National Library of Energy BETA

Sample records for mev g-1cm2 nuclear

  1. The response of CR-39 nuclear track detector to 1-9 MeV protons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; et al

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less

  2. Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV

    SciTech Connect (OSTI)

    Young, P.G.; Chadwick, M.B.; Bosoian, M.

    1992-01-01

    The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

  3. Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV

    SciTech Connect (OSTI)

    Young, P.G.; Chadwick, M.B.; Bosoian, M.

    1992-12-01

    The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

  4. MeV Summer School prepares next-generation nuclear scientists...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer School is an annual 10-day program that provides early-career nuclear engineers with advanced studies in modeling, experimentation and validation of nuclear reactor design. ...

  5. Calculation of nuclear data for incident energies to 200 MeV with the FKK-GNASH code system

    SciTech Connect (OSTI)

    Chadwick, M.B.; Young, P.G.

    1993-02-01

    We describe how the FKK-GNASH code system has been extended to calculate nucleon-induced reactions up to 200 MeV, and used to predict (p,xn) and (p,xp) cross sections on {sup 208}Pb at incident energies of 25, 45, 80 and 160 MeV, for an intermediate energy code intercomparison. Details of the reaction mechanisms calculated by FKK-GNASH are given, and the calculational procedure is described.

  6. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments [OSTI]

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  7. Elastic Neutron Scattering at 96 MeV

    SciTech Connect (OSTI)

    Hildebrand, A.; Blomgren, J.; Atac, A.; Bergenwall, B.; Johansson, C.; Klug, J.; Mermod, P.; Nilsson, L.; Pomp, S.; Esterlund, M.; Dangtip, S.; Tippawan, U.; Phansuke, P.; Jonsson, O.; Renberg, P.-U.; Prokofiev, A.; Nadel-Turonski, P.; Elmgren, K.; Olsson, N.; Blideanu, V.

    2005-05-24

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20 - 180-MeV neutron beam line of The Svedberg Laboratory, Uppsala. Elastic neutron scattering from 12C, 16O, 56Fe, 89Y, and 208Pb has been studied at 96 MeV in the 10-70 deg. interval. The results from 12C and 208Pb have recently been published,6 while the data from 16O, 56Fe, and 89Y are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions, based on phenomenology or microscopic theory. Applications for these measurements are nuclear-waste incineration, single-event upsets in electronics, and fast-neutron therapy.

  8. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  9. Differential cross section for coherent photon scattering from /sup 4/He at 180 MeV

    SciTech Connect (OSTI)

    Austin, E.J.; Booth, E.C.; McIntyre, E.K.; Miller, J.P.; Roberts, B.L.; Whitehouse, D.A.; Dodson, G.

    1986-08-25

    We report the measurement of the differential scattering cross section for coherent photon scattering (nuclear Compton scattering) from /sup 4/He at an average energy of 180 MeV. This represents the first direct observation of the coherent process on a complex nucleus above the pion threshold. The results are compared with the predicton of a claculation utilizing the isobar-hole formalism.

  10. Elastic neutron scattering at 96 MeV from {sup 12}C and {sup 208}Pb

    SciTech Connect (OSTI)

    Klug, J.; Blomgren, J.; Atac, A.; Bergenwall, B.; Hildebrand, A.; Johansson, C.; Mermod, P.; Pomp, S.; Tippawan, U.; Nilsson, L.; Elmgren, K.; Olsson, N.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Dangtip, S.; Phansuke, P.; Oesterlund, M.; Le Brun, C.

    2003-12-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL, has recently been installed at the 20-180 MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from {sup 12}C and {sup 208}Pb has been studied at 96 MeV in the 10 deg. -70 deg. interval. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions based on phenomenology or microscopic nuclear theory.

  11. Constraining the 6.05 MeV 0 + and 6.13 MeV 3 - Cascade Transitions...

    Office of Scientific and Technical Information (OSTI)

    Constraining the 6.05 MeV 0 + and 6.13 MeV 3 - Cascade Transitions in the C 12 ( , ) O 16 Reaction Using the Asymptotic Normalization Coefficients Citation Details ...

  12. Neutron total and scattering cross sections of /sup 6/Li in the few MeV region

    SciTech Connect (OSTI)

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of /sup 6/Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx.< 10 keV. Neutron differential elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at approx.> 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;..cap alpha..)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file.

  13. Gadolinium-148 production cross section measurements for 600-and 800-MEV protons.

    SciTech Connect (OSTI)

    Kelley, K. C.; Devlin, M. J.; Pitcher, E. J.; Mashnik, S. G.; Hertel, N. E.

    2004-01-01

    In a series of experiments at LANSCE's WNR facility, {sup 148}Gd production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 {mu}m thin W, Ta, and Au foils and 10 {mu}m thin Al activation foils. Gadolinium spallation yields were determined from these foils using alpha spectroscopy and compared with the LANL codes CEM2k+GEM2 and MCNPX. When heavy metal targets, such as tungsten, are bombarded with protons greater than a few hundred MeV many different nuclides are produced. These nuclides are both stable and radioactive and are created by spallation, proton activation, or secondary reactions with neutrons and other nuclear particles made in the target. These products are distributed somewhat heterogeneously throughout a thick target because of the energy dependence of the cross sections and energy loss of the proton beam within the target. From this standpoint, it is difficult to measure nuclide production cross sections for a given energy proton in a thick target. At the Los Alamos Neutron Science Center (LANSCE) accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research (WNR) facility and 1L target at the Manuel Lujan Jr. Neutron Scattering Center. DOE requires hazard classification analyses to be performed on these targets and places limits on radionuclide inventories in the target as a means of determining the 'nuclear facility' category level. Presently, WNR's Target 4 is a non-nuclear facility while the Lujan 1L target is classified as a Category 3 nuclear facility. Gadolinium-148 is a radionuclide created from the spallation of tungsten and other heavy elements. Allowable isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of {sup 148}Gd is generally low, but it encompasses almost two-thirds of the total inhalation dose burden in an accident

  14. Two nucleon systems at mπ~450MeV from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Beane, Silas R.; Chang, Emmanuel; Detmold, William

    2015-12-23

    Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass ofmore » $$m_\\pi\\sim 450~{\\rm MeV}$$ in three spatial volumes using $n_f=2+1$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $$B_d = 14.4^{+3.2}_{-2.6} ~{\\rm MeV}$$, while the dineutron is bound by $$B_{nn} = 12.5^{+3.0}_{-5.0}~{\\rm MeV}$$. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the effective range expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. Thus, the extracted phase shifts allow for matching to nuclear effective field theories, from which low energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann–Okubo mass relation.« less

  15. SECTION III. NUCLEAR THEORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III. NUCLEAR THEORY Microscopic Description of Excitation of Isoscalar Giant Dipole Resonance in 28Si and 208Pb A. Kolomiets, O. Pochivalov and S. Shlomo Microscopic Description of Excitation of Isoscalar Giant Quadrupole Resonances in 28Si, 40Ca, 58Ni, and 116Sn by Inelastic Scattering of 240 MeV α-particles A. Kolomiets, O. Pochivalov and S. Shlomo Microscopic Description of Excitation of Isoscalar Giant Monopole Resonance in 58Ni by Inelastic Scattering of 240 MeV α-particles A. Kolomiets,

  16. Production of 14 MeV neutrons by heavy ions

    DOE Patents [OSTI]

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  17. On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate

    SciTech Connect (OSTI)

    Bianconi, M.; Argiolas, N.; Bazzan, M.; Bentini, G.G.; Chiarini, M.; Cerutti, A.; Mazzoldi, P.; Pennestri, G.; Sada, C.

    2005-08-15

    The damage induced by 5 MeV oxygen ion implantation in x-cut congruent LiNbO{sub 3} has been investigated by Rutherford backscattering spectrometry channeling technique. The dynamics of the damage growth has been described by an analytical formula considering the separate contributions of nuclear and electronic energy deposition. It has been hypothesized that the nuclear damage provides the localization of the energy released to the electronic subsystem necessary for the conversion into atomic displacements. The strong influence of the preexisting defects on the damage pileup, foreseen by the analytical formula, has been experimentally verified by pre-implanting the samples with 500 keV oxygen ions. It has been shown that a subsequent 5 MeV oxygen implantation step gives rise to an impressive damage accumulation, eventually leading to the total amorphization of the surface, even at moderate fluences.

  18. Measurement of the elastic scattering /sup 12/C+/sup 28/Si at energies 56 MeV--69 MeV

    SciTech Connect (OSTI)

    SHEN Wen-qing; YIN Shu-zhi; GUO Zhong-yan; ZHU Yong-tai; CHEN Ju-shen; WU En-chiu; GUO Chi-di; FENG En-pu; XIE Yaun-xiang

    1985-07-01

    The angular distributions of the elastic scattering reaction /sup 12/C+/sup 28/Si have been measured at the energies 69.5 MeV, 66 MeV, 59 MeV, 56 MeV using a large area position sensitive ionization chamber. The experimental data are fitted in the framework of the optical model. The probable reasons of the oscillations and enhancement of the elastic scattering angular distributions are discussed.

  19. Analysis of 33 MeV Nitrogen irradiated UHMWPE

    SciTech Connect (OSTI)

    Grosso, Mariela del; Chappa, Veronica; Garcia Bermudez, Gerardo

    2007-10-26

    In this work, we irradiated UHMWPE with 33 MeV Nitrogen ions, at several fluences, to generate surface modifications without affecting the bulk properties. These modifications were quantified by means of wear resistance tests and Fourier transform infrared spectroscopy (FTIR) measurements. Experimental results show an optimum ion fluence value that maximizes UHMWPE wear resistance.

  20. History of the ZGS 500 MeV booster.

    SciTech Connect (OSTI)

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  1. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    SciTech Connect (OSTI)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA.

  2. 5 MeV Mott Polarimeter Development at Jefferson Lab

    SciTech Connect (OSTI)

    Price, J. S.; Sinclair, C. K.; Cardman, L. S.; Haanskneccht, J.; Mack, D. J.; Piot, P.; Assamagan, K. A.

    1997-01-01

    Low energy (E{sub k}=100 keV) Mott scattering polarimeters are ill- suited to support operations foreseen for the polarized electron injector at Jefferson Lab. One solution is to measure the polarization at 5 MeV where multiple and plural scattering are unimportant and precision beam monitoring is straightforward. The higher injector beam current offsets the lower cross-sections. Recent improvements in the CEBAF injector polarimeter scattering chamber have improved signal to noise.

  3. Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation...

    Office of Scientific and Technical Information (OSTI)

    Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation through the Anisotropy Citation Details In-Document Search Title: Probing the Cosmic X-ray and MeV Gamma-ray ...

  4. Study of imaging plate detector sensitivity to 5-18 MeV electrons...

    Office of Scientific and Technical Information (OSTI)

    Study of imaging plate detector sensitivity to 5-18 MeV electrons Citation Details In-Document Search Title: Study of imaging plate detector sensitivity to 5-18 MeV electrons ...

  5. Near-Earth injection of MeV electrons associated with intense...

    Office of Scientific and Technical Information (OSTI)

    significant MeV electrons to radiation belts Correspondence to: L. Dai, ldai@spaceweather.ac.cn Citation: Dai, L., et al. (2015), Near-Earth injection of MeV electrons associated ...

  6. Polarization observables in deuteron photodisintegration below 360 MeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Glister, J.; Ron, G.; Lee, B. W.; Gilman, R.; Sarty, A. J.; Strauch, S.; Higinbotham, D. W.; Piasetzky, E.; Allada, K.; Armstrong, W.; et al

    2011-02-03

    We performed high precision measurements of induced and transferred recoil proton polarization in d(more » $$\\vec{γ}$$, $$\\vec{p}$$)n for photon energies of 277--357 MeV and θcm = 20 ° -- 120 °. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. Moreover, at the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.« less

  7. A Multigroup Library of Neutron and Gamma Cross Sections and Response Functions in the Energy Range up to 800 MeV.

    Energy Science and Technology Software Center (OSTI)

    1987-05-20

    Version 00 The energy range of the library, from thermal to 800 MeV is relevant to the solution of shielding, nuclear heating, and other radiation protection problems connected with the accelerator neutron sources e.g. spallation target. The data contains 10 elements of shielding and biological importance. They can be easily implemented to the neutron transport codes like ANISN and DOT by using the activity option.

  8. Upgrading the Linac 400 MeV Switchyard

    SciTech Connect (OSTI)

    Charles M Ankenbrandt et al.

    2004-06-09

    This note describes changes in the 400 MeV beam transfer system from the Linac to improve the quality of the beam delivered to the Booster and to add the capability to direct beam to the MuCool Test Area (MTA). The new configuration has two pairs of pulsed dipole magnets on each side of the 400 MeV electrostatic Chopper. The smaller pair deflects vertically to replace the kick of the Chopper to send the beam to the Booster while the larger pair deflects horizontally to transfer the beam to the MTA. In this new scheme, the Chopper is uncharged while the beam is injected into the Booster such that the injection position does not rely on Chopper power supply regulation as it does now. A feature of the proposed upgrade is that no changes in the lattice functions are required in the lines to the Booster or to the Dump; once the four new magnets are installed, the switch between the old and new operating modes can be done from upstairs. The transfer to the MTA is already described in a previous note.

  9. Angular distribution and recoil effect for 1 MeV Au+ ions through a Si3N4 thin foil

    SciTech Connect (OSTI)

    Jin, Ke; Zhu, Zihua; Manandhar, Sandeep; Liu, Jia; Chen, Chien-Hung; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai; Weber, William J; Zhang, Yanwen

    2014-01-01

    The Stopping and Range of Ions in Matter (SRIM) code has been widely used to predict nuclear stopping power and angular distribution of ion-solid collisions. However, experimental validation of the predictions is insufficient for slow heavy ions in nonmetallic compounds. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is applied to determine the angular distribution of 1 MeV Au ions after penetrating a Si3N4 foil with a thickness of ~100 nm. The exiting Au ions are collected by a Si wafer located ~14 mm behind the Si3N4 foil, and the resulting 2-dimensional distribution of Au ions on the Si wafer is measured by ToF-SIMS. The SRIM-predicted angular distribution of Au ions through the Si3N4 thin foil is compared with the measured results, indicating that SRIM slightly overestimates the nuclear stopping power by up to 10%. In addition, thickness reduction of the suspended Si3N4 foils induced by 1 MeV Au ion irradiation is observed with an average loss rate of ~107 atom/ion.

  10. Evaluated Nuclear Data

    SciTech Connect (OSTI)

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  11. The role of couplings in nuclear rainbow formation at energies far above the barrier

    SciTech Connect (OSTI)

    Pereira, D.; Linares, R.; and others

    2012-10-20

    A study of the {sup 16}O+{sup 28}Si elastic and inelastic scattering is presented in the framework of Coupled Channel theory. The Sao Paulo Potential is used in the angular distribution calculations and compared with the existing data at 75 MeV bombarding energy. A nuclear rainbow pattern is predicted and becomes more clear above 100 MeV.

  12. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parking Directions and Map The Duke University campus map shows the Duke Physics Building on Science Drive behind Duke Chapel. The former 4 MeV Van de Graaff accelerator laboratory in its basement is now the location of TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA). Graduates since 1965 will recall the tandem accelerator laboratory is located behind the Physics Building, but those who graduated before 1990 may not recognize a newer larger building behind the tandem lab which

  13. Uncertainty of silicon 1-MeV damage function

    SciTech Connect (OSTI)

    Danjaji, M.B.; Griffin, P.J.

    1997-02-01

    The electronics radiation hardness-testing community uses the ASTM E722-93 Standard Practice to define the energy dependence of the nonionizing neutron damage to silicon semiconductors. This neutron displacement damage response function is defined to be equal to the silicon displacement kerma as calculated from the ORNL Si cross-section evaluation. Experimental work has shown that observed damage ratios at various test facilities agree with the defined response function to within 5%. Here, a covariance matrix for the silicon 1-MeV neutron displacement damage function is developed. This uncertainty data will support the electronic radiation hardness-testing community and will permit silicon displacement damage sensors to be used in least squares spectrum adjustment codes.

  14. Near-earth injection of MeV electrons associated with intense...

    Office of Scientific and Technical Information (OSTI)

    Van Allen Probes observations Citation Details In-Document Search Title: Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen ...

  15. The (3He,tf) as a surrogate reaction to determine (n,f) cross sections in the 10 to 20 MeV energy range

    SciTech Connect (OSTI)

    Basunia, M. S.; Clark, R. M.; Goldblum, B. L.; Bernstein, L. A.; Phair, L.; Burke, J. T.; Beausang, C. W.; Bleuel, D. L.; Darakchieva, B.; Dietrich, F. S.; Evtimova, M.; Fallon, P.; Gibelin, J.; Hatarik, R.; Jewett, C. C.; Lesher, S. R.; McMahan, M. A.; Rodriguez-Vieitez, E.; Wiedeking, M.

    2009-02-25

    The surrogate reaction 238U(3He,tf) is used to determine the 237Np(n,f) cross section indirectly over an equivalent neutron energy range from 10 to 20 MeV. A self-supporting ~;;761 mu g/cm2 metallic 238U foil was bombarded with a 42 MeV 3He2+ beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Outgoing charged particles and fission fragments were identified using the Silicon Telescope Array for Reaction Studies (STARS), consists of two 140 mu m and one 1000 mu m Micron S2 type silicon detectors. The 237Np(n,f) cross sections, determined indirectly, were compared with the 237Np(n,f) cross section data from direct measurements, the Evaluated Nuclear Data File (ENDF/B-VII.0), and the Japanese Evaluated Nuclear Data Library (JENDL 3.3) and found to closely follow those datasets. Use of the (3He,tf) reaction as a surrogate to extract (n,f) cross section in the 10 to 20 MeV equivalent neutron energy is found to be suitable.

  16. Application of nuclear models to neutron nuclear cross section calculations

    SciTech Connect (OSTI)

    Young, P.G.

    1982-01-01

    Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

  17. {sup 25}Na and {sup 25}Mg fragmentation on {sup 12}C at 9.23 MeV per nucleon at TRIUMF

    SciTech Connect (OSTI)

    St-Onge, Patrick; Boisjoli, Mark; Fregeau, Marc-Olivier; Gauthier, Jerome; Wallace, Barton; Roy, Rene

    2012-10-20

    HERACLES is a multidetector that is used to study heavy-ion collisions, with ion beams with an energy range between 8 to 15 MeV per nucleon. It has 78 detectors axially distributed around the beam axis in 6 rings allowing detection of multiple charged fragments from nuclear reactions. HERACLES has 4 different types of detectors, BC408/BaF{sub 2} phoswich, Si/CsI(Tl) telescope, BC408/BC444 phoswich and CsI(Tl) detectors. The multidetector has been run with a radioactive {sup 25}Na beam and a stable {sup 25}Mg beam at 9.23 MeV per nucleon on a carbon target.

