Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

New Mexico - West Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

2

New Mexico - East Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

3

New Mexico Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

4

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

D ecline A ccelerates Mexico’s crude oil production, whichonly 43 percent of Mexico’s crude oil production, comparedb/d going forward. Mexico’s crude oil output could drop to

Shields, David

2008-01-01T23:59:59.000Z

5

Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical Report  

E-Print Network [OSTI]

Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical agency thereof. #12;Page | ii Oil and Gas Production and Economic Growth in New Mexico James Peach and C Mexico's marketed value of oil and gas was $19.2 billion (24.0 percent of state GDP). This paper

Johnson, Eric E.

6

The Politics of Mexico’s Oil Monopoly  

E-Print Network [OSTI]

the bilateral agenda, yet for Mexico oil is one of its fewThe Politics of Mexico’s Oil Monopoly Richard Huizarthe major consumer of Mexico’s oil. The third section looks

Huizar, Richard

2008-01-01T23:59:59.000Z

7

Oil gas J report. Mexico. [Mexico  

SciTech Connect (OSTI)

Mexico's oil industry continues its rise, but it has not yet been able to ignite sluggish sectors of the economy nor bring national prosperity. Petroleos Mexicanos (PEMEX) has accomplished about everything an oil company can do. Total claimed proved reserves of oil, gas liquids, and gas (oil equivalent) climbed 12 billion bbl to 72,000 billion bbl in 1981. They could hit 80 billion bbl by year-end 1982. Production (oil, gas, and gas liquids) rose by half a million barrels per day to 3,125,000 bpd. With the proper market and mandate, PEMEX could top that in 1982. Exports grew 300,000 bpd in 1981, but may be flat in 1982, though not due to a lack of capacity to export. PEMEX lost its authority to set sales volumes after the first big discoveries. It has also lost its ability to negotiate prices. This report indicates the impact of economic factors on drilling and production. New finds and production statistics on existing fields are highlighted. Technologic progress also is documented.

Not Available

1982-08-30T23:59:59.000Z

8

The Politics of Mexico’s Oil Monopoly  

E-Print Network [OSTI]

the United States needs oil and Mexico has a surplus of itthe bilateral agenda, yet for Mexico oil is one of its fewfor reforming the oil industry in Mexico. Master Thesis.

Huizar, Richard

2008-01-01T23:59:59.000Z

9

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels)...

10

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

CAKIR, NIDA

2013-01-01T23:59:59.000Z

11

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

No. 8: David Shields, Mexico’s Deteriorating Oil Outlook:and Brazil, would help Mexico’s oil industry become moreof California, Berkeley Mexico’s Deteriorating Oil Outlook:

Shields, David

2008-01-01T23:59:59.000Z

12

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

No. 8: David Shields, Mexico’s Deteriorating Oil Outlook:years. Estimating oil reserves in Mexico has long been aof as yet unproven oil reserves in Mexico’s part of the

Shields, David

2008-01-01T23:59:59.000Z

13

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

CAKIR, NIDA

2013-01-01T23:59:59.000Z

14

Mexico: The Premier Oil Discovery in the Western Hemisphere  

Science Journals Connector (OSTI)

...increased its production by 300 percent...to expand production capac-ity...month, 1 day after the...member of OPEC, the oil...rather than OPEC oil is...re-serves since 1973 but it was...9000 barrels per day, even on...Mexico's current production (1.2 million...

WILLIAM D. METZ

1978-12-22T23:59:59.000Z

15

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

16

Approaches and Perspectives About Biodiesel and Oil Production Using Algae in Mexico  

Science Journals Connector (OSTI)

Oil extraction in México started during the Aztec kingdom with the exploitation of the ground deposits better known as “chapopoteras.” It has several uses such as for religious ceremonies, cleaning teeth, and ...

Rafael Riosmena Rodriguez; Bertha Olivia Arredondo-Vega…

2012-01-01T23:59:59.000Z

17

Risky business : evaluating the vulnerability and impacts from simulated oil spills in the Gulf of Mexico.  

E-Print Network [OSTI]

??Exploration and production of oil in the Gulf of Mexico has seen an astonishing increase since the first well was drilled in 1936. Much of… (more)

Nelson, Jake R.

2014-01-01T23:59:59.000Z

18

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

19

Crude Oil Domestic Production  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net...

20

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Report Title: The Economic Impact of Oil and Gas Extraction in New Mexico Type of Report: Technical Report  

E-Print Network [OSTI]

Report Title: The Economic Impact of Oil and Gas Extraction in New Mexico Type of Report: Technical of oil and gas extraction in New Mexico are presented in terms of output, value added, employment presented. Historical oil and gas production, reserves, and price data are also presented and discussed. #12

Johnson, Eric E.

22

Management of Oil Windfalls in Mexico  

E-Print Network [OSTI]

this paper to estimate oil windfalls follows Bevan et al (1992). The exercise is done using national accounts statistics, employing the national income identity, R I C NO O Y + + = + = (1) where total production (Y) can be divided in oil (O) and non-oil (NO) production, that equals the gross domestic expenditure (GDE), formed by consumption (C) and investment (I), plus the resource balance (R)

Historical Experience And; Stephen Everhart; Robert Duval-hernandez

23

,"New Mexico Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

24

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1...

25

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

26

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million...

27

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

28

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

29

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

30

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

31

Mexico: The Premier Oil Discovery in the Western Hemisphere  

Science Journals Connector (OSTI)

...the poten-tial petroleum structures Pemex...replacing oil imports from OPEC with imports from Mexico...United States imports, although not...produce more oil and export it northward...asked Communist China for a nuclear...

WILLIAM D. METZ

1978-12-22T23:59:59.000Z

32

Gulf of Mexico Federal Offshore Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Offshore Gulf of Mexico production volumes are presented as a separate data series beginning in 2001. Production data for the Gulf of Mexico for years prior to 2001 are...

33

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .and Productivity in Venezuela and Mexico . . . . . . . . OilEllner, ”Organized Labor in Venezuela 1958-1991: Behavior

CAKIR, NIDA

2013-01-01T23:59:59.000Z

34

GLOBAL SUSTAINABILITY/OIL SPILL COMMUNITY SEMINAR "Natural and Unnatural Oil in the Gulf of Mexico  

E-Print Network [OSTI]

GLOBAL SUSTAINABILITY/OIL SPILL COMMUNITY SEMINAR "Natural and Unnatural Oil in the Gulf of Mexico Initiative, Center for the Environment, Energy Center, Purdue Oil Spill Community, Purdue Water Community in the Gulf of Mexico has been cited as a factor that may have pre-conditioned the gulf ecosystem better

35

Abandoned oil fields in Arkansas, Louisiana, Mississippi and New Mexico  

SciTech Connect (OSTI)

Data were obtained from the Petroleum Data System at the University of Oklahoma and validated by visits to the following state agencies: Arkansas Oil and Gas Commission; Louisiana Office of Conservation; Mississippi State Oil and Gas Board; and New Mexico Oil and Gas Conservation Division. For this report, abandoned oil fields are defined as those fields listed by state agencies as officially abandoned and that produced at least 10,000 barrels of oil.

Not Available

1982-07-01T23:59:59.000Z

36

Production of Shale Oil  

E-Print Network [OSTI]

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

Loper, R. D.

1982-01-01T23:59:59.000Z

37

Oil Reserves and Production  

Science Journals Connector (OSTI)

...research-article Oil Reserves and Production Eric Drake The growth of world energy requirements over the last...remaining proved recoverable reserves will probably decline continuously...to grow. The declining reserves will be insufficient to...

1974-01-01T23:59:59.000Z

38

The Politics of Mexico’s Oil Monopoly  

E-Print Network [OSTI]

Mexicana, S.A. de C.V. 2003. Pemex y el desarrollo económicoShields, David. Pemex: la reforma petrolera. Mexico, D.F:1982 Mexico: the case of Pemex. ” Bulletin of Latin America

Huizar, Richard

2008-01-01T23:59:59.000Z

39

The Politics of Mexico’s Oil Monopoly  

E-Print Network [OSTI]

s oil is critical for America’s national security because ins oil is important for the United States’ national security,

Huizar, Richard

2008-01-01T23:59:59.000Z

40

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

of papers on the Gulf of Mexico oil industry is perhaps theof offshore oil and gas activities in the Gulf of Mexico:in oil exploration and development in the Gulf of Mexico.

Leighty, Wayne

2008-01-01T23:59:59.000Z

42

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

of papers on the Gulf of Mexico oil industry is perhaps theof offshore oil and gas activities in the Gulf of Mexico:oil and gas activities by water depth in the Gulf of Mexico

Leighty, Wayne

2008-01-01T23:59:59.000Z

43

Strategic implications for US - Persian Gulf relations on domestic and worldwide oil production for future US oil demand. Final report  

SciTech Connect (OSTI)

The U.S. dependence on oil imports is examined in light of current U.S. oil production, its potential for future discoveries, and the availability of oil products form Venezuela, Mexico, and other South American countries. There is no geologic reason why the U.S. cannot continue to replace its reserves consumed annually, continue conservation efforts reducing its import dependence, and shift its foreign oil supply closer to home, i.e., Mexico and South America. Increasing the price of oil domestically ensures continued exploration, and shifting the source of imports reduces the length of SLOC'S carrying critical oil products.

Kaplan, S.S.

1987-03-01T23:59:59.000Z

44

STEO September 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

oil production forecast to rise almost 700,000 bpd this oil production forecast to rise almost 700,000 bpd this year, help cut U.S. petroleum imports U.S. crude oil production is expected to average 6.3 million barrels per day in 2012. That's up nearly 700,000 barrels per day from last year and the highest annual oil output since 1997 says the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil nationwide has increased by around 200 so far this year to just under 1,400 rigs." Higher domestic oil production will help cut U.S. petroleum imports. The share of total U.S.

45

STEO December 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in 2012, the biggest annual increase in oil output since U.S. commercial crude oil production began in 1859. American oil producers are expected to pump a daily average of 6.4 million barrels of crude oil this year, according to the U.S. Energy Information Administrator's new monthly energy forecast. The annual increase in oil output tops the previous record set in 1951 and marks the largest yearly production increase ever. Most of the increase in crude oil production is driven by drilling activity in shale formations located in Texas, North Dakota and Montana. U.S. crude oil production next year is expected to top 7 million barrels per day for the first time

46

Bakken Shale Oil Production Trends  

E-Print Network [OSTI]

) database and in the format of monthly production for oil, water and gas. Additional 95 well data including daily production rate, completion, Pressure Volume Temperature (PVT), pressure data are given from companies who sponsor for this research study...

Tran, Tan

2012-07-16T23:59:59.000Z

47

Oil spills underreported in Gulf of Mexico  

Science Journals Connector (OSTI)

... There is only one official source of data on pollution caused by offshore drilling in US waters: the National Response Center, an online reporting system for oil ... analyzed by Amos, an average of 14 gallons per day had been spilling from that rig for several months, says Amos. "But our image analysis shows the leak rate ...

Melissa Gaskill

2011-04-21T23:59:59.000Z

48

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

49

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

50

New Mexico Oil Conservation Division | Open Energy Information  

Open Energy Info (EERE)

Conservation Division Conservation Division Jump to: navigation, search State New Mexico Name New Mexico Oil Conservation Division Address 1220 South St. Francis Drive City, State Santa Fe, New Mexico Zip 87505 Website http://www.emnrd.state.nm.us/o Coordinates 35.669674°, -105.957212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.669674,"lon":-105.957212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Location of Natural Gas Production Facilities in the Gulf of Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

Location of Natural Gas Production Location of Natural Gas Production Facilities in the Gulf of Mexico 2012 U.S. Energy Information Administration | Natural Gas Annual 102 1,423,239 5.9 Gulf of Mexico - Natural Gas 2012 Million Cu. Feet Percent of National Total Dry Production: Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Gross Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Table S12. Summary statistics for natural gas - Gulf of Mexico, 2008-2012 Gulf of Mexico - Table S12 2012 U.S. Energy Information Administration | Natural Gas Annual 103 Table S12. Summary statistics for natural gas - Gulf of Mexico, 2008-2012 - continued

52

Review of EIA Oil Production Outlooks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review of EIA oil production outlooks For 2014 EIA Energy Conference July 15, 2014 | Washington, DC By Samuel Gorgen, Upstream Analyst Overview Gorgen, Tight Oil Production Trends...

53

An evaluation of known remaining oil resources in the state of New Mexico and Wyoming. Volume 4, Project on Advanced Oil Recovery and the States  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of New Mexico and Wyoming. Individual reports for six other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to New Mexico`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the states of New Mexico and Wyoming and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

54

Western Hemisphere Oil Products Balance  

Gasoline and Diesel Fuel Update (EIA)

Western Hemisphere Oil Products Balance Ramn Espinasa, Ph.D. Lead Specialist July 2014 The Energy Innovation Center Energy Division 3 The views expressed by the author do not...

55

Oil's role in free trade agreement crux of Mexico's petroleum sector dilemma  

SciTech Connect (OSTI)

Mexico's president Salinas' efforts at privatization have not yet touched Mexico's most valuable industry, oil. That remains under control of state owned Petroleos Mexicanos. Pemex and Mexico's huge oil union have come under increasing criticism for alleged abuses of power. In addition, controversy rages as to the true extent of Mexican oil resources and whether Pemex has the wherewithal to meet domestic demand and sustain oil exports. Critics also contend opening Mexico's oil sector to foreign participation would introduce new efficiencies and cost cutting measures in the cash strapped state oil industry. This paper reports that at the center of the controversy is the proposed Free Trade Agreement among Mexico, the U.S., and Canada, pushed strongly by Salinas. Oil's role in the FTA may prove the pact's main sticking point.

Not Available

1992-02-03T23:59:59.000Z

56

Federal Outer Continental Shelf Oil and Gas Production Statistics - Gulf of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gulf of Gulf of Mexico Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Federal Outer Continental Shelf Oil and Gas Production Statistics - Gulf of Mexico Dataset Summary Description Federal Outer Continental Shelf Oil and Gas Production Statistics for the Gulf of Mexico by month and summarized annually. Tags {"Minerals Management Service",MMS,Production,"natural gas",gas,condensate,"crude oil",oil,"OCS production","Outer Continental Shelf",OSC,EIA,"Energy Information Agency",federal,DOE,"Department of Energy",DOI,"Department of the Interior","Gulf of Mexico"} Dataset Ratings Overall 0 No votes yet Data Utility

57

Catastrophic oil spill in the Gulf of Mexico in April–May 2010  

Science Journals Connector (OSTI)

The evolution of oil pollution in the Gulf of Mexico from April 20 to May 28, 2010, which resulted from the accident on the BP Deepwater Horizon oil platform that occurred on April 20, 2010,...

O. Yu. Lavrova; A. G. Kostianoy

2011-12-01T23:59:59.000Z

58

Ixtoc 1 oil spill: flaking of surface mousse in the Gulf of Mexico  

Science Journals Connector (OSTI)

... 185 Alewife Brook Parkway, Cambridge, Massachusetts 02138, USA The blowout at the Ixtoc 1 offshore oil ... oil rig in the Gulf of Mexico (19°24? N, 92°12? W) produced ...

John S. Patton; Mark W. Rigler; Paul D. Boehm; David L. Fiest

1981-03-19T23:59:59.000Z

59

EIA - Projections of Oil Production Capacity and Oil Production In three  

Gasoline and Diesel Fuel Update (EIA)

Projections of Oil Production Capacity and Oil Production in Three Cases (1990-2030) Projections of Oil Production Capacity and Oil Production in Three Cases (1990-2030) International Energy Outlook 2006 Projections of Oil Production Capacity and Oil Production In Three Cases Data Tables (1990-2030) Formats Table Data Titles (1 to 6 complete) Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Oil Production Capacity by Region and Country, Reference Case Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800.

60

Heavy oil production from Alaska  

SciTech Connect (OSTI)

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Water issues associated with heavy oil production.  

SciTech Connect (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

62

IPAA; U. S. oil production to resume long slide  

SciTech Connect (OSTI)

This paper reports that although production rose slightly in 1991 in response to the Persian Gulf War, U.S. oil flow will resume its decline this year in downward trend that will persist at least until 2000. The independent Petroleum Association of America's supply/demand committee pegs crude oil production at less than 7.2 million b/d, down 2.9% from 1991 and the lowest level in 30 years. Crude oil production will continue sliding to 5.8 million b/d by 2000, the smallest volume since 1950. U.S. natural gas production will increase to 20.3 tcf by 2000 for a growth rate of almost 2%/year. Natural gas trade will increase, too, with imports rising to 2.7 tcf by 2000, an average of nearly 6%/year. U.S. natural gas exports to northern Mexico also are expected to grow.

Not Available

1992-04-06T23:59:59.000Z

63

The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both its magnitude --nearly 5  

E-Print Network [OSTI]

PROBLEM The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both of Mexico during the Deepwater Horizon oil spill. This satellite image shows the oil slick off its magnitude -- nearly 5 million barrels of oil spilled over nearly three months -- and its location

Entekhabi, Dara

64

Oil Spill Detection and Mapping Along the Gulf of Mexico Coastline Based on Imaging Spectrometer Data  

E-Print Network [OSTI]

The Deepwater Horizon oil spill in the Gulf of Mexico between April and July 2010 demonstrated the importance of synoptic oil-spill monitoring in coastal environments via remote-sensing methods. This study focuses on terrestrial oil-spill detection...

Arslan, Meryem Damla

2013-11-27T23:59:59.000Z

65

Mississippi Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

66

California Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

67

Pennsylvania Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

68

Oil exploration and production in Scotland  

Science Journals Connector (OSTI)

...production, 34 oil production platforms are in operation...FARROW FIG. 4. The semi-submersible exploration rig...EXPLORATION AND PRODUCTION 559 3 E Area shows...through four steel production platforms, in a water depth...

D. Hallett; G. P. Durant; G. E. Farrow

69

Gulf Of Mexico Natural Gas Plant Liquids Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Plant Liquids Production (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

70

Government Leasing Policy and the Multi-Stage Investment Timing Game in Offshore Petroleum Production  

E-Print Network [OSTI]

while the Gulf of Mexico oil production is o?shore in atanker travel while Gulf of Mexico oil is delivered directlybut many in the Gulf of Mexico. Alaska oil is delivered to

Lin, C.-Y. Cynthia; Leighty, Wayne

2007-01-01T23:59:59.000Z

71

STEO January 2013 - oil production increase  

U.S. Energy Information Administration (EIA) Indexed Site

oil production to increase in 2013 and 2014 oil production to increase in 2013 and 2014 U.S. crude oil production is expected to keep rising over the next two years. America's oil output will jump nearly 900,000 barrels per day in 2013 to an average 7.3 million barrels a day, according to the latest monthly forecast from the U.S. Energy Information Administration. This would mark the biggest one-year increase in output since U.S. commercial crude oil production began in 1859. U.S. daily oil production is expected to rise by another 600,000 barrels in 2014 to nearly 8 million barrels a day, the highest level since 1988. Most of America's oil production growth over the next two years will come from more drilling activity in tight shale rock formations located in North Dakota and Texas

72

Biodiesel Production from Greenseed Canola Oil  

Science Journals Connector (OSTI)

Biodiesel Production from Greenseed Canola Oil† ... Biodiesel properties are comparable to those of fossil-based diesel fuel, and biodiesels can be produced from animal fats or vegetable oils; thus, they are renewable. ...

Titipong Issariyakul; Ajay K. Dalai

2010-02-04T23:59:59.000Z

73

New Mexico State Regulations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico New Mexico State Regulations: New Mexico State of New Mexico The Oil Conservation Division (OCD) in the New Mexico Energy, Minerals and Natural Resources Department regulates oil and gas and geothermal operations in New Mexico. The OCD has the responsibility to gather oil and gas production data, permit new wells, establish pool rules and oil and gas allowables, issue discharge permits, enforce rules and regulations of the division, monitor underground injection wells and ensure that abandoned wells are properly plugged and the land is responsibly restored. Otherwise, the New Mexico Environment Department (NMED) administers the major environmental protection laws. The Water Quality Control Commission (WQCC), which is administratively attached to the NMED, assigns responsibility for administering its regulations to constituent agencies, including the OCD.

74

Location of Natural Gas Production Facilities in the Gulf of Mexico  

Gasoline and Diesel Fuel Update (EIA)

? 2011 ? 2011 U.S. Energy Information Administration | Natural Gas Annual 100 1,812,328 7.9 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,552 1,527 1,984 1,852 1,559 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Gross Withdrawals from Gas Wells Gross Withdrawals from Oil Wells 2011

75

Crude Injustice in the Gulf: Why Categorical Exclusions for Deepwater Drilling in the Gulf of Mexico are Inconsistent with U.S. International Ocean Law and Policy  

E-Print Network [OSTI]

Offshore-Gulf of Mexico Field Production of Crude Oil, U.S.Gulf of Mexico Federal Offshore Percentage of Crude Oil2011). A. CRUDE INJUSTICE IN THE GULF Gulf of Mexico: The

Hull, Eric V.

2011-01-01T23:59:59.000Z

76

Decline Curve Analysis of Shale Oil Production.  

E-Print Network [OSTI]

?? Production of oil and gas from shale is often described as a revolution to energyproduction in North America. Since the beginning of this century… (more)

Lund, Linnea

2014-01-01T23:59:59.000Z

77

Foamy Oil Flow and its Role in Heavy Oil Production  

Science Journals Connector (OSTI)

Two?phase oil?gas flow in porous media is often encountered during oil production from oil bearing sedimentary rocks. Traditionally such flow is modeled by extending the Darcy’s law to two?phase flow by employing the concept of saturation dependent relative permeability. This model is remarkably successful as long as the fluid distribution within the porous medium is controlled by capillary forces. Under this condition the two fluids appear to flow in their own continuous flow channels. This flow description is applicable to most reservoir flow scenarios encountered in light oil production. However in primary production of heavy oil under solution?gas drive this flow model often fails to provide a satisfactory match of the observed behaviour.

Brij B. Maini; Bashir Busahmin

2010-01-01T23:59:59.000Z

78

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

for several days, hydropower was able to take their place.on Mexico’s most important hydropower dam complex on thecoast, two large new hydropower dams, several windpower and

Shields, David

2008-01-01T23:59:59.000Z

79

Deepwater, Deep Ties, Deep Trouble: A State-Corporate Environmental Crime Analysis of the 2010 Gulf of Mexico Oil Spill.  

E-Print Network [OSTI]

?? The 2010 Gulf of Mexico oil spill was one of the worst environmental disasters of all time. Using the concept of state-corporate environmental crime,… (more)

Bradshaw, Elizabeth A.

2012-01-01T23:59:59.000Z

80

Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico  

Science Journals Connector (OSTI)

The fluorescence excitation–emission matrix (EEM) technique coupled with parallel factor (PARAFAC) modeling and measurements of bulk organic carbon and other optical properties were used to characterize the oil components released from the Deepwater Horizon oil spill in the Gulf of Mexico and to examine the chemical evolution and transformation of oil in the water column. Seawater samples were collected from the Gulf of Mexico during October 2010 and October 2011, three months and fifteen months, respectively, after the oil spill was stopped. Together with previous results from samples collected during the oil spill in May/June 2010, these time series samples allow us to elucidate changes in the optical properties of dissolved organic matter (DOM) from the time of maximum oil impact to its recovery, 15 months after the spill. Although the oil had profoundly altered the optical properties of the DOM in the entire water column during the oil spill, naturally occurring DOM became predominant in surface waters by October 2010, three months after the spill. Anomalous DOM with high optical yields, however, still resided in deep waters even 15 months after the oil spill in October 2011, showing a persistent influence of the oil in deep waters. Based on fluorescence EEM data and PARAFAC modeling, three oil components and one natural humic-like DOM could be readily identified. The most prominent oil component had its maximum fluorescence intensity at Ex/Em 224/328 nm, and the other two centered on Ex/Em 264/324 and 232/346 nm, respectively. The humic-like DOM component had its wide emission peak from 390 to 460 nm over the excitation wavelength at ~248 nm. We hypothesized that component-2 (264/324 nm) was mostly derived from photochemical degradation and the component-3 (232/346 nm) could be a degradation product from both microbial and photochemical degradation, although both C2 and C3 are subject to degradation at different rates. The oil component ratios, such as C2/C1 and C3/C1, were closely related to degradation states of oil and can be used as a sensitive index to track the fate, transport and transformation of oil in the water column.

Zhengzhen Zhou; Laodong Guo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

82

Oil exploration and production in Scotland  

Science Journals Connector (OSTI)

...34 oil production platforms are in operation, and...onto a broad Palaeozoic platform. Further north a complex...FARROW FIG. 4. The semi-submersible exploration rig Bendoran...four steel production platforms, in a water depth of...

D. Hallett; G. P. Durant; G. E. Farrow

83

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

This technical progress report describes work performed from April 1 through June 30, 2002, for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' We investigate a broad spectrum of topics related to thermal and heavy-oil recovery. Significant results were obtained in the areas of multiphase flow and rock properties, hot-fluid injection, improved primary heavy oil recovery, and reservoir definition. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. Briefly, experiments were conducted to image at the pore level matrix-to-fracture production of oil from a fractured porous medium. This project is ongoing. A simulation studied was completed in the area of recovery processes during steam injection into fractured porous media. We continued to study experimentally heavy-oil production mechanisms from relatively low permeability rocks under conditions of high pressure and high temperature. High temperature significantly increased oil recovery rate and decreased residual oil saturation. Also in the area of imaging production processes in laboratory-scale cores, we use CT to study the process of gas-phase formation during solution gas drive in viscous oils. Results from recent experiments are reported here. Finally, a project was completed that uses the producing water-oil ratio to define reservoir heterogeneity and integrate production history into a reservoir model using streamline properties.

Anthony R. Kovscek

2002-07-01T23:59:59.000Z

84

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Estimated Production from Reserves...

