Powered by Deep Web Technologies
Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

SciTech Connect

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

W.C. Adams

2010-05-24T23:59:59.000Z

2

INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

Science Conference Proceedings (OSTI)

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

W.C. Adams

2010-07-21T23:59:59.000Z

3

U.S. Department of Energy Miamisburg Closure Project  

Office of Legacy Management (LM)

Miamisburg Closure Project 1075 Mound Road Miamisburg, Ohio 45342 Mr. Tim Fischer U.S. Environmental Protection Agency 77 W. Jackson Boulevard, SR-6J Chicago, JL 60604 MAY 5 2005 Mr. Brian Nickel Ohio Environmental Protection Agency 401 E. Fifth Street Dayton, OH 45402 Dear M r . Fischer & Mr..Nickel: r/ MCP-20 1-05 Enclosed please find the "Phase I Remedy (Monitored Natural Attenuation) Groundwater Monitoring Plan (Final, dated September 29,2004)." As you know, this monitoring plan was prepared in accordance with the Phase I Parcel Record of Decision (ROD), and was approved by the Mound 2000 Core Team on September 29,2004. The enclosed plan requires DOE to submit a draft annual report to the regulators, by March 3 1st of each year, that documents the progress of the M

4

Project Management Approach to Transition of the Miamisburg Closure Project From Environmental Cleanup to Post-Closure Operations  

SciTech Connect

The U.S. Department of Energy (DOE) used a project management approach to transition the Miamisburg Closure Project from cleanup by the Office of Environmental Management (EM) to post-closure operations by the Office of Legacy Management (LM). Two primary DOE orders were used to guide the site transition: DOE Order 430.1B, Real Property Asset Management, for assessment and disposition of real property assets and DOE Order 413.3, Program and Project Management for Acquisition of Capital Assets, for project closeout of environmental cleanup activities and project transition of post-closure activities. To effectively manage these multiple policy requirements, DOE chose to manage the Miamisburg Closure Project as a project under a cross-member transitional team using representatives from four principal organizations: DOE-LM, the LM contractor S.M. Stoller Corporation, DOE-EM, and the EM contractor CH2M Hill Mound Inc. The mission of LM is to manage the Department's post-transition responsibilities and long-term care of legacy liabilities and to ensure the future protection of human health and the environment for cleanup sites after the EM has completed its cleanup activities. (authors)

Carpenter, C.P. [U.S. Department of Energy, Office of Legacy Management Research Ridge 4, MS-K09, 3600 Collins Ferry Road, Morgantown, WV 26507 (United States); Marks, M.L.; Smiley, S.L. [U.S. Department of Energy, Office of Environmental Management, Chiquita Building, 250 E. 5th Street, Cincinnati, OH 45202 (United States); Gallaher, D.M.; Williams, K.D. [S.M. Stoller Corporation, 955 Mound Road, Miamisburg, Ohio 45342 (United States)

2006-07-01T23:59:59.000Z

5

Groundwater Strategy for the Ou-1 Landfill Area, Miamisburg Closure Project, Ohio  

SciTech Connect

The general objective of the study was to assist the Miamisburg Closure Project in their efforts to develop and refine a comprehensive, technically sound strategy for remediation of groundwater contaminated with trichloroethylene and other volatile organic compounds in the vicinity of the landfill in Operable Unit 1. To provide the necessary flexibility to the site, regulators and stakeholders, the resulting evaluation considered a variety of approaches ranging from ''no further action'' to waste removal. The approaches also included continued soil vapor extraction, continued groundwater pump and treat, monitored natural attenuation, biostimulation, partitioning barriers, hydrologic modification, and others.

LOONEY, BRIANB.

2004-01-01T23:59:59.000Z

6

Independent Verification Survey Report for the Operable Unit-1 Miamisburg Closure Project, Miamisburg, OH  

SciTech Connect

The objectives of the independent verification survey were to confirm that remedial actions have been effective in meeting established release criteria and that documentation accurately and adequately describes the current radiological and chemical conditions of the MCP site.

Weaver, P.

2008-03-17T23:59:59.000Z

7

Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio  

Science Conference Proceedings (OSTI)

CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the Miamisburg Mound Community Improvement Corporation for industrial reuse In the first two and a half years the project has successfully completed more demolition work, more environmental remediation work and more waste shipping than any other period in site history while improving the safety statistics of the site significantly. CH2M HILL Mound established a safety culture to promote line management safety responsibility and continues to place a high emphasis on safety performance even in an accelerated closure environment. The Occupational Safety and Health Administration (OSHA), Time Restricted Case (TRC) and Days Away and Restricted Time (DART) rates improved 76% and 90%, respectively, since contract start from 2002 to 2005. These rates are the lowest the site has ever seen. The site has also gone over 1 million hours without a Lost Workday Case accident. Covered below are the key strategies for safety improvement and project delivery that have been successful at the Miamisburg Closure Project are presented. (authors)

Lehew, J.G.; Bradford, J.D.; Cabbil, C.C. [CH2M Hill / CH2M Hill Mound, Inc., 1075 Mound Road, Miamisburg, OH 45343 (United States)

2006-07-01T23:59:59.000Z

8

Independent Verification Survey Report for the Offsite Portion of the Potential Release Site-7 Abandoned Sanitary Line, Miamisburg Closure Project, Miamisburg, Ohio  

SciTech Connect

The ORISE objective was to confirm that the remedial action process implemented by the contractor was in accordance with the PRS-7 Work Package. Following removal of the sanitary line, the soil beneath the line would be sampled to determine if remediation was required (ARC 2007a).

P.C. Weaver

2008-08-15T23:59:59.000Z

9

Office of Inspector General audit report on credit card usage at the Ohio Field Office and the Fernald and Miamisburg Environmental Management Projects  

SciTech Connect

In 1994 the Department of Energy (Department) obtained the services of Rocky Mountain BankCard System, through the use of a General Services Administration contract, as a means for the Department and its contractors to make small purchases. The use of credit cards was expected to simplify small purchase procedures and improve cash management. The Ohio Field Office (Field Office) uses the credit card system and oversees usage by its area offices. Contractors under the Field Office also use the credit card system to make small purchases. The Office of Inspector General (OIG) has issued one audit report concerning the use of credit cards. In April 1996, the OIG issued Report WR-B-96-06, Audit of Bonneville Power Administration`s Management of Information Resources. The audit concluded that improvements could be made in implementing credit card and property procedures in Bonneville`s management of computer-related equipment. Specifically, many credit card purchases were made by employees whose authority to buy was not properly documented, and the purchasing files often lacked invoices that would show what was purchased. Additionally, some cardholders split purchases to avoid credit card limits. The objective of this audit was to determine whether the Field Office, Fernald and Miamisburg Environmental Management Projects, Fluor Daniel, and B and W were using credit cards for the appropriate purposes and within the limitations established by Federal and Departmental regulations.

1999-03-01T23:59:59.000Z

10

Ohio Closure Projects Ceremony | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Closure Projects Ceremony Ohio Closure Projects Ceremony Ohio Closure Projects Ceremony January 19, 2007 - 9:59am Addthis Remarks for Energy Secretary Samuel Bodman Thank you, Alan Boeckmann for that kind introduction. It is a privilege to be with you today. I am pleased to be joined by my cabinet colleague Stephen Johnson, the administrator of the Environmental Protection Agency. It's also good to see Sen. George Voinovich. Senator, thank you for your leadership on so many issues critical to America's energy security and for all you've done to make today a reality. I'd also like to recognize the thousands of dedicated people, many of whom are with us today, involved in the cleanup projects here at Fernald and in Ashtabula and Columbus. If not for your tireless efforts, as well as the support of many, federal,

11

Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline  

Science Conference Proceedings (OSTI)

This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

Gelles, C. M.; Sheppard, F. R.

2002-02-26T23:59:59.000Z

12

Independent Oversight Special Review, Rocky Flats Closure Project Site -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Review, Rocky Flats Closure Project Special Review, Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats Closure Project Site The U.S. Department of Energy (DOE) Office of Independent Environment, Safety, and Health Oversight (EH-2), within the Office of Environment, Safety and Health, conducted an independent oversight Special Review at the Rocky Flats Closure Project (RFCP). The Special Review was conducted at the request of the Rocky Flats Field Office (RFFO), which is the DOE organizational element with responsibility for the RFCP (formerly known as the Rocky Flats Environmental Technology Site). Kaiser-Hill Company, LLC (KH) is the prime contractor for the RFCP. RFCP's project-oriented approach and aggressive scheduling have resulted

13

Independent Oversight Special Review, Rocky Flats Closure Project Site -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Special Review, Rocky Flats Closure Project Oversight Special Review, Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats Closure Project Site The U.S. Department of Energy (DOE) Office of Independent Environment, Safety, and Health Oversight (EH-2), within the Office of Environment, Safety and Health, conducted an independent oversight Special Review at the Rocky Flats Closure Project (RFCP). The Special Review was conducted at the request of the Rocky Flats Field Office (RFFO), which is the DOE organizational element with responsibility for the RFCP (formerly known as the Rocky Flats Environmental Technology Site). Kaiser-Hill Company, LLC (KH) is the prime contractor for the RFCP.

14

River Corridor Closure Project Partnering Performance Agreement  

Energy.gov (U.S. Department of Energy (DOE))

WCH and DOE have a mission to complete the clsoure of the Hanford River Corridor by 2015. Early and efficient completion of this work scope law the River Corridor Closure Contract (DE-AC06...

15

Miamisburg, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Miamisburg, Ohio: Energy Resources Miamisburg, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6428362°, -84.2866083° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6428362,"lon":-84.2866083,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Special Review of the Rocky Flats Closure Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April April 2001 Special Review of the Integrated Safety Management ISM OVERSIGHT Table of Contents EXECUTIVE SUMMARY ............................................................................... 1 1.0 INTRODUCTION ...................................................................................... 6 2.0 FOCUSED REVIEW OF THE INTEGRATED WORK CONTROL PROCESS AND LINE MANAGEMENT OVERSIGHT .............................................................................................. 8 2.1 Background ...................................................................................... 8 2.2 Line Management Oversight and Selected Other Management Systems .................................................................... 10 2.3 Rocky Flats Closure Project Integrated Work Control Process

17

Site wide integration of the Rocky Flats closure project  

Science Conference Proceedings (OSTI)

The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

Burdge, L.F.; Golan, P.

1998-06-01T23:59:59.000Z

18

Miamisburg Mound Community Improvement Corp | Open Energy Information  

Open Energy Info (EERE)

Miamisburg Mound Community Improvement Corp Miamisburg Mound Community Improvement Corp Jump to: navigation, search Name Miamisburg Mound Community Improvement Corp Address 965 Capstone Dr, Suite 480 Place Miamisburg, Ohio Zip 45342-6714 Sector Buildings, Efficiency, Geothermal energy, Services, Solar, Wind energy Product Business and legal services; Energy audits/weatherization; Energy provider: power production; Engineering/architectural/design;Installation;Investment/finances; Manufacturing; Research and development; Trainining and education;Other:Economic Development Phone number 937-865-4462 Website http://www.mound.com Coordinates 39.6304472°, -84.2903471° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6304472,"lon":-84.2903471,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225  

SciTech Connect

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

Jolly, R

2009-01-06T23:59:59.000Z

20

Fernald closure project - Lessons learned in the execution of this successful project, completed October 2006  

Science Conference Proceedings (OSTI)

Available in abstract form only. Full text of publication follows: This paper explores the history and lessons learned on the United States' Department of Energy's (DoE's) Fernald Closure Project - from the completion of the uranium-production mission to the implementation of the Records of Decision defining the cleanup standards and the remedies that were achieved. Cleaning up Fernald and returning it to the people of Ohio was a $4.4 billion dollar mega environmental-remediation project that was completed in October 2006. During a period of nearly 37 years, Fernald produced 250,000 tons of high-purity, low-enriched uranium for the U.S. defense program, generating more than six million tons of liquid and solid waste as it carried out its Cold War mission. The facility was shut down in 1989 and clean up began in 1992, when Fluor won the contract to clean up the site. The project comprised four phases: 1. Determining the extent of damage to the environment and groundwater at, and adjacent to, the production facilities 2. Selecting cleanup criteria - final end states that had to be met to protect human health and the environment 3. Selecting and implementing the remedial actions that would meet the cleanup goals 4. Doing the work safely, compliantly and cost-effectively. In the project's early stages, there were strained relationships and total distrust between the local community and the DOE as a result of aquifer contamination and potential health effects to the workers and local residents. (authors)

Murphy, Cornelius [Fluor Hanford Inc. P.O. Box 1000, Richland WA 99352 (United States); Reising, Johnny [Department of Energy - DOE (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Bush Administration to Expand Department of Energy Former Worker...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa) National Nuclear Security Administration (Kansas City Plant; Kansas City, Missouri) Mound Closure Project (Miamisburg, Ohio) Fernald Closure Project (Fernald, Ohio)...

22

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closure Closure Sherri Ross Waste Removal and Tank Closure Waste Disposition Project Programs Division Savannah River Operations Office Presentation to the DOE HLW Corporate Board 2  Overview and Status of SRS Tank Closure Program  Issues/Challenges  Communications  Schedule Performance  Ceasing Waste Removal  Compliance with SC Water Protection Standards  Questions? Topics 3 Overview of SRS Tank Closure Program  Two Tank Farms - F Area and H Area  Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act  Three agency Federal Facility Agreement (FFA)  DOE, SCDHEC, and EPA  51 Tanks  24 old style tanks (Types I, II and IV)  Do not have full secondary containment  FFA commitments to close by 2022  2 closed in 1997

23

1  

Office of Legacy Management (LM)

77-2005 Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Miamisburg Closure Project, Mound Site, Miamisburg, Ohio Volume I: (LTS&M Plan and referenced...

24

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

25

Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

Science Conference Proceedings (OSTI)

This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

Evans, Susan Kay; Orchard, B. J.

2002-01-01T23:59:59.000Z

26

Vendor Assessment for the Waste Package Closure System (Yucca Mtn. Project)  

Science Conference Proceedings (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) has been tasked with developing, designing, constructing, and operating a full-scale prototype of the work package closure system. As a precursor to developing the conceptual design, all commercially available equipment was assessed to identify any existing technology gaps. This report presents the results of that assessment for all major equipment.

Colleen Shelton-Davis

2003-09-01T23:59:59.000Z

27

Vendor Assessment for the Waste Package Closure System (Yucca Mountain Project)  

Science Conference Proceedings (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) has been tasked with developing, designing, constructing, and operating a full-scale prototype of the work package closure system. As a precursor to developing the conceptual design, all commercially available equipment was assessed to identify any existing technology gaps. This report presents the results of that assessment for all major equipment.

Shelton-Davis, C.V.

2003-09-26T23:59:59.000Z

28

Enforcement Letter, CH2M Hill Mound, Inc - December 22, 2004...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to a Radioactive Contamination Event during Remediation Activities at the Miamisburg Closure Project My office has completed an evaluation of the facts and circumstances...

29

CERCLA - Site Selector  

NLE Websites -- All DOE Office Websites (Extended Search)

(LEHR) Fernald Preserve Monticello Site Mound Site - Miamisburg Closure Project Rocky Flats Site Weldon Spring Search the Administrative Record The White House USA.gov E-Gov...

30

CERCLA - Site Selector  

Office of Legacy Management (LM)

Monticello Site Mound Site - Miamisburg Closure Project Rocky Flats Site Weldon Spring Search the Administrative Record The White House USA.gov E-Gov Information Quality FOIA...

31

The Effect of the Recovery Act on the River Corridor Closure Project: Lessons Learned  

SciTech Connect

This summary report provides a high-level lessons learned by WCH of the impact to its project performance. The context is limited to the WCH project alone.

Mackay, S. M.

2012-07-31T23:59:59.000Z

32

CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183  

SciTech Connect

Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

Thaxton, D; Timothy Baughman, T

2008-01-16T23:59:59.000Z

33

Transition of the U.S. Department of Energy Fernald Closure Project (FCP) from Cleanup to Legacy Management  

Science Conference Proceedings (OSTI)

The Fernald Closure Project encompasses a 1,050-acre tract of land northwest of Cincinnati, Ohio. Dedicated to the production of uranium feed materials from 1952 until 1989, the site was subsequently included on the U.S. Environmental Protection Agency's National Priorities List and slated for cleanup. Except for contaminated ground water, cleanup of the site will be completed in 2006; remediation of the aquifer will continue for 20 years. Transition of the project from the U.S. Department of Energy Office of Environmental Management to the Office of Legacy Management will be effected when site cleanup is completed, surface restoration is complete, and aquifer remediation is on-going. Office of Legacy Management activities will focus on the monitoring and maintenance of the on-site disposal facility, enforcement of restrictions on site access and use, and the protection of natural and cultural resources. The Site Transition Plan, developed in accordance with Site Transition Framework guidance, identifies organizational and financial responsibilities for attaining closeout. A Transition Matrix details more than 1,000 activities necessary for site transition and allows each task to be tracked. Responsibility Transition Plans address major areas of scope to be transferred, such as records and information management, infrastructure, and environmental monitoring. Much effort has been placed on the retention of staff to perform the identified Office of Legacy Management scope. (authors)

Powell, J. [U.S. Department of Energy, Office of Legacy Management, 11003 Hamilton-Cleves Highway, Ross, OH 45061 (United States); Craig, J.R. [U.S. Department of Energy, Office of Legacy Management, Bruceton, PA (United States); Jacobson, C. [S.M. Stoller Corporation, 2597 B3/4 Road Grand Junction, CO 81503 (United States)

2006-07-01T23:59:59.000Z

34

Sulimar Queen environmental restoration project closure package Sandia environmental stewardship exemplar.  

SciTech Connect

In March 2008, Sandia National Laboratories (Sandia), in partnership with the Bureau of Land Management, Roswell Field Office, completed its responsibilities to plug and abandon wells and restore the surface conditions for the Sulimar Queens Unit, a 2,500 acre oil field, in Chaves County, Southeast New Mexico. Sandia assumed this liability in an agreement to obtain property to create a field laboratory to perform extensive testing and experimentation on enhanced oil recovery techniques for shallow oil fields. In addition to plugging and abandoning 28 wells, the project included the removal of surface structures and surface reclamation of disturbed lands associated with all plugged and abandoned wells, access roads, and other auxiliary facilities within unit boundaries. A contracting strategy was implemented to mitigate risk and reduce cost. As the unit is an important wildlife habitat for prairie chickens, sand dune lizards, and mule deer, the criteria for the restoration and construction process were designed to protect and enhance the wildlife habitat. Lessons learned from this project include: (1) extreme caution should be exercised when entering agreements that include future liabilities, (2) partnering with the regulator has huge benefits, and (3) working with industry experts, who were familiar with the work, and subcontractors, who provided the network to complete the project cost effectively.

Tillman, Jack B.

2008-09-01T23:59:59.000Z

35

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topics 3 Overview of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control...

36

1  

Office of Legacy Management (LM)

77-2005 77-2005 Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Miamisburg Closure Project, Mound Site, Miamisburg, Ohio Volume I: (LTS&M Plan and referenced LM Plans and information) September 2005 Information in this document is subject to revision until the EM mission is completed at the Miamisburg Closure Project at the Mound Site S0136900 Draft Document U.S. Department of Energy LTS&M Plan⎯Mound Site, Miamisburg, Ohio September 2005 Doc. No. S0136900 Page iii Contents Acronyms...................................................................................................................................... vii 1.0 Purpose and Objective........................................................................................................1-1

37

FINAL CLOSURE PLAN SURFACE IMPOUNDMENTS CLOSURE, SITE 300  

SciTech Connect

Lawrence Livermore National Laboratory of the University of California (LLNL) operates two Class II surface impoundments that store wastewater that is discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater is the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years has significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners are nearing the end of their service life. The purpose of this project is to clean close the surface impoundments and provide new wastewater storage using portable, above ground storage tanks at six locations. The tanks will be installed prior to closure of the impoundments and will include heaters for allowing evaporation during relatively cool weather. Golder Associates (Golder) has prepared this Final Closure Plan (Closure Plan) on behalf of LLNL to address construction associated with the clean closure of the impoundments. This Closure Plan complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR {section}21400). As required by these regulations and guidance, this Plan provides the following information: (1) A site characterization, including the site location, history, current operations, and geology and hydrogeology; (2) The regulatory requirements relevant to clean closure of the impoundments; (3) The closure procedures; and, (4) The procedures for validation and documentation of clean closure.

Lane, J E; Scott, J E; Mathews, S E

2004-09-29T23:59:59.000Z

38

Achieving closure at Fernald  

Science Conference Proceedings (OSTI)

When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

Bradburne, John; Patton, Tisha C.

2001-02-25T23:59:59.000Z

39

STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114  

SciTech Connect

Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

2008-12-31T23:59:59.000Z

40

Closure Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closure Sites Closure Sites Closure Sites View a list of the compliance agreements for the many EM closure sites, such as Mound and Rocky Flats, below. Associated summaries are also included. Pinellas Remediation Agreement Pinellas Remediation Agreement Summary Maxey Flats Consent Decree -Part 1, April 18, 1996 Maxey Flats Consent Decree -Part 2, April 18, 1996 Maxey Flats Consent Decree April 18, 1996 Summary Monticello Mill site Federal Facility Agreement, December 22, 1988 Monticello Mill site Federal Facility Agreement, December 22, 1988 Summary Battelle Columbus Laboratories Director's Final Findings and Orders, October 4, 1995 Battelle Columbus Laboratories Director's Final Findings and Orders, October 4, 1995 Summary Fernald Environmental Management Project Consent Agreement and Final Order,

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan  

SciTech Connect

This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

K.J. Kroegler, M. Truex, D.J. McBride

2006-01-19T23:59:59.000Z

42

Auidt Report: IG-0721 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2006 Follow-up Audit Report on the Department of Energy's Performance of the Miamisburg Closure Project The objective of this audit was to determine whether the Department will...

43

Ig-0501.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 AUDIT REPORT REMEDIATION AND CLOSURE OF THE MIAMISBURG ENVIRONMENTAL MANAGEMENT PROJECT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES MAY 2001 DEPARTMENT OF ENERGY Washington, DC 20585 May 2, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Remediation and Closure of the Miamisburg Environmental Management Project" BACKGROUND With the end of the cold war, the Miamisburg Environmental Management Project (MEMP), formerly known as the Mound Plant, was transferred by the Department of Energy (Department), from Defense Programs to Environmental Management. The emphasis at MEMP

44

Washington Closure Hanford, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CERTIFIED MAIL RETURN RECEIPT REQUESTED Mr. Neil Brosee President Washington Closure Hanford, LLC 2620 Fermi Avenue Richland, Washington 99354 WEA-201 0-02 Dear Mr. Brosee: This...

45

Rulison Site Surface Closure Report  

Office of Legacy Management (LM)

Nevada Operations Office Nevada Operations Office DOE/NV- -510 UC-700 Nevada Environmental Restoration Project Rulison Site Surface Closure Report July 1998 Environmental Restoration Division DOE/NV--510 UC-700 RULISON SITE SURFACE CLOSURE REPORT DOE Nevada Operations Office Las Vegas, Nevada July 1998 This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161, telephone (703) 487-4650. i Table of Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

Rocky Flats Closure Unit Cost Data  

SciTech Connect

The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

Sanford, P.C. [1129 Business Parkway South, Westminister, MD (United States); Skokan, B. [United States Department of Energy, Washington, DC (United States)

2007-07-01T23:59:59.000Z

47

Power Plant Closure Guidebook  

Science Conference Proceedings (OSTI)

Organizations that are planning to decommission an aged power plant face a host of issues that must be addressed and many tasks that must be properly executed in order to ensure a successful closure of the facility.

2010-10-20T23:59:59.000Z

48

Final Clean Closure Report Site 300 Surface Impoundments Closure Lawrence Livermore National Laboratory Livermore, California  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory operated two Class II surface impoundments that stored wastewater that was discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater was the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners were nearing the end of their service life. The purpose of this project was to clean close the surface impoundments and provide new wastewater storage using above ground storage tanks at six locations. The tanks were installed and put into service prior to closure of the impoundments. This Clean Closure Report (Closure Report) complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR section 21400). As required by these regulations and guidance, this Closure Report provides the following information: (1) a brief site description; (2) the regulatory requirements relevant to clean closure of the impoundments; (3) the closure procedures; and (4) the findings and documentation of clean closure.