  18. Energy-dependent dynamics of keV to MeV electrons in the inner...

    Office of Scientific and Technical Information (OSTI)

    Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions Title: Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer ...

  19. Argonne to work with small businesses on nuclear technologies | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory You may also like Argonne to work with small businesses on nuclear technologies July 6, 2016 Argonne, NNSA collaborate with China to convert micro-reactor April 22, 2016 10 cool science and technology stories from Argonne in 2015 December 23, 2015 Nuclear engineer Stauff awarded for excellence in research and early-career leadership November 9, 2015 MeV Summer School prepares next-generation nuclear scientists September 15, 2015 Argonne to work with small businesses on

  20. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  1. Status of nuclear data for actinides

    SciTech Connect (OSTI)

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N.

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  2. Introducing Nuclear Data Evaluations of Prompt Fission Neutron Spectra

    SciTech Connect (OSTI)

    Neudecker, Denise

    2015-06-17

    Nuclear data evaluations provide recommended data sets for nuclear data applications such as reactor physics, stockpile stewardship or nuclear medicine. The evaluated data are often based on information from multiple experimental data sets and nuclear theory using statistical methods. Therefore, they are collaborative efforts of evaluators, theoreticians, experimentalists, benchmark experts, statisticians and application area scientists. In this talk, an introductions is given to the field of nuclear data evaluation at the specific example of a recent evaluation of the outgoing neutron energy spectrum emitted promptly after fission from 239Pu and induced by neutrons from thermal to 30 MeV.

  3. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. nuclear outages this summer were higher than in summer 2015

  4. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the

  5. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  6. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs...

    Office of Scientific and Technical Information (OSTI)

    irradiated AlGaNGaN HEMTs This content will become publicly available on August 26, 2016 Title: Degradation mechanisms of 2 MeV proton irradiated AlGaNGaN HEMTs Authors: ...

  7. Deflection of MeV electrons by self-generated magnetic fields...

    Office of Scientific and Technical Information (OSTI)

    in intense laser-solid interaction Citation Details In-Document Search Title: Deflection of MeV electrons by self-generated magnetic fields in intense laser-solid interaction ...

  8. 14 MeV neutron activation analysis of geological and lunar samples

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1981-04-01

    14 MeV neutron activation analysis (NAA) is ideal for accurately determining Oxygen and Silicon contents in geological and lunar materials. It is fast, nondestructive, economical, and can be used on a routine basis in a laboratory. Although 14 MeV NAA is particularly suited to light elements, its use has been extended to measure other elements as well such as Aluminum, Magnesium, Iron, Calcium, Titanium, Strontium, Nickel, Yttrium, Zirconium, Niobium and Cerium. Thus, the use of 14 MeV neutrons is of considerable importance in NAA. The disadvantages of the method are that interference reactions are common because of high neutron energy; the flux is nonuniform in longer irradiation due to depletion of the target in the neutron generator. Overall, 14 MeV NAA is ideal for short irradiations and when supplemented with thermal NAA provides the maximum elemental information in small aliquants of geological and lunar materials.

  9. Observations of gamma radiation between 0. 4 MeV and 7 MeV at balloon altitudes using a Compton telescope

    SciTech Connect (OSTI)

    Lockwood, J.A.; Webber, W.R.; Friling, L.A.; Macri, J.; Hsieh, L.

    1981-09-15

    Results are presented from a balloon flight at Palestine, Texas, in 1978 to measure the atmospheric and diffuse ..gamma..-ray flux in the energy range 0.4--7.0 MeV. The observations were made with a Compton telescope which included pulse-shape discrimination of the first scattering detector and a time-of-flight system between the first and second detector elements. The total downward ..gamma..-ray flux at 3.7 g cm/sup -2/ is given by the spectrum 3.1 x 10/sup -2/ x E/sup -1.74/ (photons cm/sup -2/ s/sup -1/ MeV/sup -1/ sr/sup -1/) for 0.5MeV. The diffuse flux is given by the spectrum (1.5 +- 0.5) x 10/sup -2/ E/sup -1.76/ (photons cm/sup -2/ s/sup -1/ MeV/sup -1/ sr/sup -1/) for 0.4 MeVMeV. Comparisons of the diffuse cosmic ..gamma..-ray flux to the atmospheric ..gamma..-rays indicate that 0.2 MeVMeV is the optimum energy range for measurements made at the top of the Earth's atmosphere. These results are discussed and compared to other observations.

  10. Potential nuclear safeguards applications for neutron generators

    SciTech Connect (OSTI)

    Lindquist, L.O.

    1980-01-01

    Many nuclear safeguards inspection instruments use neutron sources to interrogate the fissile material (commonly /sup 235/U and /sup 239/Pu) to be measured. The neutron sources currently used in these instruments are isotopics such as Californium-252, Americium-Lithium, etc. It is becoming increasingly more difficult to transport isotopic sources from one measurement location to another. This represents a significant problem for the International Atomic Energy Agency (IAEA) safeguards inspectors because they must take their safeguards instruments with them to each nuclear installation to make an independent measurement. Purpose of this paper is to review the possibility of replacing isotopic neutron sources now used in IAEA safeguards instruments with electric neutron sources such as deuterium-tritium (D-T, 14-MeV neutrons) or deuterium-deuterium (D-D, 2-MeV neutrons). The potential for neutron generators to interrogate spent-light water reactor fuel assemblies in storage pools is also reviewed.

  11. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal Submission| HIGS PAC| HIGS2| High Intensity Gamma-Ray Source (HIGS) is a Free-Electron Laser (FEL) based Compton backscattering gamma-ray source. The HIGS facility is located on the campus of Duke University and operated by Triangle Universities Nuclear Laboratory (TUNL). Currently, HIGS can produce gamma rays between 2 and 100 MeV with linear and circular polarizations. Total gamma-ray intensities can reach over 1 billion photons/second at some energies with few percent energy

  12. Nuclear Data Sheets for A = 230

    SciTech Connect (OSTI)

    Browne, E.; Tuli, J. K.

    2012-09-01

    The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reactions for all isobars with mass number A=230. This evaluation includes the first experimental evidence of 230Am, produced through the 197Au(40Ar,3n)234Bk (α decay to 230Am) reaction, E(40Ar)=188.4 MeV (2003MoZX).

  13. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; et al

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-Kα and Kβ x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed tomore » x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less

  14. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    SciTech Connect (OSTI)

    Rojas-Herrera, J. Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2015-03-15

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K{sub α} and K{sub β} x-rays. The CR-39 detectors were then exposed to 1–5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.

  15. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    SciTech Connect (OSTI)

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-Kα and Kβ x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.

  16. Impact of x-ray dose on the response of CR-39 to 15.5 MeV alphas

    SciTech Connect (OSTI)

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics #12;fielded at inertial con#12;nement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K?#11; and K#12;? x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0#6; 0.1 Gy causes a decrease of (19 #6;2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 #6;1.3 Gy results in a decrease of (45 #6;5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual eff#11;ect depending on alpha particle energy is characterized using an empirical formula.

  17. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  18. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  19. Nuclear data for basic and applied science. Volume 1

    SciTech Connect (OSTI)

    Young, P.G.; Brown, R.E.; Auchampaugh, G.F.; Lisowski, P.W.; Stewart, L.

    1985-01-01

    This book presents the papers given at a conference on nuclear data for basic and applied science. Topics considered included: nuclear data needs for fusion reactors; fast-neutron interaction with niobium; neutronic analysis of fusion-fusion (hybrid) blankets; measurements of 14 MeV neutron activation cross sections; recent experimental data on sub-barrier fission of light actinides; and intermediate structure in the fission cross sections of the even curium isotopes.

  20. Detection of Actinides via Nuclear Isomer De-Excitation

    SciTech Connect (OSTI)

    Francy, Christopher J.

    2009-07-22

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  1. Nuclear Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  2. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  3. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  4. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data ...

  5. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear science nuclear chemistry Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line

  6. Operation of the APEX photoinjector accelerator at 40 MeV

    SciTech Connect (OSTI)

    Feldman, D.W.; Bender, S.C.; Byrd, D.A.; Carlsten, B.E.; Early, J.W.; Feldman, R.B.; Goldstein, J.C.; Martineau, R.L.; O'Shea, P.G.; Pitcher, E.J.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.

    1992-01-01

    We have successfully operated the photoinjector and rf linear accelerator for the Los Alamos APEX free electron laser (FEL) at design energy, average macropulse current, and emittance. The accelerator, which operates at 1.3 GHz, consists of a 6 MeV photoinjector and three standing-wave structures with a total beam energy of 40 MeV. This paper presents performance characteristics of the APEX system. The results show that this technology is capable of providing reliable, high-peak current, ultra-high brightness electron beams.

  7. Operation of the APEX photoinjector accelerator at 40 MeV

    SciTech Connect (OSTI)

    Feldman, D.W.; Bender, S.C.; Byrd, D.A.; Carlsten, B.E.; Early, J.W.; Feldman, R.B.; Goldstein, J.C.; Martineau, R.L.; O`Shea, P.G.; Pitcher, E.J.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.

    1992-09-01

    We have successfully operated the photoinjector and rf linear accelerator for the Los Alamos APEX free electron laser (FEL) at design energy, average macropulse current, and emittance. The accelerator, which operates at 1.3 GHz, consists of a 6 MeV photoinjector and three standing-wave structures with a total beam energy of 40 MeV. This paper presents performance characteristics of the APEX system. The results show that this technology is capable of providing reliable, high-peak current, ultra-high brightness electron beams.

  8. MeV ion loss during sup 3 He minority heating in TFTR

    SciTech Connect (OSTI)

    Zweben, S.J.; Hammett, G.; Boivin, R.; Phillips, C.; Wilson, R.

    1992-01-01

    The loss of MeV ions during {sup 3}He ICRH minority heating experiments has been measured using scintillator detectors near the wall of TFTR. The observed MeV ion losses to the bottom (90{degrees} poloidal) detector are generally consistent with the expected first-orbit loss of D-{sup 3}He alpha particle fusion products, with an inferred global reaction rate up to {approx}10{sup 16} reactions/sec. A qualitatively similar but unexpectedly large loss occurs 45{degrees} poloidally below the outer midplane. This additional loss might be due to ICRH tail ions or to ICRH wave-induced loss of previously confined fusion products.

  9. MeV ion loss during {sup 3}He minority heating in TFTR

    SciTech Connect (OSTI)

    Zweben, S.J.; Hammett, G.; Boivin, R.; Phillips, C.; Wilson, R.

    1992-01-01

    The loss of MeV ions during {sup 3}He ICRH minority heating experiments has been measured using scintillator detectors near the wall of TFTR. The observed MeV ion losses to the bottom (90{degrees} poloidal) detector are generally consistent with the expected first-orbit loss of D-{sup 3}He alpha particle fusion products, with an inferred global reaction rate up to {approx}10{sup 16} reactions/sec. A qualitatively similar but unexpectedly large loss occurs 45{degrees} poloidally below the outer midplane. This additional loss might be due to ICRH tail ions or to ICRH wave-induced loss of previously confined fusion products.

  10. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Nuclear Energy Nuclear Energy Tara Camacho-Lopez 2016-06-29T14:02:38+00:00 Contributing to the Next Generation of Nuclear Power Generation Our nuclear energy and fuel cycle technologies supports the safe, secure, reliable, and sustainable use of nuclear power worldwide through strengths in repository science, nonproliferation, safety and security, transportation, modeling, and system demonstrations. Areas of Expertise Defense Waste Management Sandia advises the U.S. Department

  11. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  12. {sup 48}Ti(n,xnpa{gamma}) reaction cross sections using spallation neutrons for E{sub n} = 1 to 20 MeV

    SciTech Connect (OSTI)

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Cooper, J R; Hoffman, R D; Younes, W; Devlin, N; Fotiades, N; Nelson, R O

    2005-01-06

    {gamma}-ray excitation functions have been measured for the interaction of fast neutrons with {sup 48}Ti (neutron energy from 1 MeV to 250 MeV). The Los Alamos National Laboratory spallation neutron source, at the LANSCE/WNR facility, provided a ''white'' neutron beam which is produced by bombarding a natural W target with a pulsed proton beam. The prompt-reaction {gamma} rays were measured with the large-scale Compton-suppressed Ge spectrometer, GEANIE. Neutron energies were determined by the time-of-flight technique. Excitation functions were converted to partial {gamma}-ray cross sections, taking into account the dead-time correction, the target thickness, the detector efficiency, and neutron flux (monitored with an in-line fission chamber). The data analysis is presented here for neutron energies between 1 to 20 MeV. Partial {gamma}-ray cross sections for transitions in {sup 47,48}Ti, {sup 48}Sc, and {sup 45}Ca have been determined. These results are compared to Hauser-Feshbach predictions calculated using the STAPRE code, which includes compound nuclear and pre-equilibrium emission. The partial cross sections for {gamma} rays, whose discrete {gamma}-ray cascade path leads to the ground state in {sup 48}Ti, {sup 47}Ti, {sup 48}Sc, and {sup 45}Ca have been summed to obtain estimates of the lower limits for reaction cross sections. Partial cross sections for unobserved {gamma}-rays are predicted from the STAPRE code. These lower limits are combined with Hauser-Feshbach calculations to deduce {sup 48}Ti(n,n'){sup 48}Ti, {sup 48}Ti(n,2n){sup 47}Ti, {sup 48}Ti(n,p){sup 48}Sc, and {sup 48}Ti(n,{alpha}){sup 45}Ca reaction channel cross sections.

  13. Residual Nuclei Production in the reaction {sup 136}Xe+ deuterium at 500 A MeV

    SciTech Connect (OSTI)

    Alcantara-Nunez, J. A.; Benlliure, J.; Perez-Loureiro, D.; Casarejos, E.; Fernandez Ordonez, M.; Pereira, J.; Armbruster, P.; Enqvist, T.; Henzl, V.; Henzlova, D.; Kelic, A.; Pleskac, R.; Ricciardi, M. V.; Schmidt, K.-H.; Schmitt, C.; Yordanov, O.; Audouin, L.; Bernas, M.; Lafriaskh, A.; Stephan, C.

    2010-04-26

    More than six hundred nuclei produced in the fragmentation of {sup 136}Xe projectiles at 500 A MeV on a liquid deuterium target were identified using inverse kinematics at the GSI Fragment Separator (FRS). These data are relevant for understanding of spallation reactions.

  14. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  15. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect (OSTI)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N.; Edwards, R.; Aedy, C.; Mastrosimone, D.; Pien, G.; Stoeckl, C.

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)

  16. Nuclear Navy

    SciTech Connect (OSTI)

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  17. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; et al

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front.more » Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less

  18. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    SciTech Connect (OSTI)

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; Li, Xinlin; Malaspina, David; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew L.; Reeves, Geoffrey D.; Funsten, Herbert O.; Spence, Harlan E.; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

  19. A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos

    SciTech Connect (OSTI)

    Bernal, Nicols; Martn-Albo, Justo; Palomares-Ruiz, Sergio E-mail: justo.martin-albo@ific.uv.es

    2013-08-01

    Annihilation of dark matter particles accumulated in the Sun would produce a flux of high-energy neutrinos whose prospects of detection in neutrino telescopes and detectors have been extensively discussed in the literature. However, for annihilations into Standard Model particles, there would also be a flux of neutrinos in the MeV range from the decays at rest of muons and positively charged pions. These low-energy neutrinos have never been considered before and they open the possibility to also constrain dark matter annihilation in the Sun into e{sup +}e{sup ?}, ?{sup +}?{sup ?} or light quarks. Here we perform a detailed analysis using the recent Super-Kamiokande data in the few tens of MeV range to set limits on the WIMP-nucleon scattering cross section for different annihilation channels and computing the evaporation rate of WIMPs from the Sun for all values of the scattering cross section in a consistent way.

  20. Deuteron scattering on {sup 6}Li at an energy of 25 MeV

    SciTech Connect (OSTI)

    Burtebayev, N.; Artemov, S. V.; Duisebayev, B. A.; Kerimkulov, Zh. K.; Kuranov, S. B.; Sakuta, S. B.

    2010-05-15

    At an energy of 25 MeV and in the angular range 7{sup o}-175{sup o} in the laboratory frame, angular distributions were measured for elastic deuteron scattering on {sup 6}Li nuclei and for the respective inelastic-scattering processes accompanied by the transitions to the ground state (1+) of the {sup 6}Li nucleus and to its excited state at E{sub x} = 2.186 MeV (J{sup {pi}} = 3{sup +}). The resulting data were analyzed on the basis of the optical model of the nucleus and the coupled-reaction-channel method with allowance for the mechanism of alpha-particle-cluster exchange. It is shown that only upon including, in the analysis, channel coupling and the exchange mechanism can the experimental cross sections for elastic and inelastic scattering be reproduced over the entire range of angles.

  1. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect (OSTI)

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  2. STATUS OF NEW 2.5 MEV TEST FACILITY AT SNS

    SciTech Connect (OSTI)

    Aleksandrov, Alexander V; Champion, Mark; Crofford, Mark T; Kang, Yoon W; Menshov, Alexander A; Roseberry, Jr., R Tom; Stockli, Martin P; Webster, Anthony W; Welton, Robert F; Zhukov, Alexander P

    2014-01-01

    A new 2.5MeV beam test facility is being built at SNS. It consists of a 65 keV H- ion source, a 2.5MeV RFQ, a beam line with various beam diagnostics and a 6 kW beam dump. The facility is capable of producing one-ms-long pulses at 60Hz repetition rate with up to 50mA peak current. The commissioning with reduced average beam power is planned for fall 2014 to verify operation of all systems. The full power operation is scheduled to begin in 2015. The status of the facility will be presented as well as a discussion of the future R&D program.

  3. Performance of the APEX 40-MeV photoinjector-driven linear accelerator

    SciTech Connect (OSTI)

    O'Shea, P.G.; Bender, S.C.; Calsten, B.E.; Early, J.W.; Feldman, D.W.; Feldman, R.B.; McKenna, K.F.; Martineau, R.L.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J. )

    1992-07-01

    Since the mid-1980s, Scientists at Los Alamos National Laboratory have been developing photocathode rf guns for high-brightness electron-beam applications, such as free-electron lasers (FELs). The technology has matured to the point where we now have a routinely operating 40-MeV linac and FEL that uses a a photocathode as its electron source. In this paper, we describe the APEX accelerator's performance, with an emphasis on the photocathode's unique features.

