Sample records for mi plug-in hybrid

  1. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08T23:59:59.000Z

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  2. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  3. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  4. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE...

  5. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid...

  6. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  7. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  8. Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

  9. Plug-in Hybrid Initiative

    SciTech Connect (OSTI)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27T23:59:59.000Z

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  10. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study IInntteerriimm RReeppoorrtt:: PPhhaassee 11 Government or any agency thereof. ORNL/TM-2008/076 #12;Plug-in Hybrid Electric Vehicle Value Proposition 2009 i ACKNOWLEDGEMENTS The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study

  11. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 3:Phase 1, Task 3: Technic Government or any agency thereof. #12;ORNL/TM-2008/068 Plug-in Hybrid Electric Vehicle Value Proposition The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study is a collaborative effort between

  12. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  13. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  14. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vssarravt068miyasato2010p.pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In...

  15. 2010 Plug-In Hybrid and Electric Vehicle Research

    E-Print Network [OSTI]

    2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

  16. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 2: Select Value Propositions Government or any agency thereof. #12;ORNL/TM-2008/056 Plug-in Hybrid Electric Vehicle Value Proposition-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007

  17. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  18. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    supervises testing in the Hybrid Vehicle Propulsion Systemsbattery for plug-in hybrid vehicle is complicated processstorage for Plug-in Hybrid vehicles EVS24 International

  19. High-Power Electrochemical Storage Devices and Plug-in Hybrid...

    Energy Savers [EERE]

    High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle...

  20. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  1. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

  2. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

  3. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

  4. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction...

  5. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales...

  6. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and...

  7. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid...

    Energy Savers [EERE]

    2: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Fact 562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Estimates from the GREET model...

  8. DOE Supports PG&E Development of Next Generation Plug-in Hybrid...

    Energy Savers [EERE]

    DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 -...

  9. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01T23:59:59.000Z

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  10. Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis, Technology and Policy Program #12;#12;3 Prospects for Plug-in Hybrid Electric Vehicles in the United States Engineering ABSTRACT The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions

  11. Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in

    E-Print Network [OSTI]

    Victoria, University of

    Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

  12. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  13. Dueco Plug-In Hybrid Engines

    SciTech Connect (OSTI)

    Phillip Eidler

    2011-09-30T23:59:59.000Z

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  14. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03T23:59:59.000Z

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  15. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  16. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    SciTech Connect (OSTI)

    Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01T23:59:59.000Z

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  17. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorking withFuel CellPlug-In Hybrid

  18. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01T23:59:59.000Z

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  19. Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)

    SciTech Connect (OSTI)

    Simpson, A.

    2006-08-24T23:59:59.000Z

    Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

  20. Optimal Control of Plug-In Hybrid Electric Vehicles with Market ...

    E-Print Network [OSTI]

    Lai Wei

    2014-01-13T23:59:59.000Z

    Jan 13, 2014 ... Optimal Control of Plug-In Hybrid Electric Vehicles with Market Impact and Risk Attitude. Lai Wei (laiwei ***at*** ufl.edu) Yongpei Guan (guan ...

  1. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01T23:59:59.000Z

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  2. Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-02-13T23:59:59.000Z

    Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

  3. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

  4. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  5. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  6. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents’

  7. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01T23:59:59.000Z

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  8. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

  9. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET

  10. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  11. Simulating the Household Plug-in Hybrid Electric Vehicle Distribution and its Electric Distribution Network Impacts

    SciTech Connect (OSTI)

    Cui, Xiaohui [ORNL] [ORNL; Kim, Hoe Kyoung [ORNL] [ORNL; Liu, Cheng [ORNL] [ORNL; Kao, Shih-Chieh [ORNL] [ORNL; Bhaduri, Budhendra L [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents a multi agent-based simulation framework for modeling spatial distribution of plug-in hybrid electric vehicle ownership at local residential level, discovering plug-in hybrid electric vehicle hot zones where ownership may quickly increase in the near future, and estimating the impacts of the increasing plug-in hybrid electric vehicle ownership on the local electric distribution network with different charging strategies. We use Knox County, Tennessee as a case study to highlight the simulation results of the agent-based simulation framework.

  12. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

  13. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  14. Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis

    E-Print Network [OSTI]

    Karplus, Valerie Jean

    2008-01-01T23:59:59.000Z

    The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

  15. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    2-29678 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results Tyler Gray Jeffrey Wishart Matthew Shirk July 2013 The Idaho National Laboratory is a U.S....

  16. activity plug-in hybrid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and H.R. Pota Dynamic voltage vehicle as a DVR including the dynamic behaviour of the battery has been developed and integrated Pota, Himanshu Roy 5 2010 Plug-In Hybrid and...

  17. A simulation-based assessment of plug-in hybrid electric vehicle architectures

    E-Print Network [OSTI]

    Sotingco, Daniel (Daniel S.)

    2012-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture ...

  18. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...

    Broader source: Energy.gov (indexed) [DOE]

    recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the...

  19. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction fotw856web.xlsx More Documents & Publications Quarterly Analysis Review February 2015 Fact 853 December 29,...

  20. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  1. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  2. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31T23:59:59.000Z

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative agreements and their completion were problematic for the US and world economies. This resulted in the President and Congress implementing the American Recovery and Reinvestment Act of 2009, abbreviated ARRA (Pub.L. 111-5), commonly referred to as the Stimulus or The Recovery Act. The stimulus money available for transportation projects encouraged the SCAQMD to seek additional funds. In August of 2009, they eventually were awarded an additional $45.5 M, and the scope of their project was expanded to 378 vehicles. However, as a consequence of the stimulus money and the inundation of DOE with applications for new project under the ARRA, the expected time table for producing and testing vehicles was significantly delayed. As a result, these vehicles were not available for validating the protocols developed by the Kansas Consortium. Therefore, in April of 2011, the Scope of Project Objectives (SOPO) for the project was revised, and limited to producing the draft protocol for PHEV certification as its deliverable.

  3. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuels andConversionsAssumptions andPlug-InPlug-In

  4. Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.

    2009-01-01T23:59:59.000Z

    my money in my beliefs…and buy a hybrid car to help promotethe production of further hybrid cars…that year they wereCar Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid

  5. Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)

    SciTech Connect (OSTI)

    Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

    2007-05-01T23:59:59.000Z

    Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

  6. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    A.A. (2007) “Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric UtilitiesWould You Buy a Hybrid Vehicle? Study #715238, conducted for

  7. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01T23:59:59.000Z

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  8. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation | Department ofPlug-In

  9. Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing Accepted 14 August 2014 Available online 27 August 2014 Keywords: Plug-in hybrid electric vehicles Fuel-rate Pontryagin's minimum principle Simulated annealing State of health a b s t r a c t In this paper, an energy

  10. Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling Laboratory Slide 1 of 28

    E-Print Network [OSTI]

    Krstic, Miroslav

    PLUG-IN HYBRID ELECTRIC VEHICLE IC ENGINE OR FUEL CELL Use plug-in hybrid electric vehicles (PHEV to minimize fuel consumption BATTERY SIZE POWERPLANT SIZE CONTROL ARCHITECHTURE IC ENGINE OR FUEL CELL CONTROL MANIFOLD COOLER & HUMIDIFIER COMPRESSOR MOTOR Air Supply H2 FUEL CELL STACK Voltage CATHODESIDE ANODESIDE

  11. A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES

    E-Print Network [OSTI]

    Krstic, Miroslav

    A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES on optimizing PHEV power management for fuel economy, subject to charge sustenance constraints, over individual dynamic programming to optimize PHEV power management over a distribution of drive cycles, rather than

  12. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

  13. Power Conditioning for Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Farhangi, Babak

    2014-07-25T23:59:59.000Z

    Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

  14. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  15. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

  16. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  17. Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Reilly, John M.

    The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition ...

  18. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  19. A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues 

    E-Print Network [OSTI]

    Shidore, Neeraj Shripad

    2012-07-16T23:59:59.000Z

    The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

  20. A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues

    E-Print Network [OSTI]

    Shidore, Neeraj Shripad

    2012-07-16T23:59:59.000Z

    The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

  1. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  2. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01T23:59:59.000Z

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  3. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  4. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01T23:59:59.000Z

    Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

  5. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01T23:59:59.000Z

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOE’s Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  6. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01T23:59:59.000Z

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  7. eVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric andIn Hybrid Electric and

    E-Print Network [OSTI]

    California at Davis, University of

    In Hybrid Electric and gov PlugPlug In Hybrid Electric andIn Hybrid Electric and AllAllElectric Vehicles traveled (eVMT) for· Calculated electric vehicle miles traveled (eVMT) for plug-in hybrid electric vehicleseVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric and

  8. Photo illustration by George Lange, with Michael Miller (Plug) Popular Mechanics Impact of PlugImpact of Plug--in Hybrids on thein Hybrids on the

    E-Print Network [OSTI]

    1 1 Photo illustration by George Lange, with Michael Miller (Plug) ­Popular Mechanics Impact system Turbo Diesel hybrid Future options Gasoline Turbo Diesel Hybrid plug-in hybrid Battery electric Fuel Cell Audi Turbo Diesel GM Volt Hyundai's Fuel Cell Tesla's Battery electric car #12;7 13 Barriers

  9. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b s t r a c t Federal electric vehicle (EV) policies in the United States currently include vehicle

  10. Self-learning control system for plug-in hybrid vehicles

    DOE Patents [OSTI]

    DeVault, Robert C [Knoxville, TN

    2010-12-14T23:59:59.000Z

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  11. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31T23:59:59.000Z

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  12. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01T23:59:59.000Z

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  13. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  14. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL

    2006-11-01T23:59:59.000Z

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  15. The challenges and policy options for integrating plug-in hybrid electric vehicle into the electric grid

    SciTech Connect (OSTI)

    Srivastava, Anurag K.; Annabathina, Bharath; Kamalasadan, Sukumar

    2010-04-15T23:59:59.000Z

    Plug-in hybrid electric vehicle may be prime candidates for the next generation of vehicles, but they offer several technological and economical challenges. This article assesses current progress in PHEV technology, market trends, research needs, challenges ahead and policy options for integrating PHEVs into the electric grid. (author)

  16. IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

    E-Print Network [OSTI]

    National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset.S. electric infrastructure is designed to meet the highest expected demand for power and, as a resultIMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

  17. The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas

    E-Print Network [OSTI]

    Victoria, University of

    and wind power in three Canadian jurisdictions, namely British Columbia, Ontario and Alberta. An Optimal baseload mixtures. The large premium paid for displacing hydro or nuclear power with wind power does littleThe Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse

  18. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  19. Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Eskandari Halvaii, Ali

    2012-07-16T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  20. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  1. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2008-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  2. Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Tolbert, Leon M.

    of battery bank can be reduced for optimum design. Keywords -- Silicon carbide (SiC), inverter, hybrid -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV has rapidly expanded. The application of SiC devices (as battery interface, motor controller, etc

  3. Evaluating the Impact of Plug-in Hybrid Electric Vehicles on Regional Electricity Supplies

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL

    2007-01-01T23:59:59.000Z

    Plug-in Hybrid Electric Vehicles (PHEVs) have the potential to increase the use of electricity to fuel the U.S. transportation needs. The effect of this additional demand on the electric system will depend on the amount and timing of the vehicles' periodic recharging on the grid. We used the ORCED (Oak Ridge Competitive Electricity Dispatch) model to evaluate the impact of PHEVs on the Virginia-Carolinas (VACAR) electric grid in 2018. An inventory of one million PHEVs was used and charging was begun in early evening and later at night for comparison. Different connection power levels of 1.4 kW, 2 kW, and 6 kW were used. The results include the impact on capacity requirements, fuel types, generation technologies, and emissions. Cost information such as added cost of generation and cost savings versus use of gasoline were calculated. Preliminary results of the expansion of the study to all regions of the country are also presented. The results show distinct differences in fuels and generating technologies when charging times are changed. At low specific power and late in the evening, coal was the major fuel used, while charging more heavily during peak times led to more use of combustion turbines and combined cycle plants.

  4. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30T23:59:59.000Z

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  5. Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01T23:59:59.000Z

    Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefits by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.

  6. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  7. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  8. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect (OSTI)

    Sikes, Karen [Sentech, Inc.; Gross, Thomas [Sentech, Inc.; Lin, Zhenhong [ORNL; Sullivan, John [University of Michigan Transportation Research Institute; Cleary, Timothy [Sentech, Inc.; Ward, Jake [U.S. Department of Energy

    2010-02-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  9. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31T23:59:59.000Z

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  10. Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and

    E-Print Network [OSTI]

    Kemner, Ken

    " for the smart grid ­ How many plug-in electric vehicle purchasers be upset with smart grid costs? ­ Will smart, high income early adopters insist on no-hassle smart grid technology? Renewable performance standards Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar

  11. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01T23:59:59.000Z

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  12. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01T23:59:59.000Z

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  13. Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEAC FuelFederalDECEMBER 2009Plug-in

  14. How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and

    E-Print Network [OSTI]

    Toohey, Darin W.

    environmental friendly and produce less pollution. Examining other aspects of electric vehicles besides tailpipe electricity generation Majority of electricity in the United States from coal and natural gas CoalHow green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more

  15. Abstract--This paper examines the problem of optimizing the charge trajectory of a plug-in hybrid electric vehicle (PHEV),

    E-Print Network [OSTI]

    Krstic, Miroslav

    Abstract-- This paper examines the problem of optimizing the charge trajectory of a plug-in hybrid this optimization with two objectives in mind, namely, (i) minimizing the overall cost of daily PHEV energy the power grid. Two objectives are considered in this optimization. First, we minimize the total cost

  16. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Power Systems Laboratory and performs research and teaches graduate courses on advanced electric driveline technologies, specializing in batteries, ultracapacitors, fuel cells and hybrid vehicle

  17. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL

    2013-01-01T23:59:59.000Z

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  18. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles-in hybrid electric vehicles D M Lemoine1 , D M Kammen1,2,3 and A E Farrell1,4,5 1 Energy and Resources Group.iop.org/ERL/3/014003 Abstract Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity

  19. Global Optimization of Plug-In Hybrid Vehicle Design and Allocation to

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    electric vehicle, vehicle design, greenhouse gas emissions, global warming, transportation, life cycle­45 miles of electric travel. Larger battery packs allow longer travel on electrical energy, but production for addressing global warming in the U.S. transportation sector [1,2]. PHEVs are similar to ordinary hybrid

  20. Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Advanced Energy Management Strategy Development for Plug management strategy, which determines how energy flows in a hybrid powertrain should be managed in response for PHEVs using connected vehicle technology. Different energy management strategies will be developed

  1. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  2. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    SciTech Connect (OSTI)

    Sikes, Karen [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Cleary, Timothy [Sentech, Inc.