85

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Environmental Management (EM)

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

86

Common Products Made from Oil and Natural Gas | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Common Products Made from Oil and Natural Gas Common Products Made from Oil and Natural Gas Educational poster developed by the Office of Fossil Energy that graphically displays...

87

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the...

88

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by...

89

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the wellhead (1544 m below the sea surface). Indigenous deep-sea microorganisms that degrade oil could represent a significant natural attenuation mechanism; but this would depend on how native microorganisms respond to an increased concentration of hydrocarbons and/or dispersant at such extreme depths and temperatures (~4°C). A collaboration led by Berkeley Lab researchers here reports that the dispersed hydrocarbon plume stimulated the growth of a type of bacteria that thrives in cold temperatures and at great depths. Infrared spectroscopy at the ALS, with the ability to study microbial processes at the molecular level, provided key pieces of the puzzle.

90

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the wellhead (1544 m below the sea surface). Indigenous deep-sea microorganisms that degrade oil could represent a significant natural attenuation mechanism; but this would depend on how native microorganisms respond to an increased concentration of hydrocarbons and/or dispersant at such extreme depths and temperatures (~4°C). A collaboration led by Berkeley Lab researchers here reports that the dispersed hydrocarbon plume stimulated the growth of a type of bacteria that thrives in cold temperatures and at great depths. Infrared spectroscopy at the ALS, with the ability to study microbial processes at the molecular level, provided key pieces of the puzzle.

91

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the wellhead (1544 m below the sea surface). Indigenous deep-sea microorganisms that degrade oil could represent a significant natural attenuation mechanism; but this would depend on how native microorganisms respond to an increased concentration of hydrocarbons and/or dispersant at such extreme depths and temperatures (~4°C). A collaboration led by Berkeley Lab researchers here reports that the dispersed hydrocarbon plume stimulated the growth of a type of bacteria that thrives in cold temperatures and at great depths. Infrared spectroscopy at the ALS, with the ability to study microbial processes at the molecular level, provided key pieces of the puzzle.

92

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Measurements of the Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Wednesday, 24 November 2010 00:00 Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the wellhead (1544 m below the sea surface). Indigenous deep-sea microorganisms that degrade oil could represent a significant natural attenuation mechanism; but this would depend on how native microorganisms respond to an increased concentration of hydrocarbons and/or dispersant at such extreme depths and temperatures (~4°C). A collaboration led by Berkeley Lab researchers here reports that the dispersed hydrocarbon plume stimulated the growth of a type of bacteria that thrives in cold temperatures and at great depths. Infrared spectroscopy at the ALS, with the ability to study microbial processes at the molecular level, provided key pieces of the puzzle.

93

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the wellhead (1544 m below the sea surface). Indigenous deep-sea microorganisms that degrade oil could represent a significant natural attenuation mechanism; but this would depend on how native microorganisms respond to an increased concentration of hydrocarbons and/or dispersant at such extreme depths and temperatures (~4°C). A collaboration led by Berkeley Lab researchers here reports that the dispersed hydrocarbon plume stimulated the growth of a type of bacteria that thrives in cold temperatures and at great depths. Infrared spectroscopy at the ALS, with the ability to study microbial processes at the molecular level, provided key pieces of the puzzle.

94

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the wellhead (1544 m below the sea surface). Indigenous deep-sea microorganisms that degrade oil could represent a significant natural attenuation mechanism; but this would depend on how native microorganisms respond to an increased concentration of hydrocarbons and/or dispersant at such extreme depths and temperatures (~4°C). A collaboration led by Berkeley Lab researchers here reports that the dispersed hydrocarbon plume stimulated the growth of a type of bacteria that thrives in cold temperatures and at great depths. Infrared spectroscopy at the ALS, with the ability to study microbial processes at the molecular level, provided key pieces of the puzzle.

95

Oil exploration and production in Scotland  

Science Journals Connector (OSTI)

...high return on investment, the additional...oil production platforms are in operation...FIG. 4. The semi-submersible exploration rig...API 38.5 4 platforms 154 wells 10000...return on their investment is very limited...

D. Hallett; G. P. Durant; G. E. Farrow

96

Predicting the Peak in World Oil Production  

Science Journals Connector (OSTI)

The US Department of Energy's Energy Information Administration (EIA) recently predicted that world oil production could continue to increase for more than three decades, based on the recent US Geological Surv...

Alfred J. Cavallo

2002-09-01T23:59:59.000Z

97

Peaking of World Oil Production  

Science Journals Connector (OSTI)

Nonrenewable and renewable energy sources make up the two major energy categories of interest to our industrial civilization. Nonrenewable energy includes different fossil fuels (coal, oil, natural gas) th...

J. Edward Gates

2014-01-01T23:59:59.000Z

98

Travel Characteristics of Marine Anglers Using Oil and Gas Platforms in the Central Gulf of Mexico  

E-Print Network [OSTI]

Travel Characteristics of Marine Anglers Using Oil and Gas Platforms in the Central Gulf of Mexico tures. In an intercept approach, marine recreationalfisherman were asked to iden tify near and offshore of 75.5 km (40.7 n.mi.) to andfrom offshore fishing locations. In fishing an average of 6.5 platforms

99

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a  

E-Print Network [OSTI]

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a fraction washed ashore onto sandy beaches from Louisiana to the Florida panhandle. Researchers at the MagLab compare the detailed molecular analysis of hydrocarbons in oiled sands from

Weston, Ken

100

Active hurricane season expected to shut-in higher amount of oil and natural gas production  

U.S. Energy Information Administration (EIA) Indexed Site

Active hurricane season expected to shut-in higher amount of Active hurricane season expected to shut-in higher amount of oil and natural gas production An above-normal 2013 hurricane season is expected to cause a median production loss of about 19 million barrels of U.S. crude oil and 46 billion cubic feet of natural gas production in the Gulf of Mexico, according to the new forecast from the U.S. Energy Information Administration. That's about one-third more than the amount of oil and gas production knocked offline during last year's hurricane season. Government weather forecasts predict 13 to 20 named storms will form between June and the end of November, with 7 to 11 of those turning into hurricanes. Production outages in previous hurricane seasons were as high as 107 million barrels of crude oil

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Worldwide Oil Production Michaelis-Menten Kinetics Correlation and Regression  

E-Print Network [OSTI]

Worldwide Oil Production Michaelis-Menten Kinetics Topic 4 Correlation and Regression Transformed Variables 1 / 13 #12;Worldwide Oil Production Michaelis-Menten Kinetics Outline Worldwide Oil Production Michaelis-Menten Kinetics Lineweaver-Burke double reciprocal plot 2 / 13 #12;Worldwide Oil Production

Watkins, Joseph C.

102

OPEC Crude Oil Production 1999-2001  

Gasoline and Diesel Fuel Update (EIA)

EIA assumes in its base case that OPEC 10 production averages about EIA assumes in its base case that OPEC 10 production averages about 0.6 million barrels per day less in the 1st quarter of 2001 than was produced in the 4th quarter of 2000. This is based on the assumption that beginning in February 2001, OPEC 10 production is 1 million barrels per day less than the estimate for December 2000. Over the course of the past year, worldwide oil production has increased by about 3.7 million barrels per day to a level of 77.8 million barrels per day in the last months of 2000. After being nearly completely curtailed in December 2000, EIA's base case assumes that Iraqi oil exports only partially return in January. By February, EIA assumes Iraqi crude oil production reaches 3 million barrels per day, roughly the peak levels reached last year.

103

Production of hydrogen from oil shale  

SciTech Connect (OSTI)

A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

1985-12-24T23:59:59.000Z

104

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

to oil-, gas-, and coal-fired power generation. Given thegas-fired plants, the CFE is planning a more diversified approach to power generation.

Shields, David

2008-01-01T23:59:59.000Z

105

Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

1997-08-01T23:59:59.000Z

106

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

107

Kuwait pressing toward preinvasion oil production capacity  

SciTech Connect (OSTI)

Oil field reconstruction is shifting focus in Kuwait as the country races toward prewar production capacity of 2 million b/d. Oil flow last month reached 1.7 million b/d, thanks largely to a massive workover program that has accomplished about as much as it can. By midyear, most of the 19 rigs in Kuwait will be drilling rather than working over wells vandalized by retreating Iraqi troops in February 1991. Seventeen gathering centers are at work, with capacities totaling 2.4 million b/d, according to state-owned Kuwait Oil Co. (KOC). This article describes current work, the production infrastructure, facilities strategy, oil recovery, well repairs, a horizontal pilot project, the drilling program, the constant reminders of war, and heightened tensions.

Tippee, B.

1993-03-15T23:59:59.000Z

108

OPEC Crude Oil Production 1999-2001  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: EIA assumes in its base case that OPEC 10 production averages about 0.6 million barrels per day less in the 1st quarter of 2001 than was produced in the 4th quarter of 2000. This is based on the assumption that beginning in February 2001, OPEC 10 production is 1 million barrels per day less than the estimate for December 2000. From the fourth quarter of 1999 to the 4th quarter of 2000, worldwide oil production increased by about 3.7 million barrels per day to a level of 77.8 million barrels per day. After being sharply curtailed in December 2000, EIA's base case assumes that Iraqi oil exports only partially return in January. By February, EIA assumes Iraqi crude oil production reaches 3 million barrels per day, roughly the peak levels reached last year.

109

OPEC Crude Oil Production 1998-2001  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: EIA assumes in its base case that OPEC 10 production averages about 0.6 million barrels per day less in the 1st quarter of 2001 than was produced in the 4th quarter of 2000. This is based on the assumption that beginning in February 2001, OPEC 10 production is 1 million barrels per day less than the estimate for December 2000. From the fourth quarter of 1999 to the 4th quarter of 2000, worldwide oil production increased by about 3.8 million barrels per day to a level of 77.9 million barrels per day. After being sharply curtailed in December and January, EIA's base case assumes that Iraqi oil exports return closer to more normal levels in February. By the second half of 2001, EIA assumes Iraqi crude oil production reaches 3 million barrels per day, roughly the peak levels

110

A model of peak production in oil fields  

Science Journals Connector (OSTI)

We developed a model for oil production on the basis of simple physical considerations. The model provides a basic understanding of Hubbert’s empirical observation that the production rate for an oil-producing region reaches its maximum when approximately half the recoverable oil has been produced. According to the model the oil production rate at a large field must peak before drilling peaks. We use the model to investigate the effects of several drilling strategies on oil production. Despite the model’s simplicity predictions for the timing and magnitude of peak production match data on oil production from major oil fields throughout the world.

Daniel M. Abrams; Richard J. Wiener

2010-01-01T23:59:59.000Z

111

OPEC Crude Oil Production 1999-2001  

Gasoline and Diesel Fuel Update (EIA)

3 of 17 3 of 17 Notes: After declining in 1999 due to a series of announced production cuts, OPEC 10 (OPEC countries excluding Iraq) production has been increasing during 2000. EIA's projected OPEC production levels for fourth quarter 2000 have been lowered by 300,000 barrels per day from the previous Outlook. Most of this decrease is in OPEC 10 production, which is estimated to be 26.5 million barrels per day. EIA still believes that only Saudi Arabia, and to a lesser degree, the United Arab Emirates, will have significant short-term capacity to expand production. EIA's forecast assumes that OPEC 10 crude oil production will decline by 400,000 barrels per day to 26.1 million barrels per day by mid-2001. Iraqi crude oil production is estimated to have increased from 2.3 million

112

Microbial petroleum degradation enhancement by oil spill bioremediation products.  

E-Print Network [OSTI]

??Biodegradation of an artificially weathered crude oil (Alaska North Slope) was compared using 13 different oil spill bioremediation agents. All products were evaluated under identical… (more)

Lee, Salvador Aldrett

2012-01-01T23:59:59.000Z

113

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanisms by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

Anthony R. Kovscek

2003-04-01T23:59:59.000Z

114

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

prevent private companies from transmitting electricity inand private-sector investments of $34.2bn in electricityprivate companies to do oil services work for Pemex, generate electricity and

Shields, David

2008-01-01T23:59:59.000Z

115

Scientific Visualization Applications in Oil & Gas Exploration and Production  

E-Print Network [OSTI]

Scientific Visualization Applications in Oil & Gas Exploration and Production SIBGRAPI 2009 #12 Property cross plots #12;Oil and gas production analysis and optimization SIBGRAPI 2009 Structural maps with property distributions Well schematics Production network Gas injection optimization Reservoir slices #12

Lewiner, Thomas (Thomas Lewiner)

116

Spare Capacity (2003) and Peak Production in World Oil  

Science Journals Connector (OSTI)

Reliable estimates of minimum spare capacity for world oil production can be obtained by comparing production ... before and following the collapse of the Iraqi oil industry in March 2003. Spare production was .....

Alfred J. Cavallo

2004-03-01T23:59:59.000Z

117

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

118

Extreme wave events during hurricanes can seriously jeopardize the integrity and safety of offshore oil and gas operations in the Gulf of Mexico. Validation of wave forecast for  

E-Print Network [OSTI]

oil and gas operations in the Gulf of Mexico. Validation of wave forecast for significant wave heights of Mexico. Before the storm, it produced 148,000 barrels of oil equivalent per day and 160 million cubic over the warm Gulf of Mexico water between 26 and 28 August, and became a category 5 hurricane by 1200

119

Prediction of Barrier-Island Inundation and Overwash: Application to the Gulf of Mexico Deepwater Horizon Oil Spill  

E-Print Network [OSTI]

Prediction of Barrier-Island Inundation and Overwash: Application to the Gulf of Mexico Deepwater Horizon Oil Spill 0 10.5 Kilometers 0 0.25 0.5 Miles Photo: NOAA Photo: NOAA Low Risk: No inundation

Torgersen, Christian

120

Dispersants Forum: Gulf of Mexico Oil Spill & Ecosystem Science  

E-Print Network [OSTI]

, District 8 Dr. Thomas Coolbaugh, ExxonMobil, Research & Engineering, Oil Spill Response Technology Dr, January 26, 2014 Mobile, Alabama Facilitated by: Center for Spills in the Environment University, Center for Spills in the Environment (CSE) at the University of New Hampshire (UNH). CSE focuses

New Hampshire, University of

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

2007). The world will reach peak oil production rates, atenergy security costs, and peak oil as emergencies, we willwhen oil price is high, then the first peak in drilling cost

Leighty, Wayne

2008-01-01T23:59:59.000Z

122

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

energy security costs, and peak oil as emergencies, we will2007). The world will reach peak oil production rates, atwhen oil price is high, then the first peak in drilling cost

Leighty, Wayne

2008-01-01T23:59:59.000Z

123

Biodiesel production using waste frying oil  

SciTech Connect (OSTI)

Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

Charpe, Trupti W. [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India)

2011-01-15T23:59:59.000Z

124

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

This technical progress report describes work performed from July 1 through September, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, work focused on completing project tasks in the area of multiphase flow and rock properties. The area of interest is the production mechanisms of oil from porous media at high temperature. Temperature has a beneficial effect on oil recovery and reduces residual oil saturation. Work continued to delineate how the wettability of reservoir rock shifts from mixed and intermediate wet conditions to more water-wet conditions as temperature increases. One mechanism for the shift toward water-wet conditions is the release of fines coated with oil-wet material from pore walls. New experiments and theory illustrate the role of temperature on fines release.

Anthony R. Kovscek; Louis M. Castanier

2004-03-01T23:59:59.000Z

125

OPEC agrees to lower oil prices, production  

Science Journals Connector (OSTI)

OPEC agrees to lower oil prices, production ... The attempt to stabilize prices and salvage some of OPEC's eroding control of the world oil market forced the cartel to make the first price cut in its history. ... U.S. government officials, predicting that the price ultimately would fall to between $25 and $27 per barrel from the new benchmark level of $29, said the new price would increase domestic production of goods and services 0.4% and cut consumer prices in the U.S. nearly 1.0%. ...

1983-03-21T23:59:59.000Z

126

Remote sensing analysis of natural oil and gas seeps on the continental slope of the northern Gulf of Mexico  

E-Print Network [OSTI]

. The continental slope of the northern Gulf of Mexico is an economically important hydrocarbon basin. As oil-drilling technologies improve and reservoirs on the continental shelf are depleted, more companies are leasing drilling areas on the slope. The number.... The continental slope of the northern Gulf of Mexico is an economically important hydrocarbon basin. As oil-drilling technologies improve and reservoirs on the continental shelf are depleted, more companies are leasing drilling areas on the slope. The number...

De Beukelaer, Sophie Magdalena

2004-11-15T23:59:59.000Z

127

A quantitative study of fish populations associated with a platform within Buccaneer Oil Field, northwestern Gulf of Mexico  

E-Print Network [OSTI]

A QUANTITATIVE STUDY OF FISH POPULATIONS ASSOCIATED WITH A PLATFORM WITHIN BUCCANEER OIL FIELD, NORTHWESTERN GULF OF MEXICO A Thesis by RUSSELL EUGENE PUTT, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1982 Major Subject: Oceanography A QUANTITATIVE STUDY OF FISH POPULATIONS ASSOCIATED WITH A PLATFORM WITHIN BUCCANEER OIL FIELD, NORTHWESTERN GULF OF MEXICO A Thesis by RUSSELL EUGENE PUTT, JR...

Putt, Russell Eugene

2012-06-07T23:59:59.000Z

128

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

This technical progress report describes work performed from October 1 through December 31, 2002 , for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, experimental data regarding multidimensional imbibition was analyzed to obtain shape factors appropriate for dual-porosity simulation. It is shown that the usual assumption of constant, time-independent shape factors is incorrect. In other work, we continued to study the mechanisms by which oil is produced from fractured media at high pressure and high temperature. High temperature significantly increased the apparent wettability and affected water relative permeability of cores used in previous experiments. A phenomenological and mechanistic cause for this behavior is sought. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

Anthony R. Kovscek

2003-01-01T23:59:59.000Z

129

The Mining Life : : A Transnational History of Race and Family in the U.S.-Mexico Borderlands, 1890-1965  

E-Print Network [OSTI]

Cárdenas, Lázaro. Mexico’s Oil. Mexico. 1940. Reprinted in415. Lázaro Cárdenas, Mexico’s Oil, Mexico, 1940, reprintedthe expropriation of Mexico’s oil in 1938. These political

Maiorana, Juliette Charlie

130

The Mining Life : : A Transnational History of Race and Family in the U.S.-Mexico Borderlands, 1890-1965  

E-Print Network [OSTI]

Lázaro Cárdenas, Mexico’s Oil, Mexico, 1940, reprinted inCárdenas, Lázaro. Mexico’s Oil. Mexico. 1940. Reprinted inthe expropriation of Mexico’s oil in 1938. These political

Maiorana, Juliette Charlie

131

COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1  

E-Print Network [OSTI]

1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21 oil prices, production rates, and costs. He noted that comparative revenues are highly sensitive

Pantaleone, Jim

132

Prudhoe Bay Oil Production Optimization: Using Virtual  

E-Print Network [OSTI]

77659, Mohaghegh, Hutchins, Sisk BACKGROUND Fuel gas supply (at the flow stations and gathering centers total field oil production by optimizing the gas discharge rates and pressures at the separation wells flowing to eight remote, three-phase separation facilities (flow stations and gathering centers

Mohaghegh, Shahab

133

Oil exploration and production in Scotland  

Science Journals Connector (OSTI)

...the end of 1973 it was obvious...million barrels per day during 1973 at a cost to...Israeli War of 1973 and the resultant OPEC oil embargo...EXPLORATION AND PRODUCTION 559 3 E Area...to $11-65 per barrel. The...Government of the day attempted to...

D. Hallett; G. P. Durant; G. E. Farrow

134

The U.S.-Mexico Relationship: Towards a New Era?  

E-Print Network [OSTI]

while oil revenues were high, increasing Mexico’s fiscalfacing Mexico is the management of the energy sector. Oilin Mexico Watch, 2007. Despite the negative trends in oil

Mares, David R.; Vega Cánovas, Gustavo

2010-01-01T23:59:59.000Z

135

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

Oil Simulator, 1995) to simulate the effects of water injection rates, the cumulative production of the field,

Leighty, Wayne

2008-01-01T23:59:59.000Z

136

Conversion Technologies for Advanced Biofuels – Bio-Oil Production  

Broader source: Energy.gov [DOE]

RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels – Bio-Oil Production.

137

RFID BASED GRAIN AND OIL PRODUCTS TRACEABILITY1  

E-Print Network [OSTI]

RFID BASED GRAIN AND OIL PRODUCTS TRACEABILITY1 AND ITS COMPUTER IMPLEMENTATION Haiyan Hu ,*2 the study of the traceability of grain and oil products. Include the study contents, and a system we developed for traceability of grain and oil products, and the demonstration of the study. The system we

Boyer, Edmond

138

Hierarchical Economic Optimization of Oil Production from Petroleum Reservoirs  

E-Print Network [OSTI]

Hierarchical Economic Optimization of Oil Production from Petroleum Reservoirs Gijs M. van Essen-dirk.jansen@shell.com). Abstract: In oil production waterflooding is a popular recovery technology, which involves the injection, the oil-water front may not move uniformly towards the production wells, but has a rather irregular shape

Van den Hof, Paul

139

Oil and Gas Production Optimization; Lost Potential due to Uncertainty  

E-Print Network [OSTI]

Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

Johansen, Tor Arne

140

Factors affecting the supply and demand for limes and lime oil in the U.S.: development implications for Veracruz state, Mexico.  

E-Print Network [OSTI]

??The fresh lime industry is an important economic activity in Veracruz, Mexico. In this thesis, the economic potential of the fresh lime and lime oil… (more)

Abarca Orozco, Saul Julian

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1,099 1,149 1980's 1,064 1,086 942 799 856 843 628 728 731 760 1990's 887 1,013 1,143 1,337 1,362 1,397 1,423 1,547 1,449 1,539 2000's 1,508 1,536 1,524 1,415 1,527 1,493 1,426 1,349 1,349 1,350 2010's 1,220 1,170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves Dry Natural Gas Estimated Production

142

Louisiana - North Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - North Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

143

Nebraska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

144

Florida Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Florida Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

145

Alabama Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

146

Utah Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

147

Texas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

148

Wyoming Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

149

Indiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

150

Arkansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

151

Ohio Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

152

Kansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Kansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

153

Alaska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

154

Colorado Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

155

Miscellaneous States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Miscellaneous States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

156

Oklahoma Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Oklahoma Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

157

Texas State Offshore Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

158

Louisiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

159

Michigan Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Michigan Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

160

Montana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Illinois Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Illinois Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

162

Lower 48 States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Lower 48 States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

163

North Dakota Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

164

West Virginia Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) West Virginia Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

165

Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Production of Oil & Gas From Oil Shale in the Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is to provide the public and policy makers accurate estimates of energy efficiencies, water requirements, water availability, and CO2 emissions associated with the development of the 60 percent portion of the Piceance Basin where economic potential is the greatest, and where environmental conditions and societal concerns and controversy are the most challenging: i.e., the portion of the Piceance where very high quality oil shale resources and useful ground water co-exist. Evaluation of Energy Efficiency, Water Requirements and Availability, and CO2 Emissions Associated With the Production of Oil & Gas From Oil Shale in

166

Process for the production of refrigerator oil  

SciTech Connect (OSTI)

A process for producing a high quality refrigerator oil from an oil fraction boiling at a temperature within boiling point of lubricating oil by contacting said oil fraction with a solvent to extract undesirable components thereby lowering % C..cap alpha.. of said oil fraction, hydrogenating said solvent extracted fraction under the specific conditions, and then contacting said hydrogenated oil with a solid absorbant to remove impurities; said oil fraction being obtained from a low grade naphthenic crude oil.

Kunihiro, T.; Tsuchiya, K.

1985-06-04T23:59:59.000Z

167

The impact of water depth on safety and environmental performance in offshore oil and gas production  

Science Journals Connector (OSTI)

This paper reports on an empirical analysis of company-reported incidents on oil and gas production platforms in the Gulf of Mexico between 1996 and 2010. During these years, there was a dramatic increase in the water depths at which offshore oil and gas is extracted. Controlling for platform characteristics such as age, quantity of oil and gas produced, and number of producing wells, we find that incidents (such as blowouts, injuries, and oil spills) are positively correlated with deeper water. Controlling for these and other characteristics, for an average platform, each 100 feet of added depth increases the probability of a company-reported incident by 8.5%. While further research into the causal connections between water depth and platform risks is warranted, this study highlights the potential value of increased monitoring of deeper water platforms.

Lucija Muehlenbachs; Mark A. Cohen; Todd Gerarden

2013-01-01T23:59:59.000Z

168

Analysis of stress sensitivity and its influence on oil production from tight reservoirs  

E-Print Network [OSTI]

indicate that low-permeability tight oil reservoirs arepermeability cores Effect of Stress Sensitivity on Oil Production During oil production from tight

Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

2008-01-01T23:59:59.000Z

169

Oil production models with normal rate curves Dudley Stark  

E-Print Network [OSTI]

Oil production models with normal rate curves Dudley Stark School of Mathematical Sciences Queen;Abstract The normal curve has been used to fit the rate of both world and U.S.A. oil production. In this paper we give the first theoretical basis for these curve fittings. It is well known that oil field

Stark, Dudley

170

Oil & Natural Gas Projects Exploration and Production Technologies | Open  

Open Energy Info (EERE)

Oil & Natural Gas Projects Exploration and Production Technologies Oil & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration and Production Technologies Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Oil & Natural Gas Projects Exploration and Production Technologies Citation U.S. Department of Energy. Oil & Natural Gas Projects Exploration and Production Technologies [Internet]. [cited 2013/10/15]. Available from: http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/Explor_Tech/P225.htm Retrieved from "http://en.openei.org/w/index.php?title=Oil_%26_Natural_Gas_Projects_Exploration_and_Production_Technologies&oldid=688583

171

Impacts of the Venezuelan Crude Oil Production Loss  

Gasoline and Diesel Fuel Update (EIA)

Impacts of the Venezuelan Crude Oil Production Loss Impacts of the Venezuelan Crude Oil Production Loss EIA Home > Petroleum > Petroleum Feature Articles Impacts of the Venezuelan Crude Oil Production Loss Printer-Friendly PDF Impacts of the Venezuelan Crude Oil Production Loss By Joanne Shore and John Hackworth1 Introduction The loss of almost 3 million barrels per day of crude oil production in Venezuela following a strike in December 2002 resulted in an increase in the world price of crude oil. However, in the short term, the volume loss probably affected the United States more than most other areas. This country receives more than half of Venezuela's crude and product exports, and replacing the lost volumes proved difficult. U.S. imports of Venezuelan crude oil dropped significantly in December 2002 relative to other years

172

Prediction of prices for oil products in the internal market  

Science Journals Connector (OSTI)

The paper considers the Russian market of oil products and provides a model of this ... of which suggests approaches to forecasting the internal prices of oil producers within one scenario of economic development...