  4. Measurement and analysis of gamma-rays emitted from spent nuclear fuel above 3 MeV

    SciTech Connect (OSTI)

    Rodriguez, Douglas C.; Anderson, Elaina R.; Anderson, Kevin K.; Campbell, Luke W.; Fast, James E.; Jarman, Kenneth D.; Kulisek, Jonathan A.; Orton, Christopher R.; Runkle, Robert C.; Stave, Sean

    2013-08-28

    The Next Generation Safeguard Initiative (NGSI) includes an effort to determine the mass content of fissile isotopes contained within spent fuel through the spectroscopy of high-energy delayed gamma rays. Studies being performed indicate the primary difficulty is the ability to detect the desired signal in the presence of the intense background associated with spent fuel fission products. An enabling technology for this application is high-resolution high-purity germanium (HPGe) detectors capable of operating efficiently in at extremely high count rates. This presentation will describe the prospects of high-rate germanium detectors and delayed-gamma techniques, primarily discussing the efforts to merge these into a unique and viable system for measuring spent fuel.

  5. Studying Nuclear Astrophysics at NIF

    SciTech Connect (OSTI)

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on

  6. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad approach to different, but related, scientific

  7. Nuclear Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Nuclear Security Centers of Excellence: Fact Sheet March 23, 2012 "We [the Participating States]... Acknowledge the need for capacity building for nuclear security and cooperation at bilateral, regional and multilateral levels for the promotion of nuclear security culture through technology development, human resource development, education, and training; and stress the importance of optimizing international cooperation and coordination of

  8. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  9. NUCLEAR ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY RESEARCH AND DEVELOPMENT ROADMAP Table of Contents List of Acronyms ................................................................................................... iii Executive Summary ............................................................................................... v 1. Introduction ...................................................................................................... 1 2. Background

  10. nuclear smuggling

    National Nuclear Security Administration (NNSA)

    13, 2015

    SHANGHAI, CHINA - Today, the Nuclear Security Administration's (NNSA) Principal Assistant Deputy Administrator for Defense...

  11. nuclear material

    National Nuclear Security Administration (NNSA)

    width"300" >WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction...

  12. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  13. nuclear controls

    National Nuclear Security Administration (NNSA)

    which "international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and...

  14. nuclear forensics

    National Nuclear Security Administration (NNSA)

    serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to...

  15. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect (OSTI)

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  16. Nuclear Reactions Induced by a Pyroelectric Accelerator

    SciTech Connect (OSTI)

    Geuther, Jeffrey; Danon, Yaron; Saglime, Frank

    2006-02-10

    This work demonstrates the use of pyroelectric crystals to induce nuclear reactions. A system based on a pair of pyroelectric crystals is used to ionize gas and accelerate the ions to energies of up to 200 keV. The system operates above room temperature by simply heating or cooling the pyroelectric crystals. A D-D fusion reaction was achieved with this technique, and 2.5 MeV neutrons were detected. The measured neutron yield is in good agreement with the calculated yield. This work also verifies the results published by Naranjo, Gimzewski, and Putterman [Nature (London) 434, 1115 (2005)].

  17. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 ...

  18. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Myths Topics: Can a Nuclear Reactor Explode Like a Bomb? Will Nuclear Waste Be Around for Millions of Years? Is Nuclear Energy Dangerous? Moderator: Suzy Hobbs ...

  19. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  20. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, ...

  1. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, International ...

  2. nuclear | National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (NNSA)

    nuclear Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact ...

  3. Chernobyl Nuclear Accident | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Chernobyl Nuclear Accident Chernobyl Nuclear Accident Chernobyl, Ukraine A catastrophic nuclear accident occurs at Chernobyl Reactor 4 in the then Soviet Republic of Ukraine

  4. Nuclear Nonproliferation Program Offices | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... and monitor nuclear weapons production, proliferation, and nuclear explosions worldwide. ...

  5. Analysis of gamma-ray spectra from foils activated in a range-thick lead target by 800-MeV protons. Final technical report

    SciTech Connect (OSTI)

    Laird, C.E.; Mullins, D.H.

    1995-06-12

    Approximately 400 gamma-ray spectra have been analyzed to obtain the types and quantities of radioisotopes produced when 800-MeV protons interact with a range-thick lead target. These spectra were obtained from the radioactive decay of product isotopes in lead disks placed at various depths and radial positions within the target. These spectra were analyzed with the computer code HYPERMET and the photopeak areas were reduced to nuclei produced per incident proton per cubic centimeter of material. Product nuclei ranged from atomic mass 160 to mass 206 and over a range of half lives from a few minutes to several weeks. The results of this analysis have been outlined in this report and transmitted on computer disk to Los Alamos National Laboratory. The consistency of these analyses have been confirmed by a comparison of photopeak areas obtained at LANL with the computer code GAMANAL with those from HYPERMET for two gamma-ray spectra. Also, the nuclear production per proton per cm{sub 3} obtained from these two spectra analyzed both at LANL and at EKU have been found to agree to within the statistical accuracy of the peak-fitting programs. This analysis of these 400 gamma-ray spectra has determined the nuclear production per incident proton per cm{sub 3} at five regularly-spaced radial positions and depths up to 40 cm into a range-thick lead target.

  6. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; et al

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  7. Sensitivity of silicon 1-MeV damage function to cross-section evaluation

    SciTech Connect (OSTI)

    Griffin, P.J.; Danjaji, M.B.

    1995-12-31

    The electronics radiation hardness-testing community uses the American Society for Testing and Materials (ASTM) E722-93 Standard Practice to define the energy dependence of the nonionizing neutron damage to silicon semiconductors. This neutron displacement damage response function is defined to be equal to the silicon displacement kerma. An Oak Ridge National Laboratory (ORNL) {sup 28}Si cross-section evaluation and the NJOY code are used to define the standard response function to be used in reporting 1-MeV (silicon) neutron damage and in determining neutron damage equivalence between test facilities. This paper provides information for the precision and bias section of the E722 standard.

  8. Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ

    SciTech Connect (OSTI)

    Smith, H.V. Jr.; Bolme, G.O.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.; Zaugg, T.J.

    1998-12-31

    The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current.

  9. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  10. (n,2n) and (n,3n) cross sections of neutron-induced reactions on 150Sm for En from threshold to 35 MeV

    SciTech Connect (OSTI)

    Dashdorj, D; Mitchell, G; Kawano, T; Becker, J; Wu, C; Devlin, M; Fotiades, N; Nelson, R; Kunieda, S

    2009-03-16

    Cross-section measurements were made of prompt discrete {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 35 MeV) on a {sup 150}Sm sample fo 1550 mg/cm{sup 2} of Sm{sub 2}O{sub 3} enriched to 95.6% in {sup 150}Sm. Results are compared with enhanced Hauser-Feshbach model calculations including the pre-equilibrium reactions. Energetic neutrons were delivered by the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Incident neutron energies were determined by the time-of-flight technique. Excitation functions for thirteen individual {gamma}-rays up to E{sub x} = 0.8 MeV in {sup 149}Sm and one {gamma}-ray transition between the first excited and ground state in {sup 148}Sm were measured. Partial {gamma}-ray cross sections were calculated using GNASH, an enhanced Hauser-Feshbach statistical nuclear reaction model code, and compared with the experimental results. The particle transmission coefficients were calculated with new systematic 'global' optical model potential parameters. The coupled-channel optical model based on the soft rotor model was employed to calculate the particle transmission coefficients. The pre-equilibrium part of the spin distribution in {sup 150}Sm was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK) and incorporated into the GNASH reaction model code. the partial cross sections for discrete {gamma}-ray cascade paths leading to the ground state in {sup 149}Sm and {sup 148}Sm have been summed (without double counting) to estimate lower limits for reaction cross sections. These lower limits are combined with Hauser-Feshbach model calculations to deduce the reaction channel cross sections. These reaction channel cross sections agree with previously measured experimental and ENDF/B-VII evaluations.

  11. Phase structure in a chiral model of nuclear matter

    SciTech Connect (OSTI)

    Phat, Tran Huu; Anh, Nguyen Tuan; Tam, Dinh Thanh

    2011-08-15

    The phase structure of symmetric nuclear matter in the extended Nambu-Jona-Lasinio (ENJL) model is studied by means of the effective potential in the one-loop approximation. It is found that chiral symmetry gets restored at high nuclear density and a typical first-order phase transition of the liquid-gas transition occurs at zero temperature, T=0, which weakens as T grows and eventually ends up with a second-order critical point at T=20 MeV. This phase transition scenario is confirmed by investigating the evolution of the effective potential versus the effective nucleon mass and the equation of state.

  12. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  13. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  14. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  15. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy

    Page...

  16. Nuclear option

    SciTech Connect (OSTI)

    Olson, P.S.

    1983-03-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.

  17. Lithography with MeV Energy Ions for Biomedical Applications: Accelerator Considerations

    SciTech Connect (OSTI)

    Sangyuenyongpipat, S.; Whitlow, H. J.; Nakagawa, S. T.; Yoshida, E.

    2009-03-10

    MeV ion beam lithographies are very powerful techniques for 3D direct writing in positive or negative photoresist materials. Nanometer-scale rough structures, or clear areas with straight vertical sidewalls as thin as a few 10's of nm in a resist of a few nm to 100 {mu}m thickness can be made. These capabilities are particularly useful for lithography in cellular- and sub-cellular level biomedical research and technology applications. It can be used for tailor making special structures such as optical waveguides, biosensors, DNA sorters, spotting plates, systems for DNA, protein and cell separation, special cell-growth substrates and microfluidic lab-on-a-chip devices. Furthermore MeV ion beam lithography can be used for rapid prototyping, and also making master stamps and moulds for mass production by hot embossing and nanoimprint lithography. The accelerator requirements for three different high energy ion beam lithography techniques are overviewed. We consider the special requirements placed on the accelerator and how this is achieved for a commercial proton beam writing tool.

  18. Neutron-deuteron analyzing power data at 19.0 MeV

    SciTech Connect (OSTI)

    Weisel, G. J.; Tornow, W.; Crowe, B. J. III; Crowell, A. S.; Esterline, J. H.; Howell, C. R.; Kelley, J. H.; Macri, R. A.; Pedroni, R. S.; Walter, R. L.; Witala, H.

    2010-02-15

    Measurements of neutron-deuteron (n-d) analyzing power A{sub y}(theta) at E{sub n}=19.0 MeV are reported at 16 angles from theta{sub c.m.}=46.7 to 152.0 deg. The objective of the experiment is to better characterize the discrepancies between n-d data and the predictions of three-nucleon calculations for neutron energies above 16.0 MeV. The experiment used a shielded neutron source, which produced polarized neutrons via the {sup 2}H(d-vector,n-vector){sup 3}He reaction, a deuterated liquid scintillator center detector (CD) and liquid-scintillator neutron side detectors. A coincidence between the CD and the side detectors isolated the elastic-scattering events. The CD pulse height spectrum associated with each side detector was sorted by using pulse-shape discrimination, time-of-flight techniques, and by removing accidental coincidences. A Monte Carlo computer simulation of the experiment accounted for effects due to finite geometry, multiple scattering, and CD edge effects. The resulting high-precision data (with absolute uncertainties ranging from 0.0022 to 0.0132) have a somewhat lower discrepancy with the predictions of three-body calculations, as compared to those found at lower energies.

  19. Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation

    SciTech Connect (OSTI)

    Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.

    1997-10-01

    We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO{sub 3} crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO{sub 3} sample produced at five times less fluence is on average two times greater than that of the reference.

  20. Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  1. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  2. Electroweak nuclear response at moderate momentum transfer

    SciTech Connect (OSTI)

    Ankowski, Artur M.; Benhar, Omar

    2011-05-15

    We discuss the convergence of the expansion of the nuclear electroweak current in powers of |k|/M, where M is the nucleon mass and k denotes either the momentum transfer or the momentum of the struck nucleon. We have computed the electron and neutrino scattering cross sections off uniform nuclear matter at equilibrium density using correlated wave functions and the cluster expansion formalism. The results of our work suggest that the proposed approach provides accurate estimates of the measured electron scattering cross sections. On the other hand, the description of the current based on the widely used leading-order approximation does not appear to be adequate, even at momentum transfer as low as 300 MeV.

  3. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  4. Radiation protection measurements around a 12 MeV mobile dedicated IORT accelerator

    SciTech Connect (OSTI)

    Soriani, Antonella; Felici, Giuseppe; Fantini, Mario; Paolucci, Massimiliano; Borla, Oscar; Evangelisti, Giovanna; Benassi, Marcello; Strigari, Lidia

    2010-03-15

    Purpose: The aim of this study is to investigate radioprotection issues that must be addressed when dedicated accelerators for intraoperative radiotherapy (IORT) are used in operating rooms. Recently, a new version of a mobile IORT accelerator (LIAC Sordina SpA, Italy) with 12 MeV electron beam has been implemented. This energy is necessary in some specific pathology treatments to allow a better coverage of thick lesions. At an electron energy of 10 MeV, leakage and scattered x-ray radiation (stray radiation) coming from the accelerator device and patient must be considered. If the energy is greater than 10 MeV, the x-ray component will increase; however, the most meaningful change should be the addition of neutron background. Therefore, radiation exposure of personnel during the IORT procedure needs to be carefully evaluated. Methods: In this study, stray x-ray radiation was measured and characterized in a series of spherical projections by means of an ion chamber survey meter. To simulate the patient during all measurements, a polymethylmethacrylate (PMMA) slab phantom with volume 30x30x15 cm{sup 3} and density 1.19 g/cm{sup 3} was used. The PMMA phantom was placed along the central axis of the beam in order to absorb the electron beams and the tenth value layer (TVL) and half value layer (HVL) of scattered radiation (at 0 deg., 90 deg., and 180 deg. scattering angles) were also measured at 1 m of distance from the phantom center. Neutron measurements were performed using passive bubble dosimeters and a neutron probe, specially designed to evaluate ambient dose equivalent H{sup *}(10). Results: The x-ray equivalent dose measured at 1 m along the beam axis at 12 MeV was 260 {mu}Sv/Gy. The value measured at 1 m at 90 deg. scattering angle was 25 {mu}Sv/Gy. The HVL and TVL values were 1.1 and 3.5 cm of lead at 0 deg., and 0.4 and 1 cm at 90 deg., respectively. The highest equivalent dose of fast neutrons was found to be at the surface of the phantom on the central

  5. Results of LEBT/MEBT reconfiguration at BNL 200 MeV LINAC

    SciTech Connect (OSTI)

    Raparia,D.; Alessi, J.; Briscoe, B.; Fite, J.; Gould, O.; Kponou, A.; Lo Destro, V.; Okamura, M.; Ritter, J.

    2009-05-04

    The low energy (35 keV) and medium energy (750 keV) transport lines for both polarized and unpolarized H{sup -} have been reconfigured to reduce the beam emittance and beam losses out of the 200 MeV Linac. The medium energy line in the original layout was 7 m long, and had ten quadrupoles, two beam choppers, and three bunchers. The bunchers were necessary to keep the beam bunched at the entrance of the Linac. About 35% beam loss occurred, and the emittance growth was several fold. In the new layout, the 750 keV line is only 0.7 m long, with three quads and one buncher. We will present the experimental result of the upgrade.

  6. Diagnostic experiments at a 3 MeV test stand at Rutherford Appleton Laboratory (United Kingdom)

    SciTech Connect (OSTI)

    Gabor, C.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Lee, D. A.; Pozimski, J. K.

    2010-02-15

    A front end is currently under construction consisting of a H{sup -} Penning ion source (65 keV, 60 mA), low energy beam transport (LEBT), and radio frequency quadrupole (3 MeV output energy) with a medium energy beam transport suitable for high power proton applications. Diagnostics can be divided either in destructive techniques such as beam profile monitor, pepperpot, slit-slit emittance scanner (preferably used during commissioning) or nondestructive, permanently installed devices such as photodetachment-based techniques. Another way to determine beam distributions is a scintillator with charge-coupled device camera. First experiments have been performed to control the beam injection into the LEBT. The influence of beam parameters such as particle energy and space-charge compensation on the two-dimensional distribution and profiles will be presented.

  7. Forward-angle neutron-proton scattering at 96 MeV

    SciTech Connect (OSTI)

    Johansson, C.; Blomgren, J.; Atac, A.; Bergenwall, B.; Hildebrand, A.; Klug, J.; Mermod, P.; Pomp, S.; Oesterlund, M.; Dangtip, S.; Tippawan, U.; Elmgren, K.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.

    2005-02-01

    The differential np scattering cross section has been measured at 96 MeV in the angular range {theta}{sub c.m.}=20 deg. -76 deg. Together with an earlier data set at the same energy, covering the angles {theta}{sub c.m.}=74 deg. -180 deg., a new data set has been formed in the angular range {theta}{sub c.m.}=20 deg. - 180 deg. This extended data set has been normalized to the experimental total np cross section, resulting in a renormalization of the earlier data of 0.7%, which is well within the reported normalization uncertainty for that experiment. A novel normalization technique has been investigated. The results on forward np scattering are in reasonable agreement with theory models and partial wave analyses and have been compared with data from the literature.

  8. Light-ion production in the interaction of 96 MeV neutrons with carbon

    SciTech Connect (OSTI)

    Tippawan, U.; Dangtip, S.; Pomp, S.; Blomgren, J.; Gustavsson, C.; Klug, J.; Oesterlund, M.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.; Jonsson, O.; Prokofiev, A. V.; Renberg, P.-U.; Corcalciuc, V.; Watanabe, Y.; Koning, A. J.

    2009-06-15

    Double-differential cross sections for light-ion (p, d, t, {sup 3}He, and {alpha}) production in carbon induced by 96 MeV neutrons have been measured at eight laboratory angles from 20 deg. to 160 deg. in steps of 20 deg. Experimental techniques are presented as well as procedures for data taking and data reduction. Deduced energy-differential, angle-differential, and production cross sections are reported. Experimental cross sections are compared with theoretical reaction model calculations and experimental data in the literature. The measured particle data show marked discrepancies from the results of the model calculations in spectral shape and magnitude. The measured production cross sections for protons, deuterons, tritons, {sup 3}He, and {alpha} particles support the trends suggested by data at lower energies.

  9. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    SciTech Connect (OSTI)

    Tippawan, U.; Pomp, S.; Atac, A.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Bergenwall, B.; Nilsson, L.; Olsson, N.; Prokofiev, A.V.; Nadel-Turonski, P.; Corcalciuc, V.; Koning, A.J.

    2006-03-15

    Double-differential cross sections are reported for light-ion (p, d, t, {sup 3}He, and {alpha}) production in oxygen induced by 96 MeV neutrons. Energy spectra are measured at eight laboratory angles from 20 degree sign to 160 degree sign in steps of 20 degree sign . Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons, and {alpha} particles support the trends suggested by data at lower energies.

  10. Nuclear pursuits

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  11. Measurement of np elastic scattering spin-spin correlation parameters at 484, 634, and 788 MeV

    SciTech Connect (OSTI)

    Garnett, R.W.

