric E. Dors,

  9. M. Veltman** and J. Yellin Brookhaven National Laboratory, Upton, New York

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTech ConnectFuture |0396 Some Comments on the

  10. Michael Rupen EVLA Phase II Definition Aug 23 25, 2001.

    E-Print Network [OSTI]

    Groppi, Christopher

    Michael Rupen EVLA Phase II Definition Meeting Aug 23 ­ 25, 2001. 1 EVLA Phase II Scientific Overview Michael P. Rupen #12;Michael Rupen EVLA Phase II Definition Meeting Aug 23 ­ 25, 2001. 2 New the resolution · Always available! #12;Michael Rupen EVLA Phase II Definition Meeting Aug 23 ­ 25, 2001. 3 NMA

  11. Michael Gardipe | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Methane Hydrate Program Annual ReportMichael Gardipe -

  12. Michael Knotek | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice| Department ofKristinaEnergyOEMark McCallleadsDr. Michael

  13. Michael Greenstone | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergy InnovationPortalMichael

  14. PERCEIVING PHONETIC SEGMENTS* Michael Studdert-Kennedy+

    E-Print Network [OSTI]

    PERCEIVING PHONETIC SEGMENTS* Michael Studdert-Kennedy+ Why do we study Is the a acoustic structure & Studdert-Kennedy, 1978L First, I assume the abstract elements of phoneme or feature that underlie

  15. Energy Landscapes of Biopolymers Michael Wolfinger

    E-Print Network [OSTI]

    Wien, Universität

    Energy Landscapes of Biopolymers Michael Wolfinger Institute for Theoretical Chemistry Energy landscapes 4 Dynamics of biopolymers 5 Examples #12;The RNA model;RNA energy model The energy of a sequence and particular structure is given as the sum

  16. Energy Landscapes of Biopolymers Michael Wolfinger

    E-Print Network [OSTI]

    Wien, Universität

    Energy Landscapes of Biopolymers Michael Wolfinger Institute for Theoretical Chemistry Energy landscapes 4 Dynamics of biopolymers 5 Examples #12; The RNA model. #12; RNA energy model The energy of a sequence and particular structure is given as the sum

  17. Correctional Managed Health Care Michael Vasquenza, BS

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Correctional Managed Health Care Michael Vasquenza, BS Kirsten Shea, MBA #12;NO CONFLICTS of budget reductions · Pharmacy services · Aging population · Legal obligations · Logistics specific to Correctional Institutions / Building InfrastructureInfrastructure · Space and accompanying environment

  18. Michael Liebreich (Energy All Stars Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Michael Liebreich, CEO of Bloomberg New Energy Finance, delivered this presentation on the energy economy at the Energy All Stars event on January 19, 2013, at the US Department of Energy in...

  19. Invariant polynomials and Molien functions Michael Forger

    E-Print Network [OSTI]

    Forger, Frank Michael

    Invariant polynomials and Molien functions Michael Forger Departamento de Matema´tica Aplicada, Instituto de Matema´tica e Estati´stica, Universidade de Sa~o Paulo, Caixa Postal 66281, BR-05315-970 Sa

  20. PRODUCTION SEQUENCING AS NEGOTIATION Michael Wooldridge

    E-Print Network [OSTI]

    Woolridge, Mike

    PRODUCTION SEQUENCING AS NEGOTIATION Michael Wooldridge Stefan Bussmann ˇ Marcus Klosterberg, Germany ˘ bussmann, klosterbŁ @DBresearch-berlin.de Abstract The production sequencing problem involves a factory generating a product sequence such that when processed, the sequence will both satisfy current

  1. Charmonium production in proton-proton collisions and in collisions of lead nuclei at CERN and comparison with Brookhaven data

    SciTech Connect (OSTI)

    Topilskaya, N. S., E-mail: topilska@inr.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-10-15

    A review of experimental data on charmoniumproduction that were obtained in fixed-target experiments at the SPS synchrotron and in proton-proton collisions and in collisions of lead nuclei in beams of the Large Hadron Collider (LHC) at CERN (Switzerland) is presented. A comparison with data obtained at the Brookhaven National Laboratory (USA) from experiments at the Relativistic Heavy Ion Collider (RHIC) is performed. Measurement of the suppression of J/{psi}-meson production as a possible signal of the production of quark-gluon plasmawas proposed back in 1986 by T. Matsui and H. Satz. An anomalous suppression of J/{psi}-meson production was discovered by the NA50 Collaboration at SPS (CERN) in central collisions of lead nuclei at the c.m. collision energy of 158 GeV per nucleon. Data obtained at the c.m. energy of 200 GeV per nucleon in the PHENIX experiment at RHIC indicate that, depending on multiplicity, the suppression of J/{psi}-meson production at this energy approximately corresponds to the suppression of J/{psi}-meson production in collisions of lead nuclei at the SPS accelerator. Theoretical models that take into account the regeneration of J/{psi} mesons describe better RHIC experimental data. The measurement of charmonium production in proton-proton collisions and in collisions of lead nuclei in LHC beams revealed the importance of taking into account the regeneration process. At the LHC energies, it is also necessary to take into account the contribution of B-meson decays. Future measurements of charmonium production at the LHC to a higher statistical precision and over an extended energy region would be of importance for obtaining deeper insight into the mechanism of charmonium production and for studying the properties of matter at high energy density and temperature.

  2. Calculation of Molecular Configuration Integrals Chia-En Chang, Michael J. Potter, and Michael K. Gilson*

    E-Print Network [OSTI]

    Chang, Chia-en "Angelina"

    and the design of self-assembling systems. Early methods of conformational analysis focused on the useCalculation of Molecular Configuration Integrals Chia-En Chang, Michael J. Potter, and Michael K Scanning, a fast correction for anharmonicity based upon internal bond-angle-torsion coordinates. Mode

  3. The Temporal Dimension of Dynamic Function Allocation Michael Hildebrandt and Michael Harrison

    E-Print Network [OSTI]

    Harrison, Michael

    1 The Temporal Dimension of Dynamic Function Allocation Michael Hildebrandt and Michael Harrison.Harrison}@cs.york.ac.uk Abstract Current Dynamic Function Allocation methods are designed to switch adaptively between levels a temporal perspective on function allocation by discussing how functions can be scheduled on a joint human

  4. Development of a Piezoelectrically-Actuated Mesoscale Robot Quadruped Michael Goldfarb, Michael Gogola, Gregory Fischer

    E-Print Network [OSTI]

    Simaan, Nabil

    Development of a Piezoelectrically-Actuated Mesoscale Robot Quadruped Michael Goldfarb, Michael approach that offers a high locomotive efficiency, and is therefore well suited to mesoscale robot design actuated mesoscale robot quadruped. The design described utilizes a lightly damped skeletal structure

  5. Compliance Order issued to Los Alamos National Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    July 12,2007 CERTIFIED MAIL RETURN RECEIPT REQUESTED Dr. Michael T. Anastasio Laboratory Director Los Alamos National Laboratory MS-A1 00 SM-30, Bikini Atoll Road Los Alamos, NM...

  6. Manipulating Light to Understand and Improve Solar Cells (494th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Eisaman, Matthew

    2014-04-16

    Energy consumption around the world is projected to approximately triple by the end of the century, according to the 2005 Report from the U.S. Department of Energy's Basic Energy Sciences Workshop on Solar Energy Utilization. Much will change in those next 86 years, but for all the power the world needs—for everything from manufacturing and transportation to air conditioning and charging cell phone batteries—improved solar cells will be crucial to meet this future energy demand with renewable energy sources. At Brookhaven Lab, scientists are probing solar cells and exploring variations within the cells—variations that are so small they are measured in billionths of a meter—in order to make increasingly efficient solar cells and ultimately help reduce the overall costs of deploying solar power plants. Dr. Eisaman will discuss DOE's Sunshot Initiative, which aims to reduce the cost of solar cell-generated electricity by 2020. He will also discuss how he and collaborators at Brookhaven Lab are probing different material compositions within solar cells, measuring how efficiently they collect electrical charge, helping to develop a new class of solar cells, and improving solar-cell manufacturing processes.