    2010-07-01T23:59:59.000Z

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

  3. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

  4. Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2009-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and by improving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEV fleet of up to 15% of light-duty vehicles can actually decrease net generator NO{sub x} emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO{sub 2}, SO{sub 2}, and NO{sub x} emissions can be reduced even further.

  5. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergyCorrective ActionHybrid Wind

  6. The potential of plug-in hybrid electric vehicles to reduce petroleum use issues involved in developing reliable estimates.

    SciTech Connect (OSTI)

    Vyas, A. D.; Santini, D. J.; Johnson, L. R.; Energy Systems

    2009-01-01T23:59:59.000Z

    This paper delineates the various issues involved in developing reliable estimates of the petroleum use reduction that would result from the wide-spread introduction of plug-in hybrid electric vehicles (PHEVs). Travel day data from the 2001 National Household Travel Survey (NHTS) were analyzed to identify the share of vehicle miles of travel (VMT) that could be transferred to grid electricity. Various PHEV charge-depleting (CD) ranges were evaluated, and 100% CD mode and potential blended modes were analyzed. The NHTS data were also examined to evaluate the potential for PHEV battery charging multiple times a day. Data from the 2005 American Housing Survey (AHS) were analyzed to evaluate the availability of garages and carports for at-home charging of the PHEV battery. The AHS data were also reviewed by census region and household location within or outside metropolitan statistical areas. To illustrate the lag times involved, the historical new vehicle market share increases for the diesel power train in France (a highly successful case) and the emerging hybrid electric vehicles in the United States were examined. A new vehicle technology substitution model is applied to illustrate a historically plausible successful new PHEV market share expansion. The trends in U.S. light-duty vehicle sales and light-duty vehicle stock were evaluated to estimate the time required for hypothetical successful new PHEVs to achieve the ultimately attainable share of the existing vehicle stock. Only when such steps have been accomplished will the full oil savings potential for the nation be achieved.

  7. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

  8. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  9. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

  10. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL

    2012-01-01T23:59:59.000Z

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  11. Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.

    2009-01-01T23:59:59.000Z

    promoted electric and hybrid vehicles to reduce urban airthe vehicle, and from hybrid vehicles, i.e. , adding batteryHaving researched hybrid vehicle and other pro-environmental

  12. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    Energy Storage System Technology Facing Strong Hybrids,Energy Storage System Design and Its Motor Drive Integration for HybridSystems Gaining Traction, Proceedings of the 19 th International Seminar on Double-layer Capacitors and Hybrid Energy

  13. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    production of further hybrid cars. ” Similarly, Larry Rhodesbuying Priuses as commute cars—hybrids were “fairly popularhybrid vehicles are being made available to (predominately new-car

  14. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    rd International Electric Vehicle Symposium and Exposition (Electric and Hybrid Electric Vehicle Applications, Sandiaand Impacts of Hybrid Electric Vehicle Options EPRI, Palo

  15. Frey, H.C., H.W. Choi, E. Pritchard, and J. Lawrence, "In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd Annual Conference and Exhibition, Air &

    E-Print Network [OSTI]

    Frey, H. Christopher

    . 1 In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric VehicleFrey, H.C., H.W. Choi, E. Pritchard, and J. Lawrence, "In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd

  16. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12T23:59:59.000Z

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  17. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  18. Secretary Chu Announces up to $10 Million to Support Plug-In...

    Office of Environmental Management (EM)

    0 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to 10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis...

  19. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in Electric Vehicles include plug-in hybrid vehicles and all-electric vehicles. Hybrid Electric Vehicles derive all of their energy from gasoline and cannot be plugged...

  20. Direct miRNA-hybridization assays and their potential in diagnostics

    E-Print Network [OSTI]

    Krylov, Sergey

    Direct miRNA-hybridization assays and their potential in diagnostics David W. Wegman, Sergey N. Wegman, Sergey N. Krylov* Centre for Research on Biomolecular Interactions, York University, Toronto

  1. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29T23:59:59.000Z

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  2. Brookings-Google Plug-in Hybrid Summit, Washington, DC, July 2008 Version date: September 7, 2008

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -3050 Energy and Resources Group Goldman School of Public Policy * Corresponding author. Phone: 510, reduce petroleum consumption, and expand competition in the transportation fuels sector. Several-in Hybrid Electric Vehicles Daniel M. Kammen,* , Derek M. Lemoine , Samuel M. Arons and Holmes Hummel Energy

  3. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration...

    Broader source: Energy.gov (indexed) [DOE]

    2015 Plug-in Electric Vehicle Penetration by State, 2014 fotw876web.xlsx More Documents & Publications Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for...

  4. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  5. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    SciTech Connect (OSTI)

    Sikes, Karen R [ORNL; Hinds, Shaun [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Markel, Lawrence C [ORNL; Ziegler, Richard E [ORNL; Smith, David E [ORNL; Smith, Richard L [ORNL; Greene, David L [ORNL; Brooks, Daniel L [ORNL; Wiegman, Herman [GE Global Research; Miller, Nicholas [GE; Marano, Dr. Vincenzo [Ohio State University

    2008-07-01T23:59:59.000Z

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  6. Plug-In Demo Charges up Clean Cities Coalitions | Department...

    Broader source: Energy.gov (indexed) [DOE]

    show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius,...

  7. Plugging in the consumer

    E-Print Network [OSTI]

    for senior executives around critical public and private sector issues. This executive brief is basedPlugging in the consumer Innovating utility business models for the future Energy and Utilities IBM and figuratively. But the confluence of climate change concerns, rising energy costs and technology advances

  8. Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    -rate charging of plug-in electric vehicles allows demand to be rapidly modulated, providing an alter- native growing electricity sources in the United States [3], wind can be expected to meet a large proportion vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from power

  9. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV

    SciTech Connect (OSTI)

    O'Keefe. M. P.; Markel, T.

    2006-11-01T23:59:59.000Z

    This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

  10. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must gaso- line consumption, helping to diminish dependency on imported oil. Recognizing these benefits, US

  11. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    solely from stored electric energy during the day. With theIn Hybrid Electric Vehicles on Energy and Emissions UsingIn Hybrid Electric Vehicles on Energy and Emissions Using

  12. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    Electric Vehicles. EPRI: Palo Alto, CA. Report1009299. [9]Popular Science. July. [4] EPRI (2001) Comparing theHybrid Electric Vehicle Options. EPRI: Palo Alto, CA. Report

  13. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    E-Print Network [OSTI]

    Momber, Ilan

    2010-01-01T23:59:59.000Z

    Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridwith Connection of Electric Vehicles TABLE IV D ECISION V

  14. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  15. 10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Kammen, Daniel M.

    and light trucks in the United States consume about 8 million barrels of gasoline per day, which is more between the latter two types: they can run either in gasoline-fueled hybrid electric mode (like an HEV pollutants and GHGs offset their increased capital costs. However, that study used U.S. fuel prices in its

  16. "Catching the second wave" of the Plug in Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    "Catching the second wave" of the Plug in Electric Vehicle Market PEV market update from ITS PHEV on gasoline, diesel, natural gas, biofuels and other liquid or gaseous fuels. · HEV = Hybrid electric vehicles Vehicles are like HEVs, but have bigger batteries, and can store electricity from plugging into the grid

  17. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction - Dataset...

  18. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  19. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  20. AVTA: Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    2013 Ford Fusion Energi2013 Ford C-Max Energi Fleet2013 Ford C-Max Energi2012 Chevrolet Volt2012 Toyota Prius2013 Toyota Prius2013 Chevrolet Volt2011 Chrysler Town & Country2010 Quantum...

  1. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01T23:59:59.000Z

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  2. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  3. Plug-In Electric Vehicle Handbook for Fleet Managers

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires at www.cleancities.energy.gov. #12;Plug-In Electric Vehicle Handbook for Fleets 3 You've heard the buzz

  4. Tracking Progress Last updated 7/26/2013 Plug-in Electric Vehicle 1

    E-Print Network [OSTI]

    ) by 2025. ZEVs include all-electric vehicles, plug-in hybrid vehicles, and fuel cell electric vehicles. The Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), authorized by Assembly Bill 118 (Nunez, advanced technology cars and trucks, vehicle manufacturing, and fueling infrastructure are intended

  5. Hybrid Electric Systems: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Fact sheet describes the work EERE is doing in the areas of hybrid, plug-in hybrid, and all-electric vehicles.

  6. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01T23:59:59.000Z

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  7. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and...

  8. Plug-in HEVs: A Near-Term Option to Reduce Petroleum Consumption from FY05 Milestone Report (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; O'Keefe, M.; Simpson, A.; Gonder, J.; Brooker, A.

    2006-01-19T23:59:59.000Z

    Presented to DOE management staff on September 14, 2005 at the DOE headquarters in Washington DC. Content was updated January 19, 2006 for publication. This presentation addresses plug-in hybrid electric vehicle (PHEV) market and technology issues for research and development efforts.

  9. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov (indexed) [DOE]

    projects: - analysis of infield results of the Escape PHEVs, - field demonstration of Smart Meter communication, and - creation of a model studying plug-in vehicles as a grid...

  10. activity plug-in: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surplus power they generate. Plugging in the consumer Innovating utility business models for the future, the relationship between utilities and consumers has been rather...

  11. Plug-In Electric Vehicle Handbook for Public Charging

    E-Print Network [OSTI]

    about the new generation of plug-in electric vehicles (PEVs) like the Chevy Volt and Nissan Leaf. You. Gasoline- and diesel-powered ICE vehicles ended

  12. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  13. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Power Battery for Hybrid Vehicle Applications. ProceedingsAF. Electric and Hybrid Vehicle Design and Performance.A, Thornton M. Plug-in Hybrid Vehicle Analysis. NREL/MP-540-

  14. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect (OSTI)

    Markel, T.

    2010-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  15. Competitive Charging Station Pricing for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Huang, Jianwei

    . To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricingCompetitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs

  16. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    Sport Utility Vehicles, EPRI, Palo Alto, CA: 2002. Report #Greenhouse Gas Emissions, EPRI, Palo Alto, CA: 2002,Electric Vehicle Options, EPRI, Palo Alto, CA: 2001. 1000349

  17. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    Sport Utility Vehicles, EPRI, Palo Alto, CA: 2002. Report #Greenhouse Gas Emissions, EPRI, Palo Alto, CA: 2002,Electric Vehicle Options, EPRI, Palo Alto, CA: 2001. 1000349

  18. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    vehicles. Report #1006892, EPRI, Palo Alto, CA. Duvall, M. ,emissions. Report #1015325, EPRI, Palo Alto, CA. Ewing, G. ,options. Report #1000349, EPRI, Palo Alto, CA. Gondor, J. ,

  19. Light Duty Plug-in Hybrid Vehicle Systems Analysis

    Broader source: Energy.gov (indexed) [DOE]

    support Budget * Prior (DOE) - 300K (FY05-FY07) * FY08 (DOE) - 200K * Future (DOE) 150Kyr for 3 years Barriers * High cost of PHEV technology needs alternative value streams...

  20. Technical Challenges of Plug-In Hybrid Electric Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    strategy PNNL needed detailed data What questions do we address? What are the likely balancing requirements for the NWPP in a 14.4 GW wind scenario for 2020 (35% wind capacity...

  1. Plug-in-hybrid electric vehicles park as virtual DVR

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    a PHEV according to variable price curves were reported in [3]. These previous studies have not dealt rpm, 2.5 L Lithium-Ion Vehicle Specification No. of cells Cell voltage System Voltage Charging Voltage

  2. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

  3. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

  4. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

  5. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

  6. Power System Level Impacts of Plug-In Hybrid Vehicles

    E-Print Network [OSTI]

    (PSERC) is a multi-university Center conducting research on challenges facing the electric power industry to the electric power industry. The impact of PHEVs on the power grid is investigated. The methodology electric and gas, (b) simulation of the electric infrastructure (distribution systems) and the loading

  7. Power Conditioning for Plug-In Hybrid Electric Vehicles 

    E-Print Network [OSTI]

    Farhangi, Babak

    2014-07-25T23:59:59.000Z

    converter design. A conceptual design approach is proposed to select the proper power converter topologies according to the determined power conditioning needs. The related standards and previous works are reviewed to determine the design guidelines. A set...

  8. Edmund G. Brown, Jr. PLUG-IN HYBRID ELECTRIC VEHICLE

    E-Print Network [OSTI]

    organizations include, AAA of Northern California, Nevada, and Utah; Booz Allen Hamilton; California Air

  9. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    to determine the adequate level of power plant controls or adequate levels of ambient air pollution and strives only to determine the specific impacts of large-scale PHEV...

  10. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources...

  11. Plug-In Hybrid Electric Vehicles | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCOControlGuide to aEnergyPlanning andofPlatts

  12. Microsoft Word - Plug-in Hybrids.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I I D D U.S.DEPARTMENT OFStudy

  13. Plug In Hybrid Development Consortium | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataformaTexas:PlotWatt Jump

  14. Plug IN Hybrid Vehicle Bus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned AuditsPlasticsPleated CeramicPlug

  15. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity | Department

  16. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity |

  17. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity |Activity |

  18. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity |Activity

  19. Plug-in Hybrid Battery Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity |Activityin

  20. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation Worldof EnergyTAGS,Large09

  1. Workplace Plug-in Electric Vehicle Ride and Drive

    Broader source: Energy.gov [DOE]

    Workplace plug-in electric vehicle (PEV) Ride and Drive events are one of the most effective ways to drive PEV adoption. By providing staff the opportunity to experience PEVs first hand, they can...

  2. Plug-in electric vehicle introduction in the EU

    E-Print Network [OSTI]

    Sisternes, Fernando J. de $q (Fernando José Sisternes Jiménez)

    2010-01-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

  3. Plug-In Electric Vehicle Handbook for Electrical

    E-Print Network [OSTI]

    Handbook for Electrical Contractors 3 You've heard about the new generation of plug-in electric vehicles line improved the usabil- ity and affordability of ICE vehicles. Gasoline- and diesel-powered ICE

  4. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

  5. 246 Int. J. Electric and Hybrid Vehicles, Vol. 3, No. 3, 2011 Copyright 2011 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    246 Int. J. Electric and Hybrid Vehicles, Vol. 3, No. 3, 2011 Copyright © 2011 Inderscience@ieee.org *Corresponding author Abstract: This paper studies the power management of a plug-in hybrid electric vehicle-based strategy; quadratic programming; QP; plug-in hybrid electric vehicle; PHEV; electric and hybrid vehicles

  6. Hybrid & electric vehicle technology and its market feasibility

    E-Print Network [OSTI]

    Jeon, Sang Yeob

    2010-01-01T23:59:59.000Z

    In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

  7. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  8. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  9. Why Electric Cars? The Arrival of Plug-in

    E-Print Network [OSTI]

    Minnesota, University of

    Why Electric Cars? Dan Davids President #12;The Arrival of Plug-in Electric Vehicles Dan Davids President #12;#12;Toyota RAV4EV 1997-2003 #12;#12;#12;#12;#12;· Saving Cars ­ GM EV1 ­ Ford Ranger EV;#12;#12;· Saving Cars ­ GM EV1 (destroyed) ­ Ford Ranger EV (some saved) ­ Honda EV Plus (destroyed) ­ Th!nk City

  10. Plug-In Electric Vehicle Handbook for Consumers

    E-Print Network [OSTI]

    for Consumers 3 You've heard about the new generation of plug-in electric vehicles (PEVs) like the Chevy Volt. Gasoline- and diesel-powered ICE vehicles ended up dominating trans- portation in the 20th century. However Electric Ranger. Although many vehicles from this generation were discon- tinued in the early 2000s

  11. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Energy Savers [EERE]

    EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles January 31, 2014 -...