    1989-03-01

    The spin-spin correlation parameters C/sub LL/ and C/sub SL/ were measured for np elastic scattering at the incident neutron kinetic energy of 634 MeV. Good agreement was obtained with previously measured data. Additionally, the first measurement of the correlation parameter C/sub SS/ was made at the three energies, 484, 634, and 788 MeV. It was found that the new values, in general, do not agree well with phase shift predictions. A study was carried out to determine which of the isospin-0 partial waves will be affected by this new data. It was found that the /sup 1/P/sub 1/ partial wave will be affected significantly at all three measurement energies. At 634 and 788 MeV, the /sup 3/S/sub 1/ phase shifts will also change. 29 refs., 21 figs., 16 tabs.

  12. Nuclear Controls | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Controls Challenge: Detect/deter illicit transfers of nuclear/dual-use materials, technology, and commodities. Solution: Build domestic and international capacity to implement and meet export control obligations. Related Topics international security international security policy NIS nuclear controls safeguards safeguards and security verification Related News Nuclear Verification International Nuclear Safeguards Nonproliferation Policy Nonproliferation and Arms Control NIS

  13. Nuclear Verification | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements, implement regimes to reduce nuclear weapons, and detect and dismantle undeclared nuclear programs. Specific subprogram activities include: Implementing current and developing future

  14. nuclear controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    controls Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  15. Defense Nuclear Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Facility NNSA's safety office accredited and recognized for leadership in safe operation of defense nuclear facilities Part of NNSA's commitment to maintaining the nation's safe, secure, and effective nuclear deterrent are relentlessly high standards for technically capable nuclear enterprise personnel qualifications for all aspects of Defense Nuclear Facility operations. In December 2015, the Department of Energy

  16. Search for the giant pairing vibration through (p,t) reactions around 50 and 60 MeV

    SciTech Connect (OSTI)

    Mouginot, B.; Khan, E.; Azaiez, F.; Franchoo, S.; Ramus, A.; Scarpaci, J. A.; Stefan, I.; Neveling, R.; Buthelezi, E. Z.; Foertsch, S. V.; Smit, F. D.; Fujita, H.; Usman, I.; Mabiala, J.; Mira, J. P.; Swartz, J. A.; Papka, P.

    2011-03-15

    The existence of the giant pairing vibration (GPV) in {sup 120}Sn and {sup 208}Pb was investigated using the (p,t) reaction at incident proton energies of 50 MeV and 60 MeV for the scattering angles 0 deg. and 7 deg. No clear signature for the GPV was found, providing an upper limit for the cross section of {sigma}{sub max} = 0.2 mb. Theoretical interpretations for the low cross section of the GPV are discussed.

  17. Response of LaBr{sub 3}(Ce) scintillators to 2.5 MeV fusion neutrons

    SciTech Connect (OSTI)

    Cazzaniga, C.; Nocente, M.; Gorini, G.; Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Via Roberto Cozzi 53, Milano 20125 ; Tardocchi, M.; Croci, G.; Giacomelli, L.; Angelone, M.; Pillon, M.; Villari, S.; Weller, A.; Petrizzi, L.; Collaboration: ASDEX Upgrade Team; JET-EFDA Contributors

    2013-12-15

    Measurements of the response of LaBr{sub 3}(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on {sup 79}Br, {sup 81}Br, and {sup 139}La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of ?-ray diagnostics of fusion burning plasmas.

  18. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  19. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Impact Topics: Today's & Tomorrow's New Nuclear Energy Construction & the Workforce Outlook Current New Nuclear Energy Construction Projects Small Modular...

  20. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Starr, C.

    1963-01-01

    This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

  1. Partial-wave analysis of elastic {sup 4}He{sup 4}He scattering in the energy range 40-50 MeV

    SciTech Connect (OSTI)

    Dubovichenko, S. B.

    2008-01-15

    A partial-wave analysis of elastic {sup 4}He{sup 4}He scattering is performed in the energy range 40-50 MeV.

  2. Defense Nuclear Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Nonproliferation NNSA Announces Elimination of Highly Enriched Uranium (HEU) from Indonesia All of Southeast Asia Now HEU-Free (WASHINGTON, D.C.) - The U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA), Indonesian Nuclear Industry, LLC (PT INUKI), the National Nuclear Energy Agency (BATAN), and the Nuclear Energy Regulatory Agency (BAPETEN) of the... NNSA program strengthens national security from afar The Nuclear Smuggling Detection and Deterrence

  3. Nuclear Forensics | National Nuclear Security Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy ...

  4. Nuclear Security Enterprise | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Our Programs Defense Programs Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective ...

  5. Nuclear Verification | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: ...

  6. Nuclear Suppliers Group & Regimes | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency ...

  7. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Controls | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  8. Nuclear structure and nuclear reactions | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear structure and nuclear reactions PI Name: James Vary PI Email: jvary@iastate.edu Institution: Iowa State University Allocation Program: INCITE Allocation Hours at ALCF: 15 ...

  9. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  10. nuclear emergency | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home nuclear emergency nuclear emergency Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, and ...

  11. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or ...

  12. Nuclear Incident Team | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or ...

  13. Nuclear Energy Systems Laboratory (NESL) / Transient Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient Nuclear Fuels Testing - Sandia Energy Energy Search Icon Sandia Home Locations ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  14. nuclear science week | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    science week Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact ...

  15. Nuclear Security Enterprise | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Nuclear Security Enterprise The Nuclear Security Enterprise ... efficient 21stcentury NSE with less environmental impact. ... is referred to as Stockpile Stewardship and Management. ...

  16. Applied nuclear physics in support of SBSS

    SciTech Connect (OSTI)

    Strottman, D.

    1995-10-01

    Since the advent of the 800-MeV proton linear accelerator over 3 decades ago, the facilities on the Clinton P. Anderson Meson Physics Facility (LAMPF) mesa have pioneered many developments that provide unique capabilities within the Department of Energy (DOE) complex and in the world. New technologies based on the use of the world`s most intense, medium-energy linac, LAMPF, are being developed. They include destruction of long-lived components of nuclear waste, plutonium burning, energy production, production of tritium, and experiments for the science-based stockpile stewardship (SBSS) program. The design, assessment, and safety analysis of potential facilities involve the understanding of complex combinations of nuclear processes, which in turn establish new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. Other areas of technology such as neutron and proton therapy applications are also placing new requirements on nuclear data. The proposed Los Alamos Neutron Science Center (LANSCE) now under discussion combined with the appropriate instrumentation will have unique features and capabilities of which there were previously only aspirations.

  17. Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions

    SciTech Connect (OSTI)

    Ghodsi, O. N.; Gharaei, R.

    2011-08-15

    We employ the equation of state of hot polarized nuclear matter to simulate the repulsive force caused by the incompressibility effects of nuclear matter in the fusion reactions of heavy colliding ions. The results of our studies reveal that temperature effects of compound nuclei have significant importance in simulating the repulsive force on the fusion reactions for which the temperature of the compound nucleus increases up to about 2 MeV. Since the equation of state of hot nuclear matter depends upon the density and temperature of the nuclear matter, it has been suggested that, by using this equation of state, one can simulate simultaneously both the effects of the precompound nucleons' emission and the incompressibility of nuclear matter to calculate the nuclear potential in fusion reactions within a static formalism such as the double-folding (DF) model.

  18. Dipole strength in the {sup 235}U(gamma,gamma{sup '}) reaction up to 2.8 MeV

    SciTech Connect (OSTI)

    Yevetska, O.; Enders, J.; Fritzsche, M.; Neumann-Cosel, P. von; Romig, C.; Savran, D.; Sonnabend, K.; Oberstedt, S.; Richter, A.

    2010-04-15

    Spectra of the {sup 235}U(gamma,gamma{sup '}) reaction were measured at the S-DALINAC at bremsstrahlung end-point energies E{sub 0}=3.5 and 4.4 MeV and scattering angles of 90 deg. and 135 deg. with respect to the beam axis. Discrete transitions are observed at excitation energies below 2.3 MeV only. The deduced cross sections are in rough agreement with the findings of Bertozzi et al. [Phys. Rev. C 78, 041601(R) (2008)] except for the most prominent transition, where the present result is lower by a factor of about 2. Evidence for unresolved dipole strength is found in the spectra by means of a fluctuation analysis, which was carried out up to an excitation energy of 2.8 MeV. If this unresolved strength exhibits the same ratio of E1/M1 cross sections as observed in the even-mass neighbor {sup 236}U, then the energy centroid E{sub x}=2.5(3) MeV and total strength SIGMAB(M1)arrow up=3.6(1.3)mu{sub N}{sup 2} of the M1 part are in good agreement with the systematics of the scissors mode in even-even actinide nuclei.

  19. Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Moving Forward to Address Nuclear Waste Storage and Disposal Three trucks transport nuclear waste

  20. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  1. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  2. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  3. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; Lopez, Javier Garicia; Jaksic, Milko; Raisanen, Jyrki; Siegele, Rainer; Simon, Aliz; Vizkelethy, Gyorgy

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less

  4. Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability

    SciTech Connect (OSTI)

    Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Kiss, T.; Otsu, T.; Kobayashi, Y.; Shin, S.

    2014-12-15

    The paper describes a time- and angle-resolved photoemission apparatus consisting of a hemispherical analyzer and a pulsed laser source. We demonstrate 1.48-eV pump and 5.92-eV probe measurements at the ?10.5-meV and ?240-fs resolutions by use of fairly monochromatic 170-fs pulses delivered from a regeneratively amplified Ti:sapphire laser system operating typically at 250 kHz. The apparatus is capable to resolve the optically filled superconducting peak in the unoccupied states of a cuprate superconductor, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+?}. A dataset recorded on Bi(111) surface is also presented. Technical descriptions include the followings: A simple procedure to fine-tune the spatio-temporal overlap of the pump-and-probe beams and their diameters; achieving a long-term stability of the system that enables a normalization-free dataset acquisition; changing the repetition rate by utilizing acoustic optical modulator and frequency-division circuit.

  5. Inspection of the objects on the sea floor by using 14 MeV tagged neutrons

    SciTech Connect (OSTI)

    Valkovic, V.; Sudac, D.; Obhodas, J.; Matika, D.; Kollar, R.; Nad, K.; Orlic, Z.

    2011-07-01

    Variety of objects found on the sea floor needs to be inspected for the presence of materials which represent the threat to the environment and to the safety of humans. We have demonstrated that the sealed tube 14 MeV neutron generator with the detection of associated alpha particles can be used underwater when mounted inside ROV equipped with the hydraulic legs and variety of sensors for the inspection of such objects for the presence of threat materials. Such a system is performing the measurement by using the NaI gamma detector and an API-120 neutron generator which could be rotated in order to maximize the inspected target volume. The neutron beam intensity during the 10-30 min. measurements is usually 1 x 10{sup 7} n/s in 4{pi}. In this report the experimental results for some of commonly found objects containing TNT explosive or its simulant are presented. The measured gamma spectra are dominant by C, O and Fe peaks enabling the determination of the presence of explosives inside the ammunition shell. Parameters influencing the C/O ratio are discussed in some details. (authors)

  6. Investigations of protons passing through the CR-39/PM-355 type of solid state nuclear track detectors

    SciTech Connect (OSTI)

    Malinowska, A.; Szyd?owski, A.; Jask?a, M.; Korman, A.; Kuk, M.; Sartowska, B.; Kuehn, T.

    2013-07-15

    Solid State Nuclear Track Detectors of the CR-39/PM-355 type were irradiated with protons with energies in the range from 0.2 to 8.5 MeV. Their intensities and energies were controlled by a Si surface barrier detector located in an accelerator scattering chamber. The ranges of protons with energies of 67 MeV were comparable to the thickness of the PM-355 track detectors. Latent tracks in the polymeric detectors were chemically etched under standard conditions to develop the tracks. Standard optical microscope and scanning electron microscopy techniques were used for surface morphology characterization.

  7. Nuclear Detonation Detection | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Research and Development Nuclear Detonation Detection The Office of Nuclear Detonation Detection (NDD) develops and provide continuous, global capabilities to detect foreign nuclear weapon detonations, including for test ban treaty monitoring needs and military requirements. These efforts are aligned along three functional areas: Space-based Detection of Nuclear Detonations: Develops and builds space sensors for the nation's operational nuclear test treaty monitoring and Integrated

  8. nuclear threat science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    threat science Counterterrorism Counterterrorism Policy and Cooperation Nuclear Threat Science Office of Nuclear Threat Science The Office of Nuclear Threat Science is responsible for overseeing the Nuclear Counterterrorism Program, an NNSA program that sustains specialized expertise and integrates and executes key activities to advise and enable technical aspects of U.S. Government nuclear counterterrorism and... Office of Counterterrorism Policy and Cooperation The 2011 National Strategy for

  9. nuclear science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    science Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact report from the 2015 event, detailing the many ways people were educated about all things nuclear as a result of the event. Nuclear Science Week is an international weeklong celebration to focus interest on... Consortium Led by University of California, Berkeley Awarded $25M NNSA Grant for Nuclear Science and Security

  10. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  11. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  12. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. Department of Energy. National Nuclear Data Center: Brookhaven National Laboratory; Evaluated Nuclear Structure Data Files (ENSDF), Nuclear Science References (NSR) and other databases. Isotopes Project: (E.O.L. Berkeley National Laboratory) Table of Isotopes, Isotope Explorer, XUNDL, Nuclear Data Dissemination Homepage, and

  13. Tabulated equation of state for supernova matter including full nuclear ensemble

    SciTech Connect (OSTI)

    Buyukcizmeci, N.; Botvina, A. S.; Mishustin, I. N. [Frankfurt Institute for Advanced Studies, J.W. Goethe University, D-60438 Frankfurt am Main (Germany)

    2014-07-01

    This is an introduction to the tabulated database of stellar matter properties calculated within the framework of the Statistical Model for Supernova Matter (SMSM). The tables present thermodynamical characteristics and nuclear abundances for 31 values of baryon density (10{sup 8} < ?/?{sub 0} < 0.32, ?{sub 0} = 0.15 fm{sup 3} is the normal nuclear matter density), 35 values of temperature (0.2 MeV < T < 25 MeV), and 28 values of electron-to-baryon ratio (0.02 < Y{sub e} < 0.56). The properties of stellar matter in ? equilibrium are also considered. The main ingredients of the SMSM are briefly outlined, and the data structure and content of the tables are explained.

  14. MeV Au Ion Irradiation in Silicon and Nanocrystalline Zirconia Film Deposited on Silicon Substrate

    SciTech Connect (OSTI)

    Chang, Yongqin; Zhang, Yanwen; Zhu, Zihua; Edmondson, Philip D.; Weber, William J.

    2012-09-01

    Nanocrystalline zirconia (ZrO2) film with thickness of 305 nm deposited on a silicon substrate was irradiated with 2 MeV Au ions to different fluences at different temperatures. The implanted ion profiles were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and simulated using the stopping and range of ions inmatter (SRIM) code, respectively. The experimental results show that a large fraction of the incident Au ions penetrates through the ZrO2 film and are deposited into the Si substrate. At the interface of ZrO2 and Si, a sudden decrease of Au concentration is observed due to the much larger scattering cross section of Au in ZrO2 than in Si. The depth profile of the Au ions is measured in both the ZrO2 films and the Si substrates, and the results show that the Au distribution profiles do not exhibit a dependence on irradiation temperature. The local Au concentration increases proportionally with the irradiation fluence, suggesting that no thermal or irradiation-induced redistribution of the implanted Au ions. However, the Au concentration in the ZrO2 films, as determined by SIMS, is considerably lower than that predicted by the SRIM results, and the penetration depth from the SIMS measurements is much deeper than that from the SRIM predictions. These observations can be explained by an overestimation of the electronic stopping power, used in the SRIM program, for heavy incident ions in light targets. Over-estimation of the heavy-ion electronic stopping power may lead to errors in local dose calculation and underestimation of the projected range of slow heavy ions in targets that contain light elements. A quick estimate based on a reduced target density may be used to compensate the overestimation of the electronic stopping power in the SRIM program to provide better ion profile prediction.

  15. MeV Au Ion Irradiation in Silicon and Nanocrystalline Zirconia Film Deposited on Silicon Substrate

    SciTech Connect (OSTI)

    Chang, Yongqin; Zhang, Yanwen; Zhu, Zihua; Edmondson, Dr. Philip; Weber, William J

    2012-01-01

    Nanocrystalline zirconia (ZrO2) film with thickness of 305 nm deposited on a silicon substrate was irradiated with 2 MeV Au ions to different fluences at different temperatures. The implanted ion profiles were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and simulated using the stopping and range of ions in matter (SRIM) code, respectively. The experimental results show that a large fraction of the incident Au ions penetrates through the ZrO2 film and are deposited into the Si substrate. At the interface of ZrO2 and Si, a sudden decrease of Au concentration is observed due to the much larger scattering cross section of Au in ZrO2 than in Si. The depth profile of the Au ions is measured in both the ZrO2 films and the Si substrates, and the results show that the Au distribution profiles do not exhibit a dependence on irradiation temperature. The local Au concentration increases proportionally with the irradiation fluence, suggesting that no thermal or irradiation-induced redistribution of the implanted Au ions. However, the Au concentration in the ZrO2 films, as determined by SIMS, is considerably lower than that predicted by the SRIM results, and the penetration depth from the SIMS measurements is much deeper than that from the SRIM predictions. These observations can be explained by an overestimation of the electronic stopping power, used in the SRIM program, for heavy incident ions in light targets. Overestimation of the heavy-ion electronic stopping power may lead to errors in local dose calculation and underestimation of the projected range of slow heavy ions in targets that contain light elements. A quick estimate based on a reduced target density may be used to compensate the overestimation of the electronic stopping power in the SRIM program to provide better ion profile prediction.

  16. The Evolution of Swift/BAT blazars and the origin of the MeV background

    SciTech Connect (OSTI)

    Ajello, M.; Costamante, L.; Sambruna, R.M.; Gehrels, N.; Chiang, J.; Rau, A.; Escala, A.; Greiner, J.; Tueller, J.; Wall, J.V.; Mushotzky, R.F.; /NASA, Goddard

    2009-10-17

    We use 3 years of data from the Swift/BAT survey to select a complete sample of X-ray blazars above 15 keV. This sample comprises 26 Flat-Spectrum Radio Quasars (FSRQs) and 12 BL Lac objects detected over a redshift range of 0.03 < z < 4.0. We use this sample to determine, for the first time in the 15-55 keV band, the evolution of blazars. We find that, contrary to the Seyfert-like AGNs detected by BAT, the population of blazars shows strong positive evolution. This evolution is comparable to the evolution of luminous optical QSOs and luminous X-ray selected AGNs. We also find evidence for an epoch-dependence of the evolution as determined previously for radio-quiet AGNs. We interpret both these findings as a strong link between accretion and jet activity. In our sample, the FSRQs evolve strongly, while our best-fit shows that BL Lacs might not evolve at all. The blazar population accounts for 10-20% (depending on the evolution of the BL Lacs) of the Cosmic X-ray background (CXB) in the 15-55 keV band. We find that FSRQs can explain the entire CXB emission for energies above 500 keV solving the mystery of the generation of the MeV background. The evolution of luminous FSRQs shows a peak in redshift (z{sub c} = 4.3 {+-} 0.5) which is larger than the one observed in QSOs and X-ray selected AGNs. We argue that FSRQs can be used as tracers of massive elliptical galaxies in the early Universe.