  7. The Next Generation of Heavy Ion Sources (447th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Okamura, Masahiro

    2009-03-04

    Imagine if, by staying in your lane when driving on the expressway, you could help fight cancer or provide a new, clean energy source. You would clench the steering wheel with both hands and stay in your lane, right? Unlike driving on the expressway where you intentionally avoid hitting other cars, scientists sometimes work to steer particle beams into head-on collisions with other oncoming particle beams. However, the particles must be kept "in their lanes" for cleaner, more frequent collisions. Some scientists propose starting the whole process by using lasers to heat a fixed target as a way to get particles with higher charge, which are more steerable. These scientists believe the new methods could be used to develop particle beams for killing cancer cells or creating usable energy from fusion. Join Masahiro Okamura of Brookhaven's Collider-Accelerator Department for the 447th Brookhaven Lecture, titled "The Next Generation of Heavy Ion Sources." Okamura will explain how lasers can be used to create plasma, neutral mixtures of positive ions and negative electrons, from different materials, and how using this plasma leads to beams with higher charge states and currents. He will also discuss how this efficient, simpler method of producing particle beams might be used for cancer therapy, to develop new energy sources, or in synchrotrons.

  8. BSA Notification of Intent to Investigate

    Broader source: Energy.gov (indexed) [DOE]

    Dr. Doon L. Gibbs President and Brookhaven Laboratory Director Brookhaven Science Associates, LLC Brookhaven National Laboratory 40 Brookhaven Avenue Upton, New York 11973-5000...

  9. A review of "Renaissance Decorative Painting in Scotland" by Michael Bath. 

    E-Print Network [OSTI]

    William E. Engel

    2004-01-01

    illustrations. Michael Bath. Renaissance Decorative Painting in Scotland. Edinburgh: National Museums of Scotland Publishing, 2003. ix + 286 pp. + 255 illus. $49.95. Review by WILLIAM E. ENGEL, NASHVILLE AND SEWANEE, TN. Although concerned primarily... with painted ceilings of the sixteenth and seventeenth centuries, this copiously illustrated volume reveals much about the ?history and culture of Scotland at this period and, particularly, about its Renaissance pretensions and European connections? (vii...

  10. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    SciTech Connect (OSTI)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

    2011-08-03

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the formation of quarkonium in nuclear medium as well as the strong interacting quark-gluon matter produced in heavy ion collisions; and heavy quarkonium properties from the first principle lattice calculations. The heavy quarkonium production at a future Electron-Ion Collider (EIC) was also discussed at the meeting. The highlight of the meeting was the apparent success of the NRQCD approach at next-to-leading order in the description of the quarkonium production in proton-proton, electron-proton and electron positron collisions. Still many questions remain open in lattice calculations of in-medium quarkonium properties and in the area of cold nuclear matter effects.

  11. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  12. Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches (474th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Gang, Oleg

    2012-01-18

    In the field of nanoscience, if you can control how nanoparticles self-assemble in particular structures — joining each other, for example, as molecules can form, atom-by-atom — you can design new materials that have unique properties that industry needs. Nature already uses the DNA genetic code to instruct the building of specific proteins and whole organisms in both plants and people. Taking a cue from nature, scientists at BNL devised a way of using strands of synthetic DNA attached to the surface of nanoparticles to instruct them to self-assemble into specific nanoscale structures, clusters, and three-dimensional organizations. Novel materials designed and fabricated this way promise use in photovoltaics, energy storage, catalysis, cell-targeted systems for more effective medical treatments, and biomolecular sensing for environmental monitoring and medical applications. To find out more about the rapid evolution of this nanoassembly method and its applications, join Physicist Oleg Gang of the Center for Functional Nanomaterials (CFN) as he gives the 474th Brookhaven Lecture, titled “Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches." Gang, who has led this work at the CFN, will explain the rapid evolution of this nanoassembly method, and discuss its present and future applications in highly specific biosensors, optically active nano-materials, and new ways to fabricate complex architectures in a rational manner via self-assembly. Gang and his colleagues used the CFN and the National Synchrotron Light Source (NSLS) facilities to perform their groundbreaking research. At the CFN, the scientists used electron microscopes and optical methods to visualize the clusters that they fabricated. At the NSLS, they applied x-rays to study a particles-assembly process in solution, DNA’s natural environment. Gang earned a Ph.D. in soft matter physics from Bar-Ilan University in 2000, and he was a Rothschild Fellow at Harvard University from 1999 to 2002. After joining BNL as a Goldhaber Fellow in 2002, he became an assistant scientist at the CFN in 2004. He became the CFN’s leader for Soft and Biological Nanomaterials Theme Group in 2006, and earned the title of scientist in 2009. Gang has received numerous honors and recognitions, including the 2010 Gordon Battelle Prize for Scientific Discovery.

  13. UNBOUNDED FREDHOLM OPERATORS AND MICHAEL JOACHIM

    E-Print Network [OSTI]

    Joachim, Michael

    UNBOUNDED FREDHOLM OPERATORS AND K-THEORY MICHAEL JOACHIM Abstract. Let A be a unital C #3). 1. Introduction For a unital complex C #3; -algebra A and a compact space X let K 0 (X ; A) denote K 0 (X ; A) #24; = K 0 (XA). The corresponding reduced groups are de#12;ned by e K 0 (X ; A) = Coker

  14. Proteins Wriggle Michael Cahill,* Sean Cahill,

    E-Print Network [OSTI]

    Cahill, Kevin

    Proteins Wriggle Michael Cahill,* Sean Cahill, and Kevin Cahill *School of Medicine, Uniformed strategy for improving the efficiency of Monte Carlo searches for the low-energy states of proteins. Our strategy is motivated by a model of how proteins alter their shapes. In our model, when proteins fold under

  15. Passive advection in nonlinear medium Michael Chertkov

    E-Print Network [OSTI]

    Chertkov, Mikhael

    Passive advection in nonlinear medium Michael Chertkov Department of Physics, Princeton University, Princeton, New Jersey 08544 Received 23 September 1998; accepted 15 April 1999 Forced advection of passive on velocity, in com- parison with those of advection and nonlinearity, is called passive. The passiveness does

  16. The LCA Problem Revisited Michael A. Bender

    E-Print Network [OSTI]

    Danner, Andrew

    The LCA Problem Revisited Michael A. Bender SUNY Stony Brook Mart´in Farach-Colton ˇ Rutgers thus dispel the fre- quently held notion that an optimal LCA computation is unwieldy (LCA), Range Minimum Query (RMQ), Cartesian Tree. 1 Introduction One of the most fundamental

  17. The LCA Problem Revisited Michael A. Bender

    E-Print Network [OSTI]

    Bender, Michael

    The LCA Problem Revisited Michael A. BenderŁ SUNY Stony Brook Mart´in Farach-ColtonÝ Rutgers thus dispel the fre- quently held notion that an optimal LCA computation is unwieldy (LCA), Range Minimum Query (RMQ), Cartesian Tree. 1 Introduction One of the most fundamental

  18. Michael Ward May 2009 PSU Presentation

    E-Print Network [OSTI]

    Bertini, Robert L.

    2009 PSU Presentation 6 FTA Rural & Small Urban Program 32% $20.4 million 36 communities receive annual passenger services connecting rural communities · Funds to connect rural buses to rail ­ Amtrak Thruway bus Commute 4%Planning 3% Elderly & Persons with Disabilities 23% Rural & Small Urban 32% #12;Michael Ward May

  19. AGENTS AND SOFTWARE ENGINEERING Michael Wooldridge

    E-Print Network [OSTI]

    Woolridge, Mike

    AGENTS AND SOFTWARE ENGINEERING Michael Wooldridge Queen Mary and Westfield College, University of London London E1 4NS, United Kingdom M.J.Wooldridge@qmw.ac.uk Abstract Software engineers continually-suited to the construction of certain types of software, which mainstream software engineering has had little success with

  20. AGENTS AND SOFTWARE ENGINEERING Michael Wooldridge

    E-Print Network [OSTI]

    Woolridge, Mike

    AGENTS AND SOFTWARE ENGINEERING Michael Wooldridge Queen Mary and Westfield College, University of London London E1 4NS, United Kingdom M.J.Wooldridge@qmw.ac.uk Abstract Software engineers continually­suited to the construction of certain types of software, which mainstream software engineering has had little success with

  1. Updated 12-12 Michael R. Erk

    E-Print Network [OSTI]

