Sample records for mexico hot dry

  1. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  2. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems II....

  3. Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico

    SciTech Connect (OSTI)

    None

    1998-12-01T23:59:59.000Z

    This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

  4. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir Investigations on the Hot Dry Rock Geothermal System,...

  5. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  6. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  7. The US Hot Dry Rock project

    SciTech Connect (OSTI)

    Hendron, R.H.

    1987-01-01T23:59:59.000Z

    The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

  8. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  9. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  10. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  11. Wall Drying in Hot and Humid Climates

    E-Print Network [OSTI]

    Boone, K.; Weston, T.; Pascual, X.

    2004-01-01T23:59:59.000Z

    WALL DRYING IN HOT AND HUMID CLIMATES Kimdolyn Boone Theresa Weston, PhD Xuaco Pascual Product Development Engineer Building Scientist Field Services Engineer E.I. du Pont de Nemours and Company Richmond, VA ABSTRACT... time based on the varying weather conditions. Constant interior conditions of 70?F and 55% RH were chosen. This corresponds to typical interior temperatures and a high level of moisture production within the house. This was chosen as a worse...

  12. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  13. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  14. Membranes and MEAs for Dry, Hot Operating Conditions

    Broader source: Energy.gov (indexed) [DOE]

    durability and performance characteristics making them useful in stationary fuel cell applications. Membranes and MEA's for Dry, Hot Operating Conditions - Kick off 4 3...

  15. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  16. Wall Drying in Hot and Humid Climates 

    E-Print Network [OSTI]

    Boone, K.; Weston, T.; Pascual, X.

    2004-01-01T23:59:59.000Z

    Moisture and subsequent mold problems in buildings are a serious and increasing concern for the building industry. Moisture intrusion in buildings is especially pertinent in hot and humid climates because the climate conditions provide only limited...

  17. Hot dry rock geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

  18. Hot dry rock energy: Hot dry rock geothermal development program. Progress report. Fiscal year 1993

    SciTech Connect (OSTI)

    Salazar, J.; Brown, M. [eds.

    1995-03-01T23:59:59.000Z

    Extended flow testing at the Fenton Hill Hot Dry Rock (HDR) test facility concluded in Fiscal Year 1993 with the completion of Phase 2 of the long-term flow test (LTFT) program. As is reported in detail in this report, the second phase of the LTFT, although only 55 days in duration, confirmed in every way the encouraging test results of the 112-day Phase I LTFT carried out in Fiscal Year 1992. Interim flow testing was conducted early in FY 1993 during the period between the two LTFT segments. In addition, two brief tests involving operation of the reservoir on a cyclic schedule were run at the end of the Phase 2 LTFT. These interim and cyclic tests provided an opportunity to conduct evaluations and field demonstrations of several reservoir engineering concepts that can now be applied to significantly increase the productivity of HDR systems. The Fenton Hill HDR test facility was shut down and brought into standby status during the last part of FY 1993. Unfortunately, the world`s largest, deepest, and most productive HDR reservoir has gone essentially unused since that time.

  19. THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK

    E-Print Network [OSTI]

    97505 THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion -- geothermal energy derived from the vast resource of Hot Dry Rock (HDR) in our country, and biomass

  20. Dry soldering with hot filament produced atomic hydrogen

    DOE Patents [OSTI]

    Panitz, Janda K. G. (Edgewood, NM); Jellison, James L. (Albuquerque, NM); Staley, David J. (Los Lunas, NM)

    1995-01-01T23:59:59.000Z

    A system for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs.

  1. Dry soldering with hot filament produced atomic hydrogen

    DOE Patents [OSTI]

    Panitz, J.K.G.; Jellison, J.L.; Staley, D.J.

    1995-04-25T23:59:59.000Z

    A system is disclosed for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs. 1 fig.

  2. Hot-dry-rock geothermal-energy development program. Annual report, fiscal year 1981

    SciTech Connect (OSTI)

    Smith, M.C.; Ponder, G.M. (comps.)

    1981-01-01T23:59:59.000Z

    During fiscal year 1981, activities of the Hot Dry Rock Geothermal Energy Development Program were concentrated in four principal areas: (1) data collection to permit improved estimates of the hot dry rock geothermal energy resource base of various regions of the United States and of the United States as a whole, combined with detailed investigations of several areas that appear particularly promising either for further energy extraction experiments or for future commercial development; (2) successful completion of a 9-month, continuous, closed-loop, recirculating flow test in the enlarged Phase I System at Fenton Hill, New Mexico - a pressurized-water heat-extraction loop developed in low-permeability granitic rock by hydraulic fracturing; (3) successful completion at a depth of 4084 m (13,933 ft) of well EE-3, the production well of a larger, deeper, and hotter, Phase II System at Fenton Hill. Well EE-3 was directionally drilled with control of both azimuth and inclination. Its inclined section is about 380 m (1250 ft) vertically above the injection well, EE-2, which was completed in FY80; and (4) supporting activities included new developments in downhole instrumentation and equipment, geochemical and geophysical studies, rock-mechanics and fluid-mechanics investigations, computer analyses and modeling, and overall system design. Under an International Energy Agency agreement, the New Energy Development Organization, representing the Government of Japan has joined Kernforschungsanlage-Juelich GmbH, representing the Federal Republic of Germany, and the US Department of Energy as an active participant in the Fenton Hill Hot Dry Rock Project.

  3. Mining earth's heat: development of hot-dry-rock geothermal reservoirs

    SciTech Connect (OSTI)

    Pettitt, R.A.; Becker, N.M.

    1983-01-01T23:59:59.000Z

    The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program, as initially developed by the Los Alamos National Laboratory, is to mine this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large-diametervertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kW of electricity. A second-generation system, recently drilled to 4.5 km (15,000 ft) and temperatures of 320/sup 0/C (608/sup 0/F), entails creating multiple, parallel fractures between a pair of inclined boreholes. This system should produce 5 to 10 MW(e) for 20 years. Significant contributions to underground technology have been made through the development of the program.

  4. Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources

    SciTech Connect (OSTI)

    Heiken, G.; Sayer, S.

    1980-02-01T23:59:59.000Z

    This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

  5. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Winchester, W.W. [ed.; Duchane, D.V.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180{degrees}C (356{degrees}F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  6. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Duchane, D.V.; Winchester, W.W.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  7. The economic effects of liberalized U.S.-Mexico dry onion trade

    E-Print Network [OSTI]

    Gillis, Melanie

    1993-01-01T23:59:59.000Z

    Prices Effect on U. S. Production and Shipments. . . . . . . . Effect on Imports from Mexico Effect on Consumption in the U. S. and Exports to Foreign Countries. . . . . . . Effect on Consumer and Producer Surplus. . . . , . . Effect on Trade Flows...'s prices are comparatively high. For example in Monterrey, Mexico, wholesale dry onion prices are lowest when U. S. imports from Mexico are large and prices in the Dallas wholesale market are at their highest seasonal level (Figure 5). This occurs...

  8. Prospects for hot dry rock in the future

    SciTech Connect (OSTI)

    Berger, M.E.; Murphy, H.D.

    1988-01-01T23:59:59.000Z

    The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. The program was reviewed five times in the past three years. Three of these reviews were done by the US Department of Energy (DOE) and a fourth was conducted by the National Research Council at the request of DOE. In addition, HDR was evaluated in the Energy Research Advisory Board's Solid Earth Sciences Report. Recent economic studies for HDR have been performed by Bechtel National, Inc., the Electric Power Research Institute, and the United Kingdom. These studies are reviewed in light of recent progress at Fenton Hill in reducing drilling costs, and mapping and in identifying drilling targets. All of the attention focused on HDR has resulted in evaluating the way in which HDR fits within the nation's energy mix and in estimating when HDR will contribute to energy security. To establish a framework for evaluating the future of HDR, the status and progress of HDR are reviewed and the remaining Fenton Hill program is outlined. Recommendations are also made for follow-on activities that will lead to achieving full development of HDR technologies in the appropriate time frame.

  9. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. Unique aspects of drilling and completing hot-dry-rock geothermal wells

    SciTech Connect (OSTI)

    Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

    1983-01-01T23:59:59.000Z

    Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

  11. Hot Dry Rock Geothermal Energy Development in the USA David Duchane and Donald Brown

    E-Print Network [OSTI]

    1 Hot Dry Rock Geothermal Energy Development in the USA by David Duchane and Donald Brown Los of the world's store of geothermal energy. The real potential for growth in the use of geothermal energy lies-engineered geothermal reservoir in hot, crystalline rock by the application of hydraulic fracturing techniques

  12. The economic effects of liberalized U.S.-Mexico dry onion trade 

    E-Print Network [OSTI]

    Gillis, Melanie

    1993-01-01T23:59:59.000Z

    +AN ', q~~ ~x qsio, v~ ~P /~fjp ~/CM:~ y: . ~/~~~: . "~c'r, THE ECONOMIC EFFECTS OF LIBERALIZED U. S. -MEXICO DRY ONION TRADE A Thesis by MELANIE GILLIS Submitted to the Office of Graduate Studies of Texas A8r M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1993 Major Subject: Agricultural Economics THE ECONOMIC EFFECTS OF LIBERALIZED U. S. -MEXICO DRY ONION TRADE A Thesis by MELANIE GILLIS r ed as to style and content by: I g...

  13. The US Hot Dry Rock Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:UncertaintySocial36 Sector:TheUS Hot

  14. EXPERIMENTAL VERIFICATION OF THE LOAD-FOLLOWING POTENTIAL OF A HOT DRY ROCK GEOTHERMAL RESERVOIR

    E-Print Network [OSTI]

    EXPERIMENTAL VERIFICATION OF THE LOAD-FOLLOWING POTENTIAL OF A HOT DRY ROCK GEOTHERMAL RESERVOIR. The objective of this cyclic load-following experiment was to investigate the performance of the reservoir, this series of cyclic flow tests is referred to as the Load-Following Experiment, with the objective

  15. Development of hot dry rock geothermal resources; technical and economic issues

    SciTech Connect (OSTI)

    Tester, J.W.

    1980-01-01T23:59:59.000Z

    Technical and economic issues related to the commercial feasibility of hot dry rock geothermal energy for producing electricity and heat are discussed. Topics covered include resource characteristics, reservoir thermal capacity and lifetime, drilling and surface plant costs, financial risk and anticipated rate of return. The current status of research and deveopment efforts in the US are also summarized.

  16. Low Impact, Affordable, Low Income Houses for Mexico 

    E-Print Network [OSTI]

    Alcocer, J. L. B.; Haberl, J. S.

    2010-01-01T23:59:59.000Z

    . This paper includes an analysis of the population and energy consumption of the different climate regions in Mexico (Hot-Dry Deserts, Great Plains, Mediterranean, Semi-Arid, Temperate, Hot-Dry Jungles and Hot-Humid Jungles) versus the USA and concludes...

  17. Final Report - Membranes and MEA's for Dry, Hot Operating Conditions

    SciTech Connect (OSTI)

    Hamrock, Steven J.

    2011-06-30T23:59:59.000Z

    The focus of this program was to develop a new Proton Exchange Membrane (PEM) which can operate under hotter, dryer conditions than the state of the art membranes today and integrate it into a Membrane Electrode Assembly (MEA). These MEA's should meet the performance and durability requirements outlined in the solicitation, operating under low humidification conditions and at temperatures ranging from -20���ºC to 120���ºC, to meet 2010 DOE technical targets for membranes. This membrane should operate under low humidification conditions and at temperatures ranging from -20���ºC to 120���ºC in order to meet DOE HFCIT 2010 commercialization targets for automotive fuel cells. Membranes developed in this program may also have improved durability and performance characteristics making them useful in stationary fuel cell applications. The new membranes, and the MEA�¢����s comprising them, should be manufacturable at high volumes and at costs which can meet industry and DOE targets. This work included: A) Studies to better understand factors controlling proton transport within the electrolyte membrane, mechanisms of polymer degradation (in situ and ex situ) and membrane durability in an MEA; B) Development of new polymers with increased proton conductivity over the range of temperatures from -20���ºC to 120���ºC and at lower levels of humidification and with improved chemical and mechanical stability; C) Development of new membrane additives for increased durability and conductivity under these dry conditions; D) Integration of these new materials into membranes and membranes into MEA�¢����s, including catalyst and gas diffusion layer selection and integration; E) Verification that these materials can be made using processes which are scalable to commercial volumes using cost effective methods; F) MEA testing in single cells using realistic automotive testing protocols. This project addresses technical barriers A (Durability) and C (Performance) from the Fuel Cells section of the 2005 Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year R&D Plan. In the course of this four-year program we developed a new PEM with improved proton conductivity, chemical stability and mechanical stability. We incorporated this new membrane into MEAs and evaluated performance and durability.

  18. Production casing for hot-dry-rock wells EE-2 and EE-3

    SciTech Connect (OSTI)

    Nicholson, R.W.; Pettitt, R.; Sims, J.

    1982-01-01T23:59:59.000Z

    The production casing for a pair of hot dry rock (HDR) energy extraction wells had to be designed for unique conditions. Two hot dry rock wells (EE-2 and EE-3) were drilled and production casing installed at Fenton Hill, NM for the Los Alamos National Laboratory HDR program. The design of the production casing and subsequent completion operations in these wells revealed that thermal cycling, anticipated operating pressures, and wear during downhole operations are major considerations for both casing specifications and installation procedures. The first well (Energy Extraction No. 2; EE-2) is intended to be the injection well and EE-3 the production well. The top joint strain in EE-3 was monitored during installation, cementing and tensioning.

  19. Thermal Performance of Building Envelope in Very Hot Dry Desert Region in Egypt (Toshky)

    E-Print Network [OSTI]

    Khalil, M. H.; Sheble, S. S.; Helal, M. A.; El-Demirdash, M.

    2010-01-01T23:59:59.000Z

    Thermal Performance of Building Envelope in Very Hot Dry Desert Region in Egypt (Toshky Region) S.S. Sheble* M. H. Khalil M. A. Helal Prof. M. El- Demirdash3 Asso. Prof. Building Physics Institute (HBRC) Asso. Prof. Building Physics... Institute (HBRC) Prof. & head of Building Physics Institute (HBRC) Prof. & Chairman of HBRC Housing & Building National Research Center (HBRC) Cairo, Egypt * Author ABSTRACT Toshky region is a desert region located in the south east...

  20. Economic predictions for heat mining : a review and analysis of hot dry rock (HDR) geothermal energy technology

    E-Print Network [OSTI]

    Tester, Jefferson W.

    1990-01-01T23:59:59.000Z

    The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components.

  1. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01T23:59:59.000Z

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  2. Membranes and MEAs for Dry, Hot Operating Conditions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW ElectrolysisCharlesDry, Hot

  3. Hot dry rock geothermal energy for U.S. electric utilities. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

  4. Precision directional drilling of hot-dry-rock geothermal production well EE-3

    SciTech Connect (OSTI)

    Carden, R.S.; Rowley, J.C.; Helmick, C.

    1982-01-01T23:59:59.000Z

    The deviated directional drilling of the hot dry rock (HDR) geothermal production well EE-3 (Energy Extraction No. 3) was successfully completed on August 1981. The injection well, EE-2, previously had been drilled with its lower part at an inclination of 35/sup 0/ to the vertical. It reached an on-line depth of 15,292 feet and its bottom-hole temperature was 608/sup 0/F (320/sup 0/C). The production well EE-3 was required to be drilled 1200 feet (370 m) above and parallel to the injection well. This necessitated high precision, controlled-trajectory directional drilling operations. The directional drilling of EE-3 was accomplished within the required tolerances at a depth of 13,933 feet and a bottom-hole temperature of 580/sup 0/F (280/sup 0/C).

  5. Evaluation of the hot-dry-rock geothermal potential of an area near Mountain Home, Idaho

    SciTech Connect (OSTI)

    Arney, B.H.; Goff, F.

    1982-05-01T23:59:59.000Z

    Evaluation of an area near Mountain Home, Idaho, was performed to assess the hot dry rock (HDR) potential of the prospect. The techniques reported include telluric and gravity profiling, passive seismic, hydrology and water chemistry surveys, and lineament analysis. Gravity and telluric surveys were unsuccessful in locating fractures buried beneath recent volcanics and sediments of the plain because density and conductivity contrasts were insufficient. Gravity modeling indicated areas where granite was not likely to be within drilling depth, and telluric profiling revealed an area in the northwest part of the prospect where higher conductivity suggested the presence of fractures or water or both, thereby making it unsuitable for HDR. Water geochemistry indicated that (hot water) reservoir temperatures do not exceed 100/sup 0/C. An area in the east central part of the prospect was delineated as most favorable for HDR development. Temperature is expected to be 200/sup 0/C at 3-km depth, and granitic rock of the Idaho Batholith should be intersected at 2- to 3-km depth.

  6. Hot dry rock geothermal energy development program: Annual report, Fiscal year 1986

    SciTech Connect (OSTI)

    Dash, Z.V.; Grant, T.; Jones, G.; Murphy, H.D.; Wilson, M.G.

    1989-02-01T23:59:59.000Z

    Preparation, execution, and analysis of a 30-day Initial Closed-Loop Flow Test (ICFT) of the Phase II reservoir were the primary objectives of the Hot Dry Rock Program in fiscal year 1986. The ICFT successfully tested the Phase II heat-extraction loop with the injection of 37,000 m/sup 3/ of cold water and production of 23,000 m/sup 3/ of hot water, extracting up to 10 MW/sub t/ when production reached 0.0139 m/sup 3//s at 192/degree/C. By the end of the test, water loss rate has decreased to 26% and a significant portion of the injected water had been recovered, 66% during the test and an additional 20% during subsequent venting. Geochemical, tracer, and seismic analyses suggest reservoir fracture volume was growing throughout the test. A new technique, the ''three-point'' method, was developed to determine locations and orientations of seismically active planes. Fault or joint planes are identified in what superficially appears to be an amorphous microearthquake location set. Five planes were determined when the three-point method was applied to a location data set for the massive hydraulic-fracturing experiment conducted in 1983. 23 refs., 19 figs., 3 tabs.

  7. Performance of a Hot-Dry Climate Whole-House Retrofit

    SciTech Connect (OSTI)

    Weitzel, E.; German, A.; Porse, E.

    2014-06-01T23:59:59.000Z

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  8. Building America Best Practices Series, Volume 9: Builders Challenge Guide to 40% Whole-House Energy Savings in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Williamson, Jennifer L.; Ruiz, Kathleen A.; Bartlett, Rosemarie; Love, Pat M.

    2009-10-23T23:59:59.000Z

    This best practices guide is the ninth in a series of guides for builders produced by the U.S. Department of Energy’s Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-dry and mixed-dry climates can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building America’s research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the hot-dry and mixed-dry climates.

  9. Hot Dry Rock Geothermal Energy Development Program Annual Report Fiscal Year 1988

    SciTech Connect (OSTI)

    Dash, Zora V.; Murphy, Hugh D.; Smith, Morton C.