Yu. A. Bakman

2014-01-01T23:59:59.000Z

173

The Evolution of Giant Oil Field Production Behavior  

Science Journals Connector (OSTI)

The data for this study have been taken from the giant oil field database compiled by Robelius (2007...). AAPG was the main source for information about discovery year, year of first oil production, URR and cumulative

Mikael Höök; Bengt Söderbergh; Kristofer Jakobsson…

2009-03-01T23:59:59.000Z

174

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

175

Implications of Increasing U.S. Crude Oil Production  

U.S. Energy Information Administration (EIA) Indexed Site

Implications of Increasing U.S. Crude Implications of Increasing U.S. Crude Oil Production By John Powell June 18, 2013 U.S. crude oil production is up dramatically since 2010 and will continue to grow rapidly; this has implications for: John Powell June 18, 2013 2 * Refinery operations * Refinery investment * Logistics infrastructure investment * Exports of petroleum products * Exports of crude oil Increased U.S. crude oil production has resulted in: John Powell June 18, 2013 3 * Declines in U.S. crude imports * Changes to refinery operations * Logistical constraints in moving crude from production areas to refining areas * Discounted prices for domestic "landlocked" crude vs. international seaborne crude

176

State-Scale Perspective on Water Use and Production Associated with Oil and Gas Operations, Oklahoma, U.S.  

Science Journals Connector (OSTI)

The purpose of this paper is to quantify annual volumes of water used for completion of oil and gas wells, coproduced during oil and gas production, injected via underground injection program wells, and used in water flooding operations. ... (12) Many U.S. states (e.g., Colorado, Kansas, New Mexico, Oklahoma, Texas, and Wyoming) that have abundant reserves of oil and gas are also subject to water scarcity due to uneven spatial and temporal distribution of rainfall. ... 3.4 UIC and Water Flood Volumes ...

Kyle E. Murray

2013-03-26T23:59:59.000Z

177

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

178

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

179

Gradient-based Methods for Production Optimization of Oil Reservoirs  

E-Print Network [OSTI]

Gradient-based Methods for Production Optimization of Oil Reservoirs Eka Suwartadi Doctoral Thesis oil reservoirs. Gradient- based optimization, which utilizes adjoint-based gradient computation optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis

Foss, Bjarne A.

180

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pacific Pacific Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific Dataset Summary Description Federal Outer Continental Shelf Oil and Gas Production Statistics for the Pacific by month and summarized annually. Tags {"Minerals Management Service",MMS,Production,"natural gas",gas,condensate,"crude oil",oil,"OCS production","Outer Continental Shelf",OSC,EIA,"Energy Information Agency",federal,DOE,"Department of Energy",DOI,"Department of the Interior","Pacific "} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

182

Production of Biofuels from High-Acid-Value Waste Oils  

Science Journals Connector (OSTI)

Production of Biofuels from High-Acid-Value Waste Oils ... (1) Biofuel is derived from a renewable, domestic resource, thereby relieving reliance on petroleum fuel imports. ...

Junming Xu; Guomin Xiao; Yonghong Zhou; Jianchun Jiang

2011-08-27T23:59:59.000Z

183

An innovative concept for deep water oil production platform design.  

E-Print Network [OSTI]

??As more oil and gas are discovered in deep water, the offshore industry has become increasingly interested in the design of deep water offshore production… (more)

Racine, Florian

2012-01-01T23:59:59.000Z

184

Potential Oil Production from the Coastal Plain of the Arctic...  

Gasoline and Diesel Fuel Update (EIA)

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent...

185

Oil and Gas Production (Missouri) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production (Missouri) Production (Missouri) Oil and Gas Production (Missouri) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This legislation contains additional information about the permitting, establishment, and operation of oil and gas wells, while additional regulations address oil and gas drilling and production and well spacing and unitization

186

The Oil Debacle in the Gulf of Mexico: An Alternative to the Coming Flood of Offshore Regulations  

E-Print Network [OSTI]

been more than 36,000 oil wells drilled in the Gulf. Yet since exploration in the Gulf of Mexico began in the 1950’s, there has been only one accident to compare with BP’s ill-fated Deepwater Horizon. After the blowout of the PEMEX IXTOC I well...

Griffin, James M.

187

Oil production from thin oil columns subject to water and gas coning  

E-Print Network [OSTI]

OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

Chai, Kwok Kit

2012-06-07T23:59:59.000Z

188

New Mexico Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) New Mexico Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 884,517 925,298 880,307 676,886 790,639 752,629 833,593 1990's 949,735 1,029,824 1,274,220 1,489,052 1,510,804 1,480,327 1,553,103 1,540,157 1,483,370 1,511,671 2000's 1,685,664 1,670,644 1,614,045 1,576,639 1,578,773 1,571,920 1,562,754 1,495,615 895,675 1,370,727 2010's 1,287,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

189

New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,149 48,635 50,484 1970's 52,647 53,810 54,157 55,782 54,986 56,109 61,778 72,484 77,653 62,107 1980's 59,457 60,544 56,857 56,304 58,580 53,953 51,295 65,156 63,355 61,594 1990's 66,626 70,463 75,520 83,193 86,607 85,668 108,341 109,046 106,665 107,850 2000's 110,411 108,958 110,036 111,292 105,412 101,064 99,971 96,250 92,579 94,840 2010's 91,963 90,291 84,562 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

190

Remote control of off-shore oil field production equipment  

E-Print Network [OSTI]

REMOTE CONTROL OF OFF-SHORE OIL FIELD PRODUCTION EQUIPMENT A Thesis Alton W. Sissom 1949 Approve as to style and on n by Cha1rman of omm1ttee REMOTE CONTROL OF OFFSHORE OIL FIELD PRODUCTION EQUIPMENT A Thesis Alton W. Oissom 1949 REMOTE...-Carrier Channel 26 PZNOTE CONTROL OF OFF-SHORE OIL FIELD PRODUCTION K, 'UIPMENT I GENERAL IiPOPPUi TION Since the beginning of the exploitation of the under-sea oil deposits in the Gulf' of qexico, most, of the territory off the shores of Texas and Louisiana...

Sissom, Alton Wayne

2012-06-07T23:59:59.000Z

191

Higher U.S. oil production in 2013 and 2014 means lower oil imports  

U.S. Energy Information Administration (EIA) Indexed Site

Higher U.S. oil production in 2013 and 2014 means lower oil Higher U.S. oil production in 2013 and 2014 means lower oil imports U.S. crude oil production topped 7 million barrels per day in November and December for the first time in 20 years, and production is expected to keep rising over the next two years. The U.S. Energy Information Administration's new monthly forecast sees domestic crude oil output averaging 7.3 million barrels per day this year and climbing to 7.9 million barrels next year. Higher crude oil production means America will need less imported oil. U.S. net imports of crude oil and liquid fuels are forecast to drop to 6.0 million barrels per day in 2014, less than half the 12.5 million barrels per day level in 2005. That will push U.S. imports down to just 32 percent of domestic oil consumption, the lowest

192

Energy Supply Crude Oil Production (a)  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Supply Energy Supply Crude Oil Production (a) (million barrels per day) .............................. 6.22 6.29 6.42 7.02 7.11 7.29 7.61 7.97 8.26 8.45 8.57 8.86 6.49 7.50 8.54 Dry Natural Gas Production (billion cubic feet per day) ........................... 65.40 65.49 65.76 66.34 65.78 66.50 67.11 67.88 67.99 67.74 67.37 67.70 65.75 66.82 67.70 Coal Production (million short tons) ...................................... 266 241 259 250 245 243 264 256 258 249 265 262 1,016 1,008 1,033 Energy Consumption Liquid Fuels (million barrels per day) .............................. 18.36 18.55 18.59 18.45 18.59 18.61 19.08 18.90 18.69 18.67 18.91 18.82 18.49 18.80 18.77 Natural Gas (billion cubic feet per day) ........................... 81.09 62.38 63.72 71.27 88.05 59.49 60.69 74.92 85.76 59.40 60.87 72.53 69.60 70.72 69.58 Coal (b) (million short tons) ......................................

193

Essays in Food Demand and Production in Mexico.  

E-Print Network [OSTI]

??Food consumption patterns in Mexico have changed rapidly in recent years, mainly due to the rapid growth in the food industry, a more dynamic international… (more)

Mejia, Maria D.

2012-01-01T23:59:59.000Z

194

New Mexico Natural Gas Gross Withdrawals and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Louisiana...

195

Production cuts to support oil prices  

Science Journals Connector (OSTI)

Most commodity quotations have continued to fall in recent months as a result of the weaker global economy. Crude oil prices, on the other hand, had been ... to fall. Is the success of the oil exporters' change i...

Klaus Matthies

196

An energy-economic oil production model  

Science Journals Connector (OSTI)

......for more advanced energy-economic models...efficient (less energy intensive) than...hand, Germany's GDP per capita is much larger than...assumption that 100% of energy supply stems from oil. When oil demand is inelastic, this......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

197

EIA - New Iraqi oil production: How much; how fast?  

Gasoline and Diesel Fuel Update (EIA)

New Iraqi oil production: How much; how fast? New Iraqi oil production: How much; how fast? International Energy Outlook 2010 New Iraqi oil production: How much; how fast? Iraq holds a considerable portion of the world's conventional oil reserves, but has been unable to increase oil production substantially in recent years due to conflict and geopolitical constraints. As violence in Iraq has lessened, there has been a concerted effort to increase the country's oil production, both to bolster government revenues and to support wider economic development. Recently, Iraq offered prequalified foreign oil companies two opportunities to bid on designated fields under specific terms of investment. The success of the bidding rounds and the level of interest from foreign companies have raised hopes that oil production could increase substantially over a short period of time, with some Iraqi government officials stating that the country could increase its production to 12 million barrels per day by 2017.[a] Although Iraq has the reserves to support such growth, it will need to overcome numerous challenges in order to raise production to even a fraction of that goal.

198

Reproducibility of LCA Models of Crude Oil Production  

Science Journals Connector (OSTI)

Reproducibility of LCA Models of Crude Oil Production ... We examine LCA greenhouse gas (GHG) emissions models to test the reproducibility of their estimates for well-to-refinery inlet gate (WTR) GHG emissions. ... We use the Oil Production Greenhouse gas Emissions Estimator (OPGEE), an open source engineering-based life cycle assessment (LCA) model, as the reference model for this analysis. ...

Kourosh Vafi; Adam R. Brandt

2014-10-03T23:59:59.000Z

199

Enhancing Biodiesel Production from Soybean Oil Using Ultrasonics  

Science Journals Connector (OSTI)

Enhancing Biodiesel Production from Soybean Oil Using Ultrasonics ... Our objective was to determine the effect of ultrasonics on biodiesel production from soybean oil. ... The reaction was monitored for biodiesel yield by stopping the reaction at selected time intervals and analyzing the biodiesel content by thermogravimetric analysis (TGA). ...

Priyanka Chand; Venkat Reddy Chintareddy; John G. Verkade; David Grewell

2010-02-04T23:59:59.000Z

200

The U.S.-Mexico Relationship: Towards a New Era?  

E-Print Network [OSTI]

while oil revenues were high, increasing Mexico’s fiscaloil, gas and electricity. According to the OECD, Mexicofacing Mexico is the management of the energy sector. Oil

Mares, David R.; Vega Cánovas, Gustavo

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. crude oil production expected to exceed oil imports later this year  

U.S. Energy Information Administration (EIA) Indexed Site

crude oil production expected to exceed oil imports later crude oil production expected to exceed oil imports later this year U.S. crude oil production is expected to surpass U.S. crude oil imports by the fourth quarter of this year. That would mark the first time since February 1995 that domestic crude oil output exceeds imports, according to the latest monthly energy outlook from the U.S. Energy Information Administration. The United States will still need to import crude oil to help meet domestic demand. However, total crude oil imports this year are on track to fall to their lowest level since 1997. U.S. oil production is expected to continue to rise over the next two years as imports fall. As a result, the share of total U.S. petroleum consumption met by net imports is forecast to fall to 32 percent next year, the lowest level since 1985 and nearly half the peak level of 60 percent seen in

202

Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming  

SciTech Connect (OSTI)

In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

Eckerle, William; Hall, Stephen

2005-12-30T23:59:59.000Z

203

Regression and Time Series Analysis of the World Oil Peak of Production: Another Look  

Science Journals Connector (OSTI)

This paper analyzes world oil production data as a population/resource growth model. Both US and world oil production data are analyzed in terms of ... , is not a suitable model for world oil production. A flexib...

Peter Caithamer

2008-08-01T23:59:59.000Z

204

Fact #652: December 6, 2010 U.S. Crude Oil Production Rises ...  

Energy Savers [EERE]

2: December 6, 2010 U.S. Crude Oil Production Rises Fact 652: December 6, 2010 U.S. Crude Oil Production Rises The production of crude oil in the U.S., including lease...

205

NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS  

SciTech Connect (OSTI)

The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information, (2) a web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries, (3) a fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water, and (4) a corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project has been focused on creating the water quality databases for produced water and surface water, along with collection of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 4000 entries for southeast New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed of water quality data entry. (4) Acquisition of ground water data from the New Mexico State Engineer's office, including chloride content and TDS (Total Dissolved Solids) for over 30,000 data points in southeast New Mexico. (5) Creation of a web-based scale prediction tool, again with a web-based interface, that uses two common scaling indices (Stiff-Davis and Oddo-Thomson) to predict the likelihood of scaling. This prediction tool can either run from user input data, or the user can select samples from the water analysis database. (6) Creation of depth-to-groundwater maps for the study area. (7) Analysis of water quality data by formation. (8) Continuation of efforts to collect produced water quality information from operators in the southeast New Mexico area. (9) Qualitative assessment of produced water from various formations regarding corrosivity. (10) Efforts at corrosion education in the region through operator visits. Future work on this project will include: (11) Development of an integrated web and GIS interface for all the information collected in this effort. (12) Continued development of a fuzzy logic spill risk assessment tool that was initially developed prior to this project. Improvements will include addition of parameters found to be significant in determining the impact of a brine spill at a specific site. (13) Cleanup and integration of water quality databases. (14) Compilation of both hard copy and online corrosion toolkit material.

Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung; Naomi Davidson; Ajeet Kumar Reddy; Mingzhen Wei

2003-04-01T23:59:59.000Z

206

NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS  

SciTech Connect (OSTI)

The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) Databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information. (2) A web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries. (3) A fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water. (4) A corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project was focused on creating the water quality databases for produced water and surface water, along with collecting of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 7000 entries for New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed of water quality data entry. (4) Acquisition of ground water data from the New Mexico State Engineer's office, including chloride content and TDS (Total Dissolved Solids) for over 30,000 data points in southeast New Mexico. (5) Creation of a web-based scale prediction tool, again with a web-based interface, that uses two common scaling indices to predict the likelihood of scaling. This prediction tool can either run from user input data, or the user can select samples from the water analysis database. (6) Creation of depth-to-groundwater maps for the study area. (7) Analysis of water quality data by formation. (8) Continuation of efforts to collect produced water quality information from operators in the southeast New Mexico area. (9) Qualitative assessment of produced water from various formations regarding corrosivity. (10) Efforts at corrosion education in the region through operator visits. Future work on this project will include: (1) Development of an integrated web and GIS interface for all the information collected in this effort. (2) Continued development of a fuzzy logic spill risk assessment tool that was initially developed prior to this project. Improvements will include addition of parameters found to be significant in determining the impact of a brine spill at a specific site. (3) Compilation of both hard copy and online corrosion toolkit material.

Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung

2003-09-24T23:59:59.000Z

207

Paraffin deposition in offshore oil production.  

E-Print Network [OSTI]

??The extreme environmental conditions typically encountered in offshore oil operations lead to a number of problems. Cool deep sea temperatures promote particle formation and deposition… (more)

Elphingstone, Gerald Mason

2012-01-01T23:59:59.000Z

208

Forecasting World Crude Oil Production Using Multicyclic Hubbert Model  

Science Journals Connector (OSTI)

OPEC’s actual production was mainly unrestricted until the 1973 Arab oil embargo. ... On the basis of the analysis of all 47 investigated oil producing countries, the results of our study estimated that the world ultimate reserve of crude oil is around 2140 BSTB and that 1161 BSTB are remaining to be produced as of 2005 year end. ... MSTB/D = thousand stock tank barrels per day ...

Ibrahim Sami Nashawi; Adel Malallah; Mohammed Al-Bisharah

2010-02-04T23:59:59.000Z

209

Economic Cost Analysis of Biodiesel Production: Case in Soybean Oil  

Science Journals Connector (OSTI)

(1) Combustion of petroleum diesel is a major source for emitting greenhouse gas (GHG). ... An economic analysis model using ASPEN PLUS software suggested that the production costs of soapstock and soybean oil biodiesel would be approximately 0.41 and 0.53 USD L?1, respectively, a 25% reduction relative to the estimated cost of biodiesel produced from soybean oil. ... The use of waste cooking oil to produce biodiesel reduced the raw material cost. ...

Yii-Der You; Je-Lueng Shie; Ching-Yuan Chang; Sheng-Hsuan Huang; Cheng-Yu Pai; Yue-Hwa Yu; Chungfang Ho Chang

2007-10-02T23:59:59.000Z

210

Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumptio...  

Broader source: Energy.gov (indexed) [DOE]

8: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 Fact 578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 The United States was...

211

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

Peggy Robinson

2004-07-01T23:59:59.000Z

212

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

Peggy Robinson

2004-01-01T23:59:59.000Z

213

New Mexico Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Gross Withdrawals 114,592 111,779 113,921 114,129 109,438 114,219 1991-2013 From Gas Wells

214

Gulf of Mexico Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Gross Withdrawals 114,382 103,384 110,472 103,769 106,596 102,840 1997-2013 From Gas Wells

215

Waxy crude oil production in the South China Sea  

SciTech Connect (OSTI)

The Phillips Petroleum International Corporation Asia (PPICA) Xijiang Field Development Project is a unique project resulting in the production of a waxy crude oil. The crude oil is produced on two platforms feeding a final production unit located on an FPSO (Floating Production, Storage and Off-loading) vessel located between the platforms. The crude from these two fields contains a high concentration of wax and has a relatively high pour point temperature. The crude composition and oil properties are listed in two tables. Special consideration was needed with respect to operating temperatures, start-up and shutdown procedures.

Low, W.R.; Gerber, E.J.; Simek, L.A.

1996-12-31T23:59:59.000Z

216

Oil and Gas Exploration, Drilling, Transportation, and Production (South  

Broader source: Energy.gov (indexed) [DOE]

Exploration, Drilling, Transportation, and Production Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Program Info State South Carolina Program Type Environmental Regulations Siting and Permitting Provider South Carolina Department of Health and Environmental Control This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to prevent the waste of oil and gas, promote environmental stewardship, and regulate the exploration,

217

The peak of oil production—Timings and market recognition  

Science Journals Connector (OSTI)

Energy is essential for present societies. In particular, transportation systems depend on petroleum-based fuels. That world oil production is set to pass a peak is now a reasonably accepted concept, although its date is far from consensual. In this work, we analyze the true expectations of the oil market participants about the future availability of this fundamental energy source. We study the evolution through time of the curves of crude oil futures prices, and we conclude that the market participants, among them the crude oil producers, already expect a near-term peak of oil production. This agrees with many technical predictions for the date of peak production, including our own, that point to peak dates around the end of the present decade. If this scenario is confirmed, it can cause serious social and economical problems because societies will have little time to perform the necessary adjustments.

Pedro de Almeida; Pedro D. Silva

2009-01-01T23:59:59.000Z

218

Distribution and Production of Oil and Gas Wells by State  

Gasoline and Diesel Fuel Update (EIA)

Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Release date: January 7, 2011 | Next Release Date: To be determined Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are now available for most states for the years 1995 to 2009. Graphs displaying historical behavior of well production rate are also available. To download data for all states and all years, including years prior to 1995, in an Excel spreadsheet XLS (4,000 KB). The quality and completeness of data is dependent on update lag times and the quality of individual state and commercial source databases. Undercounting of the number of wells occurs in states where data is sometimes not available at the well level but only at the lease level. States not listed below will be added later as data becomes available.

219

Canadian operators boost heavy oil production  

SciTech Connect (OSTI)

Recent technological advances in slurry pipelining, horizontal wells, and thermal recovery techniques have made recovery of Canadian heavy oil resources more economical. In addition, reduced government royalties have made investment in these difficult reservoirs more attractive. As a result, activity has increased in heavy-oil fields in Alberta and Saskatchewan. This paper review the various oil sand recovery projects under development in the area and the current government policies which are helping to develop them. The paper also provides brief descriptions of the equipment and technologies that have allowed a reduced cost in the development. Items discussed include surface mining techniques, horizontal drilling, reservoir engineering techniques, separation processes, and thermal recovery.

Perdue, J.M.

1996-05-01T23:59:59.000Z

220

Retail Product Prices Are Driven By Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Retail prices for both gasoline and diesel fuel have risen strongly over the past two years, driven mostly by the rise in world crude oil prices to their highest levels since the Persian Gulf War. Of course, there are a number of other significant factors that impact retail product prices, the most important of which is the supply/demand balance for each product. But the point of this slide is to show that generally speaking, as world crude oil prices rise and fall, so do retail product prices. Because of the critical importance of crude oil price levels, my presentation today will look first at global oil supply and demand, and then at the factors that differentiate the markets for each product. I'll also talk briefly about natural gas, and the impact that gas

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Montana Oil and Natural Gas Production Tax Act (Montana)  

Broader source: Energy.gov [DOE]

The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

222

The U.S. Oil and Natural Gas Production Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Production Outlook for PRG Energy Outlook Conference September 22, 2014 by Adam Sieminski, Administrator 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005...

223

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

224

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

225

Oil production response to in situ electrical resistance heating  

E-Print Network [OSTI]

OIL PRODUCTION RESPONSE TO I? SITU ELECTRICAL RESISTANCE HEATING A Thesis by FRED WILLIAM MCDOUGAL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1987 Major Subject: Petroleum Engineering OIL PRODUCTION RESPONSE TO IN SITV ELECTRICAL RESISTANCE HEATING A Thesis by FRED WILLIAM MCDOUGAL Approved to style and content by: R. A. Wattenbar (Chair of Commi ee) L. D. Piper (Member) D. D. Van...

McDougal, Fred William

1987-01-01T23:59:59.000Z

226

Regulated water production to control water coning in oil wells  

E-Print Network [OSTI]

REGULATED WATER PRODUCTION TO CONTROL WATER CONING IN OIL WELLS A Thesis by ISHWAR SINGH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Petroleum Engineering REGULATED WATER PRODUCTION TO CONTROL WATER CONING IN OIL WELLS A Thesis by ISHWAR SINGH Approved as to style and content by (Chairman of Committee) (Membe ) (Head of Departmen lVlemb ) May 1975 ( I ABST RACT...

Sim?ha, I?s?vara

1975-01-01T23:59:59.000Z

227

Oil and gas potential of the maritime boundary region in the central Gulf of Mexico  

SciTech Connect (OSTI)

The U.S. Geological Survey conducted a detailed study in the first half of 1981 of the oil and gas resource potential in the Maritime Boundary region of the central Gulf of Mexico. The Maritime Boundary region encompasses a part of the Gulf where jurisdiction over natural resources by adjacent coastal countries has not yet been established. The region of investigation is divided into six assessment areas on the basis of their generally distinct geologic characteristics. Individual assessment areas comprise a total area of approximately 58,940 mi/sup 2/ (152,660 km/sup 2/) and contain a total estimated sediment volume of 188,140 mi/sup 3/ (784,170 km/sup 3/). Water depths within the overall study region range from a minimum of 98 ft (30 m) on the continental shelf off the Rio Grande to a maximum of about 12,270 ft (3,740 m) in the deep abyssal plain of the westcentral Gulf; more than 75% of the study region is in water depth exceeding 10,000 ft (3,048 m).

Foote, R.Q.; Martin, R.G.; Powers, R.B.

1983-07-01T23:59:59.000Z

228

Caught in the middle : : Mexico's relationship with Cuba and the United States 1959-1969  

E-Print Network [OSTI]

of the foreign oil companies in Mexico and the creation ofnationalization [of oil in Mexico] has also had a salutary

Ancona, Rafael

2013-01-01T23:59:59.000Z

229

Caught in the middle : : Mexico's relationship with Cuba and the United States 1959-1969  

E-Print Network [OSTI]

nationalization [of oil in Mexico] has also had a salutaryof the foreign oil companies in Mexico and the creation of

Ancona, Rafael

2013-01-01T23:59:59.000Z

230

New Mexico Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore New Mexico Oklahoma Texas Texas Onshore Texas Offshore Texas State Offshore Wyoming Other States Total Alabama Alabama Onshore Alabama Offshore Alabama State Offshore Arizona Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual

231

The implications of the declining energy return on investment of oil production  

Science Journals Connector (OSTI)

...and NJ Hagens. 2008 Energy return on investment...and CAS Hall. 2011 Energy return on investment...future. In Biofuels, solar and wind as renewable energy systems: benefits and...Ultra-deepwater Gulf of Mexico oil and gas: energy...