  12. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    Distributed Generation, Plug-in Electric Vehicles (PEVs), Energy Management, Multi-Building Modeling and Simulation Introduction The Green Islands

  13. Determining PHEV Performance Potential – User and Environmental Influences on A123 Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01T23:59:59.000Z

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  14. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect (OSTI)

    Akgun, H.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (USA). Dept. of Mining and Geological Engineering

    1991-02-01T23:59:59.000Z

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  15. Compact Fluorescent Plug-In Ballast-in-a-Socket

    SciTech Connect (OSTI)

    Rebecca Voelker

    2001-12-21T23:59:59.000Z

    The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

  16. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal CombustionSmart GridforCommunities Plug In To Electric

  17. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational| DepartmentCommunities Plug In To Electric

  18. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    SciTech Connect (OSTI)

    Wu, Xing [Lamar University] [Lamar University; Dong, Jing [Iowa State University] [Iowa State University; Lin, Zhenhong [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  19. Experimental investigations on sodium plugging in narrow flow channels.

    SciTech Connect (OSTI)

    Momozaki, Y.; Cho, D. H.; Sienicki, J. J.; Moisseytsev, A.; Nuclear Engineering Division

    2010-08-01T23:59:59.000Z

    A series of experiments was performed to investigate the potential for plugging of narrow flow channels of sodium by impurities (e.g., oxides). In the first phase of the experiments, clean sodium was circulated through the test sections simulating flow channels in a compact diffusion-bonded heat exchanger such as a printed circuit heat exchanger. The primary objective was to see if small channels whose cross sections are semicircles of 2, 4, and 6 mm in diameter are usable in liquid sodium applications where sodium purity is carefully controlled. It was concluded that the 2-mm channels, the smallest of the three, could be used in clean sodium systems at temperatures even as low as 100 to 110 C without plugging. In the second phase, sodium oxide was added to the loop, and the oxygen concentration in the liquid sodium was controlled by means of varying the cold-trap temperature. Intentional plugging was induced by creating a cold spot in the test sections, and the subsequent plugging behavior was observed. It was found that plugging in the 2-mm test section was initiated by lowering the cold spot temperature below the cold-trap temperature by 10 to 30 C. Unplugging of the plugged channels was accomplished by heating the affected test section.

  20. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX...

    Broader source: Energy.gov (indexed) [DOE]

    in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system. reference LINKS: Citrix Knowledge Center Secunia...

  1. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

  2. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    S. Beer, J. Lay and V. Battaglia. 2010. “The added economicJ. Lai, C. Marnay, and V. Battaglia. 2010. “Plug-in Electric

  3. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  4. Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles 

    E-Print Network [OSTI]

    Eskandari Halvaii, Ali

    2012-07-16T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 ix LIST OF TABLES TABLE Page I Average power with full and no regenerative braking for different drive cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 x LIST OF FIGURES FIGURE Page 1 Electric vehicle structure. A.... . . . . . . . . . . . . . . . . . . . 76 66 The power required to run the vehicle: instantaneous, average with and average without regenerative braking. . . . . . . . . . . . . 77 67 Engine operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 68 Power sent...

  5. Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01T23:59:59.000Z

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  6. CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN

    E-Print Network [OSTI]

    Lyon, Thomas P.

    303 CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN: PROSPECTS AND POLICY OPTIONS a Plug-In Electric Vehicle Industry Cluster in Michigan: Prospects and Policy Options, 18 MICH. TELECOMM.......................................................308 II. Will the Electric Vehicle Industry Cluster?....................309 A. Why Do Industries

  7. The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions

    E-Print Network [OSTI]

    The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid investigates consumer interest in plug-in electric vehicles (PEVs), summarizing preliminary results from ownership, electricity use, familiarity with PEV technology, and personal values and lifestyle; vehicle

  8. Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder

    E-Print Network [OSTI]

    Caramanis, Michael

    Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder : Power system markets, Power system economics Key Words: Load management, Electric vehicle grid Transactions on Power Systems #12;WORKING PAPER 1 Optimal Power Market Participation of Plug-In Electric

  9. Plug-in privacy for Smart Metering billing

    E-Print Network [OSTI]

    Jawurek, Marek; Kerschbaum, Florian

    2010-01-01T23:59:59.000Z

    Smart Metering is a concept that allows to collect fine-grained consumption profiles from customers by replacing traditional electricity meters with Smart Meters in customers' households. The recorded consumption profile is the basis for the calculation of time-dependent tariffs but also allows deduction of the inhabitant's personal schedules and habits. The current reporting of such consumption profiles only protects this data from 3rd parties but falls short to protect the customer's privacy from illegitimate abuse by the supplier itself. We propose a privacy-preserving profile reporting protocol that enables billing for time-dependent tariffs without disclosing the actual data of the consumption profile to the supplier. Our approach relies on a zero-knowledge proof based on Pedersen Commitments performed by a plug-in privacy component that is put into the communication link between Smart Meter and supplier's back-end systems and requires no change to Smart Meter hardware and only little change to the softw...

  10. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

  11. V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct...

    Broader source: Energy.gov (indexed) [DOE]

    Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks PLATFORM: Google Chrome prior to 27.0.1453.116 ABSTRACT: A vulnerability was reported in Google Chrome....

  12. 1. Check to make sure all electrical appliances, such as curling irons, toasters, etc. are unplugged. Exceptions are clocks and refrigerators. Keep your refrigerator plugged in!

    E-Print Network [OSTI]

    Minnesota, University of

    . are unplugged. Exceptions are clocks and refrigerators. Keep your refrigerator plugged in! 2. Secure windows

  13. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  14. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Lithium-ion battery modules for testing Table 2: BatteriesBatteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Battery

  15. Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Okan Arslan

    2014-02-04T23:59:59.000Z

    Feb 4, 2014 ... In particular, our findings show that increasing the number of battery switching stations may not be enough to overcome the range anxiety of the ...

  16. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    E-Print Network [OSTI]

    Vermont, University of

    model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer in Ireland. As primary power sources for the electric grid become greener and gasoline prices increase

  17. Addendum to 'An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles'

    E-Print Network [OSTI]

    Kammen, Daniel M.

    requiring additional capacity. We also found, however, that unless battery prices fall or long-term gasoline prices rise, PHEVs' expected fuel savings would not compensate vehicle purchasers for the additional differences between the PHEV cases we studied and a new EV case is that the decision to pump gasoline or 4

  18. Paper No. 09-3009 Plug-In Hybrid Electric Vehicles' Potential for

    E-Print Network [OSTI]

    Kemner, Ken

    new vehicle market share increases by the diesel powertrain in France (a highly successful case stock. Only when such steps have been accomplished will the full oil-savings potential for the nation petroleum consumption. In this paper, we assume, as have most studies to date, that a PHEV will have

  19. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Characteristics of Lithium-ion Batteries of Variousare presented for lithium-ion cells and modules utilizingAdvisor utilizing lithium-ion batteries of the different

  20. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Whether any of the lithium battery chemistries can meetgeneral the higher cost lithium battery chemistries have thecosts for various lithium battery chemistries Electrode

  1. High-Power Electrochemical Storage Devices and Plug-in Hybrid...

    Broader source: Energy.gov (indexed) [DOE]

    conducting the high risk, high cost research and development associated with advanced battery systems. USABC Ahsan Habib, March 08 4 Organization USABCElectrochemical Energy...

  2. Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    2014-07-22T23:59:59.000Z

    gasoline as sources of energy with different cost structures and limitations. We ...... Our study reveals one strategic insight about the alternative energy vehicles:.

  3. Potential Impacts of Plug-in Hybrid Electric Vehicles (PHEVs) on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2009-01-01T23:59:59.000Z

    PHEVs are expected to penetrate market soon. If recharging occurs during off-peak hours, the grid will not be significantly affected. However, peak-time recharging may lead to capacity shortfalls. This paper analyzes the potential impact of PHEVs on electricity demand, supply, generation structure, prices, and emissions levels in 2020 and 2030 in 13 U.S. regions under 7 recharging scenarios. The simulations predict that the PHEV introduction could impact demand peaks, reduce reserve margins, and increase prices. The type of power generation used to recharge the PHEVs and associated emissions will depend upon the region and the timing of the recharge.

  4. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Looking to jointly develop new plug-in hybrid vehicle (PHEV) technology and

    E-Print Network [OSTI]

    Kemner, Ken

    vehicle location and charge status to the utility operator, who transmits energy mix, real-time pricing acceptance and commercialization, the U.S. Department of Energy (DOE) and Sweden signed a Memorandum and the Swedish Energy Agency. Through contacts developed over many years conducting international technology

  6. SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

  8. Plug-in Hybrid Electric Vehicle On-Road Emissions Characterization and Demonstration Study

    E-Print Network [OSTI]

    Hohl, Carrie

    2012-12-31T23:59:59.000Z

    and willingness to forgive my work responsibilities, ultimately, allowed me to complete my dissertation. Time is a sacred resource, and if you had not been so generous with yours and mine, I might still be working on Chapter 3. Thank you for giving me more....3.1 Statistical Results………………………………………… 360 9.3.2 EM vs. dICE Use Between Operating Modes……………. 364 9.4 Pollutant Emissions…………………………………………………... 377 9.5 Concluding Remarks…………………………………………………. 400 CHAPTER 10: Diesel Internal Combustion Engine Use in PHEV...

  9. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    batteries for vehicle applications. Unfortunately the graphite/graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (

  10. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01T23:59:59.000Z

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  11. A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . This is a serious issue in case of Permanent-Magnet Synchronous Machine (PMSM). In this paper, an original

  12. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    initial and life cycle costs of the battery. This paper hasbattery chemistries have the potential for longer cycle life which on a life cycle cost

  13. Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02Nationwide Greenhouse Gas Emissions |

  14. DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartment ofNuclear EnergyTraining

  15. DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory |andEnergy and FWS

  16. DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOEEnergy Site FacilityTrucks |

  17. Light Duty Plug-in Hybrid Vehicle Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentation from the U.S.

  18. Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle School (6-8)NeedandInnovator" on|CarbonTopElectric

  19. Study Released on the Potential of Plug-In Hybrid Electric Vehicles |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurringSteamDepartment of Energy|Department of

  20. AVTA: Plug-In Hybrid Electric School Buses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving,Response3.pdfNovemberATOMSAbout UsAUDITIncidents

  1. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy Score MaturityofDepartment of1: March

  2. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy ScoreEnergyFuel Savings and

  3. Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment of Energy 0: April 11,4:Energy

  4. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoices for2013DepartmentVehicle

  5. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoicesDepartment of Energy 8:

  6. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast Ten Years |

  7. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast Ten YearsU.S.74%Department ofOwner

  8. Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRAM-04-07CONFIGURATIONChu atfrom the OfficeofDepartment

  9. Development and Deployment of Generation 3 Plug-In Hybrid Electric School

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergyProgram)forBuses |

  10. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned

  11. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation | Department of

  12. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies |Hydrogen Printable Version

  13. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily Knouse About Us Emily2Applications

  14. NREL: Transportation Research - Electric and Plug-In Hybrid Electric Fleet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission PlanningCapabilitiesVehicle

  15. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department of EnergyWelcome to

  16. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel Cell Hydrogen and Fuel CellVehicles

  17. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa Jump to:Technologiefabrik-Energy

  18. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStationTrucksRides inEmissions Data

  19. Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce Operating CostsElectric Vehicles

  20. Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2 andIndependenceFuels andVehicles

  1. Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2 andIndependenceFuels

  2. Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2North Carolina forFuels andVehicles

  3. Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2North CarolinaE85:

  4. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailability

  5. Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.TierIdaho CountyLight-Duty VehicleLowElectric

  6. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007) | OpenCity,Cosmos

  7. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment2 DOEX-Ray Diagnostics ofMini-Van

  8. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment2 DOEX-Ray Diagnostics

  9. High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r rRancho Cordoba, CA -Vehicle

  10. Study Released on the Potential of Plug-In Hybrid Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety Goals Strategic Safety|Research with EMLithium

  11. Self-Learning Controller for Plug-in Hybrid Vehicles Learns Recharge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' HowSelf-Assembly of

  12. Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - Policy Advisor, EnergyADepartment of Energy SCarbonElectric

  13. Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England MEDIA CONTACT:

  14. Project Information Form Project Title The Dynamics of Plug-in Electric Vehicles in the Secondary Market and

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title The Dynamics of Plug-in Electric Vehicles in the Secondary Project Until recently, there were very few used plug-in electric vehicles (PEVs) on the market. However Market and Their Implications for Vehicle Demand, Durability, and Emissions University UC Davis Principal

  15. State-of-Health Aware Optimal Control of Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    energy storage ability of PEV batteries is exploited for frequency regulation, load balancing, etc [2, nuclear power and renewable energy such as wind energy, solar energy and tidal energy. The battery storage, USA {yanzhiwa, siyuyue, pedram}@usc.edu Abstract--Plug-in electric vehicles (PEVs) are key new energy

  16. PREDICTING THE MARKET POTENTIAL OF PLUG-IN ELECTRIC VEHICLES USING MULTIDAY GPS DATA

    E-Print Network [OSTI]

    Kockelman, Kara M.

    Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest vehicle (PHEV) with 40-mile all-electric-range. Households owning two or more vehicles can electrify 50 PHEV suggest that when gas prices are $3.50 per gallon and electricity rates at 11.2 ct per k

  17. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2013-01-01T23:59:59.000Z

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  18. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    Lai, C. Marnay, and V. Battaglia (2010), “Plug-in ElectricBeer, Judy Lai, and Vincent Battaglia Environmental EnergyLai a) , and Vincent Battaglia a) Ernest Orlando Lawrence

  19. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructureFuels inDuneCharging Plug-In

  20. Alternative Fuels Data Center: Plug-In Electric Vehicle Readiness Scorecard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuels andConversionsAssumptions andPlug-In

  1. Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord

    SciTech Connect (OSTI)

    Steve Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  2. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2014-01-01T23:59:59.000Z

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

  3. A Dynamic Algorithm for Facilitated Charging of Plug-In Electric Vehicles

    E-Print Network [OSTI]

    Taheri, Nicole; Ye, Yinyu

    2011-01-01T23:59:59.000Z

    Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can reduce greenhouse gas emissions and change the way vehicles obtain power. PEV charging stations will most likely be available at home and at work, and occasionally be publicly available, offering flexible charging options. Ideally, each vehicle will charge during periods when electricity prices are relatively low, to minimize the cost to the consumer and maximize societal benefits. A Demand Response (DR) service for a fleet of PEVs could yield such charging schedules by regulating consumer electricity use during certain time periods, in order to meet an obligation to the market. We construct an automated DR mechanism for a fleet of PEVs that facilitates vehicle charging to ensure the demands of the vehicles and the market are met. Our dynamic algorithm depends only on the knowledge of a few hundred driving behaviors from a previous similar day, and uses a simple adjusted pricing scheme to instantly assign feasible and satisfactory c...