    1988-01-01T23:59:59.000Z

    The complete list of HDR objectives is provided in Reference 10, and is tabulated below in Tables 1 and 2 for the reader's convenience. The primary, level 1, objective for HDR is ''to improve the technology to the point where electricity could be produced commercially from a substantial number of known HDR resource sites in a cost range of 5 to 8 cents/kWh by 1997''. A critically important milestone in attaining this cost target is the level II objective: ''Evaluate the performance of the Fenton Hill Phase II reservoir''. To appreciate the significance of this objective, a brief background is helpful. During the past 14 years the US DOE has invested $123 million to develop the technology required to make Hot Dry Rock geothermal energy commercially useful. The Governments of Japan and the Federal Republic of Germany have contributed an additional $32 million to the US program. The initial objectives of the program were met by the successful development and long-term operation of a heat-extraction loop in hydraulically-fractured hot dry rock. This Phase I reservoir produced pressurized hot water at temperatures and flow rates suitable for many commercial uses such as space heating and food processing. It operated for more than a year with no major problems or detectable environmental effect. With this accomplished and the technical feasibility of HDR energy systems demonstrated, the program undertook the more difficult task of developing a larger, deeper, hotter reservoir, called ''Phase II'', capable of supporting pilot-plant-scale operation of a commercial electricity-generating power plant. As described earlier in ''History of Research'', such a system was created and operated successfully in a preliminary 30-day flow test. However, to justify capital investment in HDR geothermal technology, industry now requires assurance that the reservoir can be operated for a long time without major problems or a significant decrease in the rate and quality of energy production. Industrial advisors to the HDR Program have concluded that, while a longer testing period would certainly be desirable, a successful and well-documented flow test of this high-temperature, Phase II reservoir lasting at least one year should convince industry that HDR geothermal energy merits their investment in its commercial development. This test is called the Long Term Flow Test (LTFT), and its completion will be a major milestone in attaining the Level 1 objective. However, before the LTFT could be initiated, well EE-2 had to be repaired, as also briefly described in the ''History of Research''. During this repair operation, superb progress was made toward satisfying the next most critically important Level II objective: Improve the Performance of HDR Drilling and Completion Technology. During the repair of EE-2, Los Alamos sidetracked by drilling out of the damaged well at 2.96 km (9700 ft), and then completed drilling a new-wellbore (EE-2A) to a total depth of 3.78 km (12,360 ft). As a consequence of this drilling experience, Los Alamos believes that if the original wells were redrilled today their combined cost would be only $8 million rather than the $18.8 million actually spent (a 60% cost saving). Further details, particularly of the completion of the well, can be found in the major section, ACCOMPLISHMENTS, but it can be seen that the second, Level II objective is already nearing attainment.

  10. Hot dry rock geothermal energy development program. Annual report, fiscal year 1980

    SciTech Connect (OSTI)

    Cremer, G.M. (comp.)

    1981-07-01T23:59:59.000Z

    Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

  11. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    SciTech Connect (OSTI)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01T23:59:59.000Z

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  12. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric...

    Open Energy Info (EERE)

    Caldera, a dormant volcanic complex in New Mexico, by connecting two wells with hydraulic fractures. Thermal power was generated at rates of up to 5 MW(t) and the reservoir...

  13. Hot Dry Rock Heat Mining Geothermal Energy Development Program - Annual Report Fiscal Year 1990

    SciTech Connect (OSTI)

    Duchane, David

    1991-01-01T23:59:59.000Z

    This was a year of significant accomplishment in the Hot Dry Rock (HDR) Program. Most importantly, the design, construction, and installation of the surface plant for the Phase II system neared completion by the end of the year. Basic process design work has been completed, and all major components of the system except the gas/particle separator have been procured. For this component, previous design problems have been resolved, and purchase during the first half of FY91 is anticipated. Installation of the surface plant is well underway. The system will be completed and ready for operation by the end of FY91 under the current funding scenario. The operational schedule to be followed will then depend upon the program funding level. Our goal is to start long-term flow testing as soon as possible. Of equal importance, from the standpoint of the long-term viability of HDR technology, during this year, for the first time, it has been demonstrated in field testing that it should be possible to operate HDR reservoirs with water losses of 1-3%, or even less. Our experience in the deep, hot, Phase II reservoir at Fenton Hill is in sharp contrast to the significant water losses seen by Japanese and British scientists working in shallower, cooler, HDR reservoirs. Calculations and modeling based on field data have shown that water consumption declines with the log of time in a manner related to water storage in the reservoir. This work may be crucial in proving that HDR can be an economically viable means for producing energy, and that it is useful even in areas where water is in short supply. In addition, an engineering model was developed to predict and explain water consumption in HDR reservoirs under pressure, the collection and processing of seismic information was more highly automated, and the detection limits for reactive tracers were lowered to less than 1 part per billion. All of these developments will add greatly to our ability to conduct, analyze, and understand the long-term test (LTFT). Water-rights acquisition activities, site clean-up, and improvements in the 1 million gallon storage pond at Fenton Hill have assured that we will have adequate water to carry out a vigorous testing program in a safe and environmentally-sound manner. The 1 million gallon pond was recontoured, and lined with a sophisticated multi-layer plastic barrier. A large part of the work on the pond was paid for with funds from the Laboratory's Health, Safety and Environment Division. Almost all the expected achievements set forth in the FY90 Annual Operating Plan were substantially accomplished this past year, in spite of a $300,000 shortfall in funding. This funding shortfall did delay some work and result in some projects not being completed, however. They have had to go more slowly than they would like on some aspects of the installation of the surface plant for the LTFT, purchase of non-critical equipment, such as a back-up electric generator for Fenton Hill, has been delayed, and some work has not been brought to an adequate conclusion. The fracture healing work, for example, was completed but not written up. they simply did not have the funds to pay for the effort needed to fully document this work. As the program enters FY91, the completion of the surface plant at Fenton Hill is within sight. The long-awaited LTFT can then begin, and the large investment in science and technology represents by the HDR Program will begin to bear still greater dividends.

  14. Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpen Energy

  15. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to: navigation,Geothermal

  16. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to:

  17. Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | Open Energy(Blackwell, EtRaft river valley,

  18. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  19. ,"New Mexico Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural GasCoalbed MethaneDry

  20. Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet)

    SciTech Connect (OSTI)

    ARBI

    2014-09-01T23:59:59.000Z

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  1. ,"New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural Gas Expected Future

  2. Hot

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in graphene by Meng-Chieh Ling A

  3. New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B(BillionFeet) Dry

  4. ,"New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7, 2008"PricePriceDry Natural Gas

  5. A study of pumps for the Hot Dry Rock Geothermal Energy extraction experiment (LTFT (Long Term Flow Test))

    SciTech Connect (OSTI)

    Tatro, C.A.

    1986-10-01T23:59:59.000Z

    A set of specifications for the hot dry rock (HDR) Phase II circulation pumping system is developed from a review of basic fluid pumping mechanics, a technical history of the HDR Phase I and Phase II pumping systems, a presentation of the results from experiment 2067 (the Initial Closed-Loop Flow Test or ICFT), and consideration of available on-site electrical power limitations at the experiment site. For the Phase II energy extraction experiment (the Long Term Flow Test or LTFT) it is necessary to provide a continuous, low maintenance, and highly efficient pumping capability for a period of twelve months at variable flowrates up to 420 gpm and at surface injection pressures up to 5000 psi. The pumping system must successfully withstand attacks by corrosive and embrittling gases, erosive chemicals and suspended solids, and fluid pressure and temperature fluctuations. In light of presently available pumping hardware and electric power supply limitations, it is recommended that positive displacement multiplex plunger pumps, driven by variable speed control electric motors, be used to provide the necessary continuous surface injection pressures and flowrates for LTFT. The decision of whether to purchase the required circulation pumping hardware or to obtain contractor provided pumping services has not been made.

  6. The furnace in the basement: Part 1, The early days of the Hot Dry Rock Geothermal Energy Program, 1970--1973

    SciTech Connect (OSTI)

    Smith, M.C.

    1995-09-01T23:59:59.000Z

    This report presents the descriptions of the background information and formation of the Los Alamos Scientific Laboratory Geothermal Energy Group. It discusses the organizational, financial, political, public-relations,geologic, hydrologic, physical, and mechanical problems encountered by the group during the period 1970--1973. It reports the failures as well as the successes of this essential first stage in the development of hot dry rock geothermal energy systems.

  7. Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report

    SciTech Connect (OSTI)

    Kauffman, D.; Houghton, A.V.

    1980-12-31T23:59:59.000Z

    The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

  8. Building America Best Practices Series: Volume 2. Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Baechler, M. C.; Taylor, Z. T.; Bartlett, R.; Gilbride, T.; Hefty, M.; Love, P. M.

    2005-09-01T23:59:59.000Z

    This best practices guide is part of a series produced by Building America. The guidebook is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot-dry and mixed-dry climates. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder?s team?from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

  9. Mexico City Update on the Fielding Mexico guide book. Hotel Maria Angelos

    E-Print Network [OSTI]

    Adams, Paul R.

    MEXICO Mexico City Update on the Fielding Mexico guide book. Hotel Maria Angelos is closed to do their job. [all the dogs in Mexico are beginning to look very similar - brown, skinny, short hair night. But here, in Mexico, the food is great and not hot. I'm sitting on the beach, well, in a chair

  10. Vennetier M. ; Ripert C. (2010) Climate change impact on vegetation: lessons from an exceptionally hot and dry decade in South-eastern France. In: Climate Change and variability, (eds Simlard S.W. ; Austin M.E.), Sciyo, Rijeka, Croatia, p. 225-241.

    E-Print Network [OSTI]

    Boyer, Edmond

    Vennetier M. ; Ripert C. (2010) Climate change impact on vegetation: lessons from an exceptionally hot and dry decade in South-eastern France. In: Climate Change and variability, (eds Simlard S°13 Climate change impact on vegetation: lessons from an exceptionally hot and dry decade in south

  11. ,"Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated Natural Gas, WetDry

  12. Exploration for Hot Dry Rock geothermal resources in the Midcontinent USA. Volume 1. Introduction, geologic overview, and data acquisition and evaluation

    SciTech Connect (OSTI)

    Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

    1986-02-01T23:59:59.000Z

    The Midcontinent of North America is commonly characterized as a stable cratonic area which has undergone only slow, broad vertical movements over the past several hundreds of millions of years. This tectonically stable crust is an unfertile area for hot dry rock (HDR) exploration. However, recent geophysical and geological studies provide evidence for modest contemporary tectonic activity in limited areas within the continent and, therefore, the possibility of localized thermal anomalies which may serve as sites for HDR exploration. HDR, as an energy resource in the Midcontinent, is particularly appealing because of the high population density and the demand upon conventional energy sources. Five generalized models of exploration targets for possible Midcontinent HDR sites are identified: (1) radiogenic heat sources, (2) conductivity-enhanced normal geothermal gradients, (3) residual magnetic heat, (4) sub-upper crustal sources, and (5) hydrothermal generated thermal gradients. Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high local upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket.

  13. Characterizing the Mechanics of Fracturing from Earthquake Source Parameter and Multiplet Analyses: Application to the Soultz-sous-Forêts Hot Dry Rock site

    E-Print Network [OSTI]

    Michelet, Sophie

    2005-01-01T23:59:59.000Z

    In 2000 and 2003, two massive hydraulic fracturing experiments were carried out at the European Geothermal Hot

  14. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease,,,"Associated-DissolvedDry

  15. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  16. New Mexico Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1Lease

  17. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  18. New Mexico's energy resources '81. Annual report of Bureau of Geology in the Mining and Minerals Division of New Mexico Energy and Minerals Department

    SciTech Connect (OSTI)

    Arnold, E.C.; Hill, J.M. (comps.)

    1981-09-03T23:59:59.000Z

    Although production of U/sub 3/O/sub 8/ declined only slightly in 1980, New Mexico's share of domestic production has declined from 48% in 1976 to 35% in 1980. Production projections indicate a continued decline in 1981 and lower production until at least 1984. New Mexico has 41% of total domestic reserves producible in the $50-per-lb cost category. In keeping with the anticipated steady depletion of reserves, production of crude oil in New Mexico was 69.9 million bls, a 6.3% decline in production from 1979. Condensate production of 5.4 million bbls in 1980, however, represented an increase of 7% from 1979 production. Although natural gas production was the lowest since 1970 and declined by 2.6% from 1979 production, 1980 was the 15th year that production exceeded 1 trillion cu ft. Despite declines in production, the valuation of oil and gas production has increased significantly with oil sales doubling from the previous year and gas sales increasing by $409 million because of higher prices. Reserves have been estimated to be 959 million bbls of crude oil and 17.667 trillion cu ft of natural gas. Production of 19.5 million short tons of coal in 1980 represented a 33% increase over 1979 production and an increase of 157% since 1970. Coal resources in New Mexico are estimated to be 180.79 billion short tons, and production is projected to incease to 39.61 million tons in 1985 and 67.53 million tons in 1990. The most notable developments in geothermal energy have been in technical advances in drilling, testing, and applications, especially in the area of hot dry rock systems. The US Bureau of Land Management has issued 113 geothermal leases that remain active. Recent geothermal exploration activity has been detailed for 21 companies.

  19. SBA: Business in Mexico Guadalajara, Mexico

    E-Print Network [OSTI]

    SBA: Business in Mexico Guadalajara, Mexico International Field Experience Led by Professor Tom! "Business in Mexico" is an international field study aimed at giving SBA undergraduate and graduate students an opportunity to explore Mexican business culture in Guadalajara, Mexico. By partnering with one of the top ten

  20. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  1. Drying Foods at Home Safely Drying Herbs

    E-Print Network [OSTI]

    jars, freezer bags, and airtight plastic containers. Like other foods dried at home, dried herbs in an airtight container and store in a cool, dry, and dark place. Recommended containers include glass canning

  2. Dry effluent

    SciTech Connect (OSTI)

    Brady, J.D. (Anderson, 2000 Inc., Peachtree City, GA (US))

    1988-01-01T23:59:59.000Z

    The available choices of pollution control systems depend on what is being burned and how stringent the regulations are. The common systems are gas cooling by a waste heat boiler or an air-air heat exchanger followed by fabric filtration or electrostatic precipitation for particulate removal; alkaline spray absorbers followed by fabric filters (dry scrubbers) for particulate and acid gas removal; wet scrubbers for simultaneous particulate and acid gas removal, and; the newest - spray evaporation, followed by wet scrubbing for particulate and acid gas removal. Each has advantages and each has disadvantages. This paper discusses the advantages and disadvantages of the spray evaporator and wet scrubber combination.

  3. Forestry Policies (New Mexico)

    Broader source: Energy.gov [DOE]

    New Mexico's forests are managed by the State Forestry Department, within the New Mexico Energy, Minerals, and Natural Resources Department. In 2010 the Department issued the New Mexico Statewide...

  4. Census Snapshot: New Mexico

    E-Print Network [OSTI]

    Romero, Adam P.; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

    2008-01-01T23:59:59.000Z

    THE WILLIAMS INSTITUTE CENSUS SNAPSHOT NEW MEXICO APRIL 2008NEW MEXICO Adam P. Romero, Public Policy Fellow Clifford J.raising children in New Mexico. We compare same-sex “

  5. Hog Fuel Drying Using Vapour Recompression 

    E-Print Network [OSTI]

    Azarniouch, M. K.; MacEachen, I.

    1984-01-01T23:59:59.000Z

    A continuous hog fuel drying pilot plant based on the principle of mixing hog fuel with a hot oil (e.g., crude tall oil) as the heat transfer medium, and recirculating the suspension through a steam heated exchanger was designed, built...

  6. Directional drilling equipment and techniques for deep hot granite wells

    SciTech Connect (OSTI)

    Brittenham, T.L.; Sursen, G.; Neudecker, J.W.; Rowley, J.C.; Williams, R.E.

    1980-01-01T23:59:59.000Z

    Conventional directional drilling technology has been extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, Hot dry Rock (HDR) experimental site. Completing the first of a two-wellbore HDR system has resulted in the definition of operational limitations of many conventional directional drilling tools, instrumentation and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-2), to a measured depth of 15,300 ft (4.7 km) in granite reservoir rock with a bottomhole temperature of 530/sup 0/F (275/sup 0/C) required the development of a new high temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 8500 ft (2.6 km) of directional hole to a final inclination of 35/sup 0/ from the vertical at a controlled azimuthal orientation.

  7. U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Extended Abstract 158 Possible redeposition of volcanic ashes in the Dry Valleys by glacier transport

    E-Print Network [OSTI]

    Dunbar, Nelia W.

    Mexico Bureau of Geology & Mineral Resources, New Mexico Tech, Socorro NM 87801 USA (nelia and ice sheets have global-scale impacts. The Dry Valleys are a key site because they are one of the few

  8. Mexico Small Business Assistance fest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrate success at New Mexico Small Business Assistance fest April 4, 2011 LOS ALAMOS, New Mexico, April 4, 2011-The New Mexico Small Business Assistance (NMSBA) program is...

  9. Geothermal: Hot Documents Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  10. Tropical mountain cradles of dry forest diversity Christopher W. Dick*

    E-Print Network [OSTI]

    Bermingham, Eldredge

    * *Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama´; and Department of Ecology radiated at vastly different times, so fo- cus on a single taxon would be mislead- ing. On the side of rain- ple, the dry forest legume clade Leu- caena underwent endemic radiation in southwest Mexico beginning

  11. Wet-dry cooling demonstration. Test results

    SciTech Connect (OSTI)

    Allemann, R.T.; DeBellis, D.E.; Werry, E.V.; Johnson, B.M.

    1986-05-01T23:59:59.000Z

    A large-scale test of dry/wet cooling using the ammonia phase-change system, designated the Advanced Concepts Test (ACT), has been operated at Pacific Gas and Electric Company's Kern Station at Bakersfield, California. The facility is capable of condensing 60,000 lbs/h of steam from a small house turbine. Two different modes of combining dry and evaporative cooling have been tested. One uses deluge cooling in which water is allowed to flow over the fins of the dry (air-cooled) heat exchanger on hot days; the other uses a separate evaporative condenser in parallel to the dry heat exchanger. A third mode of enhancing the dry cooling system, termed capacitive cooling has been tested. In this system, the ammonia-cooled steam condenser is supplemented by a parallel conventional water-cooled condenser with water supplied from a closed system. This water is cooled during off-peak hours each night by an ammonia heat pump which rejects heat through the ACT Cooling Tower. If operated over the period of a year, each of the wet/dry systems would use only 25% of the water normally required to reject this heat load in an evaporative cooling tower. The third would consume no water, the evaporative cooling being replaced by the delayed cooling of the closed system water supply.

  12. Freeze-drying bovine spermatozoa

    E-Print Network [OSTI]

    Faris, Harvey Lee

    1965-01-01T23:59:59.000Z

    ~~to t~ roi'ipxg QQ ca dry ai gjuu QQjQigog aud ta Qst~~co cho ~~grso Qg 86lhVdratiea KXpkos Q~Kd Wlthstsud?. V~4MK Qhaersat9ZBE3 Vora used apprs~w~~~ a%oct@ a8 virious uaistma Eoroko as assess hot~& driad. OC WQQ QVBSd Chat horaous gQ Sud 2' hours...KK Hmm 'tiaao ZXZ"d. XnCEICno ~. ?n~ cpa~ Vms::Hach. . UIadpicoKdSq. X6, ESP& S&~o~c. L947, Tha Eccaaacii"cLBCII @IE HacCai. 'La Ljy Uqrlaj. ':. J? QvaacaL EELaoabiaKagyp X. " HSR;. K7p EESCKQ~~UZp g. 8 X956. ParCELU HaIILaa Saciemi HHCaC THicaa...