    Updated 12-12 Michael R. Erk Deputy Program Executive Officer Unmanned Aviation PEO Unmanned Aviation and Strike Weapons (PEO(U&W)) Naval Air Systems Command In August 2010, Mr. Erk assumed duties Aviation and Strike Weapons (PEO(U&W)). As the Deputy PEO for Unmanned Aviation, Mr. Erk is responsible

  2. Computerphobia in Adult Learners Michael Fisher

    E-Print Network [OSTI]

    Fisher, Michael

    can affect young and old alike, it can be considered different in adults and chil­ dren for the sameComputerphobia in Adult Learners Michael Fisher Department of Computer Science University of technology in our lives, incidences of adults experiencing anxi­ ety about technology (`technophobia

  3. The Blue Language1 Michael Klling

    E-Print Network [OSTI]

    Kent, University of

    1 The Blue Language1 Michael Kölling School of Computer Science and Software Engineering Monash. The system we are about to discuss is named Blue. Blue is an integrated programming environment and an object. In this issue, we discuss the language aspects of Blue. Next month we will continue the discussion by describing

  4. LAPLACE'S EQUATION FROM TWO PERSPECTIVES MICHAEL FOSCO

    E-Print Network [OSTI]

    May, J. Peter

    LAPLACE'S EQUATION FROM TWO PERSPECTIVES MICHAEL FOSCO Abstract. We study Laplace's equation from the perspectives of partial differential equations and probabil- ity theory. We formulate the problem using both. Laplace's Equation In Probability 10 Acknowledgments 14 References 14 1. Introduction A natural way

  5. c Copyright 2014 Michael F. Ringenburg

    E-Print Network [OSTI]

    Anderson, Richard

    c Copyright 2014 Michael F. Ringenburg #12;#12;Dynamic Analyses of Result Quality in Energy;#12;University of Washington Abstract Dynamic Analyses of Result Quality in Energy-Aware Approximate Programs and auto-tuning tools for studying and experimenting with energy­quality tradeoffs. We also present two

  6. Wind Complementing RPSWind Complementing RPS Michael Schilmoeller

    E-Print Network [OSTI]

    Page 1 Wind Complementing RPSWind Complementing RPS Michael Schilmoeller for the Power Committee 830 SCCT 0 0 170 170 170 170 170 Geothermal 0 0 0 52 104 156 169 and the larger of Wind 0 0 1200 1200 and acquisition are non- decreasing RPS requirements are met Source of "greater of wind and RPS" interpretation 10

  7. Microassembly Technologies for MEMS Michael B. Cohn

    E-Print Network [OSTI]

    Microassembly Technologies for MEMS Michael B. Cohn¤ , Karl F. Böhringer+ ş, J. Mark Noworolski 94720-1774 şUniversity of Washington, Dept. of EE, 234 EE/CSE Bldg., Seattle, WA 98195-2500 § MEMS to extend MEMS beyond the confines of silicon micromachining. This paper surveys research in both serial

  8. Smithsonian Marine Science Network Michael A. Lang

    E-Print Network [OSTI]

    Miller, Scott

    1 Smithsonian Marine Science Network Michael A. Lang January 2010 Smithsonian Office of the Under Secretary for Science #12;2 #12;3 The Smithsonian Marine Science Network is a unique array of laboratories of Panama. Smithsonian Marine Science Network www.si.edu/marinescience #12;4 #12;5 Importance Ocean

  9. Michael Murray, Ph.D. National Wildlife Federation

    E-Print Network [OSTI]

    O'Donnell, Tom

    , U.S. Coal Supply and Demand: 2004 Review #12;5 Switchyard Turbine Boiler Steam Line GeneratorCoal Conveyer belt Cooling Water Energy to consumers Stack Switchyard Turbine Boiler Steam Line Generator in Electricity Generation by Fuel SwitchyardTurbine Boiler Generator Coal-Fired Power Plant with Criteria

  10. FINITE K(ss, 1)'S FOR ARTIN GROUPS Ruth Charney(*)and Michael W. Davis(*)

    E-Print Network [OSTI]

    Charney, Ruth

    (*)and Michael W. Davis(*) To Bill Browder for his sixtieth birthday 1 #12;2 RUTH CHARNEY AND MICHAEL W. DAVIS convex, open set I (the interior

  11. Michael Allen; Dongarra, Jack. [University of Tennessee, Knoxville...

    Office of Scientific and Technical Information (OSTI)

    Toward a new metric for ranking high performance computing systems. Heroux, Michael Allen; Dongarra, Jack. University of Tennessee, Knoxville, TN The High Performance Linpack...

  12. "Hardware Verification for Arithmetic Circuits" Michael Shliselberg, Jordan Kaplan

    E-Print Network [OSTI]

    Mountziaris, T. J.

    "Hardware Verification for Arithmetic Circuits" Michael Shliselberg, Jordan Kaplan Professor Maciej Ciesielski Our research pertains to finding either new or more efficient methods of hardware verification

  13. National Center for Geographic Information and Analysis Measuring and Representing Accessibility in the Information Age

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    National Center for Geographic Information and Analysis Measuring and Representing Accessibility in the Information Age A Specialist Meeting of Project Varenius' Geographies of the Information Society 19 ........................................................................................................11 Visualizing and Representing Information Space Within Geographic Information Science (GIS) Michael

  14. University of Rochester Student Presenters at NCUR 2007 National Conference on Undergraduate Research

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    -fired power plant emissions and fly ash on a regional watershed Castro, Michael Olivares, Beth Political novel and nationalism in 20th century Peru: toward a re-definition and re- presentation of Peruvian

  15. A Really Good Hammer: Quantification of Mass Transfer Using Perfluorocarbon Tracers (475th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Watson, Tom

    2012-02-15

    Brookhaven Lab’s perfluorocarbon tracer (PFT) technology can be viewed as a hammer looking for nails. But, according to Tom Watson, leader of the Lab’s Tracer Technology Group in the Environmental Research and Technology Division (ERTD), “It’s a really good hammer!” The colorless, odorless and safe gases have a number of research uses, from modeling how airborne contaminants might move through urban canyons to help first responders plan their response to potential terrorist attacks and accidents to locating leaks in underground gas pipes. Their extremely low background level — detectable at one part per quadrillion — allows their transport to be easily tracked. Lab researchers used PFTs during the 2005 Urban Dispersion Program field studies in New York City, gathering data to help improve models of how a gas or chemical release might move around Manhattan’s tall buildings and canyons. Closer to home, scientists also used PFTs to make ventilation measurements in Bldg. 400 on the Lab site to provide data to test air flow models used in determining the effects of passive and active air exchange on the levels of indoor and outdoor air pollution, and to determine the effects of an accidental or intentional release of hazardous substances in or around buildings.

  16. What Goes Up Must Come Down: The Lifecycle of Convective Clouds (492nd Brookhaven Lecture)

    SciTech Connect (OSTI)

    Jensen, Michael [BNL Environmental Sciences

    2014-02-19

    Some clouds look like cotton balls and others like anvils. Some bring rain, some snow and sleet, and others, just shade. But, whether big and billowy or dark and stormy, clouds affect far more than the weather each day. Armed with measurements of clouds’ updrafts and downdrafts—which resemble airflow in a convection oven—and many other atmospheric interactions, scientists from Brookhaven Lab and other institutions around the world are developing models that are crucial for understanding Earth’s climate and forecasting future climate change. During his lecture, Dr. Jensen provides an overview of the importance of clouds in the Earth’s climate system before explaining how convective clouds form, grow, and dissipate. His discussion includes findings from the Midlatitude Continental Convective Clouds Experiment (MC3E), a major collaborative experiment between U.S. Department of Energy (DOE) and NASA scientists to document precipitation, clouds, winds, and moisture in 3-D for a holistic view of convective clouds and their environment.