  4. A Queueing Based Scheduling Approach to Plug-In Electric Vehicle Dispatch in Distribution Systems

    E-Print Network [OSTI]

    Li, Qiao; Ilic, Marija D

    2012-01-01T23:59:59.000Z

    Large-scale integration of plug-in electric vehicles (PEV) in power systems can cause severe issues to the existing distribution system, such as branch congestions and significant voltage drops. As a consequence, smart charging strategies are crucial for the secure and reliable operation of the power system. This paper tries to achieve high penetration level of PEVs with the existing distribution system infrastructure by proposing a smart charging algorithm that can optimally utilize the distribution system capacity. Specifically, the paper proposes a max-weight PEV dispatch algorithm to control the PEV charging rates, subject to power system physical limits. The proposed max-weight PEV dispatch algorithm is proved to be throughput optimal under very mild assumptions on the stochastic dynamics in the system. This suggests that the costly distribution system infrastructure upgrade can be avoided, or failing that, at least successfully deferred. The proposed PEV dispatch algorithm is particularly attractive in ...

  5. Impact of Battery Weight and Charging Patterns on the Economic and Environmental Benefits of Plug-in

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    the transportation sector. Because plug-in vehicles require large batteries for energy storage, battery weight can of gasoline consumption with electricity. While the U.S. transportation sector is overwhelming powered Samaras Engineering and Public Policy Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213

  6. Plug-In Electric Vehicle R&D on High Energy Materials

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program Annual Merit Review, FY2008 Hybrid Electric Systems Energy Storage Applied Battery Research This presentation does not contain any proprietary or...

  7. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    generator or from regenerative braking and uses the energya generator and from regenerative braking, and passes energy

  8. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    capability and thus regenerative braking performancecapability and thus regenerative braking performanceaccept all the regenerative braking energy. This paper is

  9. Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.

    2009-01-01T23:59:59.000Z

    technology and organization." Organization Science 18(5): 781-795. Pinch,Pinch 1996), and the entire social system itself may shift in response to the technology

  10. Evaluation of the Effects of Thermal Management on Battery Life in Plug-in Hybrid Electric Vehicles Tugce Yuksel

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    consumption in the transportation sector. One of the most important factors affecting the commercialization-mail: tyuksel@andrew.cmu.edu Jeremy Michalek Associate Professor Mechanical Engineering Engineering and Public and stand-by scenarios. The temperature profile and the energy requirement required to achieve a driving

  11. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    by researchers from MIT and EPRI. The three sets of goalsPower Research Institute – EPRI (2007). The Power to ReducePaper, Prepared for the EPRI 2007 Summer Seminar Attendees,

  12. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    of ultracapacitors or even lithium-ion batteries. This isof ultracapacitors or even lithium-ion batteries. This isand Simulation Results with Lithium-ion Batteries. EET-2008

  13. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    Chu, A. (2007). Nanophosphate Lithium-Ion Technology forYomoto (2007). Advanced Lithium-Ion Batteries for Plug- inhydride (NiMH) and lithium-ion (Li-Ion), comparing their

  14. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

  15. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    the USABC's goals for PHEV batteries, we have summarized theM. (2007). Lithium Phosphate Batteries used Successfully inAdvanced Automotive Batteries Conference 2007, Long Beach,

  16. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    The UC Davis Emerging Lithium Battery Test Project, Report3 for the advanced lithium battery chemistries are based onwith ultracapacitors, the LTO lithium battery should be

  17. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    carbon/activated F carbon Power battery Lithium titanate 50various ranges and motor power Battery energy density 300

  18. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    of Ultracapacitor-Battery Energy Storage Systems GainingFerdowsi, A New Battery/Ultracapacitor Energy Storage Systemthe vehicle. The energy storage and battery weight for AER

  19. Impacts Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids: Part 1: Technical Analysis

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Schneider, Kevin P.; Pratt, Robert G.

    2007-01-31T23:59:59.000Z

    This initial paper estimates the regional percentages of the energy requirements for the U.S. light duty vehicle stock that could be supported by the existing grid, based on 12 NERC regions. This paper also discusses the impact of overall emissions of criteria gases and greenhouse gases as a result of shifting emission from millions of tailpipes to a relatively few power plants. The paper concludes with an outlook of the technology requirements necessary to manage the additional and potentially sizable new load to maintain grid reliability.

  20. Comprehensive Well to Wheel Analysis for Plug-in-Hybrid Electric Vehicles in the U.S.

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Pratt, Robert G.; Schneider, Kevin P.

    2008-09-19T23:59:59.000Z

    The U.S. electric power infrastructure is a strategic national asset that is underutilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver the necessary energy to fuel the majority of the U.S. light-duty vehicle (LDV) fleet. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the U.S. dependency on foreign oil. This paper estimates the regional percentages of the energy requirements for the U.S. LDV stock that could potentially be supported by the existing infrastructure, based on the 12 modified North American Electric Reliability Council regions, as of 2002. For the United States as a whole, about 70% of LDV fleet in the U.S. could be supported by the existing infrastructure with some degree of load management. This has an estimated gasoline displacement potential of 6.5 million barrels of oil equivalent per day, or approximately 52% of the nation's oil imports. The paper also discusses the impact on overall emissions of criteria gases and greenhouse gases as a result of shifting emissions from millions of individual vehicles to a few hundred power plants. Overall, PHEVs could reduce greenhouse gas emissions with regional variations dependent on the local generation mix. Total NOX emissions may or may not increase, dependent on the use of coal generation in the region. Any additional SO2 emissions associated with the expected increase in generation from coal power plants would need to be cleaned up to meet the existing SO2 emissions constraints. Particulate emissions would increase in 8 of the 12 regions. The emissions in urban areas are found to improve across all pollutants and regions as the emission sources shift from millions of tailpipes to a smaller number of large power plants in less-populated areas. This paper concludes with a discussion about possible grid impacts as a result of the PHEV load as well as the likely impacts on the plant and technology mix of future generation-capacity expansions.

  1. Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the US Power System: Distribution System Analysis

    SciTech Connect (OSTI)

    Gerkensmeyer, Clint; Kintner-Meyer, Michael CW; DeSteese, John G.

    2010-01-01T23:59:59.000Z

    This report documents work conducted by Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE) to address three basic questions concerning how typical existing electrical distribution systems would be impacted by the addition of PHEVs to residential loads.

  2. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  3. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    NiCoAl Graphite/ NiCoMnO2 Graphite/Iron Phosph. LiTiO/NiMnO2 LiTiO/ NiMnO2 Graphite/ NiCo Graphite/ NiCo Graphite/

  4. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    automotive applications, several alternative chemistries are being testing for PHEVs, including: lithium nickel, cobalt and aluminum (automotive applications, several alternative chemistries are being testing for PHEVs, including: lithium nickel, cobalt and aluminum (

  5. Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  6. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    in power and energy density. LTO – Lithiated Titanium: A Li-power, energy, and affordability. MNS - Manganese Titanium:energy and safety at moderate costs. MS – Manganese Titanium:

  7. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    using Advanced Lithium Batteries and Ultracapacitors onusing advanced lithium batteries having energy densities ofA number of lithium batteries and ultracapacitors have been

  8. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Impact of battery weight and charging patterns on the economic and environmental benefits of plug, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA c Department of Civil and Environmental Engineering Article history: Received 22 July 2008 Accepted 24 February 2009 Available online 1 April 2009 Keywords

  9. Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis

    E-Print Network [OSTI]

    internal combustion engine (ICE) vehicles are flex-fuel, hydrogen fuel cell, and compressed natural gas Received in revised form 19 March 2010 Accepted 24 April 2010 Keywords: Alternative fuel vehicles Plug-powered vehicles. A representative vehicle tech- nology that runs on electricity in addition to conventional fuels

  10. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    Technology Power devices supercapacitor Activated 2320 11600Effectiveness of Battery-Supercapacitor Combination in

  11. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    vehicles (EVs) Fuel options: Petroleum Gasoline Diesel E85 with ethanol from Corn Switchgrass Electricity: Marginal generation mixes in four regions Average generation mixes of the U.S., CA of operation On-road adjusted electric range (AER) In-house simulations of electricity generation mixes

  12. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    Present technology batteries Graphite/ NiCoMnO 2 Graphite/spinel Future technology batteries Graphite/ composite MnO 2

  13. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    of the rechargeable Zinc-air battery were estimated based onindicated in Table 3, the Zinc-air battery is assumed to bepower capability of the Zinc-air battery is due to a large

  14. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    engine—usually an internal combustion engine (ICE). 2 Thisengine (e.g. an internal combustion engine), but uses anconditions. ICE – Internal Combustion Engine: An engine that

  15. Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the U.S. Power System - PNNL-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: Increasing CodeAmerica

  16. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01T23:59:59.000Z

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  17. On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems

    E-Print Network [OSTI]

    Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

    2011-01-01T23:59:59.000Z

    Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

  18. miRNAs in brain development

    SciTech Connect (OSTI)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan, E-mail: johan.jakobsson@med.lu.se

    2014-02-01T23:59:59.000Z

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function.

  19. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 1,310 Porsche Panamera S E-Hybrid 0 0 0 51 879 Ford Fusion Energi 0 0 0 6,089 11,550 Honda Accord 0 0 0 526 449 Ford C-Max Energi 0 0 2,374 7,154 8,433 Toyota Prius PHEV 0 0...

  20. Weed evolution after crop gene introgression: greater survival and fecundity of hybrids in a new

    E-Print Network [OSTI]

    Snow, Allison A.

    . raphanistrum · Raphanus sativus) in Michigan (MI), USA. Hybrid and wild populations had similar growth rates-wild hybrids, we established four wild (Raphanus raphanistrum) and four hybrid radish populations (R, Raphanus raphanistrum. Ecology Letters (2006) 9: 1198­1209 I N T R O DU C T I O N Weed populations can

  1. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  2. Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles

    SciTech Connect (OSTI)

    Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

    2010-01-01T23:59:59.000Z

    As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

  3. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmitRoad | DepartmentIllinoisHybrids

  4. DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency, and MoreEnergyof Energy DOEEnergy DOE toHybrid

  5. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01T23:59:59.000Z

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  6. MI high power operation and future plans

    SciTech Connect (OSTI)

    Kourbanis, Ioanis; /Fermilab

    2008-09-01T23:59:59.000Z

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  7. Addendum to NuMI shielding assessment

    SciTech Connect (OSTI)

    Vaziri, Kamran; /Fermilab

    2007-10-01T23:59:59.000Z

    The original safety assessment and the Safety Envelope for the NuMI beam line corresponds to 400 kW of beam power. The Main Injector is currently capable of and approved for producing 500 kW of beam power2. However, operation of the NuMI beam line at 400 kW of power brings up the possibility of an occasional excursion above 400 kW due to better than usual tuning in one of the machines upstream of the NuMI beam line. An excursion above the DOE approved Safety Envelope will constitute a safety violation. The purpose of this addendum is to evaluate the radiological issues and modifications required to operate the NuMI beam line at 500 kW. This upgrade will allow 400 kW operations with a reasonable safety margin. Configuration of the NuMI beam line, boundaries, safety system and the methodologies used for the calculations are as described in the original NuMI SAD. While most of the calculations presented in the original shielding assessment were based on Monte Carlo simulations, which were based on the design geometries, most of the results presented in this addendum are based on the measurements conducted by the AD ES&H radiation safety group.

  8. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles: A Survey

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL

    2014-01-01T23:59:59.000Z

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  9. MI Gap Clearing Kicker Magnet Design Review

    SciTech Connect (OSTI)

    Jensen, Chris; /Fermilab

    2008-10-01T23:59:59.000Z

    The kicker system requirements were originally conceived for the NOvA project. NOvA is a neutrino experiment located in Minnesota. To achieve the desired neutrino flux several upgrades are required to the accelerator complex. The Recycler will be used as a proton pre-injector for the Main Injector (MI). As the Recycler is the same size as the MI, it is possible to do a single turn fill ({approx}11 {micro}sec), minimizing the proton injection time in the MI cycle and maximizing the protons on target. The Recycler can then be filled with beam while the MI is ramping to extract beam to the target. To do this requires two new transfer lines. The existing Recycler injection line was designed for 10{pi} pbar beams, not the 20{pi} proton beams we anticipate from the Booster. The existing Recycler extraction line allows for proton injection through the MI, while we want direct injection from the Booster. These two lines will be decommissioned. The new injection line from the MI8 line into the Recycler will start at 848 and end with injection kickers at RR104. The new extraction line in the RR30 straight section will start with a new extraction kicker at RR232 and end with new MI injection kickers at MI308. Finally, to reduce beam loss activation in the enclosure, a new gap clearing kicker will be used to extract uncaptured beam created during the slip stack injection process down the existing dump line. It was suggested that the MI could benefit from this type of system immediately. This led to the early installation of the gap clearing system in the MI, followed by moving the system to Recycler during NOvA. The specifications also changed during this process. Initially the rise and fall time requirements were 38 ns and the field stability was {+-}1%. The 38 ns is based on having a gap of 2 RF buckets between injections. (There are 84 RF buckets that can be filled from the Booster for each injection, but 82 would be filled with beam. MI and Recycler contain 588 RF buckets.) A rough cost/benefit analysis showed that increasing the number of empty buckets to 3 decreased the kicker system cost by {approx}30%. This could be done while not extending the running time since this is only a 1% reduction in protons per pulse, hence the rise and fall time are now 57 ns. Additionally, the {+-}1% tolerance would have required a fast correction kicker while {+-}3% could be achieved without this kicker. The loosened tolerance was based on experience on wide band damping systems in the MI. A higher power wideband damping system is a better use of the resources as it can be used to correct for multiple sources of emittance growth. Finally, with the use of this system for MI instead of Recycler, the required strength grew from 1.2 mrad to 1.7 mrad. The final requirements for this kicker are listed.