Haskell, K

2006-02-14T23:59:59.000Z

49

Mine closures yield fields of green  

SciTech Connect

The cleanup and reclamation of North America's defunct mines or those set for closure will be extremely costly, estimated to be over one trillion dollars within the next ten to twenty years. In Canada, mines are controlled by the provinces and British Columbia began reclamation of major coal mines and hard rock metal mines in 1969. Other provinces have followed suit and in 1991, Ontario ruled that new and existing mines and advanced exploration projects must be designed for closuer. Many US states are enacting similar laws and the EPA plans to require mines to submit closure plans with their permit applications. Cleanup includes the sale of usable equipment, salvage of the rest, dismantling buildings, treatment and disposal of process chemicals, hazardous materials and tainted soils as well as recontouring and revegetation of the sites. Currently, at Elliot Lake in Canada, three of Canada's largest underground uranium mines are undergoing the process of closure.

Jones, S.

1993-01-11T23:59:59.000Z

50

Closure operators for order structures  

Science Conference Proceedings (OSTI)

We argue that closure operators are fundamental tools for the study of relationships between order structures and their sequence representations. We also propose and analyse a closure operator for interval order structures.

Ryszard Janicki; Dai Tri Man L; Nadezhda Zubkova

2009-09-01T23:59:59.000Z

51

Washington Closure Hanford, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 19,2010 August 19,2010 CERTIFIED MAIL RETURN RECEIPT REQUESTED Mr. Neil Brosee President Washington Closure Hanford, LLC 2620 Fermi Avenue Richland, Washington 99354 WEA-201 0-02 Dear Mr. Brosee: This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the employee fall that occurred at the Hanford High Bay Testing Facility (336 Building) on July 1, 2009. The worker sustained serious injury to his back and broke bones in both legs. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has concluded that violations of 10 C.F.R. Part 851, Worker Safety and Health Program, by Washington Closure Hanford, LLC (WCH) occurred. Accordingly, DOE is issuing the enclosed Preliminary Notice of

52

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

53

Nevada Test Site closure program  

SciTech Connect

This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use.

Shenk, D.P.

1994-08-01T23:59:59.000Z

54

Accelerating cleanup: Paths to closure  

SciTech Connect

This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

NONE

1998-06-01T23:59:59.000Z

55

Microsoft Word - S05767_PostClosureInspRpt.doc  

Office of Legacy Management (LM)

NDEP Correspondence and Record of Review NDEP Correspondence and Record of Review This page intentionally left blank U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc. No. S05767 Page D-1 Post-Closure Inspection & Monitoring Report for CAU 417 U.S. Department of Energy Doc. No. S05767 October 2009 Page D-2 U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc. No. S05767 Page D-3 Due Date 12-23-09 Review No. 1 Project Offsites - Legacy Management Type of Review Technical Document Title and\or Number and Revision Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area, Hot Creek Valley, Nevada for Calendar Year 2009 Author Paul Darr

56

Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system  

SciTech Connect

This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

LUKE, S.N.

1999-02-01T23:59:59.000Z

57

Closure report for N Reactor  

SciTech Connect

This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.

Not Available

1994-01-01T23:59:59.000Z

58

Microsoft Word - N01401_NE and 4-5 Closure Mon Plan.doc  

Office of Legacy Management (LM)

Closure Monitoring Plan for the Closure Monitoring Plan for the Northeast Site and 4.5 Acre Site August 2009 LMS/PIN/N01401 This page intentionally left blank LMS/PIN/N01401 Pinellas Environmental Restoration Project Closure Monitoring Plan for the Northeast Site and 4.5 Acre Site August 2009 This page intentionally left blank U.S. Department of Energy Closure Monitoring Plan for the Northeast Site and 4.5 Acre Site July 2009 Doc. No. N01401 Page i Contents 1.0 Introduction......................................................................................................................... 1 2.0 Summary of Source Removal Activities............................................................................. 1 3.0 Delineation of Contaminant Plumes ...................................................................................

59

Audit Report: IG-0501 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Audit Report: IG-0501 May 2, 2001 Remediation and Closure of the Miamisburg Environmental Management Project With the end of the cold war, the Miamisburg Environmental Management Project (MEMP), formerly known as the Mound Plant, was transferred by the Department of Energy (Department), from Defense Programs to Environmental Management. The emphasis at MEMP is now accelerated cleanup and transition of facilities and property to the local community. Congress requires the Department to request adequate funding to keep the project on schedule for closure by 2006 or earlier. Under these provisions, any savings resulting from the accelerated closure of the MEMP can be retained and used for cleanup activities at other Department closure sites. Audit Report: IG-0501

60

Alarm sensor apparatus for closures  

DOE Patents (OSTI)

An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or framework and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

Carlson, J.A.; Stoddard, L.M.

1984-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alarm sensor apparatus for closures  

DOE Patents (OSTI)

An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or frame work and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

Carlson, James A. (Thornton, CO); Stoddard, Lawrence M. (Arvada, CO)

1986-01-01T23:59:59.000Z

62

Closures Used in Zonally Averaged Ocean Models  

Science Conference Proceedings (OSTI)

There are at least three substantially different closures presently being used in two-dimensional ocean models. The main purpose of this paper is to clarify the assumptions that are implicit in these closures. Two of these formulations arise from ...

Daniel G. Wright; Thomas F. Stocker; Douglas Mercer

1998-05-01T23:59:59.000Z

63

Tonopah Test Range closure sites revegetation plan  

SciTech Connect

This document is a revegetation plan for long-term stabilization (revegetation) of land disturbed by activities associated with the closure of a Bomblet Pit and the Five Points Landfill. Both sites are on the Tonopah Test Range (TTR) located in south-central Nevada. This document contains general reclamation practices and procedures that will be followed during the revegetation of these sites. The revegetation procedures proposed have been developed over several years of research and include the results of reclamation trials at Area 11 and Area 19 on the Nevada Test Site (NTS), and more recently at the Double Tracks (Nellis Air Force Range) reclamation demonstration plots. In addition, the results of reclamation efforts and concurrent research efforts at the Yucca Mountain Project have been considered in the preparation of this revegetation plan.

Anderson, D.C.; Hall, D.B.

1997-05-01T23:59:59.000Z

64

IDENTIFICATION OF DOE'S POST-CLOSURE MONITORING NEEDS AND REQUIREMENTS  

Science Conference Proceedings (OSTI)

The 2006 plan sets an ambitious agenda for the U.S. Department of Energy (DOE), Office of Environmental Management (EM) and the remediation of sites contaminated by decades of nuclear weapons production activities. The plan's primary objective is to reduce overall clean up costs by first eliminating the environmental problems that are most expensive to control and safely maintain. In the context of the 2006 Plan, closure refers to the completion of area or facility specific cleanup projects. The cleanup levels are determined by the planned future use of the site or facility. Use restrictions are still undecided for most sites but are highly probable to exclude residential or agricultural activities. Most of the land will be remediated to ''industrial use'' levels with access restrictions and some areas will be closed-off through containment. Portions of the site will be reserved for waste disposal, either as a waste repository or the in-situ immobilization of contaminated soil and groundwater, and land use will be restricted to waste disposal only. The land used for waste disposal will require monitoring and maintenance activities after closure. Most of the land used for industrial use may also require such postclosure activities. The required postclosure monitoring and maintenance activities will be imposed by regulators and stakeholders. Regulators will not approve closure plans without clearly defined monitoring methods using approved technologies. Therefore, among all other more costly and labor-intensive closure-related activities, inadequate planning for monitoring and lack of appropriate monitoring technologies can prevent closure. The purpose of this project is to determine, document, and track the current and evolving postclosure monitoring requirements at DOE-EM sites. This information will aid CMST-CP in guiding its postclosure technology development and deployment efforts.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

65

2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractors revegetation and mitigation areas on the Hanford Site.

West, W. J.; Lucas, J. G.; Gano, K. A.

2011-11-14T23:59:59.000Z

66

2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

Science Conference Proceedings (OSTI)

This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contracts revegetation and mitigation areas on the Hanford Site.

C. T. Lindsey, A. L. Johnson

2010-09-30T23:59:59.000Z

67

Microsoft Word - CPMI Closure_Report 4-17  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONTRACT AND PROJECT MANAGEMENT IMPROVEMENT Closure Report April 2012 2 Executive Summary The Department of Energy (DOE) is committed to making continuous improvements in contract and project management performance. Improving DOE contract and project management is a top priority of the Department's senior management and entire organization. With over 80% of DOE's budget funding procurement actions and large capital projects, continuous improvements in these areas will provide the greatest return. One of the first steps the Department took to improve contract and project management was to hold a Root Cause Analysis (RCA) Workshop in 2007. Following the RCA Workshop, DOE published a report entitled U.S. Department of Energy Contract and Project Management Root Cause Analysis Corrective Action Plan (CAP)

68

Multi-canister overpack closure operations location study  

SciTech Connect

The Spent Nuclear Fuel Path Forward Project (SNF Project) has been established to develop engineered methods for the expedited removal of the irradiated uranium fuel from the K East (KE) and K West (KW) Basins. As specified by the SNF Project, the SNF will be removed from the K Basins, conditioned for dry storage and placed in a long term interim storage facility located in the 200 East Area. The SNF primarily consists of Zircaloy-2 clad uranium fuel discharged from the N-Reactor. A small portion of the SNF is Single Pass Reactor (SPR) Fuel, which is aluminum clad uranium fuel. The SNF will be loaded into Multi-Canister Overpacks (MCOs) at the K Basins, transferred to the Cold Vacuum Drying (CVD) facility for initial fuel conditioning, and transported to the Canister Storage Building (CSB) for staging, final fuel conditioning, and dry storage. The MCO is a transportation, conditioning, and storage vessel. The MCO consists of a 24 inch pipe with a welded bottom closure and a top closure that is field welded after the MCO is loaded with SNF. The MCO is handled and transported in the vertical orientation during all operations. Except for operations within the CSB, the MCO is always within the transportation cask which primarily provides radiological shielding and structural protection of the MCO. The MCO closure operations location study provides a relative evaluation of location options at the K Basins and the CVD Facility and recommends that the MCO closure weld be performed, inspected, and repaired at the CVD Facility.

Goldmann, L.H.

1996-04-15T23:59:59.000Z

69

Post-Closure Benefits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Closure Benefits Post-Closure Benefits Post-Closure Benefits The Legacy Management Post-Closure Benefits (PCB) Program includes the development, implementation, and oversight of the Department's policy concerning the continuation of contractor pension and medical benefits after the closure of applicable DOE sites/facilities. This includes oversight of the administration and management of legacy contractor benefits in a fiscally responsible and effective manner. The primary program objective is to ensure a seamless transition of benefits administration after closure. The Benefit Continuity Team (BCT) within Legacy Management is responsible for this program. Legacy PCBs are benefits earned and accrued by contractor employees while in active employment at DOE facilities and are payable after their

70

Closure of the 242-F system  

Science Conference Proceedings (OSTI)

This paper describes the closure preparation and proposed closure process of the 242-F Evaporator System at the Savannah River Site. The closure of this system will be a first-of-a-kind for the DOE and is applicable across the Department of Energy (DOE complex and the nuclear industry. The 242-F Evaporator System is part of a nuclear waste storage and management process comprised of tanks and supporting facilities permitted by the South Carolina Pollution Control Act as wastewater treatment facilities. The system has been emptied of residuals to the maximum extent practical given funding levels and has been isolated from all process interfaces. The remaining activities are contingent upon satisfying emergent regulatory requirements. Closure of the 242-F Evaporator System is part of the DOE's stewardship of federally owned and operated facilities. Protecting workers and the general public during and after closure is part of that stewardship that requires careful and methodical planning and execution of closure processes. (authors)

Dixon, G. [East Carolina Univ., Dept. of Engineering, Greenville, NC (United States)

2007-07-01T23:59:59.000Z

71

ICPP tank farm closure study. Volume 2: Engineering design files  

SciTech Connect

Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

NONE

1998-02-01T23:59:59.000Z

72

Why sequence genome closure of lignocellulosic degrader Verrucomicrobium  

NLE Websites -- All DOE Office Websites (Extended Search)

genome closure of lignocellulosic genome closure of lignocellulosic degrader Verrucomicrobium sp. strain TAV2? Wood-feeding termites have microbial communities in their guts that are capable of converting cellulose and hemicellulose into sugars, hydrogen and methane. They can break down as much as a billion tons of raw plant biomass annually, and are of interest to bioenergy researchers hoping to harness these abilities for commercial biofuel production. To better understand the interactions and roles within the gut microbial community, the project focuses on sequencing a Termite Associated Verrucomicrobium (TAV) bacterial strain of Verrucomicrobium known as TAV2. Members of the Verrucomicrobia phylum are found in a number of environments both in water and in soils. As members of the soil microbial community,

73

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

74

Accelerating cleanup: Paths to closure  

SciTech Connect

This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

Edwards, C.

1998-06-30T23:59:59.000Z

75

ADDENDUM TO "EXISTENTIALLY COMPLETE CLOSURE ALGEBRAS"  

E-Print Network (OSTI)

of closure in a topological space. McKinsey and Tarsky [1] announced that the (first-order) theory of closure after [2] had been printed, but only now we have written down the details. References. [1] McKinsey, A

Lipparini, Paolo

76

Closure for milliliter scale bioreactor  

DOE Patents (OSTI)

A closure for a microreactor includes a cap that is configured to be inserted into a well of the microreactor. The cap, or at least a portion of the cap, is compliant so as to form a seal with the well when the cap is inserted. The cap includes an aperture that provides an airway between the inside of the well to the external environment when the cap is inserted into the well. A porous plug is inserted in the aperture, e.g., either directly or in tube that extends through the aperture. The porous plug permits gas within the well to pass through the aperture while preventing liquids from passing through to reduce evaporation and preventing microbes from passing through to provide a sterile environment. A one-way valve may also be used to help control the environment in the well.

Klein, David L. (Palo Alto, CA); Laidlaw, Robert D. (Albany, CA); Andronaco, Gregory (Palo Alto, CA); Boyer, Stephen G. (Moss Beach, CA)

2010-12-14T23:59:59.000Z

77

Reaching Site Closure for Groundwater under Multiple Regulatory Agencies  

SciTech Connect

Groundwater at the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant (HNP) requires investigation of both radionuclides and chemical constituents in order to achieve closure. Cleanup criteria for groundwater are regulated both by federal and state agencies. These requirements vary in both numerical values as well as the duration of post remediation monitoring. The only consistent requirement is the development of a site conceptual model and an understanding of the hydrogeologic conditions that will govern contaminant transport and identify potential receptors. To successfully reach closure under each agency, it is paramount to understand the different requirements during the planning stages of the investigation. Therefore, the conceptual site model, groundwater transport mechanisms, and potential receptors must be defined. Once the hydrogeology is understood, a long term groundwater program can then be coordinated to meet each regulatory agency requirement to both terminate the NRC license and reach site closure under RCRA. Based on the different criteria, the CTDEP-LR (or RSR criteria) are not only bounding, but also requires the longest duration. As with most decommissioning efforts, regulatory attention is focused on the NRC, however, with the recent industry initiatives based on concern of tritium releases to groundwater at other plants, it is likely that the USEPA and state agencies may continue to drive site investigations. By recognizing these differences, data quality objectives can include all agency requirements, thus minimizing rework or duplicative efforts. CYAPCO intends to complete groundwater monitoring for the NRC and CTDEP-RD by July 2007. However, because shallow remediations are still being conducted, site closure under USEPA and CTDEP-LR is projected to be late 2011.

Glucksberg, N.; Shephard, Gene; Peters, Jay [MACTEC, Engineering and Consulting, Inc., 511 Congress Street, Portland, ME 04112 and 107 Audubon Road Suite 301, Wakefield MA 01880 (United States); Couture, B. [Connecticut Yankee Atomic Power Company, 362 Injun Hollow Road, East Hampton, CT 06424 (United States)

2008-01-15T23:59:59.000Z

78

Extender for securing a closure  

DOE Patents (OSTI)

An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.

Thomas, II, Patrick A.

2012-10-02T23:59:59.000Z

79

MODIFICATIONS TO THE WIPP PANEL CLOSURE  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods Assessment for Run-of-Mine Salt Panel Closures, Interim Report For Scenario 1 Testing, Washington TRU Solutions, Carlsbad New Mexico. Appendix 1-A 1-A-54 of 100 Panel...

80

Closure Modeling of Fully Developed Baroclinic Instability  

Science Conference Proceedings (OSTI)

Simple second-order closure models of quasi-geostrophic turbulence are derived, applying either to two-layer flows within isentropic boundaries, or to Eady-type frontogenesis with vanishing potential vorticity; homogeneity and horizontal isotropy ...

Jean-Michel Hoyer; Robert Sadourny

1982-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

April 29, 2004: Fernald Closure Site  

Energy.gov (U.S. Department of Energy (DOE))

April 29, 2004Demolition crews bring down the Pilot Plant at DOE's Fernald Closure Site in Ohio. The plant was the last to be torn down of ten former uranium production complexes that produced high...

82

Optimal contour closure by superpixel grouping  

Science Conference Proceedings (OSTI)

Detecting contour closure, i.e., finding a cycle of disconnected contour fragments that separates an object from its background, is an important problem in perceptual grouping. Searching the entire space of possible groupings is intractable, and previous ...

Alex Levinshtein; Cristian Sminchisescu; Sven Dickinson

2010-09-01T23:59:59.000Z

83

216-B-3 expansion ponds closure plan  

SciTech Connect

This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

1994-10-01T23:59:59.000Z

84

LA-UR-07-1983 Closure/Post-Closure Plan for the  

E-Print Network (OSTI)

is as a source of potable water. Closure - Under the RCRA regulations, this term refers to a hazardous or solid & Authorities RA Removal Action RACT Reasonable Available Control Technology RCRA Resource Conservation for high quality groundwater, where the best intended use is as a source of potable water. Closure - Under

85

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Integration - Safety Integration - Implementation of Controls Examples Example 24 5 Health & Safety This section describes the work controls associated with the 771/774 Closure Project. As prescribed in DOE Order 440.1, Worker Protection Management for DOE Federal and Contractor Employees, the project must comply with the OSHA construction standards for Hazardous Waste Operations and Emergency Response, 29 CFR 1910.120 and 1926. Under these standards, a Building 771/774 Closure Project-Specific HASP has been prepared to address the safety and health hazards of each phase of operations. In addition, the DOE Order for Construction Project Safety and Health Management, 5480.9A, applies to this project. This order requires the preparation of JHAs to identify each task, the hazards associated with each task, and the precautions necessary to mitigate the

86

APPARATUS AND METHOD FOR WELDING END CLOSURE TO CONTAINER  

DOE Patents (OSTI)

A semi-automatic apparatus is described for welding a closure to the open end of a can containing a nuclear fuel slug. An arc is struck at the center of the closure and is shifted to a region near its periphery. Then the assembly of closure, can, and fuel slug is rotated so that the peripheral region of the closure is preheated. Next the arc is shifted to the periphery itself of the closure, and the assembly is rotated so that the closure is welded to the can.

Frantz, C.E.; Correy, T.B.

1959-08-01T23:59:59.000Z

87

Closure device for lead-acid batteries  

DOE Patents (OSTI)

A closure device for lead-acid batteries includes a filter of granulated activated carbon treated to be hydrophobic combined with means for preventing explosion of emitted hydrogen and oxygen gas. The explosion prevention means includes a vertical open-end tube within the closure housing for maintaining a liquid level above side wall openings in an adjacent closed end tube. Gases vent from the battery through a nozzle directed inside the closed end tube against an impingement surface to remove acid droplets. The gases then flow through the side wall openings and the liquid level to quench any possible ignition prior to entering the activated carbon filter. A wick in the activated carbon filter conducts condensed liquid back to the closure housing to replenish the liquid level limited by the open-end tube.

Ledjeff, Konstantin (Schwalbach, DE)

1983-01-01T23:59:59.000Z

88

Hanford Patrol Academy demolition sites closure plan  

Science Conference Proceedings (OSTI)

The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

Not Available

1993-09-30T23:59:59.000Z

89

Special Review of the Rocky Flats Closure Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

then proceed to the more difficult. This approach has enabled the facility to develop a learning curve, improve teamwork, and set a safety standard for identification and...

90

Special Review of the Rocky Flats Closure Project Site  

NLE Websites -- All DOE Office Websites (Extended Search)

1999, involve removing and processing actinide liquids; removing and packaging facility sludge; removing and size- reducing all tanks, piping, gloveboxes, and associated...

91

Single-Point Closures in a Neutrally Stratified Boundary Layer  

Science Conference Proceedings (OSTI)

Closure assumptions often employed in single-point closure models for boundary-layer applications are evaluated against a neutrally stratified planetary boundary-layer flow generated by large-eddy simulation. The contributions from slow and rapid ...

Anders Andrn; Chin-Hoh Moeng

1993-10-01T23:59:59.000Z

92

Automatically closing swing gate closure assembly  

DOE Patents (OSTI)

A swing gate closure assembly for nuclear reactor tipoff assembly wherein the swing gate is cammed open by a fuel element or spacer but is reliably closed at a desired closing rate primarily by hydraulic forces in the absence of a fuel charge.

Chang, Shih-Chih (Richland, WA); Schuck, William J. (Richland, WA); Gilmore, Richard F. (Kennewick, WA)

1988-01-01T23:59:59.000Z

93

300 Area Process Trenches Closure Plan  

Science Conference Proceedings (OSTI)

Since 1987, Westinghouse Hanford Company has been a major contractor to the US Department of Energy, Richland Operations Office and has served as co-operator of the 300 Area Process Trenches, the waste management unit addressed in this closure plan. For the purposes of the Resource Conservation and Recovery Act, Westinghouse Hanford Company is identified as ``co-operator.`` The 300 Area Process Trenches Closure Plan (Revision 0) consists of a Resource Conservation and Recovery Act Part A Dangerous Waste Permit Application, Form 3 and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A Permit Application, Form 3 submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and six appendices. The 300 Area Process Trenches received dangerous waste discharges from research and development laboratories in the 300 Area and from fuels fabrication processes. This waste consisted of state-only toxic (WT02), corrosive (D002), chromium (D007), spent halogenated solvents (F001, F002, and F003), and spent nonhalogented solvent (F005). Accurate records are unavailable concerning the amount of dangerous waste discharged to the trenches. The estimated annual quantity of waste (item IV.B) reflects the total quantity of both regulated and nonregulated waste water that was discharged to the unit.

Luke, S.N.

1994-08-15T23:59:59.000Z

94

AerosolCCN Closure at a Semi-rural Site  

Science Conference Proceedings (OSTI)

aerosol size distributions and size-resolved aerosol compositions measured by ... Keywords Cloud condensation nuclei, closure study, organic aerosols, Khler.

95

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

96

Transition and Closeout of the Former DOE Mound Plant Site: Lessons Learned  

SciTech Connect

The U.S. Department of Energy's (DOE's) Office of Environmental Management (EM) manages the Miamisburg Closure Project (MCP) by cleaning up the Mound site, located in Miamisburg, Ohio, to specific environmental standards, conveying all excess land parcels to the Miamisburg Mound Community Improvement Corporation, and transferring all continuing DOE post-closure responsibilities to the Office of Legacy Management (LM). Presently, the EM cleanup contract of the Mound site with CH2M Hill Mound Inc. is scheduled for completion on March 31, 2006. LM manages the Mound transition efforts and also post-closure responsibilities at other DOE sites via a contract with the S.M. Stoller Corporation. The programmatic transfer from EM to LM is scheduled to take place on October 1, 2006. The transition of the Mound site has required substantial integration and coordination between the EM and LM. Several project management principles have been implemented to help facilitate the transfer of programmatic responsibility. As a result, several lessons learned have been identified to help streamline and improve integration and coordination of the transfer process. Lessons learned from the Mound site transition project are considered a work in progress and have been summarized according to a work breakdown structure for specific functional areas in the transition schedule. The functional areas include program management, environmental, records management, information technology, property management, stakeholder and regulatory relations, procurement, worker pension and benefits, and project closeout. Specific improvements or best practices have been recognized and documented by the Mound transition team. The Mound site is one of three major cleanup sites within the EM organization scheduled for completion in 2006. EM, EM cleanup contractor, LM, and LM post-closure contractor have identified lessons learned during the transition and closure of the Mound site. The transition effort from environmental cleanup to post-closure operations is complex and requires creative and innovative solutions. Future environmental cleanups can benefit from the lessons learned gained by DOE and contractor organizations. (authors)

Carpenter, C. P. [U.S. Department of Energy Office of Legacy Management, Research Ridge 4, MS-K09, 3600 Collins Ferry Road, Morgantown, WV 26507 (United States); Marks, M. L.; Smiley, S.L. [U.S. Department of Energy Office of Environmental Management, Chiquita Building, 250 E. 5 th Street, Cincinnati, OH 45202 (United States); Gallaher, D. M. [S.M. Stoller Corporation, 955 Mound Road, Miamisburg, OH 45342 (United States)

2006-07-01T23:59:59.000Z

97

Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300  

Science Conference Proceedings (OSTI)

The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

1996-08-01T23:59:59.000Z

98

Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

Science Conference Proceedings (OSTI)

This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

Evans, S.K.