  13. The Politics of Mexico’s Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    and Iran, Mexico has very few oil reserves. For instance,Mexico is ranked eighth in the world in terms of oil reservescan oil last in Mexico based on the current oil reserves and

  14. The Politics of Mexico’s Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    the United States needs oil and Mexico has a surplus of itthe bilateral agenda, yet for Mexico oil is one of its fewfor reforming the oil industry in Mexico. Master Thesis.

  15. Mythical Terrain and the Building of Mexico’s UNAM

    E-Print Network [OSTI]

    Davids, René

    2008-01-01T23:59:59.000Z

    and the Environment in Mexico, 2005. No. 14: Kevin P.Trueba, El Pedregal de San Angel. Mexico City: UniversidadNacional Autónoma de Mexico (1995). 5. See Mario Pani and

  16. Estimation of atmospheric deposition in coastal Jalisco, western Mexico, using an epiphytic plant (Tillandsia recurvata L. Bromeliaceae)

    E-Print Network [OSTI]

    Sahagun Godinez, Eduardo

    1998-01-01T23:59:59.000Z

    Ttllandsia recurvata was used as a biomonitor to ographics. estimate the trace element atmospheric deposition in a tropical dry forest of the Pacific coast of Jalisco, in western Mexico. The plant samples were initially collected gem a population...

  17. Estimation of atmospheric deposition in coastal Jalisco, western Mexico, using an epiphytic plant (Tillandsia recurvata L. Bromeliaceae) 

    E-Print Network [OSTI]

    Sahagun Godinez, Eduardo

    1998-01-01T23:59:59.000Z

    Ttllandsia recurvata was used as a biomonitor to ographics. estimate the trace element atmospheric deposition in a tropical dry forest of the Pacific coast of Jalisco, in western Mexico. The plant samples were initially ...

  18. El agua no se vende, el agua se defiende : water rights transfers and community irrigation in New Mexico's acequias

    E-Print Network [OSTI]

    Daly, Brian T. (Brian Thomas)

    2013-01-01T23:59:59.000Z

    Small farmers across New Mexico irrigate with acequias, a system of cooperative, gravity-fed ditches introduced in Spanish colonial times that remains well adapted to managing scarce water in a dry climate. While the acequia ...

  19. Gulf of Mexico",,"Louisiana",,"New Mexico",,"Oklahoma",,"Texas...

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-914 Gross Withdrawals1 by Area by Month, Bcfd" "Area","Federal Offshore Gulf of Mexico",,"Louisiana",,"New Mexico",,"Oklahoma",,"Texas",,"Wyoming",,"Other States...

  20. Membranes and MEAs for Dry Hot Operating Conditions

    Broader source: Energy.gov (indexed) [DOE]

    fuel cells to meet 2010 commercialization targets for the automotive industry and other fuel cell applications such as stationary power. * Timeframe: 4 years, starting in FY07...

  1. High Performance Walls in Hot-Dry Climates

    SciTech Connect (OSTI)

    Hoeschele, M.; Springer, D.; Dakin, B.; German, A.

    2015-01-01T23:59:59.000Z

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  2. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect (OSTI)

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01T23:59:59.000Z

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  3. Hot Dry Rock Reservoir Engineering | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonestHoosacHorseHorstReport:

  4. Reservoir Investigations on the Hot Dry Rock Geothermal System, Fenton

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewable EnergyobtainedRentricitySocial

  5. New Mexico Small Business Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Los Alamos, Sandia national laboratories LOS ALAMOS, NEW MEXICO, May 31, 2012-The New Mexico Small Business Assistance (NMSBA) program, a collaboration of Los Alamos National...

  6. Open Burning (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Air Quality Bureau regulates the open burning rules established by the Environmental Improvement Board. These rules are established to protect public health...

  7. Northern New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 million for education, economic development, charitable giving in Northern New Mexico September 23, 2014 LOS ALAMOS, N.M., Sept. 23, 2014-The Los Alamos National...

  8. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  9. New Mexico Small Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Assistance Program (NMSBA) helps small businesses in New Mexico access cutting-edge technologies, solve technical issues, and gain knowledge from technical experts...

  10. Directional Drilling and Equipment for Hot Granite Wells

    SciTech Connect (OSTI)

    Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

    1981-01-01T23:59:59.000Z

    Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

  11. NAFTA and gasoline: Canada, U. S. , Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-03-31T23:59:59.000Z

    The North American Free Trade Agreement has become a hotly debated topic all over the world, but especially in the countries involved: Mexico, United States, and Canada. Comments made by high ranking officials imply there are differences to reconcile before the agreement is passed. Toward seeing these countries in trio, this issue compares gasoline markets and some energy perspectives. The purpose of this article is to contribute to understanding of the three countries through their petroleum industry structure. Gasoline consumption and retail delivery infrastructure are compared and contrasted to illustrate the differences among the NAFTA countries.

  12. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas, WetReserves

  13. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1Lease Separation780Year

  14. New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1LeaseAcquisitions (Billion

  15. New Mexico Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1LeaseAcquisitions

  16. New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1LeaseAcquisitionsFeet)

  17. New Mexico Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear

  18. New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet) New FieldIncreasesSales

  19. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand Cubic Feet) (MilliontotalThousand780Year Jan

  20. Cinvestav Zacatenco, Mexico City, Mexico September 9-12, 2014

    E-Print Network [OSTI]

    Cinvestav Zacatenco, Mexico City, Mexico PROGRAM September 9-12, 2014 #12 President, CINVESTAV-IPN, Dept. of Biotechnology and Bioengineering, Mexico Dr. Héctor M. Poggi-Varaldo, Chair, CINVESTAV-IPN, Dept. of Biotechnology and Bioengineering, Mexico Prof. Elvira Ríos-Leal, Chair

  1. New Mexico State University Las Cruces, New Mexico 88003

    E-Print Network [OSTI]

    Wright, Timothy F.

    Cole Tobin New Mexico State University Las Cruces, New Mexico 88003 ctobin24@nmsu.edu 325: May 2015, New Mexico State University, Las Cruces NM GPA: 3.6; GPA in Major (Anthropology): 4.0; GPA and non- human primates. ! Research Appointments ! 2013-Present NMSU-HHMI Research Scholar, New Mexico

  2. University of New Mexico Chapter University of New Mexico

    E-Print Network [OSTI]

    Krishna, Sanjay

    Sigma Xi University of New Mexico Chapter University of New Mexico Albuquerque, NM 87131 May 13, 2011 Mr. Ajit Barve University of New Mexico Albuquerque, NM 87131-0001 Dear Mr. Barve, On behalf to attend monthly scientific presentations at the University of New Mexico, and participation in the annual

  3. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    with good mechanical properties - Loading approaching targets - Process parameter optimization necessary to make thinner films with better density characteristics Images of dry...

  4. Transporting Dry Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements for Shipping Dry Ice IATA PI 904 Source: Reg of the Day from ERCweb 2006 Environmental Resource Center | 919-469-1585 | webmaster@ercweb.com http:...

  5. Cooking with Dry Beans

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    This fact sheet describes the nutritonal value and safe storage of dry beans, a commodity food. It also offers food preparation ideas....

  6. Sandia National Laboratories: DRI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DRI ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  7. New Mexico Tech 20062007 Catalog

    E-Print Network [OSTI]

    Aitbayev, Rakhim

    New Mexico Tech 2006­2007 Catalog For information on undergraduate admission, contact: Director of Admission New Mexico Tech 801 Leroy Place Socorro, New Mexico 87801 505.835.5424 1.800.428.TECH admission.nmt.edu For information on graduate admission, contact: Dean of Graduate Studies New Mexico Tech 801 Leroy Place Socorro

  8. Gulf of Mexico -West Florida

    E-Print Network [OSTI]

    Gulf of Mexico - Alabama - West Florida - Louisiana - Mississippi - Texas #12;Regional Summary Gulf of Mexico Region Management Context The Gulf of Mexico Region includes Alabama, Louisiana, Mississippi, Texas, and West Florida. Federal fisheries in this region are managed by the Gulf of Mexico Fishery

  9. EMBUDO, NEW MEXICO, BIRTHPLACE OF

    E-Print Network [OSTI]

    Torgersen, Christian

    \\ i ' \\ . EMBUDO, NEW MEXICO, BIRTHPLACE OF SYSTEMATIC STREAM GAGING #12;#12;Embudo, New Mexico 19 21 22 III #12;#12;EMBUDO, NEW MEXICO, BIRTHPLACE OF SYSTEMATIC STREAM GAGING By ARTHUR H. FRAZIER and WILBUR HECKLER INTRODUCTION Embudo, a tiny village on the Rio Grande in northern New Mexico, was chosen

  10. Crafting culture : artisan cooperatives in Oaxaca, Mexico

    E-Print Network [OSTI]

    Edwards, Meghan E.

    2009-01-01T23:59:59.000Z

    Renarrativizing of Postrevolutionary Mexico. In Fragments ofThe Politics of Culture in Mexico since 1940, eds. Gilbertpopulares en el capitalismo. Mexico: Nueva Imagen. Harris,

  11. Geothermal potential of West-Central New Mexico from geochemical and thermal gradient data

    SciTech Connect (OSTI)

    Levitte, D.; Gambill, D.T.

    1980-11-01T23:59:59.000Z

    To study the low temperature and Hot Dry Rock (HDR) geothermal potential of west-central New Mexico, 46 water samples were collected and geothermal gradient measurements were made in 29 wells. Water chemistry data indicate that all the samples collected are meteoric waters. High temperatures of samples taken from wells between Gallup and Tohatchi indicate these wells may derive water from a warm aquifer below the depth of the wells. The chemistries of the samples farther south on the Zuni Indian reservation suggest these waters are not circulating below 600 m of the surface. Geothermometry calculations support the conclusion that the waters sampled are meteoric. The geothermometry also indicates that the deep reservoir between Gallup and Tohatchi may be greater than 60/sup 0/C. Thermal gradient data indicate an area of high gradient on the Zuni Indian Reservation with a measured maximum of 67/sup 0/C/km between 181 m and 284 m. This high probably is not hydrologically controlled. The maximum gradients in the study area are 76/sup 0/C/km and 138/sup 0/C/km, measured just east of Springerville, Arizona. These gradients are undoubtedly controlled by circulating water, possibly heated by a magmatic source at depth and circulating back to the surface.

  12. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    No. 8: David Shields, Mexico’s Deteriorating Oil Outlook:of California, Berkeley Mexico’s Deteriorating Oil Outlook:and the Environment in Mexico, 2005. No. 14: Kevin P.

  13. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    years. Estimating oil reserves in Mexico has long been aof as yet unproven oil reserves in Mexico’s part of theP otential Mexico’s proven oil reserves have declined

  14. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    Mexico’s Deteriorating Oil Outlook: Implications and EnergyMexico’s Deteriorating Oil Outlook: Implications and EnergyA ccelerates Mexico’s crude oil production, which reached a

  15. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    No. 8: David Shields, Mexico’s Deteriorating Oil Outlook:years. Estimating oil reserves in Mexico has long been aof as yet unproven oil reserves in Mexico’s part of the

  16. Last date modified 1/16/13 Location and Institution MEXICO -MEXICO CITY

    E-Print Network [OSTI]

    Galles, David

    Last date modified 1/16/13 Location and Institution MEXICO - MEXICO CITY UNIVERSIDAD IBEROAMERICANA - MEXICO CITY (UIA - MEXICO CITY) Program and Language a homestay or apartment. *Housing fees: Room rates are paid directly to UIA- Mexico

  17. Modelling of hot pressing of paper D. Bezanovic1

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Institute of Applied Physics, Systems and Processes Division, P.O. Box 155, 2600 AD Delft, The Netherlands occur: - increased the hydraulic pressure gradient via steam formation, - increased evaporation after and applies it to hot pressing of paper. An overview of the impulse drying research was made by Van Lieshout

  18. Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs, andCertificates, andand

  19. Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovemberInvestigationsCommittee on Energy andEnergyof EnergyEnergy

  20. Air Conditioner Efficiency Under Hot Dry and Hot Humid Conditions - The Utility Perspective

    E-Print Network [OSTI]

    Amarnath, A.

    94304 E-mail: aamarnath@epri.com Phone: (650) 855-1007 Energy efficient residential air conditioning is important to utilities and their customers. In almost all parts of the U.S., an air conditioner for a dwelling has a high peak demand... energy efficiency programs; ? Actively engage in the USDOE standards proceedings through technical input from collaborative organizations like EPRI and EEI; ? Support emerging technology procurement of air conditioning equipment that is super...

  1. Housing markets : Mexico

    E-Print Network [OSTI]

    Solórzano M., Ricardo M. (Ricardo Miguel Solórzano Macías)

    2009-01-01T23:59:59.000Z

    What, When and Where to Develop? The purpose of this study is to help find the major areas of opportunity for housing development and production in Mexico. The thesis intends to help developers in their eternal quest for ...

  2. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    Ratecapacity match cathode 12 8. Down-select low cost anode process 50% vs baseline capex + opex 13 9. Scale cathode film to support task 16 10 m 17 10. Lab prototype cell dry...

  3. Freeze drying method

    DOE Patents [OSTI]

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    1999-01-01T23:59:59.000Z

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  4. Freeze drying apparatus

    DOE Patents [OSTI]

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    2001-01-01T23:59:59.000Z

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  5. Hot Summer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontalHot PlateHotHot

  6. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  7. Technical and economical considerations of new DRI melting process

    SciTech Connect (OSTI)

    Ito, Shuzo; Tokuda, Koji; Sammt, F.; Gray, R.

    1997-12-31T23:59:59.000Z

    The new DRI melting process can effectively and economically produce high quality molten iron. This process utilizes hot charging of DRI directly from a reduction furnace into a dedicated new melting furnace. The molten iron from this DRI premelter can be charged into a steelmaking furnace, such as an electric arc furnace (EAF), where the molten iron, together with other iron sources, can be processed to produce steel. Alternatively the molten iron can be pigged or granulated for off-site merchant sales. Comprehensive research and development of the new process has been conducted including operational process simulation, melting tests using FASTMET DRI, slag technology development, and refractory corrosion testing. This paper describes the process concept, its operational characteristics and further applications of the process.

  8. The Politics of Mexico’s Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    Mexicana, S.A. de C.V. 2003. Pemex y el desarrollo económicoShields, David. Pemex: la reforma petrolera. Mexico, D.F:1982 Mexico: the case of Pemex. ” Bulletin of Latin America

  9. New Mexico Electric Car Challenge: November 22 The New Mexico...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to view details. To close the opened accordion, click on the title(s) once again. New Mexico Electric Car Challenge: November 22 The New Mexico Electric Car Challenge (formerly...

  10. New Mexico: New Mexico's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of New Mexico.

  11. Hot and dark matter

    E-Print Network [OSTI]

    D'Eramo, Francesco

    2012-01-01T23:59:59.000Z

    In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

  12. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USDA awards 1 million eor e. coli research by Los Alamos National Laboratory and New Mexico Consortium February 29, 2012 LOS ALAMOS, New Mexico, February 29, 2012-Researchers from...

  13. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31T23:59:59.000Z

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  14. Philadelphus in New Mexico ... 1

    E-Print Network [OSTI]

    Johnson, Eric E.

    · Philadelphus in New Mexico ... 1 · New Plant Records ... 7 · Botanical Literature of Interest ... 8 In This Issue -- A Newsletter for the flora of New Mexico, from the Range Science Herbarium and Cooperative Extension Service, College of Agriculture and Home Economics, New Mexico State University

  15. Chamaesyce in New Mexico.......................1

    E-Print Network [OSTI]

    Johnson, Eric E.

    · Chamaesyce in New Mexico.......................1 · Layia........................14 · Plant Reports ...........16 In This Issue -- A Newsletter for the flora of New Mexico, from the Range Science Herbarium and Cooperative Extension Service, College of Agriculture and Home Economics, New Mexico State

  16. Allium in New Mexico .................................1

    E-Print Network [OSTI]

    Johnson, Eric E.

    · Allium in New Mexico .................................1 · What's in a Name?....6 · Botanical for the flora of New Mexico, from the Range Science Herbarium and Cooperative Extension Service, College of Agriculture and Home Economics, New Mexico State University. Botanice est Scientia Naturalis quae Vegetabilium

  17. Cooking with Dried Potatoes

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    make a tasty vegetable dish. For added flavor, you can add salt and pepper along with small amounts of grated cheese, margarine or butter. Be careful: Adding large amounts of cheese, butter or margarine can turn a low-fat vegetable, such as potatoes..., into a high-fat dish. How to store them Store packages of dried potatoes in a cool, dry, place. After the package is opened, store the potatoes in an airtight container. Store cooked potatoes in a covered dish in the refrigerator. Use within 3 days...

  18. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    Format Locations sorted by Dry Bulb Temperature Locationssorted by Wet Bulb Temperature 11. APPENDIX C: DIRECT LIQUIDis constrained by outdoor wet bulb temperature) or dry

  19. Cooling Dry Cows

    E-Print Network [OSTI]

    Stokes, Sandra R.

    2000-07-17T23:59:59.000Z

    , little work has been done on the responses of cooling cows in this period. The dry period is particularly crucial because it involves regen- eration of the mammary gland and rapid fetal growth. This is also when follicles begin develop- ing and maturing...

  20. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    processing of heavier crude oil, and production of cleaner,A ccelerates Mexico’s crude oil production, which reached a43 percent of Mexico’s crude oil production, compared to 63

  1. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    of heavier crude oil, and production of cleaner, low-sulphurA ccelerates Mexico’s crude oil production, which reached aof Mexico’s crude oil production, compared to 63 percent

  2. IR Hot Wave

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01T23:59:59.000Z

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  3. Transferring to The University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    Transferring to The University of New Mexico From Central New Mexico College A Transfer Articulation Guide based on Central New Mexico Community College Catalog Year 2007 ­ 2009 Apply to UNM on-line at www.unm.edu #12;Transferring to The University of New Mexico from Central New Mexico Community College

  4. Transferring to The University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    Transferring to The University of New Mexico From Central New Mexico College A Transfer Articulation Guide based on Central New Mexico Community College Catalog Year 2009 ­ 2011 Apply to UNM on-line at www.unm.edu #12;Transferring to The University of New Mexico from Central New Mexico Community College

  5. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect (OSTI)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01T23:59:59.000Z

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  6. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect (OSTI)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01T23:59:59.000Z

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  7. Comparison of DOE-2.1E with Energyplus and TRNSYS for Ground Coupled Residential Buildings in Hot anf Humid Climates Stage 4

    E-Print Network [OSTI]

    Andolsun, S.; Culp, C.

    2012-01-01T23:59:59.000Z

    -on- grade heat transfer for International Energy Conservation Code (IECC) compliant low-rise 20m x 20m x 3m residential buildings with unconditioned attics in four U.S. climates (hot-humid, hot-dry, cold, and temperate). For the modeling of the slab... the requirements of IECC 2009. As a result, four energy code compliant fully loaded houses located in hot-humid (Austin), hot-dry (Phoenix), temperate (Chicago) and cold (Columbia Falls) climates were obtained. First, these houses were modeled with an adiabatic...

  8. Comparison of DOE-2.1E with Energyplus and TRNSYS for Ground Coupled Residential Buildings in Hot anf Humid Climates Stage 4 

    E-Print Network [OSTI]

    Andolsun, S.; Culp, C.