  10. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    Table 2-5 presents the cost per kWh produced by variouselectricity rates on a cost per kWh basis only with someHybrid battery module cost per kWh required for lifecycle

  11. Sequence determinants of pri-miRNA processing

    E-Print Network [OSTI]

    Auyeung, Vincent C. (Vincent Churk-man)

    2012-01-01T23:59:59.000Z

    MicroRNAs (miRNAs) are short RNAs that regulate many processes in physiology and pathology by guiding the repression of target messenger RNAs. For classification purposes, miRNAs are defined as ~22 nt RNAs that are produced ...

  12. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    SciTech Connect (OSTI)

    Park, Jong-Kook [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States)] [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States); Henry, Jon C. [Department of Surgery, Ohio State University, Columbus, OH 43210 (United States)] [Department of Surgery, Ohio State University, Columbus, OH 43210 (United States); Jiang, Jinmai [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States)] [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States); Esau, Christine [Regulus Therapeutics, Carlsbad, CA (United States)] [Regulus Therapeutics, Carlsbad, CA (United States); Gusev, Yuriy [Lombardi Cancer Center, Georgetown University, Washington, DC (United States)] [Lombardi Cancer Center, Georgetown University, Washington, DC (United States); Lerner, Megan R. [Veterans Affairs Medical Center, Oklahoma City, OK (United States)] [Veterans Affairs Medical Center, Oklahoma City, OK (United States); Postier, Russell G. [Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)] [Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Brackett, Daniel J. [Veterans Affairs Medical Center, Oklahoma City, OK (United States)] [Veterans Affairs Medical Center, Oklahoma City, OK (United States); Schmittgen, Thomas D., E-mail: Schmittgen.2@osu.edu [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States)

    2011-03-25T23:59:59.000Z

    Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.

  13. Si, Yo Puedo Controlar Mi Diabetes!

    E-Print Network [OSTI]

    ¡Si, Yo Puedo Controlar Mi Diabetes! ¡Si, Yo Puedo Controlar Mí Diabetes! (Si, Yo Puedo/Latinos with diabetes. The curriculum is predicated on the American Diabetes Association's national standards of care and lifestyle skills to better control their diabetes. Relevance · Diabetes costs Texas more than 12 billion

  14. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    energy through regenerative braking. In contrast, PHEVs canfrom a stop, and regenerative braking—signaled to HEV owners

  15. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    producing zero emissions. . The EPRI studies mentioned abovetwo technical reports, EPRI (2007) published Environmentalsport utility vehicles (EPRI, 2002) An 80% required safety

  16. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01T23:59:59.000Z

    the battery depletion cost per kWh transferred could bethe battery depletion cost per kWh transferred from off-peakhigher battery depletion cost per kWh transferred under the

  17. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01T23:59:59.000Z

    to integrate their battery storage and internal vehicleOstergaard, J. (2009). Battery energy storage technology fora far smaller battery energy storage capacity than BEVs,

  18. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    None

    2010-09-14T23:59:59.000Z

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  19. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    of a typical Internal Combustion Engine (ICE) vehicle and awhile an Internal Combustion Engine (ICE) suppliesoff and the internal combustion engine starts to operate.

  20. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01T23:59:59.000Z

    The total cost of energy from regulation, c enreg , is thusamount of energy dispatched for regulation up by a typicalE disp is the energy dispatched for regulation up under the

  1. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    internal combustion engine is working, it reasonably can be assumed to have similar emissionInternal Combustion Engine (ICE) supplies additional power for high- speed/power operation. Although some studies capture emission

  2. 500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric

    E-Print Network [OSTI]

    Baldick, Ross

    include energy security and its related costs [1], environmental concerns (including climate change anxiety at the cost of incorporating a hybrid electric-gasoline powertrain. Along with the energy density the same basic business model for nearly a century. The various participants include vehicle manufacturers

  3. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25T23:59:59.000Z

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.

  4. BMPs Regulate the Oft Development via miRNAs

    E-Print Network [OSTI]

    Bai, Yan

    2014-08-04T23:59:59.000Z

    -92 cluster encodes six miRNAs, miR-17, miR-18a, miR-19a, miR-20a, miR19b-1 and miR-92-1. They are known as oncogenes and play roles in the development of heart, lungs and immune system (Koralov et al., 2008; Ventura et al., 2008; Vincentz et al., 2008... previously described (Liu et al., 2004; Ventura et al., 2008; Verzi et al., 2005; Xiao et al., 2008). To generate the Bmp7flox allele, a targeting vector was constructed that introduced one loxP site into upstream of the Bmp7 fourth exon followed by a frt...

  5. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    -down system. Index Terms--Bond Graphs, hybrid electric vehicle (HEV), mechatronics, modeling, powertrain testIEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain Test Cell Using Bond Graphs Mariano Filippa, Student Member, IEEE, Chunting Mi

  6. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  8. Hybrid Mesons

    E-Print Network [OSTI]

    C. A. Meyer; E. S. Swanson

    2015-03-04T23:59:59.000Z

    A review of the theoretical and experimental status of hybrid hadrons is presented. The states $\\pi_1(1400)$, $\\pi_1(1600)$, and $\\pi_1(2015)$ are thoroughly reviewed, along with experimental results from GAMS, VES, Obelix, COMPASS, KEK, CLEO, Crystal Barrel, CLAS, and BNL. Theoretical lattice results on the gluelump spectrum, adiabatic potentials, heavy and light hybrids, and transition matrix elements are discussed. These are compared with bag, string, flux tube, and constituent gluon models. Strong and electromagnetic decay models are described and compared to lattice gauge theory results. We conclude that while good evidence for the existence of a light isovector exotic meson exists, its confirmation as a hybrid meson awaits discovery of its iso-partners. We also conclude that lattice gauge theory rules out a number of hybrid models and provides a reference to judge the success of others.

  9. Mi GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| Open Energy Information TopicsMexicoMi GmbH Jump

  10. ,"Sault St Marie, MI Natural Gas Pipeline Exports to Canada ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  11. ,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI...

  12. ,"Marysville, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Marysville, MI...

  13. Examen de calcul matriciel Licence MASHS -MI -SPC, semestre 2

    E-Print Network [OSTI]

    Lafont, Yves

    Examen de calcul matriciel Licence MASHS - MI - SPC, semestre 2 14 juin 2007 Durée de l'épreuve : 3

  14. Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation

    E-Print Network [OSTI]

    Cai, Long

    of miR-34a expression may be responsible for important protective mechanisms counteracting radiationOPEN Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation of a human microRNA (miRNA), hsa-miR-185, is downregulated in response to ionizing radiation. Elevation of mi

  15. CID-miRNA: A web server for prediction of novel miRNA precursors in human genome

    SciTech Connect (OSTI)

    Tyagi, Sonika; Vaz, Candida [Centre for Computational Biology and Bioinformatics, School of Information Technology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067 (India); Gupta, Vipin; Bhatia, Rohit [Department of Computer Sciences, Netaji Subhash Institute of Technology, New Delhi (India); Maheshwari, Sachin [Department of Computer Sciences, Indian Institute of Technology, New Delhi (India); Srinivasan, Ashwin [IBM Research Lab, Indian Institute of Technology, New Delhi (India); Bhattacharya, Alok [Centre for Computational Biology and Bioinformatics, School of Information Technology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067 (India); School of Life Sciences, Jawaharlal Nehru University, New Delhi (India)], E-mail: alok.bhattacharya@gmail.com

    2008-08-08T23:59:59.000Z

    microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes. In this report we describe a tool and a web server, named CID-miRNA, for identification of miRNA precursors in a given DNA sequence, utilising secondary structure-based filtering systems and an algorithm based on stochastic context free grammar trained on human miRNAs. CID-miRNA analyses a given sequence using a web interface, for presence of putative miRNA precursors and the generated output lists all the potential regions that can form miRNA-like structures. It can also scan large genomic sequences for the presence of potential miRNA precursors in its stand-alone form. The web server can be accessed at (http://mirna.jnu.ac.in/cidmirna/)

  16. Energy Engineering & Systems Analysis Success Stories

    E-Print Network [OSTI]

    Kemner, Ken

    and models of vehicles including hybrid electric vehicles, plug-in hybrid electric vehicles, electric cars

  17. DOE Hybrid Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31T23:59:59.000Z

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  18. MicroRNA miR-125b causes leukemia

    E-Print Network [OSTI]

    Bousquet, Marina

    MicroRNA miR-125b has been implicated in several kinds of leukemia. The chromosomal translocation t(2;11)(p21;q23) found in patients with myelodysplasia and acute myeloid leukemia leads to an overexpression of miR-125b of ...

  19. TOOL KIT CHECKLIST 12DOM_MI058

    E-Print Network [OSTI]

    Peters, Richard

    TOOL KIT CHECKLIST 12DOM_MI058 TOOLS fOr DIY Considerthetypesofprojectsyouwillbeundertaking,secondhandisfineifthey'reingoodcondition. Anycuttingsurfacesmustberazorsharpandbespecifictothematerialtobecut. Tools--especiallypowertools--canbeverydangerous. "Reality,wastingmoneyandlettingfrustrationandfailuremakeyourprojectsunpleasant (andunsuccessful)andworsestill,putyouoffanymoreDIY. #12;TOOL KIT CHECKLIST 12DOM_MI058 BASIC TOOL KITS MAY INCLUDE

  20. BMC Bioinformatics Prediction of novel miRNAs and associated

    E-Print Network [OSTI]

    Green, Pamela

    . Abstract Background: Small non-coding RNAs (21 to 24 nucleotides) regulate a number of developmental the collection of currently known soybean miRNAs. We developed a bioinformatics pipeline using in-house scripts on regulation patterns between the miRNAs and their predicted target genes expression. We also deposited

  1. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    SciTech Connect (OSTI)

    Erickson, Paul

    2012-05-31T23:59:59.000Z

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davisâ??s existing GATE centers have become the campusâ??s research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  2. Stumbling Toward Capitalism: The State, Global Production Networks, and the Unexpected Emergence of China's Independent Auto Industry

    E-Print Network [OSTI]

    Chang, Crystal Whai-ku

    2011-01-01T23:59:59.000Z

    all-electric and plug-in hybrid cars are being developed bygeneration plug-in hybrid and all-electric cars are likelyof BYD‘s plug-in hybrid and all-electric cars. Shortly after

  3. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Plug-in Hybrid Electric Vehicles. 13 An important challengeof the plug-in hybrid electric vehicle is at UC Davis.Technologies – Plug-in Hybrid Electric Vehicles. National

  4. Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System

    SciTech Connect (OSTI)

    Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Seiber, L.E.; Marlino, L.D.; Staunton, R.H.; Cunningham, J.P.

    2008-04-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and American automotive manufacturers General Motors, Ford, and DaimlerChrysler began a five-year, cost-shared partnership in 1993. Currently, hybrid electric vehicle (HEV) research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. Under the FCVT program, support is provided through a three-phase approach [1] which is intended to: • Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry’s recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; • Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and • Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed in this area will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in hybrid electric, electric, and fuel-cell-powered vehicles.

  5. ,"St. Clair, MI Natural Gas Pipeline Exports to Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","St. Clair, MI...

  6. ,"St. Clair, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","St. Clair, MI...

  7. miR-143 Interferes with ERK5 Signaling, and Abrogates Prostate Cancer Progression in Mice

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    miR-143 Interferes with ERK5 Signaling, and Abrogates Prostate Cancer Progression in Mice Cyrielle-regulated kinase-5 (ERK5) activity. We show here that ERK5 is a miR-143 target in prostate cancer. Conclusions: mi, Apparailly F, Fernandez PL, et al. (2009) miR-143 Interferes with ERK5 Signaling, and Abrogates Prostate

  8. Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125b and miR-132

    E-Print Network [OSTI]

    Edbauer, Dieter

    MicroRNAs (miRNAs) are noncoding RNAs that suppress translation of specific mRNAs. The miRNA machinery interacts with fragile X mental retardation protein (FMRP), which functions as translational repressor. We show that ...

  9. MicroRNAs in early embryonic development : dissecting the role of miR-290 through miR-295 in the mouse

    E-Print Network [OSTI]

    Dennis, Lucas M

    2008-01-01T23:59:59.000Z

    MicroRNAs mediate developmental regulation of gene expression via translational repression of target mRNAs. Targeted deletion of the miRNA biogenesis machinery in the mouse has demonstrated essential roles for miRNAs during ...

  10. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    electricity rates on a cost per kWh basis only with someTable 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycle

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Table 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycleelectricity rates on a cost per kWh basis only with some

  12. miRNA-205 affects infiltration and metastasis of breast cancer

    SciTech Connect (OSTI)

    Wang, Zhouquan [Department of Chest Surgery, The First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710061 (China) [Department of Chest Surgery, The First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710061 (China); Department of Tumor, SenGong Hospital of Shaanxi, Xi’an 710300 (China); Liao, Hehe; Deng, Zhiping; Yang, Po; Du, Ning; Zhanng, Yunfeng [Department of Chest Surgery, The First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710061 (China)] [Department of Chest Surgery, The First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710061 (China); Ren, Hong, E-mail: renhongs2000@yahoo.com.cn [Department of Chest Surgery, The First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710061 (China)] [Department of Chest Surgery, The First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710061 (China)

    2013-11-08T23:59:59.000Z

    Highlights: •We detected expression of miR-205 in breast cancer cell lines and tissue samples. •We suggest miR-205 is downregulated in human breast cancer tissues and MCF7 cells. •We suggest the lower expression of miR-205 play a role in breast cancer onset. •These data suggest that miR-205 directly targets HER3 in human breast cancer. -- Abstract: Background: An increasing number of studies have shown that miRNAs are commonly deregulated in human malignancies, but little is known about the function of miRNA-205 (miR-205) in human breast cancer. The present study investigated the influence of miR-205 on breast cancer malignancy. Methods: The expression level of miR-205 in the MCF7 breast cancer cell line was determined by quantitative (q)RT-PCR. We then analyzed the expression of miR-205 in breast cancer and paired non-tumor tissues. Finally, the roles of miR-205 in regulating tumor proliferation, apoptosis, migration, and target gene expression were studied by MTT assay, flow cytometry, qRT-PCR, Western blotting and luciferase assay. Results: miR-205 was downregulated in breast cancer cells or tissues compared with normal breast cell lines or non-tumor tissues. Overexpression of miR-205 reduced the growth and colony-formation capacity of MCF7 cells by inducing apoptosis. Overexpression of miR-205 inhibited MCF7 cell migration and invasiveness. By bioinformation analysis, miR-205 was predicted to bind to the 3? untranslated regions of human epidermal growth factor receptor (HER)3 mRNA, and upregulation of miR-205 reduced HER3 protein expression. Conclusion: miR-205 is a tumor suppressor in human breast cancer by post-transcriptional inhibition of HER3 expression.