2002-01-31T23:59:59.000Z

99

Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

Science Conference Proceedings (OSTI)

This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

Evans, Susan Kay; Orchard, B. J.

2002-01-01T23:59:59.000Z

100

Calcined solids storage facility closure study  

SciTech Connect

The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Waste acceptance criteria for closure generated waste  

Science Conference Proceedings (OSTI)

The PORTS Facility has been operating since 1954. The PORTS Facility is used to enrich uranium for nuclear navy applications and commercial nuclear reactors. The PORTS process uses molecular diffusion techniques to separate the U-235 isotope from the U-238 isotope. The PORTS Facility consists of a complex cascade of compressors and converters through which gaseous uranium hexafluoride feed is processed. The feed contains approximately 0.7 percent U-235 by weight while products contain from 4 to 97 percent U-235 by weight, depending on the final application. In general, the majority of the closure wastes generated at PORTS consists of personal protective equipment (PPE), rags, soils, decontamination solutions, and construction related debris. These hazardous wastes will be predominately characterized on the basis of process knowledge. PORTS assumes its conservative waste characterizations that are based on process knowledge are correct unless and until further investigation and/or analysis proves the constituents are not present or are present at concentrations below characteristic regulatory thresholds. Waste Acceptance Criteria for wastes generated by the closure of active and inactive RCRA facilities at PORTS has been developed. The criteria presented in this document govern the activities that are performed during the closure and subsequent generation of waste and relocation from the closure locations to the storage unit. These criteria are intended to ensure the proper handling, classification, processing, and storage of wastes in order to prevent hazardous waste release that may pose a threat to human health or the environment. Any wastes currently stored at each of the facilities that are to be closed will be transferred to the X-326 or X-7725 Storage Units. The waste transfers will be accomplished in accordance with the Container Transfer Plan.

Not Available

1992-05-01T23:59:59.000Z

102

A Quadratic Closure for Compressible Turbulence  

Science Conference Proceedings (OSTI)

We have investigated a one-point closure model for compressible turbulence based on third- and higher order cumulant discard for systems undergoing rapid deformation, such as might occur downstream of a shock or other discontinuity. In so doing, we find the lowest order contributions of turbulence to the mean flow, which lead to criteria for Adaptive Mesh Refinement. Rapid distortion theory (RDT) as originally applied by Herring closes the turbulence hierarchy of moment equations by discarding third order and higher cumulants. This is similar to the fourth-order cumulant discard hypothesis of Millionshchikov, except that the Millionshchikov hypothesis was taken to apply to incompressible homogeneous isotropic turbulence generally, whereas RDT is applied only to fluids undergoing a distortion that is 'rapid' in the sense that the interaction of the mean flow with the turbulence overwhelms the interaction of the turbulence with itself. It is also similar to Gaussian closure, in which both second and fourth-order cumulants are retained. Motivated by RDT, we develop a quadratic one-point closure for rapidly distorting compressible turbulence, without regard to homogeneity or isotropy, and make contact with two equation turbulence models, especially the K-{var_epsilon} and K-L models, and with linear instability growth. In the end, we arrive at criteria for Adaptive Mesh Refinement in Finite Volume simulations.

Futterman, J A

2008-09-16T23:59:59.000Z

103

RELATIONSHIP BETWEEN FLOWABILITY AND TANK CLOSURE GROUT QUALITY  

Science Conference Proceedings (OSTI)

After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediations (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

Langton, C.; Stefanko, D.; Hay, M.

2012-10-08T23:59:59.000Z

104

Relationship Between Flowability And Tank Closure Grout Quality  

SciTech Connect

After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediation's (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

Langton, C. A.; Stefanko, D. B.; Hay, M. S.

2012-10-08T23:59:59.000Z

105

Microsoft Word - S05767_PostClosureInspRpt.doc  

Office of Legacy Management (LM)

09 Doc. No. S05767 09 Doc. No. S05767 Page A-1 Post-Closure Inspection & Monitoring Report for CAU 417 U.S. Department of Energy Doc. No. S05767 October 2009 Page A-2 U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc. No. S05767 Page A-3 Post-Closure Inspection & Monitoring Report for CAU 417 U.S. Department of Energy Doc. No. S05767 October 2009 Page A-4 U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc. No. S05767 Page A-5 Post-Closure Inspection & Monitoring Report for CAU 417 U.S. Department of Energy Doc. No. S05767 October 2009 Page A-6 U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc. No. S05767

106

Bat Surveys of Retired Facilitiies Scheduled for Demolition by Washington Closure Hanford  

Science Conference Proceedings (OSTI)

This project was conducted to evaluate buildings and facilities remaining in the Washington Closure Hanford (WCH) deactivation, decontamination, decommissioning, and demolition schedule for bat roost sites. The project began in spring of 2009 and was concluded in spring of 2011. A total of 196 buildings and facilities were evaluated for the presence of bat roosting sites. The schedule for the project was prioritized to accommodate the demolition schedule. As the surveys were completed, the results were provided to the project managers to facilitate planning and project completion. The surveys took place in the 300 Area, 400 Area, 100-H, 100-D, 100-N, and 100-B/C Area. This report is the culmination of all the bat surveys and summarizes the findings by area and includes recommended mitigation actions where bat roosts were found.

Gano, K. A.; Lucas, J. G.; Lindsey, C. T.

2011-06-30T23:59:59.000Z

107

Accelerated Closure of the Hanford Site  

Science Conference Proceedings (OSTI)

Cleanup of the Hanford Site is currently planned to take until 2046 and another approximately $SOB. In the summer of 1999, Fluor Hanford initiated an ''Accelerated Closure Team'' to evaluate opportunities to reduce this long schedule and high cost for the parts of the Hanford Site which they manage. To-date, this breakthrough team has developed two approaches which will move > 50 million curies away from the Columbia River sooner than planned and at a significantly reduced cost. The approaches successfully applied so far are presently being applied to other opportunities at Hanford.

WILDE, R.T.

2000-09-20T23:59:59.000Z

108

PERFORMANCE OBJECTIVES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENTS  

Science Conference Proceedings (OSTI)

This report documents the performance objectives (metrics, times of analyses, and times of compliance) to be used in performance assessments of Hanford Site tank farm closure.

MANN, F.M.; CRUMPLER, J.D.

2005-09-30T23:59:59.000Z

109

Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows  

SciTech Connect

Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

Sankaran Sundaresan

2010-02-14T23:59:59.000Z

110

Closure in Turbulence from first principles  

E-Print Network (OSTI)

It has been recently demonstrated, [3], that according to the principle of release of constraints, absence of shear stresses in the Euler equations must be compensated by additional degrees of freedom, and that led to a Reynolds-type enlarged Euler equations (EE equations) with a doublevalued velocity field that do not require any closures. In the first part of the paper, the theory is applies to turbulent mixing and illustrated by propagation of mixing zone triggered by a tangential jump of velocity. A comparison of the proposed solution with the Prandtl's solutions is performed and discussed. In the second part of the paper, a semi-viscose version of the Navier-Stokes equations is introduced. The model does not require any closures since the number of equations is equal to the number of unknowns. Special attention is paid to transition from laminar to turbulent state. The analytical solution for this transition demonstrates the turbulent mean velocity profile that qualitatively similar to the celebrated logarithmic law.

Michail Zak

2012-12-26T23:59:59.000Z

111

Remote controlled vacuum joint closure mechanism  

DOE Patents (OSTI)

A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

Doll, David W. (San Diego, CA); Hager, E. Randolph (La Jolla, CA)

1986-01-01T23:59:59.000Z

112

Closure End States for Facilities, Waste Sites, and Subsurface Contamination  

Science Conference Proceedings (OSTI)

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOEs Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

2012-11-21T23:59:59.000Z

113

X-231B oil biodegradation plot: Closure Options Study  

Science Conference Proceedings (OSTI)

The purpose of this Closure Option Study (COS) is to satisfy the environmental documentation requirements for the US Department of Energy (DOE) and the Ohio Environmental Protection Agency (OEPA). The documentation is required to proceed with closure of the X-231B Oil Biodegradation Plot (X-231B), at the Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio. The concept for performance of a COS was set forth in the closure plan for the site. The Closure Plan states that the final closure action at X-231B shall be determined by the Closure Option Study. This closure Option Study is not intended to be a Feasibility Study as defined in the National Contingency Plan, nor is it a Corrective Measures Study as defined in the Resource Conservation and Recovery Act (RCRA) regulations. Performance of this study fulfills the requirements mandated by OEPA for completion of the closure plan for X-231B. This study was conducted prior to the initiation of the RCRA Facility Investigation (RFI) for Quadrant I of the site. Information generated during the RFI could modify the analysis and recommendations presented in this report.

Not Available

1989-11-01T23:59:59.000Z

114

Structural analysis of closure bolts for shipping casks  

Science Conference Proceedings (OSTI)

This paper identifies the active forces and moments in a closure bolt of a shipping cask. It examines the interactions of these forces/moments and suggest simplified methods for their analysis. The paper also evaluates the role that the forces and moments play in the structure integrity of the closure bolt and recommends stress limits and desirable practices to ensure its integrity.

Mok, G.C.; Fischer, L.E.

1993-04-01T23:59:59.000Z

115

Comparative Analysis of Four Second-Moment Turbulence Closure Models for the Oceanic Mixed Layer  

Science Conference Proceedings (OSTI)

In this comparative study, four different algebraic second-moment turbulence closure models are investigated in detail. These closure schemes differ in the number of terms considered for the closure of the pressurestrain correlations. These four ...

Hans Burchard; Karsten Bolding

2001-08-01T23:59:59.000Z

116

EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington |  

NLE Websites -- All DOE Office Websites (Extended Search)

391: Hanford Tank Closure and Waste Management, Richland, 391: Hanford Tank Closure and Waste Management, Richland, Washington EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington Summary This EIS evaluates the environmental impacts for the following three key areas: (1) retrieval, treatment, and disposal of waste from 149 single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal of Hanford's waste and other DOE sites' low-level and mixed low-level radioactive waste. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 13, 2013 EIS-0391: Record of Decision Final Tank Closure and Waste Management Environmental Impact Statement for

117

Drop Tests for the 6M Specification Package Closure Investigation  

SciTech Connect

Results of tests of drum-type RAM packages employing conventional clamp-ring closures have caused concern within the DOE Complex over the Department of Transportation 6M Specification Package. To clarify these issues, the Savannah River Site's Radioactive Material Packaging Technology Group was commissioned to conduct a series of tests to determine the response of the clamp-ring closure to the regulatory Hypothetical Accident Condition drop tests, for packages at maximum allowable weight, 640 lb. Additionally, three enhanced closure designs were also tested: the Clamshell, plywood disk reinforcement, and J-Clip. The results of the tests showed that the standard closure was unable to retain its lid for both Center-of-Gravity-Over-Corner and Shallow-Angle cases, for the standard package, at its maximum allowed weight. Similar results were found for packages dropped from a reduced height. The Clamshell design provided the best performance of the enhanced closures.

Smith, A.C.

2003-10-02T23:59:59.000Z

118

Closure of a unique mixed waste storage canal at the Dept. of Energy`s Oak Ridge National Laboratory (ORNL)  

Science Conference Proceedings (OSTI)

At the Department of Energy`s (DOE`s) Oak Ridge National Laboratory (ORNL) a unique closure was accomplished for a storage canal that contained both hazardous chemical contaminants controlled by the Resource Conservation and Recovery Act (RCRA), and radioactive contaminants controlled by the Atomic Energy Act (AEA). During 1991 and 1992, after approvals were received from the DOE and the Tennessee Department of Environment and Conservation (TDEC), subcontractors to DOE`s Construction Manager were mobilized and remote controlled equipment was operated on site to remove the RCRA and radioactive contamination (referred to hereafter as mixed wastes) from the 3001 Storage Canal at ORNL. After numerous {open_quotes}surprises{close_quotes} during the removal activities, each requiring problem resolution and approvals from DOE and TDEC, the canal closure was completed in September 1992 and final closure certification was submitted to TDEC in October 1992. The following discussion describes the learning experiences that ORNL and DOE acquired from a RCRA closure project for a mixed waste storage canal containing high radiation levels. The project was successful, especially since worker exposures were minimized, but was lengthy, requiring 30 months from notification of a leak in the canal until final demobilization of the subcontractor, and expensive to complete (total overall cost of $3 million).

Greer, J.K. Jr.; Etheridge, J.T.; Thompson, W.T.

1994-09-01T23:59:59.000Z

119

Closure head for a nuclear reactor  

DOE Patents (OSTI)

A closure head for a nuclear reactor includes a stationary outer ring integral with the reactor vessel with a first rotatable plug disposed within the stationary outer ring and supported from the stationary outer ring by a bearing assembly. A sealing system is associated with the bearing assembly to seal the annulus defined between the first rotatable plug and the stationary outer ring. The sealing system comprises tubular seal elements disposed in the annulus with load springs contacting the tubular seal elements so as to force the tubular seal elements against the annulus in a manner to seal the annulus. The sealing system also comprises a sealing fluid which is pumped through the annulus and over the tubular seal elements causing the load springs to compress thereby reducing the friction between the tubular seal elements and the rotatable components while maintaining a gas-tight seal therebetween.

Wade, Elman E. (South Huntingdon, PA)

1980-01-01T23:59:59.000Z

120

Automated Fuel Element Closure Welding System  

SciTech Connect

The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

Wahlquist, D.R.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Automated Fuel Element Closure Welding System  

SciTech Connect

The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

Wahlquist, D.R.

1993-03-01T23:59:59.000Z

122

ICPP tank farm closure study. Volume 1  

SciTech Connect

The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

1998-02-01T23:59:59.000Z

123

Fatigue Crack Closure and Corrosion Fatigue in Al 7075 Alloy Using ...  

Science Conference Proceedings (OSTI)

Traditional methods to quantify crack closure load, such as load-displacement curves, are not very accurate. In this study, the degree of crack closure through...

124

Clad vent set cup closure-weld-zone grinding evaluation  

DOE Green Energy (OSTI)

Clad vent set (CVS) cups were ground in the closure-weld zone to reduce the wall-thickness variation created by the cup deep-drawing process. A significantly more uniform wall thickness would be beneficial for the CVS closure-weld operation. The goal was to reduce the average within-cup wall-thickness variation (defined as the range of wall thicknesses in the closure-weld zone) approximately 50% from the Cassini production value of 42 {micro}m. This goal was shown to be achievable but, unfortunately, not with the existing blank and formed cup thicknesses.

Ulrich, G.B.; Woods, A.T. [Oak Ridge Y-12 Plant, TN (United States); Ohriner, E.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1996-04-01T23:59:59.000Z

125

History of Sandia National Laboratories` auxiliary closure mechanisms  

SciTech Connect

An essential component of a horizontal, underground nuclear test setup at the Nevada Test Site is the auxiliary closure system. The massive gates that slam shut immediately after a device has been detonated allow the prompt radiation to pass, but block debris and hot gases from continuing down the tunnel. Thus, the gates protect experiments located in the horizontal line-of-sight steel pipe. Sandia National Laboratories has been the major designer and developer of these closure systems. This report records the history of SNL`s participation in and contributions to the technology of auxiliary closure systems used in horizontal tunnel tests in the underground test program.

Weydert, J.C. [Sandia National Labs., Albuquerque, NM (United States); Ponder, G.M. [Geo-Centers, Inc., Albuquerque, NM (United States)

1993-12-01T23:59:59.000Z

126

TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG  

Science Conference Proceedings (OSTI)

Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures are different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose of this paper is to discuss implications of NUREG-1854 and to examine the feasibility and potential benefits of applying these provisions to waste determinations and supporting documents such as future performance assessments for tank residuals.

LEHMAN LL

2008-01-23T23:59:59.000Z

127

Trade-off Study of Systems Supporting the Capsule Closure Welding Processes  

SciTech Connect

The overall thrust of the United States-Democratic Peoples Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) and Joint Fuel Cycle Studies Project is to reprocess spent Korean fuel from spent light water reactor (LWR) elements, cast the reprocessed fuel into fuel pins, encapsulate the fuel into cladding, and then irradiate the fuel in the Advanced Test Reactor (ATR). This study captures the due diligence conducted to ascertain the best hardware or systems for supporting the capsule closure welding process.

Larry Zirker

2012-04-01T23:59:59.000Z

128

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

129

Enforcement Letter, Babcock & Wilcox of Ohio, Inc - May 4, 2000...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2000 Issued to Babcock & Wilcox of Ohio, Inc., related to Deficiencies in the Unresolved Safety Question Process at the Miamisburg Environmental Management Project This letter...

130

Preliminary Notice of Violation, Washington Closure Hanford, LLC -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington Closure Hanford, LLC - Washington Closure Hanford, LLC - WEA-2010-02 Preliminary Notice of Violation, Washington Closure Hanford, LLC - WEA-2010-02 August 19, 2010 Preliminary Notice of Violation issued to Washington Closure Hanford, LLC related an Employee Fall at the High Bay Testing Facility (336 Building) at the Hanford Site This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the employee fall that occurred at the Hanford High Bay Testing Facility (336 Building) on July 1, 2009. The worker sustained serious injury to his back and broke bones in both legs. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has concluded that violations of 10 C.F.R. Part 851, Worker Safety and Health Program, by

131

Issuance of the Final Tank Closure and Waste Management Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issuance of the Final Tank Closure and Waste Management Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement December 5, 2012 - 12:00pm Addthis Media Contacts Carrie Meyer, DOE (509) 376-0810 Carrie_C_Meyer@orp.doe.gov Erika Holmes, Ecology (509) 372-7880 Erika.Holmes@ecy.wa.gov Richland, WA - The U.S. Department of Energy (DOE) is issuing its Final Tank Closure and Waste Management Environmental Impact Statement Hanford Site, Richland, Washington" (Final TC & WM EIS, DOE/EIS-0391), prepared in accordance with the National Environmental Policy Act (NEPA). The Environmental Protection Agency (EPA) and Washington State Department of Ecology are cooperating agencies on this Final EIS, which analyzes

132

Turbulence Closure, Steady State, and Collapse into Waves  

Science Conference Proceedings (OSTI)

A new simple two-equation turbulence closure is constructed by hypothesizing that there is an extra energy sink in the turbulent kinetic energy (k) equation representing the transfer of energy from k to internal waves and other nonturbulent ...

Helmut Baumert; Hartmut Peters

2004-02-01T23:59:59.000Z

133

Letter: Transition of Closure Sites from the Office of Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Organizations From: Deputy Secretary of Energy, Kyle E. McSlarrow (DS-1) To: Todd Martin, Chair, Hanford Advisory Board This letter discusses the transition of closure sites...

134

DOE Cites Washington Closure Hanford for Safety Violations  

Energy.gov (U.S. Department of Energy (DOE))

Department of Energy issues a Preliminary Notice of Violation (PNOV) to contractor Washington Closure Hanford (WCH) for violations of DOE's worker safety and health program regulations in 2009 at the Hanford Site in southeast Washington State.

135

Baroclinic Interleaving Instability: A Second-Moment Closure Approach  

Science Conference Proceedings (OSTI)

Interleaving motions on a wide, baroclinic front are modeled using a second-moment closure to represent unresolved fluxes by turbulence and salt fingering. A linear perturbation analysis reveals two broad classes of unstable modes. First are scale-...

W. D. Smyth; H. Burchard; L. Umlauf

2012-05-01T23:59:59.000Z

136

300 Area waste acid treatment system closure plan. Revision 1  

SciTech Connect

This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

NONE

1996-03-01T23:59:59.000Z

137

EIS-0391: Hanford Tank Closure and Waste Management, Richland...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal...

138

300 Area waste acid treatment system closure plan  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

LUKE, S.N.

1999-05-17T23:59:59.000Z

139

Underground storage tank 253-D1U1 Closure Plan  

Science Conference Proceedings (OSTI)

This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

140

Economic evaluation of closure cap barrier materials study  

SciTech Connect

Volume II of the Economic Evaluation of the Closure Cap Barrier Materials, Revision I contains detailed cost estimates for closure cap barrier materials. The cost estimates incorporate the life cycle costs for a generic hazardous waste seepage basin closure cap under the RCRA Post Closure Period of thirty years. The economic evaluation assessed six barrier material categories. Each of these categories consists of several composite cover system configurations, which were used to develop individual cost estimates. The information contained in this report is not intended to be used as a cost estimating manual. This information provides the decision makers with the ability to screen barrier materials, cover system configurations, and identify cost-effective materials for further consideration.

Serrato, M.G.; Bhutani, J.S.; Mead, S.M.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Closure Report for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

The purpose of this Closure Report is to provide a summary of the completed closure activities, to document waste disposal, and to present information confirming that the remediation goals were met. The closure alternatives consisted of closure in place with administrative controls for one CAS, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

NSTec Environmental Restoration

2008-02-01T23:59:59.000Z

142

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 214: BUNKERS AND STORAGE AREAS NEVADA TEST SITE, NEVADA  

SciTech Connect

The purpose of this Closure Report is to document that the closure of CAU 214 complied with the Nevada Division of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 214 Corrective Action Decision Document.

NONE

2006-09-01T23:59:59.000Z

143

A 3-D multiband closure for radiation and neutron transfer moment models  

Science Conference Proceedings (OSTI)

We derive a 3D multi-band moment model and its associated closure for radiation and neutron transfer. The new closure is analytical and nonlinear but very simple. Its derivation is based on the maximum entropy closure and assumes a Wien shape for the ... Keywords: Maximum entropy closure, Moment models, Multi-band models, Multi-bin models, Neutron transfer, ODF, Radiative transfer

J. -F. Ripoll; A. A. Wray

2008-02-01T23:59:59.000Z

144

I  

Office of Legacy Management (LM)

I I OVERVIEW April 30, 2005 Revision 0 Publication Records Revision Number Approval Date 0 April 30, 2005 TABLE OF CONTENT I. INTRODCUTION 1 II ROLES AND RESPONSIBILITIES 2 A. The Contractor 2 B. DOE/MCP 2 C. DOE/LM 3 III. RISK TYPES 4 A. Contract Closure 4 B. LM Transition 12 IV METHODOLOGY FOR RISK ASSESSEMENT 14 V. RISK REPORTING AND TRACKING 16 LIST OF ACRYNOMS 17 TABLE I-1 CONTRACT CLOSURE RISK 4 TABLE I-2 LM TRANSITION RISK 12 TABLE I-3 RISK SEVERITY LEVELS FOR COST AND SCHEDULE 14 TABLE I-4 RISK MATRIX TABLE 15 MCP Risk Management Plan Volume I I. INTRODUCTION The Miamisburg Closure Project (MCP) has entered the final stages of closure. A

145

303-K Storage Facility report on FY98 closure activities  

SciTech Connect

This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy.

Adler, J.G.

1998-07-17T23:59:59.000Z

146

Groundwater Closure Strategy for Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

Utilities responsible for Manufactured Gas Plant (MGP) remediation must navigate numerous challenges in order to attain regulatory closure. Typically, the first strategic focus is on source remediation: to locate, treat or remove MGP residuals that constitute ongoing sources of impacts to receptors (e.g., direct contact, soil vapor, or groundwater). Often the last compliance piece that must fall into place is compliance with regulatory criteria for groundwater. The state-specific regulatory closure ...