    2012-01-01T23:59:59.000Z

    -on- grade heat transfer for International Energy Conservation Code (IECC) compliant low-rise 20m x 20m x 3m residential buildings with unconditioned attics in four U.S. climates (hot-humid, hot-dry, cold, and temperate). For the modeling of the slab... the requirements of IECC 2009. As a result, four energy code compliant fully loaded houses located in hot-humid (Austin), hot-dry (Phoenix), temperate (Chicago) and cold (Columbia Falls) climates were obtained. First, these houses were modeled with an adiabatic...

  9. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  10. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOE Patents [OSTI]

    Jha, Mahesh C. (Arvada, CO); Blandon, Antonio E. (Thornton, CO); Hepworth, Malcolm T. (Edina, MN)

    1988-01-01T23:59:59.000Z

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  11. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W. (9253 Glenoaks Blvd., Sun Valley, CA 91352)

    1997-01-01T23:59:59.000Z

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  12. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15T23:59:59.000Z

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  13. 2010 Dry Bean Research Report

    E-Print Network [OSTI]

    2010 Dry Bean Research Report Assessment of Narrow Row Technology Michigan Dry Edible Bean Production RESEARCH ADVISORY BOARD #12;The Michigan Bean Commission was awarded a grant from the MDA Technology for the Michigan Dry Bean Industry". Expected outcomes from this project are: 1. Identification

  14. 2012 Dry Bean Research Report

    E-Print Network [OSTI]

    2012 Dry Bean Research Report Assessment of Narrow Row Technology Michigan Dry Edible Bean Production Research Advisory Board #12;The Michigan Bean Commission was awarded a grant from the MDA Technology for the Michigan Dry Bean Industry". Expected outcomes from this project are: 1. Identification

  15. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  16. Phemeranthus and Talinum in New Mexico

    E-Print Network [OSTI]

    Johnson, Eric E.

    · Phemeranthus and Talinum in New Mexico .................................1 · What's in a Name of New Mexico, from the Range Science Herbarium and Cooperative Extension Service, College of Agriculture and Home Economics, New Mexico State University. Botanice est Scientia Naturalis quae Vegetabilium

  17. Improving Abortion Services for Women in Mexico

    E-Print Network [OSTI]

    Becker, Davinda

    2011-01-01T23:59:59.000Z

    of Induced Abortion in Mexico: What’s changed between 1990despenalizacion del aborto. Mexico City: IPAS. Sousa, A. ,the evidence base in Mexico. Health Policy and Planning, 25(

  18. Three Essays on Institutional Reforms in Mexico

    E-Print Network [OSTI]

    Beleche, Trinidad

    2010-01-01T23:59:59.000Z

    and Standardized Student Tests in Mexico . . . . 4.3.1Violence Laws and Acts of Domestic Violence in Mexico 3.1of School Year Length on Student Performance in Mexico 4.1

  19. Index to The New Mexico Botanist.........1

    E-Print Network [OSTI]

    Johnson, Eric E.

    · Index to The New Mexico Botanist.........1 · Amateur Botanists ....... ...............................6, 7 · Plant Reports .............7 In This Issue -- A Newsletter for the flora of New Mexico, from, New Mexico State University. Botanice est Scientia Naturalis quae Vegetabilium cognitiorem tradit

  20. End of the Concessionary Regime in Mexico

    E-Print Network [OSTI]

    Pulido, Mario

    2015-01-01T23:59:59.000Z

    expropriated. Instead, Mexico saw prosperity from cateringEnd of the Concessionary Regime in Mexico By Mario Pulido OnMarch 18, 1938, President of Mexico Lazaro Cardenas formally

  1. The Politics of Mexico’s Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    Pemex: la reforma petrolera. Mexico, D.F: Editorial PlanetaSolano. Mexicano: Aspectos Básicos. México, D.F: UniversidadNacional Autónoma de México (Instituto de Investigaciones

  2. Intensification of hot extremes in the United States

    SciTech Connect (OSTI)

    Diffenbaugh, Noah [Stanford University; Ashfaq, Moetasim [ORNL

    2010-01-01T23:59:59.000Z

    Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2 C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulation during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2 C may not be sufficient to avoid dangerous climate change.

  3. Working in Hot Weather or Hot Workplace Environments Subject: Procedures and Guidelines for Working in Hot Environments

    E-Print Network [OSTI]

    Lennard, William N.

    Working in Hot Weather or Hot Workplace Environments Subject: Procedures and Guidelines for Working is intended to prevent potential heat induced illness as a result of hot weather or hot workplace environments in hot weather or hot workplace environments. The following parameters will serve as triggers

  4. Drying Rough Rice in Storage.

    E-Print Network [OSTI]

    Sorenson, J. W. Jr.; Crane, L. E.

    1960-01-01T23:59:59.000Z

    Drying. Rough Rice in Storage Ih AGRf""' TURP YPERIMENT STAT10 I. TEXAS SUMMARY Research was conducted at the Rice-Pasture Experiment Station near Beaumont during 7 crop years (1952-53 through 1958-59) to determine the engineering problems... and the practicability of dry- ing rough rice in storage in Texas. Drying rice in storage means drying rice in the same bin in which it is to be stored. Rough rice, with initial moisture contents of 15.0 to 23.0 percent, was dried at depths of 4 to 10 feet...

  5. Quality New Mexico recognizes Community Programs Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CPO receives Pion recognition Quality New Mexico recognizes Community Programs Office LANL has received 14 Pion and Roadrunner recognitions from Quality New Mexico since 1997....

  6. Quality New Mexico recognizes Community Programs Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality New Mexico recognizes Community Programs Office March 6, 2012 LOS ALAMOS, New Mexico, March 6, 2012-Los Alamos National Laboratory's Community Programs Office received...

  7. LANL engineers help New Mexico small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineers help New Mexico small businesses LANL engineers help New Mexico small businesses Charles Lucero and G. Loren Toole received Principal Investigator Excellence (PIE) Awards...

  8. Advancing Clean Energy Use in Mexico

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    NREL's work in Mexico over the last ten years has focused on clean energy technology activities that support the government of Mexico's development goals.

  9. End of the Concessionary Regime in Mexico

    E-Print Network [OSTI]

    Pulido, Mario

    2015-01-01T23:59:59.000Z

    of several oil concessions in Mexico. Among the companiesoil companies. I move on to discuss that shortly after the nationalization, Mexico

  10. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  11. Climate Action Plan (New Mexico)

    Broader source: Energy.gov [DOE]

    Recognizing the profound implications that global warming and climate variation could have on the economy, environment and quality of life in the Southwest, New Mexico Governor Bill Richardson...

  12. ,"New Mexico Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Prices",8,"Monthly","12015","1151989" ,"Release Date:","331...

  13. Advancing New Mexico's Alternative Fuels

    Broader source: Energy.gov (indexed) [DOE]

    FUELS P.I. Louise Martinez, ECMD Director Colin Messer, Project Manager New Mexico Energy, Minerals and Natural Resources Department June 19, 2014 Project ID TI048 This...

  14. Method of drying articles

    DOE Patents [OSTI]

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23T23:59:59.000Z

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  15. Method of drying articles

    DOE Patents [OSTI]

    Janney, Mark A. (Knoxville, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  16. Altos Hornos de Mexico blast furnace No. 5 certification in ISO-9002 standard

    SciTech Connect (OSTI)

    Gamez, O.; Liceaga, F.; Arredondo, J. [Altos Hornos de Mexico, Monclova (Mexico)

    1997-12-31T23:59:59.000Z

    Altos Hornos de Mexico`s Blast Furnace No. 5, as a means to improve its product quality, sought and obtained the certification of its quality system based on the international standard ISO-9002. The certification was obtained under this quality standard in Dec. 1995 and has successfully been maintained after two continuance audits. For blast furnace No. 5 (BF5) the benefits are reflected by a reduction in the hot metal silicon content variability, a decrease in fuel consumption and a higher productivity. Benefits were also obtained in the working environment where the personnel became more highly motivated, procedures were carried out to completion and the quality records were filled correctly.

  17. Integrated Ingredients Dehydrated Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low...

  18. New Mexico Small Business Assistance

    E-Print Network [OSTI]

    New Mexico Small Business Assistance Program (NMSBA) helps small businesses in New Mexico access counties solve their technical challenges through NMSBA. Economic Impact of the Small Businesses related to NMSBA Small Business Jobs Created/Retained 2,874 Average Salary $38,647 Increased Revenue $145.2M

  19. Stable isotope fractionation by thermal diffusion through partially molten wet and dry silicate rocks

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    isotope redistribution by thermal diffusion leading to enrichment of light isotopes at the hot endStable isotope fractionation by thermal diffusion through partially molten wet and dry silicate 2012 Editor: T.M. Harrison Keywords: thermal diffusion hydrogen isotope separation oxygen isotopes

  20. Pilgrim Hot Springs, Alaska

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic TroughPhotoCell StructureUranium MillPilgrim Hot

  1. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontalHot Plate

  2. Idaho_HotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude: N. 43 deg.

  3. StudyAbroad@Exeter Mexico City

    E-Print Network [OSTI]

    Mumby, Peter J.

    StudyAbroad@Exeter ITESM Mexico City Mexico The University The Instituto Tecnologico y de Estudios.edu/wps/wcm/connect/ITESM/Tecnologico+de+Monterrey/English Location Tecnologico de Monterrey, Campus Estado de Mexico is located in a very quiet zone in the municipality of Atizapan to the northwest of the metropolitan area of Mexico City. The campus was founded

  4. New Mexico State University WHAT we do

    E-Print Network [OSTI]

    Johnson, Eric E.

    All About Discovery! New Mexico State University #12;WHAT we do New Mexico State University is the state's land-grant university, serving the educa- tional needs of New Mexico's diverse population seven years Extension Education and Outreach We reach out to New Mexico and beyond through our statewide

  5. New Mexico Bureau Mines and Mineral

    E-Print Network [OSTI]

    Dunbar, Nelia W.

    Number22 - 1999 New Mexico Bureau of Mines and Mineral Resources a division of Nei~, Mexico Tech forsandblasting five times! ThisIssue Earth Briefs-Better age estimates on some New Mexico volcanic rocks Have You) NewMexico's Most Wanted Minera Is (pageT) Magnification of microscopic miner- als and glass (page 8

  6. New Mexico Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445 CU -StandardsNew Mexico

  7. The Mining Life : : A Transnational History of Race and Family in the U.S.-Mexico Borderlands, 1890-1965

    E-Print Network [OSTI]

    Maiorana, Juliette Charlie

    Lázaro Cárdenas, Mexico’s Oil, Mexico, 1940, reprinted inCárdenas, Lázaro. Mexico’s Oil. Mexico. 1940. Reprinted inthe expropriation of Mexico’s oil in 1938. These political

  8. Maintaining the environmental-racial order in northern New Mexico

    E-Print Network [OSTI]

    Wilmsen, Carl

    2007-01-01T23:59:59.000Z

    Weber (University of New Mexico Press, Albuquerque) pp 293-Region (University of New Mexico Press, Albuquerque) Wilmsenin Vallecitos, New Mexico. unpublished Ph.D. dissertation

  9. New Mexico Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mexico Recovery Act State Memo New Mexico Recovery Act State Memo New Mexico has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric...

  10. Toward a Genealogy of Mestizaje: Rethinking Race in Colonial Mexico

    E-Print Network [OSTI]

    Nemser, Daniel

    2011-01-01T23:59:59.000Z

    pública en la Nueva España. Mexico City: Editorial Progreso,Pontifical University of Mexico. Trans. Minnie Lee Barrettand trans. Rafael Tena. Mexico City: Consejo Nacional para

  11. The Built Environment and Migration: A Case Study of Mexico

    E-Print Network [OSTI]

    Ramirez, Rosa

    2009-01-01T23:59:59.000Z

    and Community Networks in Mexico-U.S. Migration. THe JournalTraditional Architecture of Mexico. London, UK: Thames anddevelopment: assessing Mexico's economic and social policy

  12. Trade unions, inequality, and democracy in the US and Mexico

    E-Print Network [OSTI]

    Tilly, Chris

    2013-01-01T23:59:59.000Z

    labor revitalization in Mexico. ” In Labor Revitalization:in twentieth-century Mexico. ” Latin American Researchgender equity rights in Mexico. ” Journal of Latin American

  13. The U.S.-Mexico Relationship: Towards a New Era?

    E-Print Network [OSTI]

    Mares, David R.; Vega Cánovas, Gustavo

    2010-01-01T23:59:59.000Z

    while oil revenues were high, increasing Mexico’s fiscaloil, gas and electricity. According to the OECD, Mexicofacing Mexico is the management of the energy sector. Oil

  14. Exit Followed by Voice: Mapping Mexico’s Emerging Migrant Civil Society

    E-Print Network [OSTI]

    Fox, Jonathan A

    2009-01-01T23:59:59.000Z

    Followed bYVoice Mapping Mexico's Emerging Migrant Civilen este año! , Reforma (Mexico City), Feb¡uary 13. http://Àcceso a La Redl, Reþrma (Mexico Citl), IanÌary 2+. Chua,

  15. Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot days. · Heat stroke is life threatening! Symptoms include high body temperature, red and dry skin, rapid before you get thirsty. Adequate fluid intake is the biggest key. Cool (not ice cold) water is the best

  16. 2013 Dry Bean Research Report

    E-Print Network [OSTI]

    Page 1 2013 Dry Bean Research Report Black Bean Color Retention and White Mold Control in Narrow Row Production Systems Michigan Dry Edible Bean Production Research Advisory Board #12;Page 2 The Michigan Bean Commission was awarded a grant from the MDARD Specialty Crop Block Grant Program-Farm Bill

  17. Hot hollow cathode gun assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1983-11-22T23:59:59.000Z

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  18. Geothermal Exploration in Hot Springs, Montana

    SciTech Connect (OSTI)

    Toby McIntosh, Jackola Engineering

    2012-09-26T23:59:59.000Z

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165�������������������������������°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250���������������¢�������������������������������� of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the ���������������¢��������������������������������center���������������¢������������������������������� of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165�������������������������������°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  19. Collateral Support Program (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Finance Authority has been approved to administer a $13.2 million Small Business Collateral Support Participation Program. The funds are dedicated to help finance credit worthy...

  20. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect (OSTI)

    Orloff, D.I.; Phelan, P.M.

    1993-12-01T23:59:59.000Z

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  1. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Transportation Water Heaters and Hot Water DistributionLaboratory). 2008. Water Heaters and Hot Water Distributionfor instantaneous gas water heaters; and pressure loss

  2. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS: Lutz J.D. (Lawrence Berkeley National Laboratory). 2008. Water Heaters and Hot Water Distribution

  3. Spent fuel drying system test results (second dry-run)

    SciTech Connect (OSTI)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01T23:59:59.000Z

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0.

  4. Mexico Transfers Water to U.S.

    E-Print Network [OSTI]

    Garcia, Raul

    2005-01-01T23:59:59.000Z

    Mexico?s Water DebtStory by Raul L. Garcia Mexico released 210,785 acre-feet of waterto Texas into Amistad International Reservoir on Saturday, March 19, 2005, to alleviate its sizable water debt to the U.S. arising from international treaty... requirements. This delivery is an addition to the 56,750 acre-feet of water Mexico transferred to Texas on March 12 in Falcon Reservoir. Mexico's recent water debt is now cut by more than 50 percent. Mexico released the water soon after signing a...

  5. VISA -Mexico.doc March 2012 StudyAbroad@Exeter

    E-Print Network [OSTI]

    Mumby, Peter J.

    VISA - Mexico.doc March 2012 StudyAbroad@Exeter Visa info Mexico IMMIGRATION INFORMATION ­ MEXICO anticipated stay in Mexico with photocopy of photo page. Photographs Three passport-sized frontal photos entry into Mexico. · Within 30 days of arrival in Mexico the student must register at the National

  6. The New Mexico Botanist Issue No. 11, May 21, 1999

    E-Print Network [OSTI]

    Johnson, Eric E.

    The New Mexico Botanist Issue No. 11, May 21, 1999 · Solidago in New Mexico · Botanical Literature of Interest · Penstemon pulchellus in New Mexico? · New Plant Distribution Records New Mexico Solidagos, Mexico, and the Northern Rockies. However, within New Mexico, special and isolated environments may

  7. Textile Drying Via Wood Gasification 

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01T23:59:59.000Z

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  8. Textile Drying Via Wood Gasification

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01T23:59:59.000Z

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  9. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands,EnergyHot-Dry-RockAl., 1993) |

  10. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal...

  11. Statement on New Mexico Science Education and the 2003 Revisions to New Mexico Science Standards

    E-Print Network [OSTI]

    Statement on New Mexico Science Education and the 2003 Revisions to New Mexico Science Standards is unlimited. August 21, 2003 Summary Many workers in New Mexico's national laboratories, industries National Laboratory have examined the proposed 2003 revisions to the New Mexico Science Standards2 and find

  12. New Mexico's Flagship University est.1889 THE UNIVERSITY of NEW MEXICO

    E-Print Network [OSTI]

    New Mexico, University of

    New Mexico's Flagship University est.1889 THE UNIVERSITY of NEW MEXICO 2013 LegisLative initiatives INSPIRE BE INSPIRED #12;Greetings. As a native son of New Mexico, I am honored to serve as the University of New Mexico's 21st President. I grew up in Las Cruces and earned a swimming scholarship to UNM, where I

  13. Hot carrier diffusion in graphene

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew; Wang, Shuai; Werake, Lalani Kumari; Weintrub, Ben; Loh, Kian Ping; Zhao, Hui

    2010-11-01T23:59:59.000Z

    We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal...

  14. The decay of hot nuclei

    SciTech Connect (OSTI)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01T23:59:59.000Z

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  15. 20th New Mexico Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Melrose High trio named top team in 20th New Mexico Supercomputing Challenge April 27, 2010 Student research project modeled behavior of wildfire LOS ALAMOS, New Mexico, April 27,...

  16. Coping with Hot Work Environments

    E-Print Network [OSTI]

    Smith, David

    2005-04-28T23:59:59.000Z

    exposed to these conditions. A hot work environment can impair safety and health. Both workers and their employers are responsi- ble for taking steps to prevent heat stress in the work- place. How Your Body Handles Heat Humans are warm-blooded, which... evaporation. Wiping sweat from the skin with a cloth also prevents cooling from evaporation. In hot, humid conditions, hard work becomes harder. The sweat glands release moisture and essential David W. Smith, Extension Safety Program The Texas A...

  17. The Effect of Industrialization on Children’s Education – The Experience of Mexico

    E-Print Network [OSTI]

    Le Brun, Anne; Helper, Susan; Levine, David I.