2014-01-01T23:59:59.000Z

232

Response and Rescue Plans for Marine Mammals and Sea Turtles Impacted by the Deepwater Horizon Oil Spill in the Gulf of Mexico  

E-Print Network [OSTI]

Response and Rescue Plans for Marine Mammals and Sea Turtles Impacted by the Deepwater Horizon Oil Spill in the Gulf of Mexico The Wildlife Branch of the Unified Command has organized trained wildlife that will be impacted by the Deepwater Horizon Oil Spill. The marine mammal and sea turtle response teams include

233

Oil Production Capacity Expansion Costs for the Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

TR/0606 TR/0606 Distribution Category UC-950 Oil Production Capacity Expansion Costs For The Persian Gulf January 1996 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration Oil Production Capacity Expansion Costs for the Persian Gulf iii Preface Oil Production Capacity Expansion Costs for the Persian Gulf provides estimates of development and operating costs for various size fields in countries surrounding the Persian

234

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network [OSTI]

Iran’s NIOC, and Mexico’s Pemex, produce 25% of the world’sIran’s NIOC, and Mexico’s Pemex. With the super majors and

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

235

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

236

Expectations for Oil Shale Production (released in AEO2009)  

Reports and Publications (EIA)

Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

2009-01-01T23:59:59.000Z

237

An energy-economic oil production model  

Science Journals Connector (OSTI)

......underlying economic factors such as labour or capital investment into oil infrastructure...L, Res), (1.4) where K denotes capital; L, labour and Res, natural resources...including other energy sources such as natural gas, coal, hydro and nuclear power, and......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

238

An energy-economic oil production model  

Science Journals Connector (OSTI)

......such as natural gas, coal, hydro and nuclear power...perspective, this energy-economic model offers an opportunity...Testimony before the Joint Economic Committee of the US Congress...HOEOEK, M. (2010) Coal and oil: the dark monarchs...2001) Introduction to Economic Growth, 2nd edn. New......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

239

Understanding foamy oil mechanisms for heavy oil reservoirs during primary production  

SciTech Connect (OSTI)

A set of experiments in porous media was performed to determine oil recovery factor during natural depletion for a heavy oil reservoir. Results on {open_quotes}critical or mobile{close_quotes} gas saturation, produced fluid characterization, residual oil saturation, production profile and effective viscosity versus pressure are presented. In order to characterize the ability of the heavy oil to trap the released gas, conventional and non conventional PVT tests were carried out. By comparing the experimental results during differential liberation tests, a gas trapping factor for the oil was obtained. It accounts for the amount of solution gas that has been thermodynamically released but does not form instantaneously a free gas cap. The so called pseudo-bubble pressure was obtained. In this work the hypothesis involved in the {open_quotes}Low Viscosity Model{close_quotes} was also tested.

Huerta, M.; Otero, C.; Rico, A.; Jimenez, I.; Mirabal, M. de; Rojas, G.

1996-12-31T23:59:59.000Z

240

Effects of the Deepwater Horizon Oil Spill on Pelagic Fish Species of the Gulf of Mexico.  

E-Print Network [OSTI]

??The Deepwater Horizon oil spill of 2010 is the largest unintended marine oil spill in history. The point-source location of the spill, below the pelagic… (more)

Stieglitz, John Dommerich

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Opportunities to improve oil productivity in unstructured deltaic reservoirs  

SciTech Connect (OSTI)

This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

Not Available

1991-01-01T23:59:59.000Z

242

Method for creating high carbon content products from biomass oil  

DOE Patents [OSTI]

In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

Parker, Reginald; Seames, Wayne

2012-12-18T23:59:59.000Z

243

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

244

Shallow oil production using horizontal wells with enhanced oil recovery techniques  

SciTech Connect (OSTI)

Millions of barrels of oil exist in the Bartlesville formation throughout Oklahoma, Kansas, and Missouri. In an attempt to demonstrate that these shallow heavy oil deposits can be recovered, a field project was undertaken to determine the effectiveness of enhanced oil recovery techniques (EOR) employing horizontal wells. Process screening results suggested that thermal EOR processes were best suited for the recovery of this heavy oil. Screening criteria suggested that in situ combustion was a viable technique for the production of these reserves. Laboratory combustion tube tests confirmed that sufficient amounts of fuel could be deposited. The results of the in situ combustion field pilot were disappointing. A total overall recovery efficiency of only 16.0 percent was achieved. Results suggest that the combustion front might have moved past the horizontal well, however elevated temperatures or crude upgrading were not observed. Factors contributing to the lack of production are also discussed.

Satchwell, R.M.; Johnson, L.A. Jr. [Western Research Institute, Laramie, WY (United States); Trent, R. [Univ. of Alaska, Fairbanks, AK (United States)

1995-02-01T23:59:59.000Z

245

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

246

Evaluation and application of highly alloyed materials for corrosive oil production  

Science Journals Connector (OSTI)

Selection of materials for production of oil from the Brae Field, operated by Marathon Oil Company, in the North Sea required extensive...

B. D. Craig

1983-06-01T23:59:59.000Z

247

Mexico-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Mexico-Joint Programme on Resource Efficient and Cleaner Production (RECP) Mexico-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Mexico-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

248

Long Term World Oil Supply (A Resource Base/Production Path Analysis)  

Gasoline and Diesel Fuel Update (EIA)

Long Term World Oil Supply Long Term World Oil Supply (A Resource Base/Production Path Analysis) 07/28/2000 Click here to start Table of Contents Long Term World Oil Supply (A Resource Base/Production Path Analysis) Executive Summary Executive Summary (Continued) Executive Summary (Continued) Overview The Year of Peak Production..When will worldwide conventional oil production peak?... Lower 48 Crude Oil Reserves & Production 1945-2000 Texas Oil and Condensate Production, and Texas First Purchase Price (FPP), 1980-1999 Published Estimates of World Oil Ultimate Recovery Different Interpretations of a Hypothetical 6,000 Billion Barrel World Original Oil-in-Place Resource Base Campbell-Laherrère World Oil Production Estimates, 1930-2050 Laherrere’s Oil Production Forecast, 1930-2150

249

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

10,433 1,047 18,983 9,592 488 -617 17,890 3,998 19,273 10,433 1,047 18,983 9,592 488 -617 17,890 3,998 19,273 PADD 1 130 25 3,403 1,515 3,374 230 -269 3,374 264 5,307 PADD 2 1,993 892 4,464 2,094 500 -317 -225 4,240 386 5,224 PADD 3 6,249 96 7,346 4,283 -3,758 511 -211 6,723 2,976 5,239 PADD 4 887 14 643 287 -425 -18 51 615 10 713 PADD 5 1,174 20 3,127 1,413 310 82 36 2,939 362 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Imports at the PAD District level represent the PAD District in which the material entered the U.S. and not necessarily where the crude oil or product is processed and/or consumed. PAD District level net receipts includes implied net receipts for fuel ethanol and oxygenates (excluding fuel ethanol). Implied net receipts are calculated as the sum of stock change, refinery and blender net inputs, and exports minus the sum of renewable fuels and oxygenate plant net production, imports, and adjustments. Adjustments include an adjustment for crude oil, previously referred to as Unaccounted For Crude Oil. Also included is an adjustment for motor gasoline blending components, fuel ethanol, and distillate fuel oil. A negative stock change indicates a decrease in stocks and a positive number indicates an increase in stocks. Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil Reserve. Total residual fuel oil stocks include stocks held at pipelines. Residual fuel oil stocks by sulfur content exclude pipeline stocks. Therefore, the sum of residual fuel oil stocks by sulfur content may not equal total residual fuel oil stocks. Exports of distillate fuel oil with sulfur greater than 15 ppm to 500 ppm may include distillate fuel oil with sulfur content 15 ppm and under due to product detail limitations in exports data received from the U.S. Census Bureau. LRG = Liquefied Refinery Gas. Data may not add to total due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table.

250

Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters  

Science Journals Connector (OSTI)

...hydrothermal systems near Mexico (6). The sulfate-reducing...generation of H2S in geothermal heated oil wells when suitable substrates...and steel alloys in oil wells and in the oil-processing...in the production well head or in the oil-water...

Janiche Beeder; Roald Kåre Nilsen; Jan Thomas Rosnes; Terje Torsvik; Torleiv Lien

1994-04-01T23:59:59.000Z

251

Gel conformance treatments increase oil production in Wyoming  

SciTech Connect (OSTI)

Chromic-carboxylate acrylamide-polymer gels have been applied successfully as conformance treatments in a number of fields in Wyoming's Big Horn basin. This paper reports that as a result of these treatments, significant amounts of incremental oil will be recovered in a profitable manner. The gels were applied to naturally fractured reservoirs of intermediate fracture intensity. The gel treatments improved sweep efficiency of oil-recovery drive fluids in fields that were under either primary production, waterflooding, or polymer-augmented waterflooding. Ultimate incremental oil production from the 29 gel treatments is projected to be 3.72 million st-tk bbl, or on average, 128,000 bbl/treatment. An average 13 bbl of incremental production are projected to be recovered for every 1 lb of polymer injected.

Sydansk, R.D.; Moore, P.E. (Marathon Oil Co., Littleton, CO (US))

1992-01-20T23:59:59.000Z

252

New Mexico Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

107,040 112,375 112,964 1991-2014 From Gas Wells NA NA NA NA NA NA 1991-2014 From Oil Wells NA NA NA NA NA NA 1991-2014 From Shale Gas Wells NA NA NA NA NA NA 2007-2014 From...

253

Gulf of Mexico Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

103,230 105,028 105,462 1997-2014 From Gas Wells NA NA NA NA NA NA 1997-2014 From Oil Wells NA NA NA NA NA NA 1997-2014 From Shale Gas Wells NA NA NA NA NA NA 2007-2014 From...

254

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

255

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

256

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

257

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

258

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

259

Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations  

SciTech Connect (OSTI)

The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of three terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports detailing the study procedures, results, and conclusions which contribute to the transfer of technology to the scientific community, petroleum industry, and state and federal agencies.

Gettleson, David A

1999-10-28T23:59:59.000Z

260

Evaluating oil quality and monitoring production from heavy oil reservoirs using geochemical methods: Application to the Boscan Field, Venezuela  

SciTech Connect (OSTI)

Many oil fields worldwide contain heavy oil in one or more reservoir units. The low gravity of these oils is most frequently due to biodegradation and/or low maturity. The challenge is to find ways to economically recover this oil. Methods which reduce the operating costs of producing heavy oil add significant value to such projects. Geochemical techniques which use the composition of the reservoir fluids as natural tracers offer cost effective methods to assist with reservoir management. The low viscosity and gravity of heavy oil, combined with frequent high water cuts, low flow rates, and the presence of downhole artificial lift equipment, make many conventional production logging methods difficult to apply. Therefore, monitoring production, especially if the produced oil is commingled from multiple reservoirs, can be difficult. Geochemical methods can be used to identify oil/water contacts, tubing string leaks and to allocate production to individual zones from commingled production. An example of a giant heavy oil field where geochemical methods may be applicable is the Boscan Field in Venezuela. Low maturity oil, averaging 10{degrees} API gravity, is produced from the Eocene Upper and Lower Boscan (Miosa) Sands. Geochemical, stratigraphic and engineering data have helped to better define the controls on oil quality within the field, identified new reservoir compartments and defined unique characteristics of the Upper and Lower Boscan oils. This information can be used to identify existing wells in need of workovers due to mechanical problems and to monitor production from new infill wells.

Kaufman, R.L.; Noguera, V.H.; Bantz, D.M. [Chevron Overseas Petroleum, San Ramon, CA (United States); Rodriguez, R. [Maraven, S.A., Caracas (Venezuela)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CDOM Optical Properties Near DWH Site, Gulf of Mexico: Post Oil Spill.  

E-Print Network [OSTI]

??The Deep Water Horizon (DWH) oil spill resulted in the largest accidental release of crude oil in U.S. waters with both short- and long-term effects… (more)

Li, Zhi

2014-01-01T23:59:59.000Z

262

Using simple models to describe oil production from unconventional reservoirs.  

E-Print Network [OSTI]

??Shale oil (tight oil) is oil trapped in low permeability shale or sandstone. Shale oil is a resource with great potential as it is heavily… (more)

Song, Dong Hee

2014-01-01T23:59:59.000Z

263

Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico  

E-Print Network [OSTI]

1980s, when oil prices collapsed and Mexico found itself inof Guatemala. Mexico soon became self-sufficient in oil,were sourced from oil, and about a third of [Mexico’s] state

Osborne, Tracey Muttoo

2010-01-01T23:59:59.000Z

264

Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico  

E-Print Network [OSTI]

1980s, when oil prices collapsed and Mexico found itself inwere sourced from oil, and about a third of [Mexico’s] staterole of oil in the Mexican economy has made Mexico the

Osborne, Tracey Muttoo

2010-01-01T23:59:59.000Z

265

Low-rank coal oil agglomeration product and process  

DOE Patents [OSTI]

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

1992-11-10T23:59:59.000Z

266

Low-rank coal oil agglomeration product and process  

DOE Patents [OSTI]

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

1992-01-01T23:59:59.000Z

267

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

268

Oil production triggered by crisis stays on stream throughout '91  

SciTech Connect (OSTI)

This paper reports on worldwide production of crude oil and lease condensate that declined slightly in 1991 due to sagging demand. With Kuwait and Iraq still producing negligible volumes, there was little spare production capacity. But the replacement capacity pressed into use during the Persian Gulf crisis proved its durability by remaining on stream throughout the year. Reserves declined marginally. Most reserves changes reflected estimates by governments of some producing countries.

Not Available

1991-12-30T23:59:59.000Z

269

Gulf of Mexico Fact Sheet - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Fact Sheet Gulf of Mexico Fact Sheet Overview Data Petroleum and Other Liquids Crude Oil, Condensate and NGL Proved Reserves Natural Gas Natural Gas Proved Reserves Refinery Capacity Natural Gas Processing Plants The Gulf of Mexico area, both onshore and offshore, is one of the most important regions for energy resources and infrastructure. Gulf of Mexico federal offshore oil production accounts for 23 percent of total U.S. crude oil production and federal offshore natural gas production in the Gulf accounts for 7 percent of total U.S. dry production. Over 40 percent of total U.S. petroleum refining capacity is located along the Gulf coast, as well as 30 percent of total U.S. natural gas processing plant capacity. Energy Infrastructure with Real-time Storm Information

270

Lexicographic Optimization of Multiple Economic Objectives in Oil Production from Petroleum Reservoirs  

E-Print Network [OSTI]

Lexicographic Optimization of Multiple Economic Objectives in Oil Production from Petroleum compromising optimality of the primary objective. I. INTRODUCTION Oil is produced from subsurface petroleum Systems Approach to Petroleum Production (ISAPP) knowledge centre. ISAPP is a joint project between Delft

Van den Hof, Paul

271

U.S. net oil and petroleum product imports expected to fall to...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

net oil and petroleum product imports expected to fall to just 29 percent of demand in 2014 With rising domestic crude oil production, the United States will rely less on imports...

272

Determination of Asphaltenes in Crude Oil and Petroleum Products by the on Column Precipitation Method  

Science Journals Connector (OSTI)

Determination of Asphaltenes in Crude Oil and Petroleum Products by the on Column Precipitation Method ... An improved analytical method for the determination of asphaltene content in crude oils and petroleum products was developed. ... Composition of heavy petroleums. ...

Estrella Rogel; Cesar Ovalles; Michael E. Moir; John F. Schabron

2009-08-14T23:59:59.000Z

273

Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows  

E-Print Network [OSTI]

This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system...

Jittamai, Phongchai

2006-04-12T23:59:59.000Z

274

Bioenergy Production via Microbial Conversion of Residual Oil to Natural Gas  

Science Journals Connector (OSTI)

...Microbiology May 15, 2008 ARTICLE PHYSIOLOGY AND BIOTECHNOLOGY Bioenergy Production via Microbial Conversion of Residual Oil to Natural...alkanes by anaerobic microorganisms. Nature 401: 266-269. Bioenergy production via microbial conversion of residual oil to natural...

Lisa M. Gieg; Kathleen E. Duncan; Joseph M. Suflita

2008-03-31T23:59:59.000Z

275

Fact #758: December 17, 2012 U.S. Production of Crude Oil by...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Fact 758: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Texas is by far the State that produces...

276

Emerging Risks in the Biodiesel Production by Transesterification of Virgin and Renewable Oils  

Science Journals Connector (OSTI)

Emerging Risks in the Biodiesel Production by Transesterification of Virgin and Renewable Oils ... Energy Fuels, 2010, 24 (11), ... Cuiaba, Brazil ...

E. Salzano; M. Di Serio; E. Santacesaria

2010-10-21T23:59:59.000Z

277

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

278

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

279

Future world oil production: Growth, plateau, or peak?1 Larry Hughes and Jacinda Rudolph  

E-Print Network [OSTI]

Energy Systems 2010 #12;Future world oil production: Growth, plateau, or peak? Larry Hughes2 and Jacinda governments to reduce their energy intensity (6), the growth in oil production resumed in the mid-1980s World Energy Outlook, production is projected to increase to 103.8 million barrels of oil a day by 2030

Hughes, Larry

280

Simplified dynamic models for control of riser slugging in offshore oil production  

E-Print Network [OSTI]

ForReview Only Simplified dynamic models for control of riser slugging in offshore oil production, Department of Chemical Engineering Keywords: oil production, two-phase flow, severe slugging, riser slugging for control of riser slugging in offshore oil production Esmaeil Jahanshahi, Sigurd Skogestad Department

Skogestad, Sigurd

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Production of Fish Oil UNITED STATES DEPART MENT OF THE INTERIOR  

E-Print Network [OSTI]

Production of Fish Oil UNITED STATES DEPART MENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU. Crowther, Director Production of Fish Oil By GEORGE M. PIGOTT Assistant Professor, Food Science Departm RENDERING METHOD The relationship between the tmee basic products (meal, oil, and stick water) from

282

Near Shore Submerged Oil Assessment  

E-Print Network [OSTI]

) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

283

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

23,431 32,462 588,466 297,359 15,122 -19,137 554,586 123,943 23,431 32,462 588,466 297,359 15,122 -19,137 554,586 123,943 597,448 1,812,484 PADD 1 4,022 783 105,480 46,972 104,579 7,133 -8,328 104,584 8,184 164,527 145,574 PADD 2 61,781 27,645 138,371 64,904 15,509 -9,838 -6,968 131,427 11,955 161,957 273,603 PADD 3 193,724 2,967 227,728 132,784 -116,513 15,829 -6,533 208,398 92,256 162,398 1,211,066 PADD 4 27,499 433 19,935 8,906 -13,181 -544 1,567 19,066 310 22,105 38,275 PADD 5 36,406 635 96,952 43,793 9,606 2,542 1,124 91,111 11,237 86,461 143,965 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Imports at the PAD District level represent the PAD District in which the material entered the U.S. and not necessarily where the crude oil or product is processed and/or consumed. PAD District level net receipts includes implied net receipts for fuel ethanol and oxygenates (excluding fuel ethanol). Implied net receipts are calculated as the sum of stock change, refinery and blender net inputs, and exports minus the sum of renewable fuels and oxygenate plant net production, imports, and adjustments. Adjustments include an adjustment for crude oil, previously referred to as Unaccounted For Crude Oil. Also included is an adjustment for motor gasoline blending components, fuel ethanol, and distillate fuel oil. A negative stock change indicates a decrease in stocks and a positive number indicates an increase in stocks. Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil Reserve. Total residual fuel oil stocks include stocks held at pipelines. Residual fuel oil stocks by sulfur content exclude pipeline stocks. Therefore, the sum of residual fuel oil stocks by sulfur content may not equal total residual fuel oil stocks. Exports of distillate fuel oil with sulfur greater than 15 ppm to 500 ppm may include distillate fuel oil with sulfur content 15 ppm and under due to product detail limitations in exports data received from the U.S. Census Bureau. LRG = Liquefied Refinery Gas. Data may not add to total due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table.

284

The Peak of the Oil Age – Analyzing the world oil production Reference Scenario in World Energy Outlook 2008  

Science Journals Connector (OSTI)

The assessment of future global oil production presented in the IEA’s World Energy Outlook 2008 (WEO 2008) is divided into 6 fractions; four relate to crude oil, one to non-conventional oil, and the final fraction is natural-gas-liquids (NGL). Using the production parameter, depletion-rate-of-recoverable-resources, we have analyzed the four crude oil fractions and found that the 75 Mb/d of crude oil production forecast for year 2030 appears significantly overstated, and is more likely to be in the region of 55 Mb/d. Moreover, analysis of the other fractions strongly suggests lower than expected production levels. In total, our analysis points to a world oil supply in 2030 of 75 Mb/d, some 26 Mb/d lower than the IEA predicts. The connection between economic growth and energy use is fundamental in the IEA’s present modelling approach. Since our forecast sees little chance of a significant increase in global oil production, our findings suggest that the “policy makers, investors and end users” to whom WEO 2008 is addressed should rethink their future plans for economic growth. The fact that global oil production has very probably passed its maximum implies that we have reached the Peak of the Oil Age.

Kjell Aleklett; Mikael Höök; Kristofer Jakobsson; Michael Lardelli; Simon Snowden; Bengt Söderbergh

2010-01-01T23:59:59.000Z

285

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 AEO 1997 2362 2307 2245 2197 2143 2091 2055 2033 2015 2004 1997 1989 1982 1975 1967 1949 AEO 1998 2340 2332 2291 2252 2220 2192 2169 2145 2125 2104 2087 2068 2050 2033 2016 AEO 1999 2340 2309 2296 2265 2207 2171 2141 2122 2114 2092 2074 2057 2040 2025 AEO 2000 2193 2181 2122 2063 2016 1980 1957 1939 1920 1904 1894 1889 1889

286

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen,*a  

E-Print Network [OSTI]

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen of oil droplets and gas bubbles and show that the oil can have two very different roles, either suppressing foaming or stabilising the foam. We have foamed emulsions made from two different oils (rapeseed

Paris-Sud XI, Université de

287

Production of valuable hydrocarbons by flash pyrolysis of oil shale  

DOE Patents [OSTI]

A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

Steinberg, M.; Fallon, P.T.

1985-04-01T23:59:59.000Z

288

The End of the Plantations and the Transformation of Indigenous Society in Highland Chiapas, Mexico, 1974-2009  

E-Print Network [OSTI]

These were the years of Mexico‘s oil boom, and although thenewly discovered oil reserves, Mexico suddenly had access tothe decline of world oil prices, Mexico fell into a deep

Rus, III, Jan

2010-01-01T23:59:59.000Z

289

The End of the Plantations and the Transformation of Indigenous Society in Highland Chiapas, Mexico, 1974-2009  

E-Print Network [OSTI]

newly discovered oil reserves, Mexico suddenly had access tothe decline of world oil prices, Mexico fell into a deepThese were the years of Mexico‘s oil boom, and although the

Rus, III, Jan

2010-01-01T23:59:59.000Z

290

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL AND GAS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five sub-contractors that have taken place during the first six months (January 1, 2003--June 30, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Gnomon, Inc. and all five (5) subcontractors have agreed on a process for the framework of this two-year project. They have also started gathering geomorphological information and entering cultural resource data into databases that will be used to create models later in the project. This data is being gathered in both the Power River Basin of Wyoming, and the Southeastern region of New Mexico. Several meetings were held with key players in this project to explain the purpose of the research, to obtain feedback and to gain support. All activities have been accomplished on time and within budget with no major setbacks.

Peggy Robinson

2003-07-25T23:59:59.000Z

291

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

and Weimer, D.L. (1984) Oil prices shock, market response,OPEC behavior and world oil prices (pp. 175-185) London:many decades. Recent high oil prices have caused oil-holding

Leighty, Wayne

2008-01-01T23:59:59.000Z

292

California and New Mexico: Sapphire Energy Advances the Commercialization of Algae Crude Oil  

Office of Energy Efficiency and Renewable Energy (EERE)

The Sapphire Green Crude Farm is the first algae-to-energy facility. If adopted and commercialized by other refineries, this algae-based crude oil is a viable “green” alternative fuel option.

293

Floating oil production unit slated in small field off Gabon  

SciTech Connect (OSTI)

This paper reports on the first U.S. tanker converted to a floating production, storage, and offloading (FPSO) unit which takes up station in Gombe-Beta field off Gabon by Dec. 1. FPSO Ocean Producer will work under a 3 year, day rate contract let late in 1990 by Amoco-Gabon Bombe Marin co., a unit of Amoco Production Co. (OGJ, Dec. 24, 1990, p. 27). Gombe-Beta field is in the Atlantic Ocean about 70 miles south of Port Gentil, Gabon. Ocean Producer will be moored in 50 ft of water 3.7 miles off Gabon, with Bombe-Beta's unmanned production platform about 820 ft astern. The vessel will be held in position by a disconnectable, asymmetric, six point, spread mooring system, It is owned and operated by Oceaneering International Services Ltd. (OISL). Affiliate Oceaneering Production Systems (OPS) converted the 78,061 dwt oil tanker MT Baltimore Sea at a capital cost of $25 million at Gulf Copper Manufacturing Corp.'s Port Arthur, Tex., shipyard. Both companies are units of Oceaneering International Inc., Houston. OPS the Ocean Producer's use in Gombe-Beta field is the shallowest water FPSO application in the world. Amoco-Gabon chose an FPSO production system for Gombe-Beta because it expects the remote field to have a short economic life, and the oil requires extensive processing.