2012-12-12T23:59:59.000Z

147

Drop Tests for the 6M Specification Package Closure Investigation  

SciTech Connect

Results of tests of drum-type RAM packages employing conventional clamp-ring closures have caused concern over the DOT 6M Specification Package. To clarify these issues, a series of tests were performed to determine the response of the clamp-ring closure to the regulatory Hypothetical Accident Condition (9m) drop tests, for packages at maximum allowable weight. Three enhanced closure designs were also tested: the Clamshell, plywood disk reinforcement, and J-Clip. The results of the tests showed that the standard closure was unable to retain the top for both Center-of-Gravity-Over-Corner and Shallow Angle cases, for the standard package, at its maximum allowed weight. Similar results were found for packages dropped from a reduced height. The Clamshell design provided the best performance of the enhanced closures. It was concluded that the closure ring design employed on the 6M is inadequate to retain the top during the regulatory test sequence, for packages at the maximum allowed weight. For large heavy packages, the Center-of-Gravity- Over-Corner case is more challenging than the Shallow Angle case. The Clamshell design securely retained the top for all HAC test cases, and prevented formation of any opening which could compromise fire test performance.

SMITH, AC

2004-04-30T23:59:59.000Z

148

Y-12 entered the 1990s and encountered major difficulties  

NLE Websites -- All DOE Office Websites (Extended Search)

An example is Rocky Flats in Boulder, CO., which was shut down in 1989. Also, the Mound Plant in Miamisburg, OH, was identified for closure in 1989. That site is now the...

149

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 528: POLYCHLORINATED BIPHENYLS CONTAMINATION NEVADA TEST SITE, NEVADA  

SciTech Connect

This Closure Report (CR) describes the closure activities performed at CAU 528, Polychlorinated Biphenyls Contamination, as presented in the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) (US. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSAINSO], 2005). The approved closure alternative was closure in place with administrative controls. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

BECHTEL NEVADA

2006-09-01T23:59:59.000Z

150

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

Science Conference Proceedings (OSTI)

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

DOE /NV

2001-04-05T23:59:59.000Z

151

Single-shell tank closure work plan. Revision A  

SciTech Connect

In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

NONE

1995-06-01T23:59:59.000Z

152

Submittal of Final Post-Closure Inspection Letter Report for Corrective Action Unit 91: Area 3 U-3fi Injection Well, 2006  

SciTech Connect

This letter serves as the post-closure monitoring letter report for the above Corrective Action Unit (CAU) for calendar year 2006. CAU 91 is inspected every six months. The first inspection was conducted on March 23, 2006, and the second inspection was conducted on September 19, 2006. All access roads, fences, gates, and signs were in excellent condition. No settling, cracking, or erosion was observed on the cover, and the use restriction had been maintained. No issues were identified, and no corrective actions were needed. The post-closure inspection checklists for CAU 91 are attached. Photographs and fields notes taken during site inspections are maintained in the project files.

NSTec Environmental Restoration

2007-02-05T23:59:59.000Z

153

Ecological Data in Support of the Tank Closure and Waste Management Environmental Impact Statement. Part 2: Results of Spring 2007 Field Surveys  

SciTech Connect

This review provides an evaluation of potential impacts of actions that have been proposed under various alternatives to support the closure of the high level waste tanks on the Hanford Site. This review provides a summary of data collected in the field during the spring of 2007 at all of the proposed project sites within 200 East and 200 West Areas, and at sites not previously surveyed. The primary purpose of this review is to provide biological data that can be incorporated into or used to support the Tank Closure and Waste Management Environmental Impact Statement.

Sackschewsky, Michael R.; Downs, Janelle L.

2007-05-31T23:59:59.000Z

154

Simplifying documentation while approaching site closure: integrated health & safety plans as documented safety analysis  

Science Conference Proceedings (OSTI)

At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D&D I-HASP as an example.

Brown, Tulanda

2003-06-01T23:59:59.000Z

155

Actions to Support Employees of Accelerated Closure Sites, 5/19/2000 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Actions to Support Employees of Accelerated Closure Sites, Actions to Support Employees of Accelerated Closure Sites, 5/19/2000 Actions to Support Employees of Accelerated Closure Sites, 5/19/2000 At present, there are approximately 400 employees assigned to accelerated closure sites. These sites are among our former nuclear production sites that are now being managed for clean up and closure on or before fiscal year 2006. As you may know, these sites have been identified in the Department's appropriations language for accelerated closure for the purpose of transitioning the real property to private commercial activities or environmentally friendly set-asides. Accelerated closure of these sites requires that employees with critical skills be retained, to the extent possible, to complete closure activities. Upon completion of closure activities requiring their specialized skills,

156

Reactor closure design for a pool-type fast reactor  

SciTech Connect

The reactor closure is the topmost structural part of a reactor module. For a pool-type fast reactor it is an especially important structure because it provides the interface between the primary coolant system and the main access area above the closure. The reactor closure comprises a stationary deck, a rotatable plug, the boundary elements of primary system and containment penetrations for equipment and auxiliary systems. This paper evaluates two different reactor closure design concepts, referred to as ''warm'' deck and ''hot'' deck, for a pool-type fast reactor with respect to their design features, technical merits, and economic benefits. The evaluation also includes functional, structural, and thermal analyses of the two deck design concepts. Issues related to their fabrication and shipping to the plant site are also addressed. The warm deck is a thick solid steel plate with under-the-deck insulation consisting of many layers of steel plates. The hot deck is a box-type structure consisting of a bottom plate reinforced with vertical ribs and cylinders. For insulation and radiation shielding, the region of the hot deck above the bottom plate is filled with steel balls. Conventional insulation is added on the top to further reduce heat loss into area above the deck. The design choice of the closure deck is strongly dependent on design features of the reactor; especially on the reactor module support. While the warm deck is preferable with the top support, the hot deck is better suited for the bottom support design of the module.

Chung, H.; Seidensticker, R.W.; Kann, W.J.; Bump, T.R.; Schatmeier, C.

1986-01-01T23:59:59.000Z

157

Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report  

SciTech Connect

This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

1990-09-01T23:59:59.000Z

158

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

159

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

160

INTEC CPP-603 Basin Water Treatment System Closure: Process Design  

SciTech Connect

This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Closure Mechanism and Method for Spent Nuclear Fuel Canisters  

DOE Patents (OSTI)

A canister is provided for storing, transporting, and/or disposing of spent nuclear fuel. The canister includes a canister shell, a top shield plug disposed within the canister, and a leak-tight closure arrangement. The closure arrangement includes a shear ring which forms a containment boundary of the canister, and which is welded to the canister shell and top shield plug. An outer seal plate, forming an outer seal, is disposed above the shear ring and is welded to the shield plug and the canister.

Doman, Marvin J.

2004-11-23T23:59:59.000Z

162

Closure mechanism and method for spent nuclear fuel canisters  

DOE Patents (OSTI)

A canister is provided for storing, transporting, and/or disposing of spent nuclear fuel. The canister includes a canister shell, a top shield plug disposed within the canister, and a leak-tight closure arrangement. The closure arrangement includes a shear ring which forms a containment boundary of the canister, and which is welded to the canister shell and top shield plug. An outer seal plate, forming an outer seal, is disposed above the shear ring and is welded to the shield plug and the canister.

Doman, Marvin J. (Monroeville, PA)

2004-11-23T23:59:59.000Z

163

COMPREHENSIVE CLOSURE PLAN FOR THE HANFORD CENTRAL PLATEAU  

Science Conference Proceedings (OSTI)

This paper describes a comprehensive and strategic plan that has been recently developed for the environmental closure of the Central Plateau area of the Hanford Site, a former weapons-production complex managed by the U.S. Department of Energy (DOE). This approach was submitted to the DOE Richland Operations Office by Fluor Hanford to provide a framework and roadmap to integrate ongoing operations with closure of facilities that are no longer actively used--all with a view to closing the Central Plateau by 2035. The plan is currently under consideration by the DOE.

LACKEY, M.B.

2005-05-31T23:59:59.000Z

164

Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

SciTech Connect

The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce these risks to human health and the environment and to comply with Resource Conservation and Recovery Act requirements. The WCF closure project is described in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (Programmatic EIS). DOE determined in the Programmatic EIS Record of Decision (ROD) that certain actions would be implemented and other actions deferred. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality Regulations. Based on the analysis in the EA, the action will not have a significant effect on the human environment.

Braun, J.B.; Irving, J.S.; Staley, C.S.; Stanley, N.

1996-04-01T23:59:59.000Z

165

Simulation of Atmospheric Boundary Layer Processes Using Local- and Nonlocal-Closure Schemes  

Science Conference Proceedings (OSTI)

A soilvegetationatmospheric boundary layer model was developed to study the performance of two local-closure and two nonlocal-closure boundary layer mixing schemes for use in meteorological and air quality simulation models. Full interaction ...

Kiran Alapaty; Jonathan E. Pleim; Sethu Raman; Devdutta S. Niyogi; Daewon W. Byun

1997-03-01T23:59:59.000Z

166

A Total Turbulent Energy Closure Model for Neutrally and Stably Stratified Atmospheric Boundary Layers  

Science Conference Proceedings (OSTI)

This paper presents a turbulence closure for neutral and stratified atmospheric conditions. The closure is based on the concept of the total turbulent energy. The total turbulent energy is the sum of the turbulent kinetic energy and turbulent ...

Thorsten Mauritsen; Gunilla Svensson; Sergej S. Zilitinkevich; Igor Esau; Leif Enger; Branko Grisogono

2007-11-01T23:59:59.000Z

167

A Statistical Analysis of the Dependency of Closure Assumptions in Cumulus Parameterization on the Horizontal Resolution  

Science Conference Proceedings (OSTI)

Simulated data from the UCLA cumulus ensemble model are used to investigate the quasi-universal validity of closure assumptions used in existing cumulus parameterizations. A closure assumption is quasi-universally valid if it is sensitive neither ...

Kuan-Man Xu

1994-12-01T23:59:59.000Z

168

Using Probability Density Functions to Derive Consistent Closure Relationships among Higher-Order Moments  

Science Conference Proceedings (OSTI)

Parameterizations of turbulence often predict several lower-order moments and make closure assumptions for higher-order moments. In principle, the low- and high-order moments share the same probability density function (PDF). One closure ...

Vincent E. Larson; Jean-Christophe Golaz

2005-04-01T23:59:59.000Z

169

First- and Second-Order Closure Models for Wind in a Plant Canopy  

Science Conference Proceedings (OSTI)

Katul and Chang recently compared the performance of two second-order closure models with observations of wind and turbulence in the Duke Forest canopy, noting that such models alleviate some of the theoretical objections to first-order closure....

J. D. Jean-Paul Pinard; John D. Wilson

2001-10-01T23:59:59.000Z

170

Record of Decision Issued for the Hanford Tank Closure and Waste...  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS December 13, 2013 -...

171

Design and optimization of actuation mechanisms for rapid skin closure device  

E-Print Network (OSTI)

Innovative mechanism designs were explored for the actuation of critical components in a novel rapid skin closure device used to close long surgical incisions. The rapid skin closure device is designed to speed up the wound ...

Erickson, Andrew T. (Andrew Thomas)

2012-01-01T23:59:59.000Z

172

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Detailed End Points - Development of Detailed End Points - End Point Document Examples Example 28 7.0 ENDPOINTS Chapter 7.0 describes the endpoint development principles and methodology, administration, closure, and turnover package for the 324 and 327 Buildings Stabilization/Deactivation Project. 7.1 Background The endpoint method for the 324 and 327 Buildings Stabilization/Deactivation Project will follow the EM-60 guidance, published in DOE/EM-0318, Rev. 0, U.S. Department of Energy, Office of Environmental Management Facility Deactivation, Methods and Practice Handbook, Emphasizing End Points (sic) Implementation . The methods of defining endpoints for facility stabilization and deactivation were proven extremely effective at the PUREX and B-Plant facilities for planning work and interacting with the

173

Numerical Simulation of Boundary Layer Variables Using ??? Closure Scheme  

Science Conference Proceedings (OSTI)

In this study, a one-and-a-half-order ??? closure scheme is used to study the planetary boundary layer development over a full diurnal cycle using Wangara 33d-day observations as initial conditions. The simulated results are compared with a first-...

N. Ramanathan; K. Srinivasan; B. V. Seshasayee

1995-02-01T23:59:59.000Z

174

Slow closure of denaturation bubbles in DNA: twist matters  

E-Print Network (OSTI)

The closure of long equilibrated denaturation bubbles in DNA is studied using Brownian dynamics simulations. A minimal mesoscopic model is used where the double-helix is made of two interacting bead-spring freely rotating strands, with a non-zero torsional modulus in the duplex state, $\\kappa_\\phi=$200 to 300 kT. For DNAs of lengths N=40 to 100 base-pairs (bps) with a large initial bubble in their middle, long closure times of 0.1 to 100 microseconds are found. The bubble starts winding from both ends until it reaches a 10 bp metastable state. The final closure is limited by three competing mechanisms depending on $\\kappa_\\phi$ and N: arms diffusion until their alignment, bubble diffusion along the DNA until one end is reached, or local Kramers process (crossing over a torsional energy barrier). For clamped ends or long DNAs, the closure occurs via this latter temperature activated mechanism, yielding for the first time a good quantitative agreement with experiments.

Anil Kumar Dasanna; Nicolas Destainville; John Palmeri; Manoel Manghi

2013-02-07T23:59:59.000Z

175

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Energy.gov (U.S. Department of Energy (DOE))

Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

176

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013  

SciTech Connect

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.

Kerry L. Nisson

2012-10-01T23:59:59.000Z

177

Investigations of natural attenuation in groundwater near a landfill and implications for landfill post-closure  

E-Print Network (OSTI)

-closure phase. During the post-closure phase, landfill operators need to convince environmental authorities treatment of residual greenhouse gas emissions (e.g. Scheutz et al., 2009). From an operator's perspective to be a source of cost. Therefore during the post-closure phase, landfill operators need to convince

Paris-Sud XI, Université de

178

LA-UR-06-1984 Closure/Post-Closure Plan for the  

E-Print Network (OSTI)

........................................................................................................................ 2 2. RCRA-EQUIVALENT COVER DEMONSTRATION PROJECT, ROCKY MOUNTAIN ARSENAL, COMMERCE CITY, COLORADO ........................................................................................................... 88 LIST OF FIGURES Figure 2-1. Cross section of RMA RCRA cover.......................................................................... 4 Figure 2-2. Cross section of RMA alternative RCRA cover

179

UST closure alternative uses patented process  

SciTech Connect

In July 1992, the owner of a Houston restaurant, a converted gasoline service station, decided to close two 8,000-gallon USTs that had been left in the ground onsite. Because most of the restaurant's parking area would have been affected by removing the tanks, the owner opted for abandonment in place. One of the bidders on the project was ELIM-A-TANK Inc., a Houston-based contractor specializing in tank abandonments. ELIM-A-TANK opened for business in November 1991 after developing a proprietary slurry material that can be pumped or poured into USTs through the fill line, eliminating the need for excavation and cold-cutting, as required by API 1604. The company's patented process was reviewed and deemed acceptable by the Texas Water Commission (TWC), the regulating agency in Texas for all UST activities. As required by TWC regulations, an initial subsurface investigation was performed at the site. Several soil borings were installed around the tank pit, and samples of native soils were collected and analyzed for the presence of total petroleum hydrocarbons and BTEX, the aromatic constituents of gasoline. The results were below TWC's action limits, and the site was declared clean.

Not Available

1993-06-01T23:59:59.000Z

180

DESIGN OF A ROBOTIC WELDING SYSTEM FOR CLOSURE OF WASTE STORAGE CANISTERS  

SciTech Connect

This work reported here was done to provide a conceptual design for a robotic welding and inspection system for the Yucca Mountain Repository waste package closure system. The welding and inspection system is intended to make the various closure welds that seal and/or structurally join the lids to the waste package vessels. The welding and inspection system will also perform surface and volumetric inspections of the various closure welds and has the means to repair closure welds, if required. The system is designed to perform these various activities remotely, without the necessity of having personnel in the closure cell.

H.B. Smartt; A.D. Watkins; D.P. Pace; R.J. Bitsoi; E.D> Larsen T.R. McJunkin; C.R. Tolle

2005-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: D4 Project/Reactor ISS Closure Projects Field Remediation Project Waste Operations Project End State and Final Closure Project Mission/General Support, Volume 2  

Science Conference Proceedings (OSTI)

The Hanford Site contains many surplus facilities and waste sites that remain from plutonium production activities. These contaminated facilities and sites must either be stabilized and maintained, or removed, to prevent the escape of potentially hazardous contaminants into the environment and exposure to workers and the public.

Project Integration

2005-09-26T23:59:59.000Z

182

May 19, 2000 Memo, Actions to Support Employees of Accelerated Closure Sites  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

," I'@ ." A:r " The Deputy Secretary of Energy Washington, DC 20585 May 19,2000 MEMOIVINDUM FOR HEADS OF DEPARTMENTAL ELEMENTS FROM: 9P T. J. GLAUTHIER SUBJECT: Actions to Support Employees of Accelerated Closure Sites At present, there are approximately 400 employees assigned to accelerated closure sites. These sites are among our former nuclear production sites that are now being managed for clean up and closure on or before fiscal year 2006. As you may know, these sites have been identified in the Department's appropriations language for accelerated closure for the purpose of transitioning the real property to private commercial activities or environmentally friendly set-asides. Accelerated closure of these sites requires that employees with critical skills be retained, to the extent possible, to complete closure activities. Upon completion of closure

183

MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES  

DOE Patents (OSTI)

More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

Post, R.F.

1963-08-20T23:59:59.000Z

184

Automated closure system for nuclear reactor fuel assemblies  

DOE Patents (OSTI)

A welder for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA)

1985-01-01T23:59:59.000Z

185

II"ve  

Office of Legacy Management (LM)

J)£- J)£- II"ve /"/L 6 Ie- Cp~:A July 26, 2006 (J established 1959 Task Order ST06-120 Control Number: IOOO-T06-1573 Mr. Arthur W. Kleinrath Mound Site Manager U.S. Department of Energy Office of Legacy Management 955 Mound Road Miamisburg, OH 4534 2 SUBJECT: Contract No. DE-ACOI-0 2GJ79 491 Deliverable - Draft Long-Term Surveillance and Maintenance Plan for the Ashtabula Closure Project Dear Mr. Kleinrath: In response to the CPAF Deliverable, submittal of the Draft Long-Term Surveillance and Maintenance Plan for the Ashtabula Closure Project is enclosed. If you have any question s, please call Karen Williams of my staff at (937) 847-8350, Extension 307. Donna Gallaher Stoller Mound Site Manager DGljp Enclosure cc: S. Marutzky, Stoller K. Williams, Stoller cc wlo enclosures Correspondence Control File (Thru B. Bonnett) The S.M. Stoller Corpora tion 955 Mound Road Miamisburg.

186

Reaching site closure for groundwater under multiple regulatory agencies  

SciTech Connect

Groundwater at the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant (HNP) has been impacted by both radionuclides and chemical constituents. Furthermore, the cleanup standards and closure requirements for HNP are regulated both by federal and state agencies. The only consistent requirement is the development of a site conceptual model and an understanding of the hydrogeologic conditions that will govern contaminant transport and identify potential receptors. The cleanup criteria to reach site closure for radionuclides is regulated by both the Nuclear Regulatory Commission (NRC) and the Connecticut Department of Environmental Protection (CTDEP) Bureau of Air Management, Radiological Division. For license termination under the NRC, the total effective dose equivalent (TEDE) for all media can not exceed 25 milli-Rem per year (mRem/yr) plus As Low as Reasonably Achievable (ALARA). The CTDEP has a similar requirement with the TEDE not to exceed 19 mRem/yr plus ALARA. To reach these criteria, derived concentration guideline levels (DCGLs) were developed for radiological exposures from three (3) media components; soil, existing groundwater and future groundwater from left-in place foundations or footings. Based on current conditions, the target dose contribution from existing and future groundwater is not to exceed 2 mRem/yr TEDE. After source (soil) remediation is complete, the NRC requires two (2) years of quarterly monitoring to demonstrate that groundwater quality meets the DCGLs and does not show an upward trend. CYAPCO's NRC License Termination Plan (LTP) specifies a minimum 18-month period of groundwater monitoring, as long as samples are collected during two spring/high water seasons, to verify the efficacy of remedial actions at HNP. In addition to the 19 mRem/yr criteria, the CTDEP also requires groundwater to be in compliance with the Remediation Standards Regulation (RSRs). There are no published criteria for radionuclides in the RSRs, however CTDEP has approved the United States Environmental Protection Agency's (USEPA's) Maximum Contaminant Levels (MCLs) as the clean up standards for individual constituents. After remediation of an identified contamination source, the RSRs require that at least one groundwater monitoring well, hydraulically down-gradient of the remediation area, be sampled to confirm that the remediation has not impacted groundwater quality. After four quarters of groundwater monitoring with results below the MCLs, additional groundwater sampling must continue for up to three years to reach site closure in accordance with the RSRs. The cleanup criteria for chemical constituents, including boron, are regulated by the USEPA under the Resource Conservation and Recovery Act (RCRA) and the CTDEP Bureau of Water Protection and Land Reuse. The USEPA, however, has accepted the CTDEP RSRs as the cleanup criteria for RCRA. Therefore attainment of the CTDEP RSRs is the only set of criteria needed to reach closure, but both agencies retain oversight, interpretation, and closure authority. As stated above, under the RSRs, groundwater must be monitored following a source remediation for a minimum of four quarters. After demonstrating that the remediation was successful, then additional groundwater sampling is required for up to three additional years. However, the number of monitoring wells and frequency of sampling are not defined in the RSRs and must be negotiated with CTDEP. To successfully reach closure, the conceptual site model, groundwater transport mechanisms, and potential receptors must be defined. Once the hydrogeology is understood, a long term groundwater monitoring program can then be coordinated to meet each agencies requirement to both terminate the NRC license and reach site closure under RCRA. (authors)

Glucksberg, N. [MACTEC, Inc., Portland, ME (United States); Couture, B. [Connecticut Yankee Atomic Power Company, East Ham (United States)

2007-07-01T23:59:59.000Z

187

Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

NSTec Environmental Restoration

2008-02-01T23:59:59.000Z

188

An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm  

SciTech Connect

The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and pipeline removal or treatment technologies. The evaluation accounted for the potential high worker risk, high cost, and schedule impacts associated with characterization, removal, or treatment of pipelines within Waste Management Area C for closure. This assessment was compared to the unknown, but estimated low, long-term impacts to groundwater associated with remaining waste residuals should the pipelines be left "as is" and an engineered surface barrier or landfill cap be placed. This study also recommended that no characterization or closure actions be assumed or started for the pipelines within Waste Management Area C, likewise with the premise that a surface barrier or landfill cap be placed over the pipelines.

Badden, Janet W. [Washington River Protection Solutions, LLC, Richland, WA (United States); Connelly, Michael P. [Washington River Protection Solutions, LLC, Richland, WA (United States); Seeley, Paul N. [Cenibark International, Inc., Kennewick (United States); Hendrickson, Michelle L. [Washington State Univ., Richland (United States). Dept. of Ecology

2013-01-10T23:59:59.000Z

189

Digitizing the Administrative Records of the U.S. Department of Energy Office of Environmental Management (Em) and Office of Legacy Management (LM) Ohio Sites  

Science Conference Proceedings (OSTI)

As former weapons sites close and are transitioned to the U.S. Department of Energy (DOE) Office of Legacy Management (LM), continued public involvement is essential for the successful turnover of long-term surveillance and maintenance (LTS and M) activities. During the environmental remediation process, public participation was a key factor in cleanup completion. The same level of commitment to encourage active public participation is true for the LTS and M activities at the LM sites, such as the Miamisburg Closure Project and the Fernald Closure Project. Community members participate in the transition and the decision-making processes for LTS and M as they did for the selection of response actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup process. [1] A key part of the post-closure activities for the Ohio Sites transitioning to LM from the DOE Office of Environmental Management (EM) is the preservation of site history and stakeholder involvement in the LTS and M activities that will continue during post-closure. In meeting the regulatory requirements of providing the CERCLA Administrative Record Reading Room for public access and to ensure that appropriate records are retrievable and available for all stakeholders, a decision was made to digitize the Miamisburg Closure Project and the Fernald Closure Project Administrative Records. This decision was, in part, based on the information and lessons learned from the digitization of the Rocky Flats Environmental Technology Site (RFETS) CERCLA Administrative Records (AR). The Ohio Sites effort was expanded to include the Living History Project from the Fernald Closure Project. In most cases, the CERCLA AR maintained by EM closure sites and transitioned to LM will provide adequate baselines for identifying and capturing the information required by LM for post-closure stewardship of the sites. The AR established under Section 113(k) [2] of CERCLA serves two primary purposes. First, the record contains those documents that form the basis for selection of a response action and comply with Section 113(j) [3]; judicial review of any issue concerning the adequacy of any response action is limited to the record. Second, Section 113(k) [2] requires that the AR act as a vehicle for public participation in selecting a response action. The AR is the body of documents that 'forms the basis' for the selection of a particular response action at a site and contains historic information that has future study value by scholars, historians, regulators, and other stakeholders. (authors)

Powell, J. [U.S. Department of Energy Office of Legacy Management, Cincinnati, Ohio (United States); Williams, K.; Walpole, S. [S.M. Stoller Corporation, Miamisburg, Ohio (United States); McKinney, R. [Source One Management, Inc., Denver, Colorado (United States)

2007-07-01T23:59:59.000Z

190

2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

C. T. Lindsey; K. A. Gano; R. D. Teel

2009-09-30T23:59:59.000Z

191

Self-testing security sensor for monitoring closure of vault doors and the like  

DOE Patents (OSTI)

A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member. 5 figs.