    2009-01-01T23:59:59.000Z

    Relative Wages: Evidence from Mexico’s Maquiladoras” Journalfrom the Progresa program in Mexico”, Economia (Fall Tiano,s Education – The Experience of Mexico Anne Le Brun, Susan

  18. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  19. Hot Pot Detail - Evidence of Quaternary Faulting

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27T23:59:59.000Z

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  20. Groundfish Trawler Profitability, Northern Gulf of Mexico

    E-Print Network [OSTI]

    Groundfish Trawler Profitability, Northern Gulf of Mexico JOHN P. WARREN and WADE L. GRIFFIN Figure I.-Major Gulf of Mexico groundfish ports. MISSISSIPPI Introduction Trawling for bottomfish (ground- fish) in the northern Gulf of Mexico has developed into a significant indus- try for fishing fleets

  1. GULF OF MEXICO PHYSICAL AND CHEMICAL DATA

    E-Print Network [OSTI]

    -^ ^ / GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Marine Biological Laboratory, Commissioner GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Compiled by Albert Collier Fishery OF THE GULF OF MEXICO By Kenneth H. Driimmond and George B. Austin, Jr. Department of Oceanography The A. & M

  2. NEW MEXICO STATE UNIVERSITY POLICY MANUAL

    E-Print Network [OSTI]

    Nishiguchi, Michele

    NEW MEXICO STATE UNIVERSITY POLICY MANUAL As Modified by the Board of Regents 03.10.14 #12;TABLE..............................................................................................................................................................A #12;Introduction New Mexico State University was founded in 1888 as Las Cruces College as the New Mexico College of Agriculture and Mechanic Arts, the first degree granting institution

  3. A Once and Future Gulf of Mexico

    E-Print Network [OSTI]

    Florida, University of

    Stressors on the Gulf of Mexico Before and After the DWH Oil Spill 37 Recommendations for ResilientA Once and Future Gulf of Mexico Ecosystem Restoration Recommendations of an Expert Working Group of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group. Pew Environment Group

  4. A Once and Future Gulf of Mexico

    E-Print Network [OSTI]

    Osenberg, Craig W.

    and repair damage from the oil spill and other stresses on the Gulf of Mexico. 2. Protect existing habitatsA Once and Future Gulf of Mexico Ecosystem Restoration Recommendations of an Expert Working Group, Stanley Senner, John M. Teal and Ping Wang #12;1 A Once and Future Gulf of Mexico Ecosystem, Executive

  5. STATE OF NEW MEXICO Report of the

    E-Print Network [OSTI]

    New Mexico, University of

    STATE OF NEW MEXICO Report of the Legislative Finance Committee to the Fiftieth Legislature FIRST #12;Published by: NEW MEXICO STATE LEGISLATIVE FINANCE COMMITTEE 325 Don Gaspar, Suite 101, Santa Fe, New Mexico 87501 David Abbey, Director Cathy T. Fernandez, Deputy Director Sylvia J. Barela

  6. University of New Mexico Faculty Handbook

    E-Print Network [OSTI]

    New Mexico, University of

    University of New Mexico Taos Faculty Handbook November 2006 Faculty Senate University of New Mexico--Taos _____________________________________________________________________ #12;UNM-Taos Faculty Handbook Table of Contents Chapter1: The University of New Mexico Overview Chapter2: UNM-Taos Chapter3

  7. NEW MEXICO STATE UNIVERSITY POLICY MANUAL

    E-Print Network [OSTI]

    Johnson, Eric E.

    NEW MEXICO STATE UNIVERSITY POLICY MANUAL As Modified by the Board of Regents 03.14.11 #12;TABLE...........................................................................................................................................................A-1 #12;Introduction and Mission Statement Introduction New Mexico State University was founded academic year, the college became known as the New Mexico College of Agriculture and Mechanic Arts

  8. Broadband, Higher Education and Rural New Mexico

    E-Print Network [OSTI]

    Maccabe, Barney

    Broadband, Higher Education and Rural New Mexico Gil Gonzales, Ph.D., Chief Information Officer University of New Mexico, Albuquerque, NM 87131 E mail: gonzgil@unm.edu Background UNM students enjoy the country do. New Mexico is also home to two national laboratories in Los Alamos (Los Alamos National

  9. Spent fuel drying system test results (first dry-run)

    SciTech Connect (OSTI)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01T23:59:59.000Z

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental results provided in Section 4.0. These results are further discussed in Section 5.0.

  10. Modern hot water district heating

    SciTech Connect (OSTI)

    Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

    1984-06-01T23:59:59.000Z

    The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

  11. Opportunity for America: Mexico`s coal future

    SciTech Connect (OSTI)

    Loose, V.W.

    1993-09-01T23:59:59.000Z

    This study examines the history, current status and future prospects for increased coal use in Mexico. Environmental implications of the power-generation capacity expansion plans are examined in general terms. Mexican environmental law and regulations are briefly reviewed along with the new sense of urgency in the cleanup of existing environmental problems and avoidance of new problems as clearly mandated in recent Mexican government policy initiatives. It is expected that new capital facilities will need to incorporate the latest in process and technology to comply with existing environmental regulation. Technology developments which address these issues are identified. What opportunities have new initiatives caused by the recent diversification of Mexico`s energy economy offered US firms? This report looks at the potential future use of coal in the Mexican energy economy, examining this issue with an eye toward identifying markets that might be available to US coal producers and the best way to approach them. Market opportunities are identified by examining new developments in the Mexican economy generally and the energy economy particularly. These developments are examined in light of the current situation and the history which brought Mexico to its present status.

  12. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06T23:59:59.000Z

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  13. Angel Investment Credit (New Mexico)

    Broader source: Energy.gov [DOE]

    A taxpayer who files a New Mexico income tax return and who is a “qualified investor” may take a tax credit of up to $25,000 (25% of a qualified investment of not more than $100,000) for an...

  14. Gulf of Mexico -West Florida

    E-Print Network [OSTI]

    Gulf of Mexico - Alabama - West Florida - Louisiana - Mississippi - Texas 119 #12;Regional Summary is comprised of Alabama, Louisiana, Mississippi, Texas, and West Florida. Federal fisheries in this region. Texas (85 million pounds), West Florida (59 million pounds), and Alabama (29 million pounds) followed

  15. Hot Gas Halos in Galaxies

    SciTech Connect (OSTI)

    Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

    2010-06-08T23:59:59.000Z

    We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

  16. Hot Spot | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpenHotPot,Hot

  17. Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating

    E-Print Network [OSTI]

    Zettl, Alex

    with dry nitrogen during the measurement. Sample preparation We grow single layer graphene on copper foil1 Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor electro-optic sampling.2 The focused THz beam at our graphene sample has a diameter of 1 mm. For optical

  18. Modelling of hot pressing of paper D. Bezanovic 1 , E.F. Kaasschieter 1 and M. Riepen 2

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    , The Netherlands 2 TNO Institute of Applied Physics, Systems and Processes Division, P.O. Box 155, 2600 AD Delft, additional e#ects occur: ­ increased the hydraulic pressure gradient via steam formation, ­ increased porous media and applies it to hot pressing of paper. An overview of the impulse drying research was made

  19. University of New Mexico Bureau of Business and Economic Research

    E-Print Network [OSTI]

    New Mexico, University of

    1 University of New Mexico Bureau of Business and Economic Research New Mexico Economy: Recent lreynis@unm.edu UNIVERSITY OF NEW MEXICO BUREAU OF BUSINESS AND ECONOMIC RESEARCH 303 Girard Blvd. NE MSC06 3510 / Onate Hall Albuquerque, New Mexico 87131 Recovering from the Great Recession NewNew Mexico

  20. University of New Mexico Bureau of Business and Economic Research

    E-Print Network [OSTI]

    New Mexico, University of

    University of New Mexico Bureau of Business and Economic Research New Mexico Economy: Recent lreynis@unm.edu UNIVERSITY OF NEW MEXICO BUREAU OF BUSINESS AND ECONOMIC RESEARCH 303 Girard Blvd. NE MSC06 3510 / Onate Hall Albuquerque, New Mexico 87131 #12;Recovering from the Great Recession New Mexico

  1. Central New Mexico Community College Catalog Year 2009-2011

    E-Print Network [OSTI]

    New Mexico, University of

    2011 Central New Mexico Community College Catalog Year 2009-2011 5/31/2011 Transferring from Central New Mexico Community College to the University of New Mexico #12;CNM Course UNM Equivalent://advisement.unm.edu/ The University of New Mexico and Central New Mexico Community College work closely to ease your transition from

  2. MMS 95-0021 Northern Gulf of Mexico

    E-Print Network [OSTI]

    Mathis, Wayne N.

    OCS Study MMS 95-0021 Northern Gulf of Mexico Chemosynthetic Ecosystems Study Final Report Volume I Minerals Management Service Gulf of Mexico OCS Region #12;OCS Study MMS 95-0021 Northern Gulf of Mexico.S . Department of the Interior Minerals Management Service New Orleans Gulf of Mexico OCS Region May 1996 #12

  3. MMS 95-0023 Northern Gulf of Mexico

    E-Print Network [OSTI]

    Mathis, Wayne N.

    OCS Study MMS 95-0023 Northern Gulf of Mexico Chemosynthetic Ecosystems Study Final Report Volume Minerals Management Service bw Gulf of Mexico OCS Region #12;OCS Study MMS 95-0023 Northern Gulf of Mexico.S . Department of the Interior Minerals Management Service New Orleans Gulf of Mexico OCS Region May 1996 #12

  4. The New Suburbs: Evolving travel behavior, the built environment, and subway investments in Mexico City

    E-Print Network [OSTI]

    Guerra, Erick Strom

    2013-01-01T23:59:59.000Z

    from Air Pollution Control in Mexico City. Environmentalmade Mexico City particularly vulnerable to local pollution.

  5. The New Suburbs: Evolving travel behavior, the built environment, and subway investment in Mexico City

    E-Print Network [OSTI]

    Guerra, Erick Strom

    2013-01-01T23:59:59.000Z

    from Air Pollution Control in Mexico City. Environmentalmade Mexico City particularly vulnerable to local pollution.

  6. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01T23:59:59.000Z

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  7. InSAR At Brady Hot Springs Area (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation, searchInformation MexicoBrady Hot

  8. Corporate Social Responsibility, Its Limits and Opportunities for Mexico’s Development. 

    E-Print Network [OSTI]

    Vega Cárdenas, Jorge Adolfo

    2014-11-27T23:59:59.000Z

    This paper aims to explore the opportunities and limitations of Corporate Social Responsibility to improve Mexico’s development. This country is the 11th most relevant economy in terms of its GDP, however it has about ...

  9. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    otential Mexico’s proven oil reserves have declined steadilyto search for new oil reserves All figures in U.S. dollars.an adequate level of oil reserves replacement. The industry

  10. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    for several days, hydropower was able to take their place.on Mexico’s most important hydropower dam complex on thecoast, two large new hydropower dams, several windpower and

  11. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    Mexico imports almost 40 percent of its gasoline, 40 percent of its coal (coal and LNG, damage to hydropower dams, and environmental drawbacks with oil, wind power would seem to offer a major opportunity for Mexico,

  12. The U.S.-Mexico Relationship: Towards a New Era?

    E-Print Network [OSTI]

    Mares, David R.; Vega Cánovas, Gustavo

    2010-01-01T23:59:59.000Z

    2009: Country Report for Mexico¨. http://www.state.gov/p/USMEX WP 10-01 The U.S. -Mexico Relationship: Towards a NewCánovas, El Colegio de México Mexico and the United States:

  13. Investigative Journalism and Access to Information in Mexico

    E-Print Network [OSTI]

    Doyle, Kate

    2011-01-01T23:59:59.000Z

    Fromson, Murray. 1996. Mexico’s struggle for a free press.Periodistas: Brasil, Colombia, México, 65-78. Miami: Inter-artículo 6o constitucional. Mexico: Trust. Hughes, Sallie.

  14. Exploring Sexuality, Religiousity, and Desire in Colonial Mexico

    E-Print Network [OSTI]

    Tortorici, Zeb

    2008-01-01T23:59:59.000Z

    Religiosity in Colonial Mexico” in Journal of the Historyand Desire in Colonial Mexico by Zeb Tortorici CSW FEB08three years in a convent in Mexico City. This is merely the

  15. IT Services in the Global Economy: The Case of Mexico

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Origin. World Bank. 2006. “ Doing Business in Mexico 2007. ”World Bank Group: Mexico City. World Bank. 2000. “What isDe la Rosa, Jesús. 2005. “Mexico: Computer Services and

  16. Migrant Organization and Hometown Impacts in Rural Mexico

    E-Print Network [OSTI]

    Fox, Jonathan A; Bada, Xochitl

    2008-01-01T23:59:59.000Z

    Freyer, 99–138. Mexico: ITAM/UAZ/Miguel Angel Porrúa. CarralFreyer, 223 – 48. Mexico, DF: ITAM-Universidad Autónoma deFreyer, 157 –70. Mexico, DF: ITAM-Universidad Autónoma de

  17. The Economic Impact of New Mexico State University in 2010

    E-Print Network [OSTI]

    Johnson, Eric E.

    The Economic Impact of New Mexico State University in 2010 #12; The Economic Impact of New Mexico State University in 2010 Prepared Analysis Arrowhead Center New Mexico State University Las Cruces, NM 88005

  18. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM...

  19. Vicente de Zaldívar Memorial sobre el descubrimiento del Nuevo Mexico

    E-Print Network [OSTI]

    De Marco, Barbara; Craddock, Jerry R

    2014-01-01T23:59:59.000Z

    vols. Albuquerque: Univ. of New Mexico Press, 1953. Pacheco,descubrimiento del Nuevo Mexico [fol. 579r] a ~ Vizente dedel descubrimiento del Nuevo Mexico, por si y en nombre del

  20. Women's Work and Women's Health in Mexico: Understanding the links

    E-Print Network [OSTI]

    Rubin-Kurtzman, Jane; Denman, Catalina A.

    2007-01-01T23:59:59.000Z

    of municipios in Mexico. Mexican migrant communities ares Work and Women’s Health in Mexico: Understanding the linkss Work and Women’s Health in Mexico: Understanding the links

  1. Statistical mechanics of hot dense matter

    SciTech Connect (OSTI)

    More, R.

    1986-10-01T23:59:59.000Z

    Research on properties of hot dense matter produced with high intensity laser radiation is described in a brief informal review.

  2. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  3. Nonlinear Dynamics of Dry Friction

    E-Print Network [OSTI]

    Franz-Josef Elmer

    1997-07-01T23:59:59.000Z

    The dynamical behavior caused by dry friction is studied for a spring-block system pulled with constant velocity over a surface. The dynamical consequences of a general type of phenomenological friction law (stick-time dependent static friction, velocity dependent kinetic friction) are investigated. Three types of motion are possible: Stick-slip motion, continuous sliding, and oscillations without sticking events. A rather complete discussion of local and global bifurcation scenarios of these attractors and their unstable counterparts is present.

  4. Drying and Storing Sorghum Grain.

    E-Print Network [OSTI]

    Hutchison, J. E.

    1959-01-01T23:59:59.000Z

    Drying and Storing Sorghum Grain W. S. ALLEN AND J. W. SORENSON. JR.* lead to insect. niold and heat damage in stored grain. They cause most of the problems encountered in storing grain. High moisture may result from leak- age of outside... moisture through hin walls or from placing high-moisture grain in storage. If the following recornrnendations and procedures are followed. sorghum grain can be stored safely. The! are based on research conducted at Beeville by the Texas Agricultural...

  5. Wet-dry cooling demonstration: A transfer of technology: Final report

    SciTech Connect (OSTI)

    Allemann, R.T.; Johnson, B.M.; Werry, E.V.

    1987-01-01T23:59:59.000Z

    Wet-dry cooling using the ammonia phase-change system, designated the Advanced Concepts Test, was tested on a large-scale at Pacific Gas and Electric Company's Kern Station at Bakersfield, California. The facility is capable of condensing 60,000 lb/h of steam from a small house turbine. Two different modes of combining dry and evaporative cooling were tested. One uses deluge cooling in which water is allowed to flow over the fins of the dry (air-cooled) heat exchanger on hot days; the other uses a separate evaporative condenser in parallel to the dry heat exchanger. A third mode of enhancing the dry-cooling system, termed capacitive cooling, was tested. In this system, the ammonia-cooled steam condenser is supplemented by a parallel conventional water-cooled condenser with water supplied from a closed system. This water is cooled during off-peak hours each night by an ammonia heat pump that rejects heat through the cooling tower. If operated over the period of a year, each of the wet-dry systems would use only 25% of the water normally required to reject this heat load in an evaporative cooling tower. The third would consume no water, the evaporative cooling being replaced by the delayed cooling of the closed system water supply.

  6. Wind information derived from hot air

    E-Print Network [OSTI]

    Haak, Hein

    Wind information derived from hot air balloon flights for use in short term wind forecasts E Introduction/Motivation Hot air balloons as wind measuring device Setup of nested HIRLAM models Results · Three, The Nertherlands #12;Hot air balloon ·Displacement/time unit = wind speed ·Vertical resolution 30m ·Inertia (500 kg

  7. Low Impact, Affordable, Low Income Houses for Mexico

    E-Print Network [OSTI]

    Alcocer, J. L. B.; Haberl, J. S.

    Code (Hacia un Codigo de Edificacion de Vivenda), Mexico City, Mexico: CONAVI. Comision Nacional de Vivienda (CONAVI). (2006). Energy-Efficient Housing (Uso Eficiente de la Energia en la Vivienda), Mexico City, Mexico: CONAVI. Comision... Code Council, Inc. Malhotra, M. (2009). An analysis of off-grid, off-pipe housing in six U.S. climates. Ph.D. Dissertation. Texas A&M University. Secretaria de Energia (SENER). (2007). Balance Nacional de Energia 2007. Mexico City, Mexico...

  8. Mexico's Energy Reform: What Does It Mean for Mexico and Beyond?

    E-Print Network [OSTI]

    Texas at Austin, University of

    Mexico's Energy Reform: What Does It Mean for Mexico and Beyond? The Mexican Senate is currently and Energy and Environment Program for a discussion on elements of the reform, questions for the road ahead, and the broader impacts of reform. The event will launch the Atlantic Council's new issue brief, Mexico Rising

  9. Compton Dry-Cask Imaging System

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  10. Compton Dry-Cask Imaging System

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  11. Drying and Storing Cooperative Extension Service

    E-Print Network [OSTI]

    Mukhtar, Saqib

    . Sunflowers Joseph P. Harner Extension Agriculture Engineer The fire hazard is DECREASED when the fan can draw for attachment to the drying fan. Guidelines for drying sunflowers are: 1. 2. 3. 4. Use good housekeeping practices. Clean up around the dryer and in the plenum chamber daily. Do not over dry. Ensure continuous

  12. Re-Conceptualizing Social Medicine in Diego Rivera's History of Medicine in Mexico: The People's Demand for Better Health Mural, Mexico City, 1953.

    E-Print Network [OSTI]

    Gomez, Gabriela Rodriguez

    2012-01-01T23:59:59.000Z

    multimedia. 1953. Centro Médico Nacional de La Raza, MexicoCity, Mexico. Photographed by author. See page 3.History of Medicine in Mexico: The People's Demand for

  13. Salsa's moves and salsa's grooves in Mexico City

    E-Print Network [OSTI]

    Baker, Christina

    2009-01-01T23:59:59.000Z

    University Press, 1995. Mexico Canclini, Nestor García. “Mexico: cultural globalization in a disintegrating city.Dancing” Mexicano: La danza en México. Cuarta parte. México:

  14. LANL, Sandia National Lab recognize New Mexico small businesses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL, Sandia National Lab recognize New Mexico small businesses for innovation LANL, Sandia recognized New Mexico small businesses for innovation Businesses include the Pueblo of...