  17. Of Boys and girls and Bumps on the Head (414th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Biegon, Anat

    2006-04-19

    If you are a young man driving your wife and her parents, be very careful. If you are involved in a serious car accident, you and your mother-in-law are most likely to survive. This 'warning' is one conclusion of Anat Biegon's upcoming 414th Brookhaven Lecture, entitled 'Of Boys and Girls and Bumps on the Head.' Joanna Fowler of the Chemistry Department, Director of BNL's Translational Neuroimaging Center, will introduce the lecturer. Biegon, a senior medical scientist in the Medical Department, will detail how research has refined scientists view of gender differences in the prevalence and outcome of diseases affecting the brain. Although it has been well documented that gender affects the prevalence of disorders such as depression and Attention deficit-hyperactivity disorder, recent head injury trials suggest that both age and sex affect the likelihood and degree of recovery from injuries to the brain. While girls are more likely to die following a traumatic brain injury than boys, that result is reversed after the age of 50, when men die twice as often. Although it has been well documented that gender affects the prevalence of disorders such as depression and Attention deficit-hyperactivity disorder, recent head injury trials suggest that both age and sex affect the likelihood and degree of recovery from injuries to the brain. While girls are more likely to die following a traumatic brain injury than boys, that result is reversed after the age of 50, when men die twice as often.

  18. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Schenke, Bjoern

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with each other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.

  19. Discrete Fourier transform in nanostructures using scattering Michael N. Leuenbergera)

    E-Print Network [OSTI]

    Flatte, Michael E.

    Discrete Fourier transform in nanostructures using scattering Michael N. Leuenbergera) and Michael that the discrete Fourier transform DFT can be performed by scattering a coherent particle or laser beam off the initial vector into the two-dimensional potential by means of electric gates, the Fourier

  20. Smart Grid at EKZ Michael Koller, March 3rd 2015

    E-Print Network [OSTI]

    Daraio, Chiara

    Smart Grid at EKZ Michael Koller, March 3rd 2015 #12;§ 2007 ­ 2010 BSc Chemistry ETH § 2010 ­ 2013 Container Transformer Coupling Transformer 7 #12;EKZ's Smart Grid Lab Michael Koller, EKZ / MEST Info 2015 EKZ Smart Grid Lab Battery Storage Demand Side Management Real time PV power predictions Grid

  1. The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Brookhaven National Laboratory

    E-Print Network [OSTI]

    Ohta, Shigemi

    production and energy-related processes. For instance, fuel cells for powering electric vehicles use bi-metallic. Nanostructured materials may enable energy-efficient processes and devices for alternatives to fossil fuels, in the form of efficient catalysts, fuel cells, photovoltaic (solar cell) elements, or solid-state lighting

  2. Michael Valocchi Michael is currently the Global Energy and Utilities Industry Leader for IBM Global

    E-Print Network [OSTI]

    in smart grid strategy, policy and regulatory strategy and large scale technology implementation. He Networked Grid 100" list, a compiling of the top 100 "Movers and Shakers" of the Smart Grid. Michael New Business Models for a Changing World of Energy, Lighting the Way: Understanding the Smart Energy

  3. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    SciTech Connect (OSTI)

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-02-26

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at the same cost without implementing this approach.

  4. FAWNSort: Energy-efficient Sorting of 10GB Vijay Vasudevan, Lawrence Tan, Michael Kaminsky, Michael A. Kozuch,

    E-Print Network [OSTI]

    FAWNSort: Energy-efficient Sorting of 10GB Vijay Vasudevan, Lawrence Tan, Michael Kaminsky, Michael for the 10GB competition tried to use the most energy-efficient platform we could find that could hold-pass sort on more energy efficient hardware (such as Intel Atom- based boards) after experimenting

  5. Transparent electrode requirements for thin film solar cell modules Michael W. Rowell and Michael D. McGehee*

    E-Print Network [OSTI]

    McGehee, Michael

    Transparent electrode requirements for thin film solar cell modules Michael W. Rowell and Michael D The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power to replace conducting oxides in this geometry. Thin film solar cell modules can be manufactured either

  6. Multiple species beam production on laser ion source for electron beam ion source in Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Sekine, M., E-mail: sekine.m.ae@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Riken, Wako, Saitama (Japan); Ikeda, S. [Riken, Wako, Saitama (Japan) [Riken, Wako, Saitama (Japan); Department of Energy Science, Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Hayashizaki, N. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan)] [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Kanesue, T.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-15

    Extracted ion beams from the test laser ion source (LIS) were transported through a test beam transport line which is almost identical to the actual primary beam transport in the current electron beam ion source apparatus. The tested species were C, Al, Si, Cr, Fe, Cu, Ag, Ta, and Au. The all measured beam currents fulfilled the requirements. However, in the case of light mass ions, the recorded emittance shapes have larger aberrations and the RMS values are higher than 0.06 ??mm?mrad, which is the design goal. Since we have margin to enhance the beam current, if we then allow some beam losses at the injection point, the number of the single charged ions within the acceptance can be supplied. For heaver ions like Ag, Ta, and Au, the LIS showed very good performance.

  7. AFFILIATIONS: MILLER--Brookhaven National Laboratory, Up-ton, New York; SLINGO--Environmental Systems Science Centre,

    E-Print Network [OSTI]

    of radiation, latent heat, sensible heat, and carbon dioxide at the surface. The centerpieces of the AMF con- tinuously for periods of 6­12 months and includes a core suite of active remote sensors are a collection of active and passive remote sensors (Table 1) including a vertically pointing 95-GHz Doppler

  8. Comparison of doses to normal brain in patients treated with boron neuron capture therapy at Brookhaven National Laboratory and MIT

    E-Print Network [OSTI]

    Turcotte, Julie Catherine

    2004-01-01

    A number of boron neutron capture therapy (BNCT) clinical trials are currently underway around the world. Due to the small number of patients at each of the individual centers, it is desirable to pool the clinical data ...

  9. PHENIX Conceptual Design Report. An experiment to be performed at the Brookhaven National Laboratory Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e{mu} coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study {pi}{sup 0} and {eta} production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the {phi} meson (via K{sup +}K{sup {minus}} decay), jets, and two-boson correlations. The measurements are made down to small cross sections to allow the study of high p{sub T} spectra, and J/{psi} and {Upsilon} production. The PHENIX collaboration consists of over 300 scientists, engineers, and graduate students from 43 institutions in 10 countries. This large international collaboration is supported by US resources and significant foreign resources.

  10. FAST PHYSICS TESTBED FOR THE FASTER PROJECT W. Lin, Y. Liu, and M. Jensen, Brookhaven National Laboratory

    E-Print Network [OSTI]

    - resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling and skills of physical parameterizations under all weather conditions. The high- resolution modeling (HRM processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP

  11. PHENIX CDR update: An experiment to be performed at the Brookhaven National Laboratory relativistic heavy ion collider. Revision

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The PHENIX Conceptual Design Report Update (CDR Update) is intended for use together with the Conceptual Design Report (CDR). The CDR Update is a companion document to the CDR, and it describes the collaboration`s progress since the CDR was submitted in January 1993. Therefore, this document concentrates on changes, refinements, and decisions that have been made over the past year. These documents together define the baseline PHENIX detector that the collaboration intends to build for operation at RHIC startup. In this chapter the current status of the detector and its motivation are briefly described. In Chapters 2 and 3 the detector and the physics performance are more fully developed. In Chapters 4 through 13 the details of the present design status, the technology choices, and the construction costs and schedules are presented. The physics goals of PHENIX collaboration have remained exactly as they were described in the CDR. Primary among these is the detection of a new phase of matter, the quark-gluon plasma (QGP), and the measurement of its properties. The PHENIX experiment will measure many of the best potential QGP signatures to see if any or all of these physics variables show anomalies simultaneously due to the formation of the QGP.

  12. A Raymond Davis Jr. Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries PrintA New SolarA Present . . .Raymond Davis

  13. U.S. Department of Energy Smart Grid R&D Peer Review Brookhaven National Laboratory

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeed forUnruhDepartment ofM0work

  14. Michael Pesin, OE-10 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing Swimming PoolCommercial IndustrialDepartmentG.Michael Pesin,

  15. Michael Skelly President Clean Line Energy Partners

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Methane Hydrate Program Annual ReportMichael Gardipe -

  16. Michael Zhang | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillionStockpile StewardshipO'Connor AboutMichaelZhang

  17. Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF)

    Broader source: Energy.gov [DOE]

    Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) By: Integrated NPH Team: David Luke, Lead, TJSO Rusty Sprouse, JSA Michael A. Epps, TJSO Richard Korynta, TJSO

  18. Relating Symbolic and Cryptographic Secrecy Michael Backes, Birgit Pfitzmann

    E-Print Network [OSTI]

    Relating Symbolic and Cryptographic Secrecy Michael Backes, Birgit Pfitzmann IBM Zurich Research algebras, e.g., encrypting a message m twice does not yield a different message from the basic message

  19. Central Park in New York City Myer, Michael; Goettel, Russell...

    Office of Scientific and Technical Information (OSTI)

    (LED) Post-Top Lighting at Central Park in New York City Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R. GATEWAY; Central Park; lighting; LED; light-emitting diode; post-top...