Cawthorne, D.C.

1997-05-27T23:59:59.000Z

192

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart: project timeline - Project Milestones - Budget - Bibliography * Thank you 29 30 Organization Chart * Project team: Purdue University - Dr. Brenda B. Bowen: PI, student...

193

Savannah River Site High-Level Waste Tank Closure, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TANK FARM DESCRIPTION AND CLOSURE PROCESS TANK FARM DESCRIPTION AND CLOSURE PROCESS DOE/EIS-0303 Tank Farm Description FINAL May 2002 and Closure Process A-iii TABLE OF CONTENTS Section Page A.1 Introduction........................................................................................................................... A-1 A.2 Overview of SRS HLW Management .................................................................................. A-1 A.3 Description of the Tank Farms ............................................................................................. A-4 A.3.1 Tanks........................................................................................................................ A-4 A.3.2 Evaporator Systems .................................................................................................

194

Evaluation of an Ecolotree TM CAP for Closure of Coal Ash Disposal Sites  

Science Conference Proceedings (OSTI)

Once they are filled or become inactive, coal ash disposal ponds at power plant sites must meet state and federal regulations for permanent closure. In-place closure of ash ponds typically requires an impermeable cover to protect groundwater from leachate generated by stormwater infiltration through the ash. This report documents the construction, maintenance, and performance of the EcolotreeTM Cap (Tree Cap) -- an ash pond closure alternative consisting of poplar trees, grasses, and surface soil amendme...

1999-06-16T23:59:59.000Z

195

The Office of Site Closure: Progress in the Face of Challenges  

SciTech Connect

The Office of Site Closure (OSC) was formed in November 1999 when the Department of Energy's (DOE's) Office of Environmental Management (EM) reorganized to focus specifically on site cleanup and closure. OSC's objective is to achieve safe and cost-effective cleanups and closures that are protective of our workers, the public, and the environment, now and in the future. Since its inception, OSC has focused on implementing a culture of safe closure, with emphasis in three primary areas: complete our responsibility for the Closure Sites Rocky Flats, Mound, Fernald, Ashtabula, and Weldon Spring; complete our responsibility for cleanup at sites where the DOE mission has been completed (examples include Battelle King Avenue and Battelle West Jefferson in Columbus, and General Atomics) or where other Departmental organizations have an ongoing mission (examples include the Brookhaven, Livermore, or Los Alamos National Laboratories, and the Nevada Test Site); and create a framework a nd develop specific business closure tools that will help sites close, such as guidance for and decisions on post-contract benefit liabilities, records retention, and Federal employee incentives for site closure. This paper discusses OSC's 2001 progress in achieving site cleanups, moving towards site closure, and developing specific business closure tools to support site closure. It describes the tools used to achieve progress towards cleanup and closure, such as the application of new technologies, changes in contracting approaches, and the development of agreements between sites and with host states. The paper also identifies upcoming challenges and explores options for how Headquarters and the sites can work together to address these challenges. Finally, it articulates OSC's new focus on oversight of Field Offices to ensure they have the systems in place to oversee contractor activities resulting in site cleanups and closures.

Fiore, J. J.; Murphie, W. E.; Meador, S. W.

2002-02-26T23:59:59.000Z

196

Microsoft Word - S05767_PostClosureInspRpt.doc  

Office of Legacy Management (LM)

2009 Revegetation Success Monitoring 2009 Revegetation Success Monitoring This page intentionally left blank 2009 Revegetation Success Monitoring Central Nevada Test Area Corrective Action Unit 417 UC-1 Central Mud Pit This page intentionally left blank U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc No. S05767 Page C-i Contents 1.0 Introduction and Purpose ..................................................................................................C-1 2.0 Monitoring Methods..........................................................................................................C-1 3.0 Results and Recommendations..........................................................................................C-1 4.0 References

197

Joint Tank Closure News Release Final.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

RIVER OPERATIONS OFFICE AIKEN, SC 29802 RIVER OPERATIONS OFFICE AIKEN, SC 29802 FOR IMMEDIATE RELEASE September 13, 2012 NEWS MEDIA CONTACTS: Amy Caver, (803) 952-7213 Dean Campbell, (803) 208-8270 Amy.Caver@srs.gov Dean.Campbell@srs.gov Robert Pope, (404) 562-8538 Mark Plowden, (803) 898-9518 pope.robert@epa.gov plowdemw@dhec.sc.gov Savannah River Site Reaches Significant Milestone with Waste Tank Closure AIKEN, S.C. - The Savannah River Site (SRS) achieved a significant milestone this week with the

198

D4 Project Innovations and Challenges  

SciTech Connect

In 2005, the U.S. Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at the Hanford Site, which was awarded to Washington Closure Hanford (WCH). One portion of the WCH company structure is known as the D4 project, where D4 represents the deactivation, decommissioning, decontamination, and demolition of excess facilities. The RCC Contract scope requires that approximately 485 excess facilities undergo the D4 process. During 2005 and 2006, significant acceleration has been achieved in completing the D4 of these facilities. By the end of November 2006, more than 70 facilities had been completed, while only 22 were scheduled for completion. This acceleration has been achieved by implementing innovative work practices and refinement of techniques developed at other DOE such as Rocky Flats, Mound, and Savannah River. In addition, a number of unique equipment deployments have supported the acceleration. While the RCC Project is moving along an accelerated path, there are a number of challenges ahead. The challenges discussed in this paper relate to project impacts that could result from the delayed release of excess facilities in the 300 and 100-K Areas and the potential for mitigation of these impacts. (authors)

Fulton, J.C. [Washington Closure Hanford, Richland, Washington (United States)

2007-07-01T23:59:59.000Z

199

Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

performance cleanup closure performance cleanup closure M E Environmental Management Environmental Management Performance Assessment Community of Practice Technical Exchange July 13-14, 2009 Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal - Overview and Focused Discussions David S. Kosson CRESP and Vanderbilt University Tank Waste Corporate Board Meeting July 29, 2009 1 safety performance cleanup closure M E Environmental Management Environmental Management Agenda * Overview of DOE Performance Assessment Practices * Focused Discussions - Role of PA Process in Risk Communication and Decisions - Modeling Improvements - PA Assumption Validation - Uncertainty Evaluation - Evolving EPA Developments - Related IAEA Activities * Looking forward

200

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute October 23, 2006 - 9:17am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental Technology Site. The award was presented to DOE contractor Kaiser-Hill, LLC during the PMI Global Congress Dinner 2006 on Saturday, October 21st, 2006 in Seattle, Washington. "It is a great honor for the Department of Energy's Rocky Flats safe cleanup and closure effort to be recognized with this prestigious award," James Rispoli, Assistant Secretary of Energy for Environmental

202

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute October 23, 2006 - 9:17am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental Technology Site. The award was presented to DOE contractor Kaiser-Hill, LLC during the PMI Global Congress Dinner 2006 on Saturday, October 21st, 2006 in Seattle, Washington. "It is a great honor for the Department of Energy's Rocky Flats safe cleanup and closure effort to be recognized with this prestigious award," James Rispoli, Assistant Secretary of Energy for Environmental

203

Microsoft Word - S05767_PostClosureInspRpt.doc  

Office of Legacy Management (LM)

U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc. No. S05767 Page B-1 Table 1. UC-1 Monument Elevations and Subsidence Elevation at Top of Monument a,b Subsidence (m) Date SM-1 N 6,430,874.2869 E 539,588.2339 SM-2 N 6,430,863.3239 E 539,644.8195 SM-3 N 6,430,855.2553 E 539,684.3327 SM-4 N 6,430,849.7763 E 539,715.7991 SM-5 N 6,430,852.0243 E 539,585.4651 SM-6 N 6,430,841.7590 E 539,641.4674 SM-7 N 6,430,834.5289 E 539,680.5243 SM-8 N 6,430,828.6994 E 539,712.4350 SM-9 N 6,430,828.8720 E 539,582.4750 SM-10 N 6,430,818.6353 E 539,638.2030 SM-11 N 6,430,812.8276 E 539,676.0839 SM-12 N 6,430,806.7973 E 539,708.9837 1836.604 1835.154 1834.995 1834.854 1836.541 1834.887 1834.709 1834.681 1836.547 1834.943 1834.744 1834.635

204

Closure of the R Reactor Disassembly Basin at the SRS  

Science Conference Proceedings (OSTI)

The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at R-Reactor Disassembly Basin and will continue with the P and C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds or to prevent ground water impact. The closure will be accomplished under CERCLA.

Austin, W.E.

2001-01-09T23:59:59.000Z

205

CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS  

SciTech Connect

The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

Hommel, S.; Fountain, D.

2012-03-28T23:59:59.000Z

206

Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2002  

Science Conference Proceedings (OSTI)

This Post-Closure Inspection Annual Report provides documentation of the semiannual inspections conducted at the following Corrective Action Units (CAU)s: CAU 400: Bomblet Pit and Five Points Landfill; CAU 404: Roller Coaster Lagoons and Trench; CAU 407: Roller Coaster RadSafe Area; CAU 424: Area 3 Landfill Complexes; CAU 426: Cactus Spring Waste Trenches; CAU 427: Septic Waste Systems 2, 6; and CAU 453: Area 9 UXO Landfill, all located at the Tonopah Test Range, Nevada. Post-closure inspections are not required at CAU 400 but are conducted to monitor vegetation and fencing at the site. Site inspections were conducted in May and November 2002. All site inspections were made after Nevada Division of Environmental Protection (NDEP) approval of the appropriate Closure Report (CR), excluding CAU 400 which did not require a CR, and were conducted in accordance with the Post-Closure Inspection Plans in the NDEP-approved CRs. Post-closure inspections conducted during 2002 identified several areas requiring maintenance/repairs. Maintenance work and proposed additional monitoring are included in the appropriate section for each CAU. This report includes copies of the Post-Closure Inspection Plans, Post-Closure Inspection Checklists, copies of the field notes, photographs, and the Post-Closure Vegetative Monitoring Report. The Post-Closure Inspection Plan for each CAU is located in Attachment A. Post-Closure Inspection Checklists are in Attachment B. Copies of the field notes from each inspection are included in Attachment C. Attachment D consists of the photographic logs and photographs of the sites. The post-closure vegetative monitoring report for calendar year 2002 is included in Attachment E.

R. B. Jackson

2003-08-01T23:59:59.000Z

207

Microsoft Word - March242005-Donna.doc  

Office of Legacy Management (LM)

Mound Site Transition Plan Mound Site Transition Plan Rev. 0 March 2005 Mound STP, Rev. 0 - iv - March 2005 Executive Summary The U.S. Department of Energy (DOE) Offices of Legacy Management (LM) and Environmental Management (EM) are planning and implementing the transfer of the Miamisburg Closure Project (MCP) for long-term surveillance and maintenance (LTS&M) and for certain legacy worker and contract liabilities to LM by the end of fiscal year (FY) 2006 (see Exhibit ES-1). The purpose of the Mound Site Transition Plan (STP) is to define the approach for the transfer from EM to LM, serve as the foundation for EM's implementation of Critical Decision-4 (CD-4), and prepare LM to manage the site post-closure in a manner that is protective of human health and the environment.

208

Chemical hazard evaluation of material disposal area (MDA) B closure project  

SciTech Connect

TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

Laul, Jadish C [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

209

Can an El Turbulence Closure Simulate Entrainment in Radiatively Driven Convective Boundary Layers?  

Science Conference Proceedings (OSTI)

The simulation of entrainment by an (El) turbulent kinetic energydiagnostic length scale closure model is investigated in a smoke cloud convective boundary layer. The behavior of the El scheme is compared with two simple entrainment closures ...

Geert Lenderink; Margreet C. vanZanten; Peter G. Duynkerke

1999-09-01T23:59:59.000Z

210

Closure Welding Design and Justification for Canister S00645 (Bent Flange)  

SciTech Connect

This report provides the design basis and justification for a closure welding technique using the manual Gas Tungsten Are Welding (GTAW) process. Other aspects affecting closure of Canister S00645, e.g., shielding, facility and administrative requirements, etc., are addressed elsewhere.

Cannell, G.R.

1998-12-21T23:59:59.000Z

211

The Gomory-Chvtal Closure of a Nonrational Polytope Is a Rational Polytope  

Science Conference Proceedings (OSTI)

The question as to whether the Gomory-Chvtal closure of a nonrational polytope is a polytope has been a longstanding open problem in integer programming. In this paper, we answer this question in the affirmative by combining ideas from polyhedral ... Keywords: Gomory-Chvtal closure, cutting planes, integer programming

Juliane Dunkel; Andreas S. Schulz

2013-02-01T23:59:59.000Z

212

Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site  

Science Conference Proceedings (OSTI)

This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

NONE

1998-01-01T23:59:59.000Z

213

Evolution of the N = 28 shell closure: a test bench for nuclear forces  

E-Print Network (OSTI)

Evolution of the N = 28 shell closure: a test bench for nuclear forces O. Sorlin1 and M.-G. Porquet;The N = 28 shell closure: a test bench for nuclear forces 2 reach a value of 4.8 MeV. This effect has and 90). More generally, questions related to the evolution of nuclear forces towards the drip

Paris-Sud XI, Université de

214

Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility  

Science Conference Proceedings (OSTI)

This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

BURBANK, D.A.

2000-08-31T23:59:59.000Z

215

EIS-0303: Savannah River Site High-Level Waste Tank Closure | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

03: Savannah River Site High-Level Waste Tank Closure 03: Savannah River Site High-Level Waste Tank Closure EIS-0303: Savannah River Site High-Level Waste Tank Closure SUMMARY This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE selected the preferred alternative identified in the Final EIS, Stabilize Tanks-Fill with Grout, to guide development and implementation of closure of the high-level waste tanks and associated equipment at the Savannah River Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 5, 2012 EIS-0303: Supplement Analysis Savannah River Site High-Level Waste Tank Closure, SC July 8, 2011 EIS-0303: Notice of Intent to Prepare an Environmental Impact Statement

216

TECHNOLOGY NEEDS AND STATUS ON CLOSURE OF DOE RADIOACTIVE WASTE TANK ANCILLARY SYSTEMS  

SciTech Connect

This paper summarizes the current state of art of sampling, characterizing, retrieving, transferring and treating the incidental waste and stabilizing the void space in tank ancillary systems and the needs involved with closure of these systems. The overall effort for closing tank and ancillary systems is very large and is in the initial stages of being addressed in a systematic manner. It was recognized in doing this effort, that gaps in both technology and material application for characterization and removal of residual waste and closure of ancillary systems would be identified. Great efficiencies are to be gained by defining the technology need areas early in the closure process and providing recommendations for technical programs to improve the closure strategies. Therefore, this paper will not only summarize the state of closure of ancillary systems but also provide recommendations to address the technology gaps identified in this assessment.

Burns, H; Sharon Marra, S; Christine Langton, C

2009-01-21T23:59:59.000Z

217

Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray  

SciTech Connect

This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

Vigil-Holterman, Luciana R. [Los Alamos National Laboratory

2012-05-07T23:59:59.000Z

218

Evaluation of Turbulence Closure Models for Large-Eddy Simulation over Complex Terrain: Flow over Askervein Hill  

Science Conference Proceedings (OSTI)

The evaluation of turbulence closure models for large-eddy simulation (LES) has primarily been performed over flat terrain, where comparisons with theory and observations are simplified. The authors have previously developed improved closure ...

Fotini Katopodes Chow; Robert L. Street

2009-05-01T23:59:59.000Z

219

2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

K. A. Gano; C. T. Lindsey

2007-09-27T23:59:59.000Z

220

2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

C. T. Lindsey; K. A. Gano

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA-20MB  

Science Conference Proceedings (OSTI)

This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility. Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only sent to RHA.

PRIGNANO, A.L.

2003-06-25T23:59:59.000Z

222

Report on the Fermilab pilot N&S closure process  

SciTech Connect

This document outlines the plans and protocols for conducting a pilot of the Department of Energy`s Necessary & Sufficient Closure Process (Attachment A) at Fermilab National Accelerator Laboratory (FNAL) in Batavia, Illinois. The result of this pilot will be a set of standards which will serve as the agreed upon basis for providing FNAL with adequate Environment, Safety and Health Protection at the lowest possible cost. This pilot will seek out and emulate compatible industry practices which have been proven successful both in terms of safety performance and cost-effectiveness. This charter has been developed as a partnership effort by the parties to this agreement (see ``Responsibilities`` below), and is considered to be a living document.

Coulson, L.

1995-08-01T23:59:59.000Z

223

Eddy Current Examination of Spent Nuclear Fuel Canister Closure Welds  

SciTech Connect

The National Spent Nuclear Fuel Program (NSNFP) has developed standardized DOE SNF canisters for handling and interim storage of SNF at various DOE sites as well as SNF transport to and SNF handling and disposal at the repository. The final closure weld of the canister will be produced remotely in a hot cell after loading and must meet American Society of Mechanical Engineers (ASME) Section III, Division 3 code requirements thereby requiring volumetric and surface nondestructive evaluation to verify integrity. This paper discusses the use of eddy current testing (ET) to perform surface examination of the completed welds and repair cavities. Descriptions of integrated remote welding/inspection system and how the equipment is intended function will also be discussed.

Arthur D. Watkins; Dennis C. Kunerth; Timothy R. McJunkin

2006-04-01T23:59:59.000Z

224

105-DR Large Sodium Fire Facility closure plan. Revision 1  

SciTech Connect

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950`s and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

Not Available

1993-05-01T23:59:59.000Z

225

303-K Storage Facility closure plan. Revision 2  

SciTech Connect

Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

Not Available

1993-12-15T23:59:59.000Z

226

Post-Closure Inspection Letter Report for Corrective Action Units (CAUs) on the Nevada National Security Site (NNSS)  

SciTech Connect

This letter serves as the post-closure inspection letter report for CAUs on the NNSS for Calendar Year 2011

NSTec Environmental Restoration

2012-05-16T23:59:59.000Z

227

Project Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

228

Remediation of the Melton Valley Watershed at Oak Ridge National Lab: An Accelerated Closure Success Story  

Science Conference Proceedings (OSTI)

The Melton Valley (MV) Watershed at the U. S. Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) encompasses approximately 430 hectares (1062 acres). Historic operations at ORNL produced a diverse legacy of contaminated facilities and waste disposal areas in the valley. In addition, from 1955 to 1963, ORNL served as a major disposal site for wastes from over 50 off-site government-sponsored installations, research institutions, and other isotope users. Contaminated areas in the watershed included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pits/trenches, hydro-fracture wells, leak and spill sites, inactive surface structures, and contaminated soil and sediment. Remediation of the watershed in accordance with the requirements specified in the Melton Valley Record of Decision (ROD) for Interim Actions in Melton Valley, which estimated that remedial actions specified in the ROD would occur over a period of 14 years, with completion by FY 2014. Under the terms of the Accelerated Closure Contract between DOE and its contractor, Bechtel Jacobs Company, LLC, the work was subdivided into 14 separate sub-projects which were completed between August 2001 and September 2006, 8 years ahead of the original schedule. (authors)

Johnson, Ch.; Cange, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Skinner, R. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States); Adams, V. [U.S. DOE, Office of Groundwater and Soil Remediation, Washington, DC (United States)

2008-07-01T23:59:59.000Z

229

Projects | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Conferences Supporting Organizations Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Projects Projects 1-10 of 180 Results Prev...

230

Project 244  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJECT PARTNER Advanced Technology Systems, Inc. Pittsburgh, PA PROJECT PARTNERS Ohio University Athens, OH Texas A&M University-Kingsville Kingsville, TX WEBSITES http:...

231

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit...

232

Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report  

Science Conference Proceedings (OSTI)

The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

NONE

1997-01-01T23:59:59.000Z

233

Yucca Mountain Waste Package Closure System Robotic Welding and Inspection System  

Science Conference Proceedings (OSTI)

The Waste Package Closure System (WPCS), for the closure of radioactive waste in canisters for permanent storage of spent nuclear fuel (SNF) and high-level waste in the Yucca Mountain Repository was designed, fabricated, and successfully demonstrated at the Idaho National Laboratory (INL). This article focuses on the robotic hardware and tools necessary to remotely weld and inspect the closure lid welds. The system was operated remotely and designed for use in a radiation field, due to the SNF contained in the waste packages being closed.

C. I. Nichol; D. P. Pace; E. D. Larsen; T. R. McJunkin; D. E. Clark; M. L. Clark; K. L. Skinner; A. D. Watkins; H. B. Smartt

2011-10-01T23:59:59.000Z

234

2006 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. One of the objectives of restoration is the revegetation of remediated waste sites to stabilize the soil and restore the land to native vegetation. The report documents the results of revegetation and mitigation monitoring conducted in 2006 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 2 bat habitat mitigation projects.

A. L. Johnson; K. A. Gano

2006-10-03T23:59:59.000Z

235

Shutdown and closure of the experimental breeder reactor - II.  

Science Conference Proceedings (OSTI)

The Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to maintain the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The EBR-II is a pool-type reactor. The primary system contained approximately 325 m{sup 3} (86,000 gallons) of sodium and the secondary system contained 50 m{sub 3} (13,000 gallons). In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility was built to react the sodium to a solid sodium hydroxide monolith for burial as a low level waste in a land disposal facility. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in circuits and components must be passivated, inerted, or removed to preclude future concerns with sodium-air reactions that could generate potentially explosive mixtures of hydrogen and leave corrosive compounds. The passivation process being implemented utilizes a moist carbon dioxide gas that generates a passive layer of sodium carbonate/sodium bicarbonate over any quantities of residual sodium. Tests being conducted will determine the maximum depths of sodium that can be reacted using this method, defining the amount that must be dealt with later to achieve RCRA clean closure. Deactivation of the EBR-II complex is on schedule for a March, 2002, completion. Each system associated with EBR-II has an associated layup plan defining the system end state, as well as instructions for achieving the layup condition. A goal of system-by-system layup is to minimize surveillance and maintenance requirements during the interim period between deactivation and decommissioning. The plans also establish document archival of not only all the closure documents, but also the key plant documents (P and IDs, design bases, characterization data, etc.) in a convenient location to assure the appropriate knowledge base is available for decommissioning, which could occur decades in the future.

Michelbacher, J. A.; Baily, C. E.; Baird, D. K.; Henslee, S. P.; Knight, C. J.; Rosenberg, K. E.

2002-09-26T23:59:59.000Z

236

RCRA closure of the Building 3001 Storage Canal  

Science Conference Proceedings (OSTI)

The 3001 Storage Canal is located under portions of Buildings 3001 and 3019 at Oak Ridge National Laboratory (ORNL) and has a capacity of approximately 62,000 gallons of water. The term canal has historically been used to identify this structure, however, the canal is an in-ground reinforced concrete structure satisfying the regulatory definition of a tank. From 1943 through 1963, the canal in Building 3001 was designed to be an integral part of the system for handling irradiated fuel from the Oak Ridge Graphite Reactor. Because one of the main initial purposes of the reactor was to produce plutonium for the chemical processing pilot plant in Building 3019, the canal was designed to be the connecting link between the reactor and the pilot plant. During the war years, natural uranium slugs were irradiated in the reactor and then pushed out of the graphite matrix into the system of diversion plates and chutes which directed the fuel into the deep pit of the canal. After shutdown of the reactor, the canal was no longer needed for its designed purpose. Since 1964, the canal has only been used to store radioisotopes and irradiated samples under a water pool for radiation protection. This report describes closure alternatives.