Not Available

1991-10-14T23:59:59.000Z

294

Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations  

SciTech Connect (OSTI)

Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) and 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved continued data analysis and report writing. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) was issued as a final report during the previous reporting period. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities included the preparation of the final report. There were no Task 7 (Technology Transfer Plan) activities to report. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1997-11-24T23:59:59.000Z

295

GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS  

E-Print Network [OSTI]

1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

Johansen, Tor Arne

296

Spot Prices for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Spot Prices Spot Prices (Crude Oil in Dollars per Barrel, Products in Dollars per Gallon) Period: Daily Weekly Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product by Area 12/09/13 12/10/13 12/11/13 12/12/13 12/13/13 12/16/13 View History Crude Oil WTI - Cushing, Oklahoma 97.1 98.32 97.25 97.21 96.27 97.18 1986-2013 Brent - Europe 110.07 108.91 109.47 108.99 108.08 110.3 1987-2013 Conventional Gasoline New York Harbor, Regular 2.677 2.698 2.670 2.643 2.639 2.650 1986-2013 U.S. Gulf Coast, Regular 2.459 2.481 2.429 2.398 2.377 2.422 1986-2013 RBOB Regular Gasoline Los Angeles 2.639 2.661 2.569 2.543 2.514 2.527 2003-2013 No. 2 Heating Oil New York Harbor

297

Simulation-Based Optimization of Multistage Separation Process in Offshore Oil and Gas Production Facilities  

Science Journals Connector (OSTI)

Simulation-Based Optimization of Multistage Separation Process in Offshore Oil and Gas Production Facilities ... As the demand for offshore oil platforms and eco-friendly oil production has increased, it is necessary to determine the optimal conditions of offshore oil production platforms to increase profits and reduce costs as well as to prevent environmental pollution. ... To achieve a practical design for an offshore platform, it is necessary to consider environmental specifications based on an integrated model describing all units concerned with oil and gas production. ...

Ik Hyun Kim; Seungkyu Dan; Hosoo Kim; Hung Rae Rim; Jong Min Lee; En Sup Yoon

2014-05-05T23:59:59.000Z

298

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

299

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

300

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. Crude Oil Production Forecast-Analysis of Crude Types  

Gasoline and Diesel Fuel Update (EIA)

oil production by crude type as it would be delivered from well-site or lease storage tanks. Once the oil enters transportation and distribution systems, it may be commingled...

302

U.S. monthly oil production tops 8 million barrels per day for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 hurricane season could lead to offshore oil, gas production shut-ins The government's weather experts are predicting a relatively mild hurricane season, but U.S. oil and...

303

U.S. monthly oil production tops 8 million barrels per day for...  

Gasoline and Diesel Fuel Update (EIA)

the U.S. Energy Information Administration said it expects world oil production to rise by 1.3 million barrels per day next year....with U.S. daily oil output alone...

304

Linkages between the markets for crude oil and the markets for refined products  

SciTech Connect (OSTI)

To understand the crude oil price determination process it is necessary to extend the analysis beyond the markets for petroleum. Crude oil prices are determined in two closely related markets: the markets for crude oil and the markets for refined products. An econometric-linear programming model was developed to capture the linkages between the markets for crude oil and refined products. In the LP refiners maximize profits given crude oil supplies, refining capacities, and prices of refined products. The objective function is profit maximization net of crude oil prices. The shadow price on crude oil gives the netback price. Refined product prices are obtained from the econometric models. The model covers the free world divided in five regions. The model is used to analyze the impacts on the markets of policies that affect crude oil supplies, the demands for refined products, and the refining industry. For each scenario analyzed the demand for crude oil is derived from the equilibrium conditions in the markets for products. The demand curve is confronted with a supply curve which maximizes revenues providing an equilibrium solution for both crude oil and product markets. The model also captures crude oil price differentials by quality. The results show that the demands for crude oil are different across regions due to the structure of the refining industries and the characteristics of the demands for refined products. Changes in the demands for products have a larger impact on the markets than changes in the refining industry. Since markets for refined products and crude oil are interrelated they can't be analyzed individually if an accurate and complete assessment of a policy is to be made. Changes in only one product market in one region affect the other product markets and the prices of crude oil.

Didziulis, V.S.

1990-01-01T23:59:59.000Z

305

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline  

Science Journals Connector (OSTI)

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline ... (11) Another analysis suggests that a transition to hydrogen- and natural-gas-fueled vehicles—and the associated climate benefits—will partly be driven by dwindling oil supplies. ... Within each class, we do not attempt to predict the exact substitute that will dominate (for example, whether electricity, hydrogen fuel cells, or natural gas will prevail in the passenger car market), but rather model the aggregate contribution of alternatives to conventional oil. ...

Adam R. Brandt; Adam Millard-Ball; Matthew Ganser; Steven M. Gorelick

2013-05-22T23:59:59.000Z

306

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations  

SciTech Connect (OSTI)

Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) activities included the continuation of the platform selection process. A revised sampling plan and a projected cost estimate were prepared for Task 3. A letter detailing the revised plan was sent to the Scientific Review Committee (SRC). Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved receiving the final approval for sampling two facilities and requesting approval for a third alternative facility. A revised Task 4 sampling plan and projected estimated costs were prepared. The sampling plan was presented to the SRC for comment. Mobilization activities for the first quarterly sampling were initiated. Task 5 (Assessment of Economic Impactsof Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included refining the model for estimating the impact of increased environmental compliance costs on remaining reserves in coastal and offshore fields. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities involved completion and field testing of most survey forms. Retail surveys were initiated and contacts were made with the Vietnamese community. Task 7 (Technology Transfer Plan) work has included scheduling the presentation of information concerning this project at the DOE Contractor Review Meeting in July in Oklahoma. Task 8 (Project Management and Deliverables) activities have involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1993-04-22T23:59:59.000Z

307

Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production  

Science Journals Connector (OSTI)

Abstract Experimental results from the open literature have been employed for the design and techno-economic evaluation of four process flowsheets for the production of microbial oil or biodiesel. The fermentation of glucose-based media using the yeast strain Rhodosporidium toruloides has been considered. Biodiesel production was based on the exploitation of either direct transesterification (without extraction of lipids from microbial biomass) or indirect transesterifaction of extracted microbial oil. When glucose-based renewable resources are used as carbon source for an annual production capacity of 10,000 t microbial oil and zero cost of glucose (assuming development of integrated biorefineries in existing industries utilising waste or by-product streams) the estimated unitary cost of purified microbial oil is $3.4/kg. Biodiesel production via indirect transesterification of extracted microbial oil proved more cost-competitive process compared to the direct conversion of dried yeast cells. For a price of glucose of $400/t  oil production cost and biodiesel production cost are estimated to be $5.5/kg oil and $5.9/kg biodiesel, correspondingly. Industrial implementation of microbial oil production from oleaginous yeast is strongly dependent on the feedstock used and on the fermentation stage where significantly higher productivities and final microbial oil concentrations should be achieved.

Apostolis A. Koutinas; Afroditi Chatzifragkou; Nikolaos Kopsahelis; Seraphim Papanikolaou; Ioannis K. Kookos

2014-01-01T23:59:59.000Z

308

Production of higher quality bio-oils by in-line esterification of pyrolysis vapor  

DOE Patents [OSTI]

The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

2014-12-02T23:59:59.000Z

309

Dynamic analysis in productivity, oil shock, and recession  

E-Print Network [OSTI]

use of oil in the US economy weakens the peak responses ofpeak under other factors considered, less persistence in the oil-the same size of the oil-price shock. The peak response of

Katayama, Munechika

2008-01-01T23:59:59.000Z

310

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

the green light for drilling when oil price is high, thenthe U.S. Oil and Gas Producing Industry, Section 1: Drillingwell) Well Drilling Costs Alaska onshore oil wells and dry

Leighty, Wayne

2008-01-01T23:59:59.000Z

311

Dynamic analysis in productivity, oil shock, and recession  

E-Print Network [OSTI]

use of oil in the US economy weakens the peak responses ofin the oil-price process shifts the timing of the peak by 2the same size of the oil-price shock. The peak response of

Katayama, Munechika

2008-01-01T23:59:59.000Z

312

Dynamic analysis in productivity, oil shock, and recession  

E-Print Network [OSTI]

Declining E?ects of Oil-price Shocks . . . . . . . . . . .of IRFs to a 10% Increase in the Oil Price: Case 3 and Caseof IRFs to a 10% Increase in the Oil Price: Before and After

Katayama, Munechika

2008-01-01T23:59:59.000Z

313

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

that controls demand for oil. ” 6.6 Hedging behavior inauthors model demand and all three phases in oil supply –future supply and demand for US crude oil resources. A

Leighty, Wayne

2008-01-01T23:59:59.000Z

314

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

Economics of Undiscovered Oil and Gas in the Central North1993) Mathematical theory of oil and gas recovery: withapplications to ex-USSR oil and gas fields, Boston: Kluwer

Leighty, Wayne

2008-01-01T23:59:59.000Z

315

Oil and gas of the Maritime Boundry region in the central Gulf of Mexico  

SciTech Connect (OSTI)

The U.S. Geological Survey conducted a detailed study in the first half of 1981 of the oil and gas resource potential in the Maritime Boundry region of the central Gulf where jurisdiction over natural resources by adjacent coastal countries has not yet been established. The study focused on factors critical to the generation, migration, and entrapment of hydrocarbons, such as: source beds and thermal maturation, reservoir rocks, structural and stratigraphic traps, and seals and timing of hydrocarbon migration relative to formation of traps. A variety of evidence suggests that favorable conditions exist for the occurrence of crude oil and natural gas resouces in the Maritime Boundry region. Estimates of the in-place resources (recovery factors were not applied) of crude oil and natural gas range from 2.24 to 21.99 billion bbl and from 5.48 to 44.4 tcf, respectively. The individual assessment areas appear to have the most attractive petroleum potential in the following order: Perdido Foldbelt, Sigsbee Knolls, Abyssal Gulf Basin, Campeche Escarpment, Rio Grande Margin, and Sigsbee Escarpment. (JMT)

Foote, R.Q.; Martin, R.G.; Powers, R.B.

1983-07-01T23:59:59.000Z

316

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

317

A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO  

E-Print Network [OSTI]

oil Company of California, and Public Service Company of New Mexico,Rio Arriba Counties, New Mexico. Union Oil Internal ReportGNew Mexico. Private geophysical survey for Union Oil Co.

Wilt, M.

2011-01-01T23:59:59.000Z

318

Assessing the operations of the bulk oil storage and Transportation Company Limited in petroleum products delivery to Northern Ghana.  

E-Print Network [OSTI]

??The government of Ghana realising the importance of petroleum products, established the Tema Oil Refinery (TOR) in 1961 in order to process crude oil into… (more)

Moses Oswald Avoyingah Amoah

2011-01-01T23:59:59.000Z

319

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual" Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO 1995",,2401.7,2306.8,2204.6,2095.1,2036.7,1967.35,1952.75,1923.55,1916.25,1905.3,1894.35,1883.4,1887.05,1887.05,1919.9,1945.45,1967.35 "AEO 1996",,,2387.1,2310.45,2248.4,2171.75,2113.35,2062.25,2011.15,1978.3,1952.75,1938.15,1916.25,1919.9,1927.2,1949.1,1971,1985.6,2000.2 "AEO 1997",,,,2361.55,2306.8,2244.75,2197.3,2142.55,2091.45,2054.95,2033.05,2014.8,2003.85,1996.55,1989.25,1981.95,1974.65,1967.35,1949.1

320

World oil and gas resources-future production realities  

SciTech Connect (OSTI)

Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

Masters, C.D.; Root, D.H.; Attanasi, E.D. (U.S. Geological Survey, Reston, VA (US))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table 7: Crude oil proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Crude oil proved reserves, reserves changes, and production, 2011" : Crude oil proved reserves, reserves changes, and production, 2011" "million barrels" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

322

Short-term production optimization of offshore oil and gas production using nonlinear model predictive control  

Science Journals Connector (OSTI)

The topic of this paper is the application of nonlinear model predictive control (NMPC) for optimizing control of an offshore oil and gas production facility. Of particular interest is the use of NMPC for direct short-term production optimization, where two methods for (one-layer) production optimization in NMPC are investigated. The first method is the unreachable setpoints method where an unreachable setpoint is used in order to maximize oil production. The ideas from this method are combined with the exact penalty function for soft constraints in a second method, named infeasible soft-constraints. Both methods can be implemented within standard NMPC software tools. The case-study first looks into the use of NMPC for ‘conventional’ pressure control, where disturbance rejection of time-varying disturbances (caused, e.g., by the ‘slugging’ phenomenon) is an issue. Then the above two methods for production optimization are employed, where both methods find the economically optimal operating point. Two different types of reservoir models are studied, using rate-independent and rate-dependent gas/oil ratios. These models lead to different types of optimums. The relative merits of the two methods for production optimization, and advantages of the two one-layer approaches compared to a two-layer structure, are discussed.

Anders Willersrud; Lars Imsland; Svein Olav Hauger; Pål Kittilsen

2013-01-01T23:59:59.000Z

323

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

324

Parameter identification in large-scale models for oil and gas production  

E-Print Network [OSTI]

Parameter identification in large-scale models for oil and gas production Jorn F.M. Van Doren: Models used for model-based (long-term) operations as monitoring, control and optimization of oil and gas information to the identification problem. These options are illustrated with examples taken from oil and gas

Van den Hof, Paul

325

Gulf of Mexico Proved Reserves By Water Depth, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves from the GOM Fed have gradually diminished, both volumetrically and as a percentage of overall U.S. proved reserves. The latter is especially true in recent years as onshore additions (particularly those associated with shale gas activity) have increased considerably. Proved oil reserves from

326

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

327

Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility  

E-Print Network [OSTI]

Teamwork plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility Garth Booker P Eng Extraction Energy Engineer Suncor Energy Company Fort McMurray, Alberta, Canada ABSTRACT...Teamwork plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility Garth Booker P Eng Extraction Energy Engineer Suncor Energy Company Fort McMurray, Alberta, Canada ABSTRACT...

Booker, G.; Robinson, J.

328

Understanding the Rate of Clean Up for Oil Zones after a Gel Treatment R.S. Seright, SPE, New Mexico Petroleum Recovery Research Center, W. Brent Lindquist, SPE, and Rong Cai,  

E-Print Network [OSTI]

SPE 112976 Understanding the Rate of Clean Up for Oil Zones after a Gel Treatment R.S. Seright, SPE, New Mexico Petroleum Recovery Research Center, W. Brent Lindquist, SPE, and Rong Cai, Stony Brook at the 2008 SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, U.S.A., 19­23 April 2008. This paper

New York at Stoney Brook, State University of

329

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

330

Decline and depletion rates of oil production: a comprehensive investigation  

Science Journals Connector (OSTI)

...volume via swelling. Nitrogen, or even flue gas, is an alternative...oil-[23]. These gases are usually rather...perspective-[11]. Nitrogen has poor solubility in oil and requires...conditions favourable for water flooding as it is...

2014-01-01T23:59:59.000Z

331

Volatility Relationship between Crude Oil and Petroleum Products  

Science Journals Connector (OSTI)

This paper utilizes calculated historical volatility and GARCH models to compare the historical price volatility behavior of crude oil, motor gasoline and heating oil in U.S. markets since 1990. ... GARCH/TARCH m...

Thomas K. Lee; John Zyren

2007-03-01T23:59:59.000Z

332

INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH Last year the Alaska Legislature made a controversial change in the oil production tax, the state's  

E-Print Network [OSTI]

change in the oil production tax, the state's largest source of oil revenue. The old tax, known as ACES much money the production tax brings in is a big issue: oil revenues pay for most state government will stimulate North Slope oil investment, leading to more oil production--and so to higher oil revenues and new

Pantaleone, Jim

333

Life Cycle Assessment of Biodiesel Production from Microalgae Oil: Effect of Algae Species and Cultivation System  

Science Journals Connector (OSTI)

Different microalgae are widely studied as alternative sources for biodiesel production. They show higher oil productivity values (per area) than oilseed crops and are not used for food industry. For the evalu...

Javier Dufour; Jovita Moreno…

2011-01-01T23:59:59.000Z

334

TURKISH OIL SHALES POTENTIAL FOR SYNTHETIC CRUDE OIL and CARBON MATERIALS PRODUCTION  

E-Print Network [OSTI]

research activities on solid fuels. In order to make a new start, research work on Turkish oil shales that

Ekrem Ekinci

335

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network [OSTI]

Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela) account for roughly 77% of the world’s proven oil

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

336

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, July--September 1995  

SciTech Connect (OSTI)

Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. This report represents the thirteenth quarterly technical summary for the study ``Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations.`` Activities associated with Tasks 3 through 8 are discussed in this report.

Gettleson, D.A.

1995-10-31T23:59:59.000Z

337

Productivity evaluation and influential factor analysis for Sarvak reservoir in South Azadegan oil field, Iran  

Science Journals Connector (OSTI)

Abstract Production pattern of oil wells and influential factors on productivity for the massive carbonate reservoir in the Middle East were researched by productivity evaluation on Sarvak and analysis of properties impact on production. Based on dynamic performance of Sarvak production test, the relationship between daily oil production, tubing pressure, cumulative oil production and choke size was analyzed and reasonable productivity prediction model was established by applying Poettman model, and the effect of physical properties and fluid parameters on productivity were analyzed further by numerical simulation. The study shows that daily oil production is linearly correlated with oil pressure under certain working regime, and daily oil production is power law correlated with choke sizes before and after working regime adjustment. The average designed single well productivity should be about 270 m3/d by depletion to ensure a three-year plateau period. Sarvak is a blocky carbonate reservoir, when developed with horizontal wells, interbeds distributed between layers and permeability property have the strongest impact on production of horizontal wells. So, highly deviated wells should be used to reduce the effect of interbeds and acidizing should be considered to improve the reservoir physical properties.

Hui LIU; Rui GUO; Junchang DONG; Li LIU; Yang LIU; Yingjie YI

2013-01-01T23:59:59.000Z

338

Calculating single layer production contribution of heavy oil commingled wells by analysis of aromatic parameters in whole-oil GC-MS  

Science Journals Connector (OSTI)

Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells. Biodegradation of heavy oil can lead to the loss of n-ahkanes, and the use of chromatogram fingerprint techn...

Yaohui Xu; Li Ma; Linxiang Li; Wenfu Cui; Xiaowei Cheng; Xiaoping Wang

2014-03-01T23:59:59.000Z

339

EIA - AEO2010 - World oil prices and production trends in AEO2010  

Gasoline and Diesel Fuel Update (EIA)

World oil prices and production trends in AEO2010 World oil prices and production trends in AEO2010 Annual Energy Outlook 2010 with Projections to 2035 World oil prices and production trends in AEO2010 In AEO2010, the price of light, low-sulfur (or “sweet”) crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. EIA makes projections of future supply and demand for “total liquids,” which includes conventional petroleum liquids—such as conventional crude oil, natural gas plant liquids, and refinery gain—in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil. World oil prices can be influenced by a multitude of factors. Some tend to be short term, such as movements in exchange rates, financial markets, and weather, and some are longer term, such as expectations concerning future demand and production decisions by the Organization of the Petroleum Exporting Countries (OPEC). In 2009, the interaction of market factors led prompt month contracts (contracts for the nearest traded month) for crude oil to rise relatively steadily from a January average of $41.68 per barrel to a December average of $74.47 per barrel [38].

340

Non-embedded autonomy: the political economy of Mexico’s rentier state, 1970–2010.  

E-Print Network [OSTI]

??Due to its competitive political system and strong non-oil export capacity, Mexico is not considered an oil Rentier State. Yet, the consistent and intensive use… (more)

Farfán-Mares, Gabriel

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

South America, Central America, the Caribbean, and Mexico  

SciTech Connect (OSTI)

Summaries of oil and gas drillings, well completions, production, exploratory wells, exploration activity and wildcat drilling were given for South America, Central America, the Caribbean, and Mexico. The countries, islands, etc. included Argentina, Bahamas, Barbados, Belize, Bolivia, Brazil, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, French Guiana, Guatemala, Guyana, Haiti, Honduras, Jamaica, Leeward and Windward Islands, Mexico, Netherlands Antilles, Nicaragua, Panama, Paraguay, Peru, Puerto Rico, El Salvador, Surinam, Trinidad and Venezuela. 16 figures, 120 tables. (DP)

Deal, C.

1981-10-01T23:59:59.000Z

342

Sources and transport of delta 14C in CO2 within the Mexico City Basin and vicinity  

E-Print Network [OSTI]

prox- imity to the southern Mexico oil and gas center. A daygas and principal oil fields in Mexico are located aroundMexico then Veracruz (not shown). The gas released when crude oil

2009-01-01T23:59:59.000Z

343

Sources and transport of delta 14C in CO2 within the Mexico City Basin and vicinity  

E-Print Network [OSTI]

imity to the southern Mexico oil and gas center. A day priorgas and principal oil fields in Mexico are located aroundMexico then Veracruz (not shown). The gas released when crude oil

2009-01-01T23:59:59.000Z

344

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

345

Removal of selected heavy metals from aqueous solutions using a solid by-product from the Jordanian oil shale refining  

Science Journals Connector (OSTI)

...?The potential use of treated solid by-product of oil shale to treat aqueous solutions containing several heavy ... Results indicate that the solid by-product of oil shale removes Cd(II), Cu(II),...

W. Y. Abu-El-Sha'r; S. H. Gharaibeh; M. M. Al-Kofahi

1999-12-01T23:59:59.000Z

346

NETL: News Release - DOE Project Revives Oil Production in Abandoned Fields  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 , 2006 4 , 2006 DOE Project Revives Oil Production in Abandoned Fields on Osage Tribal Lands Novel Oil Recovery Technique Developed Under DOE's Native American Initiative WASHINGTON, DC - A technology developed with U.S. Department of Energy funding has revived oil production in two abandoned oilfields on Osage Indian tribal lands in northeastern Oklahoma, and demonstrated a technology that could add billions of barrels of additional domestic oil production in declining fields. Production has jumped from zero to more than 100 barrels of oil per day in the two Osage County, Okla., fields, one of which is more than 100 years old. The technology was successfully pilot-tested in the century-old field, and using the knowledge gained, the technology was applied to a neighboring field with comparable success. This suggests that such approaches could revitalize thousands of other seemingly depleted oilfields across America's Midcontinent region.

347

Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities  

SciTech Connect (OSTI)

In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

Bent, Jimmy

2014-05-31T23:59:59.000Z

348

Table 6. Domestic Crude Oil Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 8.79 8.85 8.84 8.80 8.66 8.21 AEO 1983 8.67 8.71 8.66 8.72 8.80 8.63 8.11 AEO 1984 8.86 8.70 8.59 8.45 8.28 8.25 7.19 AEO 1985 8.92 8.96 9.01 8.78 8.38 8.05 7.64 7.27 6.89 6.68 6.53 AEO 1986 8.80 8.63 8.30 7.90 7.43 6.95 6.60 6.36 6.20 5.99 5.80 5.66 5.54 5.45 5.43 AEO 1987 8.31 8.18 8.00 7.63 7.34 7.09 6.86 6.64 6.54 6.03 AEO 1989* 8.18 7.97 7.64 7.25 6.87 6.59 6.37 6.17 6.05 6.00 5.94 5.90 5.89 AEO 1990 7.67 7.37 6.40 5.86 5.35 AEO 1991 7.23 6.98 7.10 7.11 7.01 6.79 6.48 6.22 5.92 5.64 5.36 5.11 4.90 4.73 4.62 4.59 4.58 4.53 4.46 4.42 AEO 1992 7.37 7.17 6.99 6.89 6.68 6.45 6.28 6.16 6.06 5.91 5.79 5.71 5.66 5.64 5.62 5.63 5.62 5.55 5.52 AEO 1993 7.20 6.94 6.79 6.52 6.22 6.00 5.84 5.72

349

Tax policy can change the production path: A model of optimal oil extraction in Alaska  

Science Journals Connector (OSTI)

We model the economically optimal dynamic oil production decisions for seven production units (fields) on Alaska's North Slope. We use adjustment cost and discount rate to calibrate the model against historical production data, and use the calibrated model to simulate the impact of tax policy on production rate. We construct field-specific cost functions from average cost data and an estimated inverse production function, which incorporates engineering aspects of oil production into our economic modeling. Producers appear to have approximated dynamic optimality. Consistent with prior research, we find that changing the tax rate alone does not change the economically optimal oil production path, except for marginal fields that may cease production. Contrary to prior research, we find that the structure of tax policy can be designed to affect the economically optimal production path, but at a cost in net social benefit.

Wayne Leighty; C.-Y. Cynthia Lin

2012-01-01T23:59:59.000Z

350

Open-Source LCA Tool for Estimating Greenhouse Gas Emissions from Crude Oil Production Using Field Characteristics  

Science Journals Connector (OSTI)

Open-Source LCA Tool for Estimating Greenhouse Gas Emissions from Crude Oil Production Using Field Characteristics ... OPGEE models oil production emissions in more detail than previous transport LCA models. ... El-Houjeiri, H. and Brandt, A.Exploring the variation of GHG emissions from conventional oil production using an engineering-based LCA model. ...

Hassan M. El-Houjeiri; Adam R. Brandt; James E. Duffy

2013-05-01T23:59:59.000Z

351

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

352

Quantitative analysis of existing conditions and production strategies for the Baca geothermal system, New Mexico  

SciTech Connect (OSTI)

The Baca geothermal reservoir and adjacent aquifers in the Jemez Mountains of New Mexico comprise an integrated hydrogeologic system. Analysis of the geothermal reservoir either under natural conditions or subject to proposed development should account for the mass (water) and energy (heat) balances of adjacent aquifers as well as the reservoir itself. A three-dimensional model based on finite difference approximation is applied to this integrated system. The model simulates heat transport associated with the flow of steam and water through an equivalent porous medium. The Baca geothermal reservoir is dominated by flow in fractures and distinct strata, but at the scale of application the equivalent porous media concept is appropriate. The geothermal reservoir and adjacent aquifers are simulated under both natural conditions and proposed production strategies. Simulation of natural conditions compares favorably with observed pressure, temperature, and thermal discharge data. The history matching simulations show that the results used for comparison are most sensitive to vertical permeability and the area of an assumed high-permeability zone connecting the reservoir to a deep hydrothermal source. Simulations using proposed production strategies and optimistic estimates of certain hydrologic parameters and reservoir extent indicate that a 50-MW power plant could be maintained for a period greater than 30 years. This production, however, will result in significant decreases in the total water discharge to the Jemez River.