  17. Routine production of copper-64 using 11.7MeV protons

    SciTech Connect (OSTI)

    Jeffery, C. M.; Smith, S. V.; Asad, A. H.; Chan, S.; Price, R. I.

    2012-12-19

    Reliable production of copper-64 ({sup 64}Cu) was achieved by irradiating enriched nickel-64 ({sup 64}Ni, >94.8%) in an IBA 18/9 cyclotron. Nickel-64 (19.1 {+-} 3.0 mg) was electroplated onto an Au disc (125{mu}m Multiplication-Sign 15mm). Targets were irradiated with 11.7 MeV protons for 2 hours at 40{mu}A. Copper isotopes ({sup 60,61,62,64}Cu) were separated from target nickel and cobalt isotopes ({sup 55,57,61}Co) using a single ion exchange column, eluted with varying concentration of low HCl alcohol solutions. The {sup 64}Ni target material was recovered and reused. The {sup 64}Cu production rate was 1.46{+-}0.3MBq/{mu}A.hr/mg{sup 64}Ni(n = 10) (with a maximum of 2.6GBq of {sup 64}Cu isolated after 2hr irradiation at 40uA. Radionuclidic purity of the {sup 64}Cu was 98.7 {+-} 1.6 % at end of separation. Cu content was < 6mg/L (n = 21). The specific activity of {sup 64}Cu was determined by ICP-MS and by titration with Diamsar to be 28.9{+-}13.0GBq/{mu}mol[0.70{+-}0.35Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n = 10) and 13.1{+-}12.0GBq/{mu}mol[0.35{+-}0.32Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n 9), respectively; which are in agreement, however, further work is required.

  18. Preliminary Safety Analysis Report (PSAR), The NSLS 200 MeV Linear Electron Accelerator

    SciTech Connect (OSTI)

    Blumberg, L.N.; Ackerman, A.I.; Dickinson, T.; Heese, R.N.; Larson, R.A.; Neuls, C.W.; Pjerov, S.; Sheehan, J.F.

    1993-06-15

    The radiological, fire and electrical hazards posed by a 200 MeV electron Linear Accelerator, which the NSLS Department will install and commission within a newly assembled structure, are addressed in this Preliminary Safety Analysis Report. Although it is clear that this accelerator is intended to be the injector for a future experimental facility, we address only the Linac in the present PSAR since neither the final design nor the operating characteristics of the experimental facility are known at the present time. The fire detection and control system to be installed in the building is judged to be completely adequate in terms of the marginal hazard presented - no combustible materials other than the usual cabling associated with such a facility have been identified. Likewise, electrical hazards associated with power supplies for the beam transport magnets and accelerator components such as the accelerator klystrons and electron gun are classified as marginal in terms of potential personnel injury, cost of equipment lost, program downtime and public impact perceptions as defined in the BNL Environmental Safety and Health Manual and the probability of occurrence is deemed to be remote. No unusual features have been identified for the power supplies or electrical distribution system, and normal and customary electrical safety standards as practiced throughout the NSLS complex and the Laboratory are specified in this report. The radiation safety hazards are similarly judged to be marginal in terms of probability of occurrence and potential injury consequences since, for the low intensity operation proposed - a factor of 25 less than the maximum Linac capability specified by the vendor - the average beam power is only 0.4 watts. The shielding specifications given in this report will give adequate protection to both the general public and nonradiation workers in areas adjacent to the building as well as radiation workers within the controlled access building.

  19. Fifty years of nuclear fission: Nuclear data and measurements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and ...

  20. Fifty years of nuclear fission: Nuclear data and measurements...

    Office of Scientific and Technical Information (OSTI)

    Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and measurements series ...

  1. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    Energy Science and Technology Software Center (OSTI)

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions andmore »extends up to several hundreds of MeV for the Heavy Ion induced reactions.« less

  2. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    Energy Science and Technology Software Center (OSTI)

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions andmore » extends up to several hundreds of MeV for the Heavy Ion induced reactions.« less

  3. 2010-2011 SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASTROPHYSICS Splitting of the giant monopole resonance in 92Mo D. H. Youngblood, Y. -W. Lui, Krishichayan, J. Button, S. Shlomo, and M. Urin Giant monopole resonances in nuclei around A ~ 90 region Krishichayan, Y. -W. Lui, J. Button, and D. H. Youngblood Measurement of the 14C(d,p)15C reaction at Ed=60 MeV M. McCleskey, A. M. Mukhamedzhanov, L. Trache, R. E. Tribble, V. Goldberg, Y.-W. Lui, B. Roeder, E. Simmons, and A. Spiridon The beta delayed proton and gamma decay of 27P for nuclear

  4. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect (OSTI)

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  5. Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status

    SciTech Connect (OSTI)

    Blideanu, V.; Lecolley, F.R.; Lecolley, J.F.; Lefort, T.; Marie, N.; Ban, G.; Louvel, M.; Dangtip, S.; Tippawan, U.; Elmgren, K.; Eudes, Ph.; Guertin, A.

    2004-07-01

    Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at the TSL Laboratory Cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low-energy thresholds and for a wide angular range (20 deg. -160 deg. ). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approaches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.

  6. Monitoring system for a liquid-cooled nuclear fission reactor

    DOE Patents [OSTI]

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  7. FEASIBILITY OF MEASURING IRON IN VIVO USING FAST 14 MEV NEUTRONS.

    SciTech Connect (OSTI)

    WIELOPOLSKI, L.

    2005-05-01

    In this short report, I reassess the feasibility of measuring iron in vivo in the liver and heart of thalassemia patients undergoing chelation therapy. Despite the multiplicity of analytical methods for analyzing iron, only two, magnetic resonance imaging, and magnetic susceptibility, are suitable for in vivo applications, and these are limited to the liver because of the heart's beat. Previously, a nuclear method, gamma-resonance scattering, offered a quantitative measure of iron in these organs; however, it was abandoned because it necessitated a nuclear reactor to produce the radioactive source. I reviewed and reassessed the status of two alternative nuclear methods, based on iron spectroscopy of gamma rays induced by fast neutron inelastic scattering and delayed activation in iron. Both are quantitative methods with high specificity for iron and adequate penetrating power to measure it in organs sited deep within the human body. My experiments demonstrated that both modalities met the stated qualitative objectives to measure iron. However, neutron dosimetry revealed that the intensity of the neutron radiation field was too weak to reliably assess the minimum detection limits, and to allow quantitative extrapolations to measurements in people. A review of the literature, included in this report, showed that these findings agree qualitatively with the published results, although the doses reported were about three orders-of-magnitude higher than those I used. Reviewing the limitations of the present work, steps were outlined for overcoming some of the shortcomings. Due to a dearth of valid quantitative alternatives for determining iron in vivo, I conclude that nuclear methods remain the only viable option. However, from the lessons learned, further systematic work is required before embarking on clinical studies.

  8. Effect of Nuclear Elastic Scattering on Neutral Beam Injection Heating in Thermonuclear Plasmas

    SciTech Connect (OSTI)

    Matsuura, H.; Nakao, Y.

    2005-04-15

    An effect of the nuclear elastic scattering (NES) on the neutral beam injection (NBI) plasma heating was examined by solving the Boltzmann-Fokker-Planck (BFP) equation for beam ion in the deuterium-tritium (DT) thermonuclear plasmas. The BFP calculations show that the enhancement in the fraction of the NBI heating power deposited to ions due to NES becomes appreciable when beam energy is larger than 1MeV, and the enhancement is strongly influenced by plasma parameters.

  9. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    SciTech Connect (OSTI)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X.; Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D.

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  10. Cross-Section Measurements of Star Configurations in Neutron-Deuteron Breakup at 16.0 MeV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alexander S. Crowell 2001 Cross-Section Measurements of Star Configurations in Neutron-Deuteron Breakup at 16.0 MeV by Alexander S. Crowell Department of Physics Duke University Date Approved: Calvin R. Howell, Supervisor Robert P. Behringer Mark C. Kruse Roxanne P. Springer Werner Tornow Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2001 Abstract (Physics - TUNL)

  11. Nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  12. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  13. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  14. TUNL Nuclear Data Evaluation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TUNL Nuclear Data Evaluation Group As a part of the United States Nuclear Data Network and the international Nuclear Structure and Decay Data Evaluators' Network, the Nuclear Data...

  15. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  16. Office of Nuclear Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  17. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  18. Nuclear Incident Team | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Nuclear Incident Team Nuclear Incident Team Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, ...

  19. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments [OSTI]

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  20. Civilian Nuclear Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civilian Nuclear Program Civilian Nuclear Program Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Venkateswara Rao Dasari (Rao) (505) 667-5098 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Program is the focal point for

  1. Nuclear Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services » Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these

  2. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  3. Nuclear Forensics | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy initiative that establishes federal agency missions and institutionalizes roles and responsibilities to enable operational support for materials, pre-detonation device, and post-detonation nuclear or radiological forensics programs with the broader goal of attribution. Technical nuclear forensics utilizes the data from

  4. International Nuclear Security | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) International Nuclear Security The International Nuclear Security program collaborates with partners world-wide to improve the security of proliferation-sensitive materials, particularly weapons-usable nuclear material in both civilian and non-civilian use in key countries. As part of these efforts, INS works with partner countries to: Upgrade and sustain physical security and material control and accounting systems; Develop national-level nuclear security infrastructure in areas such

  5. Nuclear Materials Information Program | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Information Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  6. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  7. Nuclear War Against Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear War Against Cancer 1663 Los Alamos science and technology magazine Latest Issue:March 2016 past issues All Issues submit Nuclear War Against Cancer Los Alamos, in ...

  8. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  9. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  10. Nuclear Energy Systems Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  11. NUCLEAR REGULATORY COMMISSION

    Office of Environmental Management (EM)

    NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: ...

  12. Nuclear Safety Regulatory Framework

    Energy Savers [EERE]

    Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural ...

  13. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration Office of ...

  14. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical Services Y-12, LLC Performance Evaluation Report NNSA Production Office Y-12 Nuclear Security Complex ...

  15. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and ...

  16. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration 1000 Independence ...

  17. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    15 National Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical ... The National Nuclear Security Administration (NNSA) Production Office (NPO) took into ...

  18. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    High construction costs for nuclear plants, especially relative to natural-gas-fired plants, make other options for new nuclear capacity uneconomical even in the alternative...

  19. Nuclear Security Summit

    National Nuclear Security Administration (NNSA)

    Joint Research Centre and the United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material http:...

  20. Sandia Energy Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    afety-expert-elected-to-national-academy-of-engineeringfeed 0 Sandia Teaches Nuclear Safety Course http:energy.sandia.govsandia-teaches-nuclear-safety-course http:...

  1. Nuclear Energy University Programs

    Energy Savers [EERE]

    (NSUF) Gateway to Nuclear Research J. Rory Kennedy Director, NSUF Idaho National ... to NSUF (Integration into CINR) * Nuclear Energy Infrastructure Database (NEID) * ...

  2. Sandia's Nuclear Weapons Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Mission Ensuring that the nation's stockpile is safe, secure and effective, and that it meets military requirements America's Nuclear Weapons Systems Engineering ...

  3. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Energy, Energy Efficiency, News, News & Events, Nuclear Energy Sandia's Brayton-Cycle Turbine Boosts Small...

  4. Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  5. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Useful Online Nuclear Physics Journals Important Online Resources Science Direct ... Elsevier Physics Online: Nuclear Physics A, B, Physics Repots, Physics Letters B and more. ...

  6. Nuclear Controls Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Controls Yes No 1) Is your Facility involved in the research on or development, design, manufacture, construction, testing or maintenance of any nuclear explosive ...

  7. Nuclear Energy Advisory Committee

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

  8. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  9. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Practice in Nuclear Medicine Radiopharmacy Patient Care Medical Imaging & Computers Moderator: Deborah M. Gibbs, MEd, PET, CNMT Lead Nuclear Medicine PET Facility...

  10. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national laboratories

  11. International Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and Member States to implement and meet safeguards obligations. The Office of International Nuclear Safeguards develops and supports the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to

  12. nuclear enterprise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    enterprise New Report from NNSA Highlights Major Achievements for 2015 Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise The National Nuclear Security Administration (NNSA) today released "NNSA Achievements: 2015 By the Numbers," a report highlighting major accomplishments and milestones

  13. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  14. State Nuclear Profiles - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data ...

  15. The Joys of Nuclear Engineering

    ScienceCinema (OSTI)

    Jon Carmack

    2010-01-08

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  16. Nuclear reactor

    DOE Patents [OSTI]

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  17. Nuclear reactor

    DOE Patents [OSTI]

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  18. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  19. 2016 Nuclear Science Week

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Week October 17 - 21, 2016 Nuclear Science Week is a national, broadly observed week-long celebration that focuses on all aspects of nuclear science. Events during this week will provide many learning opportunities about contributions, innovation and careers that can be found by exploring nuclear science. 6-22-16

  20. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  1. Resonance {eta} Prime -meson photoproduction on protons at photon energies from the reaction threshold to 3700 MeV

    SciTech Connect (OSTI)

    Tryasuchev, V. A.

    2013-06-15

    The parameters of six resonances of the isobar model for {eta} Prime -meson photoproduction were fitted to experimental differential cross sections for the reaction {gamma}{pi} {yields} {eta} Prime p that weremeasured by the CLAS-2009 and CBELSA/TAPS Collaborations (Mainz, Germany). It was shown that, in the photon energy region from the reaction threshold to 3700MeV, a good description of the experimental cross sections was attained by taking into account the contributions of high-angular-momenta heavy resonances alone.

  2. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    SciTech Connect (OSTI)

    Bhat, Sathyanarayana Rao, Asha; Krishnan, Sheeja; Sanjeev, Ganesh; Suresh, E. P.

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  3. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - II: Pion Production Target

    SciTech Connect (OSTI)

    Anisimov, Viatcheslav V.; Cavalleri, Emanuela; Karmanov, Fedor I.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Vecchi, Marcello

    2001-03-15

    The possibility of using a liquid lithium primary target for the 14-MeV intense neutron source (INS) based on muon-catalyzed fusion ({mu}CF) (the {mu}CF-INS) is discussed. The description of the thermohydraulic and mechanical analysis that suggested the proposed geometry is presented. Particular attention is given to the thermal parameter evaluation since these quantities have a great influence on the choice of target design. According to the calculations, the lithium primary target variant can be considered for future {mu}CF-INS realization.

  4. Partial-wave analyses of all proton-proton and neutron-proton data below 500 MeV

    SciTech Connect (OSTI)

    Rentmeester, M.C.M.; Swart, J.J. de; Timmermans, R.G.E.

    2005-05-06

    In 1993 the Nijmegen group published the results of energy-dependent partial-wave analyses (PWAs) of the nucleon-nucleon (NN) scattering data for laboratory kinetic energies below Tlab = 350 MeV (PWA93). In this talk some general aspects, but also the newest developments on the Nijmegen NN PWAs are reported. We have almost finished a new energy-dependent PWA and will discuss some typical aspects of this new PWA; where it differs from PWA93, but also what future developments might be, or should be.

  5. Nucleon transverse momentum-dependent parton distributions from domain wall fermion calculations at 297 MeV pion mass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Engelhardt, M.; Musch, B.; Bhattacharya, T.; Gupta, R.; Hagler, P.; Negele, J.; Pochinsky, A.; Schafer, A.; Syritsyn, S.; Yoon, B.

    2014-06-23

    Here, lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297 MeV, on a lattice with spacing 0.084 fm, selected TMD observables are accessed and compared to previous exploration at heavier pion masses on coarser lattices.

  6. Resonant inelastic X-ray scattering spectrometer with 25meV resolution at the Cu K -edge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ketenoglu, Didem; Harder, Manuel; Klementiev, Konstantin; Upton, Mary; Taherkhani, Mehran; Spiwek, Manfred; Dill, Frank-Uwe; Wille, Hans-Christian; Yavaş, Hasan

    2015-06-27

    An unparalleled resolution is reported with an inelastic X-ray scattering instrument at the CuK-edge. Based on a segmented concave analyzer, featuring single-crystal quartz (SiO2) pixels, the spectrometer delivers a resolution near 25meV (FWHM) at 8981eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick–Baez optics. The measured resolution agrees with the ray-tracing simulation of an ideal spectrometer. The performance of the spectrometer is demonstrated by reproducing the phonon dispersion curve of a beryllium single-crystal.

  7. Investigation of Three-Body Force Effects in Neutron-Deuteron Scattering at 95 MeV

    SciTech Connect (OSTI)

    Mermod, P.; Blomgren, J.; Bergenwall, B.; Hildebrand, A.; Johansson, C.; Klug, J.; Oesterlund, M.; Pomp, S.; Nilsson, L.; Olsson, N.; Tippawan, U.; Jonsson, O.; Prokofiev, A.; Renberg, P.-U.; Nadel-Turonski, P.; Maeda, Y.; Sakai, H.; Tamii, A.

    2005-05-24

    We have measured the neutron-deuteron (nd) elastic-scattering differential cross section at 95 MeV incident neutron energy, using both the Medley and the SCANDAL setups at TSL in Uppsala. The full angular distribution was covered by detecting recoil deuterons from thin CD2 targets, and the result was normalized to the neutron-proton (np) cross section. Recent theories predict that three-nucleon (3N) force effects, if present, would affect the cross section in the minimum region by about 30%. The results are compared with theoretical calculations and are well described if 3N forces are included.

  8. Generating X-ray in MeV regime from interactions of mono-energetic electrons with Sn and Pb

    SciTech Connect (OSTI)

    Masalehdan, Hossein

    2012-09-06

    Quasi mono-energetic x-ray beams generated from thin targets by interaction of mono-energetic electron beams from 600 mJ, 80 fs laser pulse. A micron-scale laser-produced plasma creates, accelerates relativistic mono-energetic electron bunches. As such electrons propagate in the ion channel produced in the wake of the laser pulse; the accelerated electrons can interact with Sn, Pb targets and generate X-ray radiation of MeV energy and MeV/cm2 flux.