Etheridge, J.T.; Thompson, W.T.

1992-09-01T23:59:59.000Z

237

Low-level radioactive waste disposal facility closure  

Science Conference Proceedings (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

238

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07: Closure of Nonradioactive Dangerous Waste Landfill and 07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington Summary This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA. Public Comment Opportunities None available at this time. Documents Available for Download August 26, 2011 EA-1707: Revised Draft Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington May 13, 2010 EA-1707: Draft Environmental Assessment

239

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans U.S. DEPARTMENT OF ENERGY DOE G 435.1-3 i DRAFT XX-XX-XX LLW Closure Plan Format and Content Guide Revision 0, XX-XX-XX Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans CONTENTS PART A: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. ORGANIZATION OF DOCUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.1 Closure Objectives and Relationship to Other Programs . . . . . . . . . . . . . . . . . . . . . . 2 3.2

240

The impact of a school's closure on rural community residents' lives .  

E-Print Network (OSTI)

??In this dissertation, I use a single qualitative case study methodology, participant observation, focus groups, and semi-structured interviews to explore how a rural schools closure (more)

Oncescu, Jacquelyn

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Diffusivity, Kinetic Energy Dissipation, and Closure Theories for the Poleward Eddy Heat Flux  

Science Conference Proceedings (OSTI)

Diffusive eddy closure theory for estimating the poleward heat flux is reexamined and tested in the context of a two-layer homogeneous model. Consideration of the inverse energy cascade induced by baroclinic turbulence on the ? plane leads to an ...

G. Lapeyre; I. M. Held

2003-12-01T23:59:59.000Z

242

The Closure of the Ocean Mixed Layer Temperature Budget Using Level-Coordinate Model Fields  

Science Conference Proceedings (OSTI)

Entrainment is an important element of the mixed layer mass, heat, and temperature budgets. Conventional procedures to estimate entrainment heat advection often do not permit the closure of heat and temperature budgets because of inaccuracies in ...

Seung-Bum Kim; Ichiro Fukumori; Tong Lee

2006-06-01T23:59:59.000Z

243

Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model  

Science Conference Proceedings (OSTI)

This paper describes climate simulations of the Community Atmosphere Model, version 5 (CAM5), coupled with a higher-order turbulence closure known as Cloud Layers Unified by Binormals (CLUBB). CLUBB is a unified parameterization of the planetary ...

Peter A. Bogenschutz; Andrew Gettelman; Hugh Morrison; Vincent E. Larson; Cheryl Craig; David P. Schanen

2013-12-01T23:59:59.000Z

244

Direct Numerical Simulation of the Turbulent Ekman Layer: Evaluation of Closure Models  

Science Conference Proceedings (OSTI)

A direct numerical simulation (DNS) at a Reynolds number of 1000 was performed for the neutral atmospheric boundary layer (ABL) using the Ekman layer approximation. The DNS results were used to evaluate several closure approximations that model ...

Stuart Marlatt; Scott Waggy; Sedat Biringen

2012-03-01T23:59:59.000Z

245

Evaluation of a Turbulence Closure Scheme Suitable for Air-Pollution Applications  

Science Conference Proceedings (OSTI)

A computationally turbulence closure scheme is formulated and evaluated. The scheme includes a correction to the redistribution terms in order to account for the influence of the underlying surface. Care is taken in order to ensure realizability ...

Anders Andrn

1990-03-01T23:59:59.000Z

246

POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA FOR CALENDAR YEAR 2005  

SciTech Connect

This post-closure inspection report includes the results of inspections, maintenance and repair activities, and conclusions and recommendations for Calendar Year 2005 for nine Corrective Action Units located on the Tonopah Test Range , Nevada.

NONE

2006-06-01T23:59:59.000Z

247

Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2003  

Science Conference Proceedings (OSTI)

This post-closure inspection report provides documentation of the semiannual inspection activities, maintenance and repair activities, and conclusions and recommendations for calendar year 2003 for eight corrective action units located on the Tonopah Test Range, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2004-04-01T23:59:59.000Z

248

Estimation of economic impact of freight distribution due to highway closure  

E-Print Network (OSTI)

The main aim of this study is to provide a theoretical framework and methodology to estimate and analyze the economic impact of freight disruption due to highway closure. The costs in this study will be classified into ...

Hu, Shiyin

2008-01-01T23:59:59.000Z

249

On the MellorYamada Turbulence Closure Scheme: The Surface Boundary Condition for q2  

Science Conference Proceedings (OSTI)

A numerical model that uses a level-2 turbulence closure scheme is used to compare two boundary conditions for the turbulent energy at the airsea interface. One boundary condition, the most commonly used, sets the turbulent kinetic energy ...

Michael W. Stacey; Stephen Pond

1997-10-01T23:59:59.000Z

250

Higher Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model  

Science Conference Proceedings (OSTI)

This paper describes climate simulations of the Community Atmosphere Model version 5 (CAM5) coupled with a higher-order turbulence closure, known as Cloud Layers Unified by Binormals (CLUBB). CLUBB is a unified parameterization of the planetary ...

Peter A. Bogenschutz; Andrew Gettelman; Hugh Morrison; Vincent E. Larson; Cheryl Craig; David P. Schanen

251

A Gaussian Plume Model of Atmospheric Dispersion Based on Second-Order Closure  

Science Conference Proceedings (OSTI)

A practical model of atmospheric dispersion of a passive tracer based on systematic reduction of the second-order closure transport equations using Gaussian shape assumptions is presented. The model is comparable with conventional Gaussian plume ...

R. I. Sykes; W. S. Lewellen; S. F. Parker

1986-03-01T23:59:59.000Z

252

A Refined Gomory-Chvtal Closure for Polytopes in the Unit Cube  

E-Print Network (OSTI)

Mar 23, 2012 ... A Refined Gomory-Chvtal Closure for Polytopes in the Unit Cube. Juliane Dunkel(juliane ***at*** mit.edu) Andreas S. Schulz(schulz ***at***...

253

Numerical Simulation of ANATEX Tracer Data Using a Turbulence Closure Model for Long-Range Dispersion  

Science Conference Proceedings (OSTI)

A long-range transport model based on turbulence closure concepts is described. The model extends the description of planetary boundary layer turbulent diffusion to the larger scales and uses statistical wind information to predict contaminant ...

R. I. Sykes; S. F. Parker; D. S. Henn; W. S. Lewellen

1993-05-01T23:59:59.000Z

254

Making lives under closure : birth and medicine in Palestine's waiting zones  

E-Print Network (OSTI)

Reproduction is a site for understanding the ways in which people reconceptualize and re-organize the world in which they live. This dissertation tries to understand the world of birth under the regime of closures and ...

Wick, Livia

2006-01-01T23:59:59.000Z

255

An Analysis of Closures for Pressure-Scalar Covariances in the Convective Boundary Layer  

Science Conference Proceedings (OSTI)

Perhaps the most commonly used closure in second-moment models of turbulence is Rotta's return-to-isotropy expression, which was originally developed to pararmeterize the pressure-velocity gradient correlation in the Reynolds stress conservation ...

Chin-Hoh Moeng; John C. Wyngaard

1986-11-01T23:59:59.000Z

256

Comparison of Structure Parameter Scaling Expressions with Turbulence Closure Model Predictions  

Science Conference Proceedings (OSTI)

The convective boundary-layer scaling expressions presented by Wyngaard and LeMone (1980) are compared with predictions from a turbulence closure model. We first examine a model experiment involving a clear-air, convectively driven boundary layer ...

Stephen D. Burk

1981-04-01T23:59:59.000Z

257

Numerical Simulations of Observed Arctic Stratus Clouds Using a Second-Order Turbulence Closure Model  

Science Conference Proceedings (OSTI)

A high-resolution one-dimensional version of a second-order turbulence closure radiative-convective model, developed at Los Alamos National Laboratory, is used to simulate the interactions among turbulence, radiation, and bulk cloud parameters in ...

W. S. Smith; C-Y. J. Kao

1996-01-01T23:59:59.000Z

258

Post-Closure Inspection Letter Report for Corrective Action Units on the Nevada National Security Site  

SciTech Connect

This letter serves as the post-closure inspection letter report for corrective action units on the Nevada National Security Site for calendar year 2011. Copies of completed inspection checklists are included in this report.

NSTec Environmental Restoration

2011-05-26T23:59:59.000Z

259

Compilation of current literature on seals, closures, and leakage for radioactive material packagings  

SciTech Connect

This report presents an overview of the features that affect the sealing capability of radioactive material packagings currently certified by the US Nuclear Regulatory Commission. The report is based on a review of current literature on seals, closures, and leakage for radioactive material packagings. Federal regulations that relate to the sealing capability of radioactive material packagings, as well as basic equations for leakage calculations and some of the available leakage test procedures are presented. The factors which affect the sealing capability of a closure, including the properties of the sealing surfaces, the gasket material, the closure method and the contents are discussed in qualitative terms. Information on the general properties of both elastomer and metal gasket materials and some specific designs are presented. A summary of the seal material, closure method, and leakage tests for currently certified packagings with large diameter seals is provided. 18 figs., 9 tabs.

Warrant, M.M.; Ottinger, C.A.

1989-01-01T23:59:59.000Z

260

Impact of a Nonlocal Closure Scheme in a Simulation of a Monsoon System over India  

Science Conference Proceedings (OSTI)

The impact of two parameterization schemes for the atmospheric boundary layer in predicting monsoon circulation over the Indian region has been studied using a Global Spectral Model. The performance of the nonlocal closure scheme for the boundary ...

Swati Basu; G. R. Iyengar; A. K. Mitra

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Calculation of Surface Fluxes under Convective Conditions by Turbulence Closure Models  

Science Conference Proceedings (OSTI)

A method of deriving new relationships between near-surface turbulent fluxes and vertical differences of wind speed and potential temperature between two levels in the atmospheric surface layer from simplified second-order turbulence closure ...

Lech ?obocki

2001-03-01T23:59:59.000Z

262

TITLEPG.PDF  

Office of Legacy Management (LM)

Mound's Land Transfer Process Mound's Land Transfer Process December 1999 Developed by: Department of Energy -- Miamisburg Environmental Management Project, in coordination with: the United States Environmental Protection Agency, the Ohio Environmental Protection Agency, and the Miamisburg-Mound Community Improvement Corporation 1 DOE-Mound's Land Transfer Process: Supplemental Text INTRODUCTION This document provides a description of the land transfer process developed by the Department of Energy-Miamisburg Environmental Management Project (hereafter referred to as DOE-Mound). The text is intended to accompany DOE-Mound's Land Transfer Process Flow Diagram (Figure 1), which consists of two separate, but interrelated processes: the Comprehensive Environmental Response Compensation and

263

HWMA/RCRA Closure Plan for the CPP-602 Laboratory Lines  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure (HWMA/RCRA) Plan for the CPP-602 laboratory lines was developed to meet the tank system closure requirements of the Idaho Administrative Procedures Act 58.01.05.008 and 40 Code of Federal Regulations 264, Subpart G. CPP-602 is located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The lines in CPP-602 were part of a liquid hazardous waste collection system included in the Idaho Nuclear Technology and Engineering Center Liquid Waste Management System Permit. The laboratory lines discharged to the Deep Tanks System in CPP-601 that is currently being closed under a separate closure plan. This closure plan presents the closure performance standards and the methods for achieving those standards. The closure approach for the CPP-602 laboratory lines is to remove the lines, components, and contaminants to the extent practicable. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site CPP-117 includes the CPP-602 waste trench and the area beneath the basement floor where waste lines are direct-buried. Upon completion of rinsing or mopping to remove contamination to the extent practicable from the waste trench and rinsing the intact buried lines (i.e., stainless steel sections), these areas will be managed as part of CERCLA Site CPP-117 and will not be subject to further HWMA/RCRA closure activities. The CPP-602 building is being decontaminated and decommissioned under CERCLA as a non-time critical removal action in accordance with the Federal Facility Agreement/Consent Order. As such, all waste generated by this CERCLA action, including closure-generated waste, will be managed in coordination with that CERCLA action in substantive compliance with HWMA/RCRA regulations. All waste will be subject to a hazardous waste determination for the purpose of supporting appropriate management and will be managed in accordance with this plan. ii

Idaho Cleanup Project

2009-09-30T23:59:59.000Z

264

Remote Handling Equipment for a High-Level Waste Waste Package Closure System  

SciTech Connect

High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

Kevin M. Croft; Scott M. Allen; Mark W. Borland

2006-04-01T23:59:59.000Z

265

PROJECT MANGEMENT PLAN EXAMPLES Project Closeout - Final Report Example  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Example Final Report Example Example 79 4.6.2.2.4.2 Closeout Reports Completion documentation will be compiled for each of the identified worksets. A final Closeout Report will be prepared for the 771/774 Closure Project when work is completed and the analytical data has been received. The report will consist of a brief description of the work that was completed, including any modifications or variations from the original decision document. The report will also include analytical results, including the results of any confirmatory sampling taken to verify completion of the action to the specific performance standards. A discussion of the quantity and characteristics of the actual wastes produced and how the wastes were stored or disposed will also be provided.

266

Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

267

Table of Contents: Accelerating Cleanup, Paths to Closure  

NLE Websites -- All DOE Office Websites (Extended Search)

TRU Waste Transportation Privatization A.1.2. Unique Site-Designated Project ID: CAO-6 A.1.3. SiteGroup of Sites : Waste Isolation Pilot Plant A.1.4. OperationsField Office :...

268

Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

NSTec Environmental Restoration

2009-07-31T23:59:59.000Z

269

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

270

Opportunities for Public Input Into DOE Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Public Input Into DOE Projects Opportunities for Public Input Into DOE Projects There are currently several DOE-proposed activities that citizens can comment on in the near future. Here is a summary of each, as well as a description of how to provide your input into the project: Hanford Draft Closure and Waste Management Environmental Impact Statement Idahoans might be interested in this document because one of the proposed actions involves sending a small amount of radioactive waste (approximately 5 cubic meters of special reactor components) to the Idaho Nuclear Technology and Engineering Center on DOE's Idaho Site for treatment. Here is a link to more information about the document: http://www.hanford.gov . A public hearing on the draft EIS will be held in Boise on Tuesday, Feb. 2 at the Owyhee Plaza Hotel. It begins at 6 p.m.

271

Audit Report: ER-B-99-04 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Audit Report: ER-B-99-04 March 15, 1999 Credit Card Usage at the Ohio Field Office and the Fernald and Miamisburg Environmental Management Projects The Department of Energy...

272

Audit Report on "Credit Card Usage at the Ohio Field Office and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on "Credit Card Usage at the Ohio Field Office and the Fernald and Miamisburg Environmental Management Projects," ER-B-99-04 Audit Report on "Credit Card Usage at the Ohio...

273

Closure Report for Corrective Action Unit 516: Septic Systems and Discharge Points  

SciTech Connect

Corrective Action Unit (CAU) 516 is located in Areas 3, 6, and 22 of the Nevada Test Site. CAU 516 is listed in the Federal Facility Agreement and Consent Order of 1996 as Septic Systems and Discharge Points, and is comprised of six Corrective Action Sites (CASs): {sm_bullet} CAS 03-59-01, Bldg 3C-36 Septic System {sm_bullet} CAS 03-59-02, Bldg 3C-45 Septic System {sm_bullet} CAS 06-51-01, Sump and Piping {sm_bullet} CAS 06-51-02, Clay Pipe and Debris {sm_bullet} CAS 06-51-03, Clean Out Box and Piping {sm_bullet} CAS 22-19-04, Vehicle Decontamination Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 06-51-02 and 22-19-04 is no further action. The NDEP-approved corrective action alternative for CASs 03-59-01, 03-59-02, 06-51-01, and 06-51-03 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)-impacted septic tank contents, septic tanks, distribution/clean out boxes, and piping. CAU 516 was closed in accordance with the NDEP-approved CAU 516 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 516 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 516 closure activities. During closure activities, approximately 186 tons of hydrocarbon waste in the form of TPH-impacted soil and debris, as well as 89 tons of construction debris, were generated and managed and disposed of appropriately. Waste minimization techniques, such as field screening of soil samples and the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure work.

NSTec Environmental Restoration

2007-02-01T23:59:59.000Z

274

Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

NSTec Environmental Restoration

2007-06-01T23:59:59.000Z

275

Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

NSTec Environmental Restoration

2008-08-01T23:59:59.000Z

276

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

277

Outcome-Based Planning-Hanford's Shift Towards Closure and Shrinking the Hanford Site  

SciTech Connect

Over the past two years, the U.S. Department of Energy (DOE) Richland Operations Office (RL) has formulated a focused, outcomes-based vision for accelerated cleanup of the Hanford Site. The primary elements, or outcomes, of this vision are to (1) accelerate restoration of the Columbia River Corridor, (2) transition the Central Plateau to long-term waste management, thereby shrinking the footprint of active site cleanup and operations, and (3) prepare for the future. The third outcome includes operation of the Pacific Northwest National Laboratory (PNNL), a key element of the foundation for Hanford's future; leveraging DOE's assets; and working with the community to understand their vision and reflect it as appropriate in the execution of the Hanford 2012 Vision. The purpose of these three outcomes is to provide a near term focus, aimed at achieving definitive end points over the next decade, while not precluding any long-term end-state associated with the completion of the Environmental Management (EM) mission at Hanford. The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make the Hanford Site arguably the world's largest and most complex environmental cleanup project. Current projections are that it will cost over $80 billion and take over four decades to complete the cleanup at Hanford. Accelerated cleanup of the River Corridor portion of the Site will allow the remediation effort to focus on specific, near-term outcomes. Hanford's success in achieving these outcomes will reduce urgent risk, shrink the Site, remove contamination and wastes from the proximity of the river, and consolidate waste management activities on the Central Plateau. Hanford has begun implementation of this vision. Performance-based contracts are being realigned to reflect the outcome orientation, including issuing a new River Corridor closure contract. This paper summarizes the outcome-based planning approach for other sites and interested parties. A brief introduction to the Hanford Site, along with detailed descriptions of the three outcomes is provided. This paper also summarizes the analyses and resulting products that were prepared in shifting to an outcome-based approach for closing the Hanford Site.

Ballard, W. W.; Holten, R.; Johnson, W.; Reichmuth, B.; White, M.; Wood, T.

2002-02-26T23:59:59.000Z

278

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

279

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

280

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

282

Project 364  

NLE Websites -- All DOE Office Websites (Extended Search)

765-494-5623 lucht@purdue.edu DEVELOPMENT OF NEW OPTICAL SENSORS FOR MEASUREMENT OF MERCURY CONCENTRATIONS, SPECIATION, AND CHEMISTRY Project Description The feasibility of...

283

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State...

284

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number...

285

Project 197  

NLE Websites -- All DOE Office Websites (Extended Search)

will bring economic value to both the industrial customers and to the participating companies. * Complete project by June 2006. Accomplishments A ceramic membrane and seal...

286

Project 283  

NLE Websites -- All DOE Office Websites (Extended Search)

NJ 07039 973-535 2328 ArchieRobertson@fwc.com Sequestration ADVANCED CO 2 CYCLE POWER GENERATION Background This project will develop a conceptual power plant design...

287

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for...

288

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* Concrete products in this project * Standard 8" concrete blocks * Standard 4' x 8' fiber-cement boards CO 2 The Goals * Maximizing carbon uptake by carbonation (at least...

289

Project 252  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Global Climate Energy Project Terralog Technologies TransAlta University of Alaska Fairbanks Washington State Department of Natural Resources Western Interstate...

290

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

research partnership to improve the understanding of CO 2 within coal and shale reservoirs. 2 2 3 Presentation Outline * Program Goal and Benefits Statement * Project...

291

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanistic insights 5 Project Overview: Scope of work * Task 1 - Pipeline and Casing Steel Corrosion Studies * Evaluate corrosion behavior of pipeline steels in CO 2 mixtures...

292

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project Program Goals * Technical...

293

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Evaluating Potential Groundwater Impacts and Natural Geochemical...

294

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date...

295

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* This project pinpoints the critical catalyst features necessary to promote carbon dioxide conversion to acrylate, validate the chemical catalysis approach, and develop an...

296

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources...

297

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh,...

298

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford...

299

Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure Verification Forms for CAS 03-23-06 and CAS 19-19-01 are included as Appendix C of this report. These forms include before and after photographs of the sites, descriptions and removal status of waste, and waste disposal information. CAU 537, Waste Sites, was closed by characterizing and disposing of debris. The purpose of this CR is to summarize the completed closure activities, document appropriate waste disposal, and confirm that the closure standards were met.

NSTec Envirornmental Restoration

2007-07-01T23:59:59.000Z

300

Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada  

SciTech Connect

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as Appendix F of this report. The requirements are summarized in Section 5.2 of this report. The proposed post-closure requirements consist of visual inspections to determine the condition of postings and radiological surveys to verify contamination has not migrated. NNSA/NSO requests the following: (1) A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 547; and (2) The transfer of CAU 547 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

NSTec Environmental Restoration

2012-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site  

Science Conference Proceedings (OSTI)

The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep Tanks System Phase 1. These monitoring wells are intended to monitor for the occurrence of contaminants of concern in the perched water beneath and adjacent to the CPP-601/627/640 Landfill. The wells were constructed to satisfy requirements of the HWMA/RCRA Post-Closure Plan for the CPP 601/627/640 Landfill.

Boehmer, Ann

2010-11-01T23:59:59.000Z

302

Closure Report for Corrective Action Unit 177: Mud Pits and Cellars Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Closure Report presents information supporting the closure of Corrective Action Unit (CAU)177: Mud Pits and Cellars, Nevada Test Site, Nevada. This Closure Report complies with the requirements of the Federal Facility Agreement and Consent Order (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The Corrective Action Sites (CASs) within CAU 177 are located within Areas 8, 9, 19, and 20 of the Nevada Test Site. The purpose of this Closure Report is to provide documentation supporting the completed corrective actions and data that confirm the corrective actions implemented for CAU 177 CASs.

Alfred Wickline

2007-02-01T23:59:59.000Z

303

HWMA closure plan for the Waste Calcining Facility at the Idaho National Engineering Laboratory  

SciTech Connect

The Waste Calcining Facility (WCF) calcined and evaporated aqueous wastes generated from the reprocessing of spent nuclear fuel. The calciner operated from 1963 to 1981, primarily processing high level waste from the first cycle of spent fuel extraction. Following the calciner shutdown the evaporator system concentrated high activity aqueous waste from 1983 until 1987. In 1988, US Department of Energy Idaho Operations Office (DOE-ID) requested interim status for the evaporator system, in anticipation of future use of the evaporator system. The evaporator system has not been operated since it received interim status. At the present time, DOE-ID is completing construction on a new evaporator at the New Waste Calcining Facility (NWCF) and the evaporator at the WCF is not needed. The decision to not use the WCF evaporator requires Lockheed Idaho Technologies Company (LITCO) and DOE-ID to close these units. After a detailed evaluation of closure options, LITCO and DOE-ID have determined the safest option is to fill the voids (grout the vessels, cells and waste pile) and close the WCF to meet the requirements applicable to landfills. The WCF will be covered with a concrete cap that will meet the closure standards. In addition, it was decided to apply these closure standards to the calcining system since it is contained within the WCF building. The paper describes the site, waste inventory, closure activities, and post-closure care plans.

1996-05-01T23:59:59.000Z

304

Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

NSTec Environmental Restoration

2008-01-01T23:59:59.000Z

305

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

306

Project title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

307

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

308

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

309

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

310

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

311

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

312

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

313

Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grouting Operation to Lead to First SRS Waste Tank Closures Since Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 April 1, 2012 - 12:00pm Addthis DOE and Savannah River Remediation team members gather in front of the first cement truck containing grout for Tank 18 at the Savannah River Site. DOE and Savannah River Remediation team members gather in front of the first cement truck containing grout for Tank 18 at the Savannah River Site. A specially formulated grout was poured into a hopper and transferred through lines to Tank 19. A specially formulated grout was poured into a hopper and transferred through lines to Tank 19. The first cement truck with the specially formulated grout arrives at the Savannah River Site earlier this month.