  20. CURRICULUM VITAE Michael D. Duffy Director of Graduate

    E-Print Network [OSTI]

    Duffy, Michael D.

    ., Cheltenham, UK, 2008 Duffy, Michael. The Changing Status of Farms and Ranches of the Middle in Food Economic Comparison of Organic and Conventional Grain Crops in a Long-Term Agroecological Research (LTAR

  1. Euclidean Heuristic Optimization Chris Rayner and Michael Bowling

    E-Print Network [OSTI]

    Bowling, Michael

    Euclidean Heuristic Optimization Chris Rayner and Michael Bowling Department of Computing Science University of Alberta Edmonton, Alberta, Canada T6G 2E8 {rayner,bowling}@cs.ualberta.ca Nathan Sturtevant

  2. Multivariate Input Models for Stochastic Simulation Michael E. Kuhl

    E-Print Network [OSTI]

    Kuhl, Michael E.

    Multivariate Input Models for Stochastic Simulation Michael E. Kuhl Department of Industrial are presented for modeling and randomly sampling many of the multivariate probabilistic input processes decision analysis illustrates the proposed technique. Also discussed is a multivariate extension

  3. FINITE K( ; 1)'S FOR ARTIN GROUPS Ruth Charney ( ) and Michael W. Davis ( )

    E-Print Network [OSTI]

    Charney, Ruth

    FINITE K(#25;; 1)'S FOR ARTIN GROUPS Ruth Charney (#3;) and Michael W. Davis (#3;) To Bill Browder RUTH CHARNEY AND MICHAEL W. DAVIS convex, open set I (the interior of the \\Tits cone"). When W is #12

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focused, interdisciplinary research effort to better understand human disease at the cellular level," said Laboratory Director Michael Anastasio. "Integrating measurements,...

  5. National Aeronautics and Space Administration NaNotechNology Roadmap

    E-Print Network [OSTI]

    Waliser, Duane E.

    National Aeronautics and Space Administration · NaNotechNology Roadmap Technology Area 10 Michael A-27 #12;Foreword NASA's integrated technology roadmap, including both technology pull and technology push state of this effort is documented in NASA's DRAFT Space Technology Roadmap, an integrated set

  6. Early Warning System on a National Level Project AMSEL

    E-Print Network [OSTI]

    Flegel, Ulrich

    Early Warning System on a National Level ­ Project AMSEL Martin Apel, Joachim Biskup, Ulrich Flegel.biskup, michael.meier@cs.tu-dortmund.de SAP Research, Vincenz-Prießnitz-Str. 1, 76131 Karlsruhe, Germany ulrich.flegel@sap.com Abstract We present the architecture of an automatic early warning system (EWS) that aims at providing

  7. Proceedings of NHTC'00: 34 th National Heat Transfer Conference

    E-Print Network [OSTI]

    Kandlikar, Satish

    Proceedings of NHTC'00: 34 th National Heat Transfer Conference Pittsburgh, Pennsylvania, August 20 ON SINGLE- AND TWO-PHASE HEAT TRANSFER CHARACTERISTICS IN A MICROCHANNEL Michael S June Graduate Student study investigates the heat transfer characteristics of single and two-phase flows in a 200 m wide

  8. A Hybrid Event-B Study of Lane Centering Richard Banach and Michael Butler

    E-Print Network [OSTI]

    Banach, Richard

    and Michael Butler HyTech [7, 17], Modelica [23] and Simulink [22], among others. Although these techniques

  9. A Hybrid EventB Study of Lane Centering Richard Banach and Michael Butler

    E-Print Network [OSTI]

    Banach, Richard

    and Michael Butler HyTech [7, 17], Modelica [23] and Simulink [22], among others. Although these techniques

  10. Spatial Data Mining, Michael May, Fraunhofer AIS 1 Spatial Data Mining for Customer

    E-Print Network [OSTI]

    Morik, Katharina

    Spatial Data Mining, Michael May, Fraunhofer AIS 1 Spatial Data Mining for Customer Segmentation Data Mining in Practice Seminar, Dortmund, 2003 Dr. Michael May Fraunhofer Institut Autonome Intelligente Systeme #12;Spatial Data Mining, Michael May, Fraunhofer AIS 2 Introduction: a classic example

  11. Brookhaven Lab's broad mission is to produce excellent science. Our scientists conduct research in the physical,

    E-Print Network [OSTI]

    Ohta, Shigemi

    the efficiency and reliability of fuel cells; and a supercon- ducting magnetic energy storage system with near nation faces a grand challenge in finding alternatives to fossil fuels and improving energy efficiency completely new and vastly more efficient energy systems. Outlined below are several areas of research where

  12. 361Computer Physics Communications 33(1984) 361 --366 North-Holland, Amsterdam

    E-Print Network [OSTI]

    Creutz, Michael

    1984-01-01

    FOR INVESTIGATIONS ON THE THREE-DIMENSIONAL ISING MODEL Michael CREUTZ Department of Physics, Brookhaven National, Statistics and Computing Science, Daihousie University, Halifax, Nova Scotia B3H 4H8, Canada and K 10 April 1984; in revised form 8 May 1984 PROGRAM SUMMARY Title ofprogram: ISING Keywords: Ising

  13. Computer Physics Communications 39 (1986) 173--180 173 North-Holland, Amsterdam

    E-Print Network [OSTI]

    Creutz, Michael

    1986-01-01

    FOR THE THREE-DIMENSIONAL ISING MODEL Michael CREUTZ Department of Physics, Brookhaven National Laboratory, Statistics and Computing Science, Daihousie University, Halifax, Nova Scotia B3H 4H8, Canada Received 25 April 1985; in revised form 15 August 1985 PROGRAM SUMMARY Title ofprogram: MICROIS mentary magnets

  14. Computer Physics Communications 30 (1983) 255--257 255 North-Holland Publishing Company

    E-Print Network [OSTI]

    Creutz, Michael

    1983-01-01

    * Michael CREUTZ Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA and K Scotia, Canada B3H 4H8 Received 30 June 1983; in revised form 11 July 1983 ADAPTATION SUMMARY Title calculations. We wish to apply this technique to Adaption number: 0001 SU(3) gauge theory. Programs obtainable

  15. MSc WILD ANIMAL HEALTH / BIOLOGY CURRICULUM MANAGERS LIST Course Directors Mr Michael Waters / Dr Tony Sainsbury (ZSL)

    E-Print Network [OSTI]

    Daley, Monica A.

    MSc WILD ANIMAL HEALTH / BIOLOGY CURRICULUM MANAGERS LIST Course Directors Mr Michael Waters / Dr Tony Sainsbury (ZSL) Module Leader Module Dr Tony Sainsbury / Mr Michael Waters Conservation Biology Dr Tony Sainsbury / Mr Michael Waters The Impact of Disease on Populations Dr Tony Sainsbury / Mr Michael

  16. Ten Things You Didn't Know About the Electron Racetrack at Brookhaven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearch Proposal"National Laboratory |

  17. Ten Things You Didn't Know About the Electron Racetrack at Brookhaven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopment TechnologyTechnology-to-MarketNational

  18. Michael DeSantis | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergy InnovationPortalMichael DeSantis Michael

  19. Carbon Dioxide, Global Warming, and Michael Crichton's "State of Fear"

    E-Print Network [OSTI]

    Rust, Bert W.