  9. Nuclear and Particle Futures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Nuclear Weapons Life Cycle Nuclear weapons are developed, produced, and maintained in the stockpile, and then retired and dismantled. This sequence of events is known as the nuclear weapons life cycle. The Department of Energy (DOE) through the National Nuclear Security Administration (NNSA) and in partnership with Department of Defense (DoD) conducts activities in a joint nuclear weapons life cycle process. The major steps, or phases, of the life cycle are described below. Currently,

  10. Spent Nuclear Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent nuclear fuel data are collected by the U.S. Energy Information Administration (EIA) for the Department of Energy's Office of Standard Contract Management (Office of the General Counsel) on the Form GC-859, "Nuclear Fuel Data Survey." The data include detailed characteristics of spent nuclear fuel discharged from commercial U.S. nuclear power plants and currently stored at commercial sites in the United

  11. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Security Summit U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Statement on Signing of the Administrative Arrangement to the Agreement for

  12. defense nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    defense nuclear security NNSA Announces 2014 Security Professional of the Year Awards WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced the recipients of the 2014 Bradley A. Peterson Federal and Contractor Security Professional of the Year Awards. Pamela Valdez from the Los Alamos Field Office will receive the federal award and Randy Fraser from... Michael Lempke receives NNSA's Gold Medal of Excellence DOE Undersecretary for Nuclear Security and NNSA

  13. nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    security U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Secretary Moniz awards Hutcheon memorial nonproliferation fellowship to Thomas Gray

  14. nuclear weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    weapons DOE, NNSA leaders open summit on the physical security of nuclear weapons Deputy Secretary of Energy Elizabeth Sherwood-Randall, NNSA Principal Deputy Administrator Madelyn Creedon, and numerous speakers from throughout the Nuclear Security Enterprise spoke at the 2016 Nuclear Weapons Physical Security Collaboration Summit earlier this month at Joint Base Andrews in... Y-12 National Security Complex Completes W69 Dismantlement The man who trains everyone on the bombs Mark Meyer, training

  15. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration ...

  16. nuclear smuggling | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA Deputy Administrator Creedon Travels to China In March, National Nuclear Security Administration (NNSA) Principal Deputy Administrator Madelyn Creedon traveled to China to ...

  17. Nuclear Structure and Nuclear Reactions | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x2 - triaxiality, and x3 - pairing correlations. Calculations were carried out using nuclear density functional theory. The collective action was minimized using the dynamical...

  18. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    NNSA builds the nation's operational sensors that monitor the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates...

  19. Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... site link , and the emergence of new proliferation threats from both state and non-state ...

  20. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates the regional geophysical datasets enabling...

  1. National Nuclear Security Administration | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Nuclear Security Administration FY15 Year End Report Semi Annual Report FY14 Year End Report Semi Annual

  2. nuclear material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Researchers develop a new mathematical tool for analyzing and evaluating nuclear material Lawrence Livermore National Laboratory scientists have created a new method for detecting ...

  3. Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as spent fuel, and defer the need for additional geologic nuclear waste repositories until the next century. Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste (1.2 MB) More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy

  4. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect (OSTI)

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  5. Characterization of the proton beam at the output of the 6.7MeV LEDA RFQ.

    SciTech Connect (OSTI)

    Allen, C. K.; Colestock, P. L. ,; Gilpatrick, J. D.; Lysenko, W. P.; Rybarcyk, L. J.; Schneider, J. D.; Sheffield, R. L.; Smith, H. V.; Wangler, Thomas P.,; Crandall, K. R.; Chan, D.; Garnett, R. W.; Schulze, M. E.

    2001-01-01

    The present configuration of the Low-Energy Demonstration Accelerator (LEDA) consists of a 75-keV proton injector, a 6.7-MeV 350-MHz cw radio-frequency quadrupole (RFQ) with associated high-power and lowlevel rf systems, a 52-magnet periodic lattice followed by a short high-energy beam transport (HEBT) and highpower (670-kW cw) beam stop. The rms beam emittance was measured prior to the installation of the 52-magnet lattice, based on wire-scanner measurements of the beam profile at a single location in the HEBT. New measurements with additional diagnostic hardware have been performed to determine the rms transverse beam properties of the beam at the output of the 6.7-MeV LEDA RFQ. The 52-magnet periodic lattice also includes ten beam position monitors (BPMs) evenly spaced in pairs of two. The BPMs provide a measure of the bunched beam current that exhibits nulls at different locations in the lattice. Model predictions of the locations of the nulls and the strength of the bunched beam current are made to determine what information this data can provide regarding the longitudinal beam emittance.

  6. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - I: An Advanced Design

    SciTech Connect (OSTI)

    Anisimov, Viatcheslav V.; Arkhangel'sky, Vladimir A.; Ganchuk, Nikolay S.; Yukhimchuk, Arkady A.; Cavalleri, Emanuela; Karmanov, Fedor I.; Konobeyev, Alexander Yu.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Ponomarev, Leonid I.; Vecchi, Marcello

    2001-03-15

    The results of the design study of an advanced scheme for the 14-MeV intense neutron source based on muon-catalyzed fusion ({mu}CF) are presented. A pion production target (liquid lithium) and a synthesizer [liquid deuterium-tritium (D-T) mixture] are considered. Negative pions are produced inside a 17/7 T magnetic field by an intense (2-GeV,12-mA) deuteron beam interacting with the 150-cm-long, 0.75-cm-radius lithium target. Muons from the pion decay are collected in the backward direction and stopped in the D-T mixture of the synthesizer. The synthesizer has the shape of a 10-cm-radius sphere surrounded by two 0.03-cm-thick titanium shells. At 100 {mu}CF events/muon, it can produce up to 10{sup 17}n/s of 14-MeV neutrons. A quasi-isotropic neutron flux up to 10{sup 14} n/cm{sup 2}.s{sup -1} can be achieved in the test volume of {approx}2.5 l with an irradiated surface of {approx}350 cm{sup 2}. The thermophysical and thermomechanical analyses show that the technological limits are not exceeded.

  7. Measurement of Activation Reaction Rate Distributions in a Lead Assembly Bombarded with 500-MeV Protons

    SciTech Connect (OSTI)

    Takada, Hiroshi; Meigo, Shin-ichro; Sasa, Toshinobu; Tsujimoto, Kazufumi; Yasuda, Hideshi

    2000-05-15

    Reaction rate distributions of various activation detectors such as the {sup nat}Ni(n,x){sup 58}Co, {sup 197}Au(n,2n){sup 196}Au, and {sup 197}Au(n,4n){sup 194}Au reactions were measured to study the production and the transport of spallation neutrons in a lead assembly bombarded with protons of 500 MeV. The measured data were analyzed with the nucleon-meson transport code NMTC/JAERI combined with the MCNP4A code using the nuclide production cross sections based on the JENDL Dosimetry File and those calculated with the ALICE-F code. It was found that the NMTC/JAERI-MCNP4A calculations agreed well with the experiments for the low-energy-threshold reaction of {sup nat}Ni(n,x){sup 58}Co. With the increase of threshold energy, however, the calculation underestimated the experiments, especially above 20 MeV. The reason for the disagreement can be attributed to the underestimation of the neutron yield in the tens of mega-electron-volt regions by the NMTC/JAERI code.

  8. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    NNSA NuclearRadiological Incident Response December 01, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to ...

  9. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  10. NNSA Celebrates National Nuclear Science Week | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Celebrates National Nuclear Science Week January 23, 2012 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) is committed to promoting excellence in nuclear ...

  11. Nuclear data review and compilation for ATW systems

    SciTech Connect (OSTI)

    Guzhovskii, B.; Gorelov, V.; Il`in, V.; Farafontov, G.; Grebennikov, A.

    1994-10-01

    In order to solve the problem of nuclear power waste transmutation in neutron flux it is necessary to know the characteristics of neutron interaction for a great number of nuclei in the energy range from 0 to hundreds of MeV. The authors distinguished the most important aspect of this problem that one of nuclear data for actinides, (from Th to Cm isotopes) They have given the overview of evaluations of characteristic of interaction between neutrons and these nuclei leading to transformation from target-nucleus to neighboring actinide-nucleus or fission fragments in the limited energy range from 0 to 14 MeV. The review was carried out by comparison of mentioned characteristics from the modern versions of ENDL-82, JENDL-3, ENDF/B-6 and BROND-2 neutron evaluated data among themselves and with recommended data of previous publications and, in some cases, with the measurement results. ENDL-82 and ENDF/B-6 versions were made in USA laboratories, JENDL-3 was made in the laboratories of Japan and BROND-2 version was made in the laboratories of former USSR. The comparison of nuclear data from various libraries was carried out by the most economic method permitting, nevertheless, fully judge of available uncertainties in the knowledge of competitive nuclear data which are important from the point of view of problem of transmutation in various energies neutron flux. The following characteristics were considered: (a) fission and capture cross-sections at thermal point (E{sub n}=0.0253 eV); (b) infinitely dilute resonance integrals of fission and capture designated by I{sub f} and I{sub {gamma}} (c) averaged on {sup 252}Cf spontaneous fission neutron spectrum cross-sections of fission, capture and the (n,2n) reactions; (d) cross-sections of fission and the (n,2n), (n,3n) reactions at the point En = 14 MeV; (e) fission and capture resonance integrals for a interval of sets with the increasing upper (E {sub max}) and lower (E {sub min}) limits of integral.

  12. budget | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reflects Commitment to Maintain a Safe, Secure, and Effective Nuclear Deterrent; Prevent, Counter, and Respond to Global Nuclear Dangers; and Effectively Power the Nuclear Navy(...

  13. Nuclear Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Milestones Publications News Press Releases Features Science Highlights In the ... Divisions Energy Systems Global Security Sciences Nuclear Engineering Nuclear Milestones ...

  14. Nuclear Physics from Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, May 26, 2011 Exa-Scale Computational Resources Nuclear Astrophysics Accelerator Physics Cold QCD and Nuclear Forces Hot and Dense QCD Nuclear Structure and Reactions ...

  15. Nuclear Regulatory Commission | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Regulatory Commission NNSA Receives Excellence Award for Radiological Security Enhancements in Hawaii HONOLULU - At an official event this week, the City and County of Honolulu presented the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) with the Homeland Security Excellence Award for DOE/NNSA's Office of Radiological Security's (ORS) efforts

  16. nuclear safety | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    safety United States and the Republic of Korea Sign Agreement for Civil Nuclear Cooperation Washington, DC - Today Secretary of Energy Ernest J. Moniz and Korean Foreign Minister Yun signed the successor United States - Republic of Korea Agreement for Civil Nuclear Cooperation, or 123 Agreement, as they are referred to in the United States. The United States and the Republic of Korea (ROK

  17. nuclear technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    technology NNSA Updates Export Control Regulation WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) updated the Federal rule (10 CFR Part 810, or Part 810) that regulates the export of unclassified nuclear technology and assistance. The final rule was published in the Federal Register on Feb. 23 and will go into effect on

  18. Naval Nuclear Propulsion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Klotz visits Bettis Atomic Power Laboratory Lt. Gen. Frank G. Klotz, DOE Undersecretary for Nuclear Security and NNSA Administrator, visited the Bettis Atomic Power Laboratory in West Mifflin, PA on July 2, 2015. Gen. Klotz toured through several test facilities where Bettis personnel reviewed ongoing development efforts to qualify

  19. nuclear testing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testing NNSA scientists find more effective ways to detect nuclear explosions near and far NNSA activities are vital to detecting nuclear explosions and helping verify compliance with the testing ban worldwide. Recent developments at NNSA's Livermore National Laboratory (LLNL) will help NNSA meet this commitment. Using computer-generated models and field experiments, LLNL simulates how

  20. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect (OSTI)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  1. Advances in nuclear data and all-particle transport for radiation oncology

    SciTech Connect (OSTI)

    White, R.M.; Chadwick, M.B.; Chandler, W.P.; Hartmann Siantar, C.L.; Westbrook, C.K.

    1994-05-01

    Fast neutrons have been used to treat over 15,000 cancer patients worldwide and proton therapy is rapidly emerging as a treatment of choice for tumors around critical anatomical structures. Neutron therapy requires evaluated data to {approximately}70 MeV while proton therapy requires data to {approximately}250 MeV. Collaboration between Lawrence Livermore National Laboratory (LLNL) and the medical physics community has revealed limitations in nuclear cross section evaluations and radiation transport capabilities that have prevented neutron and proton radiation therapy centers from using Monte Carlo calculations to accurately predict dose in patients. These evaluations require energy- and angle-dependent cross sections for secondary neutrons, charged-particles and recoil nuclei. We are expanding the LLNL nuclear databases to higher energies for biologically important elements and have developed a three-dimensional, all-particle Monte Carlo radiation transport code that uses computer-assisted-tomography (CT) images as the input mesh. This code, called PEREGRINE calculates dose distributions in the human body and can be used as a tool to determine the dependence of dose on details of the evaluated nuclear data. In this paper, we will review the status of the nuclear data required for neutron and proton therapy, describe the capabilities of the PEREGRINE package, and show the effects of tissue inhomogeneities on dose distribution.

  2. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  3. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 ... Share of State total (percent) Net generation (thousand mwh) Illinois nuclear power ...

  4. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 ... Share of State total (percent) Net generation (thousand mwh) New York nuclear power ...

  5. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 ... Share of State total (percent) Net generation (thousand mwh) Maryland nuclear power ...

  6. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 ... Share of State total (percent) Net generation (thousand mwh) Michigan nuclear power ...

  7. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  8. Pion-pion scattering amplitude. IV. Improved analysis with once subtracted Roy-like equations up to 1100 MeV

    SciTech Connect (OSTI)

    Garcia-Martin, R.; Pelaez, J. R.; Ruiz de Elvira, J.; Kaminski, R.; Yndurain, F. J.

    2011-04-01

    We improve our description of {pi}{pi} scattering data by imposing additional requirements on our previous fits, in the form of once-subtracted Roy-like equations, while extending our analysis up to 1100 MeV. We provide simple and ready to use parametrizations of the amplitude. In addition, we present a detailed description and derivation of these once-subtracted dispersion relations that, in the 450 to 1100 MeV region, provide an additional constraint which is much stronger than our previous requirements of forward dispersion relations and standard Roy equations. The ensuing constrained amplitudes describe the existing data with rather small uncertainties in the whole region from threshold up to 1100 MeV, while satisfying very stringent dispersive constraints. For the S0 wave, this requires an improved matching of the low and high energy parametrizations. Also for this wave we have considered the latest low energy K{sub l4} decay results, including their isospin violation correction, and we have removed some controversial data points. These changes on the data translate into better determinations of threshold and subthreshold parameters which remove almost all disagreement with previous chiral perturbation theory and Roy equation calculations below 800 MeV. Finally, our results favor the dip structure of the S0 inelasticity around the controversial 1000 MeV region.

  9. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even ...

  10. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security, Safety, Weapon...

  11. Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

    SciTech Connect (OSTI)

    Moustakidis, Ch. C.; Lalazissis, G. A.; Niksic, T.; Vretenar, D.; Ring, P.

    2010-06-15

    The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}MeV fm{sup -3}.

  12. An upper limit to ground state energy fluctuations in nuclear masses

    SciTech Connect (OSTI)

    Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, AP 70-543, 04510 Mexico DF (Mexico); Velazquez, Victor [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, AP 70-348, 04511 Mexico DF (Mexico); Isacker, Piet van [GANIL, BP 55027, F-14076 Caen Cedex 5 (France); Zuker, Andres P. [IReS, Ba27-CNRS/Universite Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2 (France)

    2007-02-12

    Shell model calculations are employed to estimate un upper limit of statistical fluctuations in the nuclear ground state energies. In order to mimic the presence of quantum chaos associated with neutron resonances at energies between 6 to 10 MeV, calculations include random interactions in the upper shells. The upper bound for the energy fluctuations at mid-shell is shown to have the form {sigma}(A) {approx_equal} 20A-1.34 MeV. This estimate is consistent with the mass errors found in large shell model calculations along the N=126 line, and with local mass error estimated using the Garvey-Kelson relations, all being smaller than 100 keV.

  13. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems https://vision.lbl.gov/Software/3DMorphometry/

  14. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  15. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Over Five Years Computational Modeling & Simulation, Energy, News, News & Events, Nuclear Energy, Partnership, Systems Analysis Consortium for Advanced Simulation of...

  16. Nuclear Safety Regulatory Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting

  17. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget | National Nuclear Security Administration | (NNSA) Nuclear Materials Safeguards and Security Upgrade Project Completed Under Budget April 03, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration's (NNSA) Nuclear Materials Safeguards and Security Upgrade Project (NMSSUP) was recently completed approximately $1 million under its original budget of $245 million. NMSSUP upgrades security at Los Alamos National Laboratory's (LANL) Technical Area-55, a facility that houses

  18. Nuclear and Radiochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NR Nuclear and Radiochemistry We provide vital radiochemical and radioanalytical capabilities to a wide range of programs. Contact Us Group Leader Felicia Taw Deputy Group Leader Rich Oldenborg Group Office (505) 667-4546 The Nuclear and Radiochemistry (C-NR) Group provides vital radiochemical and radioanalytical capabilities to a wide range of programs. These programs include maintenance and stewardship of the nuclear stockpile, nuclear non-proliferation, environmental management, international

  19. Energy dependence of fission product yields from 235U, 238U and 239Pu for incident neutron energies between 0.5 and 14.8 MeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; et al

    2016-01-06

    In this study, Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varyingmore » degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual

  20. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  1. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  2. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  3. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  4. President Obama Hosts Global Nuclear Security Summit | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Hosts Global Nuclear Security Summit President Obama Hosts Global Nuclear Security Summit Washington, DC President Obama hosts a Global Nuclear Security Summit to facilitate discussion on the nature of the nuclear threat and develop steps that can be taken together to secure vulnerable materials, combat nuclear smuggling and deter, detect, and disrupt attempts at nuclear terrorism

  5. TENDL-2011: TALYS-based Evaluated Nuclear Data Library

    SciTech Connect (OSTI)

    Rochman, D.; Koning, A. J.

    2012-07-01

    The 4. release of the TENDL library, TENDL-2011 (TALYS-based Evaluated Nuclear Data Library) is described. This library consists of a complete set of nuclear reaction data for incident neutrons, photons, protons, deuterons, tritons, helions and alpha particles, from 10-5 eV up to 200 MeV, for all isotopes from {sup 6}Li to {sup 281}Ds that are either stable of have a half-life longer than 1 second. All data are completely and consistently evaluated using a software system consisting of the TALYS-1.2 nuclear reaction code, and other programs to handle resonance data, experimental data, data from existing evaluations, and to provide the final ENDF-6 formatting. The result is a nuclear data library with mutually consistent reaction information for all isotopes and a quality that increases with yearly updates. To produce this library, TALYS input parameters are adjusted for many nuclides so that calculated cross sections agree with experimental data, while for important nuclides experimental data are directly included. All information is available on www.talys.eu and www.talys.eu/TENDL-2011. (authors)

  6. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect (OSTI)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A.