Faust, C.R.; Mercer, J.W.; Thomas, S.D.; Balleau, W.A.

1984-05-01T23:59:59.000Z

353

U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |  

Broader source: Energy.gov (indexed) [DOE]

U.S. Domestic Oil Production Exceeds Imports for First Time in 18 U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook Allison Lantero Allison Lantero Public Affairs Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of the Billboard charts, and the Yahoo! search engine had not yet been unveiled. It was also the last month the U.S. produced more oil than it imported. Until last month. During remarks in Cleveland yesterday, President Obama noted this historic milestone: in October, America produced more oil here at home than we imported from overseas.

354

U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |  

Broader source: Energy.gov (indexed) [DOE]

Domestic Oil Production Exceeds Imports for First Time in 18 Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook Allison Lantero Allison Lantero Public Affairs Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of the Billboard charts, and the Yahoo! search engine had not yet been unveiled. It was also the last month the U.S. produced more oil than it imported. Until last month. During remarks in Cleveland yesterday, President Obama noted this historic milestone: in October, America produced more oil here at home than we imported from overseas.

355

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

356

Acetate Production from Oil under Sulfate-Reducing Conditions in Bioreactors Injected with Sulfate and Nitrate  

Science Journals Connector (OSTI)

...sulfate- and nitrate- reducing bacteria from an oil field in Argentina. Appl. Environ. Microbiol. 74 :4324-4335. 34. Callbeck...6908-6917. 41. Gieg, LM , KE Duncan and JM Suflita. 2008. Bioenergy production via microbial conversion of residual oil to natural...

Cameron M. Callbeck; Akhil Agrawal; Gerrit Voordouw

2013-06-14T23:59:59.000Z

357

Dobson Butte field, Williston basin, Stark County, North Dakota: nontypical oil production  

SciTech Connect (OSTI)

The Dobson Butte field (T139N, R96W), Stark County, North Dakota, was discovered in 1982 following a detailed seismic program. Production is primarily from a structural trap in the Interlake Formation of Silurian age. Three oil wells are presently producing from a dolomite reservoir at about 11,000 ft in depth. Primary recoverable reserves of these three producing wells is calculated to be about 2 million bbl of oil. Additional reserves will come from further development of the Interlake reservoir as well as from the deeper Red River (Ordovician) Formation. The Dobson Butte field is a nontypical oil field within the Williston basin as to its high pour point oil (90/sup 0/F), high production water cuts (85-95%), lack of good oil shows in samples, unpredictable noncontinuous oil-producing reservoirs throughout the entire 600-ft Interlake Formation, difficulty in log interpretations, and difficulty in determining the source bed. The interpretation of these nontypical characteristics of Interlake oil production in the Dobson Butte field compared to other Interlake oil production within the Williston basin will have a profound effect upon future Interlake exploration.

Guy, W.J.

1987-05-01T23:59:59.000Z

358

EIS-0016: Cumulative Production/Consumption Effects of the Crude Oil Price Incentive Rulemakings, Programmatic  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this Final Statement to FEA-FES-77-7 to assess the environmental and socioeconomic implications of a rulemaking on crude oil pricing incentives as pertains to the full range of oil production technologies (present as well as anticipated.)

359

The Esso Energy Award Lecture, 1998. Boosting production from low-pressure oil and gas fields: a revolution in hydrocarbon production  

Science Journals Connector (OSTI)

...Boosting production from low-pressure oil and gas fields: a revolution in hydrocarbon...major part of the future source of oil and gas supply. Full development...Caledonia Ltd (Wood Group Engineering), Marathon Oil UK Ltd, Mobil North Sea Ltd, Oil...

1999-01-01T23:59:59.000Z

360

Crude Oil plus Lease Condensate Estimated Production, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

1,929 1,991 2,065 2,386 2009-2012 Federal Offshore U.S. 599 590 504 474 2009-2012 Pacific (California) 22 19 22 15 2009-2012 Gulf of Mexico (Louisiana & Alabama) 522 518 432 387...

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The use of oil shale ash in the production of biodiesel from waste vegetable oil  

Science Journals Connector (OSTI)

Oil shale ash obtained from combustion of local oil shale deposits was used in this study as a heterogeneous catalyst to produce biodiesel from waste vegetable oil (WVO). Two alcohols with high and low boiling points ethanol and ethylene glycol were used for oil shale catalytic esterification of the WVO. Results show that the esterification of wastes of oil utilizing wastes of oil shale combustion can be used to produce biodiesel. Additionally it was found that in order to make the oil shale ash an effective catalyst for transesterification high reaction temperature is required. Therefore the results have indicated that high biodiesel yield is obtained when using ethylene glycol at high temperature while the yield is low when solid catalytic reaction is performed using ethanol at low temperature. The maximum obtained yield was 75?wt. % utilizing ethylene glycol at 150?°C whereas this yield decreased to 69.9?wt. % as the operating temperature was reduced to 100?°C. On the other hand when using ethanol the yield of biodiesel was relatively low (11?wt. % at 60?°C and 9?wt. % at 80?°C).

A. Al-Otoom; M. Allawzi; A. Ajlouni; F. Abu-Alrub; M. Kandah

2012-01-01T23:59:59.000Z

362

Process analysis and optimization of biodiesel production from vegetable oils  

E-Print Network [OSTI]

in Table (2.2) (OTM, 1999). Crude oils are composed of 80 to 90% hydrogen saturated aliphatic alkanes (paraffins) and cycloalkanes (naphthenes). Aromatic hydrocarbons and alkenes (olefins) comprise 10- 20% and 1%, respectively, of crude oil composition....2 Hydrocarbon Contents in Crude Oil (ATSDR, 1995; OTM, 1999) HYDROCARBONS GENERAL FORMULA CHAIN TYPE STATE (Room temp) EXAMPLES Paraffins (Aliphatic) CnH2n+2 (n:1 to20) Linear or Branched Gas or Liquid Methane, Propane Hexane Aromatic C6H5-Y...

Myint, Lay L.

2009-05-15T23:59:59.000Z

363

A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO  

E-Print Network [OSTI]

Rio Arriba Counties, New Mexico. Union Oil Internal ReportGoil Company of California, and Public Service Company of New Mexico,New Mexico. Private geophysical survey for Union Oil Co.

Wilt, M.

2011-01-01T23:59:59.000Z

364

AEO2011: Lower 48 Crude Oil Production and Wellhead Prices by Supply Region  

Open Energy Info (EERE)

Crude Oil Production and Wellhead Prices by Supply Region Crude Oil Production and Wellhead Prices by Supply Region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 132, and contains only the reference case. The data is broken down into Production, lower 48 onshore and lower 48 offshore. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO crude oil EIA prices Data application/vnd.ms-excel icon AEO2011: Lower 48 Crude Oil Production and Wellhead Prices by Supply Region- Reference Case (xls, 54.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

365

Heavy oil exposure increases viral production in natural marine bacterial populations  

Science Journals Connector (OSTI)

This study examined whether heavy oil (HO) increases viral production and how that change may affect the marine bacterial community. The addition of a relatively low concentration (10 ?g/mL) of HO to seawater ...

Mitsuhiro Yoshida; Satoru Suzuki

2014-02-01T23:59:59.000Z

366

Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa)  

Broader source: Energy.gov [DOE]

The state, counties and cities and other political subdivisions may lease publicly owned lands for the purpose of oil or gas or metallic minerals exploration and production.  Any such leases shall...

367

Synthesis of super plasticizer NF-30 from coal coking by product washing oil and performance analysis  

Science Journals Connector (OSTI)

Super plasticizer was synthesized by using coal coking by product washing oil and industrial naphthalene....2 in exhaust (20%). Compared with NF, NF-30 have some advantages in lower cost, high water reducing rate...

Zifang Xu ???; Mingxu Zhang; Wenpei Hu

2013-10-01T23:59:59.000Z

368

Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis  

SciTech Connect (OSTI)

A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

Ringer, M.; Putsche, V.; Scahill, J.

2006-11-01T23:59:59.000Z

369

A review of Oil production capacity expansion costs for the Persian Gulf  

E-Print Network [OSTI]

The U.S. Energy Information Agency has recently published a report prepared by Petroconsultants, Inc. that addresses the cost of expanding crude oil production capacity in the Persian Gulf. A study on this subject is much ...

Adelman, Morris Albert

1996-01-01T23:59:59.000Z

370

Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007  

Broader source: Energy.gov [DOE]

The United States was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 24% of the world's petroleum consumption in 2007. The...

371

Paraffin problems in crude oil production and transportation: A review  

SciTech Connect (OSTI)

Problems related to crystallization and deposition of paraffin waxes during production and transportation of crude oil cause losses of billions of dollars yearly to petroleum industry. The goal of this paper is to present the knowledge on such problems in a systematic and comprehensive form. The fundamental aspects of these problems are defined, and characterization of paraffins and their solubility tendencies have been discussed. It has been established conclusively that n-paraffins are predominantly responsible for this problem. Comprehensive discussion on the mechanism of crystallization of paraffins has been included. Compounds other than n-paraffins, especially asphaltenes and resins, have profound effects on solubility of n-paraffins. In evaluations of the wax potential of a crude, the climate of the area concerned should be considered. Under the most favorable conditions, n-paraffins form clearly defined orthorhombic crystals, but unfavorable conditions and the presence of impurities lead to hexagonal and/or amorphous crystallization.The gelation characteristics are also affected the same way. An attempt was made to classify the paraffin problems into those resulting from high pipeline pressure, high restarting pressure, and deposition on pipe surfaces. Fundamental aspects and mechanism of these dimensions are described. Wax deposition depends on flow rate, the temperature differential between crude and pipe surface, the cooling rate, and surface properties. Finally, methods available in the literature for predicting these problems and evaluating their mitigatory techniques are reviewed. The available methods present a very diversified picture; hence, using them to evaluate these problems becomes taxing. A top priority is standardizing these methods for the benefit of the industry. 56 refs.

Misra, S.; Baruah, S.; Singh, K. (Oil and Natural Gas Corp., Ltd., Jorhat (India))

1995-02-01T23:59:59.000Z

372

Business Evaluation of a Green Microalgae Botryococcus Braunii Oil Production System  

Science Journals Connector (OSTI)

Business feasibility of oil production using the green alga Botryococcus braunii has been studied for a conceptually designed, 19-hectare (ha) semi-open pond type oil producing plant. B. braunii is known to produce triterpenic hydrocarbons, such as C34H58, with high purity. The construction cost was estimated to be 200M¥ (2.35M$) and the operation cost was 200M¥ (2.35M$), or 10.5 M¥/ha year (=124,000$/ha year). The plant achieved a net energy gain in operation with an energy consumption ratio (ECR) of 2.80. Based on the total sales of the hydrocarbon oil produced and the operation cost balance considerations, the breakeven point oil price was 107 ¥/L. By utilizing corporate financial analyses methods, the capital value of the oil producing company was estimated. The analysis methods described in the present study can also be applied to other oil production companies that use microalgae. We found that the initially invested capital increases approximately three times through successive business years when the oil price is 130 ¥/L. In conclusion, several considerations introduced in the present study suggest that the algal oil production business will become strongly competitive in the fuel market by mid-twenty-first century.

Makoto Shiho; Masayuki Kawachi; Kazuhiko Horioka; Yosuke Nishita; Kazuhiko Ohashi; Kunimitsu Kaya; Makoto M. Watanabe

2012-01-01T23:59:59.000Z

373

Production and Properties of Biodiesel from Algal Oils  

Science Journals Connector (OSTI)

Biodiesel is defined as the mono-alkyl esters of vegetable oils or animal fats or other materials composed of triacylglycerols. This chapter discusses the potential fuel properties of biodiesel derived from al...

Gerhard Knothe

2013-01-01T23:59:59.000Z

374

Shale Oil Production Performance from a Stimulated Reservoir Volume  

E-Print Network [OSTI]

The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual...

Chaudhary, Anish Singh

2011-10-21T23:59:59.000Z

375

Supply and Disposition of Crude Oil and Petroleum Products  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

957 15 731 315 -382 -141 33 712 15 735 Crude Oil 614 - - - - 300 -139 -147 -15 638 4 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 342 0 21 11 -304 - - 14 19 9 29...

376

Supply and Disposition of Crude Oil and Petroleum Products  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

848 14 646 310 -422 -51 0 622 15 707 Crude Oil 527 - - - - 296 -183 -57 3 578 2 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 320 0 11 11 -265 - - 1 17 12 48 Pentanes...

377

Prognosis for Expanded U.S. Production of Crude Oil  

Science Journals Connector (OSTI)

...truLe extent of the reservoir, its 334 form...completed to drain the reservoir efficiently. The...and thickness), rock properties (porosity and permeability), and fluid content...the oil from the reservoir into wells. These...

R. R. Berg; J. C. Calhoun Jr.; R. L. Whiting

1974-04-19T23:59:59.000Z

378

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

TCF) of proven natural gas reserves and over 100 TCF ofTCF) of known natural gas reserves on the North Slope tothe oil reserve while others are above the gas cap. For

Leighty, Wayne

2008-01-01T23:59:59.000Z

379

The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs  

E-Print Network [OSTI]

THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1972 Major Subject: PETROLEUM ENGINEERING THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Approved as. to style...

Ferguson, Ed Martin

2012-06-07T23:59:59.000Z

380

Forecasting future oil production in Norway and the UK: a general improved methodology  

E-Print Network [OSTI]

We present a new Monte-Carlo methodology to forecast the crude oil production of Norway and the U.K. based on a two-step process, (i) the nonlinear extrapolation of the current/past performances of individual oil fields and (ii) a stochastic model of the frequency of future oil field discoveries. Compared with the standard methodology that tends to underestimate remaining oil reserves, our method gives a better description of future oil production, as validated by our back-tests starting in 2008. Specifically, we predict remaining reserves extractable until 2030 to be 188 +/- 10 million barrels for Norway and 98 +/- 10 million barrels for the UK, which are respectively 45% and 66% above the predictions using the standard methodology.

Fievet, Lucas; Cauwels, Peter; Sornette, Didier

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume  

E-Print Network [OSTI]

of Gulf of Mexico from other historic offshore oil spillsHorizon oil spill in the Gulf of Mexico is the deepest andDeepwater Horizon oil spill in the Gulf of Mexico was one of

Lu, Z.

2012-01-01T23:59:59.000Z

382

Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history  

E-Print Network [OSTI]

as in Gulf of Mexico waters, biodegradation of oil proceedsthe largest oil spill in the Gulf of Mexico and the secondThe Gulf of Mexico has more natural seeps of oil then any

Atlas, R.M.

2012-01-01T23:59:59.000Z

383

New insights into microbial responses to oil spills from the Deepwater Horizon incident  

E-Print Network [OSTI]

sea in the Gulf of Mexico to oil emanating from the MacondoGulf of Mexico experiences multiple, natural, episodic “oilGulf of Mexico experiences frequent, episodic, natural “oil

Mason, O.U.

2012-01-01T23:59:59.000Z

384

Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history  

E-Print Network [OSTI]

as in Gulf of Mexico waters, biodegradation of oil proceedsGulf of Mexico has lots of natural seeps of oil and thereGulf of Mexico On April 20, 2010, high-pressure oil and gas

Atlas, R.M.

2012-01-01T23:59:59.000Z

385

RNA-Seq reveals complex genetic response to deepwater horizon oil release in Fundulus grandis  

E-Print Network [OSTI]

Fishes to the Gulf of Mexico Oil Disaster. PLoS One 2011, 6:of weathered crude oil from the Gulf of Mexico in mallardsmall oil seeps occur through- out the Gulf of Mexico, we do

Garcia, Tzintzuni I; Shen, Yingjia; Crawford, Douglas; Oleksiak, Marjorie F; Whitehead, Andrew; Walter, Ronald B

2012-01-01T23:59:59.000Z

386

New insights into microbial responses to oil spills from the Deepwater Horizon incident  

E-Print Network [OSTI]

sea in the Gulf of Mexico to oil emanating from the MacondoPhotos of the oil spill from the Gulf of Mexico. Figure 3.Gulf of Mexico experiences multiple, natural, episodic “oil

Mason, O.U.

2012-01-01T23:59:59.000Z

387

Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume  

E-Print Network [OSTI]

Horizon oil spill in the Gulf of Mexico is the deepest andof Gulf of Mexico from other historic offshore oil spillsDeepwater Horizon oil spill in the Gulf of Mexico was one of

Lu, Z.

2012-01-01T23:59:59.000Z

388

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

389

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

390

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

391

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

392

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

RR-08-26 Modeling of Energy Production Decisions: An Alaskarapid or gradual energy production in the future? • Doesnet social benefit from energy production and achieving a

Leighty, Wayne

2008-01-01T23:59:59.000Z

393

Crude Injustice in the Gulf: Why Categorical Exclusions for Deepwater Drilling in the Gulf of Mexico are Inconsistent with U.S. International Ocean Law and Policy  

E-Print Network [OSTI]

and Whales and the Gulf of Mexico Oil Spill, NOAA FISHERIES:059, PRO- POSED GULF OF MEXICO OCS OIL AND GAS LEASE SALEMGMT. SERV. , GULF OF MEXICO OCS OIL AND GAS LEASE SALES:

Hull, Eric V.

2011-01-01T23:59:59.000Z

394

Crude Injustice in the Gulf: Why Categorical Exclusions for Deepwater Drilling in the Gulf of Mexico are Inconsistent with U.S. International Ocean Law and Policy  

E-Print Network [OSTI]

and Whales and the Gulf of Mexico Oil Spill, NOAA FISHERIES:PRO- POSED GULF OF MEXICO OCS OIL AND GAS LEASE SALE 206,MGMT. SERV. , GULF OF MEXICO OCS OIL AND GAS LEASE SALES:

Hull, Eric V.

2011-01-01T23:59:59.000Z

395

Attitudes toward offshore oil development: A summary of current evidence  

E-Print Network [OSTI]

Gulf of Mexico regions of the US where oil developmentof Mexico, where a number of platforms are producing oil inoil industry’s previous experiences in the Gulf of Mexico.

Gramling, R; Freudenburg, Wm R

2006-01-01T23:59:59.000Z

396

Rerouting Carbon Flux To Enhance Photosynthetic Productivity  

Science Journals Connector (OSTI)

...photoinhibition) resulting from energy imbalances between light...Engineering, SEP-DGRI, Mexico, and the agreement between CCG and Fundacion Mexico en Harvard A.C. One...co-products. Renew. Sustain. Energy Rev. 14 :557-577...CO2 mitigation and renewable oil from photosynthetic...

Daniel C. Ducat; J. Abraham Avelar-Rivas; Jeffrey C. Way; Pamela A. Silver

2012-02-03T23:59:59.000Z

397

Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings  

Broader source: Energy.gov [DOE]

Dr. Jani Lehto presentation at the May 9 Pyrolysis Oil Workshop on Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings.

398

Impacts of different diameter combinations on the temperature of a crude oil pipeline when colocating with a products pipeline  

Science Journals Connector (OSTI)

In order to show the effects of different diameter combinations on crude oil temperature when a crude oil pipeline and a products pipeline are laid in one trench, four typical ... temperature difference of the cr...

Bo Yu; Yue Shi; Xin Liu; Jinjun Zhang…

2010-06-01T23:59:59.000Z

399

Mining and Gas and Oil Production (North Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mining and Gas and Oil Production (North Dakota) Mining and Gas and Oil Production (North Dakota) Mining and Gas and Oil Production (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Buying & Making Electricity Program Info State North Dakota Program Type Siting and Permitting This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter

400

An example of using oil-production induced microseismicity in characterizing a naturally fractured reservoir  

SciTech Connect (OSTI)

Microseismic monitoring was conducted using downhole geophone tools deployed in the Seventy-Six oil field, Clinton County, Kentucky. Over a 7-month monitoring period, 3237 microearthquakes were detected during primary oil production; no injection operations were conducted. Gross changes in production rate correlate with microearthquake event rate with event rate lagging production-rate changes by about 2 weeks. Hypocenters and first-motion data have revealed low-angle, thrust fracture zones above and below the currently drained depth interval. Production history, well logs and drill tests indicate the seismically-active fractures are previously drained intervals that have subsequently recovered to hydrostatic pressure via brine invasion. The microseismic data have revealed, for the first time, the importance of the low-angle fractures in the storage and production of oil in the study area. The seismic behavior is consistent with poroelastic models that predict slight increases in compressive stress above and below currently drained volumes.

Rutledge, J.T.; Phillips, W.S. [Nambe Geophysical, Inc., Santa Fe, NM (United States); Schuessler, B.K.; Anderson, D.W. [Los Alamos National Lab., NM (United States)

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Oil production by entrained pyrolysis of biomass and processing of oil and char  

DOE Patents [OSTI]

Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

Knight, James A. (Atlanta, GA); Gorton, Charles W. (Atlanta, GA)

1990-01-02T23:59:59.000Z

402

EIA - Natural Gas Production Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Production Production Gross Withdrawals and Production Components of natural gas production for the U.S., States and the Gulf of Mexico (monthly, annual). Number of Producing Gas Wells U.S. and State level data (annual). Wellhead Value & Marketed Production U.S. and State level natural gas wellhead values and prices of marketed production (annual). Offshore Gross Withdrawals U.S., State, and Gulf of Mexico gross withdrawals from oil and gas wells(annual). Gulf of Mexico Federal Offshore Production Production of crude oil, natural gas wet after lease separation, natural gas liquids, dry natural gas, and lease condensate (annual). Natural Gas Plant Liquids Production Production by U.S., region, and State (annual). Lease Condensate Production Production by U.S., region, and State (annual).

403

EIA - Gulf of Mexico Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Fact Sheet Gulf of Mexico Fact Sheet Overview Data Petroleum and Other Liquids Crude Oil, Condensate and NGL Proved Reserves Natural Gas Natural Gas Proved Reserves Refinery Capacity Natural Gas Processing Plants Release Date: July 1, 2013 Energy Data all tables + EXPAND ALL U.S. Petroleum and Other Liquid Fuels Facts for 2012 million barrels per day Share of Total U.S. Liquid Fuels Consumed Liquid Fuels Production 11.3 61% U.S. Crude Oil Production 6.5 35% Total U.S. Federal Offshore 1.3 7% Gulf of Mexico Federal Offshore 1.3 7% Natural Gas Plant Liquids 2.4 13% Refinery Processing Gain 1.1 6% Biofuels 0.9 5% Other1 0.4 2% Stocks Withdrawn -0.2 -1% Net Imports 7.4 40% Gross Imports into Gulf Coast 5.1 28% Total U.S. Liquid Fuels Supplied2 18.6 100% Federal Offshore share of U.S. crude oil production 20%

404

U.S. Imports of Crude Oil and Petroleum Products  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9,240 9,584 9,380 8,815 9,472 9,309 1973-2014 Crude Oil 7,264 7,547 7,165 7,054 7,623 7,471 1920-2014 Natural Gas Plant Liquids and Liquefied Refinery Gases 166 141 99 116 86 90...

405

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

29,654 457 22,655 9,757 -11,830 -4,359 1,022 22,083 459 22,770 40,249 Crude Oil 19,044 - - - - 9,297 -4,312 -4,561 -451 19,787 132 0 20,405 Natural Gas Plant Liquids and Liquefied...

406

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

7,134 78 8,072 4,027 -3,603 366 34 7,401 3,285 5,354 Crude Oil 5,259 - - - - 3,454 -222 227 -164 8,685 198 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,875 0 534 1...

407

U.S. Exports of Crude Oil and Petroleum Products  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3,858 3,966 4,121 4,156 4,479 4,533 1973-2014 Crude Oil 246 268 288 396 401 389 1920-2014 Natural Gas Plant Liquids and Liquefied Refinery Gases 581 697 727 683 765 743 1981-2014...

408

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

2,416 250,220 124,827 -111,703 11,357 1,044 229,444 101,831 165,961 1,223,681 Crude Oil 163,028 - - - - 107,081 -6,891 7,037 -5,099 269,223 6,132 0 882,888 Natural Gas Plant...

409

Supply and Disposition of Crude Oil and Petroleum Products  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

6,046 98 7,569 4,450 -3,757 434 -42 6,943 2,694 5,247 Crude Oil 4,384 - - - - 3,691 -391 312 6 7,952 37 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,663 0 411 35 165...

410

Decline and depletion rates of oil production: a comprehensive investigation  

Science Journals Connector (OSTI)

...microscopic pores within the rock, and the term porosity refers to the fraction...volume. The larger the porosity, the better the rock is at storing fluids...in the case of oil reservoirs) to permit fluid flow, its permeability, and the degree of...

2014-01-01T23:59:59.000Z

411

PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES  

SciTech Connect (OSTI)

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

2003-04-01T23:59:59.000Z

412

Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico  

E-Print Network [OSTI]

1. Williams, P. : “Mexico,” Oil and Gas Investor (July 2003)oil field, bordering the Gulf coast in the eastern part of Mexico,

Birkle, P.