    Carbon Dioxide, Global Warming, and Michael Crichton's "State of Fear" Bert W. Rust Mathematical- tioned the connection between global warming and increasing atmospheric carbon dioxide by pointing out of these plots to global warming have spilled over to the real world, inviting both praise [4, 17] and scorn [15

  20. Michael P. Armstrong Department of Zoology. University of New Hampshire

    E-Print Network [OSTI]

    Michael P. Armstrong Department of Zoology. University of New Hampshire Durham, New Hampshire 03824 Estuary, New Hampshire. Both species were abundant in the estuary but exhibited differential use abundant in the low-salinity regions within Great Bay Estuary, New Hampshire. Little else is known oftheir

  1. Oil could grind down fragile state By MICHAEL SASSO

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Oil could grind down fragile state By MICHAEL SASSO msasso@tampatrib.com Published: June 6, 2010 Florida - battered by Mother Nature and man - now must worry about how long the BP oil spill will affect its livelihood. Here's a troubling scenario: A year from now, a giant plume of oil below the water

  2. THE EMERGENCE OF PHONETIC STRUCTURE*' Michael Studdert-Kennedy+

    E-Print Network [OSTI]

    THE EMERGENCE OF PHONETIC STRUCTURE*' Michael Studdert-Kennedy+ Abstract. To explain the unique attempt to answer this question (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967). Liberman in visual research (see Darwin, 1976, and Studdert-Kennedy, 1976, 1980, for reviews), but led eventually

  3. Windowing Time in Digital Libraries Michael G. Christel

    E-Print Network [OSTI]

    Christel, Mike

    Windowing Time in Digital Libraries Michael G. Christel Carnegie Mellon University Pittsburgh, PA, organization, and utility of time references identified in digital library materials, emphasizing how to treat to illustrate the concept of windowing such time in digital library interfaces. Categories and Subject

  4. Java Instrumentation for Dynamic Analysis Jeff Perkins and Michael Ernst

    E-Print Network [OSTI]

    Ernst, Michael

    Java Instrumentation for Dynamic Analysis Jeff Perkins and Michael Ernst MIT CSAIL 14 Nov 2005 09:45Page 1 Jeff PerkinsJava Instrumentation for Dynamic Analysis #12;Java Instrumentation Approaches Instrument source files Java Debug Interface (JDI) Instrument class files 14 Nov 2005 09:45Page 2 Jeff

  5. Instrumenting Executables for Dynamic Analysis Jeff Perkins and Michael Ernst

    E-Print Network [OSTI]

    Ernst, Michael

    Instrumenting Executables for Dynamic Analysis Jeff Perkins and Michael Ernst MIT CSAIL 14 Nov 2005 09:45Page 1 Jeff PerkinsInstrumenting Executables for Dynamic Analysis #12;Compiled Instrumentation:45Page 2 Jeff PerkinsInstrumenting Executables for Dynamic Analysis #12;Source to Source Easy to create

  6. On the Evolution of Lehman's Laws Michael W. Godfrey

    E-Print Network [OSTI]

    Godfrey, Michael W.

    On the Evolution of Lehman's Laws Michael W. Godfrey David R. Cheriton School of Computer Science University of Waterloo, CANADA email: migod@uwaterloo.ca Daniel M. German Department of Computer Science" of software should be paid to think too. Like many other pioneers of computer science, Lehman lived

  7. 39 Geographic Information Science: The Grand Challenges MICHAEL F. GOODCHILD

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    39 Geographic Information Science: The Grand Challenges MICHAEL F. GOODCHILD Many chapters; and the lack of awareness of such issues as #12;3 Geographic Information Science: The Grand Challenges scale technology; in essence the science behind the systems. Over the past twelve years there have been various

  8. Spot Convenience Yield Models for Energy Michael Ludkovski

    E-Print Network [OSTI]

    Ludkovski, Mike

    is more appropriate for energy commodities. Because a commodity can be consumed its price is a combinationSpot Convenience Yield Models for Energy Assets Michael Ludkovski and Ren´e Carmona August 2003 1 Introduction As the energy markets continue to evolve, valuation of energy-linked assets has been one

  9. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  10. The 2001 Trading Agent Competition Michael P. Wellman

    E-Print Network [OSTI]

    Wellman, Michael P.

    to cooperate, by addressing their design energy to a common problem. The Trading Agent Competition (TACThe 2001 Trading Agent Competition Michael P. WellmanÂŁ University of Michigan wellman@umich.edu Amy@research.att.com Peter R. Wurman North Carolina State University wurman@csc.ncsu.edu Abstract The 2001 Trading Agent

  11. Energy-Minimizing Splines in Manifolds Michael Hofer

    E-Print Network [OSTI]

    Pottmann, Helmut

    Energy-Minimizing Splines in Manifolds Michael Hofer Vienna Univ. of Technology Helmut Pottmann Vienna Univ. of Technology Abstract Variational interpolation in curved geometries has many applica of surfaces. This list is more comprehensive than it looks, because it includes variational motion design

  12. THERMOACOUSTIC TOMOGRAPHY WITH AN ARBITRARY ELLIPTIC OPERATOR MICHAEL V. KLIBANOV

    E-Print Network [OSTI]

    1 THERMOACOUSTIC TOMOGRAPHY WITH AN ARBITRARY ELLIPTIC OPERATOR MICHAEL V. KLIBANOV Abstract. Thermoacoustic tomography is a term for the inverse problem of determining of one of initial conditions. In thermoacoustic tomography (TAT) a short radio frequency pulse is sent in a biological tissue [1, 9]. Some energy

  13. Revisiting Smart Dust with RFID Sensor Networks Michael Buettner

    E-Print Network [OSTI]

    Hochberg, Michael

    of applications such as dense environmental monitoring, sensor rich home automation and smart environmentsRevisiting Smart Dust with RFID Sensor Networks Michael Buettner University of Washington Ben and computation platforms that leverage RFID technology can realize "smart-dust" ap- plications that have eluded

  14. Provably Secure and Practical Onion Routing Michael Backes

    E-Print Network [OSTI]

    Goldberg, Ian

    Saarbr¨ucken, Germany mohammadi@cs.uni-saarland.de Abstract--The onion routing network Tor is undoubtedly. INTRODUCTION Over the last few years the onion routing (OR) network Tor [28] has emerged as a successfulProvably Secure and Practical Onion Routing Michael Backes Saarland University and MPI-SWS Saarbr

  15. Provably Secure and Practical Onion Routing Michael Backes

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    @cs.uni-saarland.de Abstract The onion routing network Tor is undoubtedly the most widely employed technology for anony- mous and Predictable Malleability . . . . . . . . . . . . . . . . . . 22 6.2 Security of Tor's Onion AlgorithmsProvably Secure and Practical Onion Routing Michael Backes Saarland University and MPI-SWS, Germany

  16. The deep structure of Axial Volcano Michael West

    E-Print Network [OSTI]

    West, Michael

    available on Web #12;The deep structure of Axial Volcano IV. Magma Reservoir beneath Axial Volcano AxialThe deep structure of Axial Volcano Michael West Thesis defense, June 4, 2001 #12;Motivation What at Axial may be interpreted (NeMO, Neptune) #12;The deep structure of Axial Volcano IV. Magma Reservoir

  17. Setting confidence belts Byron P. Roe and Michael B. Woodroofe

    E-Print Network [OSTI]

    Woodroofe, Michael B.

    Setting confidence belts Byron P. Roe and Michael B. Woodroofe Department of Physics (B credible belts for the mean of a Poisson distribution in the presence of a background the Bayesian framework, these belts are optimal. The credible limits are then examined from a frequentist point

  18. Physics 171. General Relativity. Professor Michael Dine Fall, 2009. Syllabus

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 171. General Relativity. Professor Michael Dine Fall, 2009. Syllabus Contact Information to Physics 171 or go to http : //scipp.ucsc.edu/~dine Homework and solutions and handouts will be posted here of twentieth century physics. As we enter the twenty first century, it is at the forefront of research

  19. Astronomy Advisory Panel Richard Bower, Michael Brown, Anthony

    E-Print Network [OSTI]

    Crowther, Paul

    over 10 years Many UK science areas: dark energy/matter, galactic structure, transients, solar systemAstronomy Advisory Panel Richard Bower, Michael Brown, Anthony Challinor, Chris Evans, Paul O;High priority - maintain innovation Provide science for VLT, ALMA, E-ELT, SKA, GAIA, JWST, Euclid

  20. Thermal preference in Drosophila Michael E. Dillon a,,1

    E-Print Network [OSTI]

    Huey, Raymond B.

    Review Thermal preference in Drosophila Michael E. Dillon a,Ă,1 , George Wang a , Paul A. Garrity b October 2008 Accepted 12 November 2008 Keywords: dTRPA1 Drosophila Thermal preference Fitness Thermal is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly

  1. Compiler Construction Using Scheme Erik Hilsdale J. Michael Ashley

    E-Print Network [OSTI]

    Dybvig, R. Kent

    Compiler Construction Using Scheme Erik Hilsdale J. Michael Ashley R. Kent Dybvig Daniel P {ehilsdal,jashley,dyb,dfried}@cs.indiana.edu Abstract This paper describes a course in compiler design that focuses on the Scheme implementation of a Scheme compiler that generates native assembly code for a real

  2. Google+ Communities as Plazas and Topic Boards Michael J. Brzozowski

    E-Print Network [OSTI]

    Cortes, Corinna

    Google+ Communities as Plazas and Topic Boards Michael J. Brzozowski Google, Inc. Mountain View, CA, Inc. Mountain View, CA, USA edchi@google.com ABSTRACT Researchers have recently been focusing that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

  3. Fuel Cells for a Sustainable Future? Jane Powell, Michael Peters,

    E-Print Network [OSTI]

    Watson, Andrew

    Fuel Cells for a Sustainable Future? Jane Powell, Michael Peters, Alan Ruddell and Jim Halliday March 2004 Tyndall Centre for Climate Change Research Working Paper 50 #12;Fuel Cells for a Sustainable Future? A review of the opportunities and barriers to the development of fuel cell technology Powell, J

  4. Safe Prime Generation with a Combined Sieve Michael J. Wiener

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Safe Prime Generation with a Combined Sieve Michael J. Wiener Cryptographic Clarity, 20 Hennepin St p and (p - 1)/2 are prime. This note describes a method of generating safe primes that is considerably faster than repeatedly generating random primes q until p = 2q + 1 is also prime. Key words. Safe

  5. Safe Prime Generation with a Combined Sieve Michael J. Wiener

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Safe Prime Generation with a Combined Sieve Michael J. Wiener Cryptographic Clarity, 20 Hennepin St p and (p 1)=2 are prime. This note describes a method of generating safe primes that is considerably faster than repeatedly generating random primes q until p = 2q + 1 is also prime. Key words. Safe primes

  6. Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera psosera to the Diesel programming language, entitled Join Diesel. We describe the design decisions and trade-offs made in integrating these concurrency primitives into the Diesel language. We also give a typechecking algorithm

  7. The LCA Problem Revisited Michael A. Bender1

    E-Print Network [OSTI]

    California at Davis, University of

    The LCA Problem Revisited Michael A. Bender1 and Mart´in Farach-Colton2 1 Department of Computer the frequently held notion that opti- mal LCA computation is unwieldy and unimplementable. Interestingly fundamental algorithmic problems on trees is how to find the Least Common Ancestor (LCA) of a pair of nodes

  8. COPYRIGHT NOTICE: James Bessen & Michael J. Meurer: Patent Failure

    E-Print Network [OSTI]

    Landweber, Laura

    COPYRIGHT NOTICE: James Bessen & Michael J. Meurer: Patent Failure is published by Princeton is the United States; the property is U.S. Patent No. 4,528,643, granted in 1985; the owner who initiated ure of patent-related institutions and patent law generally to get the details right.This widespread

  9. A Computer Engineer's Perception of Software Engineering Michael Stumm

    E-Print Network [OSTI]

    Stumm, Michael

    A Computer Engineer's Perception of Software Engineering Michael Stumm Department of Electrical and Computer Engineering University of Toronto Toronto, Canada M5S 1A4 1 Introduction While software many computer engineering professionals. First, industry cries out for software engineering solutions

  10. iTag: A Personalized Blog Tagger Michael Hart

    E-Print Network [OSTI]

    Johnson, Rob

    iTag: A Personalized Blog Tagger Michael Hart Stony Brook University mhart@cs.sunysb.edu Rob@cs.sunysb.edu ABSTRACT We present iTag, a personalized tag recommendation sys- tem for blogs. iTag improves on the state of 1000 blog posts selected at random from a WordPress[4] RSS feed in April 2009, whereas the previously

  11. Identification of Human Gene Core Promoters Michael Q. Zhang1

    E-Print Network [OSTI]

    supplement at http://www.genome.org.] As the Human Genome Project enters its large-scale sequencing phaseIdentification of Human Gene Core Promoters in Silico Michael Q. Zhang1 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA Identification of the 5 -end of human genes requires

  12. Giancarlo Valentn & Michael Arpin Camera Equipped Robotic Arm

    E-Print Network [OSTI]

    Hamblen, James

    Giancarlo Valentín & Michael Arpin Camera Equipped Robotic Arm ECE 4180 Fall 2011 #12;Overview #12;Materials: Use USB camera was attached to the ebox to detect objects in the vicinity of the robot arm. If an object of a predetermined type is detected (e.g. red pyramid) it should be picked up by the arm and moved

  13. Camera Equipped Robotic Arm Giancarlo Valentn & Michael Arpin

    E-Print Network [OSTI]

    Hamblen, James

    Camera Equipped Robotic Arm Giancarlo Valentín & Michael Arpin #12;Overview: Use USB camera with the ebox to detect objects in the vicinity of the robot arm. If an object of a predetermined type is detected (e.g. red ball) it should be picked up by the arm and move to a designated location. Materials: 1

  14. Static and dynamic analysis: synergy and duality Michael D. Ernst

    E-Print Network [OSTI]

    Ernst, Michael

    Static and dynamic analysis: synergy and duality Michael D. Ernst MIT Lab for Computer Science static and dynamic analysis. The first concerns synergies between static and dynamic analysis. Wherever analyses should inspire different ap­ proaches to the same problem. Furthermore, existing static

  15. Static and dynamic analysis: synergy and duality Michael D. Ernst

    E-Print Network [OSTI]

    Ernst, Michael

    Static and dynamic analysis: synergy and duality Michael D. Ernst MIT Lab for Computer Science static and dynamic analysis. The first concerns synergies between static and dynamic analysis. Wherever analyses should inspire different ap- proaches to the same problem. Furthermore, existing static

  16. Theory of active suspensions David Saintillan and Michael J. Shelley

    E-Print Network [OSTI]

    Shelley, Michael

    for a suspension of self-propelled rod-like particles and discuss its stability and nonlinear dynamics. We et al, 1997; Sanchez et al, 2012; Sumino et al, 2012), reactive and driven colloidal suspensionsTheory of active suspensions David Saintillan and Michael J. Shelley Abstract Active suspensions

  17. J. Michael Starling, M.A. Department of Educational Psychology

    E-Print Network [OSTI]

    Wu, Mingshen

    J. Michael Starling, M.A. Department of Educational Psychology Ball State University Muncie.D. Ball State University 2014 (Expected) Educational Psychology (General) Cognate: Research Methodology M.A. Ball State University 2009 School Psychology B.A. Anderson University 2008 Psychology Graduate

  18. Curriculum Vitae Michael Perry Rupen tel.: (575) 835-7248

    E-Print Network [OSTI]

    Groppi, Christopher

    Research Council Senior Research Fellow New Mexico Tech 1999-present Socorro, NM Adjunct faculty in Physics: ­ Andreea Petric [New Mexico Tech 2001]: Velocity Dispersions in Face-on Spi- rals #12;Michael P. Rupen 3 ­ Darrell Osgood [New Mexico Tech 2001]: The Decelerating Jet in the Micro- quasar XTE J1748-288. · Summer

  19. Learning in Boltzmann Trees Lawrence Saul and Michael Jordan

    E-Print Network [OSTI]

    Jordan, Michael I.