314

DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory November 20, 2006 - 9:25am Addthis Secretary Bodman Signs Idaho Waste Determination After Consultation with NRC WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman yesterday signed a waste determination for the Idaho Tank Farm Facility clearing the way for the Department of Energy (DOE) to safely and permanently close the 15 waste storage tanks at the Idaho National Laboratory near Arco, Idaho. DOE will begin grouting the first 11 cleaned and emptied tanks at Idaho Nuclear Technology and Engineering Center (INTEC) and plans to complete all 15 tanks by December 2012. Assistant Secretary of Energy for Environmental Management James Rispoli

315

Closure report for CAU No. 400: Bomblet Pit and Five Points Landfill, Tonopah test range  

SciTech Connect

This Closure Reports presents the information obtained from corrective and investigative actions performed to affirm the decision for clean closure of Corrective Action Unit No. 400 which includes the Bomblet Pit and the Five Points Landfill, two sites used for disposal of unexploded ordnance (UXO) and other solid waste at the U.S. Department of Energy`s (DOE) Tonopah Test Range, located in south-central Nevada. The first phase, or corrective action, for clean closure was performed under the Voluntary Correction Action Work Plan for Ordnance Removal from Five Disposal Sites at the Tonopah Test Range, hereafter referred to as the VCA Work Plan. The second phase consisted of collecting verification samples under the Streamlined Approach for Environmental Restoration Plan, CA U No. 400: Bomblet Pit and Five Points Landfill, Tonopah Test Range, hereafter referred to as the SAFER Plan. Results of the two phases are summarized in this document.

NONE

1996-11-01T23:59:59.000Z

316

Facility Closure Report for Tunnel U16a, Area 16, Nevada Test Site, Nevada  

SciTech Connect

U16a is not listed in the Federal Facility Agreement and Consent Order. The closure of U16a was sponsored by the Defense Threat Reduction Agency (DTRA) and performed with the cooperation of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the Nevada Division of Environmental Protection. This report documents closure of this site as identified in the DTRA Fiscal Year 2008 Statement of Work, Task 6.3. Closure activities included: Removing and disposing of a shack and its contents Disposing of debris from within the shack and in the vicinity of the tunnel entrance Verifying that the tunnel is empty Welding screened covers over tunnel vent holes to limit access and allow ventilation Constructing a full-tunnel cross-section fibercrete bulkhead to prevent access to the tunnel Field activities were conducted from July to August 2008.

NSTec Environmental Restoration

2009-07-01T23:59:59.000Z

317

Table of Contents: Accelerating Cleanup, Paths to Closure  

NLE Websites -- All DOE Office Websites (Extended Search)

4 WIPP TRU WASTE SITES INTEGRATION AND PREPARATION 4 WIPP TRU WASTE SITES INTEGRATION AND PREPARATION A.1. - PROJECT IDENTIFICATION/HEADER INFORMATION (SECTION A.0. IN 2/28/97 PBS) ..................................... 1 A.2. TECHNICAL AND SCOPE NARRATIVES (SECTION A.1. IN 2/28/97 PBS) ........................................................... 2 A.3. MILESTONES ............................................................................................................................................... 8 A.4. PERFORMANCE MEASURE METRICS .............................................................................................................. 9 A.5. RELEASE SITES AND FACILITIES.................................................................................................................... 9 A.6. VALIDATION (SECTION C.2. IN THE 2/28/97 PBS).........................................................................................

318

Table of Contents: Accelerating Cleanup, Paths to Closure  

NLE Websites -- All DOE Office Websites (Extended Search)

1 WIPP BASE OPERATIONS 1 WIPP BASE OPERATIONS A.1. - PROJECT IDENTIFICATION/HEADER INFORMATION (SECTION A.0. IN 2/28/97 PBS) ..................................... 1 A.2. TECHNICAL AND SCOPE NARRATIVES (SECTION A.1. IN 2/28/97 PBS) ........................................................... 2 A.3. MILESTONES ............................................................................................................................................... 9 A.4. PERFORMANCE MEASURE METRICS ............................................................................................................ 10 A.5. RELEASE SITES AND FACILITIES.................................................................................................................. 10 A.6. VALIDATION (SECTION C.2. IN THE 2/28/97 PBS).......................................................................................

319

Table of Contents: Accelerating Cleanup, Paths to Closure  

NLE Websites -- All DOE Office Websites (Extended Search)

CAO-2: WIPP DISPOSAL PHASE CERTIFICATION AND EXPERIMENTAL PROGRAM CAO-2: WIPP DISPOSAL PHASE CERTIFICATION AND EXPERIMENTAL PROGRAM A.1. - PROJECT IDENTIFICATION/HEADER INFORMATION (SECTION A.0. IN 2/28/97 PBS) ..................................... 1 A.2. TECHNICAL AND SCOPE NARRATIVES (SECTION A.1. IN 2/28/97 PBS) ........................................................... 2 A.3. MILESTONES ............................................................................................................................................. 10 A.4. PERFORMANCE MEASURE METRICS ........................................................................................................... 11 A.5. RELEASE SITES AND FACILITIES..................................................................................................................

320

Risk and Performance Analyses Supporting Closure of WMA C at the Hanford Site in Southeast Washington  

SciTech Connect

The Office of River Protection under the U.S. Department of Energy (DOE) is pursuing closure of the Single-Shell Tank (SST) Waste Management Area 0NMA) C as stipulated by the Hanford Federal Facility Agreement and Consent Order (HFFACO) under federalrequirements and work tasks will be done under the State-approved closure plans and permits. An initial step in meeting the regulatory requirements is to develop a baseline risk assessment representing current conditions based on available characterization data and information collected at the WMA C location. The baseline risk assessment will be supporting a Resource Conservation and Recovery Act of 1976 (RCRA) Field Investigation (RFI)/Corrective Measures Study (CMS) for WMA closure and RCRA corrective action. Complying with the HFFACO conditions also involves developing a long-term closure Performance Assessment (PA) that evaluates human health and environmental impacts resulting from radionuclide inventories in residual wastes remaining in WMA C tanks and ancillary equipment. This PAis being developed to meet the requirements necessary for closure authorization under DOE Order 435.1 and Washington State Hazardous Waste Management Act. To meet the HFFACO conditions, the long-term closure risk analysis will include an evaluation of human health and environmental impacts from hazardous chemical inventories along with other performance Comprehensive Environmental Response, Compensation, and Liability Act Appropriate and Applicable Requirements (CERCLA ARARs) in residualwastes left in WMA C facilities after retrieval and removal. This closure risk analysis is needed to needed to comply with the requirements for permitted closure. Progress to date in developing a baseline risk assessment of WMA C has involved aspects of an evaluation of soil characterization and groundwater monitoring data collected as a part of the RFI/CMS and RCRA monitoring. Developing the long-term performance assessment aspects has involved the construction of detailed numericalmodels of WMA C using the Subsurface Transport Over Multiple Phases (STOMP(C)) computer code, the development of a technical approach for abstraction of a range of representative STOMP(C) simulations into a system-level modelbased on the GoldSim0 system-levelmodelsoftware. The STOMP(C)-based models will be used to evaluate local-scale impacts and closed facility performance over a sufficient range of simulations to allow for development of the system-level model of the WMA C. The GoldSim0-based system-level model will be used to evaluate overall sensitivity of modeled parameters and the estimate the uncertainty in potentialfuture impacts from a closed WMA C facility.

Eberlein, Susan J.; Bergeron, Marcel P.; Kemp, Christopher J.

2013-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Entrapment of the StarClose Vascular Closure System After Attempted Common Femoral Artery Deployment  

Science Conference Proceedings (OSTI)

A complication of the StarClose Vascular Closure System (Abbott, Des Plaines, IL) after a transarterial hepatic chemoembolization is described. After attempted clip deployment, the entire device became lodged in the tissues overlying the common femoral artery and could not be removed percutaneously. Successful removal of the device required surgical cutdown for removal and arterial repair. Entrapment of the StarClose vascular closure deployment system is a potentially serious complication that has been reported in the Manufacturer and User Facility Device Experience database, but has not been recognized in the literature.

Durack, Jeremy C., E-mail: jeremy.durack@ucsf.edu; Thor Johnson, D.; Fidelman, Nicholas; Kerlan, Robert K.; LaBerge, Jeanne M. [University of California, Department of Radiology and Biomedical Imaging (United States)

2012-08-15T23:59:59.000Z

322

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2007  

SciTech Connect

This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2007 and includes inspection and repair activities completed at the following nine CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). In a letter from the Nevada Division of Environmental Protection (NDEP) dated December 5, 2006, NDEP concurred with the request to reduce the frequency of post-closure inspections of CAUs at TTR to an annual frequency. This letter is included in Attachment B. Post-closure inspections were conducted on May 15-16, 2007. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in May 2007, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 453. Animal burrows observed during the annual inspection at CAU 453 were backfilled on August 1, 2007. At this time, the TTR post-closure site inspections should continue as scheduled. Any potential problem areas previously identified (e.g., areas of erosion, subsidence) should be monitored closely, and periodic vegetation surveys of the vegetated covers should continue.

NSTec Environmental Restoration

2008-06-01T23:59:59.000Z

323

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 1580 of 26,777 results. 71 - 1580 of 26,777 results. Download GDSB-1003.PDF http://energy.gov/gc/downloads/gdsb-1003pdf0 Download EA-1934: Draft Environmental Assessment Expansion of Active Borrow Areas, Hanford Site, Richland, Washington http://energy.gov/nepa/downloads/ea-1934-draft-environmental-assessment Download Enforcement Letter, CH2M Hill Mound, Inc- December 22, 2004 Issued to CH2M Hill Mound, Inc. related to a Radioactive Contamination Event during Remediation Activities at the Miamisburg Closure Project http://energy.gov/hss/downloads/enforcement-letter-ch2m-hill-mound-inc-december-22-2004 Download EIS-0408: EPA Notice of Availability of a Draft Programmatic Environmental Impact Statement Upper Great Plains Programmatic Wind EIS http://energy.gov/nepa/downloads/eis-0408-epa-notice-availability-draft-programmatic-environmental-impact-statement

324

Western LNG project - Project summary  

Science Conference Proceedings (OSTI)

The Western LNG Project is a major new undertaking involving the liquefaction of conventional natural gas from the Western Canadian Sedimentary Basin at a plant on the British Columbia north coast. The gas in its liquid form will be shipped to Japan for consumption by utility companies. The Project represents a new era in gas processing and marketing for the Canadian natural gas industry.

Forgues, E.L.

1984-02-01T23:59:59.000Z

325

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

326

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

327

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

328

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

329

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

330

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

331

Solar Two: A successful power tower demonstration project  

DOE Green Energy (OSTI)

Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

REILLY,HUGH E.; PACHECO,JAMES E.

2000-03-02T23:59:59.000Z

332

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

333

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

334

LUCF Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

335

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

336

Project Title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

337

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

338

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

339

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

340

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of CO 2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural- Genetic Algorithm Project DE FE0009284 Boyun Guo, Ph.D. University of...

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

"Carbonsheds" as a Framework for Optimizing US CCS Pipeline Transport on a Regional to National Scale DOE-ARRA Project Number DE-FE0001943 Lincoln Pratson Nicholas School of the...

342

Project 134  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Goal To demonstrate a "whole plant" approach using by-products from a coal-fired power plant to sequester carbon in an easily quantifiable and verifiable form. Objectives...

343

MANHATTAN PROJECT  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy traces its origins to World War II and the Manhattan Project effort to build the first atomic bomb. As the direct descendent of the Manhattan Engineer District, the...

344

Project 265  

NLE Websites -- All DOE Office Websites (Extended Search)

The goal of this project is to develop an on-line instrument using multi- wavelength lasers that is capable of characterizing particulate matter (PM) generated in fossil energy...

345

Project 310  

NLE Websites -- All DOE Office Websites (Extended Search)

carbohydrate generated from agricultural enterprises in the U.S., such as corn wet-milling. This project is studying the production of a suite of specialty chemicals by...

346

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

G., 2011, Design and package of a 14CO2 field analyzer: the Global Monitor Platform (GMP). Proceedings of SPIE, v 8156, p. 81560E 17 DOE-NETL PROJECT REVIEW MEETING 08-21-2012...

347

Project 114  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototech Company SRI International Kellogg, Brown, and Root ChevronTexaco Sd-Chemie, Inc. COST Total Project Value 20,320,372 DOENon-DOE Share 15,326,608 4,993,764...

348

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

349

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Laboratory U.S. Department of Energy Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

350

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

351

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

352

Project 297  

NLE Websites -- All DOE Office Websites (Extended Search)

of this project is to utilize pure oxygen at a feed rate of less than 10% of the stoichiometric requirement in demonstrating the use of oxygen-enhanced combustion in meeting...

353

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D...

354

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D....

355

Closure Report for Corrective Action Unit 358: Areas 18, 19, 20 Cellars/Mud Pits, Nevada Test Site, Nevada  

SciTech Connect

This closure report documents that the closure activities performed at Corrective Action Unit 358: Areas 18, 19, 20 Cellars/Mud Pits, were in accordance with the Nevada Division of Environmental Protection approved Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 358.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2004-01-01T23:59:59.000Z

356

Area 2 Photo Skid Wastewater Pit corrective action decision document Corrective Action Unit Number 332: Part 1, and Closure report: Part 2  

SciTech Connect

The Area 2 Photo Skid Wastewater Pit, Corrective Action Site (CAS) Number 02-42-03, the only CAS in Corrective Action Unit (CAU) Number 332, has been identified as a source of unquantified, uncontrolled, and unpermitted wastewater discharge. The Photo Skid was used for photographic processing of film for projects related to weapons testing, using Kodak RA4 and GPX film processing facilities for black and white and color photographs. The CAU is located in Area 2 of the Nevada Test Site, Nye County, Nevada. The CAS consists of one unlined pit which received discharged photographic process wastewater from 1984 to 1991. The Corrective Action Decision Document (CADD) and the Closure Report (CR) have been developed to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CADD and the CR for this CAS have been combined because sample data collected during the site investigation do not exceed regulatory limits established during the Data Quality Objectives (DQO) process. The purpose of the CADD and the CR is to justify why no corrective action is necessary at the CAU based on process knowledge and the results of the corrective action investigation and to request closure of the CAU. This document contains Part 1 of the CADD and Part 2 of the CR.

NONE

1997-06-20T23:59:59.000Z

357

Review of the Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure, May 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada National Security Site Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope.................................................................................................................................................. 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

358

Review of the Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada National Security Site Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope.................................................................................................................................................. 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

359

Developing and Qualifying Parameters for Closure Welding Overpacks Containing Research Reactor Spent Nuclear Fuel at Hanford  

SciTech Connect

Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality, and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leak-tight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leak-tight for the duration of the storage term. (author)

Cannell, G.R.; Goldmann, L.H.; McCormack, R.L. [Hanford Site, Richland, WA (United States)

2008-07-01T23:59:59.000Z

360

Closure vs. structural holes: how social network information and culture affect choice of collaborators  

Science Conference Proceedings (OSTI)

Collaboration is important to successful organizations and how coworkers are selected is crucial to the dynamics of effective collaborations. In this study we explore how people use social network information, which is increasingly accessible on enterprise ... Keywords: closure, guanxi, national culture, social network sites (sns), structural holes, willingness to collaborate

Ge Gao; Pamela Hinds; Chen Zhao

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

State Environmental Policy Act (SEPA) Checklist for the 105-DR Large Sodium Fire Facility Closure Plan  

Science Conference Proceedings (OSTI)

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950's and is located in the 100-D Area of the Hanford Site. The building housed the DR defense reactor, which was shut down in 1964. The LSFF is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Clean closure is the proposed method of closure for the LSFF. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989). This closure plan presents a description of the facility, the history of wastes managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

Not Available

1990-09-01T23:59:59.000Z

362

Closure plan for CAU No. 93: Area 6 steam cleaning effluent ponds, Nevada Test Site  

SciTech Connect

The steam cleaning effluent ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site (NTS). Nevada Operations Office operates the NTS and has entered into a trilateral agreement with the State of Nevada and the Defense Special Weapons Agency (DSWA). The trilateral agreement provides a framework for identifying, characterizing, remediating, and closing environmental sites on the NTS and associated bombing ranges. The SCEP waste unit consists of: two steam cleaning effluent ponds; layout pad and associated grease trap; Building 6-623 steam cleaning pad; test pad; Building 6-623 grease trap; Building 6-800 steam cleaning pad; Building 6-800 separator; Building 6-621 sump; and the concrete asbestos piping connecting these components to both SCEPs. Clean closure is the recommended closure strategy for the majority of the components within this CAU. Four components of the unit (Building 6-621 Sump, Test Pad Grease Trap, Building 6-623 Steam Cleaning Pad, and North SCEP pipeline) are recommended to be closed in place. This closure plan provides the strategy and backup information necessary to support the clean closure of each of the individual components within CAU 93. Analytical data generated during the characterization field work and earlier sampling events indicates the majority of CAU 93 soil and infrastructure is non-hazardous (i.e., impacted primarily with petroleum hydrocarbons).

NONE

1997-04-01T23:59:59.000Z

363

A New Second-Order Turbulence Closure Scheme for Modeling the Oceanic Mixed Layer  

Science Conference Proceedings (OSTI)

A new second-order turbulence closure scheme is proposed for the oceanic mixed layer. The scheme is similar in complexity to a MellorYamada level 2.5 scheme in that the turbulent kinetic energy is the only turbulence quantity treated ...

S. J. D. DAlessio; K. Abdella; N. A. McFarlane

1998-08-01T23:59:59.000Z

364

Summary of Group Development and Testing for Single Shell Tank Closure at Hanford  

Science Conference Proceedings (OSTI)

This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closure which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.

Harbour, John, R.

2005-04-28T23:59:59.000Z

365

Closure Report for Corrective Action Unit 426: Cactus Spring Waste Trenches, Tonopah Test Range, Nevada  

SciTech Connect

This Closure Report provides the documentation for closure of the Cactus Spring Waste Trenches Corrective Action Unit (CAU) 426. The site is located on the Tonopah Test Range, approximately 225 kilometers northwest of Las Vegas, NV. CAU 426 consists of one corrective action site (CAS) which is comprised of four waste trenches. The trenches were excavated to receive solid waste generated in support of Operation Roller Coaster, primary the Double Tracks Test in 1963, and were subsequently backfilled. The Double Tracks Test involved use of live animals to assess the biological hazards associated with the nonnuclear detonation of plutonium-bearing devices. The Nevada Division of Environmental Protection approved Corrective Action Plan (CAP)which proposed ''capping'' methodology. The closure activities were completed in accordance with the approved CAP and consisted of constructing an engineered cover in the area of the trenches, constructing/planting a vegetative cover, installing a perimeter fence and signs, implementing restrictions on future use, and preparing a Post-Closure Monitoring Plan.

Dave Madsen

1998-08-01T23:59:59.000Z

366

Completeness of an exponential system in weighted Banach spaces and closure of its linear span  

Science Conference Proceedings (OSTI)

For a real multiplicity sequence @L={@l"n,@m"n}"n"="1^~, that is, a sequence where {@l"n} are distinct positive real numbers satisfying 0 Keywords: 30B50, 30B60, Closure, Completeness, Minimality, Taylor--Dirichlet series

E. Zikkos

2007-05-01T23:59:59.000Z

367

DEVELOPING AND QUANTIFYING PARAMETERS FOR CLOSURE WELDING OVERPACKS CONTAINING RESEARCH REACTOR SPENT NUCLEAR FUEL AT HANFORD  

SciTech Connect

Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leaktight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). . A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leaktight for the duration of the storage term.

CANNELL GR

2007-11-07T23:59:59.000Z

368

CLOSURE WELDING RADIOACTIVE MATERIALS CONTAINERS AT THE DEPARTMENT OF ENERGY (DOE) HANFORD SITE  

SciTech Connect

The Department of Energy's (DOE) responsibility for the disposition of radioactive materials has given rise to several unique welding applications. Many of these materials require packaging into containers for either Interim or long-term storage. It is not uncommon that final container fabrication, i.e., closure welding, is performed with these materials already placed into the container. Closure welding is typically performed remote to the container, and routine post-weld testing and nondestructive examination (NDE) are often times not feasible. Fluor Hanford has packaged many such materials in recent years as park of the Site's cleanup mission. In lieu of post-weld testing and NDE, the Fluor-Hanford approach has been to establish weld quality through ''upfront'' development and qualification of welding parameters, and then ensure parameter compliance during welding. This approach requires a rigor not usually afforded to typical welding development activities, and may involve statistical analysis and extensive testing, including burst, drop, sensitive leak testing, etc. This paper provides an instructive review of the development and qualification activities associated with the closure of radioactive materials containers, including a brief report on activities for closure welding research reactor, spent nuclear fuel (SNF) overpacks at the Hanford Site.

CANNELL, G.R.

2006-09-01T23:59:59.000Z

369

Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence Utilizing Spectral Closures  

Science Conference Proceedings (OSTI)

A spectral equation derived from two-point closures applied to three-dimensional isotropic turbulence is studied from the subgrid-scale modeling point of view, with a cutoff wavenumber kc located in the inertial range of turbulence. Ideas of ...

Jean-Pierre Chollet; Marcel Lesieur

1981-12-01T23:59:59.000Z

370

DESIGN OF A CONTAINMENT VESSEL CLOSURE FOR SHIPMENT OF TRITIUM GAS  

SciTech Connect

This paper presents a design summary of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This new package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The new design is based on changes in the regulatory requirements. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials that enhance the package's ability to withstand dynamic loading and thermal effects. This paper will specifically summarize the design philosophy and engineered features of the BTSP containment vessel closure. The closure design incorporates a concave closure lid, metallic C-Ring seals for containing tritium gas, a metal bellows valve and an elastomer O-Ring for leak testing. The efficient design minimizes the overall vessel height and protects the valve housing from damage during postulated drop and crush scenarios. Design features will be discussed.

Eberl, K; Paul Blanton, P

2007-07-03T23:59:59.000Z

371

An Integral Closure Model for the Vertical Turbulent Flux of a Scalar in a Mixed Layer  

Science Conference Proceedings (OSTI)

An integral closure model is proposed for the vertical turbulent transport of a scalar in a mixed layer. The flux divergences at a given level is related to a vertical integral of a weighting function multiplied by the difference between the ...

Brian H. Fiedler

1984-02-01T23:59:59.000Z

372

Closure Report for Corrective Action Unit 540: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 540: Spill Sites, Nevada Test Site, Nevada. This CR complies with the requirements of the 'Federal Facility Agreement and Consent Order' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 540 is located within Areas 12 and 19 of the Nevada Test Site and is comprised of the following Corrective Action Sites (CASs): CAS 12-44-01, ER 12-1 Well Site Release; CAS 12-99-01, Oil Stained Dirt; CAS 19-25-02, Oil Spill; CAS 19-25-04, Oil Spill; CAS 19-25-05, Oil Spill; CAS 19-25-06, Oil Spill; CAS 19-25-07, Oil Spill; CAS 19-25-08, Oil Spills (3); and CAS 19-44-03, U-19bf Drill Site Release. The purpose of this CR is to provide documentation supporting recommendations of no further action for the CASs within CAU 540. To achieve this, the following actions were performed: (1) Reviewed the current site conditions, including the concentration and extent of contamination; (2) Performed closure activities to address the presence of substances regulated by 'Nevada Administrative Code' 445A.2272 (NAC, 2002); and (3) Documented Notice of Completion and closure of CAU 540 issued by the Nevada Division of Environmental Protection.

McClure, Lloyd

2006-10-01T23:59:59.000Z

373

Principal Length Scales in Second-Order Closure Models for Canopy Turbulence  

Science Conference Proceedings (OSTI)

Triaxial sonic anemometer velocity measurements vertically arrayed at six levels within and above a pine forest were used to examine the performance of two second-order closure models put forth by Wilson and Shaw and by Wilson. Based on these ...