  15. STATE OF NEW MEXICO EIYVIRONMENT DEPARTMENT IN THE MATTER OF...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEXICO EIYVIRONMENT DEPARTMENT IN THE MATTER OF': TJNITED STATES DEPARTMENT OF ENERGY AND NUCLEAR WASTE PARTNERSHIP LLC ADMINISTRATIVE ORDER UNDER THE NEW MEXICO HAZARDOUS WASTD...

  16. New Mexico Hydrogen Fuels Challenge Program Description The New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

  17. New Mexico State University District Heating Low Temperature...

    Open Energy Info (EERE)

    New Mexico State University District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature...

  18. STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT IN THE MATTER OF:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND NUCLEAR ) WASTE PARTNERSHIP LLC ) ) ) WASTE ISOLATION PILOT PLANT ) EDDY COUNTY, NEW MEXICO ) ADMINISTRATIVE ORDER UNDER THE NEW MEXICO HAZARDOUS WASTE ACT 74-4-13...

  19. New Mexico Guidelines for Public Notification for Air Quality...

    Open Energy Info (EERE)

    New Mexico Guidelines for Public Notification for Air Quality Permit Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library General: New Mexico Guidelines...

  20. NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 875056303 Phone (50S) 476-6000 Fax...

  1. LANL, Sandia celebrate success at New Mexico Small Business Assistance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    success at NM Small Business Assistance fest LANL, Sandia celebrate success at New Mexico Small Business Assistance fest The New Mexico Small Business Assistance (NMSBA)...

  2. The Time Evolution of Aerosol Size Distribution Over the Mexico...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Size Distribution Over the Mexico City Plateau. The Time Evolution of Aerosol Size Distribution Over the Mexico City Plateau. Abstract: As part of the MILAGRO field campaign, the...

  3. The University of New Mexico An NSF Integrative Graduate

    E-Print Network [OSTI]

    New Mexico, University of

    The University of New Mexico An NSF Integrative Graduate Education and Research Traineeship, ECE, and Physics & Astronomy University of New Mexico For additional information, contact: Prof. Marek

  4. The University of New Mexico An NSF Integrative Graduate

    E-Print Network [OSTI]

    New Mexico, University of

    The University of New Mexico An NSF Integrative Graduate Education and Research Traineeship, New Mexico Tech For additional information, contact: Prof. Marek Osinski INCBN IGERT Program Director

  5. The University of New Mexico An NSF Integrative Graduate

    E-Print Network [OSTI]

    New Mexico, University of

    The University of New Mexico An NSF Integrative Graduate Education and Research Traineeship Chi Assistant Professor, Dept. of Chemical & Nuclear Engineering, University of New Mexico

  6. The University of New Mexico An NSF Integrative Graduate

    E-Print Network [OSTI]

    New Mexico, University of

    The University of New Mexico An NSF Integrative Graduate Education and Research Traineeship Sciences Building (BMSB) Room 303 University of New Mexico Health Sciences Center, North Campus Wednesday

  7. The University of New Mexico An NSF Integrative Graduate

    E-Print Network [OSTI]

    New Mexico, University of

    The University of New Mexico An NSF Integrative Graduate Education and Research Traineeship of New Mexico School of Engineering For additional information, contact: Prof. Marek Osinski INCBN IGERT

  8. Northern New Mexico Math & Science Academy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northern New Mexico Math & Science Academy for Teachers (MSA) Program Description MSA is an intensive and comprehensive professional development program for K-12 teachers....

  9. Operating Permits and Emission Fees (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Air Quality Bureau processes permit applications for industries that emit pollutants to the air. The Permitting Section consists of three units, the Minor...

  10. New Mexico Gas Company- Commercial Efficiency Programs

    Broader source: Energy.gov [DOE]

    The New Mexico Gas Company Commercial Energy Efficiency programs provide energy savings for businesses using natural gas for cooking and water heating. Prescriptive incentives for specified...

  11. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

  12. CDC 2008, To appear Cancun, Mexico

    E-Print Network [OSTI]

    Bullo, Francesco

    CDC 2008, To appear Cancun, Mexico Increasingly Correct Message Passing Averaging Algorithms Kurt be used, for example, for surveillance, reconnaissance, oil spill contention, search- and-rescue missions

  13. Ambient Air Quality Standards (New Mexico)

    Broader source: Energy.gov [DOE]

    This regulation establishes ambient air quality standards for the areas of New Mexico under the jurisdiction of the Environmental Improvement Board. The maximum allowable concentrations of total...

  14. Effects of Courtyard on Thermal Performance of Commercial Buildings in Hot-Dry Climate, Ahmedabad, India

    E-Print Network [OSTI]

    Kumar, R,

    of the simulation exercise has been established on the available weather data. The result would be the analysis of energy performance of different building models. Keywords: Courtyards, Building Configuration, Energy Consumption, Thermal Simulation, Computer... in reducing energy consumption of buildings. Many research studies suggest that courtyard as a climatic modifier helps in improving thermal environment and enhancing daylight deep into the interior thus reducing energy consumption of the building...

  15. Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site

    SciTech Connect (OSTI)

    Levey, Schon S.

    2010-12-01T23:59:59.000Z

    The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

  16. Potential of Hot-Dry-Rock Geothermal Energy in the Eastern United States

    SciTech Connect (OSTI)

    None

    1993-11-01T23:59:59.000Z

    This is subtitled, ''A report to the United States Congress under Section 2502 of Public Law 102-486 (The Energy Policy Act of 1992)''. It documents a workshop held by the U.S.G.S. (in Philadelphia, January 1993) as required by EPACT 1992. The workshop concluded that under present (1993) economic and technological constraints, mining heat for power electrical power generation is not feasible in the eastern United States. The main issues are the costs of drilling very deep wells and the general applicability of hydrofracturing technology to compressional stress field typical of the eastern U.S. (DJE-2005)

  17. Thermal Performance of Exposed Composed Roofs in Very Hot Dry Desert Region in Egypt (Toshky)

    E-Print Network [OSTI]

    Khalil, M. H.; Sheble, S.; Morsey, M. S.; Fakhry, S.

    2010-01-01T23:59:59.000Z

    is considered the major part of the building envelop which exposed to high thermal load due to the high solar intensity and high outdoor air temperature through summer season which reach to 6 months. In Egypt the thermal effect of roof is increased as one go...

  18. Failure and Degradation Modes of PV Modules in a Hot Dry Climate...

    Office of Environmental Management (EM)

    Report Delamination Failures in Long-Term Field Aged PV Modules from Point of View of Encapsulant Accelerated Stress Testing, Qualification Testing, HAST, Field Experience...

  19. Failure and Degradation Modes of PV Modules in a Hot Dry Climate: Results

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy ManagementAugustin2012) | DepartmentFactNuclearAfter

  20. Candidate Sites For Future Hot Dry Rock Development In The United States |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergyPhotonicsCanastota, NewCandia,

  1. A History Of Hot Dry Rock Geothermal Energy Systems | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy Information Flashing

  2. Hot Dry Rock Geothermal Energy- Important Lessons From Fenton Hill | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpen EnergyEnergy

  3. Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpen

  4. Membranes and MEAs for Dry Hot Operating Conditions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW ElectrolysisCharles

  5. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport,de Nantes Jump to:EcomedTransition

  6. Summary of Hot-Dry-Rock Geothermal Reservoir Testing 1978-1980 | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault Propagation AndInformation SuezSulphurEnergy

  7. The US Hot Dry Rock Program-20 Years of Experience in Reservoir Testing |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCityGreenElectricityOpen Energy

  8. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to: navigation,

  9. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01T23:59:59.000Z

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  10. Drying Fruits and Vegetables at Home.

    E-Print Network [OSTI]

    Putnam, Peggy H.

    1981-01-01T23:59:59.000Z

    that are responsible for their maturation, or their becoming ripe. These enzymes cause color and flavor changes, some of which may become more extensive when food surfaces are cut and exposed to air. The changes con tinue during drying and storage unless the enzyme... in recommendations for treatment before dry ing, for methods of drying, for temperatures and length of drying time, and for conditioning prior to storage. You may have to use the "trial and error" approach in finding out which drying technique works best for your...

  11. Microwave drying of ferric oxide pellets

    SciTech Connect (OSTI)

    Pickles, C.A.; Xia, D.K. [Queens` Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering

    1997-12-31T23:59:59.000Z

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  12. Decentralization of Water Service Delivery in Mexico: The Effects of Party Politics, Intergovernmental Dynamics, and Municipal Capacity

    E-Print Network [OSTI]

    Hastings, Cameron Jones

    2011-01-01T23:59:59.000Z

    2000-2005. ” ”Guanajuato, Mexico: Sistema de InformacionSaneamiento 2008. ” Guanajuato, Mexico. Comisión Estatal dePotable y Alcantarillado. ” Mexico City, Mexico: Comisión

  13. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universitätsstr. 25, Bielefeld 33615 (Germany)

    2014-04-14T23:59:59.000Z

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  14. Vapor Transport in Dry Soils

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-16T23:59:59.000Z

    Water-vapor movement in soils is a complex process, controlled by both diffusion and advection and influenced by pressure and thermal gradients acting across tortuous flow paths. Wide-ranging interest in water-vapor transport includes both theoretical and practical aspects. Just how pressure and thermal gradients enhance water-vapor flow is still not completely understood and subject to ongoing research. Practical aspects include dryland farming (surface mulching), water harvesting (aerial wells), fertilizer placement, and migration of contaminants at waste-sites. The following article describes the processes and practical applications of water-vapor transport, with emphasis on unsaturated (dry) soil systems.

  15. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect (OSTI)

    Sujit Banerjee; Terrance Conners

    2007-09-07T23:59:59.000Z

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal effects; Method 25A emissions from lumber drying can be modeled from a knowledge of the airflow through the kiln; A heat transfer model shows that VOCs released during hot-pressing mainly originate from the surface of the board; and Boiler ash can be used to adsorb formaldehyde from air streams.

  16. Downhole cement test in a very hot hole

    SciTech Connect (OSTI)

    Pettitt, R.A.; Cocks, G.G.; Dreesen, D.N.; Sims, J.R.; Nicholson, R.W.; Boevers, B.

    1982-01-01T23:59:59.000Z

    Completion of the commercial-sized Hot Dry Rock Geothermal Energy Project requires that hydraulic fractures be created between two inclined wellbores at a depth of about 4 km (15,000 ft). Isolation of a section of the open wellbore is necessary for pressurization to achieve the fracture connections. A cemented-in liner/PBR assembly is one of the methods used for zone isolation near the botton of the injection well. A downhole, pumped cement test was first conducted at a wellbore temperature of 275/sup 0/C (525/sup 0/F) to determine if a suitable slurry could be designed, pumped, and later recovered to assure the success of the cemented-in liner operation.

  17. NEW MEXICO STATE UNIVERSITY 2014 LEGISLATIVE PRIORITIES

    E-Print Network [OSTI]

    Johnson, Eric E.

    NEW MEXICO STATE UNIVERSITY 2014 LEGISLATIVE PRIORITIES AGRICULTURAL ENTITY EXPANSION FUNDING to small/urban farms common in north central New Mexico RESEARCH AND PUBLIC SERVICE PROJECT EXPANSION minimization, and pollution prevention Doctor of Economic Development Program $169,900 $169

  18. 8, 83578384, 2008 Mexico City pollution

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 8357­8384, 2008 Mexico City pollution weekend effect S. Stephens et al. Title Page Abstract Geosciences Union. 8357 #12;ACPD 8, 8357­8384, 2008 Mexico City pollution weekend effect S. Stephens et al Printer-friendly Version Interactive Discussion Abstract Surface pollutant concentrations in M´exico City

  19. 8, 59796007, 2008 Mexico City and

    E-Print Network [OSTI]

    Boyer, Edmond

    #12;ACPD 8, 5979­6007, 2008 Mexico City and Houston Ozone Profiles (IONS-06) A. M. Thompson et al Publications on behalf of the European Geosciences5 Union. 5980 #12;ACPD 8, 5979­6007, 2008 Mexico City-regional flows and meteorological interactions with a mixture of tropospheric O3 sources: local pollution; O3

  20. Dry melting of high albite

    SciTech Connect (OSTI)

    Anovitz, L.M.: Blencoe, J.G.

    1999-12-01T23:59:59.000Z

    The properties of albitic melts are central to thermodynamic models for synthetic and natural granitic liquids. The authors have analyzed published phase-equilibrium and thermodynamic data for the dry fusion of high albite to develop a more accurate equation for the Biggs free energy of this reaction to 30 kbar and 1,400 C. Strict criteria for reaction reversal were sued to evaluate the phase-equilibrium data, and the thermodynamic properties of solid and liquid albite were evaluated using the published uncertainties in the original measurements. Results suggest that neither available phase-equilibrium experiments nor thermodynamic data tightly constrain the location of the reaction. Experimental solidus temperatures at 1 atm range from 1,100 to 1,120 C. High-pressure experiments were not reversed completely and may have been affected by several sources of error, but the apparent inconsistencies among the results of the various experimentalists are eliminated when only half-reversal data are considered. Uncertainties in thermodynamic data yield large variations in permissible reaction slopes. Disparities between experimental and calculated melting curves are, therefore, largely attributable to these difficulties, and there is no fundamental disagreement between the available phase-equilibrium and thermodynamic data for the dry melting of albite. Consequently, complex speciation models for albitic melts, based on the assumption that these discrepancies represent a real characteristic of the system, are unjustified at this time.

  1. Assessment of hot gas contaminant control

    SciTech Connect (OSTI)

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31T23:59:59.000Z

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  2. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01T23:59:59.000Z

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  3. Jan 28 Primary Productivity: Controls, Patterns, Consequences Yucatan, Mexico, Dry Subtropical

    E-Print Network [OSTI]

    Hansen, Andrew J.

    coming around to better integrate energy flow into thinking on population and community ecology History Central Surinam Reserve, Wet Tropical Grand Teton NP, Wyoming, Temperate Coniferous #12;Primary

  4. New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B

  5. New Mexico Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN ECoalbed MethaneExpected

  6. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as anCubic Feet)Production

  7. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)Proved Reserves (BillionExpected

  8. Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)Proved ReservesNaturalProduction

  9. Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfter LeaseMeters200(Billion

  10. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfter

  11. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfterthan 200 Meters Deep

  12. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfterthan 200 Meters Deep200

  13. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfterthan 200 Meters

  14. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Less

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfterthan 200 Metersthan 200

  15. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200 Meters DeepProvedGreater thanfrom

  16. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200 Meters DeepProvedGreater

  17. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009LeaseProvedProved

  18. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSalesVehicleYearProved56 125 102 52 3412Feet)

  19. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, Wet AfterDec.Dec.12 12

  20. New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1Lease Separation780

  1. New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet) New Field Discoveries

  2. New Mexico Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet) New Field

  3. New Mexico Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet) New FieldIncreases

  4. AHEC MEXICO / LATIN AMERICA MARKET REPORT August -September, 2004

    E-Print Network [OSTI]

    AHEC MEXICO / LATIN AMERICA MARKET REPORT August - September, 2004 AMERICAN HARDWOOD EXPORT COUNCIL US Agricultural Trade Office Jaime Balmes No.8, Piso 2 Col. Los Morales Polanco 11510 Mexico, D.F., Mexico TEL: +(52) 55 5282-0909 FAX: +(52) 55 5282-0919 e-mail: ahecmx@infosel.net.mx 1 #12;AHEC Mexico

  5. Predicting Student Retention and Academic Success at New Mexico Tech

    E-Print Network [OSTI]

    Borchers, Brian

    Predicting Student Retention and Academic Success at New Mexico Tech by Julie Luna Submitted Research and Statistics Option New Mexico Institute of Mining and Technology Socorro, New Mexico August at the New Mexico Institute of Mining and Technology. Joe Franklin of the Information Services Department

  6. David W. DuBois New Mexico State Climatologist

    E-Print Network [OSTI]

    Johnson, Eric E.

    David W. DuBois New Mexico State Climatologist Plant and Environmental Sciences, New Mexico State://web.nmsu.edu/~dwdubois/ Education 1988 B.A. Physics, Rutgers University 1991 M.S. Physics, New Mexico State University 2003 Ph, New Mexico State University, Department of Plant & Environmental Sciences, Las Cruces, NM 2009 ­ 2010

  7. University of New Mexico Bureau of Business and Economic Research

    E-Print Network [OSTI]

    Maccabe, Barney

    University of New Mexico Bureau of Business and Economic Research CENTRAL NEW MEXICO EDUCATION NEEDS ASSESSMENT Prepared for: United Way of Central New Mexico Funding Provided by: PNM United Way of Central New Mexico Dr. Jeffrey Mitchell July 2011 #12; #12;TABLE

  8. Page 1 of 6 New Mexico State Cooperative Extension Service

    E-Print Network [OSTI]

    Page 1 of 6 New Mexico State Cooperative Extension Service New Mexico FFA Association In Cooperation with New Mexico Livestock Board 2014 GUIDE FOR LIVESTOCK EXHIBITORS As of February 1st, 2014 and swine) showing at New Mexico fairs must have an NMLB APPROVED fair tag and a Form 1 inspection issued

  9. University of New Mexico Bureau of Business and Economic Research

    E-Print Network [OSTI]

    New Mexico, University of

    University of New Mexico Bureau of Business and Economic Research New Mexico Women's Agenda Lobbying Workshop State of the Economy: US, New Mexico January 6, 2012 Dr. Lee A. Reynis, Director lreynis@unm.edu UNIVERSITY OF NEW MEXICO BUREAU OF BUSINESS AND ECONOMIC RESEARCH 303 Girard Blvd. NE MSC06 3510 / Onate Hall

  10. THE UNIVERSITYof NEW MEXICO Electrical & Computer Engineering Department

    E-Print Network [OSTI]

    New Mexico, University of

    THE UNIVERSITYof NEW MEXICO Electrical & Computer Engineering Department Annual Report 2008-09 ECE tuition is free for New Mexico residents, $10/semester for nonresidents · 1910: EE confers its first at the University of New Mexico (ECE@UNM) can be reached by mail at Mail Stop C01 1100, 1 University of New Mexico

  11. NM Junior College CATALOG YEAR 2009-Transferring from New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    2010 NM Junior College CATALOG YEAR 2009- 2010 11/9/2010 Transferring from New Mexico Junior College to the University of New Mexico #12;NMJC Course UNM Equivalent Important UNM Phone Numbers................................................................................................... http://advisement.unm.edu/ The University of New Mexico and New Mexico Junior College work closely

  12. New Mexico Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    New Mexico Water Resources Research Institute Annual Technical Report FY 2012 New Mexico Water is based on a July-June fiscal year rather than the March-February USGS Grant Award period. The New Mexico Water Resources Research Institute (NMWRRI) was established in 1963 by the New Mexico State University

  13. MEXICO CITY Adam Miller, Brenna Ford, Kait Sakey

    E-Print Network [OSTI]

    Nagurney, Anna

    MEXICO CITY CONGESTION Adam Miller, Brenna Ford, Kait Sakey #12;Introduction · Mexico City. · Including private operators(which carry about 60% of the traffic) the Mexico City passenger transport system handles about twice the passengers of the New York MTA. #12;IBM Commuter Pain Index #12;#12;Mexico City

  14. New Mexico Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    New Mexico Water Resources Research Institute Annual Technical Report FY 2013 New Mexico Water is based on a July-June fiscal year rather than the March-February USGS Grant Award period. The New Mexico Water Resources Research Institute (NM WRRI) was established in 1963 by the New Mexico State University

  15. New Mexico Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    New Mexico Water Resources Research Institute Annual Technical Report FY 2011 New Mexico Water is based on a July-June fiscal year rather than the March-February USGS Grant Award period. The New Mexico Water Resources Research Institute (NMWRRI) was established in 1963 by the New Mexico State University

  16. Revised March 19, 2010 THE UNIVERSITY OF NEW MEXICO

    E-Print Network [OSTI]

    Maccabe, Barney

    Revised March 19, 2010 THE UNIVERSITY OF NEW MEXICO UNIVERSITY OF NEW MEXICO -- Office of the Registrar Mesa Vista Hall North Records and Registration, MSC11 6325 1 University of New Mexico Albuquerque records) Official transcripts only University of New Mexico University of Albuquerque STUDENT NAME (Last

  17. in this issue 1 Lessons from Ford of Mexico

    E-Print Network [OSTI]

    Gabrieli, John

    in this issue 1 Lessons from Ford of Mexico 2 Welcome 3 The SDM Core: System Architecture 4 SDM 12 Calendar SDM partnership is a success story for Ford of Mexico Ford of Mexico started its-changing industry needs. When Ford of Mexico began looking for an advanced degree program to develop high

  18. Drying results of K-Basin fuel element 0309M (Run 3)

    SciTech Connect (OSTI)

    Oliver, B.M.; Klinger, G.S.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01T23:59:59.000Z

    An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-West Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from K-West canister 0309M during the second fuel selection campaign, conducted in 1996, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. The fuel element was broken in two pieces, with a relatively clean fracture, and the larger piece was tested. A gray/white coating was observed. This was the first test of a damaged fuel element in the furnace. K-West canisters can hold up to seven complete fuel assemblies, but, for purposes of this report, the element tested here is designated as Element 0309M. Element 0309M was subjected to drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step.