    Learning in Boltzmann Trees Lawrence Saul and Michael Jordan Center for Biological January 31, 1995 Abstract We introduce a large family of Boltzmann machines that can be trained using standard gradient descent. The networks can have one or more layers of hidden units, with tree

  20. Food price inflation and children's schooling Michael Grimm

    E-Print Network [OSTI]

    Krivobokova, Tatyana

    Food price inflation and children's schooling Michael Grimm Institute of Social Studies, The Hague the impact of food price inflation on parental decisions to send their children to school. Moreover, I use the fact that food crop farmers and cotton farmers were exposed differently to that shock to estimate

  1. Solar Sail Technology for Nanosatellites Michael D. Souder

    E-Print Network [OSTI]

    West, Matthew

    Solar Sail Technology for Nanosatellites Michael D. Souder Stanford University, Stanford, CA, 94305, USA Matthew West University of Illinois, Urbana, IL, 61801, USA Solar sailing is an attractive means. This allows a solar sail spacecraft to accomplish new classes of missions that would otherwise require

  2. GLASS TRANSITION SEEN THROUGH ASYMPTOTIC JULIEN OLIVIER AND MICHAEL RENARDY

    E-Print Network [OSTI]

    GLASS TRANSITION SEEN THROUGH ASYMPTOTIC EXPANSIONS JULIEN OLIVIER AND MICHAEL RENARDY Abstract of the model at low shear rate changes when a certain parameter (which we call the glass parameter) crosses´ebraud-Lequeux model, a Fokker-Planck-like description of soft glassy material, exhibits such a glass transition

  3. Learning about ozone depletion Paul J. Crutzen & Michael Oppenheimer

    E-Print Network [OSTI]

    Oppenheimer, Michael

    Learning about ozone depletion Paul J. Crutzen & Michael Oppenheimer Received: 12 January 2007 ozone depletion has been much studied as a case history in the interaction between environmental science the photochemistry of ozone in order to illustrate how scientific learning has the potential to mislead policy makers

  4. Scaling security in pairing-based protocols Michael Scott

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Scaling security in pairing-based protocols Michael Scott School of Computing Dublin City potential advantage in smart-card and embedded applications ­ security can be scaled up while continuing been addressed by Koblitz and Menezes [18] and Granger, Page and Smart [15]. As will be seen our

  5. Latent-Descriptor Clustering for Unsupervised POS Induction Michael Lamar

    E-Print Network [OSTI]

    Bienenstock, Elie

    Latent-Descriptor Clustering for Unsupervised POS Induction Michael Lamar Department of Mathematics unsupervised, POS tagging, based on an adaptation of the EM algorithm for the esti- mation of a Gaussian evaluation criteria for unsupervised POS tagging, LDC shows a substantial im- provement in performance over

  6. Nondecreasing Lyapunov functions Michael Defoort, Mohamed Djemai and Stephan Trenn

    E-Print Network [OSTI]

    Trenn, Stephan

    Nondecreasing Lyapunov functions Michael Defoort, Mohamed Djemai and Stephan Trenn Abstract-- We propose the notion of nondecreasing Lyapunov functions which can be used to prove stability or other prop systems. We illustrate the concept by a general construction of such a nondecreasing Lyapunov function

  7. Visualizing Individual Carbon Nanotubes with Optical Microscopy Michael A. Novak,

    E-Print Network [OSTI]

    with Ag or TiO2 nanocrystals.21,22 Although this approach is high throughput, the deposited materialVisualizing Individual Carbon Nanotubes with Optical Microscopy Michael A. Novak, Sumedh Surwade carbon nanotubes (CNTs) on a silicon wafer using a conventional optical microscope. We show

  8. Declarative & Procedural Goals in Intelligent Agent Systems Michael Winikoff

    E-Print Network [OSTI]

    Padgham, Lin

    Science and Information Technology RMIT University Melbourne, Australia. winikoff@cs.rmit.edu.au LinDeclarative & Procedural Goals in Intelligent Agent Systems Michael Winikoff School of Computer is that of goals (Winikoff et al., 2001). Goals have two aspects: declarative, where a goal is a description

  9. Router Placement in Wireless Sensor Networks Michael Ahlberg

    E-Print Network [OSTI]

    Vlassov, Vladimir

    Router Placement in Wireless Sensor Networks Michael Ahlberg School of Information be met by placing as few routers as possible. I. INTRODUCTION Wireless sensor networks are a relatively Electric Corporation Amagasaki, Japan Email: Yasui.Terumasa@db.mitsubishielectric.co.jp Abstract-- Wireless

  10. Automatic structures on central Walter D. Neumann and Michael Shapiro #

    E-Print Network [OSTI]

    Neumann, Walter

    [Page 1] Automatic structures on central extensions Walter D. Neumann and Michael Shapiro # Abstract. We show that a central extension of a group H by an abelian group A has an automatic structure with A a rational subgroup if and only if H has an automatic structure for which the extension is given

  11. Testing Uniformity versus a Monotone Density Michael Woodroofe 1

    E-Print Network [OSTI]

    Sun, Jiayang

    Testing Uniformity versus a Monotone Density Michael Woodroofe 1 The University of Michigan Jiayang Sun 2 Case Western Reserve University Abstract The paper is concerned with testing uniformity versus a monotone density. This problem arises at least in two important contexts, after transformations, testing

  12. INVARIANTS OF TWISTWISE FLOW EQUIVALENCE MICHAEL C. SULLIVAN

    E-Print Network [OSTI]

    Sullivan, Michael

    equivalent suspension flows. The suspension flow is a one­dimension flow obtained by taking the cross product an example. The map is just the horseshoe map. A piece of an orbit of a suspension flow is shown. The sectionINVARIANTS OF TWIST­WISE FLOW EQUIVALENCE MICHAEL C. SULLIVAN Abstract. Flow equivalence

  13. MARKET-ORIENTED PROGRAMMING: SOME EARLY LESSONS MICHAEL P. WELLMAN

    E-Print Network [OSTI]

    Wellman, Michael P.

    CHAPTER 4 MARKET-ORIENTED PROGRAMMING: SOME EARLY LESSONS MICHAEL P. WELLMAN Dept of Electrical of this chapter are from a paper presented at the Fifth International CGE Modeling Conference Waterloo, Ontario of the market-based schemes that have been proposed for distributed re- source allocation have focused

  14. Operating Costs for Trucks David Levinson*, Michael Corbett, Maryam Hashami

    E-Print Network [OSTI]

    Levinson, David M.

    Operating Costs for Trucks David Levinson*, Michael Corbett, Maryam Hashami David Levinson Author Abstract This study estimates the operating costs for commercial vehicle operators in Minnesota. A survey of firms that undertake commercial truck road movements was performed. The average operating cost

  15. THE PLANE OF THE KUIPER BELT Michael E. Brown

    E-Print Network [OSTI]

    Brown, Michael E.

    THE PLANE OF THE KUIPER BELT Michael E. Brown Division of Geological and Planetary Sciences of the Kuiper belt. The derived plane has an inclination with respect to the ecliptic of 1 .86 and an ascending node of 81 .6, with a 1 error in pole position of the plane of 0 .37. The plane of the Kuiper belt

  16. The largest Kuiper belt objects Michael E. Brown

    E-Print Network [OSTI]

    Brown, Michael E.

    The largest Kuiper belt objects Michael E. Brown California Institute of Technology ABSTRACT While for the first decade of the study of the Kuiper belt, a gap existed between the sizes of the relatively small and faint Kuiper belt objects (KBOs) that were being studied and the largest known KBO, Pluto, recent years

  17. PAINTING LIGHTING AND VIEWING EFFECTS Cindy Grimm, Michael Kowalski

    E-Print Network [OSTI]

    Grimm, Cindy

    PAINTING LIGHTING AND VIEWING EFFECTS Cindy Grimm, Michael Kowalski Washington University in St-photorealistic rendering Abstract: We present a system for painting how the appearance of an object changes under different lighting and viewing conditions. The user paints what the object should look like under different lighting

  18. The City of New York Mayor Michael R. Bloomberg

    E-Print Network [OSTI]

    Laughlin, Robert B.

    The City of New York Mayor Michael R. Bloomberg A GREENER, GREATER NEW YORK PROGRESS REPORT 2009Yorkerslive withina10-minutewalkofapark Cleanupallcontaminatedland inNewYorkCity Open90%ofourwaterwaysfor-termreliability Improvetraveltimesbyadding transitcapacityformillionsmore residents,visitors,andworkers Reachafull"stateofgoodrepair"on NewYork

  19. Statistical Affect Detection in Collaborative Chat Michael Brooks1

    E-Print Network [OSTI]

    Aragon, Cecilia R.

    Statistical Affect Detection in Collaborative Chat Michael Brooks1 , Katie Kuksenok2 , Megan K , Paul Harris1 , Cecilia R. Aragon1 1 Human Centered Design & Engineering, 2 Computer Science. We present a pipeline of natural language processing and machine learning techniques that can be used

  20. Bounds on Scattering Poles in One Dimension Michael Hitrik

    E-Print Network [OSTI]

    Hitrik, Michael

    1 Bounds on Scattering Poles in One Dimension Michael Hitrik Department of Mathematics, University-exponentially decaying potentials on the real line sharp upper bounds on the counting function of the poles in discs are derived and the density of the poles in strips is estimated. In the case of nonnegative potentials