2009-01-01T23:59:59.000Z

413

Evaluation of Wax Deposition and its Control during Production of Alaska North Slope Oils  

Office of Scientific and Technical Information (OSTI)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-01NT41248 Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils Petroleum Development Laboratory Institute of Northern Engineering University of Alaska Fairbanks P.O. Box 755880 Fairbanks, Alaska 99775-5880 Prepared for: United States Department of Energy National Energy Technology Laboratory December 2008 Office of Fossil Energy Evaluation of Wax Deposition and Its Control During Production of Alaskan North Slope Oils Final Report Reporting Period: October 1, 2005-September 30, 2008 Principal Investigator: Tao Zhu University of Alaska Fairbanks P.O. Box 755880 Fairbanks, AK 99775-5880 fftz@uaf.edu, 907-474-5141 External Principal Investigator: Jack A. Walker

414

Product Price Spreads Over Crude Oil Vary With Seasons and Supply/Demand  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Of course, petroleum product prices don't move in lockstep to crude oil prices, for a number of reasons. We find it useful to look at variations in the spread between product and crude oil prices, in this case comparing spot market prices for each. The difference between heating oil and crude oil spot prices tends to vary seasonally; that is, it's generally higher in the winter, when demand for distillate fuels is higher due to heating requirements, and lower in the summer. (Gasoline, as we'll see later, generally does the opposite.) However, other factors affecting supply and demand, including the relative severity of winter weather, can greatly distort these "typical" seasonal trends. As seen on this chart, the winters of 1995-96 and 1996-97 featured

415

Oil and Gas Gross Production Tax (North Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil and Gas Gross Production Tax (North Dakota) Oil and Gas Gross Production Tax (North Dakota) Oil and Gas Gross Production Tax (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Fees A gross production tax applies to most gas produced in North Dakota. Gas burned at the well site to power an electrical generator that consumes at least 75 percent of the gas is exempt from taxation under this chapter.

416

U.S. Distribution and Production of Oil and Gas Wells | OpenEI  

Open Energy Info (EERE)

Distribution and Production of Oil and Gas Wells Distribution and Production of Oil and Gas Wells Dataset Summary Description Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are available from the EIA for most states for the years 1919 to 2009. Graphs displaying historical behavior of well production rate are also available. The quality and completeness of data is dependent on update lag times and the quality of individual state and commercial source databases. Undercounting of the number of wells occurs in states where data is sometimes not available at the well level but only at the lease level. States not listed below will be added later as data becomes available. Source EIA Date Released January 07th, 2011 (3 years ago) Date Updated Unknown Keywords

417

Predicted and actual productions of horizontal wells in heavy-oil fields  

Science Journals Connector (OSTI)

This paper discusses the comparison of predicted and actual cumulative and daily oil production. The predicted results were obtained from the use of Joshi's equation, wherein, the effects of anisotropy and eccentricity were included. The cumulative production obtained from the use of equations developed by Borisov, Giger, Renard and Dupuy resulted in errors in excess of 100%, thus, they were not considered applicable for predicting cumulative and daily flows of heavy oils in horizontal wells. The wells considered in this analysis varied from 537 to 1201 metres with corresponding well bores of 0.089 to. 0.110 m. Using Joshi's equation, the predicted cumulative oil-production was within a 20% difference for up to 12 months of production for long wells and up to 24 months for short wells. Short wells were defined as those being under 1000 m.

Peter Catania

2000-01-01T23:59:59.000Z

418

The use of Devonian oil shales in the production of portland cement  

SciTech Connect (OSTI)

The Lafarge Corporation operates a cement plant at Alpena, Michigan in which Antrim shale, a Devonian oil shale, is used as part of the raw material mix. Using this precedent the authors examine the conditions and extent to which spent shale might be utilized in cement production. They conclude that the potential is limited in size and location but could provide substantial benefit to an oil shale operation meeting these criteria.

Schultz, C.W.; Lamont, W.E. [Alabama Univ., University, AL (United States); Daniel, J. [Lafarge Corp., Alpena, MI (United States)

1991-12-31T23:59:59.000Z

419

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

natural gas will be the low cost hydrogen production methodGas Production .12 A DYNAMIC MODEL OF UNIT PRODUCTION .14 The Multi-Stage Investment Timing Game .16 DATA, COSTgas production decisions results in a more or less optimal system. the pipeline cost

Leighty, Wayne

2008-01-01T23:59:59.000Z

420

Short-Term Energy Outlook Supplement: 2013 Outlook for Gulf of Mexico Hurricane-Related Production Outages  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Outlook for Gulf of Mexico 2013 Outlook for Gulf of Mexico Hurricane-Related Production Outages June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: 2013 Hurricane Outlook i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. June 2013 U.S. Energy Information Administration | STEO Supplement: 2013 Hurricane Outlook 1

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, April 1995--June 1995  

SciTech Connect (OSTI)

Progress is described on the determination of environmental impacts from waste discharges to the aquatic ecosystems from oil and gas operations. Task 2 (Preparation of the Sampling and Analysis Plan) activities involved revisions and additions to the Sampling and Analysis Plan. Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included analyses of water, sediment, and tissue samples as well as data management. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the continued analyses of samples and conducting field sampling at Bay de Chene. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included preparing a draft final report and review by the Scientific Review Committee (SRC). Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work involved the preparation of the draft final report and review by the SRC. Task 7 (Technology Transfer Plan) activities involved the presentation of four papers. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1995-07-31T23:59:59.000Z

422

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, April--June 1993  

SciTech Connect (OSTI)

Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of four terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana and Texas; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. Accomplishments for this period are described.

Gettleson, D.A.

1993-07-26T23:59:59.000Z

423

Parens Patriae Litigation to Redress Societal Damages from the BP Oil Spill: The Latest Stage in the Evolution of Crimtorts  

E-Print Network [OSTI]

BP, BP Forms Gulf of Mexico Oil Spill Escrow Trust (Aug. 9,Dispersants Used in Gulf of Mexico Oil Spill Clean Up,discharge of oil into the Gulf of Mexico. 257 The Louisiana

Rustad, Michael L.; Koenig, Thomas H.

2011-01-01T23:59:59.000Z

424

Parens Patriae Litigation to Redress Societal Damages from the BP Oil Spill: The Latest Stage in the Evolution of Crimtorts  

E-Print Network [OSTI]

Dispersants Used in Gulf of Mexico Oil Spill Clean Up,BP, BP Forms Gulf of Mexico Oil Spill Escrow Trust (Aug. 9,discharge of oil into the Gulf of Mexico. 257 The Louisiana

Rustad, Michael L.; Koenig, Thomas H.

2011-01-01T23:59:59.000Z

425

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect (OSTI)

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

NONE

1998-03-01T23:59:59.000Z

426

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect (OSTI)

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

Not Available

1994-07-08T23:59:59.000Z

427

Model methodology and data description of the Production of Onshore Lower 48 Oil and Gas model  

SciTech Connect (OSTI)

This report documents the methodology and data used in the Production of Onshore Lower 48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. Natural gas is modeled by gas category, generally conforming to categories defined by the Natural Gas Policy Act (NGPA) of 1978, as well as a category representing gas priced by way of a spot market (referred to as ''spot'' gas). A linear program is used to select developmental drilling activities for conventional oil and gas and exploratory drilling activities for deep gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using exogenously specified price paths for oil and gas, net present values are computed for fixed amounts of drilling activity for oil and gas development and deep gas exploration in each of six onshore regions. Through maximizing total net present value, the linear program provides forecasts of drilling activities, reserve additions, and production. Oil and shallow gas exploratory drilling activities are forecast on the basis of econometrically derived equations, which are dependent on specified price paths for the two fuels. 10 refs., 3 figs., 10 tabs.

Not Available

1988-09-01T23:59:59.000Z

428

Mexico's Luna discoveries are more than moonshine  

SciTech Connect (OSTI)

Just when it seemed that Mexico's petroleum reserves may have been overstated, the state oil company opened a new province. Petroleos Mexicanos (Pemex) geologists think the Luna area of Tabasco State and the Gulf of Mexico could add the condensate and gas equivalent of 20 billion bbl of light oil to Mexico's proven reserves. If true, this would be the largest discovery in Mexico since the Campeche Sound fields in 1976. To date, the new province stretches about 50 miles between the Caribbean coastal towns of Frontera and Puerto Ceiba in Tabasco State, and extends some 31 miles offshore (see map). Since the early 1970s, Pemex geologists have postulated that the entire Yucatan platform will prove productive. Luna finds reduce the distance between Campeche fields and onshore production to 93 miles. The Luna area is ideally suited for rapid development - it is about 40 miles northeast of Villahermosa, Tabasco, and within 60 miles of the export terminal at Dos Bocas near the border between Tabasco and Vera Cruz states. It is also less than 50 miles from the Cactus gas-processing and petrochemical plants in Chiapas State, which means that gas can be put into the country's trunk line that extends to the U.S. grid at Reynosa.

Stewart-Gordon, T.J.; Baker, G.T.

1987-05-01T23:59:59.000Z

429

Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report  

SciTech Connect (OSTI)

This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

Not Available

1989-08-01T23:59:59.000Z

430

Total Crude Oil and Products Imports from All Countries  

Gasoline and Diesel Fuel Update (EIA)

Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Albania Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Belize Benin Bolivia Brazil Brunei Bulgaria Burma Cameroon Canada Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Croatia Cyprus Czech Republic Denmark Dominican Republic Egypt El Salvador Equatorial Guinea Estonia Finland France Gabon Georgia, Republic of Germany Ghana Gibralter Greece Guatemala Guinea Hong Kong Hungary India Indonesia Ireland Israel Italy Ivory Coast Jamaica Japan Kazakhstan Korea, South Kyrgyzstan Latvia Liberia Lithuania Malaysia Malta Mauritania Mexico Midway Islands Morocco Namibia Netherlands Netherlands Antilles New Zealand Nicaragua Niue Norway Oman Pakistan Panama Papua New Guinea Peru Philippines Poland Portugal Puerto Rico Romania Russia Senegal Singapore Slovakia South Africa Spain Spratly Islands Swaziland Sweden Switzerland Syria Taiwan Thailand Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Ukraine United Kingdom Uruguay Uzbekistan Vietnam Virgin Islands (U.S.) Yemen

431

Impact of U.S. Wholesale Demand for Canned Sardines on Market Accessibility of Potential Gulf of Mexico Products  

E-Print Network [OSTI]

Impact of U.S. Wholesale Demand for Canned Sardines on Market Accessibility of Potential Gulf their demand characteristics. Results in- dicate that opportunities for entry exist, especiallyfor products was packed in soy oil. The major sources for imported sar- dines are Norway, Peru, Portugal, Japan

432

Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities  

SciTech Connect (OSTI)

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

2004-01-13T23:59:59.000Z

433

Olive Oil Production in Greece1 The 1981 accession of Greece into the EEC was significant for the  

E-Print Network [OSTI]

Olive Oil Production in Greece1 The 1981 accession of Greece into the EEC was significant for the olive oil sector. Greece is covered by 1,025,748 hectares of olive groves. In the period of 1991 to 1996 to other crops due to the high level of CAP support and high olive-oil prices and d) the lack

Zaferatos, Nicholas C.

434

Hydrodesulfurization of Fluid Catalytic Cracking Decant Oils for the Production of Low-sulfur Needle Coke Feedstocks.  

E-Print Network [OSTI]

??Needle coke, produced by the delayed coking of fluid catalytic cracking decant oils, is the primary filler used in the production of graphite electrodes. The… (more)

Wincek, Ronald

2013-01-01T23:59:59.000Z

435

Estimates of future regional heavy oil production at three production rates--background information for assessing effects in the US refining industry  

SciTech Connect (OSTI)

This report is one of a series of publications from a project considering the feasibility of increasing domestic heavy oil (10{degree} to 20{degree} API gravity inclusive) production being conducted for the US Department of Energy. The report includes projections of future heavy oil production at three production levels: 900,000; 500,000; and 300,000 BOPD above the current 1992 heavy oil production level of 750,000 BOPD. These free market scenario projections include time frames and locations. Production projections through a second scenario were developed to examine which heavy oil areas would be developed if significant changes in the US petroleum industry occurred. The production data helps to define the possible constraints (impact) of increased heavy oil production on the US refining industry (the subject of a future report). Constraints include a low oil price and low rate of return. Heavy oil has high production, transportation, and refining cost per barrel as compared to light oil. The resource is known, but the right mix of technology and investment is required to bring about significant expansion of heavy oil production in the US.

Olsen, D.K.

1993-07-01T23:59:59.000Z

436

Microbial petroleum degradation enhancement by oil spill bioremediation products  

E-Print Network [OSTI]

was conducted using unpolluted, natural seawater. The products were tested in triplicate using 250 ml Erlenmeyer flasks and evaluated over a 28 day period to determine the products' capabilities based on the extent of petroleum degradation. Toxicity...

Lee, Salvador Aldrett

1996-01-01T23:59:59.000Z

437

An evaluation of Mexico's declining oil production and waning petroleum reserves .  

E-Print Network [OSTI]

??rather than invested in exploration projects, infrastructure modernization, or process efficiency improvement. Decades of severe financial constraints placed on Pemex by the Mexican government, coupled… (more)

Rangel, Erik.

2011-01-01T23:59:59.000Z

438

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment References Energy Information Administration, Annual Energy Outlook 2000, DOE/EIA-0383(2000) (Washington, DC, December 1999), Table A11. Energy Information Administration, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge, SR/RNGD/87-01 (Washington, DC, September 1987). U.S. Department of Interior, Arctic National Wildlife Refuge, Alaska, Coastal Plain Resource Assessment, (Washington, DC, November, 1986). U.S. Department of Interior, Bureau of Land Management, Minerals Management Service. Northeast National Petroleum Reserve-Alaska Final Integrated Activity Plan / Environmental Impact Statement, (Anchorage , Alaska, August, 1998).

439

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

440

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

442

CDC 2008, To appear Cancun, Mexico  

E-Print Network [OSTI]

CDC 2008, To appear Cancun, Mexico Increasingly Correct Message Passing Averaging Algorithms Kurt be used, for example, for surveillance, reconnaissance, oil spill contention, search- and-rescue missions

Bullo, Francesco

443

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Preface Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment is a product of the Energy Information AdministrationÂ’s (EIA) Reserves and Production Division. EIA, under various programs, has assessed foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral agency, EIAÂ’s standard analysis of the potential of the Alaska North Slope (ANS) has focused on the areas without exploration and development restrictions. EIA received a letter (dated March 10, 2000) from Senator Frank H. Murkowski as Chairman of the Senate Committee on Energy and Natural Resources requesting an EIA Service Report "with plausible scenarios for ANWR supply development consistent with the most recent U.S. Geological Survey resource assessments." This service report is prepared in response to the request of Senator Murkowski. It focuses on the ANWR coastal plain, a region currently restricted from exploration and development, and updates EIAÂ’s 1987 ANWR assessment.

444

Continuous biodiesel production from acidic oil using a combination of cation- and anion-exchange resins  

Science Journals Connector (OSTI)

Abstract A continuous process was developed to produce biodiesel from acidic oil containing soybean oil and oleic acid, which combined esterification by cation-exchange resin NKC-9, online separation and transesterification by anion-exchange resin D261. The esterification was carried out with soybean oil/oleic acid weight ratio of 5/5, methanol to oleic acid weight ratio of 1.5/1, reaction temperature of 338 K and residence time of 126.6 min. After the reaction, the mixture was settled to online separate into two layers, and the methanol–water–oleic acid mixture at the top layer was reclaimed. The bottom layer, mainly containing soybean oil and methyl oleate, was transesterified under methanol/soybean oil weight ratio of 1/3 and n-hexane/soybean oil weight ratio of 1/2 at 323 K for the residence time of 112.0 min. The high conversions of oleic acid (above 98%) and soybean oil (92.3%) were achieved. The yield of biodiesel in this process reached up to 95.1%. The main parameters of the product met the Chinese Standard of biodiesel.

Benqiao He; Yixuan Shao; Yanbiao Ren; Jianxin Li; Yu Cheng

2015-01-01T23:59:59.000Z

445

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

446

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

447

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

448

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool (NDP) is southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope-basin and deep-basin clastic depositional types.

Murphy, Mark B.

2000-10-25T23:59:59.000Z

449

Assessment of the Impacts of Standards and Labeling Programs in Mexico (four products).  

E-Print Network [OSTI]

Level Trends – Air Conditioner Product Classes Product Class7 – Efficiency of Air Conditioner Product Classes (Watts/for four major products: household refrigerators, room air

Sanchez, Itha; Pulido, Henry; McNeil, Michael A.; Turiel, Isaac; della Cava, Mirka

2007-01-01T23:59:59.000Z

450

New Mexico's energy resources '81. Annual report of Bureau of Geology in the Mining and Minerals Division of New Mexico Energy and Minerals Department  

SciTech Connect (OSTI)

Although production of U/sub 3/O/sub 8/ declined only slightly in 1980, New Mexico's share of domestic production has declined from 48% in 1976 to 35% in 1980. Production projections indicate a continued decline in 1981 and lower production until at least 1984. New Mexico has 41% of total domestic reserves producible in the $50-per-lb cost category. In keeping with the anticipated steady depletion of reserves, production of crude oil in New Mexico was 69.9 million bls, a 6.3% decline in production from 1979. Condensate production of 5.4 million bbls in 1980, however, represented an increase of 7% from 1979 production. Although natural gas production was the lowest since 1970 and declined by 2.6% from 1979 production, 1980 was the 15th year that production exceeded 1 trillion cu ft. Despite declines in production, the valuation of oil and gas production has increased significantly with oil sales doubling from the previous year and gas sales increasing by $409 million because of higher prices. Reserves have been estimated to be 959 million bbls of crude oil and 17.667 trillion cu ft of natural gas. Production of 19.5 million short tons of coal in 1980 represented a 33% increase over 1979 production and an increase of 157% since 1970. Coal resources in New Mexico are estimated to be 180.79 billion short tons, and production is projected to incease to 39.61 million tons in 1985 and 67.53 million tons in 1990. The most notable developments in geothermal energy have been in technical advances in drilling, testing, and applications, especially in the area of hot dry rock systems. The US Bureau of Land Management has issued 113 geothermal leases that remain active. Recent geothermal exploration activity has been detailed for 21 companies.

Arnold, E.C.; Hill, J.M. (comps.)

1981-09-03T23:59:59.000Z

451

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

,980 842 4,204 1,948 672 -339 187 3,995 240 4,886 ,980 842 4,204 1,948 672 -339 187 3,995 240 4,886 Crude Oil 1,472 - - - - 1,839 556 -359 17 3,416 76 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 508 -17 115 63 -14 - - 75 105 71 404 Pentanes Plus 63 -17 - - 0 98 - - -18 37 53 72 Liquefied Petroleum Gases 444 - - 115 63 -112 - - 93 68 18 332 Ethane/Ethylene 163 - - - 0 -100 - - 11 - - 52 Propane/Propylene 186 - - 104 49 -22 - - 66 - 7 244 Normal Butane/Butylene 52 - - 16 5 5 - - 22 17 11 29 Isobutane/Isobutylene 43 - - -4 8 5 - - -6 50 - 7 Other Liquids - - 858 - - 12 -143 127 346 474 40 -6 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 858 - - 5 -547 -8 11 271 26 0 Hydrogen - - - - - - 23 - - 23 0 - -

452

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

562 822 4,163 1,839 735 -69 52 3,955 244 4,801 562 822 4,163 1,839 735 -69 52 3,955 244 4,801 Crude Oil 1,116 - - - - 1,730 800 -87 62 3,442 55 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 446 -16 121 74 -25 - - -12 105 111 395 Pentanes Plus 50 -16 - - 1 82 - - -4 31 101 -12 Liquefied Petroleum Gases 396 - - 121 73 -107 - - -8 74 11 407 Ethane/Ethylene 163 - - - 0 -108 - - -2 - - 58 Propane/Propylene 156 - - 108 59 -24 - - -3 - 2 300 Normal Butane/Butylene 48 - - 11 9 10 - - -4 29 9 45 Isobutane/Isobutylene 29 - - 2 6 14 - - 1 46 - 5 Other Liquids - - 838 - - 5 -258 -159 8 408 25 -16 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 838 - - 3 -565 4 1 257 21 0 Hydrogen - - - - - - 22 - - 22 0 - -

453

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

124 22 3,585 1,761 3,291 117 -137 3,532 241 5,264 124 22 3,585 1,761 3,291 117 -137 3,532 241 5,264 Crude Oil 34 - - - - 897 1 113 -43 1,084 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 90 0 25 32 86 - - 16 27 15 174 Pentanes Plus 15 0 - - - - - - 0 - 10 4 Liquefied Petroleum Gases 75 - - 25 32 86 - - 16 27 5 169 Ethane/Ethylene 1 - - 0 - - - - 0 - - 1 Propane/Propylene 51 - - 36 27 83 - - 24 - 4 168 Normal Butane/Butylene 16 - - -11 3 3 - - -8 17 1 0 Isobutane/Isobutylene 8 - - 0 2 - - - -1 9 - 0 Other Liquids - - 22 - - 555 1,614 193 -31 2,421 5 -10 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 22 - - 25 273 -19 -35 332 5 0 Hydrogen - - - - - - 4 - - 4 0 - - Oxygenates (excl. Fuel Ethanol)

454

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

1,164 20 3,171 1,425 308 193 28 2,990 349 2,914 1,164 20 3,171 1,425 308 193 28 2,990 349 2,914 Crude Oil 1,104 - - - - 1,209 - 140 10 2,443 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 61 0 66 4 - - - 36 59 13 22 Pentanes Plus 26 0 - - - - - - 5 18 3 -1 Liquefied Petroleum Gases 34 - - 66 4 - - - 30 41 10 23 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 14 - - 49 4 - - - 12 - 10 45 Normal Butane/Butylene 5 - - 15 0 - - - 13 19 0 -11 Isobutane/Isobutylene 15 - - 1 - - - - 5 22 - -12 Other Liquids - - 20 - - 107 252 94 -71 488 13 43 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 20 - - 19 143 37 -2 219 3 0 Hydrogen - - - - - - 47 - - 47 0 - - Oxygenates (excl. Fuel Ethanol)

455

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

1,173 16 2,988 1,321 324 106 21 2,811 344 2,751 1,173 16 2,988 1,321 324 106 21 2,811 344 2,751 Crude Oil 1,111 - - - - 1,160 2 62 4 2,331 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 61 0 50 5 - - - 1 66 15 35 Pentanes Plus 28 0 - - - - - - 0 21 3 4 Liquefied Petroleum Gases 33 - - 50 5 - - - 1 45 12 31 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 12 - - 46 4 - - - 1 - 10 51 Normal Butane/Butylene 6 - - 6 1 - - - 0 26 1 -14 Isobutane/Isobutylene 15 - - -2 0 - - - 0 20 - -7 Other Liquids - - 16 - - 74 245 103 11 414 13 1 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 16 - - 7 138 37 2 193 3 0 Hydrogen - - - - - - 43 - - 43 0 - - Oxygenates (excl. Fuel Ethanol) - - - - 1 1 0

456

Oil production enhancement through a standardized brine treatment. Final report  

SciTech Connect (OSTI)

In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

1995-08-01T23:59:59.000Z

457

SR/O&G/2000-02 Potential Oil Production  

Gasoline and Diesel Fuel Update (EIA)

0-02 0-02 Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment May 2000 Energy Information Administration Office of Oil and Gas U. S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U. S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Energy Information Administration Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment ii Energy Information Administration

458

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

459

EIA - Gulf of Mexico Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Isaac Isaac Overview Data Petroleum and Other Liquids Natural Gas Refinery Capacity Natural Gas Processing Plants Map Release Date: August 7, 2012 Energy Data all tables + EXPAND ALL U.S. Petroleum and Other Liquid Fuels Facts for 2011 million barrels per day Share of Total U.S. Liquid Fuels Consumed Liquid Fuels Production 10.3 55% U.S. Crude Oil Production 5.7 30% Total U.S. Federal Offshore 1.4 7% Gulf of Mexico Federal Offshore 1.3 7% Natural Gas Plant Liquids 2.2 12% Refinery Processing Gain 1.1 6% Biofuels 0.9 5% Other1 0.4 2% Stocks Withdrawn 0.1 1% Net Imports 8.4 45% Gross Imports into Gulf Coast 5.8 31% Total U.S. Liquid Fuels Supplied2 18.8 100% Federal Offshore share of U.S. crude oil production 24% Gulf of Mexico Federal Offshore share of U.S. crude oil production 23%

460

EIA - Gulf of Mexico Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Sandy Sandy Overview Map Gasoline Updates Petroleum Terminal Survey Petroleum and Other Liquids Natural Gas Refinery Capacity Natural Gas Processing Plants Release Date: August 7, 2012 Energy Data all tables + EXPAND ALL U.S. Petroleum and Other Liquid Fuels Facts for 2011 million barrels per day Share of Total U.S. Liquid Fuels Consumed Liquid Fuels Production 10.3 55% U.S. Crude Oil Production 5.7 30% Total U.S. Federal Offshore 1.4 7% Gulf of Mexico Federal Offshore 1.3 7% Natural Gas Plant Liquids 2.2 12% Refinery Processing Gain 1.1 6% Biofuels 0.9 5% Other1 0.4 2% Stocks Withdrawn 0.1 1% Net Imports 8.4 45% Gross Imports into Gulf Coast 5.8 31% Total U.S. Liquid Fuels Supplied2 18.8 100% Federal Offshore share of U.S. crude oil production 24% Gulf of Mexico Federal Offshore share of U.S. crude oil production 23%

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect (OSTI)

The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

2001-04-19T23:59:59.000Z

462

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect (OSTI)

The project's primary objective was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox Basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 25 to 50 million barrels (4-8 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performance(s), and report associated validation activities.

Chidsey, Jr., Thomas C.; Eby, David E.; Wray, Laural L.

2001-11-26T23:59:59.000Z

463

Strain Design of Ashbya gossypii for Single-Cell Oil Production  

Science Journals Connector (OSTI)

...Single-Cell Oil Production Rodrigo Ledesma-Amaro Maria A. Santos Alberto Jimenez Jose Luis Revuelta...s002530051649 . 17. Jimenez, A , MA Santos, M Pompejus and JL Revuelta...2005 . 18. Jimenez, A , MA Santos and JL Revuelta. 2008. Phosphoribosyl...