  13. Validation of MCNPX-PoliMi Fission Models

    SciTech Connect (OSTI)

    S. A. Pozzi; S. D. Clarke; W. Walsh; E. C. Miller; J. Dolan; M. Flaska; B. M. Wieger; A. Enqvist; E. Padovani; J. K. Mattingly; D. L. Chichester; P. Peerani

    2012-10-01T23:59:59.000Z

    We present new results on the measurement of correlated, outgoing neutrons from spontaneous fission events in a Cf-252 source. 16 EJ-309 liquid scintillation detectors are used to measure neutron-neutron correlations for various detector angles. Anisotropy in neutron emission is observed. The results are compared to MCNPX-PoliMi simulations and good agreement is observed.

  14. MCNPX-PoliMi for Nuclear Nonproliferation Applications

    SciTech Connect (OSTI)

    S. A. Pozzi; S. D. Clarke; W. Walsh; E. C. Miller; J. Dolan; M. Flaska; B. M. Wieger; A. Enqvist; E. Padovani; J. K. Mattingly; D. L. Chichester; P. Peerani

    2012-12-01T23:59:59.000Z

    In the past few years, efforts to develop new measurement systems to support nuclear nonproliferation and homeland security have increased substantially. Monte Carlo radiation transport is one of the simulation methods of choice for the analysis of data from existing systems and for the design of new measurement systems; it allows for accurate description of geometries, detailed modeling of particle-nucleus interactions, and event-by-event detection analysis. This paper describes the use of the Monte Carlo code MCNPX-PoliMi for nuclear-nonproliferation applications, with particular emphasis on the simulation of spontaneous and neutron-induced nuclear fission. In fact, of all possible neutron-nucleus interactions, neutron-induced fission is the most defining characteristic of special nuclear material (such as U-235 and Pu-239), which is the material of interest in nuclear-nonproliferation applications. The MCNP-PoliMi code was originally released from the Radiation Safety Shielding Center (RSSIC) at Oak Ridge National Laboratory in 2003 [1]; the MCNPX-PoliMi code contains many enhancements and is based on MCNPX ver. 2.7.0. MCNPX-PoliMi ver. 2.0 was released through RSICC in 2012 as a patch to MCNPX ver. 2.7.0 and as an executable [2].

  15. Supramolecular Chemistry@PoliMI: Where Nano meets Biology

    E-Print Network [OSTI]

    Supramolecular Chemistry@PoliMI: Where Nano meets Biology 28-29 June, 2012 Aula De Donato Piazza:30-12:15 Jonathan W. Steed, Durhan University, United Kingdom Responsive Supramolecular gels 12:15-12:45 Alberto-assembly for Biomedical Applications 14:45-15:15 Markus Linder, VTT-Technical Research Centre of Finland Materials by self

  16. Event Rates for Off Axis NuMI Experiments

    E-Print Network [OSTI]

    B. Viren

    2006-08-25T23:59:59.000Z

    Neutrino interaction rates for experiments placed off axis in the NuMI beam are calculated. Primary proton beam energy is 120 GeV and four locations at 810 km from target and 6, 12, 30 and 40 km off axis are considered. This report is part of the Joint FNAL/BNL Future Long Baseline Neutrino Oscillation Experiment Study.

  17. Yo, yo misma y mi musa1 (mara castrejn)

    E-Print Network [OSTI]

    Boyer, Edmond

    siempre que mantengan una distancia prudente de seguridad, pero cuando yo escribo la musa soy yo misma y todo el trabajo «sucio» y eso te convierte en actante, y a mí en lactante. 1. Mi infancia hal-00747889

  18. May 2 6, 2011 University of Michigan, Ann Arbor, MI

    E-Print Network [OSTI]

    Temple, Blake

    May 2 ­ 6, 2011 University of Michigan, Ann Arbor, MI Young Researchers and Grad Students of Michigan, Chair, Craig Evans ­ Univ of California, Berkeley, Tai-Ping Liu ­ Stanford, Craig Tracy ­ Univ, Institute of Mathematics and its Applications-University of Minnesota, Department of Mathematics-University

  19. Agent Program Planning Information S! Yo Puedo Controlar Mi Diabetes!

    E-Print Network [OSTI]

    Agent Program Planning Information Sí! ¡Yo Puedo Controlar Mi Diabetes! (A culturally appropriate type 2 diabetes self-management program for Hispanic/Latino, Spanish-speaking audiences) Relevance · Estimates from the Texas Health and Human Services Commission indicate that in 2011 diabetes cost Texas more

  20. Discovery of miRNA-regulated processes in mammalian development

    E-Print Network [OSTI]

    Young, Amanda Garfinkel

    2010-01-01T23:59:59.000Z

    The genomes of plants and animals encode hundreds of non-coding ~22nt RNAs termed "microRNAs" (miRNAs). These RNAs guide the sequence-specific inhibition of translation and destabilization of mRNA targets through short ...

  1. The action of ARGONAUTE1 in the miRNA pathway and its

    E-Print Network [OSTI]

    Bartel, David

    The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial, France; 2 Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA; 3 Laboratoire, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA MicroRNAs (miRNAs) are endogenous 21

  2. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-09-01T23:59:59.000Z

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  3. Routing in hybrid networks

    E-Print Network [OSTI]

    Gupta, Avinash

    2001-01-01T23:59:59.000Z

    Hybrid networks are networks that have wired as well as wireless components. Several routing protocols exist for traditional wired networks and mobile ad-hoc networks. However, there are very few routing protocols designed for hybrid networks...

  4. Formula Hybrid International Competition

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    torque at low speeds than do internal combustion engines, a hybrid could offer competitive advantages with a traditional combustion engine into a hybrid vehicle, overcoming numerous technical challenges along the way

  5. Mesoscale hybrid calibration artifact

    SciTech Connect (OSTI)

    Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

    2010-09-07T23:59:59.000Z

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  6. Corn Hybrid Virginia Corn &

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Hybrid and Management Trials 2007 Virginia Corn & Small Grain Management #12;VIRGINIA CORN HYBRID AND MANAGEMENT TRIALS IN 2007 Coordinators of Virginia Corn Hybrid Trials in 2007 Wade Thomason, Extension Specialist, Department of Crop and Soil Environmental Sciences, Virginia Tech Harry

  7. Corn Hybrid Virginia Corn &

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Hybrid Management and Trials 2006 Virginia Corn & Small Grain Management #12;#12;Virginia Corn Hybrid and Management Trials 2006 Coordinators of Virginia Corn Hybrid Trials in 2006 Wade Thomason, Extension Specialist, Department of Crop and Soil Environmental Sciences, Virginia Tech Harry

  8. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

    1993-03-02T23:59:59.000Z

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

  9. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

    1993-01-01T23:59:59.000Z

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  10. Abstract--This paper examines the impact of battery sizing on the performance and efficiency of power management

    E-Print Network [OSTI]

    Krstic, Miroslav

    paper examines plug-in hybrid electric vehicles (PHEVs), which typically utilize onboard battery storage

  11. Corn Hybrids for Texas.

    E-Print Network [OSTI]

    Rogers, J. S.; McAfee, T. E.

    1954-01-01T23:59:59.000Z

    hybrid, was superior to all othey hybrids in freedom from root lodging. Watsrr 124, Keystone 222, Texas 24, Funk G711 an( Texas 30 were superior to other yellow hybrid\\ in resistance to root lodging. Texas 15W agair Angleton Lake Charles clay... degrees of damage. hybrids in resistance to stalk breakage. Ic.\\db L4, Texas 30 and Watson 124 were the I :ellow hybrids most resistant to stalk breakage. 3nk G711 and Keystone 222 were especially ' :u~eeptible to stalk breakage. a Growers who plan...

  12. MI 625 -Processos Estocasticos Nancy Lopes Garcia, Sala 209 -IMECC

    E-Print Network [OSTI]

    Lopes Garcia, Nancy

    MI 625 - Processos Estoc´asticos Nancy Lopes Garcia, Sala 209 - IMECC nancy@ime.unicamp.br, www´etrica para Processos de Poisson · MCMC e simula¸c~ao perfeita 1 #12;Processos Estoc´asticos Infer^encia: Seja´es de um Modelo Log´istico Regressivo, cujas vari´aveis regressoras dependem do tempo anterior, por

  13. Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    mounted PM synchronous motor (SPMSM) is developed in this paper. Due to the high conductivity of the rare of PM Motors in Hybrid Vehicle Applications Taking into Account Eddy Current Loss in Magnets Xiaofeng, University of Michigan-Dearborn, mi@ieee.org Abstract Permanent Magnet (PM) Motors are popular choices

  14. Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint

    SciTech Connect (OSTI)

    Brooker, A.; Thornton, M.; Rugh, J.

    2010-02-01T23:59:59.000Z

    This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

  15. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL

    2012-01-01T23:59:59.000Z

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  16. Hybrid Solar Lighting

    SciTech Connect (OSTI)

    Maxey, L Curt [ORNL

    2008-01-01T23:59:59.000Z

    Hybrid solar lighting systems focus highly concentrated sunlight into a fiber optic bundle to provide sunlight in rooms without windows or conventional skylights.

  17. Corn Hybrids for Texas. 

    E-Print Network [OSTI]

    Rogers, J. S.; Bockholt, A. J.; Collier, J. W.

    1957-01-01T23:59:59.000Z

    - Corn Hybrid$ for . ;mE Tgmt 4.College Sta. 9Sulphw Spgr. @.Holland l9.GreenviUe 24Stephmville 5.Kibyvilb IO.(;brkrvilb B.Tanpb 20Mm 25.Chilkothe TEXAS AGRICULTURAL EXPERIMENT STATIC R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST... - . Corn hybrids were planted on 81 percent of the Texas corn acreage in 1956. Most of this acreage was devoted to hybrids developed and released by the Texas Agricultural Experiment Station. These hybrids usually outyield open-pollinated varieties by 20...

  18. Groundwater protection for the NuMI project

    SciTech Connect (OSTI)

    Wehmann, A.; Smart, W.; Menary, S.; Hylen, J.; Childress, S.

    1997-10-01T23:59:59.000Z

    The physics requirements for the long base line neutrino oscillation experiment MINOS dictate that the NuMI beamline be located in the aquifer at Fermilab. A methodology is described for calculating the level of radioactivation of groundwater caused by operation of this beamline. A conceptual shielding design for the 750 meter long decay pipe is investigated which would reduce radioactivation of the groundwater to below government standards. More economical shielding designs to meet these requirements are being explored. Also, information on local geology, hydrogeology, government standards, and a glossary have been included.

  19. MHK Technologies/Mi2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <HelixKESCClick hereMi2 < MHK

  20. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11T23:59:59.000Z

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  1. 2012 NIST Precision Measurement Grants Georg Raithel, University of Michigan, Ann Arbor, MI

    E-Print Network [OSTI]

    Magee, Joseph W.

    2012 NIST Precision Measurement Grants Georg Raithel, University of Michigan, Ann Arbor, MI to the transition frequencies. Thomas Stace, University of Queensland, Brisbane, Queensland, Australia Thermometry

  2. Hybrid baryons [alpha].

    SciTech Connect (OSTI)

    Page, P. R. (Philip R.)

    2002-01-01T23:59:59.000Z

    The authors review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modeled by both the bag and flux tube models. The low lying hybrid baryon is N 1/2{sup +} with a mass of 1.5 - 1.8 GeV. Hybrid baryons can be produced in the glue rich processes of diffractive {gamma}N and {pi}N production, {Psi} decays and p{bar p} annihilation. We review the current status of research on three quarks with a gluonic excitation, called a hybrid baryon. The excitation is not an orbital or radial excitation between the quarks. Hybrid baryons have also been reviewed elsewhere. The Mercedes-Benz logl in Figure 1 indicates two possible views of the confining interaction of three quarks, an essential issue in the study of hybrid baryons. In the logo the three points where the Y shape meets the boundary circle should be identified with the three quarks. There are two possibilities fo rthe interaction of the quarks: (1) a pairwise interaction of the quarks represented by the circle, or (2) a Y shaped interaction between the quarks, represented by the Y-shape in the logo.

  3. Global identification of miRNAs and targets in Populus euphratica under salt stress

    E-Print Network [OSTI]

    Deng, Xing-Wang

    Global identification of miRNAs and targets in Populus euphratica under salt stress Bosheng Li, a typical hydro-halophyte, is ideal for studying salt stress responses in woody plants. MicroRNAs (miRNA may regulate tolerance to salt stress but this has not been widely studied in P. euphratica

  4. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15T23:59:59.000Z

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  5. MONITORING AND HABITAT ANALYSIS FOR WOLVES IN UPPER MARCEL J. POTVIN,1 School of Forest Resources and Environmental Science Michigan Technological University, Houghton, MI

    E-Print Network [OSTI]

    Resources and Environmental Science Michigan Technological University, Houghton, MI 49931, USA THOMAS D. DRUMMER, Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA University, Houghton, MI 49931, USA DEAN E. BEYER, JR., Michigan Department of Natural Resources, Marquette

  6. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01T23:59:59.000Z

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. Save with Hybrid Refrigeration 

    E-Print Network [OSTI]

    Chung, C. W.

    1985-01-01T23:59:59.000Z

    ) unit, is presented in this article. This paper will briefly describe process configuration, advantages and utility consumption, equipment cost and direct field cost comparisons of such a hybrid refrigeration unit over its counterpart, a cascading MCR...

  8. Introduction Hybrid ICNs

    E-Print Network [OSTI]

    Schenato, Luca

    analysis Experimental results Conclusion Real-Time Networks and Protocols for Industrial Automation Lucia-Time Networks & Protocols for Industrial Automation Hybrid ICNs Modeling of real wireless components IEEE 802 Simulative analysis Experimental results Conclusion Industrial Communication Networks Nowadays Industrial

  9. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Coal Wind Hybrid: Economic Analysis additional cost of fuelWind Hybrid: Economic Analysis Levelized Generation CostCoal Wind Hybrid: Economic Analysis Notes: All Cost are in

  10. 2005 Borchardt Conference: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI

    E-Print Network [OSTI]

    Nerenberg, Robert

    -25, Ann Arbor, MI Conference Proceedings 1 Membrane Biofilm Reactors for Water and Wastewater Treatment and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings 2 (sparging) to replenish oxygen: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings

  11. Hybridization and the Typological Paradigm 

    E-Print Network [OSTI]

    Carlson, Charles

    2012-02-14T23:59:59.000Z

    of hybridization events, which also have a significant role in ecological adaptation. One explanation of increased hybridization in some areas and not others is that stress from parasites results in selection for an increase of novel genotypes. Two swordtail...