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  7. Development of a new method for measurement of neutron detector efficiency up to 20 MeV

    SciTech Connect (OSTI)

    Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; Brient, C. E.; Carter, D. E.; O'Donnell, J. E.; Bateman, F. B.; Carlson, A. D.; Haight, R. C.; Boukharouba, N.

    2014-09-03

    A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differ substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.

  8. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect (OSTI)

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; Morley, Deborah J.; Saunders, Alexander

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  9. Recoverable degradation of blue InGaN-based light emitting diodes submitted to 3?MeV proton irradiation

    SciTech Connect (OSTI)

    De Santi, C.; Meneghini, M. Trivellin, N.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Meneghesso, G.; Zanoni, E.

    2014-11-24

    This paper reports on the degradation and recovery of two different series of commercially available InGaN-based blue light emitting diodes submitted to proton irradiation at 3?MeV and various fluences (10{sup 11}, 10{sup 13}, and 10{sup 14}?p{sup +}/cm{sup 2}). After irradiation, we detected (i) an increase in the series resistance, in the sub-turn-on current and in the ideality factor, (ii) a spatially uniform drop of the output optical power, proportional to fluence, and (iii) a reduction of the capacitance of the devices. These results suggest that irradiation induced the generation of non-radiative recombination centers near the active region. This hypothesis is further confirmed by the results of the recovery tests carried out at low temperature (150?C)

  10. Development of a new method for measurement of neutron detector efficiency up to 20 MeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; Brient, C. E.; Carter, D. E.; O'Donnell, J. E.; Bateman, F. B.; Carlson, A. D.; Haight, R. C.; Boukharouba, N.

    2014-09-03

    A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differmore » substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.« less

  11. Cross sections and differential spectra for reactions of 2-20 MeV neutrons on /sup nat/Cr

    SciTech Connect (OSTI)

    Blann, M.; Komoto, T.T.

    1988-01-01

    This report summarizes product yields, secondary n,p and ..cap alpha.. spectra, and ..gamma..-ray spectra calculated for incident neutrons of 2 to 20 MeV on /sup nat/Cr targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,..cap alpha.. spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope. We present product yields versus incident neutron energy, n,p,..cap alpha.. spectra versus incident neutron energy, and calculated ..gamma..-ray spectra.

  12. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  13. Nuclear Material Removal | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Nuclear Material Removal Once weapons-usable nuclear material is no longer required, the Office of Nuclear Material Removal works with global partners and facilities to consolidate, remove and dispose of the excess HEU and plutonium via 1) the U.S.-origin Removal Program that repatriates U.S.-origin HEU and LEU fuel (MTR and TRIGA), 2) the Russian-origin Removal Program that repatriates Russian-origin HEU and separated plutonium, and 3) the Gap Material Program that addresses material

  14. accountability | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    accountability | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  15. transportation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    transportation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  16. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  17. Elastic Scattering of {sup 7}Li+{sup 27}Al at Backward Angles in the 7-11 MeV Energy Range for Application in RBS

    SciTech Connect (OSTI)

    Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Abriola, D.; Capurro, O. A.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Fernandez Niello, J. O.

    2010-08-04

    We have measured elastic excitation functions for the {sup 7}Li+{sup 27}Al system, in an energy range close to its Coulomb barrier (E{sub lab} = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly {alpha} particles), a telescope-detector was used for atomic-number identification. Identical measurements for the {sup 6}Li+{sup 27}Al system are planned for the near future.

  18. Office of Defense Nuclear Nonproliferation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (DOENNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, About This Site Budget IG Web Policy...

  19. Nuclear / Radiological Advisory Team | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) / Radiological Advisory Team NRAT Logo NNSA's Nuclear / Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or radiological incidents. It is led by a Senior Energy Official who runs the NNSA field operation and who coordinates NNSA follow-on assets as needed. The NRAT is composed of scientists and technicians who can provide advice or conduct limited

  20. British nuclear policymaking

    SciTech Connect (OSTI)

    Bowie, C.J.; Platt, A.

    1984-01-01

    This study analyzes the domestic political, economic, and bureaucratic factors that affect the nuclear policymaking process in Great Britain. Its major conclusion is that, although there have been changes in that process in recent years (notably the current involvement of a segment of the British public in the debate about the deployment of intermediate-range nuclear forces), future British nuclear policymaking will remain much what it has been in the past. Three ideas are central to understanding British thinking on the subject: (1) Britain's long-standing resolve to have her own national nuclear force is largely traceable to her desire to maintain first-rank standing among the nations of the world in spite of loss of empire. (2) Financial considerations have always been important--so much so that they have usually dominated issues of nuclear policy. (3) The executive branch of government dominates the nuclear policymaking process but does not always present a united front. The United States heavily influences British nuclear policy through having supplied Britain since the late 1950s with nuclear data and components of nuclear weapon systems such as Polaris and Trident. The relationship works both ways since the U.S. depends on Britain as a base for deployment of both conventional and nuclear systems.

  1. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear

    Office of Environmental Management (EM)

    Safeguards | Department of Energy Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more

  2. Measurements of production cross sections of 10Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sekimoto, S.; Okumura, S.; Yashima, H.; Matsushi, Y.; Matsuzaki, H.; Matsumura, H.; Toyoda, A.; Oishi, K.; Matsuda, N.; Kasugai, Y.; et al

    2015-08-12

    The production cross sections of 10Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies Ep of 120 GeV and 392 MeV. The production cross sections obtained for 10Be and 26Al were compared with those previously reported using Ep = 50 MeV–24 GeV and various targets. It was found that the production cross sections of 10Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10Be decreased asmore » the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10Be and 26Al. As a result, the difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.« less

  3. Nuclear Science References Database

    SciTech Connect (OSTI)

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  4. Nuclear Energy Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  5. Nuclear Energy Safety Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Technologies - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  6. Nuclear Workforce Initiative - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety » Nuclear Security & Nonproliferation Nuclear Security & Nonproliferation President Truman signed the Atomic Energy Act in 1946, creating the Atomic Energy Commission -- which later became a part of the Department of Energy. Read more about the Department of Energy's role in nuclear security in <a href="/node/1041771/">our interactive timeline.</a> | Energy Department Photo. President Truman signed the Atomic Energy Act in 1946, creating the Atomic Energy

  7. Nuclear Proliferation Challenges

    SciTech Connect (OSTI)

    Professor William Potter

    2005-11-28

    William C. Potter, Director of the Center for Non Proliferation Studies and the Center for Russian and Eurasian Studies at the Monterey Institute of International Studies, will present nuclear proliferation challenges following the 2005 Nuclear Non-Proliferation Treaty (NPT) Review Conference. In addition to elucidating reasons for, and implications of, the conferences failure, Dr. Potter will discuss common ground between nuclear proliferation and terrorism issues and whether corrective action can be taken.

  8. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    SciTech Connect (OSTI)

    Kojima, Sadaoki Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi; Nishimura, Yasuhiko; Togawa, Hiromi; Ozaki, Tetsuo; Kato, Ryukou

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is 0.5 MeV for 6.0 MeV electrons.

  11. Impact of the In-medium Nucleon-nucleon Cross Section Modification on Early-reaction-phase Dynamics Below 100 A MeV

    SciTech Connect (OSTI)

    Basrak, Z.; Zoric, M.; Eudes, P.; Sebille, F.

    2009-08-26

    With a semi-classical transport model studied is the impact of the in-medium NN cross section modifications on the early energy transformation, dynamical emission and quasiprojectile properties of the Ar+Ni and Ni+Ni reactions at 52, 74 and 95(90) A MeV.

  12. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Program HALL A Hall A wide shot of detectors Scientists from across the country and around the world use the Thomas Jefferson National Accelerator Facility to ...

  13. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to ...

  14. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colloquium Experiment Research UserResearcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging ...

  15. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Privacy and Security Notice Skip over navigation Search the JLab Site Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical ...

  16. Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25

    To prevent unauthorized dissemination of Unclassified Controlled Nuclear Information (UCNI). Cancels DOE 5635.4 and DOE 5650.3A

  17. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    the University of California for violations of nuclear safety rules at the Los Alamos National Laboratory (LANL) in New Mexico. The University of California operates LANL for ...

  18. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration Savannah River Site 1 NNSA Budget ( Millions) By Program Office FY 2015 Enacted FY 2016 Enacted FY 2017 President Request Delta FY Request Weapon ...

  19. Nuclear Spectra from Skyrmions

    SciTech Connect (OSTI)

    Manton, N. S.

    2009-08-26

    The structures of Skyrmions, especially for baryon numbers 4, 8 and 12, are reviewed. The quantized Skyrmion states are compared with nuclear spectra.

  20. defense nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Defense Nuclear Security http:www.nnsa.energy.govaboutusourprogramsnuclearsecurity

  1. Nuclear criticality safety guide

    SciTech Connect (OSTI)

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  2. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Power Clicks with Geochemistry Energy, News, News & Events, Nuclear Energy Computer Power Clicks with Geochemistry Sandia is developing computer models that show how...

  3. Nuclear Energy University Programs

    Broader source: Energy.gov (indexed) [DOE]

    * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of...

  4. Defense Nuclear Nonproliferation

    National Nuclear Security Administration (NNSA)

    span>

    WASHINGTON D.C - The Department of Energy's National Nuclear Security Administration (DOENNSA) announced today the removal of 36 kilograms...

  5. nuclear threat science

    National Nuclear Security Administration (NNSA)

    2011 National Strategy for Counterterrorism states that the danger of nuclear terrorism is the greatest threat to global security, and affirms preventing terrorist...

  6. Nuclear fuel composition

    DOE Patents [OSTI]

    Feild, Jr., Alexander L.

    1980-02-19

    1. A high temperature graphite-uranium base nuclear fuel composition containing from about 1 to about 5 five weight percent rhenium metal.

  7. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  8. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Operator: Dominion Energy Kewaunee Location and Service Territory: The Kewaunee nuclear plant occupies a 900-acre site in Carlton, Wisconsin, about 35 miles southeast of Green Bay. ...

  9. WIPP Nuclear Facilities Transparency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the safety, security, and legitimate management of nuclear materials." Other Links Yucca Mountain Test Data Carlsbad Environmental Monitoring and Research Center Dimitrovograd Site ...

  10. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    preparedness Read More NSC leader recognized as community role model Read More Apex Gold discussion fosters international cooperation in run-up to 2016 Nuclear Security Summit...

  11. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... agen- cies, scientific advisory panels, and concerned citizens. * As a ... It also prohibited the disposal of high-level radioactive waste and spent nuclear fuel. In 1996, ...

  12. Nuclear reactor apparatus

    DOE Patents [OSTI]

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  13. Reference handbook: Nuclear criticality

    SciTech Connect (OSTI)

    Not Available

    1991-12-06

    The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

  14. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman: Science Overview and the Experimental Program ppt | pdf Tony Thomas: Nuclear Physics ...

  15. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The Department of Energy (DOE), the National Nuclear Security Administration (NNSA) and the University of California (UC) have agreed on new management and operations contracts for ...

  16. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prepared by U.S. Department of Energy National Nuclear Security Administration Nevada Field Office . Environmental Management Operations February 2015 Nevada National Security ...

  17. Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

    SciTech Connect (OSTI)

    Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

    2011-08-31

    Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).

  18. Nuclear Structure and Nuclear Reactions | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility ADLB (Asynchronous Dynamic Load-Balancing) version of GFMC The ADLB (Asynchronous Dynamic Load-Balancing) version of GFMC was used to make calculations of 12C with a complete Hamiltonian (two- and three-nucleon potential AV18+IL7) on 32,000 processors of Intrepid. These are believed to be the best converged ab initio calculations of 12^C ever made. The computed binding energy is 93.5(6) MeV compared to the experimental value of 92.16 MeV and the point rms radius is 2.35 fm vs 2.33

  19. Impact of individual nuclear masses on r-process abundances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mumpower, M. R.; Surman, R.; Fang, D. -L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A.

    2015-09-15

    We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ±0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. As a result, we identify key nuclei whose masses have a substantial impact on abundancemore » predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities.« less

  20. verification | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    verification Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  1. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE LAPIS (LANSCE Proposal Intake System

  2. Nuclear Waste Partnership Contract Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements, implement regimes to reduce nuclear weapons, and detect and dismantle undeclared nuclear programs. Specific subprogram activities include: Implementing current and developing future

  3. Nuclear Energy Enabling Technologies | Department of Energy

    Energy Savers [EERE]

    Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that ...

  4. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; et al

    2013-01-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  5. Mechanism of ternary breakup in the reaction {sup 197}Au+{sup 197}Au at 15A MeV

    SciTech Connect (OSTI)

    Tian Junlong; Wu Xizhen; Li Zhuxia; Zhao Kai; Zhang Yingxun; Li Xian; Yan Shiwei

    2010-11-15

    The mechanism of the ternary breakup of the very heavy system {sup 197}Au+{sup 197}Au at an energy of 15A MeV has been studied by using the improved quantum molecular dynamics model. The calculation results reproduce the characteristic features in ternary breakup events explored in a series of experiments; i.e., the masses of three fragments are comparable in size and the very fast, nearly collinear breakup of the colliding system is dominant in the ternary breakup events. Further, the evolution of the time scales of different ternary reaction modes and the behavior of mass distributions of three fragments with impact parameters are studied. The time evolution of the configurations of the composite reaction systems is also studied. We find that for most of the ternary breakup events with the features found in the experiments, the configuration of the composite system has two-preformed-neck shape. The study shows that those ternary breakup events having the characteristic features found in the experiments happen at relatively small impact parameter reactions, but not at peripheral reactions. The ternary breakup reaction at peripheral reactions belongs to binary breakup with a neck emission.

  6. Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation

    SciTech Connect (OSTI)

    Janne Pakrinen; Marat Khafizov; Lingfeng He; Chris Wetland; Jian Gan; Andrew T. Nelson; David H Hurley; Anter El-Azab; Todd R Allen

    2014-11-01

    The microstructural changes and associated effects on thermal conductivity were examined in UO2 after irradiation using 3.9 MeV He2+ ions. Lattice expansion of UO2 was observed in x-ray diffraction after ion irradiation up to 5×1016 He2+/cm2 at low-temperature (< 200 °C). Transmission electron microscopy (TEM) showed homogenous irradiation damage across an 8 µm thick plateau region, which consisted of small dislocation loops accompanied by dislocation segments. Dome-shaped blisters were observed at the peak damage region (depth around 8.5 µm) in the sample subjected to 5×1016 He2+/cm2, the highest fluence reached, while similar features were not detected at 9×1015 He2+/cm2. Laser-based thermo-reflectance measurements showed that the thermal conductivity for the irradiated layer decreased about 55 % for the high fluence sample and 35% for the low fluence sample as compared to an un-irradiated reference sample. Detailed analysis for the thermal conductivity indicated that the conductivity reduction was caused by the irradiation induced point defects.

  7. Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing Washington, DC President Clinton extends the nuclear weapons testing moratorium for at least 15 months

  8. Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing Washington, DC President Eisenhower announces a moratorium on nuclear weapons testing to begin on October 31, 1958

  9. Nuclear Waste Policy Act Signed | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Waste Policy Act Signed Nuclear Waste Policy Act Signed Washington, DC President Reagan signs the Nuclear Waste Policy Act of 1982, the Nation's first comprehensive nuclear waste legislation

  10. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  11. Office of Nuclear Energy

    Broader source: Energy.gov [DOE]

    The Department of Energy Office of Nuclear Energy advances nuclear power as a resource capable of meeting the Nation's energy, environmental, and national security needs by resolving technical, cost, safety, proliferation resistance, and security barriers through research, development, and demonstration as appropriate.

  12. Vented nuclear fuel element

    DOE Patents [OSTI]

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  13. About NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    of the U.S. nuclear weapons stockpile without nuclear testing; * Preventing the proliferation nuclear weapons and securing dangerous nuclear materials; * Providing the U.S. Navy ...

  14. Civilian Nuclear Programs, SPO-CNP: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civilian Nuclear Programs, SPO-CNP Science Program Office Applied Energy Civilian Nuclear Office of Science Civilian Nuclear Programs Home Advanced Nuclear Energy Programs Yucca ...

  15. Engineering | National Nuclear Security Administration (NNSA...

    National Nuclear Security Administration (NNSA)

    reliability and performance of the current and future U.S. nuclear weapons stockpile. ... engineering components of both the non-nuclear and nuclear explosive package in nuclear ...

  16. NNSA Nuclear/Radiological Incident Response | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) December 01, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and incidents. NNSA provides technical support to the Departments of Homeland Security, Justice, State, and Defense for nuclear terrorism events and domestic nuclear weapon accidents and incidents. The NNSA emergency response assets also provide support to nuclear site and facility accidents and

  17. NNSA Nuclear/Radiological Incident Response | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) January 01, 2009 The National Nuclear Security Administration (NNSA) has more than 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and incidents. NNSA provides technical support to the Departments of Homeland Security, Justice, State, and Defense for nuclear terrorism events and domestic nuclear weapon accidents and incidents. The NNSA emergency response assets also provide support to nuclear site and facility accidents and

  18. Nuclear Security 101 | National Nuclear Security Administration | (NNSA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security 101 March 23, 2012 The goal of United States Government's nuclear security programs is to prevent the illegal possession, use or transfer of nuclear material, technology and expertise or radioactive material. Successful nuclear security relies on the integration of technology, policy, operational concepts and international collaboration to prevent acts of nuclear terrorism. The Basics of Nuclear Security include: Removing or Eliminating Highly Enriched Uranium (HEU) and

  19. Office of Nuclear Threat Science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Nuclear Threat Science The Office of Nuclear Threat Science is responsible for overseeing the Nuclear Counterterrorism Program, an NNSA program that sustains specialized expertise and integrates and executes key activities to advise and enable technical aspects of U.S. Government nuclear counterterrorism and counterproliferation missions. Nuclear Counterterrorism The Nuclear Counterterrorism Program operates in partnership with weapons design-, stockpile science-, weapons surety-,

  20. The Office of Nuclear Energy Announces Central Europe Nuclear Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop in Prague | Department of Energy The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional

  1. World nuclear outlook 1994

    SciTech Connect (OSTI)

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  2. World nuclear outlook 1995

    SciTech Connect (OSTI)

    1995-09-29

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  3. nuclear bombs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    bombs The man who trains everyone on the bombs Mark Meyer, training coordinator and field engineer at Sandia National Laboratories. Over the past five years, Mark Meyer, training coordinator and field engineer at Sandia National Laboratories, has introduced thousands of people across the Department of Energy and Department of Defense nuclear

  4. Preparing for the 2012 Nuclear Security Summit | National Nuclear...

    National Nuclear Security Administration (NNSA)

    over 10 countries - enough for 16 nuclear bombs. A dozen new countries joining the key international treaties. Over a dozen new nuclear security training and research "centers...