  19. New Mexico Future City Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445 CU -StandardsNew MexicoNewNew

  20. New Mexico Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural GasCubic2008 20092009

  1. New Mexico Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural GasCubic2008

  2. New Mexico Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New MexicoFeet)136 149 180 185 232 314

  3. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22T23:59:59.000Z

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  4. Axion hot dark matter bounds

    E-Print Network [OSTI]

    G. Raffelt; S. Hannestad; A. Mirizzi; Y. Y. Y. Wong

    2008-08-06T23:59:59.000Z

    We derive cosmological limits on two-component hot dark matter consisting of neutrinos and axions. We restrict the large-scale structure data to the safely linear regime, excluding the Lyman-alpha forest. We derive Bayesian credible regions in the two-parameter space consisting of m_a and sum(m_nu). Marginalizing over sum(m_nu) provides m_aaxions the same data and methods give sum(m_nu)< 0.63 eV (95% CL).

  5. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01T23:59:59.000Z

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  6. Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, searchHotPage Edit

  7. Idaho_LavaHotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude: N. Lava

  8. The taxonomy and areal distribution of the Chaetognatha in the oceanic Gulf of Mexico

    E-Print Network [OSTI]

    Every, Martin Gaither

    1968-01-01T23:59:59.000Z

    . The first reported work in the Gulf was by Ritter-Zahony (1910), with his descriptions of some specimens taken from an area around Dry Tortugas, Florida. Davis (1949) and King (1949) both briefly mention chaetognaths, but only as a part of their general... diagram of a chaetog- nath, showing the diagnostic taxonomic characters used in this key is given in Figure 2. This key is presented as an aid to the identification of the chaetognaths that are reported from the oceanic Gulf of Mexico. Some caution...

  9. Computer Science Department, University of New Mexico Albuquerque, New Mexico 87131 Phone: 505 277-3112 Fax: 505 277-6927 http://www.cs.unm.edu/~hollan

    E-Print Network [OSTI]

    Mills, Kevin

    UNM NYU Computer Science Department, University of New Mexico Albuquerque, New Mexico 87131 Phone;UNM NYU Computer Science Department, University of New Mexico Albuquerque, New Mexico 87131 Phone: 505 NYU Computer Science Department, University of New Mexico Albuquerque, New Mexico 87131 Phone: 505 277

  10. Statement from U.S. Energy Secretary Moniz on Mexico's Greenhouse...

    Broader source: Energy.gov (indexed) [DOE]

    Government of Mexico on new greenhouse gas emissions reduction targets. The commitment Mexico has made today sends a strong signal of Mexico's determination to do its share in...

  11. New Mexico: Celebrating One Hundred Years of Statehood, a Recovering Economy, and a Balanced Budget

    E-Print Network [OSTI]

    Seckler, Kim

    2013-01-01T23:59:59.000Z

    First Session 2011. ” New Mexico Legislature. Available at:March 1, 2012). New Mexico Office of the State Historian.Proclamation of New Mexico Statehood. Available at: http://

  12. Juanita's Money Order: Income Effects on Human Capital Investment in Mexico

    E-Print Network [OSTI]

    Suarez, Juan Carlos; Avellaneda, Zenide

    2007-01-01T23:59:59.000Z

    Workers’ Remittances to Mexico,” Federal Reserve Bank ofEvidence from Rural Mexico,” Submitted to the Americanand Educational Attainment in Mexico,” NBER Working Paper.

  13. Excerpt from The Red Land to the South: American Indian Writers and Indigenous Mexico

    E-Print Network [OSTI]

    Cox, James H.

    2013-01-01T23:59:59.000Z

    Writers and Indigenous Mexico (Minneapolis: University ofLiterature and Indigenous Mexico T he publication of Choctaws detective novels set in Mexico could read Philip Ainsworth

  14. Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico

    E-Print Network [OSTI]

    Osborne, Tracey Muttoo

    2010-01-01T23:59:59.000Z

    and Teaching of Economics, Mexico. AMBIO. 2008. Scolel Teeds. X. Solano & A. Cal. Mexico City: Camara de Diputadosmodern Chiapas. Univ of New Mexico Pr. Birchfield, V. (1999)

  15. Dancing Toward the Middle: New Mexico's Budget and Poltical Deliberations, FY2013-2014

    E-Print Network [OSTI]

    Seckler, Kim

    2015-01-01T23:59:59.000Z

    Will Be Bad News for New Mexico. ” Albuquerque Journal,Massey, Barry. 2013. “New Mexico Lawmakers Assume Lowernal, November 8. New Mexico Legislative Council Service.

  16. Caught in the middle : : Mexico's relationship with Cuba and the United States 1959-1969

    E-Print Network [OSTI]

    Ancona, Rafael

    2013-01-01T23:59:59.000Z

    rebirth: Che Guevara in Mexico. ” Che's travels: The makingArchives Consulted Archivo General de la Nación. MexicoCity, Mexico. 2012. Archivo Histórico Genaro Estrada de la

  17. Places of Sanctuary: Religious Revivalism and the Politics of Immigration in New Mexico

    E-Print Network [OSTI]

    Villarreal Garza, Amy

    2014-01-01T23:59:59.000Z

    Anthropology of Protestantism in Mexico and Central America.Memory,” in Expressing New Mexico: Nuevomexicano Creativity,Nineteenth Century New Mexico. ” Chicano-Latino Law Review

  18. The New Suburbs: Evolving travel behavior, the built environment, and subway investments in Mexico City

    E-Print Network [OSTI]

    Guerra, Erick

    2013-01-01T23:59:59.000Z

    making in the Valley of Mexico. Third World Planning Review,Estimation of Road Traffic Demand Elasticities for MexicoCity, Mexico. Transportation Research Record: Journal of the

  19. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

    1981-01-01T23:59:59.000Z

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  20. NEW MEXICO LEGISLATIVE INTERNSHIP PROGRAM --2013 The New Mexico Legislature invites applicants for up to three internships. Interns will

    E-Print Network [OSTI]

    Johnson, Eric E.

    NEW MEXICO LEGISLATIVE INTERNSHIP PROGRAM -- 2013 The New Mexico Legislature invites applicants Education Study Committee or the Legislative Finance Committee. The purpose of the New Mexico Legislative experience in the day-to-day staff work for New Mexico's citizen-legislature. Interns will provide staff

  1. Using and Storing Nonfat Dry Milk Nonfat dry milk is convenient to store, easy to use and

    E-Print Network [OSTI]

    in a cool, dry place. s Dry milk products are very sensitive to temperature and humidity. The area where your dry milk is stored should be kept as cool as possible. s Dry milk will absorb moisture and odorsUsing and Storing Nonfat Dry Milk Nonfat dry milk is convenient to store, easy to use

  2. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  3. Solar Hot Water Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

  4. Covered Product Category: Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  5. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision...

  6. Monitoring SERC Technologies — Solar Hot Water

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

  7. Cold vacuum drying system conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W.

    1996-05-01T23:59:59.000Z

    This document summarizes the activities involved in the removal of the SNF from the leaking basins and to place it in stable dry storage.

  8. FINAL REPORT: Transformational electrode drying process

    SciTech Connect (OSTI)

    Claus Daniel, C.; Wixom, M. (A123 Systems, Inc.)

    2013-12-19T23:59:59.000Z

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  9. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-07-01T23:59:59.000Z

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  10. Cooking with Non-fat Dry Milk

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    This fact sheet describes the nutritional value and safe storage of non-fat dry milk, a commodity food. It also offers food preparation ideas....

  11. Geology, resistivity, and hydrochemistry of the Ojo Caliente hot springs area, northern New Mexico

    SciTech Connect (OSTI)

    Stix, J.; Pearson, C.; Vuataz, F.; Goff, F.; East, J.; Hoffers, B.

    1982-01-01T23:59:59.000Z

    Geothermal fluids of the Ojo Caliente area discharge from a northeast trending normal fault that juxtaposes Precambrian metarhyolite and Tertiary sediments. An electrical resistivity survey shows that the fluids emerge from the fault and flow as a plume of thermal water into cold aquifers east of the fault. Geochemistry of fluids indicates a maximum reservoir temperature at depth of 80/sup 0/C with no suggestion of high temperature isotopic exchange between water and reservoir rocks. From this data, it is believed that the Ojo Caliente system is suitable only for small-scale direct use geothermal applications.

  12. Precipitation scavenging, dry deposition, and resuspension. Volume 2: dry deposition and resuspension

    SciTech Connect (OSTI)

    Pruppacher, H.R.; Semanin, R.G.; Slinn, W.G.N.

    1983-01-01T23:59:59.000Z

    Papers are presented under the headings: dry deposition of gases, dry deposition of particles, wind erosion, plutonium deposition and resuspension, air-sea exchange, tropical and polar, global scale, and future studies.

  13. Hot electron production and heating by hot electrons in fast ignitor research

    SciTech Connect (OSTI)

    Key, M.H.; Estabrook, K.; Hammel, B. [and others

    1997-12-01T23:59:59.000Z

    In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.

  14. Rural Democratization in Mexico’s Deep South: Grassroots Right-to-Know Campaigns in Guerrero

    E-Print Network [OSTI]

    Fox, Jonathan A; García Jiménez, Carlos; Haight, Libby

    2009-01-01T23:59:59.000Z

    CNPA, Rostros y Voces. Go mez Gallardo, P. 2007. The rightof the weakest in Mexico (Go mez Gallardo 2007, 286, IFAI In

  15. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    In Mexico, all investment in the oil and gas industry iswithout reducing investment in oil production. Attentionexploitation of oil fields and a lack of investment in

  16. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    E.S. Connolly; G.D. Forsythe

    2000-09-30T23:59:59.000Z

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

  17. An experimental investigation of high temperature, high pressure paper drying

    E-Print Network [OSTI]

    Patel, Kamal Raoji

    1994-01-01T23:59:59.000Z

    % moisture removed oven dried mass of handsheet, g mass of handsheet after drying test, g mass of handsheet before drying test, g relative moisture removed from handsheet moisture removed by drying, % initial moisture (im) initial handsheet sample mass..., and the effects on the paper sheet and drying felt can be detrimental. Elevated temperatures reduce water viscosity which permits reduced resistance to water flow in the sheet. Pressing with a drying temperature of 95 C gives increased drying capacity, reduced...

  18. Infrared Dry-peeling Technology for Tomatoes

    E-Print Network [OSTI]

    Infrared Dry-peeling Technology for Tomatoes Saves Energy Energy Efficiency Research Office PIER This research will use infrared heating technology for peeling tomatoes. Infrared dry peeling, a device, producing less wastewater and preserving product quality. Infrared drypeeling is expected to reduce

  19. Cooking and Using Dried Beans and Peas

    E-Print Network [OSTI]

    Cooking and Using Dried Beans and Peas Beans and peas are good for you Beans and peas beans with rice or corn to provide high quality complete protein. If you are on a special diet, remember that beans and peas are low in sodium and fat. How to store dried beans and peas Store beans and peas

  20. Growing Dry Beans for an Emerging Market

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Growing Dry Beans for an Emerging Market JOIN US FOR AN EVENING WITH JACK LAZOR, OF BUTTERWORKS FARM AND JOE BOSSEN, OF VERMONT BEAN CRAFTERS APRIL 10TH , 2012, 6:15-8PM AT THE KELLOGG-HUBBARD LIBRARY EAST MONTPELIER ROOM 135 MAIN ST., MONTPELIER, VT 05602 Jack Lazor has grown dry beans for local

  1. Are we putting in hot water?

    E-Print Network [OSTI]

    Combes, Stacey A.

    Are we putting our fish in hot water? Global warming and the world's fisheries · Hot, hungry, and gasping for air · Shrinking fish and fewer babies? · Global warming puts fish on the run · Warm water · Howmucharefishworth? · Which fish are feeling the heat? · How will fisheries change? · 2°C is too much! · What needs

  2. STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)

    E-Print Network [OSTI]

    storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements with Multiple Dwelling Units (required for prescriptive) TO COMPLY - ALL BOXES MUST BE CHECKED All hot water

  3. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

    1999-01-01T23:59:59.000Z

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  4. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11T23:59:59.000Z

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  5. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01T23:59:59.000Z

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  6. The Fiscal Impact of Extending Marriage to Same-Sex Couples in New Mexico

    E-Print Network [OSTI]

    Fitzgerald, Erin; Homer, Steven K.

    2013-01-01T23:59:59.000Z

    and, given the range of New Mexico State Statutes, (2006). “Jake, (2013). “How New Mexico Legalized Gay Marriage - For 82006). The Impact on New Mexico’s Budget of Allowing Same-

  7. Enforcing boundaries : globalization, state power and the geography of cross- border consumption in Tijuana, Mexico

    E-Print Network [OSTI]

    Murià Tuñón, Magalí

    2010-01-01T23:59:59.000Z

    Bueno Para Pensar”: Thinking Consumption in the U.S. -Mexico97 Chapter 2. Mexico in Tijuana. the Imagined Community andInstitutions and Networks of Mexico’s Imagined Community:

  8. Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico

    E-Print Network [OSTI]

    Osborne, Tracey Muttoo

    2010-01-01T23:59:59.000Z

    1980s, when oil prices collapsed and Mexico found itself inwere sourced from oil, and about a third of [Mexico’s] staterole of oil in the Mexican economy has made Mexico the

  9. The dividing line : myth and experience in Mexico's 1968 student movement

    E-Print Network [OSTI]

    Sanders, Sara Katherine

    2011-01-01T23:59:59.000Z

    grew. By September, Mexico?s CTM had roundly condemned theed. 1968: más allá del mito, Mexico, D.F. : Ediciones delBabb, Sarah. Managing Mexico: Economist from Nationalism to

  10. Synthetic ecology : revisiting Mexico City's lakes project

    E-Print Network [OSTI]

    Daou, Daniel (Daou Ornelas)

    2011-01-01T23:59:59.000Z

    Mexico City was founded 700 years ago on man made islets in the middle of a lake. Today, it faces a contradictory situation were water is running scarce, but simultaneously the city runs the risk of drowning in its own ...

  11. Assessment of Recreational Fishery in Northeastern Mexico 

    E-Print Network [OSTI]

    Vale, Arturo J., III

    2010-01-14T23:59:59.000Z

    The Northeastern region of Mexico has developed rapidly over the last few decades and reservoir construction has accompanied the growth of the region. As a result, recreational and sport fishing have become very popular. ...

  12. New Mexico Gas Company- Residential Efficiency Programs

    Broader source: Energy.gov [DOE]

    The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding insulation and for homes which attain Energy Star...

  13. Rural Jobs Tax Credit (New Mexico)

    Broader source: Energy.gov [DOE]

    This credit can be applied to taxes due on (state) gross receipts, corporate income, or personal income tax.  Rural New Mexico is defined as any part of the state other than Los Alamos County;...

  14. Ground and Surface Water Protection (New Mexico)

    Broader source: Energy.gov [DOE]

    This regulation implements the New Mexico Water Quality Act. Any person intending to make a new water contaminant discharge or to alter the character or location of an existing water contaminant...

  15. Renewable Energy For Electric Utilities (New Mexico)

    Broader source: Energy.gov [DOE]

    The purpose of this rule is to implement the Renewable Energy Act, and to bring significant economic development and environmental benefits to New Mexico. This rule applies to electric public...

  16. Qualifying RPS State Export Markets (New Mexico)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New Mexico as eligible sources towards their RPS targets or goals. For specific...

  17. Public Project Revolving Fund (PPRF) (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Finance Authority’s Public Project Revolving Fund (PPRF) funds infrastructure and capital equipment projects with low-cost and low-interest rate loans.  The key characteristics of...

  18. Alternative Fuels Data Center: New Mexico Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    facilities in New Mexico, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  19. Intercultural Universities in Mexico: Identity and Exclusion

    E-Print Network [OSTI]

    Lehmann, David

    2013-11-13T23:59:59.000Z

    The purpose of this paper is to explore the ethos of interculturalidad in Mexico's recently founded universidades interculturales. On the basis of documentation and interviews with faculty in five universities, institutionalisation of intercultural...

  20. ,"New Mexico Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:04:17 PM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New...

  1. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:01:29 PM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New...

  2. Mexico City Theatre: Summers 1995 and 1996

    E-Print Network [OSTI]

    Compton, Timothy G.

    1996-10-01T23:59:59.000Z

    immigration, and passively with poverty and the desperation of Mexico's lower classes. Tabasco negro, by Victor Hugo Rascón Banda and directed by Sandra Félix, brings to light environmental catastrophes generated by Pemex. It also focuses on issues related...

  3. Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess used in mining -MODERN GRID S T R A T E G

  4. Emission of Visible Light by Hot Dense Metals

    E-Print Network [OSTI]

    More, R.M.

    2010-01-01T23:59:59.000Z

    HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

  5. Solar Hot Water Resources and Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of...

  6. Recent arenaceous foraminifers from Gulf of Mexico

    E-Print Network [OSTI]

    Frerichs, W. E.

    1969-10-01T23:59:59.000Z

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS October 1, 1969 Paper 46 RECENT ARENACEOUS FORAMINIFERS FROM GULF OF MEXICO WILLIAM E. FRERICHS University of Wyoming, Laramie, Wyoming; formerly Esso Production Research Company, Houston..., Texas ABSTRACT Three new species of arenaceous foraminifers from bottom samples taken at water depths greater than 2,500 feet in the Gulf of Mexico are described. Two are referred to Pseudotrochammina FRERICHS, n. gen., and one to Ammoglobigerinoides...