  12. Elgersburg School 2014 Hybrid Systems

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Elgersburg School 2014 Hybrid Systems Worksheet 2 Problem 1. Consider the hybrid system given by C) Is V1(x) = 1 2 x2 2 + x1 (which represents the total energy of the ball) a Lyapunov function verifying

  13. Solar Flare Measurements with STIX and MiSolFA

    E-Print Network [OSTI]

    Casadei, Diego

    2014-01-01T23:59:59.000Z

    Solar flares are the most powerful events in the solar system and the brightest sources of X-rays, often associated with emission of particles reaching the Earth and causing geomagnetic storms, giving problems to communication, airplanes and even black-outs. X-rays emitted by accelerated electrons are the most direct probe of solar flare phenomena. The Micro Solar-Flare Apparatus (MiSolFA) is a proposed compact X-ray detector which will address the two biggest issues in solar flare modeling. Dynamic range limitations prevent simultaneous spectroscopy with a single instrument of all X-ray emitting regions of a flare. In addition, most X-ray observations so far are inconsistent with the high anisotropy predicted by the models usually adopted for solar flares. Operated at the same time as the STIX instrument of the ESA Solar Orbiter mission, at the next solar maximum (2020), they will have the unique opportunity to look at the same flare from two different directions: Solar Orbiter gets very close to the Sun wit...

  14. Corn Hybrids for Texas. 

    E-Print Network [OSTI]

    Rogers, J. S.; McAfee, T. E.

    1954-01-01T23:59:59.000Z

    Corn Hybrids for Terns ST LOCATIONS AREA I AREA II ARE4 Ill AREA IV 2Prdrie View 7.Tylw lZ.Lockhart 17.Waxahachie 22San Antonio 3.Cleveland 8.Mt. Pbctont I3Brsnha B.Garland 23Lamposas 4.Colbqe Sta. 9Sulphw Spp. 14Holland l9.0reenvilb 24...Stephenville ,J* 5.K'rbyvilb I0.Cbrkdb 15.Tanpk 2ODetiion 25.Wllothe TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST The Texas corn acreage planted to hybrids increased from less than 1 percent of the total acrea...

  15. Modulation of Ago-miRNA regulatory networks by cis-sequence elements and target competition

    E-Print Network [OSTI]

    Bosson, Andrew D. (Andrew David)

    2014-01-01T23:59:59.000Z

    regulators of gene expression in a wide range of organisms and biological processes. Each miRNA guides Argonaute (Ago) protein complexes to target and repress hundreds of genes in a sequence-dependent manner. To identify ...

  16. Posttranscriptional Regulation of BK Channel Splice Variant Stability by miR-9

    E-Print Network [OSTI]

    Siegelmann , Hava T

    Neuron Article Posttranscriptional Regulation of BK Channel Splice Variant Stability by miR-9Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical Systems Laboratory, Computer Science Department, University of Massachusetts, 140 Governors Drive, Amherst

  17. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  18. ANNUAL REPORT FOUNDATIONS OF HYBRID

    E-Print Network [OSTI]

    California at Irvine, University of

    Online Hierarchical Fault-Adaptive Control 39 Development of engine models for combustion engine 15 A Deterministic Operational Semantics for Hybrid System Simulations 15 Building Efficient Simulations from Hybrid Bond Graph Models 16 Going Beyond Zeno 18 2.1.1.d. Stochastic Hybrid Systems 18

  19. Hybrid Transmission Corridor study

    SciTech Connect (OSTI)

    Clairmont, B.A.; Johnson, G.B.; Zaffanella, L.E. (General Electric Co., Lenox, MA (United States))

    1992-06-01T23:59:59.000Z

    Hybrid Transmission Corridors are areas where High Voltage Alternating Current (HVAC) transmission lines and High Voltage Direct Current (HVDC) transmission lines exist in close proximity of each other. Because of the acceptance of HVDC as a means of transporting electric power over long distances and the difficulties associated with obtaining new right-of-ways, HVDC lines may have to share the same transmission corridor with HVAC lines. The interactions between conductors energized with different types of voltages causes changes in the electrical stresses applied to the conductors and insulators. As a result, corona phenomena, field effects and insulation performance can be affected. This report presents the results of an investigation of the HVAC-HVDC interaction and its effect on corona and AC and DC electric field phenomena. The method of investigation was based on calculation methods developed at the EPRI High Voltage Transmission Research Center (HVTRC) and supported by the results of full and reduced-scale line tests. Also, a survey of existing hybrid corridors is given along with the results of measurements made at one of those corridors. A number of examples in which an existing AC corridor may be transformed into a hybrid corridor are discussed. The main result of the research is an analytical/empirical model for predicting the electrical/environmental performance of hybrid corridors, a definition of ACDC interaction and a set of criteria for specifying when the interaction becomes significant, and a set of design rules.

  20. Modern Instrumentation, 2013, 2, 7-15 doi:10.4236/mi.2013.21002 Published Online January 2013 (http://www.scirp.org/journal/mi)

    E-Print Network [OSTI]

    Adler, Andy

    ://www.scirp.org/journal/mi) Toward a Test Protocol for Conducted Energy Weapons Andy Adler1 , David Dawson1 , Robert Evans2 , Laurin and Computer Engineering, Ottawa, Canada 2 Datrend Systems Inc., Vancouver, Canada 3 Vernac Ltd., Ottawa, Canada 4 MPB Technologies, Montreal, Canada Email: adler@sce.carleton.ca Received November 4, 2012

  1. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  2. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01T23:59:59.000Z

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  3. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells

    SciTech Connect (OSTI)

    Zhang, Jie [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China)] [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China); Zheng, Fangxia [Department of Radiotherapy, Liaocheng People’s Hospital, Liaocheng 252000 (China)] [Department of Radiotherapy, Liaocheng People’s Hospital, Liaocheng 252000 (China); Yu, Gang [Department for Disease Control, Tumor Hospital of Liaocheng, Liaocheng 252000 (China)] [Department for Disease Control, Tumor Hospital of Liaocheng, Liaocheng 252000 (China); Yin, Yanhua, E-mail: yinyanhuablk@163.com [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China)] [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China); Lu, Qingyang [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China)] [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China)

    2013-11-01T23:59:59.000Z

    Highlights: •miR-196a was overexpressed in cervical cancer tissue compared to normal tissue. •miR-196a expression elevated proliferation and migration of cervical cancer cells. •miR-196a inhibited NTN4 expression by binding 3?-UTR region of NTN4 mRNA. •NTN4 inversely correlated with miR-196a expression in cervical tissue and cell line. •NTN4 expression was low in cervical cancer tissue compared to normal tissue. -- Abstract: Recent research has uncovered tumor-suppressive and oncogenic potential of miR-196a in various tumors. However, the expression and mechanism of its function in cervical cancer remains unclear. In this study, we assess relative expression of miR-196a in cervical premalignant lesions, cervical cancer tissues, and four cancer cell lines using quantitative real-time PCR. CaSki and HeLa cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cancer cell proliferation and migration. We demonstrated that miR-196a was overexpressed in cervical intraepithelial neoplasia 2–3 and cervical cancer tissue. Moreover, its expression contributes to the proliferation and migration of cervical cancer cells, whereas inhibiting its expression led to a reduction in proliferation and migration. Five candidate targets of miR-196a chosen by computational prediction and Cervical Cancer Gene Database search were measured for their mRNA in both miR-196a-overexpressing and -depleted cancer cells. Only netrin 4 (NTN4) expression displayed an inverse association with miR-196a. Fluorescent reporter assays revealed that miR-196a inhibited NTN4 expression by targeting one binding site in the 3?-untranslated region (3?-UTR) of NTN4 mRNA. Furthermore, qPCR and Western blot assays verified NTN4 expression was downregulated in cervical cancer tissues compared to normal controls, and in vivo mRNA level of NTN4 inversely correlated with miR-196a expression. In summary, our findings provide new insights about the functional role of miR-196a in cervical carcinogenesis and suggested a potential use of miR-196a for clinical diagnosis and as a therapeutic target.

  4. Hybrid Electric Vehicle Power Management Solutions Based on Isolated and Non-Isolated Configurations of MMCCC Converter

    SciTech Connect (OSTI)

    Khan, Faisal H [ORNL; Tolbert, Leon M [ORNL; Webb, William E [Oak Ridge National Laboratory (ORNL)

    2009-01-01T23:59:59.000Z

    This paper presents the various configurations of a multilevel modular capacitor-clamped converter (MMCCC), and it reveals many useful and new formations of the original MMCCC for transferring power in either an isolated or nonisolated manner. The various features of the original MMCCC circuit are best suited for a multibus system in future plug-in hybrid or fuel-cell-powered vehicles' drive train. The original MMCCC is capable of bidirectional power transfer using multilevel modular structure with capacitor-clamped topology. It has a nonisolated structure, and it offers very high efficiency even at partial loads. This circuit was modified to integrate single or multiple high-frequency transformers by using the intermediate voltage nodes of the converter. On the other hand, a special formation of the MMCCC can exhibit dc outputs offering limited isolation without using any isolation transformer. This modified version can produce a high conversion ratio from a limited number of components and has several useful applications in providing power to multiple low-voltage loads in a hybrid or electric automobile. This paper will investigate the origin of generating ac outputs from the MMCCC and shows how the transformer-free version can be modified to create limited isolation from the circuit. In addition, this paper will compare various modified forms of the MMCCC topology with existing dc-dc converter circuits from compactness and component utilization perspectives.

  5. Mi2b Is Required for c-Globin Gene Silencing: Temporal Assembly of a GATA-1-FOG-1-Mi2 Repressor Complex in b-YAC Transgenic Mice

    E-Print Network [OSTI]

    Costa, Flavia C.; Fedosyuk, Halyna; Chazelle, Allen M.; Neades, Renee Y.; Peterson, Kenneth R.

    2012-12-20T23:59:59.000Z

    - globin expression during adult definitive erythropoiesis. Results Expression of c-globin in Mi2b conditional knockout b- YAC mice The NuRD complex is composed of the ATPase Mi2, MTA-1, MTA-2, p66, RbAp46 (RBBP7), RbAp48 (RBBP4), MBD3 and the histone... (Figure 2N), although the Mi2b conditional knockout mice showed fewer strong HbF-positive cells. Mature RBCs are enucleated, making it difficult to demonstrate that the nuclear-localized Mi2b protein is reduced in these cells. To further demonstrate...

  6. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, Stephen E. (Manteca, CA)

    1998-01-01T23:59:59.000Z

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  7. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, S.E.

    1998-03-03T23:59:59.000Z

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  8. Hybrid electroluminescent devices

    SciTech Connect (OSTI)

    Shiang, Joseph John (Niskayuna, NY); Duggal, Anil Raj (Niskayuna, NY); Michael, Joseph Darryl (Schenectady, NY)

    2010-08-03T23:59:59.000Z

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  9. Save with Hybrid Refrigeration

    E-Print Network [OSTI]

    Chung, C. W.

    SAVE WITH HYBRID REFRIGERATION Cheng-Wen (Wayne) Chung, P.E. Fluor Engineers, Inc. Irvine, California ABSTRACT Two level demand makes it possible to use two systems for refrigeration and save energy and money. An example of this type... of refrigeration, consisting of an ammonia absorption refrigeration (AAR) unit and a mechanical compression refrigera tion (MCR) unit, is presented in this article. This paper will briefly describe process configur ation, advantages and utility consumption...

  10. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2011-07-05T23:59:59.000Z

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  11. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2007-06-12T23:59:59.000Z

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  12. Hybrid X-pinches

    SciTech Connect (OSTI)

    Shelkovenko, T. A.; Pikuz, S. A.; Mishin, S. A.; Mingaleev, A. R. [Russian Academy of Sciences, P.N. Lebedev Physical Institute (Russian Federation); Tilikin, I. N. [Moscow Institute of Physics and Technology (Russian Federation); Knapp, P. F.; Cahill, A. D.; Hoyt, C. L.; Hammer, D. A. [Cornell University (United States)

    2012-05-15T23:59:59.000Z

    Results from experimental studies of a hybrid X-pinch with an initial configuration in the form of a high-current diode with conical tungsten electrodes spaced by 1-2 mm and connected to one another with 20- to 100-{mu}m-diameter wires are presented. The experiments were carried out at four facilities with a current amplitude from 200 to 1000 kA and front duration from 45 to 200 ns. It is shown that, in spite of their simpler configuration, hybrid X-pinches with a short rise time of the current pulse (50-100 ns) are highly competitive with standard X-pinches in the generated soft X-ray power and the formation of a single hot spot in them is much more stable, while hard X-ray emission is almost absent. The possibility of using hybrid X-pinches as soft X-ray sources for point projection X-ray imaging of plasma objects is considered.

  13. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric...

  14. miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4

    SciTech Connect (OSTI)

    Chen, Liang [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China) [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Tang, Yanping [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China)] [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Wang, Jian [Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China)] [Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Yan, Zhongjie [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China)] [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China); Xu, Ruxiang, E-mail: RuxiangXu@yahoo.com [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China)] [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China)

    2013-06-14T23:59:59.000Z

    Highlights: •miR-421 is upregulated in nasopharyngeal carcinoma. •miR-421 induces cell proliferation and apoptosis resistance. •FOXO4 is a direct and functional target of miR-421. -- Abstract: microRNAs have been demonstrated to play important roles in cancer development and progression. Hence, identifying functional microRNAs and better understanding of the underlying molecular mechanisms would provide new clues for the development of targeted cancer therapies. Herein, we reported that a microRNA, miR-421 played an oncogenic role in nasopharyngeal carcinoma. Upregulation of miR-421 induced, whereas inhibition of miR-421 repressed cell proliferation and apoptosis resistance. Furthermore, we found that upregulation of miR-421 inhibited forkhead box protein O4 (FOXO4) signaling pathway following downregulation of p21, p27, Bim and FASL expression by directly targeting FOXO4 3?UTR. Additionally, we demonstrated that FOXO4 expression is critical for miR-421-induced cell growth and apoptosis resistance. Taken together, our findings not only suggest that miR-421 promotes nasopharyngeal carcinoma cell proliferation and anti-apoptosis, but also uncover a novel regulatory mechanism for inactivation of FOXO4 in nasopharyngeal carcinoma.

  15. Single-molecule modeling of mRNA degradation by miRNA: Lessons from data

    E-Print Network [OSTI]

    Celine Sin; Davide Chiarugi; Angelo Valleriani

    2014-10-20T23:59:59.000Z

    Recent experimental results on the effect of miRNA on the decay of its target mRNA have been analyzed against a previously hypothesized single molecule degradation pathway. According to that hypothesis, the silencing complex (miRISC) first interacts with its target mRNA and then recruits the protein complexes associated with NOT1 and PAN3 to trigger deadenylation (and subsequent degradation) of the target mRNA. Our analysis of the experimental decay patterns allowed us to refine the structure of the degradation pathways at the single molecule level. Surprisingly, we found that if the previously hypothesized network was correct, only about 7% of the target mRNA would be regulated by the miRNA mechanism, which is inconsistent with the available knowledge. Based on systematic data analysis, we propose the alternative hypothesis that NOT1 interacts with miRISC before binding to the target mRNA. Moreover, we show that when miRISC binds alone to the target mRNA, the mRNA is degraded more slowly, probably through a deadenylation-independent pathway. The new biochemical pathway we propose both fits the data and paves the way for new experimental work to identify new interactions.