Rodrigo Ledesma-Amaro; María A. Santos; Alberto Jiménez; José Luis Revuelta

2013-12-06T23:59:59.000Z

464

Quantitation of microbial products and their effectiveness in enhanced oil recovery. Final report  

SciTech Connect (OSTI)

A three-dimensional, three-phase, multiple-component numerical simulator was developed to investigate transport and growth of microorganisms in porous media and the impacts of microbial activities on oil recovery. The microbial activities modeled in this study included: (1) growth, retention, chemotaxis, and end product inhibition of growth, (2) the formation of metabolic products, and (3) the consumption of nutrients. Major mechanisms for microbial enhanced oil recovery (MEOR) processes were modeled as follows: (1) improvement in sweep efficiency of a displacement process due to in situ plugging of highly-permeable production zones by cell mass or due to improved mobility control achieved by increasing the viscosity of the displacing fluid with a biopolymer, and (2) solubilization and mobilization of residual oil in porous media due to the reduction of the interfacial tension between oleic and aqueous phases by the production of a biosurfactant. The numerical solutions for mathematical models involved two steps. The distributions of pressure and phase saturations were solved from continuity equations and Darcy flow velocities for the aqueous phase were computed. This was followed by the solution of convection-dispersion equations for individual components. Numerical solutions from the proposed model were compared to results obtained from analytical equations, commercial simulators, and laboratory experiments. The comparison indicated that the model accurately quantified microbial transport and metabolism in porous media, and predicted additional crude oil recovery due to microbial processes. 50 refs., 41 figs., 26 tabs.

Zhang, X.; Knapp, R.M.; McInerney, M.J.

1995-02-01T23:59:59.000Z

465

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network [OSTI]

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

Rueda Silva, Carlos Fernando

2012-06-07T23:59:59.000Z

466

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment, was prepared for the U.S. Senate Committee on Energy and Natural Resources at the request of Chairman Frank H. Murkowski in a letter dated March 10, 2000. The request asked the Energy Information Administration (EIA) to develop plausible scenarios for Arctic National Wildlife Refuge (ANWR) supply development consistent with the most recent U.S. Geological Survey (USGS) resource assessments. This report contains EIA projections of future daily production rates using recent USGS resource estimates. The Coastal Plain study area includes 1.5 million acres in the ANWR 1002 Area, 92,000 acres of Native Inupiat lands and State of Alaska offshore lands out to the 3-mile limit which are expected to be explored and developed if and when ANWR is developed. (Figure ES1) About 26 percent of the technically recoverable oil resources are in the Native and State lands.

467

Biodiesel production from vegetable oil and waste animal fats in a pilot plant  

Science Journals Connector (OSTI)

Abstract In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards.

Ertan Alptekin; Mustafa Canakci; Huseyin Sanli

2014-01-01T23:59:59.000Z

468

Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations. Quarterly technical progress report, 1 October--31 December 1993  

SciTech Connect (OSTI)

Task 2 (Preparation of the Sampling and Analysis Plan) activities involved the incorporation of the offshore site selection process into the Sampling and Analysis Plan. Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included making decisions on tissue analyses and performing analyses of water and sediment samples. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the completion of the spring benthos samples collection on pre-termination samples at Four Isle Dome and the first post-termination samples at Delacroix Island. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gum of Mexico Region) activities included continued work on development of a base case production forecast, modeling future production, and determining economic impact of treatment technologies. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work involved the completion of the fall survey season and the initiation of the survey data assembly. Task 7 (Technology Transfer Plan) activities included presentations at the Society of Environmental Toxicology and Chemistry annual meeting and Minerals Management Service Information Transfer Meeting. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1994-01-28T23:59:59.000Z

469

U.S. Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

96,229 107,478 106,354 120,656 114,693 108,925 1981-2013 96,229 107,478 106,354 120,656 114,693 108,925 1981-2013 Crude Oil 3,965 3,863 3,591 3,029 2,052 2,975 1920-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 12,522 14,761 10,699 17,203 15,796 13,937 1981-2013 Pentanes Plus 3,327 4,292 1,655 7,308 5,315 2,989 1984-2013 Liquefied Petroleum Gases 9,194 10,468 9,044 9,895 10,481 10,947 1981-2013 Ethane/Ethylene 1981-1992 Propane/Propylene 8,363 9,542 8,057 8,407 9,125 10,040 1981-2013 Normal Butane/Butylene 832 927 987 1,488 1,356 907 1981-2013 Isobutane/Isobutylene 1984-1992 Other Liquids 7,489 6,277 6,728 7,063 5,570 6,579 1991-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 2,897 3,520 3,180 3,430 4,056 3,543 1991-2013 Oxygenates (excl. Fuel Ethanol)

470

U.S. Imports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

302,265 311,620 293,713 317,538 316,119 299,380 1981-2013 302,265 311,620 293,713 317,538 316,119 299,380 1981-2013 Crude Oil 231,793 239,848 231,900 250,207 251,054 237,344 1920-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 5,268 5,261 4,667 4,819 3,708 4,020 1981-2013 Pentanes Plus 1,366 2,222 730 1,461 316 772 1981-2013 Liquefied Petroleum Gases 3,902 3,039 3,937 3,358 3,392 3,248 1981-2013 Ethane 1993-2006 Ethylene 9 12 8 12 12 9 1993-2013 Propane 2,585 1,818 2,474 2,105 1,901 1,875 1995-2013 Propylene 728 680 814 595 722 728 1993-2013 Normal Butane 181 121 149 106 272 194 1995-2013 Butylene 143 241 162 153 146 139 1993-2013 Isobutane 256 167 330 387 339 303 1995-2013 Isobutylene 1993-2010 Other Liquids 43,066 47,595 40,206 44,400 38,927 40,118 1981-2013

471

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

25,966 7,956 1,280,301 725,573 1,191,766 9,116 -19,377 1,260,324 25,966 7,956 1,280,301 725,573 1,191,766 9,116 -19,377 1,260,324 90,720 1,909,011 152,389 Crude Oil 9,418 - - - - 316,140 4,126 8,405 -1,574 336,230 3,434 0 8,328 Natural Gas Plant Liquids and Liquefied Refinery Gases 16,548 -84 14,202 18,043 26,704 - - -1,588 7,264 3,052 66,685 6,377 Pentanes Plus 2,828 -84 - - 185 -19 - - 12 63 315 2,520 43 Liquefied Petroleum Gases 13,720 - - 14,202 17,858 26,723 - - -1,600 7,201 2,737 64,165 6,334 Ethane/Ethylene 174 - - 93 - - - - 0 - - 267 - Propane/Propylene 9,223 - - 12,922 16,074 26,601 - - -793 - 1,230 64,383 5,184 Normal Butane/Butylene 2,091 - - 1,435 616 122 - - -866 3,435 1,507 188 837 Isobutane/Isobutylene 2,232 - - -248 1,168 - - - 59 3,766 - -673 313

472

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

3,707 661 107,540 52,842 98,737 3,513 -4,105 105,957 7,218 3,707 661 107,540 52,842 98,737 3,513 -4,105 105,957 7,218 157,931 153,902 Crude Oil 1,020 - - - - 26,908 20 3,378 -1,285 32,517 94 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,687 -11 747 945 2,568 - - 471 798 453 5,214 6,541 Pentanes Plus 443 -11 - - - - - - 2 - 300 130 82 Liquefied Petroleum Gases 2,244 - - 747 945 2,568 - - 469 798 153 5,084 6,459 Ethane/Ethylene 27 - - 9 - - - - 6 - - 30 15 Propane/Propylene 1,517 - - 1,078 813 2,483 - - 724 - 126 5,041 4,442 Normal Butane/Butylene 474 - - -333 80 85 - - -246 523 27 2 1,673 Isobutane/Isobutylene 226 - - -7 52 - - - -15 275 - 11 329 Other Liquids - - 672 - - 16,653 48,432 5,798 -936 72,642 156 -307 61,003

473

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

429,215 5,872 1,093,588 483,473 118,666 38,688 7,789 1,028,754 429,215 5,872 1,093,588 483,473 118,666 38,688 7,789 1,028,754 126,026 1,006,933 150,671 Crude Oil 406,791 - - - - 424,639 598 22,523 1,445 853,106 0 0 56,432 Natural Gas Plant Liquids and Liquefied Refinery Gases 22,424 -123 18,260 1,933 - - - 404 24,108 5,319 12,663 4,734 Pentanes Plus 10,215 -123 - - - - - - -20 7,565 1,094 1,453 51 Liquefied Petroleum Gases 12,209 - - 18,260 1,933 - - - 424 16,543 4,225 11,210 4,683 Ethane/Ethylene 34 - - - - - - - - - - 34 - Propane/Propylene 4,422 - - 16,669 1,593 - - - 335 - 3,714 18,635 1,915 Normal Butane/Butylene 2,360 - - 2,258 332 - - - 129 9,346 512 -5,037 2,249 Isobutane/Isobutylene 5,393 - - -667 8 - - - -40 7,197 - -2,423 519

474

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

302,630 5,088 230,918 121,366 -164,290 -11,531 4,472 221,774 5,269 302,630 5,088 230,918 121,366 -164,290 -11,531 4,472 221,774 5,269 252,667 39,043 Crude Oil 163,870 - - - - 115,845 -53,264 -13,771 3,101 209,575 5 0 18,928 Natural Gas Plant Liquids and Liquefied Refinery Gases 138,760 -110 3,391 3,503 -119,108 - - 94 6,946 4,261 15,135 1,470 Pentanes Plus 18,508 -110 - - - -13,355 - - 14 2,156 3,795 -922 194 Liquefied Petroleum Gases 120,252 - - 3,391 3,503 -105,753 - - 80 4,790 466 16,057 1,276 Ethane/Ethylene 63,265 - - - - -61,214 - - -6 - - 2,057 400 Propane/Propylene 36,541 - - 3,406 3,155 -28,078 - - 7 - 12 15,005 363 Normal Butane/Butylene 15,114 - - 294 255 -9,019 - - 88 2,241 455 3,860 366 Isobutane/Isobutylene 5,332 - - -309 93 -7,442 - - -9 2,549 - -4,866 147

475

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

315,006 29,943 578,101 299,380 14,453 11,088 543,388 108,925 315,006 29,943 578,101 299,380 14,453 11,088 543,388 108,925 573,483 1,831,621 Crude Oil 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases 70,029 - - 19,023 3,248 - - 3,727 11,128 10,947 66,498 171,636 Ethane/Ethylene 30,015 - - 379 9 - - -414 - - 30,817 34,444 Propane/Propylene 25,545 - - 17,254 2,603 - - 2,582 - 10,040 32,780 67,782 Normal Butane/Butylene 6,893 - - 1,738 333 - - 999 4,711 907 2,347 58,942 Isobutane/Isobutylene 7,576 - - -348 303 - - 560 6,417 - 554 10,468

476

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

8,897 964 18,564 10,598 335 158 17,505 3,205 18,490 8,897 964 18,564 10,598 335 158 17,505 3,205 18,490 Crude Oil 6,489 - - - - 8,527 144 93 14,999 67 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,408 -18 630 170 - - 65 509 314 2,301 Pentanes Plus 317 -18 - - 29 - - -13 174 118 50 Liquefied Petroleum Gases 2,091 - - 630 141 - - 79 335 196 2,251 Ethane/Ethylene 974 - - 18 0 - - 34 - - 958 Propane/Propylene 712 - - 553 116 - - 36 - 171 1,175 Normal Butane/Butylene 179 - - 56 15 - - 5 143 26 77 Isobutane/Isobutylene 225 - - 3 9 - - 4 192 - 41 Other Liquids - - 981 - - 1,257 53 51 1,997 214 28 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 981 - - 40 151 5 1,050 116 0 Hydrogen - - - - - - 190 - - 190 0 - -

477

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

71 22 3,498 1,982 3,256 25 -53 3,444 248 5,216 71 22 3,498 1,982 3,256 25 -53 3,444 248 5,216 Crude Oil 26 - - - - 864 11 23 -4 919 9 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 45 0 39 49 73 - - -4 20 8 182 Pentanes Plus 8 0 - - 1 0 - - 0 0 1 7 Liquefied Petroleum Gases 37 - - 39 49 73 - - -4 20 7 175 Ethane/Ethylene 0 - - 0 - - - - 0 - - 1 Propane/Propylene 25 - - 35 44 73 - - -2 - 3 176 Normal Butane/Butylene 6 - - 4 2 0 - - -2 9 4 1 Isobutane/Isobutylene 6 - - -1 3 - - - 0 10 - -2 Other Liquids - - 22 - - 717 1,611 114 -5 2,505 10 -47 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 22 - - 29 291 -9 3 324 6 0 Hydrogen - - - - - - 4 - - 4 0 - - Oxygenates (excl. Fuel Ethanol) - - - - 0 - 0 0

478

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

34,932 594 95,116 42,741 9,239 5,791 830 89,707 10,470 87,406 34,932 594 95,116 42,741 9,239 5,791 830 89,707 10,470 87,406 142,840 Crude Oil 33,114 - - - - 36,279 - 4,213 311 73,295 - 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,818 -8 1,970 134 - - - 1,076 1,782 396 660 8,270 Pentanes Plus 794 -8 - - - - - - 163 552 92 -21 314 Liquefied Petroleum Gases 1,024 - - 1,970 134 - - - 913 1,230 304 681 7,956 Ethane/Ethylene 3 - - - - - - - - - - 3 - Propane/Propylene 420 - - 1,475 124 - - - 374 - 299 1,346 2,272 Normal Butane/Butylene 158 - - 451 10 - - - 378 556 5 -320 5,110 Isobutane/Isobutylene 443 - - 44 - - - - 161 674 - -348 574 Other Liquids - - 602 - - 3,200 7,556 2,809 -2,126 14,630 387 1,276 46,625

479

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

3,256,148 352,785 6,794,407 3,878,852 122,574 57,691 6,406,693 3,256,148 352,785 6,794,407 3,878,852 122,574 57,691 6,406,693 1,172,965 6,767,418 1,807,777 Crude Oil 2,374,842 - - - - 3,120,755 52,746 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases 765,304 - - 230,413 51,512 - - 28,751 122,674 71,918 823,886 140,529 Ethane/Ethylene 356,592 - - 6,597 115 - - 12,504 - - 350,800 35,396 Propane/Propylene 260,704 - - 202,309 42,460 - - 13,013 - 62,490 429,970 67,991 Normal Butane/Butylene 65,555 - - 20,580 5,567 - - 1,795 52,246 9,428 28,233 28,574

480

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

59,397 25,268 126,131 58,449 20,168 -10,157 5,610 119,848 7,211 59,397 25,268 126,131 58,449 20,168 -10,157 5,610 119,848 7,211 146,586 280,571 Crude Oil 44,167 - - - - 55,181 16,673 -10,758 505 102,476 2,282 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases 15,230 -515 3,462 1,887 -432 - - 2,252 3,146 2,129 12,105 58,830 Pentanes Plus 1,896 -515 - - 6 2,928 - - -549 1,119 1,599 2,146 7,743 Liquefied Petroleum Gases 13,334 - - 3,462 1,881 -3,360 - - 2,801 2,027 530 9,959 51,087 Ethane/Ethylene 4,901 - - - 9 -3,013 - - 339 - - 1,558 4,694 Propane/Propylene 5,587 - - 3,111 1,470 -650 - - 1,991 - 199 7,328 24,444 Normal Butane/Butylene 1,561 - - 475 162 156 - - 651 514 331 858 20,078 Isobutane/Isobutylene 1,285 - - -124 240 147 - - -180 1,513 - 215 1,871

Note: This page contains sample records for the topic "mexico oil production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

U.S. Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 522,879 659,392 738,803 858,685 1,089,848 1,172,965 1981-2012 Crude Oil 10,006 10,464 15,985 15,198 17,158 24,693 1870-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 25,584 36,951 50,681 59,842 90,968 115,054 1981-2012 Pentanes Plus 4,776 12,393 14,337 11,792 36,837 43,136 1984-2012 Liquefied Petroleum Gases 20,809 24,558 36,344 48,050 54,131 71,918 1981-2012 Ethane/Ethylene 1983-1992 Propane/Propylene 15,501 19,264 30,925 39,860 45,243 62,490 1981-2012 Normal Butane/Butylene 5,308 5,294 5,419 8,189 8,888 9,428 1981-2012 Isobutane/Isobutylene 1984-1992 Other Liquids 32,049 23,477 23,625 44,514 67,981 78,359 1991-2012 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons

482

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

571,552 300,900 1,523,608 673,109 268,869 -25,130 18,853 1,447,490 571,552 300,900 1,523,608 673,109 268,869 -25,130 18,853 1,447,490 89,370 1,757,194 287,201 Crude Oil 408,314 - - - - 633,223 292,624 -31,767 22,602 1,259,826 19,966 0 115,743 Natural Gas Plant Liquids and Liquefied Refinery Gases 163,238 -6,037 44,417 27,019 -9,288 - - -4,496 38,476 40,729 144,640 43,693 Pentanes Plus 18,229 -6,037 - - 213 29,889 - - -1,599 11,319 36,827 -4,253 6,686 Liquefied Petroleum Gases 145,009 - - 44,417 26,806 -39,177 - - -2,897 27,157 3,902 148,893 37,007 Ethane/Ethylene 59,649 - - - 115 -39,435 - - -716 - - 21,045 3,590 Propane/Propylene 57,022 - - 39,605 21,464 -8,812 - - -1,114 - 580 109,813 22,020 Normal Butane/Butylene 17,564 - - 4,181 3,156 3,807 - - -1,354 10,449 3,322 16,291

483

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

10,500 998 19,270 9,979 482 370 18,113 3,631 19,116 10,500 998 19,270 9,979 482 370 18,113 3,631 19,116 Crude Oil 7,794 - - - - 7,911 278 256 15,628 99 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,707 -18 634 134 - - 101 560 465 2,331 Pentanes Plus 372 -18 - - 26 - - -23 189 100 114 Liquefied Petroleum Gases 2,334 - - 634 108 - - 124 371 365 2,217 Ethane/Ethylene 1,001 - - 13 0 - - -14 - - 1,027 Propane/Propylene 852 - - 575 87 - - 86 - 335 1,093 Normal Butane/Butylene 230 - - 58 11 - - 33 157 30 78 Isobutane/Isobutylene 253 - - -12 10 - - 19 214 - 18 Other Liquids - - 1,015 - - 1,337 296 304 1,926 219 199 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 1,015 - - 75 121 -36 1,129 118 0 Hydrogen - - - - - - 208 - - 208 0 - -

484

Increasing Oil Productivity Through Electromagnetic Induction Heat Generation of Salt Water as a Stimulant for Heavy Oil Recovery  

Science Journals Connector (OSTI)

Brine is usually exist in the oil reservoir. Varying salinity brine are used as stimulants for heavy oil recovery processes using electromagnetic induction heating. The heated heavy oil is floating on top of the brine since it becomes less viscous and lighter. As the temperature increased more heavy oil is “produced/recovered”. An increasing salinity of brine will result in more recovery of heavy oil.

2010-01-01T23:59:59.000Z

485

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

926,785 32,969 2,665,992 1,875,331 -1,415,011 111,431 45,954 926,785 32,969 2,665,992 1,875,331 -1,415,011 111,431 45,954 2,448,351 861,579 1,841,613 1,178,473 Crude Oil 1,386,449 - - - - 1,630,908 -244,084 67,355 8,560 2,830,779 1,288 0 861,333 Natural Gas Plant Liquids and Liquefied Refinery Gases 540,336 -180 150,143 11,694 101,692 - - 29,480 109,476 61,693 603,036 96,994 Pentanes Plus 66,222 -180 - - 10,282 -16,515 - - -3,264 42,493 1,105 19,475 5,765 Liquefied Petroleum Gases 474,114 - - 150,143 1,412 118,207 - - 32,744 66,983 60,588 583,561 91,229 Ethane/Ethylene 233,470 - - 6,504 - 100,649 - - 13,226 - - 327,397 31,406 Propane/Propylene 153,496 - - 129,707 174 10,289 - - 14,578 - 56,954 222,134 38,509 Normal Butane/Butylene 28,426 - - 12,412 1,208 5,090 - - 3,798 26,775 3,633 12,930

486

U.S. Total Stocks of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. PADD 1 New England Central Atlantic Lower Atlantic PADD 2 Cushing, Oklahoma PADD 3 PADD 4 PADD 5 PADD's 4 & 5 Period: Weekly Monthly Annual Area: U.S. PADD 1 New England Central Atlantic Lower Atlantic PADD 2 Cushing, Oklahoma PADD 3 PADD 4 PADD 5 PADD's 4 & 5 Period: Weekly Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 11/08/13 11/15/13 11/22/13 11/29/13 12/06/13 12/13/13 View History Total Crude Oil and Petroleum Products (Incl. SPR) 1,806,930 1,795,196 1,793,557 1,786,470 1,781,747 1,769,150 1990-2013 Total Crude Oil and Petroleum Products (Excl. SPR) 1,110,961 1,099,227 1,097,588 1,090,501 1,085,778 1,073,181 1990-2013 Crude Oil (Including SPR) 1,084,057 1,084,432 1,087,385 1,081,800 1,071,215 1,068,274 1982-2013 Commercial Crude Oil

487

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

Scott Hara

2002-01-31T23:59:59.000Z

488

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

489

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS: Alaskan North Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of wells, region, etc. (usually expressed in barrels per day) EIA: Energy Information Administration MBbls: thousand barrels MMBbls: million barrels NPR-A: National Petroleum Reserve-Alaska Petroleum Play: A set of known or postulated petroleum accumulations sharing similar geologic, geographic, and temporal properties such as source rock, migration, pathway, timing, trapping mechanism, and hydrocarbon type

490

Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming  

Science Journals Connector (OSTI)

We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li

2011-01-01T23:59:59.000Z

491

New Mexico grape growers unite  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico grape growers unite, increase production New Mexico grape growers unite, increase production Grape Growers Association enlivens agriculture Growers association unites small parcels of land, enlivens production, protects water rights for Northern New Mexico agriculturists. August 6, 2012 Northern New Mexico Micro Grape Growers Association The NMSBA Entrepreneurial Networking program is helping Lucia Sanchez (C) Tim Martinez (R) and Robert Naranjo, the Northern New Mexico Micro Grape Growers Association, put small parcels of land back into production in Rio Arriba County. Contact Mariann Johnston (505) 667-4391 Email New Mexico grape growers unite to increase production, with help of Northern New Mexico Connect Over the last decade, a string of wineries has come to grace the scenic High Road to Taos. In 2010, Robert Naranjo, network facilitator for the

492

USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAM JUAN BASIN REGION  

SciTech Connect (OSTI)

A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps.

Don L. Hanosh

2004-08-01T23:59:59.000Z

493

Hydrogen Production by Catalytic Steam Reforming of Bio-oil, Naphtha  

Science Journals Connector (OSTI)

Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)4+4O?/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850°C in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750°C, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.

Yue Pan; Zhao-xiang Wang; Tao Kan; Xi-feng Zhu; Quan-xin Li

2006-01-01T23:59:59.000Z

494

Direct hydro-liquefaction of sawdust in petroleum ether and comprehensive bio-oil products analysis  

Science Journals Connector (OSTI)

Abstract The effect of temperature, time, hydrogen pressure and amount of catalyst on production distribution and the bio-oil yield obtained from the direct liquefaction of sawdust in the petroleum ether (60–90 °C) are investigated. The highest sawdust conversion obtained was 72.32% with a bio-oil yield of 47.69% were obtained at 370 °C, 40 min and 5wt.% catalyst content with the initial H2 pressure of 3.0 MPa. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) approach was utilized to analyze the non-volatile fraction. In this study, the composition of bio-oil could be analyzed in an unprecedented detail through a combination of GC–MS and FT-ICR MS techniques.

Dong Liu; Linhua Song; Pingping Wu; Yan Liu; Qingyin Li; Zifeng Yan

2014-01-01T23:59:59.000Z

495

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

Scott Hara

2002-04-30T23:59:59.000Z

496

Applicability ranges for offshore oil and gas production facilities  

Science Journals Connector (OSTI)

In the early stages of the selection process for the hardware to exploit an offshore petroleum reservoir, it is important to be able to identify rapidly which production facility type(s) are likely to deliver the greatest value. This paper explores key features and constraints of the ten common fixed, floating and subsea facility options. Both shallow and deepwater are considered, along with regional variations. It is shown that facility applications may be categorised in a very simple matrix form, with the water depth and well count being particularly important drivers of facility choice.

Beverley F. Ronalds

2005-01-01T23:59:59.000Z

497

Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production  

SciTech Connect (OSTI)

Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

2005-12-01T23:59:59.000Z

498

By-Products Utilization  

E-Print Network [OSTI]

at the Cement and Concrete Institute of Mexico Symposium "Worldof Concrete - Mexico," Guadalajara, Mexico, June with proper use of form oil to allow migration of released air pockets. Sand content should be increased

Wisconsin-Milwaukee, University of

499

Maximum Hydrogen Production by Autothermal Steam Reforming of Bio-oil With NiCuZnAl Catalyst  

Science Journals Connector (OSTI)

Autothermal steam reforming (ATR) of bio-oil, which couples the endothermic steam reforming reaction with the exothermic partial oxidation, offers many advantages from a technical and economic point of view. Effective production of hydrogen through ATR of bio-oil was performed at lower temperature with NiCuZnAl catalyst. The highest hydrogen yield from bio-oil reached 64.3% with a nearly complete bio-oil conversion at 600 °C, the ratio of steam to carbon fed (S/C) of 3 and the oxygen to carbon ratio (O/C) of 0.34. The reaction conditions in ATR including temperature, O/C, S/C and weight hourly space velocity can be used to control both hydrogen yield and products distribution. The comparison between the ATR and common steam reforming of bio-oil was studied. The mechanism of the ATR of bio-oil was also discussed.

Shi-zhi Yan; Qi Zhai; Quan-xin Li

2012-01-01T23:59:59.000Z

500