  7. Caught in the middle : : Mexico's relationship with Cuba and the United States 1959-1969

    E-Print Network [OSTI]

    Ancona, Rafael

    2013-01-01T23:59:59.000Z

    nationalization [of oil in Mexico] has also had a salutaryof the foreign oil companies in Mexico and the creation of

  8. The Potential Economic Impact of the National Broadband Plan on the New Mexico Exchange Carriers Group

    E-Print Network [OSTI]

    Johnson, Eric E.

    The Potential Economic Impact of the National Broadband Plan on the New Mexico Exchange Carriers Center New Mexico State University Las Cruces, New Mexico #12;Arrowhead Center New Mexico Exchange List of Maps ii Executive Summary iii Introduction 1 New Mexico Exchange Carriers Group 1 New Mexico

  9. Oyamel fir forest trunks provide thermal advantages for overwintering monarch butterflies in Mexico

    E-Print Network [OSTI]

    Williams, Ernest H.

    Oyamel fir forest trunks provide thermal advantages for overwintering monarch butterflies in Mexico, UniversidadNacionalAutonomadeMexico,AntiguaCarreteraaPa´ tzcuaro,Morelia,Michoacan,Mexico,5 InstitutodeGeografi´aCiudad Universitaria,UniversidadNacionalAutonomadeMexico,Coyoacan,MexicoD.F.,Mexico,6 Departmentof

  10. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10T23:59:59.000Z

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  11. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  12. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

  13. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal...

  14. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

  15. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  16. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

  17. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  18. Model Simulating Real Domestic Hot Water Use - Building America...

    Energy Savers [EERE]

    Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

  19. Quenching and Partitioning Process Development to Replace Hot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel Quenching and Partitioning Process Development to Replace Hot Stamping of...

  20. On the Thermodynamic Geometry of Hot QCD

    E-Print Network [OSTI]

    Stefano Bellucci; Vinod Chandra; Bhupendra Nath Tiwari

    2010-10-07T23:59:59.000Z

    We study the nature of the covariant thermodynamic geometry arising from the free energy of hot QCD. We systematically analyze the underlying equilibrium thermodynamic configurations of the free energy of 2- and 3-flavor hot QCD with or without including thermal fluctuations in the neighborhood of the QCD transition temperature. We show that there exists a well-defined thermodynamic geometric notion for QCD thermodynamics. The geometry thus obtained has no singularity as an intrinsic Riemannian manifold. We further show that there is a close connection of this geometric approach with the existing studies of correlations and quark number susceptibilities in hot QCD.

  1. On the Thermodynamic Geometry of Hot QCD

    E-Print Network [OSTI]

    Bellucci, Stefano; Tiwari, Bhupendra Nath

    2008-01-01T23:59:59.000Z

    We study the nature of the covariant thermodynamic geometry arising from the free energy of hot QCD. We systematically analyze the underlying equilibrium thermodynamic configurations of the free energy of 2- and 3-flavor hot QCD with or without including thermal fluctuations in the neighborhood of the QCD transition temperature. We show that there exists a well-defined thermodynamic geometric notion for QCD thermodynamics. The geometry thus obtained has no singularity as an intrinsic Riemannian manifold. We further show that there is a close connection of this geometric approach with the existing studies of correlations and quark number susceptibilities in hot QCD.

  2. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01T23:59:59.000Z

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  3. A New Process for Hot Metal Production at Low Fuel Rate - Phase 1 Feasibility Study

    SciTech Connect (OSTI)

    Dr. Wei-Kao Lu

    2006-02-01T23:59:59.000Z

    The project is part of the continuing effort by the North American steel industry to develop a coal-based, cokeless process for hot metal production. The objective of Phase 1 is to determine the feasibility of designing and constructing a pilot scale facility with the capacity of 42,000 mtpy of direct reduced iron (DRI) with 95% metallization. The primary effort is performed by Bricmont, Inc., an international engineering firm, under the supervision of McMaster University. The study focused on the Paired Straight Hearth furnace concept developed previously by McMaster University, The American Iron and Steel Institute and the US Department of Energy.

  4. Advanced wet-dry cooling tower concept

    E-Print Network [OSTI]

    Snyder, Troxell Kimmel

    The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

  5. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    Irwin, J.J.

    1997-09-24T23:59:59.000Z

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  6. Dry cooling: Perspectives on future needs

    SciTech Connect (OSTI)

    Guyer, E.C. (Yankee Scientific, Inc., Ashland, MA (United States))

    1991-08-01T23:59:59.000Z

    The factors that can be expected to determine the future role of dry cooling in the United States electric power generation industry are identified and characterized. Focus is primarily on the issues of water availability for the electric power industry and the environmental impacts of evaporative cooling systems. The question of future water availability is addressed in terms of both limitations and opportunities facing the industry. A brief review of the status of dry cooling applications is provided. Included is a summary of an extensive survey of electric utility industry perspectives on the future requirements and role for dry cooling. Some regional assessments of the expected future requirements for this technology are also provided. Conclusions are a qualitative characterization of the expected future role of dry cooling in the electric power industry. 72 refs., 7 figs., 13 tabs.

  7. Dry Cask Storage Study Feb 1989

    Broader source: Energy.gov [DOE]

    This report on the use of dry-cask-storage technologies at the sites of civilian nuclear power reactors has been prepared by the U.S. Department of Energy (DOE} in response to the requirements of...

  8. Resuspension and dry deposition research needs

    SciTech Connect (OSTI)

    Sehmel, G.A.

    1983-01-01T23:59:59.000Z

    The author concludes that better predictive models are needed for the signifcant health, ecological, and economic impacts of resuspended particles and their subsequent dry deposition. Both chemical and radioactive aerosols are discussed. (PSB)

  9. High strength air-dried aerogels

    DOE Patents [OSTI]

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06T23:59:59.000Z

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  10. EIS-0281: Sandia National Laboratories/New Mexico

    Broader source: Energy.gov [DOE]

    DOE proposes to continue operating the Sandia National Laboratories/New Mexico (SNL/NM) located in central New Mexico. The DOE has identified and assessed three alternatives for the operation of...

  11. IN THE MATTER OF: STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IN THE MATTER OF: STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT UNITED STATES DEPARTMENT ) ADMINISTRATIVE ORDER UNDER THE NEW MEXICO HAZARDOUS WASTE ACT 74-4-13 OF ENERGY AND...

  12. Waking the Gods: Archaeology and State Power in Porfirian Mexico

    E-Print Network [OSTI]

    Kelly, Larissa Kennedy

    2011-01-01T23:59:59.000Z

    y lugar de nacimiento: 33 años. México. D.F. …6. Ha sido Ud.1882. Baerlein, Henry. Mexico, the Land of Unrest: BeingBasis of Industrialization in Mexico Before 1911. Stanford:

  13. EECBG Success Story: Energy Efficiency in New Mexico Frees Money...

    Office of Environmental Management (EM)

    Energy Efficiency in New Mexico Frees Money in Local Coffers EECBG Success Story: Energy Efficiency in New Mexico Frees Money in Local Coffers November 2, 2011 - 8:39am Addthis...

  14. New Mexico Image Recognition Startup Spun Off From A Government...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A Government Lab" May 15, 2015 Just Your Typical New Mexico Image Recognition Startup Spun Off...

  15. Investment in the Future Pays Off for New Mexico Legislature

    E-Print Network [OSTI]

    New Mexico, University of

    Investment in the Future Pays Off for New Mexico Legislature August 22, 2011 | By Karen Wentworth of New Mexico from oil and gas. The economy was growing and the state legislature took a gamble on higher

  16. azufres michoacan mexico: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to obtain a Visa. Term Dates 201314 Dates TBC All Mumby, Peter J. 116 8, 83578384, 2008 Mexico City pollution Physics Websites Summary: ACPD 8, 8357-8384, 2008 Mexico City...

  17. The University of New Mexico An NSF Integrative Graduate

    E-Print Network [OSTI]

    New Mexico, University of

    The University of New Mexico An NSF Integrative Graduate Education and Research Traineeship focus of the New Mexico SpatioTemporal Modeling Center (STMC) is the influence of plasma membrane

  18. SECTION 593 WRDA 1999, AS AMENDED CENTRAL NEW MEXICO

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 593 ­ WRDA 1999, AS AMENDED CENTRAL NEW MEXICO MODEL AGREEMENT FOR DESIGN ASSISTANCE (WORK New Mexico pursuant to Section 593 of the Water Resources Development Act of 1999, Public Law 106

  19. SECTION 593 WRDA 1999, AS AMENDED CENTRAL NEW MEXICO

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 593 ­ WRDA 1999, AS AMENDED CENTRAL NEW MEXICO MODEL AGREEMENT FOR DESIGN ASSISTANCE (WORK developed for providing environmental assistance to non-Federal interests in central New Mexico pursuant

  20. Compression of cooked freeze-dried carrots

    E-Print Network [OSTI]

    Macphearson, Bruce Alan

    1973-01-01T23:59:59.000Z

    to precompression characteristics (Brockmann, 1966). Hsmdy (1962) found that acceptable, compressed and freeze-dried spinach could be obtained by plasticizing the product to a moisture content of 9X before compression. Ishler (1962) reported that spraying... the dehydrated food before compression with either water, glycerine or propylene glycol produced bars with excellent rehydra- tion characteristics. He recommended spraying freeze-dried cellu- lar foods to 5-13X moisture, compressing, and redrying to lees than...

  1. Feasibility of dry cask-to-cask and pool-to-cask spent fuel transfer based on single-element transfer cask experience

    SciTech Connect (OSTI)

    Schmoker, D.S.; Bowser, R.C.

    1993-12-31T23:59:59.000Z

    Spent fuel transportation casks and canister-based storage systems are generally loaded underwater in a nuclear plant`s spent fuel pool/cask loading pit. Several reasons exist for exploring the feasibility of dry cask-to-cask and pool-to-cask spent fuel transfer. These include: the accommodation of plants which do not have sufficient crane capacity to handle large 90 tonne (100 ton) storage canisters or shipping casks, and construction of an MRS without the need for extensive hot cell facilities. In the case of DOE`s ``Multi-Purpose Canister`` (MPC) scenario, use of such a transfer system would allow all plants with adequate transport routes to use large canisters at-reactor, and those without adequate transport routes to use the MRS for loading of large canisters without the need for hot cell facilities. The dry transfer option would not only allow the use of large canisters for all fuel, but would assist DOE in meeting MRS deadlines since licensing and construction of hot-cell facilities significantly affect schedule. This paper reviews the regulatory issues and technical design considerations for a single-element dry transfer system. Also summarized are lessons learned from the TMI-2 fuel transfer system which are directly applicable to the design, testing, startup, and use of a future dry cask-to-cask or pool-to-cask transfer system.

  2. Vicious and Virtuous Cycles and the Role of External Non-government Actors in Community Forestry in Oaxaca and Michoacán, Mexico

    E-Print Network [OSTI]

    Barsimantov, James A.

    2010-01-01T23:59:59.000Z

    National de Ecologia, Mexico City. Wade, R. (1988). VillageCambridge. World Bank (1995). Mexico Resource ConservationYates, P. L. (1981). Mexico’s Agricultural Dilemma.

  3. Determination of Water Saturation in Relatively Dry Porous Media...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests....

  4. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08T23:59:59.000Z

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  5. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01T23:59:59.000Z

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  6. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01T23:59:59.000Z

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  7. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang [Columbia University Department of Chemistry

    2013-09-12T23:59:59.000Z

    During this funding period, we made a significant breakthrough and established for the first time that hot electron transfer from photoexcited NCs to an electron acceptor was indeed possible.

  8. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

  9. Charm and Beauty in a Hot Environment

    E-Print Network [OSTI]

    Helmut Satz

    2006-02-28T23:59:59.000Z

    We discuss the spectral analysis of quarkonium states in a hot medium of deconfined quarks and gluons, and we show that such an analysis provides a way to determine the thermal properties of the quark-gluon plasma.

  10. Rate of drying and stresses in the first period of drying

    SciTech Connect (OSTI)

    Kowalski, S.J.; Rybicki, A.

    2000-03-01T23:59:59.000Z

    The paper presents a computer simulated processes and illustrate how the drying induced stresses are influenced by the rate of drying. It is shown that the moisture transport coefficient, and thus the rate of drying, depends on the thermal state of the drying material, defined by the wet-bulb temperature. Through these simulated processes one can observe the evolution of the moisture content and stress distributions during drying at constant, but in each process different, wet-bulb temperatures. A convective drying process of a bar with rectangular cross-section is considered as example, and a two-dimensional initial-boundary value problem is solved numerically with the use of the finite element method. The numerical results are visualized in spatial diagrams.

  11. Drying results of K-Basin fuel element 3128W (run 2)

    SciTech Connect (OSTI)

    Abrefah, J.; Klinger, G.S.; Oliver, B.M.; Marshman, S.C.; MacFarlan, P.J.; Ritter, G.A. [Pacific Northwest National Lab., Richland, WA (United States); Flament, T.A. [Numatec Hanford Corp., Richland, WA (United States)

    1998-07-01T23:59:59.000Z

    An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-East Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of N-Reactor spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from an open K-East canister (3128W) during the first fuel selection campaign conducted in 1995, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. Although it was judged to be breached during in-basin (i.e., K-Basin) examinations, visual inspection of this fuel element in the hot cell indicated that it was likely intact. Some scratches on the coating covering the cladding were identified before the furnace test. The drying test was conducted in the Whole Element Furnace Testing System located in G-Cell within the PTL. This test system is composed of three basic systems: the in-cell furnace equipment, the system gas loop, and the analytical instrument package. Element 3128W was subjected to the drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step. Results of the Pressure Rise and Gas Evolution Tests suggest that most of the free water in the system was released during the extended CVD cycle (68 hr versus 8 hr for the first run). An additional {approximately}0.34 g of water was released during the subsequent HVD phase, characterized by multiple water release peaks, with a principle peak at {approximately}180 C. This additional water is attributed to decomposition of a uranium hydrate (UO{sub 4}{center_dot}4H{sub 2}O/UO{sub 4}{center_dot}2H{sub 2}O) coating that was observed to be covering the surface of the fuel element to a thickness of {approximately}1.6 mg/cm{sup 2}. A limited quantity of hydrogen ({approximately}9 mg) was also released during HVD, mainly at temperatures above 300 C, likely from hydride decomposition.

  12. Iyer, Woldegabriel recognized for helping New Mexico small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December Iyer, Woldegabriel recognized Iyer, Woldegabriel recognized for helping New Mexico small businesses The scientists received Principal Investigator Excellence (PIE)...

  13. Speaker: Professor Terry Loring, University of New Mexico Title ...

    E-Print Network [OSTI]

    1910-91-20T23:59:59.000Z

    Dec 8, 2009 ... PURDUE UNIVERSITY. Department of Mathematics Colloquium. Speaker: Professor Terry Loring, University of New Mexico. Title: “Almost ...

  14. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect (OSTI)

    Hepworth, M.T.; Ben-Slimane, R.

    1995-11-01T23:59:59.000Z

    The primary major deposit of manganese in the US which can be readily mined by an in situ process is located in the Emily district of Minnesota. The US Bureau of Mines Research Centers at both the Twin Cities and Salt Lake City have developed a process for extracting and refining manganese in the form of a high-purity carbonate product. This product has been formulated into pellets by a multi-step process of drying, calcination, and induration to produce relatively high-strength formulations which are capable of being used for hot fuel gas desulfurization. These pellets, which have been developed at the University of Minnesota under joint sponsorship of the US Department of Energy and the US Bureau of Mines, appear superior to other, more expensive, formulations of zinc titanate and zinc ferrite which have previously been studied for multi-cycle loading (desulfurization) and regeneration (evolution of high-strength SO{sub 2} and restoration of pellet reactivity). Although these other formulations have been under development for the past twelve years, their prices still exceed $7 per pound. If manganese pellets perform as predicted in fixed bed testing, and if a significant number of utilities which burn high-sulfur coals incorporate combined-cycle gasification with hot coal gas desulfurization as a viable means of increasing conversion efficiencies, then the potential market for manganese pellets may be as high as 200,000 tons per year at a price not less than $3 per pound. This paper discusses the role of manganese pellets in the desulfurization process with respect to the integrated gasification combined-cycle (IGCC) for power generation.

  15. World launch! Hot-Steam Aerostat

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Info HeiDAS UH World launch! Hot-Steam Aerostat #12;"If you intend to view the land, if you plan Verne: "Fife weeks on a balloon". HeiDAS stands for HeiÃ?DampfAeroStat (Hot-Steam AeroStat) and it refers to the first operable balloon ever that became buoyant by means of superheated steam. The performance of Hei

  16. New Mexico renewable development study

    SciTech Connect (OSTI)

    Toole, Gasper [Los Alamos National Laboratory; Bent, Russell [Los Alamos National Laboratory; Ewers, Mary [Los Alamos National Laboratory

    2010-09-17T23:59:59.000Z

    Since the early 1990s, Los Alamos National Laboratory (LANL) has applied electric grid models and simulation software to problems of national significance. This effort continues with a variety of other projects funded by the Department of Energy (DOE), other federal and state agencies and private companies. Critical to the success of these programs is the ability to integrate regional-scale models of the electric grid, to assess the propagation of grid impacts, and to present interactively the effect of potential mitigating actions required to stabilize the grid. All of these capabilities are applied in this study, to accomplish the following goals and objectives: (1) Develop an AC power flow model representing future conditions within New Mexico's electric grid, using commercial tools accepted by the utility industry; (2) Conduct a 'screening' analysis of options for accelerating potential renewable energy development through the addition of a statewide transmission collector system; (3) Estimate total revenue needed, jobs created (temporary and permanent) plus indirect and direct impacts to the state's economy; (4) Evaluate potential cost allocation methodology; and (5) Issue a project report that will provide information for policy direction by state regulators, project developers, and legislators.

  17. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01T23:59:59.000Z

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  18. Water Supply Analysis for Restoring the Colorado River Delta, Mexico

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Water Supply Analysis for Restoring the Colorado River Delta, Mexico Josué Medellín-Azuara1 ; Jay R, Mexico. Potential water sources include reductions in local agricultural and urban water use through headings: Water supply; Restoration; Mexico; Colorado River; Environmental issues. Introduction Providing

  19. POTENTIAL MEXICAN OFFSETS TO Business Council for Sustainable Development Mexico

    E-Print Network [OSTI]

    California at Davis, University of

    POTENTIAL MEXICAN OFFSETS TO CALIFORNIA Business Council for Sustainable Development ­ Mexico Companies ALFA Altos Hornos de Mexico Bachoco CEMEX Cuprum DeAcero FEMSA GCC Grupo Bimbo Grupo Syngenta Acciona Energía 2 #12;Basic Facts on the California ­ Mexico Relationship 3 · Major trade partner

  20. CHAPTER III MARINE METEOROLOGY OF THE GULF OF MEXICO

    E-Print Network [OSTI]

    CHAPTER III MARINE METEOROLOGY OF THE GULF OF MEXICO #12;Blank page retained for pagination #12;MARINE METEOROLOGY OF THE GULF OF MEXICO, A BRIEF REVIEW 1 By DALE F. LEIPPER, Department oj Oceonography, Agricultural and Mechanical College oj Tuas The best general summary of the weather over the Gulf of Mexico