  16. Plug-in Electric Vehicle Outreach

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.Work Plan for FY 2013 AThe cityHours

  17. Plug In Partners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, search Name:PipoPleasanton

  18. Plug in America | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataformaTexas:PlotWatt JumpPower

  19. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including device integration and assembly, chemical and biological sensing, and photocatalysis. For example, a hybrid nanostructure consisting of a semiconductor rod with a...

  20. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    secrets, but the price of hybrid cars and trucks are betweenCosts of hybrid vehicles Depending on whether a car companydiesel-hybrid prototypes that attained 70 MPG (Green Car

  1. Issue 5: High Interest in Hybrid Cars

    E-Print Network [OSTI]

    Ong, Paul M.; Haselhoff, Kim

    2005-01-01T23:59:59.000Z

    2005). “High Interest in Hybrid Cars. ” SCS Fact Sheet, Vol.May 2005 High Interest in Hybrid Cars I NTRODUCTION PublicThe unique features of a hybrid car mean that it is more

  2. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    The Emergence of Hybrid Vehicles: Ending oil’s strangleholdthe benefits of hybrid vehicles Dr. Thomas Turrentine Dr.the benefits of hybrid vehicles Report prepared for CSAA Dr.

  3. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  4. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  7. Advanced Hybrid Water Heater using Electrochemical Compressor...

    Energy Savers [EERE]

    Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

  8. Programming Hybrid HPC Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35InformationProgramming Hybrid HPC Systems

  9. Essays On Hybrid Bundle Pricing 

    E-Print Network [OSTI]

    Meyer, Jeffrey Dean

    2011-10-21T23:59:59.000Z

    Increasingly, firms are offering hybrid bundles — products that combine both good(s) and service(s). Some hybrid bundles, such as TiVo that combines a DVR and recording management are more visible, while some, such as GE‘s Powerplant System...

  10. Hybrid spread spectrum radio system

    DOE Patents [OSTI]

    Smith, Stephen F. (London, TN) [London, TN; Dress, William B. (Camas, WA) [Camas, WA

    2010-02-09T23:59:59.000Z

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  11. Introduction The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy

    E-Print Network [OSTI]

    Kleinfeld, David

    Introduction ® The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy use. When used with specialty fiber optic cables the MI-150 illuminator can also Illuminator from the carton and retain the manual and any additional documents. ! Remove the fiber optic cable

  12. Roles of the MicroRNA miR-31 in tumor metastasis and an experimental system for the unbiased discovery of genes relevant for breast cancer metastasis

    E-Print Network [OSTI]

    Valastyan, Scott J. (Scott John)

    2010-01-01T23:59:59.000Z

    In these studies, the microRNA miR-31 was identified as a potent inhibitor of breast cancer metastasis. miR-31 expression levels were inversely associated with the propensity to develop metastatic disease in human breast ...

  13. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease

    SciTech Connect (OSTI)

    Chen, Yu; Wang, Chengxiao; Liu, Ying; Tang, Liwei; Zheng, Mingxia [Department of Pediatrics, Jiangwan Hospital of Shanghai, Shanghai 200434 (China)] [Department of Pediatrics, Jiangwan Hospital of Shanghai, Shanghai 200434 (China); Xu, Chundi [Department of Pediatrics, Ruijin affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 (China)] [Department of Pediatrics, Ruijin affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 (China); Song, Jian, E-mail: jiansongkxy@126.com [Department of Gastroenterology, Jiangwan Hospital of Shanghai, Shanghai 200434 (China)] [Department of Gastroenterology, Jiangwan Hospital of Shanghai, Shanghai 200434 (China); Meng, Xiaochun [Department of Pediatrics, Jiangwan Hospital of Shanghai, Shanghai 200434 (China)] [Department of Pediatrics, Jiangwan Hospital of Shanghai, Shanghai 200434 (China)

    2013-08-16T23:59:59.000Z

    Highlights: •NOD2 is a target gene of miR-122. •miR-122 inhibits LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. •miR-122 reduces the expression of pro-inflammatory cytokines (TNF-? and IFN-?). •miR-122 promotes the release of anti-inflammatory cytokines (IL-4 and IL-10). •NF-?B signaling pathway is involved in inflammatory response induced by LPS. -- Abstract: Crohn’s disease (CD) is one of the two major types of inflammatory bowel disease (IBD) thought to be caused by genetic and environmental factors. Recently, miR-122 was found to be deregulated in association with CD progression. However, the underlying molecular mechanisms remain unclear. In the present study, the gene nucleotide-binding oligomerization domain 2 (NOD2/CARD15), which is strongly associated with susceptibility to CD, was identified as a functional target of miR-122. MiR-122 inhibited LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. NOD2 interaction with LPS initiates signal transduction mechanisms resulting in the activation of nuclear factor ?B (NF-?B) and the stimulation of downstream pro-inflammatory events. The activation of NF-?B was inhibited in LPS-stimulated HT-29 cells pretreated with miR-122 precursor or NOD2 shRNA. The expression of the pro-inflammatory cytokines TNF-? and IFN-? was significantly decreased, whereas therelease of the anti-inflammatory cytokines IL-4 and IL-10 was increased in LPS-stimulated HT-29 cells pretreated with miR-122 precursor, NOD2 shRNA or the NF-?B inhibitor QNZ. Taken together, these results indicate that miR-122 and its target gene NOD2 may play an important role in the injury of intestinal epithelial cells induced by LPS.

  14. Organic scintillation detector response simulation using non-analog MCNPX-PoliMi

    SciTech Connect (OSTI)

    Prasad, S.; Clarke, S. D.; Pozzi, S. A.; Larsen, E. W. [Univ. of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

    2012-07-01T23:59:59.000Z

    Organic liquid scintillation detectors are valuable for the detection of special nuclear material since they are capable of detecting both neutrons and gamma rays. Scintillators can also provide energy information which is helpful in identification and characterization of the source. In order to design scintillation based measurement systems appropriate simulation tools are needed. MCNPX-PoliMi is capable of simulating scintillation detector response; however, simulations have traditionally been run in analog mode which leads to long computation times. In this paper, non-analog MCNPX-PoliMi mode which uses variance reduction techniques is applied and tested. The non-analog MCNPX-PoliMi simulation test cases use source biasing, geometry splitting and a combination of both variance reduction techniques to efficiently simulate pulse height distribution and then time-of-flight for a heavily shielded case with a {sup 252}Cf source. An improvement factor (I), is calculated for distributions in each of the three cases above to analyze the effectiveness of the non-analog MCNPX-PoliMi simulations in reducing computation time. It is found that of the three cases, the last case which uses a combination of source biasing and geometry splitting shows the most improvement in simulation run time for the same desired variance. For pulse height distributions speedup ranging from a factor 5 to 25 is observed, while for time-of-flights the speedup factors range from 3 to 10. (authors)

  15. The NuMI proton beam at Fermilab successes and challenges

    SciTech Connect (OSTI)

    Childress, S.; /Fermilab

    2008-11-01T23:59:59.000Z

    The NuMI beam at Fermilab has delivered over 5 x 10{sup 20} 120 GeV protons to the neutrino production target since the start for MINOS [1] neutrino oscillation experiment operation in 2005. We report on proton beam commissioning and operation status, including successes and challenges with this beam.

  16. Signatures of Purifying and Local Positive Selection in Human miRNAs

    E-Print Network [OSTI]

    Kidd, Kenneth

    populations adapt to specific environments. These findings will fuel future investigations exploring how, the expression of the respective protein-coding genes. Production of animal miRNAs is a two-step process where implicated in cell growth, tissue differenti- ation, cell proliferation, embryonic development, insulin

  17. L.van BEETHOVEN : Quatuor n10 en Mi bmol majeur, Op.74 Poco Adagio -Allegro -

    E-Print Network [OSTI]

    Mazliak, Laurent

    L.van BEETHOVEN : Quatuor n°10 en Mi bémol majeur, Op.74 Poco Adagio - Allegro - Adagio ma non con variazioni- Allegro Après le coup de tonnerre que représentait l'achèvement des trois quatuors à apportent une tension qui se fond dans un grand crescendo menant à l'Allegro. Trois accords joyeux pour un

  18. MI-HYUN PARK, PhD Dept. of Civil and Environmental Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    and sustainability Stormwater runoff modeling and management Environmental informatics Decision support systems Areas Land use/climate change and human impact on water quality Urban watershed management of Best Management Practices for Urban Stormwater Management, Water Environment Research, in revision Mi

  19. 2000 JAPAN-USA Symposium on Flexible Automation July 23-26, 2000, Ann Arbor, MI

    E-Print Network [OSTI]

    Saitou, Kazuhiro "Kazu"

    2000 JAPAN-USA Symposium on Flexible Automation July 23-26, 2000, Ann Arbor, MI 2000JUSFA-US1 OFF-LINE ERROR RECOVERY LOGIC SYNTHESIS IN AUTOMATED ASSEMBLY LINES BY USING GENETIC PROGRAMMING Cem M. Baydar by the experts or automated error recovery logic controllers embedded in the system. The previous work

  20. New Loops! MiTeGen* 50MicroMountsTM consist of a thin microfabricated

    E-Print Network [OSTI]

    Meagher, Mary

    New Loops! MiTeGen* 50µMicroMountsTM consist of a thin microfabricated polyimide film attached to a solid non-magnetic stainless steel pin. The film is polyimide, which is used in Kapton® tape and is employed for X- ray transparent windows on X-ray beam lines. The film is curved by wrapping polyimide film

  1. Academic Staff ESS Coversheet Candidate Name (Last, First, M.I.) Banner ID

    E-Print Network [OSTI]

    VandeVord, Pamela

    rev. 6/14 Academic Staff ESS Coversheet Candidate Name (Last, First, M.I.) Banner ID Primary School Initial WSU appointment date Length of ESS-track service (in years & months) Academic Services Officer Archivist Initial WSU rank Dates off ESS-track/Reason Extens Prgm Coordinator Financial Aid Officer Date

  2. We investigated the effects of deforestation on mi-croclimates and sporogonic development of Plasmodium

    E-Print Network [OSTI]

    Obbard, Darren

    We investigated the effects of deforestation on mi- croclimates and sporogonic development membrane feeders. Fed mosquitoes were placed in houses in forested and deforest- ed areas in a highland area (1,500 m above sea level) and monitored for parasite development. Deforested sites had higher

  3. MI FARM TO SCHOOL GRANTEES 2014-2015 PROGRAM YEAR AND PREVIOUS GRANTEES

    E-Print Network [OSTI]

    MI FARM TO SCHOOL GRANTEES 2014-2015 PROGRAM YEAR AND PREVIOUS GRANTEES FOODSYSTEMS.MSU.EDU 2014-2015 GRANTEES School/ district/ program County Current Grant Years as a grantee A&W Daycare Wayne Planning 1 TO SCHOOL GRANTEES (2011/12 ­ 2013/14) School/ district/ program County Grant Type(s) Grant Years All Aboard

  4. MiTV: Multiple-Implementation Testing of User-Input Validators for Web Applications

    E-Print Network [OSTI]

    Xie, Tao

    MiTV: Multiple-Implementation Testing of User-Input Validators for Web Applications Kunal Taneja1 Nuo Li1 Madhuri R. Marri1 Tao Xie1 Nikolai Tillmann2 1 Department of Computer Science, North Carolina,txie}@ncsu.edu, 2nikolait@microsoft.com ABSTRACT User-input validators play an essential role in guarding a web

  5. BNL/SNS TECHNICAL NOTE R. Witkover, D. Gassner, C. Mi

    E-Print Network [OSTI]

    BNL/SNS TECHNICAL NOTE NO. 118 R. Witkover, D. Gassner, C. Mi BNL, Upton, NY 11973, USA October 31, 2002 The SNS BLM System is designed to measure beam losses from a maximum 1% local loss down to a 1 W/m operating loss tolerance. In fact, resolution of 1 % of the 1 W/m threshold has been requested. This amounts

  6. AUSTRALIAN. N~TIONAL UNIVE~SITY DEPARTMENTO:miNUCLEAR PFf-y'SICS

    E-Print Network [OSTI]

    Chen, Ying

    AUSTRALIAN. N~TIONAL UNIVE~SITY DEPARTMENTO:miNUCLEAR PFf-y'SICS 14UD TANK OPENING REPORT/iNo. 51 functions for which it provides power. An order was . immediately placed with N.E.C. for 28 perspex bars microamp hours of b.d.p. generation than its predicted lifetime. In preparation for the next opening

  7. Tough, bio-inspired hybrid materials

    E-Print Network [OSTI]

    Munch, Etienne

    2009-01-01T23:59:59.000Z

    hybrid materials are an order of magnitude higher than standard hot-pressed homogeneous nanocomposites

  8. Hybrid powertrain controller

    DOE Patents [OSTI]

    Jankovic, Miroslava (Birmingham, MI); Powell, Barry Kay (Belleville, MI)

    2000-12-26T23:59:59.000Z

    A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

  9. Hybrid dark energy

    E-Print Network [OSTI]

    J. S. Alcaniz; R. Silva; F. C. Carvalho; Zong-Hong Zhu

    2008-07-16T23:59:59.000Z

    Extending previous results [Phys. Rev. Lett. 97, 081301 (2006)], we explore the cosmological implications of a new quintessence scenario driven by a slow rolling homogeneous scalar field whose equation of state behaved as freezing over the entire cosmic evolution, is approaching -1 today, but will become thawing in the near future, thereby driving the Universe to an eternal deceleration. We argue that such a mixed behavior, named \\emph{hybrid}, may reconcile the slight preference of current observational data for freezing potentials with the impossibility of defining observables in the String/M-theory context due to the existence of a cosmological event horizon in asymptotically de Sitter universes as, e.g., pure freezing scenarios.

  10. Hybrid powertrain system

    DOE Patents [OSTI]

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20T23:59:59.000Z

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  11. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01T23:59:59.000Z

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  12. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31T23:59:59.000Z

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  13. Global optimization of hybrid systems

    E-Print Network [OSTI]

    Lee, Cha Kun

    2006-01-01T23:59:59.000Z

    Systems that exhibit both discrete state and continuous state dynamics are called hybrid systems. In most nontrivial cases, these two aspects of system behavior interact to such a significant extent that they cannot be ...

  14. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    The parallel hybrid passenger car (VW Golf) combined an EDLCpassenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbon

  15. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

  16. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    E-Print Network [OSTI]

    Gris, Arturo E.

    1991-01-01T23:59:59.000Z

    Vehicle Symposium, "The Hybrid Vehicle Revisited", OctoberBus Hv REFERENCES “Hybrid Vehicle Assessment, Phase I,Laboratory, March 1984 “Hybrid Vehicle Engineering Task”

  17. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  18. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

  19. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    vehicles must give preference to hybrid, plug-in hybrid electric, biodiesel, hydrogen, fuel cell, or flexible fuel vehicles when the performance, quality, and anticipated...