  5. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...

  6. Nuclear Weapons Testing Resumes | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Weapons Testing Resumes Nuclear Weapons Testing Resumes Washington, DC The Soviet Union breaks the nuclear test moratorium and the United States resumes testing

  7. Peaceful Uses of Nuclear Technology | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Peaceful Uses of Nuclear Technology United States and China Mark 10th Anniversary of Peaceful Uses of Nuclear Technology Joint Coordination Meetings CHENGDU, CHINA - On May 6 and ...

  8. National Nuclear Science Week Day 2: NNSA Showcases Nuclear Science...

    National Nuclear Security Administration (NNSA)

    2: NNSA Showcases Nuclear Science Careers | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  9. NNSA Celebrates National Nuclear Science Week | National Nuclear...

    National Nuclear Security Administration (NNSA)

    National Nuclear Science Week | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  10. National Nuclear Science Week - Jan. 24-28 | National Nuclear...

    National Nuclear Security Administration (NNSA)

    - Jan. 24-28 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  11. JPRS report supplement: Nuclear developments. Iraq -- Nuclear and missile proliferation

    SciTech Connect (OSTI)

    1990-09-14

    This document contains articles from foreign periodicals from throughout the world, translated into English, that concern nuclear developments, specifically nuclear and missile proliferation in Iraq.

  12. Last U.S. Underground Nuclear Test Conducted | National Nuclear...

    National Nuclear Security Administration (NNSA)

    U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  13. Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory...

    Office of Legacy Management (LM)

    111989 Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia. Pennsylvania 19406 Dear Mr. Kinneman: -;' .-. 'W ...

  14. Nuclear Safety Information Agreement Between the U.S. Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    DOE), Cathy Haney (Director, Office of Nuclear Materials Safety and Safeguards (NRC)), ... (NRC)) Back Row: Tom Hiltz, Office of Nuclear Safety (EHSS DOE), Roy Zimmerman (Deputy ...

  15. Electric Power Produced from Nuclear Reactor | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor Arco, ID The Experimental Breeder Reactor No. 1 located at the National Reactor Testing ...

  16. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE

  17. hrp | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    hrp Personnel Security Program NNSA is responsible for managing national nuclear security and supports several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and Administration and the Office of the Administrator.

  18. Supporting Our Nation's Nuclear Industry

    ScienceCinema (OSTI)

    Lyons, Peter

    2013-05-29

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  19. Nuclear reaction analysis for H, Li, Be, B, C, N, O and F with an RBS check

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lanford, W. A.; Parenti, M.; Nordell, B. J.; Paquette, M. M.; Caruso, A. N.; Mäntymäki, M.; Hämäläinen, J.; Ritala, M.; Klepper, K. B.; Miikkulainen, V.; et al

    2015-11-12

    In this paper, 15N nuclear reaction analysis (NRA) for H is combined with 1.2 MeV deuteron (D) NRA which provides a simultaneous analysis for Li, Be, B, C, N, O and F. The energy dependence of the D NRA has been measured and used to correct for the D energy loss in film being analyzed. A 2 MeV He RBS measurement is made. Film composition is determined by a self-consistent analysis of the light element NRA data combined with an RBS analysis for heavy elements. This composition is used to simulate, with no adjustable parameters, the complete RBS spectrum. Finally,more » comparison of this simulated RBS spectrum with the measured spectrum provides a powerful check of the analysis.« less

  20. nr | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nr On Womens Equality Day, we celebrate NNSA's talented Women in STEM About Naval Reactors What Is the Naval Nuclear Propulsion Program? The Naval Nuclear Propulsion Program comprises the military and civilian personnel who design, build, operate, maintain, and manage the nuclear-powered ships and the many facilities that support the U.S. nuclear-powered naval fleet. The Program... Powering the Nuclear Navy Concern for the Environment Protection of People Naval Nuclear Propulsion Plants Annual

  1. Nuclear Safety | Department of Energy

    Office of Environmental Management (EM)

    Criticality Safety The Nuclear Facility Safety Program establishes and maintains the DOE requirements for nuclear criticality safety. The DOE detailed requirements for criticality ...

  2. Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA, through its Office of Defense Nuclear Nonproliferation (DNN), works closely ...

  3. Newsletters | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the nuclear security enterprise. Online archives are available back to 2003. NNSA publishes a monthly newsletter featuring current events and activities across the nuclear ...

  4. performance | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    performance | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  5. computing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    computing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  6. sites | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sites | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  7. airport | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    airport | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  8. Romania | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Romania | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  9. ap | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ap | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  10. lllnl | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    lllnl | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  11. Links | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  12. fleet | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fleet | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  13. NSTec | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  14. Savannah | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  15. green | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  16. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  17. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and technology. The United States relies on Los Alamos National ...

  18. Deputy Manager for Nuclear Energy

    Broader source: Energy.gov [DOE]

    The Department of Energy's Office of Nuclear Energy (NE) advances nuclear power as a resource capable of meeting the Nation's energy, environmental, and national security needs by resolving...

  19. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  20. SSAC | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    SSAC NNSA and IAEA Hold the 20th International Training Course on Nuclear Material Accounting and Control Washington, D.C. - The National Nuclear Security Administration (NNSA)...

  1. ONAC | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ONAC NNSA and IAEA Hold the 20th International Training Course on Nuclear Material Accounting and Control Washington, D.C. - The National Nuclear Security Administration (NNSA)...

  2. recycling | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    recycling | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  3. dnn | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (DOENNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, Shaping the future of nuclear...

  4. sliderphotos | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sliderphotos | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  5. Defense Nuclear Facility Safety Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 Defense Nuclear Facility Safety Board Defense Nuclear Facility Safety Board (DNSFB) Vice Chairwoman Jesse Roberson visited and toured the WIPP site this week. While...

  6. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  7. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  8. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  9. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  10. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  11. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  12. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  13. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  14. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  15. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  16. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  17. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  18. Australia | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Australia | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  19. Nuclear Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the ...

  20. testmenu | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testmenu | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  1. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  2. Nuclear forensics: Soil content

    SciTech Connect (OSTI)

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  3. Virtual nuclear weapons

    SciTech Connect (OSTI)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  4. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  5. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  6. TUNL Nuclear Data Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Levels of Light Nuclei, A = 3 - 20 Nuclear Data Evaluation Project Triangular Universities Nuclear Laboratory TUNL Nuclear Data Evaluation Home Page Information on mass chains and nuclides 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Group Info Publications HTML General Tables Level Diagrams Tables of EL's NSR Key# Retrieval ENSDF Excitation Functions Thermal N Capt. G.S. Decays TUNL Dissertations NuDat at BNL Useful Links Citation Examples Home Sitemap Directory Email Us Search WWW

  7. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  8. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) – Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : • Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. • Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. • Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. • Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. • Supporting industry in helping to create a larger qualified nuclear supplier network. • Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. • Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. • Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with

  9. Generation of 500 MeV-1 GeV energy electrons from laser wakefield acceleration via ionization induced injection using CO{sub 2} mixed in He

    SciTech Connect (OSTI)

    Mo, M. Z.; Ali, A.; Fedosejevs, R.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.

    2013-04-01

    Laser wakefield acceleration of 500 MeV to 1 GeV electron bunches has been demonstrated using ionization injection in mixtures of 4% to 10% of CO{sub 2} in He. 80 TW laser pulses were propagated through 5 mm gas jet targets at electron densities of 0.4-1.5 Multiplication-Sign 10{sup 19}cm{sup -3}. Ionization injection led to lower density thresholds, a higher total electron charge, and an increased probability of producing electrons above 500 MeV in energy compared to self-injection in He gas alone. Electrons with GeV energies were also observed on a few shots and indicative of an additional energy enhancement mechanism.

  10. R-Matrix Evaluation of 16O Neutron Cross Sections up to 6.3 MeV

    SciTech Connect (OSTI)

    Sayer, R.O.

    2000-08-21

    In this paper we describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes method, a generalized least squares technique. Over the years the nuclear community has developed a collection of evaluated nuclear data for applications in thermal, fast reactor, and fusion systems. However, typical neutron spectra in criticality safety applications are different from the spectra relevant to thermal, fast reactor, and fusion systems. In fact, the neutron spectra important for these non-reactor systems appear to peak in the epithermal energy range. Nuclear data play a major role in the calculation of the criticality safety margins for these systems. A thorough examination of how the present collection of nuclear data evaluations behaves in criticality safety calculations is needed. Many older evaluations will probably need to be revised, and new evaluations will be needed. Oxygen is an important element in criticality safety applications where oxides are present in significant abundance. The existing ENDF/B-VI.5 evaluation is expressed in terms of point-wise cross sections derived from the analysis of G. Hale [HA91]. Unfortunately such an evaluation is not directly useful for resonance analysis of data from samples in which oxygen is combined with other elements; for that purpose, Reich-Moore resonance parameters are needed. This paper addresses the task of providing those parameters. In the following sections we discuss the data, resonance analysis procedure, and results.

  11. nuclear forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    forensics NNSA chief visits New Mexico laboratories NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited NNSA's New Mexico laboratories last week. At Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), Klotz addressed the workforces of both labs on how the FY17 budget request supports NNSA's missions, and he got a first-... NNSA Hosts International Nuclear Forensics Workshop with Participants from Eight Countries WASHINGTON, D.C. - During May 11-22, the National

  12. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7

  13. Nuclear reactors and the nuclear fuel cycle

    SciTech Connect (OSTI)

    Pearlman, H

    1989-11-01

    According to the author, the first sustained nuclear fission chain reaction was not at the University of Chicago, but at the Oklo site in the African country of Gabon. Proof of this phenomenon is provided by mass spectrometric and analytical chemical measurements by French scientists. The U.S. experience in developing power-producing reactors and their related fuel and fuel cycles is discussed.

  14. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hear and ask questions about her experience traveling Europe as a nuclear tourist. The Babcock & Wilcox Company Suzy Hobbs Baker Founder of PopAtomic Studios Director of the ...

  15. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Does not cancel/supersede other directives. Certified 11-18-10.

  16. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    and net generation, 2010 Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn ... "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." ...

  17. Nuclear Reactor Technologies

    Broader source: Energy.gov [DOE]

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%)...

  18. Western Nuclear Science Alliance

    SciTech Connect (OSTI)

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  19. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  20. Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    Michael F. Simpson; Jack D. Law

    2010-02-01

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  1. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  2. Nuclear Material Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Supersedes DOE M 441.1-1, dated 3-7-08.

  3. Direct nuclear pumped laser

    DOE Patents [OSTI]

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  4. defense nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Defense Nuclear Security http:nnsa.energy.govaboutusourprogramsnuclearsecurity

    Page...

  5. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  6. Nuclear Emergency Search Team

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20

    To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

  7. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  8. TEPP- Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel.  This exercise manual is one in...

  9. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Location and Service Territory: The Grand Gulf nuclear station lies on a 2,100-acre site near Vicksburg. Construction Cost: 6.325 billion (2007 USD)2 Staffing: Grand Gulf has over ...

  10. INL '@work' Nuclear Engineer

    SciTech Connect (OSTI)

    McLean, Heather

    2008-01-01

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  11. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of ...

  12. JPRS report, nuclear developments

    SciTech Connect (OSTI)

    1991-03-28

    This report contains articles concerning the nuclear developments of the following countries: (1) China; (2) Japan, North Korea, South Korea; (3) Bulgaria; (4) Argentina, Brazil, Honduras; (5) India, Iran, Pakistan, Syria; (6) Soviet Union; and (7) France, Germany, Turkey.

  13. General Nuclear Date

    Energy Science and Technology Software Center (OSTI)

    2010-10-27

    Provides python rountines to convert ENDF-6 formatted nuclear data (4) into the new GND structure. Includes sample published ENDF-6 formatted data as well as published ENSL (5) and HDF5 file.

  14. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    96.7 BWR 6301971 982030 554 4,695 96.7 Data for 2010 BWR Boiling Water Reactor. ... 520 full-time and contract employees. Reactor Descriptions: The nuclear generating unit ...

  15. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    85.5 BWR 1211969 492029 615 4,601 85.5 Data for 2010 BWR Boiling Water Reactor. ... not including security personnel. Reactor Descriptions: The nuclear generating unit ...

  16. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Entergy Nuclear Generation Co 1 Plant 1 Reactor 685 5,918 100.0 Note: Totals may not ... 98.7 BWR 1211972 682012 685 5,918 98.7 Data for 2010 BWR Boiling Water Reactor. ...

  17. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Entergy Nuclear Generation Co 1 Plant 1 Reactor 685 5,918 100.0 Owner Note: Totals may ... Data for 2010 BWR Boiling Water Reactor. Source: Form EIA-860, "Annual Electric ...

  18. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Entergy Nuclear Vermont Yankee 1 Plant 1 Reactor 620 4,782 100.0 Note: Totals may not ... 88.0 BWR 11301972 3212012 620 4,782 88.0 Data for 2010 BWR Boiling Water Reactor. ...

  19. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Share of State nuclear net generation (percent) Cooper 1 767 6,793 101.1 BWR 711974 1182014 767 6,793 101.1 Data for 2010 BWR Boiling Water Reactor. Source: Form EIA-860, ...

  20. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Yankee Unit 1 620 4,782 100.0 Entergy Nuclear Vermont Yankee 1 Plant 1 Reactor 620 4,782 100.0 Owner Note: Totals may not equal sum of components due to independent rounding. ...

  1. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  2. Nuclear Energy Advisory Committee

    Broader source: Energy.gov (indexed) [DOE]

    ... aging of used nuclear fuel in storage (dry casks). ... fast reactors has been signed with France and Japan. ... the Air Force asked for SMRs to power air force bases. ...

  3. Advanced Nuclear Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WHEN: Apr 29, 2016 6:00 PM - 8:00 PM WHERE: National Museum of Nuclear Science & History, ... enabled the rapid expansion and testing of capabilities, while others have ...

  4. General Engineer / Nuclear Engineer

    Broader source: Energy.gov [DOE]

    The Idaho Operations Office (DOE-ID) manages and oversees work done at the Idaho National Laboratory (INL), the DOE's lead nuclear energy laboratory in the United States. DOE-ID supports the...

  5. Nuclear Energy Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NEI) Summit Presentation University-Industry- Laboratory Partnerships: Gauging Effectiveness Douglas Kothe, CASL Director Oak Ridge National Laboratory February 26, 2014 CASL-U-2014-0355-000 CASL-U-2014-0355-000 University-Industry-Laboratory Partnerships Gauging Effectiveness CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub Douglas B. Kothe Oak Ridge National Laboratory Director, CASL 9 th Nuclear Energy R&D Summit Nuclear Energy Institute

  6. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  7. Protecting Against Nuclear Threats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Against Nuclear Threats Protecting Against Nuclear Threats Los Alamos' mission is to solve national security challenges through scientific excellence. April 12, 2012 Los Alamos researchers use a magnetic field detector to screen carry-on liquids at airports Los Alamos researchers use a magnetic field detector to screen carry-on liquids at airports: MagViz project leader Michelle Espy demonstrates the MagViz liquid detection and analysis system in the Albuquerque International Sunport.

  8. Nuclear fuel element

    DOE Patents [OSTI]

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  9. American Nuclear Society Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ans awards American Nuclear Society Awards Established in 1999 by the Fusion Energy Division of the American Nuclear Society (ANS) and named after LLNL's co-founder, the Edward Teller Medal recognizes pioneering research and leadership in the use of laser and ion-particle beams to produce unique high-temperature and high-density matter for scientific research and for controlled thermonuclear fusion. Name Year Name of Award and Citation Susana Reyes 2012 Mary Jane Oestmann Professional Women's

  10. Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  11. Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2006, the National Nuclear Security Administration (NNSA) announced the selection of National Security Technologies, LLC (NSTec) to manage and operate the Nevada Test Site (NTS) for the NNSA Nevada Site Office. The contract, valued at approxi- mately $500 million annually, is for five years. There are poten- tially five additional perform- ance-based award-term years available under this contract. NSTec is made up of Northrop Grumman, AECOM, CH2M Hill, and Nuclear Fuel Services. Dr. James E.

  12. Monthly/Annual Energy Review - nuclear section

    Reports and Publications (EIA)

    2015-01-01

    Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

  13. Nuclear Safety Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Information Nuclear Safety Information Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Nuclear Facilities List and Map Nuclear Safety Regulatory Framework Summary Pamphlet, Nuclear Safety at the Department of Energy External Nuclear Safety Links Nuclear Regulatory Commission (NRC) Defense Nuclear Facilities Safety Board Contact Tom Staker

  14. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick {sup 9}Be target and estimation of neutron yields

    SciTech Connect (OSTI)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P. E-mail: tripathy@barc.gov.in; Sunil, C.; Bandyopadhyay, T.; Sharma, S. C.; Ramjilal,; Ninawe, N. G.; Gupta, A. K.

    2014-06-15

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0 with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK-n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  15. Nuclear Weapons Life Cycle | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Nuclear Weapons Life Cycle Nuclear weapons are developed, produced, and maintained in the stockpile, and then retired and dismantled. This sequence of events is known as the nuclear weapons life cycle. The Department of Energy (DOE) through the National Nuclear Security Administration (NNSA) and in partnership with Department of Defense (DoD) conducts activities in a joint nuclear weapons life cycle process. The major steps, or phases, of the life cycle are described below. Currently,

  16. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Programs Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and

  17. Reducing the Nuclear Weapons Stockpile | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Reducing the Nuclear Weapons Stockpile January 01, 2009 The Department of Energy's National Nuclear Security Administration (NNSA) is responsible for maintaining the safety, security and reliability of the U.S. nuclear weapons stockpile. In doing so, it ensures that the U.S. nuclear deterrent meets the needs of the 21st century. The current U.S. nuclear weapons stockpile is the lowest it has been since the Eisenhower Administration. Dismantlement of the W79 was

  18. Fifty years of nuclear fission: Nuclear data and measurements series

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and measurements series This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and

  19. Indonesia | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Indonesia NNSA Announces Elimination of Highly Enriched Uranium (HEU) from Indonesia All of Southeast Asia Now HEU-Free (WASHINGTON, D.C.) - The U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA), Indonesian Nuclear Industry, LLC (PT INUKI), the National Nuclear Energy Agency (BATAN), and the Nuclear Energy Regulatory Agency (BAPETEN) of the

  20. Chile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Chile NNSA Hosts International Nuclear Forensics Workshop with Participants from Eight Countries WASHINGTON, D.C. - During May 11-22, the National Nuclear Security Administration's (NNSA) Nuclear Smuggling Detection and Deterrence program held a hands-on nuclear forensics course at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. The "International Training Course on