Gabriel G. Katul; Wei-han Chang

1999-11-01T23:59:59.000Z

374

Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site  

Science Conference Proceedings (OSTI)

The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure cover has been placed on unit U-3ax/bl (Corrective Action Unit 110) at the Area 3 RWMS. Monolayer-evapotranspirative closure cover designs for the U-3ah/at and U-3bh units are provided in this plan. The current-design closure cover thickness is 3 meters (10 feet). The final design cover will have an optimized cover thickness, which is expected to be less than 3 m (10 ft). Although waste operations at the Area 3 RWMS have ceased at the end of June 2006, disposal capacity is available for future disposals at the U-3ah/at and U-3bh units. The Area 3 RWMS is expected to start closure activities in fiscal year 2025, which include the development of final performance assessment and composite analysis documents, closure plan, closure cover design for construction, cover construction, and initiation of the post-closure care and monitoring activities. Current monitoring at the Area 3 RWMS includes monitoring the cover of the closed mixed waste unit U-3ax/bl as required by the Nevada Department of Environmental Protection, and others required under federal regulations and DOE orders. Monitoring data, collected via sensors and analysis of samples, are needed to evaluate radiation doses to the general public, for performance assessment maintenance, to demonstrate regulatory compliance, and to evaluate the actual performance of the RWMSs. Monitoring provides data to ensure the integrity and performance of waste disposal units. The monitoring program is designed to forewarn management and regulators of any failure and need for mitigating actions. The plan describes the program for monitoring direct radiation, air, vadose zone, biota, groundwater, meteorology, and subsidence. The requirements of post-closure cover maintenance and monitoring will be determined in the final closure plan.

NSTec Environmental Management

2007-09-01T23:59:59.000Z

375

Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB-, and Cs-137-impacted soil and debris, approximately 7 yd3 of hydrocarbon waste consisting of TPH-DRO-impacted soil, and approximately 66 yd3 of sanitary debris consisting of soil and concrete debris were generated, managed, and disposed of appropriately. Waste minimization techniques, such as the utilization of field screening and laboratory analysis to determine the extent of excavation required, were employed during the performance of closure work.

NSTec Environmental Restoration

2007-07-01T23:59:59.000Z

376

Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CAS 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd{sup 3} of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd{sup 3} of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd{sup 3} of universal waste in the form of fluorescent light bulbs; and approximately 0.5 yd{sup 3} of low-level waste in the form of a radiologically impacted fire hose rack were generated, managed, and disposed of appropriately. Waste minimization techniques, such as the utilization of laboratory analysis and field screening to guide the extent of excavations, were employed during the performance of closure work.

NSTec Environmental Restoration

2007-10-01T23:59:59.000Z

377

Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada  

SciTech Connect

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: CAS 02-26-11, Lead Shot CAS 02-44-02, Paint Spills and French Drain CAS 02-59-01, Septic System CAS 02-60-01, Concrete Drain CAS 02-60-02, French Drain CAS 02-60-03, Steam Cleaning Drain CAS 02-60-04, French Drain CAS 02-60-05, French Drain CAS 02-60-06, French Drain CAS 02-60-07, French Drain CAS 23-60-01, Mud Trap Drain and Outfall CAS 23-99-06, Grease Trap CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

NSTec Environmental Restoration

2012-08-15T23:59:59.000Z

378

Post-Closure Inspection Report for the Tonopah Test Range, Nevada  

SciTech Connect

This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2006 and includes inspection and repair activities completed at the following nine CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 404: Roller Coaster Lagoons and Trench (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 426: Cactus Spring Waste Trenches (TTR); CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR). Post-closure inspections were conducted on May 9, 2006, May 31, 2006, and November 15, 2006. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2006, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 400, CAU 407, CAU 426, CAU 453, and CAU 487 in 2006. During the May inspection of CAU 400, it was identified that the east and west sections of chickenwire fencing beyond the standard fencing were damaged; they were repaired in June 2006. Also in June 2006, the southeast corner fence post and one warning sign at CAU 407 were reinforced and reattached, the perimeter fencing adjacent to the gate at CAU 426 was tightened, and large animal burrows observed at CAU 453 were backfilled. Cracking observed in three monuments at CAU 487 was repaired using sealant during the May 9, 2006, inspection. At this time, the TTR post-closure site inspections should continue as scheduled. Any potential problem areas previously identified (e.g., areas of erosion, subsidence) should be monitored closely, and periodic vegetation surveys of the vegetated covers should continue.

NSTec Environmental Restoration

2007-06-01T23:59:59.000Z

379

Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: 01-02-01, Underground Storage Tank 07-02-01, Underground Storage Tanks 10-02-01, Underground Storage Tank 20-02-03, Underground Storage Tank 20-99-05, Tar Residue 22-02-02, Buried UST Piping 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: Reviewed the current site conditions, including the concentration and extent of contamination. Implemented any corrective actions necessary to protect human health and the environment. Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify COCs for CAU 130. Assessment of the data generated from closure activities indicates that no further action is necessary because no COCs were identified at any CAU 130 CAS. Debris removal from these CASs was considered a best management practice because no contamination was detected. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: No further corrective action is required at all CAU 130 CASs. A Notice of Completion to DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 130. Corrective Action Unit 130 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

Alfred Wickline

2009-03-01T23:59:59.000Z

380

Optimization of the Area 5 Radioactive Waste Management Site Closure Cover  

SciTech Connect

The U.S. Department of Energy Manual DOE M 435.1-1, Radioactive Waste Management Manual, requires that performance assessments demonstrate that releases of radionuclides to the environment are as low as reasonably achievable (ALARA). Quantitative cost benefit analysis of radiation protection options is one component of the ALARA process. This report summarizes a quantitative cost benefit analysis of closure cover thickness for the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. The optimum cover thickness that maintains doses ALARA is shown to be the thickness with the minimum total closure cost. Total closure cost is the sum of cover construction cost and the health detriment cost. Cover construction cost is estimated based on detailed cost estimates for closure of the 92-acre Low-Level Waste Management Unit (LLWMU). The health detriment cost is calculated as the product of collective dose and a constant monetary value of health detriment in units of dollars per unit collective dose. Collective dose is the sum of all individual doses in an exposed population and has units of person-sievert (Sv). Five discrete cover thickness options ranging from 2.5 to 4.5 meters (m) (8.2 to 15 feet [ft]) are evaluated. The optimization was subject to the constraints that (1) options must meet all applicable regulatory requirements and that (2) individual doses be a small fraction of background radiation dose. Total closure cost is found to be a monotonically increasing function of cover thickness for the 92-ac LLWMU, the Northern Expansion Area, and the entire Area 5 RWMS. The cover construction cost is orders of magnitude greater than the health detriment cost. Two-thousand Latin hypercube sampling realizations of the relationship between total closure cost and cover thickness are generated. In every realization, the optimum cover thickness is 2.5 m (8.2 ft) for the 92-ac Low-Level Waste Management Unit, the Northern Expansion Area, and the entire Area 5 RWMS. The conclusions of the optimization are found to be insensitive to all input parameters, the monetary value of the health detriment over a range of values from $200,000 to $15,000,000 per person-Sv, and the period of integration of collective dose. A 2.5 m (8.2 ft) closure cover at the Area 5 RWMS can meet all applicable regulatory requirements and maintain radionuclide releases ALARA.

Shott, Greg; Yucel, Vefa

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Housekeeping Closure Report for Corrective Action Unit 212: Area 23 Warehouses E and R Chemical Storage, Nevada Test Site, Nevada  

SciTech Connect

The Federal Facility Agreement and Consent Order was entered into by the State of Nevada; U.S. Department of Energy, and the U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts of the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at six CASs within CAU 212 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris, drums, batteries, scrap metal, and other material. Based on these activities, no further action is required at these CASs.

USDOE/NV

1999-05-01T23:59:59.000Z

382

Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

NSTec Environmental Restoration

2008-04-01T23:59:59.000Z

383

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2011  

SciTech Connect

This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2011 and includes inspection and repair activities completed at the following CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 453: Area 9 UXO Landfill (TTR); and (5) CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Appendix B. The inspection checklists are included in Appendix C, field notes are included in Appendix D, and photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted May 3 and 4, 2011. Maintenance was performed at CAU 424, CAU 453, and CAU 487. At CAU 424, two surface grade monuments at Landfill Cell A3-3 could not be located during the inspection. The two monuments were located and marked with lava rock on July 13, 2011. At CAU 453, there was evidence of animal burrowing. Animal burrows were backfilled on July 13, 2011. At CAU 487, one use restriction warning sign was missing, and wording was faded on the remaining signs. A large animal burrow was also present. The signs were replaced, and the animal burrow was backfilled on July 12, 2011. As a best management practice, the use restriction warning signs at CAU 407 were replaced with standard Federal Facility Agreement and Consent Order signs on July 13, 2011. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2011, and the vegetation monitoring report is included in Appendix F.

NSTec Environmental Restoration

2012-02-21T23:59:59.000Z

384

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

385

Project Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

386

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

387

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

388

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

389

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

390

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

391

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

392

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

393

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

394

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

395

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

396

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

397

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

398

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

399

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

400

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

402

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

403

Research projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

404

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

405

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

406

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

407

Hallmark Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

408

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

409

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

410

Mound bridge-wire welding, testing and corrosion seminar, Miamisburg, OH, May 7-8, 1968  

SciTech Connect

Brief summaries are presented on the following presentations: welding for low voltage operation, welding techniques at Mound, welding/joining at Sandia, Ultrasonic`s plastic assemblies of detonator components, laser welding bridge-wires, laser safety in the Biorad industrial environment, nondestructive testing at Mound, thermal cycle data and evaluation, thermal cycle nondestructive testing, corrosion of detonator electrode and bridge-wire, and corrosion studies and fabrication of bridge-wire at Sigmund Cohn.

Richards, M.A.

1968-08-07T23:59:59.000Z

411

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA  

SciTech Connect

This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos.

NA

2006-03-01T23:59:59.000Z

412

Determination of H{sub 2} Diffusion Rates through Various Closures on TRU Waste Bag-Out Bags  

DOE Green Energy (OSTI)

The amount of H{sub 2} diffusion through twist and tape (horse-tail), wire tie, plastic tie, and heat sealed closures on transuranic (TRU) waste bag-out bags has been determined. H{sub 2} diffusion through wire and plastic tie closures on TRU waste bag-out bags has not been previously characterized and, as such, TRU waste drums containing bags with these closures cannot be certified and/or shipped to the Waste Isolation Pilot Plant (WIPP). Since wire ties have been used at Los Alamos National Laboratory (LANL) from 1980 to 1991 and the plastic ties from 1991 to the present, there are currently thousands of waste drums that cannot be shipped to the WIPP site. Repackaging the waste would be prohibitively expensive. Diffusion experiments performed on the above mentioned closures show that the diffusion rates of plastic tie and horse-tail closures are greater than the accepted value presented in the TRU-PACT 11 Safety Analysis Report (SAR). Diffusion rates for wire tie closures are not statistically different from the SAR value. Thus, drums containing bags with these closures can now potentially be certified which would allow for their consequent shipment to WIPP.

Phillip D. Noll, Jr.; E. Larry Callis; Kirsten M. Norman

1999-06-01T23:59:59.000Z

413

U.S. DEPARTMENT OF ENERGYCONTRACT AND PROJECT MANAGEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S U.S . DEP ARTMENT OF ENERGY CONTRACT AND P ROJ ECT MANAGEMENT ROOT CAUSE ANALYSIS AND CORRECTIVE ACTION P LAN CLOSURE REPORT FINAL FEBRUARY 2011 iii Executive Summary The Department of Energy (DOE) is committed to making continuous improvements in contract and project management performance. Improving DOE contract and project management is a top priority of the Department's senior management and entire organization. While DOE's contract and project management has been on the Government Accountability Office (GAO) High Risk List since 1990, several real and measurable improvements have been implemented recently. The Department conducted a root cause analysis (RCA) workshop on October 16-17, 2007, to identify the systemic challenges of planning and managing DOE projects. During the workshop

414

HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-31T23:59:59.000Z

415

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Fundamental Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397 Lee H Spangler Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Computational tool development * Laboratory studies to understand subsurface CO 2 behavior * Analog studies to inform risk analysis * Near surface detection technologies / testing * Mitigation method development 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

416

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

FE/NETL CTS Cost Models and FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program David Morgan Benefits Division Office of Program Planning and Analysis National Energy Technology Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 OFFICE OF FOSSIL ENERGY 2 Presentation Outline * Overview of benefits assessment * Overview of FE/NETL models used to assess benefits of CO 2 capture and storage * Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO 2 storage in a saline aquifer * Description of model used to estimate costs of

417

Project 307  

NLE Websites -- All DOE Office Websites (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

418

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline * Benefit to the program * Project overview: Why 14 C for MVA? * Technical status: Cartridges, injections, lasers * Summary * Organizational chart * Collaborators 3 Benefit to the Program * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Permanent storage of CO 2 can be demonstrated by adding carbon-14 ( 14 C) prior to injection. This research project aims to demonstrate this by tagging fossil CO 2 with 14 C at a field site. When completed, this system will show that 14 C can be a safe and effective tracer for sequestered CO 2 . A laser-based 14 C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent

419

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Pathways and Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO 2 Project DE-FC26-0xNT4 FE0001786 James P. Evans Utah State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Goals and Objectives * Relationship to overall program goals * Overview of seal bypass * Technical status; bypass systems - Field based studies - Technological advances * Accomplishments and Summary * Appendices 3 Benefit to the Program * Program goals addressed * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

420

Project 301  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael G. Waddell Earth Sciences and Resources Institute University of South Carolina U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 2 Presentation Outline * Project goals and benefits * Overview of the geology of the South Georgia Rift basin in SC * Results of petrographic and core analysis from the Rizer #1 * Future investigations in the SGR * Summary 3 Benefit to the Program Program Goals: * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected

422

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

423

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mart Oostrom Mart Oostrom Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by a memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly reducing the environmental emissions and improving the efficiency of

424

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Evaluation of Geophysical Methods for Monitoring and Tracking CO 2 Migration in the Subsurface PI: Jeffrey Daniels Co-PI: Robert Burns & Franklin Schwartz Students: Michael Murphy & Kyle Shalek The Ohio State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 FOA Number: DE-FOA-0000032 NETL Award Number: DE-FE0002441 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 3 Benefit to the Program * Program Goal: Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones

425

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

capillary trapping (FE0004956), Bryant, UT-Austin capillary trapping (FE0004956), Bryant, UT-Austin Influence of Local Capillary Trapping on Containment System Effectiveness DE-FE0004956 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin

426

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

427

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Caprock Integrity and Improved Caprock Integrity and Risk Assessment Techniques Project Number (FE0009168) Michael Bruno, PhD, PE GeoMechanics Technologies U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Introduction and Motivation 2 A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and risk assessment techniques to better predict and help control system failures, and to enhance performance of geologic storage. GeoMechanics Technologies is developing enhanced simulation and risk analysis approaches to assess and

428

Irene Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Irene Station, African Weather Bureau Irene Station, African Weather Bureau The photos on this site come from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Additional photos can be found on the SHADOZ Project Web Site. Photo of the Dobson 89 Instrument The Irene Weather Office Agnes Phahlane sits behind the Dobson and collects Total Ozone Data The lab at the Irene station Cal Archer Prepares an ozonesonde Flight Preparations The balloon is readied The release Back to the SAFARI 2000 Photo Page Index Other Sites: Skukuza, MISR Validation Site | Skukuza, Eddy Covariance Site | C-130 Flight Photos | Sua Pan Site | Irene Weather Station | Fire Studies | Kalahari Transect | Kalahari Transect Sites for Canopy Structure Data | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data

429

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive Monitoring and Uncertainty Assessment of CO 2 Plume Migration DOE-FE0004962 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin

430

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on CCS Energy Market Competitiveness Catherine A. Peters Jeffery P. Fitts Michael A. Celia Princeton University Paul D. Kalb Vatsal Bhatt Brookhaven National Laboratory Elizabeth J. Wilson Jeffrey M. Bielicki Melisa Pollak University of Minnesota DOE Award DE-FE0000749 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to CCUS research program * Project Goals & Objectives * Technical Status  Thrust I - Reservoir-scale simulations of leakage potential with permeability evolution

431

Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

432

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

for Modeling CO for Modeling CO 2 Processes: Pressure Management, Basin-Scale Models, Model Comparison, and Stochastic Inversion ESD09-056 Jens T. Birkholzer with Abdullah Cihan, Marco Bianchi, Quanlin Zhou, Xiaoyi Liu, Sumit Mukhopadhyay, Dorothee Rebscher, Barbara Fialeix Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview and Technical Status - Task 1: Optimization of Brine Extraction for Pressure Management and Mitigation - Task 2: Basin-scale Simulation of CO 2 Storage in the Northern Plains - Prairie Basal Aquifer - Task 3: Sim-SEQ Model Comparison

433

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO Beneficial Use of CO 2 in Precast Concrete Production DE-FE0004285 Yixin Shao, Yaodong Jia Liang Hu McGill University 3H Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation outline * Goals and objectives * Benefits to the program * Project overview * Technical status * Accomplishment to date * Summary 2 Objective Masonry blocks Fiber-cement panels Prefabricated buildings Concrete pipes To develop a carbonation process to replace steam curing in precast concrete production for energy reduction, and carbon storage and utilization. Goals * CO 2 sequestration capacity by cement:

434

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

435

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

436

FUSRAP Project  

Office of Legacy Management (LM)

Project Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited cher.ica1 characterization survey was performed to assist in the completion of waste disposal paperwork. Radiological contamination is primarily ir. the 'belt cutting and belt fabrication'areas of the building with a small erea of contamination in the south end of the building. The chemiccl sac~le

437

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Advanced simulation tool for quantifying transport in porous and fractured geological formations during CO 2 sequestration that includes all mechanisms: convection, diffusion, dissolution and chemical reactions * A simulator that can fully model these processes does not currently exist * Simulator will contribute to our ability to predict CO 2 storage capacity in geologic formations, to within ±30 percent 4 Project Overview: Goals and Objectives Comprehensive reservoir simulator for investigation of CO 2 non-isothermal, multiphase flow and long-term storage in

438

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas J. Wolery Thomas J. Wolery Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 LLNL-PRES-574632 2 Team Members * Roger Aines * Bill Bourcier * Tom Wolery * Tom Buscheck * Tom Wolfe (consultant) * Mike DiFilippo (consultant) * Larry Lien (Membrane Development Specialists) 3 Presentation Outline * Overview of Active CO 2 Reservoir Management (ACRM) * Subsurface Reservoir Management: Made Possible by Brine Production, Yielding Many Benefits * Brine Disposal Options - What brines are out there? - What are the treatment options? 4 Benefit to the Program * This project is identifying and evaluating

439

Project Payette  

SciTech Connect

This is the concept for Project Payette, a nuclear event in the Seismic Detection Research Program. For this experiment, a nuclear explosive in the range of 5 to 10 kt will be detonated at a depth of 2000 to 3000 ft in an underground cavity of sufficient size that the walls of the cavity experience only elastic motion. The site will be located in a salt dome. Project Payette has been divided into three phases. Phase I will include site evaluation and engineering design of the construction of the cavity. It is estimated to require about 1 year. Phase II will include construction of the cavity and emplacement hole. It is estimated to require about 2 years. Phase III will include emplacement of instruments and the device, the detonation and the post-shot program including cavity re-entry. This is estimated to require about 1 year. The scope of this concept is intended to define Project Payette sufficiently will that Phase I work may proceed.

Warner, D.

1966-08-01T23:59:59.000Z

440

Radionuclide Inventory Distribution Project Data Evaluation and Verification White Paper  

Science Conference Proceedings (OSTI)

Testing of nuclear explosives caused widespread contamination of surface soils on the Nevada Test Site (NTS). Atmospheric tests produced the majority of this contamination. The Radionuclide Inventory and Distribution Program (RIDP) was developed to determine distribution and total inventory of radionuclides in surface soils at the NTS to evaluate areas that may present long-term health hazards. The RIDP achieved this objective with aerial radiological surveys, soil sample results, and in situ gamma spectroscopy. This white paper presents the justification to support the use of RIDP data as a guide for future evaluation and to support closure of Soils Sub-Project sites under the purview of the Federal Facility Agreement and Consent Order. Use of the RIDP data as part of the Data Quality Objective process is expected to provide considerable cost savings and accelerate site closures. The following steps were completed: - Summarize the RIDP data set and evaluate the quality of the data. - Determine the current uses of the RIDP data and cautions associated with its use. - Provide recommendations for enhancing data use through field verification or other methods. The data quality is sufficient to utilize RIDP data during the planning process for site investigation and closure. Project planning activities may include estimating 25-millirem per industrial access year dose rate boundaries, optimizing characterization efforts, projecting final end states, and planning remedial actions. In addition, RIDP data may be used to identify specific radionuclide distributions, and augment other non-radionuclide dose rate data. Finally, the RIDP data can be used to estimate internal and external dose rates. The data quality is sufficient to utilize RIDP data during the planning process for site investigation and closure. Project planning activities may include estimating 25-millirem per industrial access year dose rate boundaries, optimizing characterization efforts, projecting final end states, and planning remedial actions. In addition, RIDP data may be used to identify specific radionuclide distributions, and augment other non-radionuclide dose rate data. Finally, the RIDP data can be used to estimate internal and external dose rates.

NSTec Environmental Restoration

2010-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "miamisburg closure project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Microsoft Word - S04251_2007 Post-Closure Plan.doc  

Office of Legacy Management (LM)

the Salmon, Mississippi, Site the Salmon, Mississippi, Site Calendar Year 2007 May 2008 Office of Legacy Management LMS/SAL/S04251 Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AM01-07LM00060 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank LMS/SAL/S04251 Post-Closure Inspection and Monitoring Report for the Salmon, Mississippi, Site Calendar Year 2007 May 2008 This page intentionally left blank U.S. Department of Energy Post-Closure Inspection and Monitoring Report for Salmon-Calendar Year 2007 May 2008 Doc. No. S0425100 Page iii Contents Acronyms and Abbreviations .........................................................................................................

442

Closure Report for Housekeeping Category Corrective Action Unit 524 Nevada Test Site Nevada  

Science Conference Proceedings (OSTI)

This Closure Report for Corrective Action Unit (CAU) 524 summarizes the disposition of four Corrective Action Sites (CAS) located in Area 25 of the Nevada Test Site, Nevada. The table listed in the report provides a description of each CAS and the status of its associated waste as listed in the ''Federal Facilities Agreement and Consent Order'' (FFACO, 1996). Copies of the Sectored Housekeeping Site Closure Verification Form for each CAS are included as Attachment A. Two of the sites required sampling for waste disposal purposes, CAS 25-22-18 and 25-22-20. The material sampled at these two sites were found to be not hazardous. Results of the sampling are included in Attachment B.

A. T. Urbon

2000-11-01T23:59:59.000Z

443

Radioactive material package closures with the use of shape memory alloys  

SciTech Connect

When heated from room temperature to 165 C, some shape memory metal alloys such as titanium-nickel alloys have the ability to return to a previously defined shape or size with dimensional changes up to 7%. In contrast, the thermal expansion of most metals over this temperature range is about 0.1 to 0.2%. The dimension change of shape memory alloys, which occurs during a martensite to austenite phase transition, can generate stresses as high as 700 MPa (100 kspi). These properties can be used to create a closure for radioactive materials packages that provides for easy robotic or manual operations and results in reproducible, tamper-proof seals. This paper describes some proposed closure methods with shape memory alloys for radioactive material packages. Properties of the shape memory alloys are first summarized, then some possible alternative sealing methods discussed, and, finally, results from an initial proof-of-concept experiment described.

Koski, J.A.; Bronowski, D.R.

1997-11-01T23:59:59.000Z

444

Cost-effective remediation and closure of petroleum-contaminated sites  

Science Conference Proceedings (OSTI)

This book provides environmental managers and their supporting technical specialists with a comprehensive strategy for cost-effectively cleaning up soils and groundwater contaminated by petroleum releases. It includes the most recent advances in site investigation techniques, low-cost remedial approaches, and technologies. It uses a risk-based process to answer key questions involved in developing a remediation or closure plan for a petroleum spill site. Several approaches are described that include risk management methods which use institutional controls to isolate contaminants from human contact and long-term monitoring to verify that natural attenuation is reducing future risk. More traditional risk evaluations and simplified RBCA methods are also presented that use site-specific exposure assumptions to develop risk-based cleanup objectives. Case studies illustrate how various combinations of land-use control, site-specific risk analysis, natural attenuation, and focused source reduction technologies have been used to obtain risk-based closures at sites across the US.

Downey, D.C.; Hinchee, R.E.; Miller, R.N.

1999-10-01T23:59:59.000Z

445

Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls