Sample records for mev g-1cm2 nuclear

  1. The response of CR-39 nuclear track detector to 1–9 MeV protons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Gatu Johnson, M.; Séguin, F. H.; Frenje, J. A.; et al

    2011-10-28T23:59:59.000Z

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92–9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. Effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than themore »age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less

  2. The response of CR-39 nuclear track detector to 1–9 MeV protons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Gatu Johnson, M.; Séguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-10-28T23:59:59.000Z

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92–9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. Effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  3. Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV

    SciTech Connect (OSTI)

    Young, P.G.; Chadwick, M.B.; Bosoian, M.

    1992-12-01T23:59:59.000Z

    The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

  4. Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV

    SciTech Connect (OSTI)

    Young, P.G.; Chadwick, M.B.; Bosoian, M.

    1992-01-01T23:59:59.000Z

    The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

  5. Proton-induced cross-sections of nuclear reactions on lead up to 37 MeV

    E-Print Network [OSTI]

    F. Ditrói; F. Tárkányi; S. Takács; A. Hermanne

    2014-11-07T23:59:59.000Z

    Excitation function of proton induced nuclear reactions on lead for production of $^{206,205,204,203,202,201g}$Bi, $^{203cum,202m,201cum}$Pb and $^{202cum,201cum,200cum,199cum}$Tl radionuclides were measured up to 36 MeV by using activation method, stacked foil irradiation technique and $\\gamma$-ray spectrometry. The new experimental data were compared with the few earlier experimental results and with the predictions of the EMPIRE3.1, ALICE-IPPE (MENDL2p) and TALYS (TENDL-2012) theoretical reaction codes.

  6. Determination of the cross sections of (n,2n), (n,gamma) nuclear reactions on germanium isotopes at the energy of neutrons 13.96 MeV

    E-Print Network [OSTI]

    S. V. Begun; O. G. Druzheruchenko; O. O. Pupirina; V. K. Tarakanov

    2007-01-23T23:59:59.000Z

    The cross sections of 70Ge(n,2n)69Ge, 72Ge(n,2n)71Ge, 76Ge(n,gamma)77(g+0.21m)Ge, 76Ge(n,2n)75Ge nuclear reactions were measured at the energy of neutrons 13.96(6) MeV by activation method with gamma-ray and X-ray spectra studies.

  7. Testing nuclear forces by polarization transfer coefficients in d(\\vec p, \\vec p)d and d(\\vec p,\\vec d)p reactions at E^{lab}_p = 22.7 MeV

    E-Print Network [OSTI]

    H. Witala; J. Golak; R. Skibinski; W. Glockle; A. Nogga; E. Epelbaum; H. Kamada; A. Kievsky; M. Viviani

    2006-01-24T23:59:59.000Z

    The proton to proton polarization transfer coefficients K_x^{x'}, K_y^{y'}, K_z^{x'} and the proton to deuteron polarization transfer coefficients K_x^{x'}, K_y^{y'}, K_z^{x'}, K_x^{y'z'}, K_y^{z'z'}, K_z^{y'z'}, K_y^{x'z'} and K_y^{x'x'-y'y'} have been measured in d(\\vec p, \\vec p)d and d(\\vec p, \\vec d)p reactions at E^{lab}_p = 22.7 MeV, respectively. The data have been compared to predictions of modern nuclear forces obtained by solving the three-nucleon Faddeev equations in momentum space. Realistic (semi) phenomenological nucleon-nucleon potentials combined with model three-nucleon forces and modern chiral nuclear forces have been used. The AV18, CD Bonn, Nijm I and II nucleon-nucleon interactions have been applied alone or combined with the Tucson-Melbourne 99 three-nucleon force, adjusted separately for each potential to reproduce the triton binding energy. For the AV18 potential also the Urbana IX three-nucleon force have been used. In addition chiral NN potentials in the next-to-leading-order and chiral two- and three-nucleon forces in the next-to-next-to-leading-order have been applied. Only when three-nucleon forces are included a satisfactory description of all data results. For the chiral approach the restriction to the forces in the next-to-leading order is insufficient. Only when going over to the next-to-next-to-leading order one gets a satisfactory description of the data, similar to the one obtained with the (semi) phenomenological forces.

  8. Report to the DOE nuclear data committee. [EV RANGE 10-100; CROSS SECTIONS; PHOTONEUTRONS; NEUTRONS; GAMMA RADIATION; COUPLED CHANNEL THEORY; DIFFERENTIAL CROSS SECTIONS; MEV RANGE 01-10; ; CAPTURE; GAMMA SPECTRA; THERMAL NEUTRONS; COMPUTER CALCULATIONS; DECAY; FISSION PRODUCTS; FISSION YIELD; SHELL MODELS; NUCLEAR DATA COLLECTIONS

    SciTech Connect (OSTI)

    Struble, G.L.; Haight, R.C.

    1981-03-01T23:59:59.000Z

    Topics covered include: studies of (n, charged particle) reactions with 14 to 15 MeV neutrons; photoneutron cross sections for /sup 15/N; neutron radiative capture; Lane-model analysis of (p,p) and (n,n) scattering on the even tin isotopes; neutron scattering cross sections for /sup 181/Ta, /sup 197/Au, /sup 209/Bi, /sup 232/Th, and /sup 238/U inferred from proton scattering and charge exchange cross sections; neutron-induced fission cross sections of /sup 245/Cm and /sup 242/Am; fission neutron multiplicities for /sup 245/Cm and /sup 242/Am; the transport of 14 MeV neutrons through heavy materials 150 < A < 208; /sup 249/Cm energy levels from measurement of thermal neutron capture gamma rays; /sup 231/Th energy levels from neutron capture gamma ray and conversion electron spectroscopy; new measurements of conversion electron binding energies in berkelium and californium; nuclear level densities; relative importance of statistical vs. valence neutron capture in the mass-90 region; determination of properties of short-lived fission products; fission yield of /sup 87/Br and /sup 137/I from 15 nuclei ranging from /sup 232/Th to /sup 249/Cf; evaluation of charged particle data for the ECPL library; evaluation of secondary charged-particle energy and angular distributions for ENDL; and evaluated nuclear structure libraries derived from the table of isotopes. (GHT)

  9. Isoscalar Transition Rates Via Ca-40, Pb-208(alpha,alpha') at 79 Mev

    E-Print Network [OSTI]

    Rutledge, L. L.; Hiebert, John C.

    1976-01-01T23:59:59.000Z

    at &.62, and the 5 levels at 3.22 and 3.73 MeV. The analysis of the Coulomb and nuclear interference for the 2+ level at 4.09 MeU indicates that pc I b = 1.2p I ~ A folding model analysis has been made for the 3.73-MeV (3 ) and 3.90-MeV (2+) levels.... Technique (n, o)E =79.1 MeV ' Bernstein's prescription Direct term only Direct + exchange (a.', Q E =104 MeV (u, u) E =140 MeV (of, g E =166 MeV Coulomb energy difference (P,P) E&=30 MeV (P,P) P~ =19.3 GeV/g Coherent (y, x') Coherent (y, p)" (~2...

  10. Chapter 14. (Nuclear Chemistry) 2) (microscopic) .

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    .60217646 10 E c m m s kg J J MeV J MeV - - - - - - = = × × = × × = = × 1 u (energy equivalent) 931.494 MeV , 4 1 ( 8.39869 10 )(931.494 ) 0.782E u MeV u MeV- - = - × = (nuclear binding energy) BE E . 4 2 He- - ) : (positron, 0 1 e+ ) : (neutrino, ) : (antineutrino, ) (annihilation radiation): . (gamma ray) (beta decay

  11. Fast neutron scattering on Gallium target at 14.8 MeV

    E-Print Network [OSTI]

    R. Han; R. Wada; Z. Chen; Y. Nie; X. Liu; S. Zhang; P. Ren; B. Jia; G. Tian; F. Luo; W. Lin; J. Liu; F. Shi; M. Huang; X. Ruan; J. Ren; Z. Zhou; H. Huang; J. Bao; K. Zhang; B. Hu

    2014-11-03T23:59:59.000Z

    Benchmarking of evaluated nuclear data libraries was performed for $\\sim 14.8$ MeV neutrons on Gallium targets. The experiments were performed at China Institute of Atomic Energy(CIAE). Solid samples of natural Gallium (3.2 cm and 6.4 cm thick) were bombarded by $\\sim 14.8$ MeV neutrons and leakage neutron energy spectra were measured at 60$^{\\circ}$ and 120$^{\\circ}$. The measured spectra are rather well reproduced by MCNP-4C simulations with the CENDL-3.1, ENDF/B-VII and JENDL-4.0 evaluated nuclear data libraries, except for the inelastic contributions around $E_{n} = 10-13$ MeV. All three libraries significantly underestimate the inelastic contributions. The inelastic contributions are further studied, using the Talys simulation code and the experimental spectra are reproduced reasonably well in the whole energy range by the Talys calculation, including the inelastic contributions.

  12. Fast neutron scattering on Gallium target at 14.8 MeV

    E-Print Network [OSTI]

    Han, R; Chen, Z; Nie, Y; Liu, X; Zhang, S; Ren, P; Jia, B; Tian, G; Luo, F; Lin, W; Liu, J; Shi, F; Huang, M; Ruan, X; Ren, J; Zhou, Z; Huang, H; Bao, J; Zhang, K; Hu, B

    2014-01-01T23:59:59.000Z

    Benchmarking of evaluated nuclear data libraries was performed for $\\sim 14.8$ MeV neutrons on Gallium targets. The experiments were performed at China Institute of Atomic Energy(CIAE). Solid samples of natural Gallium (3.2 cm and 6.4 cm thick) were bombarded by $\\sim 14.8$ MeV neutrons and leakage neutron energy spectra were measured at 60$^{\\circ}$ and 120$^{\\circ}$. The measured spectra are rather well reproduced by MCNP-4C simulations with the CENDL-3.1, ENDF/B-VII and JENDL-4.0 evaluated nuclear data libraries, except for the inelastic contributions around $E_{n} = 10-13$ MeV. All three libraries significantly underestimate the inelastic contributions. The inelastic contributions are further studied, using the Talys simulation code and the experimental spectra are reproduced reasonably well in the whole energy range by the Talys calculation, including the inelastic contributions.

  13. The Corrosion of Materials in Water Irradiated by 800 MeV Protons

    E-Print Network [OSTI]

    1 The Corrosion of Materials in Water Irradiated by 800 MeV Protons R.S. Lillard, D.L. PileW , D.P. Butt* Materials Corrosion and Environmental Effects Lab Materials Science and Technology Division, MST the real-time corrosion rates for Alloy 718, stainless steels 304L and 316L nuclear grade, aluminum alloys

  14. Non-statistical decay and -correlations in the1 C fusion-evaporation reaction at 95 MeV2

    E-Print Network [OSTI]

    Boyer, Edmond

    NUCLEAR REACTIONS 12C(12C,X), E = 95 AMeV, Measured Fusion-evaporation32 reactions, Observed deviationNon-statistical decay and -correlations in the1 12 C+12 C fusion-evaporation reaction at 95 MeV2 L. Multiple alpha coincidences and correlations are studied in the reaction21 12 C+12 C at 95 MeV for fusion

  15. Measurement of the H-1(d-],N-])Pp Transverse Polarization Transfer-Coefficient at 42.8 Mev

    E-Print Network [OSTI]

    Nath, S.; Graves, R. G.; Hiebert, John C.; Northcliffe, L. C.; Woolverton, H. L.; York, R. L.; Brown, R. E.; Doleschall, P.

    1983-01-01T23:59:59.000Z

    ) The transverse polarization transfer coefficient K~ has been measured for the reaction 'H(d, n)pp at 0 for Ed ?42. 8 MeV as a function of breakup neutron energy. For the high-energy neutrons (E?&28 MeV) the average value for E~ is close to 0.6, in conformity... with the prediction of a simple stripping or spectator model for polarization transfer in deuteron stripping reactions. Good agreement is found with available Faddeev calculations. NUCLEAR REACTIONS 'H(d, n)pp, Ed ?42.8 MeV; measured E~ for Ohb ?0', stripping...

  16. Calculational analysis of structural activation induced by 20-100 MeV proton beam loss in high-power linear accelerators

    E-Print Network [OSTI]

    Lee, Stacey Kirsten

    1994-01-01T23:59:59.000Z

    fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1994 Major Subject: Nuclear Engineering CALCULATIONAL ANALYSIS OF STRUCTURAL ACTIVATION INDUCED BY 20-100 MEV PROTON BEAM LOSS IN HIGH-POWER LINEAR ACCELERATORS A Thesis...) Carl A. Beard (Member) / John . Poston (Head of Department) August 1994 Major Subject: Nuclear Engineering ABSTRACT Calculational Analysis of Structural Activation Induced by 20-100 MeV Proton Beam Loss in High-Power Linear Accelerators. (August...

  17. Nuclear Lattice Simulations with EFT

    E-Print Network [OSTI]

    Dean Lee

    2004-08-17T23:59:59.000Z

    This proceedings article is a summary of results from work done in collaboration with Bugra Borasoy and Thomas Schaefer. We study nuclear and neutron matter by combining chiral effective field theory with non-perturbative lattice methods. We present results for hot neutron matter at temperatures 20 to 40 MeV and densities below twice nuclear matter density.

  18. Soft nuclear equations of state for super-massive neutron star

    E-Print Network [OSTI]

    Soft nuclear equations of state for super-massive neutron star K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract Two new nuclear equations of state (EOSs) are proposed and are applied to neutron star (NS). They predict the incompressibilities K0 = 179MeV and 230MeV, respectively. The density dependencies of nuclear

  19. Cross sections from proton irradiation of thorium at 800 MeV

    E-Print Network [OSTI]

    Jonathan W. Engle; Stepan G. Mashnik; John W. Weidner; Laura E. Wolfsberg; Michael E. Fassbender; Kevin Jackman; Aaron Couture; Leo J. Bitteker; John L. Ullmann; Mark S. Gulley; Chandra Pillai; Kevin D. John; Eva R. Birnbaum; Francois M. Nortier

    2013-07-01T23:59:59.000Z

    Nuclear formation cross sections are reported for 65 nuclides produced from 800-MeV proton irradiation of thorium foils. These data are useful as benchmarks for computational predictions in the ongoing process of theoretical code development and also to the design of spallation-based radioisotope production currently being considered for multiple radiotherapeutic pharmaceutical agents. Measured data are compared with the predictions of three MCNP6 event generators and used to evaluate the potential for 800-MeV productions of radioisotopes of interest for medical radiotherapy. In only a few instances code predictions are discrepant from measured values by more than a factor of two, demonstrating satisfactory predictive power across a large mass range. Similarly, agreement between measurements presented here and those previously reported is good, lending credibility to predictions of target yields and radioimpurities for high-energy accelerator-produced radionuclides.

  20. Proton Angular Distribution for 90 Mev Neutron-proton Scattering

    E-Print Network [OSTI]

    Hadley, James

    2010-01-01T23:59:59.000Z

    recoil protons in neutron -proton scattering at 90 Mev hasFOR 90 lWEV NEUTRON-PROTON SCATTERING James Hadley, Cecil E.

  1. Analyzing Power for He-4(n-],N)he-4 Elastic-Scattering at 50.4 Mev

    E-Print Network [OSTI]

    York, R. L.; Hiebert, John C.; Woolverton, H. L.; Northcliffe, L. C.

    1983-01-01T23:59:59.000Z

    by means of a phase-shift analysis and are found to be in good agreement (except perhaps in the negative minimum) when Coulomb corrections to the phase shifts are taken into account. NUCLEAR REACTIONS He(n, n) He, E?=50.4 MeV; measured A~ vs 0 for 80... is the simplest process yielding insight into the spin-dependent part of the nuclear interaction, and a comparison of p- He and n- He scattering provides a test of our ability to separate Coulomb from nuclear effects and leads to a test of the validity...

  2. Calculational methods used to obtain evaluated data above 3 MeV

    SciTech Connect (OSTI)

    Arthur, E.D.

    1980-01-01T23:59:59.000Z

    Calculational methods used to provide evaluated neutron data for nuclei between A = 19 and 220 at incident energies above several MeV range from empirical techniques based on cross-section systematics to sophisticated nuclear-model codes that describe the major mechanisms governing neutron reactions in this mass and energy range. Examples of empirical approaches are given along with discussion concerning regions of applicability and accuracies that can be expected. The application of more sophisticated nuclear models (Hauser-Feshbach statistical, preequilibrium, and direct-reaction theories) is discussed, particularly with regard to improved parameter determinations that can be used in such calculations. Efforts to improve the consistency and to unify these theoretical approaches are addressed along with benefits to evaluated data that can be realized through careful application of such nuclear-model techniques. 76 references, 13 figures, 3 tables.

  3. Heliospheric MeV energization due to resonant interaction

    E-Print Network [OSTI]

    California at Berkeley, University of

    Heliospheric MeV energization due to resonant interaction Ilan Roth1 Space Sciences Laboratory energetic heavy ions during active solar periods are of major importance with respect to the proper. Such processes may violate one or more invariants while preserving the other(s). Solar MeV ions are frequently

  4. NEUTRON CROSS SECTION COVARIANCES FROM THERMAL ENERGY TO 20 MeV.

    SciTech Connect (OSTI)

    ROCHMAN,D.; HERMAN, M.; OBLOZINSKY, P.; MUGHABGHAB, S.F.; PIGNI, M.; KAWANO, T.

    2007-04-27T23:59:59.000Z

    We describe new method for energy-energy covariance calculation from the thermal energy up to 20 MeV. It is based on three powerful basic components: (i) Atlas of Neutron Resonances in the resonance region; (ii) the nuclear reaction model code EMPIRE in the unresolved resonance and fast neutron regions, and (iii) the Bayesian code KALMAN for correlations and error propagation. Examples for cross section uncertainties and correlations on {sup 90}Zr and {sup 193}Ir illustrate this approach in the resonance and fast neutron regions.

  5. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    E-Print Network [OSTI]

    Zeller, A.F.; Ronningen, R.M.; Godeke, A.; Heilbronn, L.H.; McMahan-Norris, P.; Gupta, R.

    2007-01-01T23:59:59.000Z

    RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS A. F.BSCCO-2223. Radiation damage. INTRODUCTION The magnets incomponents be resistant to damage. One solution [1] is to

  6. Proton Angular Distribution for 90 Mev Neutron-proton Scattering

    E-Print Network [OSTI]

    Hadley, James

    2010-01-01T23:59:59.000Z

    3, 1947 The angular distribution of the recoil protons inneutron -proton scattering at 90 Mev has been measured forNO. W ..7405-Eng 48 PROTON .ANGULAR DISTRIBUTION FOR 90 lWEV

  7. Calculation and evaluation of cross-sections for p+184W reactions up to 200MeV

    E-Print Network [OSTI]

    Jianping Sun; Zhengjun Zhang; Yinlu Han

    2015-02-06T23:59:59.000Z

    The cross-sections of proton-induced reactions on 184W at incident proton energy below 200MeV are calculated and analyzed including reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross section. Nuclear theoretical models which integrate the optical model, distorted born wave approximation theory, the intra-nuclear cascade model, the exciton model, the Hauser-Feshbach theory and the evaporation model are used in the reactions. Theoretical results are compared with the existent experimental data.

  8. The star-forming galaxy contribution to the cosmic MeV and GeV gamma-ray background

    SciTech Connect (OSTI)

    Lacki, Brian C. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Horiuchi, Shunsaku [Center for Cosmology, Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Beacom, John F., E-mail: brianlacki@ias.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2014-05-01T23:59:59.000Z

    Star-forming galaxies could be major contributors to the cosmic GeV ?-ray background, and they are expected to be MeV-dim because of the 'pion bump' falling off below ?100 MeV. However, there are very few observations of galaxies in the MeV range and other emission processes could be present. We investigate the MeV background from star-forming galaxies by running one-zone models of cosmic ray populations, including inverse Compton and bremsstrahlung, as well as nuclear lines (including {sup 26}Al), emission from core-collapse supernovae, and positron annihilation emission, in addition to the pionic emission. We use the Milky Way and M82 as templates of normal and starburst galaxies and compare our models to radio and GeV-TeV ?-ray data. We find that (1) higher gas densities in high-z normal galaxies lead to a strong pion bump, (2) starbursts may have significant MeV emission if their magnetic field strengths are low, and (3) cascades can contribute to the MeV emission of starbursts if they emit mainly hadronic ?-rays. Our fiducial model predicts that most of the unresolved GeV background is from star-forming galaxies, but this prediction is uncertain by an order of magnitude. About ?2% of the claimed 1 MeV background is diffuse emission from star-forming galaxies; we place a firm upper limit of ? 10% based on the spectral shape of the background. The star formation contribution is constrained to be small because its spectrum is peaked, while the observed background is steeply falling with energy through the MeV-GeV range.

  9. Measurements and calculations of the response of large single-element scintillators to neutrons at energies between 25 and 200 MeV

    SciTech Connect (OSTI)

    Byrd, R.C.; Sailor, W.C.; Yariv, Y.

    1989-01-01T23:59:59.000Z

    Because neutrons are uncharged, their detection usually involves organic scintillators that use nuclear reactions on hydrogen and carbon to produce charged particles. The energy deposited by these particles in the scintillator results in detectable light production. This paper uses results reported in recent papers to describe the operation of neutron detectors at energies below 200 MeV. 4 refs., 8 figs.

  10. Giant Resonances Observed in Scattering of 96-Mev and 115-Mev Alpha-Particles

    E-Print Network [OSTI]

    Youngblood, David H.; Moss, JM; Rozsa, C. M.; Bronson, J. D.; Bacher, A. D.; Brown, D. R.

    1976-01-01T23:59:59.000Z

    ' 48Ti "Fe?i 59co "Ni 66 Zn 9pzr '4Mo 96Mo '"Mo 141p Nd "4Sm 148Sm "4Sm 159Tb 174~ 2p8pb b 18.4+ 0.3 18.3+ 0.3 17.6+ 0.3 18.1+0.3 17.9+ 0.3 18.0+ 0.5 16.7+ 0.3 16.4+ 0.3 16.3+ 0.5 16.6+ 0.3 15.8+ 0.7 14,5+ 0.3 14.4+ 0.4 14... several runs the checks were performed at the beginning, middle, and end of the run. III. EXPERIMENTAL RESULTS AND DATA ANALYSIS 300 Z6O- No Target 200- I 50-c IOO- Ea =ll5 MeV g CoO aO cO 50- The reactions studied and the number of spectra...

  11. Defects and diffusion in MeV implanted silicon

    SciTech Connect (OSTI)

    Venezia, V. C.; Haynes, T. E.; Agarwal, Aditya; Gossmann, H.-J.; Pelaz, L.; Jacobson, D. C.; Eaglesham, D. J.; Duggan, J. L. [Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States); Solid State Division, Oak Ridge National Laboratory, MS-6048, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Semiconductor Equipment Operations, Eaton Corporation, 55 Cherry Hill Drive, Beverly, Massachusetts 01915 (United States); Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States); Department of Physics, University of North Texas, Denton, Texas 76201 (United States)

    1999-06-10T23:59:59.000Z

    In this work we demonstrate that the defects that are created by 2-MeV Si ions can interact with dopant atoms both during implantation and during post-implant annealing. We show that the interstitials and vacancies created during MeV Si implantation result in a radiation enhanced diffusion of B and Sb markers, respectively, when the temperature of implantation is above the threshold temperature for formation of mobile dopant complexes. With the use of these dopant markers we also demonstrate that a vacancy-rich near surface region results during post-implant annealing of MeV implanted silicon. The depth distribution and the thermal evolution of clustered vacancies was measured by a Au labeling technique.

  12. Nuclear photonics

    SciTech Connect (OSTI)

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09T23:59:59.000Z

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  13. STOCHASTIC COOLING OF 200 MeV PROTONS

    E-Print Network [OSTI]

    Lambertson, G.

    2010-01-01T23:59:59.000Z

    7 - 1 1 , 1980 STOCHASTIC COOLING OF 200 MeV PROTONS Glen LT t l L8L 10757 STOCHASTIC COOLING OF ZOO HeV PROTONS* Glent i c a l and longitudinal cooling has been achieved a t the

  14. History of the ZGS 500 MeV booster.

    SciTech Connect (OSTI)

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09T23:59:59.000Z

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  15. Delbrück scattering at energies 140 - 450 MeV

    E-Print Network [OSTI]

    SH. ZH. Akhmadaliev; G. Ya. Kezerashvili; S. G. Klimenko; V. M. Malyshev; A. L. Maslennikov; A. M. Milov; A. I. Milstein; N. Yu. Muchnoi; A. I. Naumenkov; V. S. Panin; S. V. Peleganchuk; V. G. Popov; G. E. Pospelov; I. Ya. Protopopov; L. V. Romanov; A. G. Shamov; D. N. Shatilov; E. A. Simonov; Yu. A. Tikhonov

    1998-06-29T23:59:59.000Z

    The differential cross section of Delbr\\"{u}ck scattering is measured on a bismuth germanate $Bi_4Ge_3O_{12}$ target at photon energies $140 - 450 MeV$ and scattering angles $2.6 - 16.6 mrad$. A good agreement with the theoretical results, obtained exactly in a Coulomb field, is found.

  16. EGRET observations of bursts at MeV energies

    SciTech Connect (OSTI)

    Catelli, J. R. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); NASA/GSFC Code 661, Greenbelt, Maryland 20771 (United States); Dingus, B. L. [Department of Physics, University of Utah, Salt Lake City, Utah 84112 (United States); Schneid, E. J. [Northrop Grumman Co., MS A01-26, Bethpage, New York 11714 (United States)

    1998-05-16T23:59:59.000Z

    We present preliminary results from the analysis of 16 bright bursts that have been observed by the EGRET NaI calorimeter, or TASC. Seven bursts have been imaged in the EGRET spark chamber above 30 MeV, but in most cases the TASC data gives the highest energy spectra available for these bursts. The TASC can obtain spectral and rate information for bursts well outside the field of view of the EGRET spark chambers, and is sensitive in the energy range from 1 to 200 MeV. The spectra for these bursts are mostly consistent with a simple power law with spectral index in the range from 1.7 to 3.7, with several of the brighter bursts showing emission past 100 MeV. No high energy cutoff has been observed. These high energy photons offer important clues to the physical processes involved at the origin of burst emission. For bursts at cosmological distances extremely high bulk Lorentz factors are implied by the presence of MeV and GeV photons which have not been attenuated by pair production with the lower energy photons from the source.

  17. The 400 MeV Linac Upgrade at Fermilab

    SciTech Connect (OSTI)

    Noble, R.J.

    1992-12-01T23:59:59.000Z

    The Fermilab Linac Upgrade in planned to increase the energy of the H{sup {minus}} linac from 200 to 400 MeV. This is intended to reduce the incoherent space-charge tuneshift at injection into the 8 GeV Booster which limit either the brightness or the total intensity of the beam. The Linac Upgrade will be achieved by replacing the last four 201.25 MHs drift-tube linac (DTL) tanks which accelerate the beam from 116 to 200 MeV, with seven 805 MRs side-coupled cavity modules operating at an average axial field of about 7.5 MV/meter. This will allow acceleration to 400 MeV in the existing Linac enclosure. Each accelerator module will be driven with a 12 MW klystron-based rf power supply. Three of seven accelerator modules have been fabricated, power tested and installed in their temporary location adjacent to the existing DTL. All seven RF Modulators have been completed and klystron installation has begun. Waveguide runs have completed from the power supply gallery to the accelerator modules. The new linac will be powered in the temporary position without beam in order to verify overall system reliability until the laboratory operating schedule permits final conversion to 400 MeV operation.

  18. Quest for MeV frequency combs -- proposal for ELI experiments

    E-Print Network [OSTI]

    Katarzyna Krajewska; Jerzy Z. Kami?ski

    2014-10-04T23:59:59.000Z

    The optical frequency comb has become an indispensable tool for high precision spectroscopy. Also experiments in the field of ultrafast physics rely on the frequency comb technique to generate precisely controlled attosecond optical pulses by means of the high-order harmonic generation. However, in order to generate even shorter laser pulses or to apply this technique in investigations of nuclear structure, combs of frequencies of the order of MeV are necessary. It seems that it may not be possible to achieve such photon energies by high-order harmonic generation. In this context the possibility of the generation of Thomson and Compton-based frequency combs is presented. Diffraction of generated radiation by a sequence of laser pulses and its analogy to the diffraction grating is elucidated. Theoretical investigations presented in this report can be considered as the proposal for future ELI experiments [www.eli-laser.eu

  19. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    E-Print Network [OSTI]

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01T23:59:59.000Z

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  20. Analysis of gamma-ray production in neutral-current neutrino-oxygen interactions at energies above 200 MeV

    E-Print Network [OSTI]

    Artur M. Ankowski; Omar Benhar; Takaaki Mori; Ryuta Yamaguchi; Makoto Sakuda

    2012-02-01T23:59:59.000Z

    It has long been recognized that observation of gamma rays originating from nuclear deexcitation can be exploited to identify neutral-current neutrino-nucleus interactions in water-Cherenkov detectors. We report the results of a calculation of the neutrino- and antineutrino-induced gamma-ray production cross section for oxygen target. Our analysis is focused on the kinematical region of neutrino energy larger than ~200 MeV, in which single-nucleon knockout is known to be the dominant reaction mechanism. The numerical results have been obtained using for the first time a realistic model of the target spectral function, extensively tested against electron-nucleus scattering data. We find that at neutrino energy 600 MeV the fraction of neutral-current interactions leading to emission of gamma-rays of energy larger than 6 MeV is ~41%, and that the contribution of the p_3/2 state is overwhelming.

  1. Occupation number-based energy functional for nuclear masses

    E-Print Network [OSTI]

    M. Bertolli; T. Papenbrock; S. Wild

    2011-10-19T23:59:59.000Z

    We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to nuclear masses yields a root-mean-square deviation of \\chi = 1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

  2. Evaluated Nuclear Data

    SciTech Connect (OSTI)

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01T23:59:59.000Z

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  3. Fast neutron spectra produced by a 49 MeV deuteron-beryllium reaction and its modification by selected absorbers

    E-Print Network [OSTI]

    Hertel, Nolan Elmer

    1975-01-01T23:59:59.000Z

    . 566 m from the beryllium target. Figures 14 and 15 display the neutron spectra measured two different times in air. Figures 16-20 display the neutron spectra produced after passage through various depths of TE liquid. Figures 21-25 display... for the degree of NASTER OF SCIENCE Nay 1975 Najor Subject: Nuclear Engineering FAST NEUTRON SPECTRA PRODUCED BY A 49 MEV DEUTERON-BERYLLIUM REACTION AND ITS MODIFICATION BY SELECTED ABSORBERS A Thesis by NOLAN ELMER HERTEL Approved as to style and con...

  4. Evidence for new charm mesons near 1800 MeV

    SciTech Connect (OSTI)

    Fisher, J.C. (600 Arbol Verde, Carpinteria, California (USA))

    1991-09-01T23:59:59.000Z

    A review of {ital X}{sup +}{r arrow}{phi}{pi}{sup +} events from {ital e}{sup +}{ital e{minus}} annihilation, photoproduction, and hadroproduc- tion, and of events in the related decay channels {ital {bar K}} {sup *0}{ital K+} and nonresonant {ital K}{sup +}{ital K{minus}}{pi}{sup +} from photoproduction and hadroproduction, provides evidence for a charged particle near 1800 MeV. A review of {ital X}{sup 0}{r arrow}{ital K}{sup {minus}}{pi}{sup +} events from {ital e}{sup +}{ital e{minus}} annihilation and photoproduction provides evidence for a neutral particle near 1785 MeV. The signal widths are comparable with the spectrometer resolutions. More significantly, both particles have been observed at secondary vertices in lifetime experiments, suggesting that their lifetimes are comparable with charm lifetimes. It is hypothesized that they may be strongly bound composite charm mesons.

  5. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    SciTech Connect (OSTI)

    Zeller, A.F.; Ronningen, R.M.; Godeke, Arno; Heibronn, L.H; McMahan-Norris, P.; Gupta, R.

    2007-11-01T23:59:59.000Z

    The use of HTS materials in high radiation environments requires that the superconducting properties remain constant up to a radiation high dose. BSCCO-2223 samples from two manufacturers were irradiated with 50 MeV protons at fluences of up to 5 x 10{sup 17} protons/cm{sup 2}. The samples lost approximately 75% of their pre-irradiation I{sub c}. This compares with Nb{sub 3}Sn, which loses about 50% at the same displacements per atom.

  6. Fission studies with 140 MeV $\\bm?$-Particles

    E-Print Network [OSTI]

    A. Buttkewitz; H. H. Duhm; F. Goldenbaum; H. Machner; W. Strauss

    2009-07-23T23:59:59.000Z

    Binary fission induced by 140 MeV $\\alpha$-particles has been measured for $^{\\rm nat}$Ag, $^{139}$La, $^{165}$Ho and $^{197}$Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity $Z^2/A=24$ is observed.

  7. The role of couplings in nuclear rainbow formation at energies far above the barrier

    SciTech Connect (OSTI)

    Pereira, D.; Linares, R. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Instituto de Fisica da Universidade Federal Fluminense, Rio de Janeiro, Niteroi, RJ (Brazil); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); and others

    2012-10-20T23:59:59.000Z

    A study of the {sup 16}O+{sup 28}Si elastic and inelastic scattering is presented in the framework of Coupled Channel theory. The Sao Paulo Potential is used in the angular distribution calculations and compared with the existing data at 75 MeV bombarding energy. A nuclear rainbow pattern is predicted and becomes more clear above 100 MeV.

  8. Damage Evolution in GaN Under MeV Heavy Ion Implantation. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution in GaN Under MeV Heavy Ion Implantation. Damage Evolution in GaN Under MeV Heavy Ion Implantation. Abstract: Damage evaluation processes in patterned GaN implanted by 3...

  9. PHYSICAL REVIEW C 76, 057001 (2007) Vector and tensor analyzing powers of elastic deuteron-proton scattering at 130 MeV deuteron

    E-Print Network [OSTI]

    Zejma, Jacek

    2007-01-01T23:59:59.000Z

    -proton scattering at 130 MeV deuteron beam energy E. Stephan,1,* St. Kistryn,2 R. Sworst,2 A. Biegun,1 K. Bodek,2 I-40007 Katowice, Poland 2 Institute of Physics, Jagiellonian University, PL-30059 Krak´ow, Poland 3 804-8550, Japan 8 Institute of Nuclear Physics, PL-31342 Krak´ow, Poland 9 ITP, Universit¨at Hannover

  10. Dissipative collisions in $^{16}$O + $^{27}$Al at E$_{lab}$=116 MeV

    E-Print Network [OSTI]

    C. Bhattacharya; K. Mullick; S. Bhattacharya; K. Krishan; T. Bhattacharjee; P. Das; S. R. Banerjee; D. N. Basu; A. Ray; S. K. Basu; M. B. Chatterjee

    2002-07-15T23:59:59.000Z

    The inclusive energy distributions of fragments (3$\\leq$Z$\\leq$7) emitted in the reaction $^{16}$O + $^{27}$Al at $E_{lab} = $116 MeV have been measured in the angular range $\\theta_{lab} $= 15$^\\circ$ - 115$^\\circ$. A non-linear optimisation procedure using multiple Gaussian distribution functions has been proposed to extract the fusion-fission and deep inelastic components of the fragment emission from the experimental data. The angular distributions of the fragments, thus obtained, from the deep inelastic component are found to fall off faster than those from the fusion-fission component, indicating shorter life times of the emitting di-nuclear systems. The life times of the intermediate di-nuclear configurations have been estimated using a diffractive Regge-pole model. The life times thus extracted ($\\sim 1 - 5\\times 10^{-22}$ Sec.) are found to decrease with the increase in the fragment charge. Optimum Q-values are also found to increase with increasing charge transfer i.e. with the decrease in fragment charge.

  11. Critical phenomena of nuclear matter in the extended Zimanyi-Moszkowski model

    E-Print Network [OSTI]

    Critical phenomena of nuclear matter in the extended Zimanyi-Moszkowski model K. Miyazaki Abstract in nuclear multifragmentation reactions and the critical temperature has been derived as TC = 20 3 MeV in Ref] to estimate the critical temperature for in...nite nuclear matter, that is, TC = 16:6 0:86 Me

  12. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  13. Application of nuclear models to neutron nuclear cross section calculations

    SciTech Connect (OSTI)

    Young, P.G.

    1982-01-01T23:59:59.000Z

    Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

  14. Proton-Proton Scattering at 340 MeV

    E-Print Network [OSTI]

    Chamberlain, Owen; Wiegand, Clyde

    2008-01-01T23:59:59.000Z

    on Nuclear Physics. Basil. High yner gy Neutron- protonand Proton~proton Scattering 9 Helv. Phys. Acta (in press J a review

  15. Angular Distribution and Recoil Effect for 1 MeV Au+ Ions through a Si3N4 Thin Foil

    SciTech Connect (OSTI)

    Jin, Ke; Zhu, Zihua; Manandhar, Sandeep; Liu, Jia; Chen, Chien-Hung; Shutthanandan, V.; Thevuthasan, Suntharampillai; Weber, William J.; Zhang, Yanwen

    2014-03-18T23:59:59.000Z

    The Stopping and Range of Ions in Matter (SRIM) code has been widely used to predict nuclear stopping power and angular distribution of ion-solid collisions. However, experimental validation of the predictions is insufficient for slow heavy ions in nonmetallic compounds. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is applied to determine the angular distribution of 1 MeV Au ions after penetrating a Si3N4 foil with a thickness of ~100 nm. The exiting Au ions are collected by a Si wafer located ~14 mm behind the Si3N4 foil, and the resulting 2-dimensional distribution of Au ions on the Si wafer is measured by ToF-SIMS. The SRIM-predicted angular distribution of Au ions through the Si3N4 thin foil is compared with the measured results, indicating that SRIM slightly overestimates the nuclear stopping power by up to 10%. In addition, thickness reduction of the suspended Si3N4 foils induced by 1 MeV Au ion irradiation is observed with an average loss rate of ~107 atom/ion.

  16. Angular distribution and recoil effect for 1 MeV Au+ ions through a Si3N4 thin foil

    SciTech Connect (OSTI)

    Jin, Ke [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Zhu, Zihua [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Manandhar, Sandeep [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Liu, Jia [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Chen, Chien-Hung [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Shutthanandan, Vaithiyalingam [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Thevuthasan, Suntharampillai [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Weber, William J [ORNL] [ORNL; Zhang, Yanwen [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The Stopping and Range of Ions in Matter (SRIM) code has been widely used to predict nuclear stopping power and angular distribution of ion-solid collisions. However, experimental validation of the predictions is insufficient for slow heavy ions in nonmetallic compounds. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is applied to determine the angular distribution of 1 MeV Au ions after penetrating a Si3N4 foil with a thickness of ~100 nm. The exiting Au ions are collected by a Si wafer located ~14 mm behind the Si3N4 foil, and the resulting 2-dimensional distribution of Au ions on the Si wafer is measured by ToF-SIMS. The SRIM-predicted angular distribution of Au ions through the Si3N4 thin foil is compared with the measured results, indicating that SRIM slightly overestimates the nuclear stopping power by up to 10%. In addition, thickness reduction of the suspended Si3N4 foils induced by 1 MeV Au ion irradiation is observed with an average loss rate of ~107 atom/ion.

  17. np elastic spin transfer measurements at 788 MeV

    E-Print Network [OSTI]

    McNaughton, M. W.; Koch, K.; Supek, I.; Tanaka, N.; McNaughton, K. H.; Riley, P. J.; Ambrose, DA; Johnson, J. D.; Smith, A.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Simon, A. J.; Adams, D. L.; Ransome, R. D.; Clayton, D. B.; Spinka, H. M.; Jepperson, R. H.; Tripard, G. E.

    1991-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 44, NUMBER 6 DECEMBER 1991 ARTICLES np elastic spin transfer measurements at 788 MeV M. W. McNaughton, K. Koch, I. Supek, and N. Tanaka Los Alamos National Laboratory, Los Alamos, New Mexico 87545 K. H. McNaughton, P. J... radius of about 3 rnm and centered on the 25-cm-thick liquid-deuterium (LD2) neutron-production target. B. Neutron beam magnets (LBBM6,7). The neutrons passed through the fringe fields of these magnets and were precessed about 50' from L spin. A...

  18. Polarization Transfer in N-P Scattering at 50 Mev 

    E-Print Network [OSTI]

    Woolverton, H. L.; Nath, S.; Hiebert, John C.; Northcliffe, L. C.; Woodward, W. F.

    1985-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 31, NUMBER 5 Polarization transfer in n-p scattering at 50 MeV MAY 1985 H. L. Woolverton, ' S. Nath, J. C. Hiebert, L. C. Northcliffe, and W. F. Woodwardt Cyclotron Institute, Texas A&M University, College Station, Texas... University, 1979, avail- .able from University Microfilms, Ann Arbor, MI. ' H. O. Klages, H. Dobiasch, P. Doll, H. Krupp, M. Oexner, P. Plischke, B. Zeitnitz, F. P. Brady, and J. C. Hiebert, Nucl. In- strum. Methods 219, 269 (1984). I8S. Nath, R. G...

  19. Direct Evidence of Washing out of Nuclear Shell Effects

    E-Print Network [OSTI]

    Chaudhuri, A; Banerjee, K; Bhattacharya, S; Sadhukhan, Jhilam; Bhattacharya, C; Kundu, S; Meena, J K; Mukherjee, G; Pandey, R; Rana, T K; Roy, P; Roy, T; Srivastava, V; Bhattacharya, P

    2015-01-01T23:59:59.000Z

    Constraining excitation energy at which nuclear shell effect washes out has important implications on the production of super heavy elements and many other fields of nuclear physics research. We report the fission fragment mass distribution in alpha induced reaction on an actinide target for wide excitation range in close energy interval and show direct evidence that nuclear shell effect washes out at excitation energy ~40 MeV. Calculation shows that second peak of the ?fission barrier also vanishes around similar excitation energy.

  20. Direct Evidence of Washing out of Nuclear Shell Effects

    E-Print Network [OSTI]

    A. Chaudhuri; T. K. Ghosh; K. Banerjee; S. Bhattacharya; Jhilam Sadhukhan; C. Bhattacharya; S. Kundu; J. K. Meena; G. Mukherjee; R. Pandey; T. K. Rana; P. Roy; T. Roy; V. Srivastava; P. Bhattacharya

    2015-04-17T23:59:59.000Z

    Constraining excitation energy at which nuclear shell effect washes out has important implications on the production of super heavy elements and many other fields of nuclear physics research. We report the fission fragment mass distribution in alpha induced reaction on an actinide target for wide excitation range in close energy interval and show direct evidence that nuclear shell effect washes out at excitation energy ~40 MeV. Calculation shows that second peak of the ?fission barrier also vanishes around similar excitation energy.

  1. Polarization Transfer in N-P Scattering at 50 Mev

    E-Print Network [OSTI]

    Woolverton, H. L.; Nath, S.; Hiebert, John C.; Northcliffe, L. C.; Woodward, W. F.

    1985-01-01T23:59:59.000Z

    , in Polarization Phenomena in Nuclear Physics ?1980 (Fifth International Symposium, Sante Fe), Proceedings of the Fifth International Symposium on Polarization Phenomena in Nuclear Physics, AIP Conf. Proc. No. 69, edited by G. G-. Ohlsen, R. E. Brown, N. Jarmie... of the Fifth International Symposium on Polarization Phenomena in Nuclear Physics, AIP Conf. Proc. No. 69, edited by G. G. Ohlsen, R. E. Brown, N. Jarmie, M. W. McNaughton, and G. M. Hale (AIP, New York, 1981),p. 1461. ' R. L. York, Ph. D. thesis, Texas ASM...

  2. Light-ion production in the interaction of 175 MeV quasi-mono-energetic neutrons with iron and with bismuth

    E-Print Network [OSTI]

    R. Bevilacqua; K. Jansson; S. Pomp; P. Andersson; J. Blomgren; C. Gustavsson; A. Hjalmarsson; V. D. Simutkin; M. Österlund; A. J. Koning; A. V. Prokofiev; M. Hayashi; S. Hirayama; Y. Naitou; Y. Watanabe; U. Tippawan; S. G. Mashnik; L. M. Kerby; F. -R. Lecolley; N. Marie; J. -C. David; S. Leray

    2014-11-12T23:59:59.000Z

    Nuclear data for neutron-induced reactions in the intermediate energy range of 20 to 200 MeV are of great importance for the development of nuclear reaction codes since little data exist in that range. Also several different applications benefit from such data, notably accelerator-driven incineration of nuclear waste. The Medley setup was used for a series of measurements of p, d, t, $^3$He and $\\alpha$-particle production by 175 MeV quasi-mono-energetic neutrons on various target nuclei. The measurements were performed at the The Svedberg Laboratory in Uppsala, Sweden. Eight detector telescopes placed at angles between 20$^\\circ$ and 160$^\\circ$ were used. Medley uses the $\\Delta E$-$\\Delta E$-$E$ technique to discriminate among the particle types and is able to measure double-differential cross sections over a wide range of particle energies. This paper briefly describes the experimental setup, summarizes the data analysis and reports on recent changes in the previously reported preliminary data set on bismuth. Experimental data are compared with INCL4.5-Abla07, MCNP6 using CEM03.03, TALYS and PHITS model calculations as well as with nuclear data evaluations. The models agree fairly well overall but in some cases systematic differences are found.

  3. Design of a MeV, 4kA linear induction accelerator for flash radiography

    SciTech Connect (OSTI)

    Kulke, B.; Brier, R.; Chapin, W.

    1981-02-10T23:59:59.000Z

    For verifying the hydrodynamics of nuclear weapons design it is useful to have flash x-ray machines that can deliver a maximum dose in a minimum pulse length and with very high reliability. At LLNL, such a requirement was identified some years ago as 500 roentgens at one meter, in a 60 nsec pulse length. In response to this requirement, a linear induction accelerator was proposed to and funded by DOE in 1977. The design of this machine, called FXR, has now been completed and construction has begun. The FXR design extends the parameters of a similar machine that had been built and operated at LBL, Berkeley, some ten years ago. Using a cold cathode injector followed by 48 accelerator modules rated at 400 kV each, the FXR machine will accelerate a 4 kA electron beam pulse to 20 MeV final energy. Key design features are the generation and the stable transport of a low emittance (100 mr-cm) beam from a field emitter diode, the design of reliable, compact energy storage components such as Blumleins, feedlines and accelerator modules, and a computer-assisted control system.

  4. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

  5. {sup 25}Na and {sup 25}Mg fragmentation on {sup 12}C at 9.23 MeV per nucleon at TRIUMF

    SciTech Connect (OSTI)

    St-Onge, Patrick; Boisjoli, Mark; Fregeau, Marc-Olivier; Gauthier, Jerome; Wallace, Barton; Roy, Rene [Departement de physique, de genie physique et d'optique, Universite Laval, Quebec, G1V 0A6 (Canada)

    2012-10-20T23:59:59.000Z

    HERACLES is a multidetector that is used to study heavy-ion collisions, with ion beams with an energy range between 8 to 15 MeV per nucleon. It has 78 detectors axially distributed around the beam axis in 6 rings allowing detection of multiple charged fragments from nuclear reactions. HERACLES has 4 different types of detectors, BC408/BaF{sub 2} phoswich, Si/CsI(Tl) telescope, BC408/BC444 phoswich and CsI(Tl) detectors. The multidetector has been run with a radioactive {sup 25}Na beam and a stable {sup 25}Mg beam at 9.23 MeV per nucleon on a carbon target.

  6. Experimental Neutron-Induced Fission Fragment Mass Yields of 232Th and 238U at Energies from 10 to 33 MeV

    E-Print Network [OSTI]

    V. D. Simutkin; S. Pomp; J. Blomgren; M. Österlund; R. Bevilacqua; I. V. Ryzhov; G. A. Tutin; S. G. Yavshits; L. A. Vaishnene; M. S. Onegin; J. P. Meulders; R. Prieels

    2013-04-08T23:59:59.000Z

    Development of nuclear energy applications requires data for neutron-induced reactions for actinides in a wide neutron energy range. Here we describe measurements of pre-neutron emission fission fragment mass yields of 232Th and 238U at incident neutron energies from 10 to 33 MeV. The measurements were done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE; a multi-section twin Frisch-gridded ionization chamber was used to detect fission fragments. For the peak neutron energies at 33, 45 and 60 MeV, the details of the data analysis and the experimental results have been published before and in this work we present data analysis in the low-energy tail of the neutron energy spectra. The preliminary measurement results are compared with available experimental data and theoretical predictions.

  7. First calculation of cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande

    E-Print Network [OSTI]

    Li, Shirley Weishi

    2014-01-01T23:59:59.000Z

    When muons travel through matter, their energy losses lead to nuclear breakup ("spallation") processes. The delayed decays of unstable daughter nuclei produced by cosmic-ray muons are important backgrounds for low-energy astrophysical neutrino experiments, e.g., those seeking to detect solar neutrino or Diffuse Supernova Neutrino Background (DSNB) signals. Even though Super-Kamiokande has strong general cuts to reduce these spallation-induced backgrounds, the remaining rate before additional cuts for specific signals is much larger than the signal rates for kinetic energies of about 6 -- 18 MeV. Surprisingly, there is no published calculation of the production and properties of these backgrounds in water, though there are such studies for scintillator. Using the simulation code FLUKA and theoretical insights, we detail how muons lose energy in water, produce secondary particles, how and where these secondaries produce isotopes, and the properties of the backgrounds from their decays. We reproduce Super-Kamiok...

  8. Activation cross-sections of deuteron induced reactions on $^{nat}$Sm up to 50 MeV

    E-Print Network [OSTI]

    F. Tárkányi; A. Hermanne; S. Takács; F. Ditrói; J. Csikai; A. V. Ignatyuk

    2014-11-26T23:59:59.000Z

    Activation cross-sections for deuteron induced reactions on Sm are presented for the first time for $^{nat}$Sm(d,xn)$^{155,154,152m2,152m1,152g,150m,150g,149,148,147,146}$Eu, $^{nat}$Sm(d,x)$^{153,145}$Sm and $^{nat}$Sm(d,x)$^{151,150,149,145,144,143}$Pm up to 50 MeV. The cross-sections were measured by the stacked-foil irradiation technique and high resolution $\\gamma$-ray spectrometry. The results were compared with results of nuclear reaction codes ALICE-D, EMPIRE-D and TALYS (from TENDL libraries). Integral yields of the products were calculated from the excitation functions.

  9. Excitation functions of proton-induced reactions on natural Nd and production of radionuclides relevant for double beta decay: Completing measurement in 5-35 MeV energy range

    E-Print Network [OSTI]

    O. Lebeda; V. Lozza; J. Petzoldt; J. Stursa; V. Zdychova; K. Zuber

    2015-04-16T23:59:59.000Z

    Cross-sections for the proton-induced reactions on natural neodymium in energy regions 5-10 MeV and 30-35 MeV were measured using the cyclotron U-120M at the Nuclear Physics Institute at Rez near Prague. This measurement completes the investigation previously done in the 10-30 MeV energy range. Results revealed practical production thresholds and secondary maxima and minima in the excitation functions. It allowed for more appropriate calculation of thick target yields and production rates of many longer-lived radionuclides potentially disturbing the search for neutrinoless double beta decay. Measured cross-sections are consistent with our previously published data.

  10. Excitation functions of proton-induced reactions on natural Nd and production of radionuclides relevant for double beta decay: Completing measurement in 5-35 MeV energy range

    E-Print Network [OSTI]

    Lebeda, O; Petzoldt, J; Stursa, J; Zdychova, V; Zuber, K

    2015-01-01T23:59:59.000Z

    Cross-sections for the proton-induced reactions on natural neodymium in energy regions 5-10 MeV and 30-35 MeV were measured using the cyclotron U-120M at the Nuclear Physics Institute at Rez near Prague. This measurement completes the investigation previously done in the 10-30 MeV energy range. Results revealed practical production thresholds and secondary maxima and minima in the excitation functions. It allowed for more appropriate calculation of thick target yields and production rates of many longer-lived radionuclides potentially disturbing the search for neutrinoless double beta decay. Measured cross-sections are consistent with our previously published data.

  11. Pasta Nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    E-Print Network [OSTI]

    M. E. Caplan; A. S. Schneider; C. J. Horowitz; D. K. Berry

    2014-12-29T23:59:59.000Z

    Background: Exotic non-spherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short range nuclear attraction and long range Coulomb repulsion. Purpose: We explore the impact of nuclear pasta on nucleosynthesis, during neutron star mergers, as cold dense nuclear matter is ejected and decompressed. Methods: We perform classical molecular dynamics simulations with 51200 and 409600 nucleons, that are run on GPUs. We expand our simulation region to decompress systems from an initial density of 0.080 fm^{-3} down to 0.00125 fm^{-3}. We study proton fractions of Y_P=0.05, 0.10, 0.20, 0.30, and 0.40 at T =0.5, 0.75, and 1.0 MeV. We calculate the composition of the resulting systems using a cluster algorithm. Results: We find final compositions that are in good agreement with nuclear statistical equilibrium models for temperatures of 0.75 and 1 MeV. However, for proton fractions greater than Y_P=0.2 at a temperature of T = 0.5 MeV, the MD simulations produce non-equilibrium results with large rod-like nuclei. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  12. Defects in Ge and Si caused by 1 MeV Si+ implantation*

    E-Print Network [OSTI]

    Florida, University of

    Defects in Ge and Si caused by 1 MeV Si+ implantation* D. P. Hickeya Department of Materials defect formation and evolution in the 001 Ge and Si wafers implanted with 1 MeV Si+ and 40 keV Si dissolve at the projected range for nonamorphizing implants into Si. However, in Ge, no 311 defect

  13. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

  14. Proton core imaging of the nuclear burn in inertial confinement fusion implosions

    E-Print Network [OSTI]

    Proton core imaging of the nuclear burn in inertial confinement fusion implosions J. L. De; published online 7 April 2006 A proton emission imaging system has been developed and used extensively the penetrating 14.7 MeV protons produced from D 3 He fusion reactions to produce emission images of the nuclear

  15. Nuclear weapons and nuclear war

    SciTech Connect (OSTI)

    Cassel, C.; McCally, M.; Abraham, H.

    1984-01-01T23:59:59.000Z

    This book examines the potential radiation hazards and environmental impacts of nuclear weapons. Topics considered include medical responsibility and thermonuclear war, the threat of nuclear war, nuclear weaponry, biological effects, radiation injury, decontamination, long-term effects, ecological effects, psychological aspects, the economic implications of nuclear weapons and war, ethics, civil defense, arms control, nuclear winter, and long-term biological consequences of nuclear war.

  16. Nuclear Matter and Nuclear Dynamics

    E-Print Network [OSTI]

    M Colonna

    2009-02-26T23:59:59.000Z

    Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

  17. Critical Temperature for the Nuclear Liquid-Gas Phase Transition

    E-Print Network [OSTI]

    V. A. Karnaukhov; H. Oeschler; S. P. Avdeyev; E. V. Duginova; V. K. Rodionov; A. Budzanowski; W. Karcz; O. V. Bochkarev; E. A. Kuzmin; L. V. Chulkov; E. Norbeck; A. S. Botvina

    2003-02-07T23:59:59.000Z

    The charge distribution of the intermediate mass fragments produced in p (8.1 GeV) + Au collisions is analyzed in the framework of the statistical multifragmentation model with the critical temperature for the nuclear liquid-gas phase transition $T_c$ as a free parameter. It is found that $T_c=20\\pm3$ MeV (90% CL).

  18. Fission and Nuclear Liquid-Gas Phase Transition

    E-Print Network [OSTI]

    E. A. Cherepanov; V. A. Karnaukhov

    2007-03-30T23:59:59.000Z

    The temperature dependence of the liquid-drop fission barrier is considered, the critical temperature for the liquid-gas phase transition in nuclear matter being a parameter. Experimental and calculated data on the fission probability are compared for highly excited $^{188}$Os. The calculations have been made in the framework of the statistical model. It is concluded that the critical temperature for the nuclear liquid--gas phase transition is higher than 16 MeV.

  19. Detection of Actinides via Nuclear Isomer De-Excitation

    SciTech Connect (OSTI)

    Francy, Christopher J.

    2009-07-22T23:59:59.000Z

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  20. Determination of Differential Elastic and Inelastic and Double-differential Neutron Scattering Cross Sections of Elemental Titanium at Energies between 7.93 MeV and 14.72 MeV

    E-Print Network [OSTI]

    Schmidt, Dankwart; Xichao, R

    2006-01-01T23:59:59.000Z

    Determination of Differential Elastic and Inelastic and Double-differential Neutron Scattering Cross Sections of Elemental Titanium at Energies between 7.93 MeV and 14.72 MeV

  1. Neutron capture and 2.2 MeV emission in the atmosphere of the secondary of an X-ray binary

    E-Print Network [OSTI]

    P. Jean; N. Guessoum

    2001-09-12T23:59:59.000Z

    We consider the production of 2.22 MeV radiation resulting from the capture of neutrons in the atmosphere of the secondary in an X-ray binary system, where the neutrons are produced in the accretion disk around the compact primary star and radiated in all directions. We have considered several accretion disk models (ADAF, ADIOS, SLE, Uniform-Temperature) and a varity of parameters (accretion rate, mass of the compact object, mass, temperature and composition of the secondary star, distance between the two objects, etc.). The neutron rates are calculated by a network of nuclear reactions in the accretion disk, and this is handled by a reaction-rate formulation taking into account the structure equations given by each accretion model. The processes undergone by the neutrons in the atmosphere of the companion star are studied in great detail, including thermalization, elastic and inelastic scatterings, absorption, escape from the surface, decay, and capture by protons. The radiative transfer of the 2.22 MeV photons is treated separately, taking into consideration the composition and density of the star's atmosphere. The final flux of the 2.22 MeV radiation that can be detected from earth is calculated taking into account the distance to the source, the direction of observation with respect to the binary system frame, and the rotation of the source, as this can lead to an observable periodicity in the flux. We produce phasograms of the 2.22 MeV intensity as well as spectra of the line, where rotational Doppler shift effects can lead to changes in the spectra that are measurable by INTEGRAL's spectrometer (SPI).

  2. Measurement and Interpretation of Interaction of MeV Energy Protons with Lower Hybrid Waves in JET Plasmas

    E-Print Network [OSTI]

    Measurement and Interpretation of Interaction of MeV Energy Protons with Lower Hybrid Waves in JET Plasmas

  3. High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter

    E-Print Network [OSTI]

    Lie-Wen Chen; Che Ming Ko; Bao-An Li

    2005-12-07T23:59:59.000Z

    Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about $% \\rho =0.22$ fm$^{-3}$ and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.

  4. Conference Discussion of the Nuclear Force

    SciTech Connect (OSTI)

    Franz Gross,Thomas D. Cohen,Evgeny Epelbaum,R. Machleidt

    2010-12-01T23:59:59.000Z

    Discussion of the nuclear force, lead by a round table consisting of T. Cohen, E. Epelbaum, R. Machleidt, and F. Gross (chair). After an invited talk by Machleidt, published elsewhere in these proceedings, brief remarks are made by Epelbaum, Cohen, and Gross, followed by discussion from the floor moderated by the chair. The chair asked the round table and the participants to focus on the following issues: (1)What does each approach (chiral effective field theory, large Nc, and relativistic phenomenology) contribute to our knowledge of the nuclear force? Do we need them all? Is any one transcendent? (2) How important for applications (few body, nuclear structure, EMC effect, for example) are precise fits to the NN data below 350 MeV? How precise do these fits have to be? (3) Can we learn anything about nonperturbative QCD from these studies of the nuclear force? The discussion presented here is based on a video recording made at the conference and transcribed afterward.

  5. $?$-cluster ANCs for nuclear astrophysics

    E-Print Network [OSTI]

    M. L Avila; G. V. Roachev; E. Koshchiy; L. T. Baby; J. Belarge; K. W. Kemper; A. N. Kuchera; D. Santiago-Gonzalez

    2014-06-23T23:59:59.000Z

    Background. Many important $\\alpha$-particle induced reactions for nuclear astrophysics may only be measured using indirect techniques due to small cross sections at the energy of interest. One of such indirect technique, is to determine the Asymptotic Normalization Coefficients (ANC) for near threshold resonances extracted from sub-Coulomb $\\alpha$-transfer reactions. This approach provides a very valuable tool for studies of astrophysically important reaction rates since the results are practically model independent. However, the validity of the method has not been directly verified. Purpose. The aim of this letter is to verify the technique using the $^{16}$O($^6$Li,$d$)$^{20}$Ne reaction as a benchmark. The $^{20}$Ne nucleus has a well known $1^-$ state at excitation energy of 5.79 MeV with a width of 28 eV. Reproducing the known value with this technique is an ideal opportunity to verify the method. Method. The 1$^-$ state at 5.79 MeV is studied using the $\\alpha$-transfer reaction $^{16}$O($^6$Li,$d$)$^{20}$Ne at sub-Coulomb energies. Results. The partial $\\alpha$ width for the $1^-$ state at excitation energy of 5.79 MeV is extracted and compared with the known value, allowing the accuracy of the method to be evaluated. Conclusions. This study demonstrates that extracting the Asymptotic Normalization Coefficients using sub-Coulomb $\\alpha$-transfer reactions is a powerful tool that can be used to determine the partial $\\alpha$ width of near threshold states that may dominate astrophysically important nuclear reaction rates. \\end{description}

  6. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    to Journal of Nuclear Technology. [46] C.J. Hagmann and J.Library for Nuclear Science and Technology,” Nuclear Dataof Standards and Technology daughter nuclear data processing

  7. Light charged particle evaporation from hot ${31}^$P nucleus at E$^*$ ~ 60 MeV

    E-Print Network [OSTI]

    D. Bandyopadhyay; C. Bhattacharya; K. Krishan; S. Bhattacharya; S. K. Basu; A. Chatterjee; S. Kailas; A. Srivastava; K. Mahata

    2002-02-12T23:59:59.000Z

    The energy spectra of evaporated light charged particles (LCP) $\\alpha$, p, d and t have been measured in $7^$Li(47 MeV) + ${24}^$Mg and ${19}^$F(96 MeV)+ ${12}^$C reactions. Both the systems populate the same compound nucleus ${31}^$F at excitation energy E$^*$ ~ 60 MeV. It has been observed that the light particle spectra obtained in Li + Mg reaction follow standard statistical model prediction, whereas a deformed configuration of the compound nucleus is needed to explain the LCP spectra for F + C reaction, which has been attributed to the effect of larger input angular momentum in the case of ${19}^$F(96 MeV)+ ${12}^$C system.

  8. Impact of x-ray dose on the response of CR-39 to 1-5.5 MeV alphas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; et al

    2015-03-01T23:59:59.000Z

    The CR-39 nuclear track detector is used in many nuclear diagnostics #12;fielded at inertial con#12;nement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K?#11; and K#12;? x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed tomore »x-rays: for example, a dose of 3.0#6; ± 0.1 Gy causes a decrease of (19 ± #6;2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± #6;1.3 Gy results in a decrease of (45 ± #6;5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual eff#11;ect depending on alpha particle energy is characterized using an empirical formula.« less

  9. Impact of x-ray dose on the response of CR-39 to 1-5.5 MeV alphas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2015-03-01T23:59:59.000Z

    The CR-39 nuclear track detector is used in many nuclear diagnostics #12;fielded at inertial con#12;nement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K?#11; and K#12;? x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0#6; ± 0.1 Gy causes a decrease of (19 ± #6;2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± #6;1.3 Gy results in a decrease of (45 ± #6;5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual eff#11;ect depending on alpha particle energy is characterized using an empirical formula.

  10. Wakefield acceleration in atmospheric plasmas: a possible source of MeV electrons

    E-Print Network [OSTI]

    Arrayás, M; Seviour, R; Trueba, J L

    2015-01-01T23:59:59.000Z

    Intense electromagnetic pulses interacting with a plasma can create a wake of plasma oscillations. Electrons trapped in such oscillations can be accelerated under certain conditions to very high energies. We study the conditions for the wakefield acceleration to produce MeV electrons in atmospheric plasmas. This mechanism may explain the origin of MeV or runaway electrons needed in the current theories for the production of Terrestrial Gamma ray Flashes.

  11. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; R. Alba; G. Ricco; M. Barbagallo; P. Boccaccio; A. Celentano; N. Colonna; L. Cosentino; A. Del Zoppo; A. Di Pietro; J. Esposito; P. Figuera; P. Finocchiaro; A. Kostyukov; C. Maiolino; D. Santonocito; M. Schillaci; V. Scuderi; C. M. Viberti

    2013-06-28T23:59:59.000Z

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate called for detailed data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick Beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0 to 150 degrees and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their Time of Flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a $^3$He detector was used. The obtained data are in good agreement with previous measurements at 0 degree with 66 MeV proton beam, covering neutron energies >10 MeV, as well as with measurements at few selected angles with protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60-70 MeV beam energy range. A comparison of measured yields to MCNP and Geant4 Monte Carlo simulations was performed.

  12. Measurement of Spin-Correlation Parameters all and Asl in P-P Elastic-Scattering from 500 Mev to 800 Mev

    E-Print Network [OSTI]

    Glass, G.; Bhatia, T. S.; Hiebert, John C.; Kenefick, R. A.; Nath, S.; Northcliffe, L. C.; Tippens, W. B.; Barlow, D. B.; Jarmer, J. J.; Simmons, J. E.; Jeppersen, R. H.; Tripard, G. E.

    1992-01-01T23:59:59.000Z

    The spin-correlation observable A(LL) for p-p elastic scattering has been measured at energies 589, 640, 692, 743, and 793 MeV, over a c.m. angular range between 20-degrees and 100-degrees. The spin observable A(SL) was also measured in this angular...

  13. Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV

    SciTech Connect (OSTI)

    Sakata, S., E-mail: sakata-s@ile.osaka-u.ac.jp; Arikawa, Y.; Kojima, S.; Ikenouchi, T.; Nagai, T.; Abe, Y.; Inoue, H.; Morace, A.; Utsugi, M.; Nishimura, H.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, Suita 565-0871 (Japan); Kato, R. [Institute of Scientific and Industrial Research, Osaka University, Ibaraki 565-0047 (Japan)

    2014-11-15T23:59:59.000Z

    A photonuclear-reaction-based hard x-ray spectrometer is developed to measure the number and energy spectrum of fast electrons generated by interactions between plasma and intense laser light. In this spectrometer, x-rays are converted to neutrons through photonuclear reactions, and the neutrons are counted with a bubble detector that is insensitive to x-rays. The spectrometer consists of a bundle of hard x-ray detectors that respond to different photon-energy ranges. Proof-of-principle experiment was performed on a linear accelerator facility. A quasi-monoenergetic electron bunch (N{sub e} = 1.0 × 10{sup ?6} C, E{sub e} = 16 ± 0.32 MeV) was injected into a 5-mm-thick lead plate. Bremsstrahlung x-rays, which emanate from the lead plate, were measured with the spectrometer. The measured spectral shape and intensity agree fairly well with those computed with a Monte Carlo simulation code. The result shows that high-energy x-rays can be measured absolutely with a photon-counting accuracy of 50%–70% in the energy range from 2 MeV to 20 MeV with a spectral resolution (?h?/h?) of about 15%. Quantum efficiency of this spectrometer was designed to be 10{sup ?7}, 10{sup ?4}, 10{sup ?5}, respectively, for 2–10, 11–15, and 15–25 MeV of photon energy ranges.

  14. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety bases...

  15. Nuclear Navy

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This video tells the story of the Navy's development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  16. Nuclear Navy

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  17. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

  18. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect (OSTI)

    Bing, G.F.

    1991-08-20T23:59:59.000Z

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  19. The low-energy nuclear density of states and the saddle point approximation

    E-Print Network [OSTI]

    Sanjay K. Ghosh; Byron K. Jennings

    2001-07-30T23:59:59.000Z

    The nuclear density of states plays an important role in nuclear reactions. At high energies, above a few MeV, the nuclear density of states is well described by a formula that depends on the smooth single particle density of states at the Fermi surface, the nuclear shell correction and the pairing energy. In this paper we present an analysis of the low energy behaviour of the nuclear density of states using the saddle point approximation and extensions to it. Furthermore, we prescribe a simple parabolic form for excitation energy, in the low energy limit, which may facilitate an easy computation of level densities.

  20. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2009-06-30T23:59:59.000Z

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high charge state phosphorus and antimony could have resulted in a lower power consumption of 30 kW/implanter) for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. Nevertheless, BNL has benefited from advances in high-charge state ion generation, due to high charge state ions need for RHIC preinjection. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. R&D of novel transport and gasless plasmaless deceleration, as well as decaborane molecular ion source to mitigate space charge problems in low energy shallow ion implantation was also conducted though results were not yet ready for commercialization. Future work should be focused on gasless plasmaless transport and deceleration as well as on molecular ions due to their significance to low energy, shallow implantation; which is the last frontier of ion implantation. To summarize the significant accomplishments: 1. Record steady state output currents of high charge state phosphorous, P, ions in particle milli-Ampere: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA). 2. Record steady state output currents of high charge state antimony, Sb, ions in particle milli-Ampere: Sb{sup 3+} (16.2 pmA), Sb{sup 4+} (7.6 pmA), Sb{sup 5+} (3.3 pmA), and Sb{sup 6+} (2.2 pmA). 3. 70% output of boron ion current (compared to 25% in present state-of-the-art) from a Calutron-Bemas ion source. These accomplishments have the potential of benefiting the semiconductor manufacturing industry by lowering power consumption by as much as 30 kW per ion implanter. Major problem w

  1. Temperature dependence of nuclear matter generalized isovector symmetry energy with Skyrme-type interactions

    E-Print Network [OSTI]

    F. L. Braghin

    2009-06-11T23:59:59.000Z

    The temperature dependence of the nuclear matter isovector symmetry energy coefficient ($\\cA_{0,1}$) is investigated in the framework of the generalized nuclear polarizability with Skyrme interactions, as worked out in Refs. \\cite{npa,prc}. The variation of $\\cA_{0,1}(T)$ is very small (of the order of 1 MeV) for temperatures (T) in the range of 0 and 18 MeV. Different behaviors with temperature are found strongly depending on the Skyrme parameterization, in particular at densities lower than the saturation density $\\rho_0$.

  2. Nuclear Fusion: ITER Project Update

    E-Print Network [OSTI]

    Confinement #12;Plasma self-heating D+ + T+ 4He++ (3.5 MeV) + n0 (14.1 MeV) Key Science Topics of Burning Plasmas: ­ Self-heating and self- organization ­ Energetic Particles ­ Size-scaling 3.5 MeV 14.1 MeV #12;U

  3. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Workforce Development Day Tuesday, October 22, 2013 Nuclear Medicine Topics: Pathways of Practice in Nuclear Medicine Radiopharmacy Patient Care ...

  4. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26T23:59:59.000Z

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Cancels DOE O 457.1 and DOE M 457.1-1.

  5. Nuclear Power

    E-Print Network [OSTI]

    Vilhena and Bardo E.J. Bodmann Carbon-#1;? in Terrestrial and Aquatic Environment of Ignalina Nuclear Power Plant: Sources of Production, Releases and Dose Estimates #3;?? Jonas Mazeika Impact of radionuclide discharges from Temel?n Nuclear Power... (chapter 5), ? Instrumentation and control (chapter 6), ? Diagnostics (chapter 7), ? Safety evaluation methods (chapters 6, 8, 9 and 10), ? Environment and nuclear power plants (chapters 11 - 15), ? Human factors (chapter 16), ? Software development...

  6. First calculation of cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande

    E-Print Network [OSTI]

    Shirley Weishi Li; John F. Beacom

    2014-04-13T23:59:59.000Z

    When muons travel through matter, their energy losses lead to nuclear breakup ("spallation") processes. The delayed decays of unstable daughter nuclei produced by cosmic-ray muons are important backgrounds for low-energy astrophysical neutrino experiments, e.g., those seeking to detect solar neutrino or Diffuse Supernova Neutrino Background (DSNB) signals. Even though Super-Kamiokande has strong general cuts to reduce these spallation-induced backgrounds, the remaining rate before additional cuts for specific signals is much larger than the signal rates for kinetic energies of about 6 -- 18 MeV. Surprisingly, there is no published calculation of the production and properties of these backgrounds in water, though there are such studies for scintillator. Using the simulation code FLUKA and theoretical insights, we detail how muons lose energy in water, produce secondary particles, how and where these secondaries produce isotopes, and the properties of the backgrounds from their decays. We reproduce Super-Kamiokande measurements of the total background to within a factor of 2, which is good given that the isotope yields vary by orders of magnitude and that some details of the experiment are unknown to us at this level. Our results break aggregate data into component isotopes, reveal their separate production mechanisms, and preserve correlations between them. We outline how to implement more effective background rejection techniques using this information. Reducing backgrounds in solar and DSNB studies by even a factor of a few could help lead to important new discoveries.

  7. Chronic cellular responses of rat skin to 13 Mev proton irradiation

    E-Print Network [OSTI]

    Hinkle, Donald King

    1966-01-01T23:59:59.000Z

    CHRONIC CELLULAR RESPONSES OF RAT SKIN TO 13 MEV PROTON IRRADIATION A Thesis by DONALD KING HINKLE, D. V. M. Submitted to the Graduate College of the Texas AErM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1966 Major Subject: Laboratory Animal Medicine CHRONIC CELLULAR RESPONSES OF RAT SKIN TO 13 MEV PROTON IRRADIATION A Thesis by DONALD KING HINKLE, D. V. M. Submitted to the Graduate College of the Texas ARM University in partial...

  8. Emission patterns of neutral pions in 40 A MeV Ta+Au reactions

    E-Print Network [OSTI]

    K. Piasecki; T. Matulewicz; N. Yahlali; H. Delagrange; J. Díaz; D. G. d'Enterria; F. Fernández; A. Kugler; H. Löhner; G. Martínez-García; R. W. Ostendorf; Y. Schutz; P. Tlustý; R. Turrisi; V. Wagner; H. W. Wilschut

    2010-04-16T23:59:59.000Z

    Differential cross sections of neutral pions emitted in 181Ta + 197Au collisions at a beam energy of 39.5A MeV have been measured with the photon spectrometer TAPS. The kinetic energy and transverse momentum spectra of neutral pions cannot be properly described in the framework of the thermal model, nor when the reabsorption of pions is accounted for in a phenomenological model. However, high energy and high momentum tails of the pion spectra can be well fitted through thermal distributions with unexpectedly soft temperature parameters below 10 MeV.

  9. PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01T23:59:59.000Z

    University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

  10. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect (OSTI)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France); Edwards, R.; Aedy, C. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom)] [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom); Mastrosimone, D.; Pien, G.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2013-08-15T23:59:59.000Z

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 ?m (full width half maximum of the x-ray source Point Spread Function)

  11. Signature of nonexponential nuclear decay

    E-Print Network [OSTI]

    A Ray; A K Sikdar; A De

    2015-03-18T23:59:59.000Z

    Precision tests of decay law of radioactive nuclei have not so far found any deviation from the exponential decay law at early time, as predicted by quantum mechanics. In this paper, we show that the quantum decoherence time (i.e. the timescale of nonexponential decay) of the quasifission or fission process should be of the order of attosecond considering the atom of the fissioning nucleus as a quantum detector. Hence, the observed decay timescale of the quasifission or fission process of even highly excited (EX greater than 50 MeV) transuranium and uraniumlike complexes should be rather long (of the order of attosecond) in spite of their very fast exponential decay timescale (of the order of zeptosecond) as measured by the nuclear techniques. Recent controversy regarding the observation of very long (of the order of attosecond ) and very short (of the order of zeptosecond ) quasifission or fission timescales for similar systems at similar excitation energies as obtained by direct techniques (crystal blocking, X ray fission fragment) and nuclear techniques could be interpreted as evidence for nonexponential decays in nuclear systems

  12. Nuclear data needed for applications in radiation oncology

    SciTech Connect (OSTI)

    White, R.M.; Chadwick, M.B.; Siantar, C.L.H.; Chandler, W.P.

    1994-03-01T23:59:59.000Z

    Fast neutrons have been used to treat over 15,000 cancer patients in approximately twenty centers worldwide and proton therapy is emerging as a potential treatment of choice for tumors near critical anatomical structures. Neutron therapy requires reaction data to {approximately}70 MeV while proton therapy requires data to {approximately}250 MeV. The cross section databases require energy- and angle-dependent cross sections for secondary neutrons, charged-particles and recoil nuclei. We discuss expansion of our nuclear databases and development of a three-dimensional radiation transport package that uses CT images as the input mesh to an all-particle Monte Carlo code. Called PEREGRINE, this code calculates dose distributions in the human body and can be used as a tool to determine the dependence of dose on details of the evaluated nuclear data.

  13. THE POWER SUPPLY SYSTEM FOR THE ACCELERATING COLUMN OF THE 2 MEV ELECTRON COOLER FOR COSY

    E-Print Network [OSTI]

    Kozak, Victor R.

    a high-energy electron beam. The power supply for the accelerating column of the electron cooling systemTHE POWER SUPPLY SYSTEM FOR THE ACCELERATING COLUMN OF THE 2 MEV ELECTRON COOLER FOR COSY D controlled voltage source for 60 kV, 1mA and an additional supply for the solenoids of the magnetic system

  14. Quasi-Differential Neutron Scattering in Zirconium from 0.5 to 20 MeV

    E-Print Network [OSTI]

    Danon, Yaron

    Quasi-Differential Neutron Scattering in Zirconium from 0.5 to 20 MeV D. P. Barry,* G. Leinweber, R-3590 Received January 10, 2012 Accepted August 10, 2012 Abstract ­ High-energy-neutron-scattering experiments of the neu- tron scattering cross sections for zirconium. The neutron differential scattering cross

  15. Scintillation detector efficiencies for neutrons in the energy region above 20 MeV

    SciTech Connect (OSTI)

    Dickens, J.K.

    1991-01-01T23:59:59.000Z

    The computer program SCINFUL (for SCINtillator FUL1 response) is a program designed to provide a calculated complete pulse-height response anticipated for neutrons being detected by either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator in the shape of a right circular cylinder. The point neutron source may be placed at any location with respect to the detector, even inside of it. The neutron source may be monoenergetic, or Maxwellian distributed, or distributed between chosen lower and upper bounds. The calculational method uses Monte Carlo techniques, and it is relativistically correct. Extensive comparisons with a variety of experimental data have been made. There is generally overall good agreement (less than 10% differences) of results for SCINFUL calculations with measured integral detector efficiencies for the design incident neutron energy range of 0.1 to 80 MeV. Calculations of differential detector responses, i.e. yield versus response pulse height, are generally within about 5% on the average for incident neutron energies between 16 and 50 MeV and for the upper 70% of the response pulse height. For incident neutron energies between 50 and 80 MeV, the calculated shape of the response agrees with measurements, but the calculations tend to underpredict the absolute values of the measured responses. Extension of the program to compute responses for incident neutron energies greater than 80 MeV will require new experimental data on neutron interactions with carbon. 32 refs., 6 figs., 2 tabs.

  16. DIFFUSION ELASTIQUE DES NEUTRONS PAR LE TRITIUM A 14 MeV

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DIFFUSION ELASTIQUE DES NEUTRONS PAR LE TRITIUM A 14 MeV Laboratoire de Neutronique, CNRS, Toulouse of neutrons from tritium is studied with a thin scatterer close to a Cs1 scintillator. The experimental. Le diffuseur utilisé est une cible mince contenant 2,22 an3 de tritium absorbé dans une épaisseur de

  17. The origin of the cosmic gamma-ray background in the MeV range

    E-Print Network [OSTI]

    Ruiz-Lapuente, Pilar; Hartmann, Dieter; Ajello, Marco; Canal, Ramon; Röpke, Friedrich K; Ohlmann, Sebastian T; Hillebrandt, Wolfgang

    2015-01-01T23:59:59.000Z

    There has been much debate about the origin of the diffuse gamma--ray background in the energy range from a few hundred keV to 10 MeV. At lower energies, AGNs and Seyfert galaxies can explain the background, but their contribution cuts off above $\\simeq$ 0.3 MeV. In the MeV range, the spectrum drops sharply for increasing energies. It flattens beyond $\\sim$ 10 MeV, and blazars appear to account for the fluxes observed there. That leaves an unexplained window for which different candidate sources have been proposed, including annihilations of weakly interacting massive particles (WIMPS). One candidate are Type Ia supernovae (SNe Ia). Previous estimates of SNe Ia to the cosmic gamma--ray background were based on a restricted number of SN Ia explosion models and, on very limited measurements of the SN Ia rates as a function of redshift $z$. In the present work, we use a wide variety of explosion models and the most recent measurements of the SN Ia rates, which now cover a wide redshift interval. If we adopt the ...

  18. The Corrosion of Tungsten During Irradiation in an 800 MeV Proton Beam

    E-Print Network [OSTI]

    such technology is Accelerator Production of Tritium (APT). In APT a tungsten target is bombarded by a high energyThe Corrosion of Tungsten During Irradiation in an 800 MeV Proton Beam R. Scott Lillard, Darryl P of solid neutron spallation targets such as tungsten (W), and target cladding or structural materials

  19. Laser-assisted nuclear photoeffect reexamined

    E-Print Network [OSTI]

    Péter Kálmán; Dániel P. Kis; Tamás Keszthelyi

    2013-03-06T23:59:59.000Z

    The S-matrix element and the cross section of the laser-assisted nuclear photoeffect are recalculated in a gauge invariant manner taking into account the effect of the Coulomb field of the remainder nucleus. The \\gamma-photon energy dependence of the laser free cross section obtained in the plane wave and long-wavelength Coulomb-Volkov approximations are compared. Numerically the laser-assisted partial cross sections with laser photon energy 2 keV and some different polarization states of \\gamma-photon of energy 3 MeV are investigated.

  20. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  1. Nuclear war, nuclear proliferation, and their consequences

    SciTech Connect (OSTI)

    Aga Khan, S.

    1986-01-01T23:59:59.000Z

    This book presents papers on nuclear weapons proliferation. Topics considered include the Nuclear Non-Proliferation Treaty and its future, the spread of nuclear weapons among nations, the link between horizontal and vertical proliferation, national security, nuclear disarmament, the impact of nuclear weapons on Third World regional conflicts, the global effects of a nuclear war, medical effects on human populations, the nuclear winter, the nuclear arms race, and arms control.

  2. Nuclear Alpha-Particle Condensates

    E-Print Network [OSTI]

    T. Yamada; Y. Funaki; H. Horiuchi; G. Roepke; P. Schuck; A. Tohsaki

    2011-03-21T23:59:59.000Z

    The $\\alpha$-particle condensate in nuclei is a novel state described by a product state of $\\alpha$'s, all with their c.o.m. in the lowest 0S orbit. We demonstrate that a typical $\\alpha$-particle condensate is the Hoyle state ($E_{x}=7.65$ MeV, $0^+_2$ state in $^{12}$C), which plays a crucial role for the synthesis of $^{12}$C in the universe. The influence of antisymmentrization in the Hoyle state on the bosonic character of the $\\alpha$ particle is discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle state, therefore, are predominant. It is conjectured that $\\alpha$-particle condensate states also exist in heavier $n\\alpha$ nuclei, like $^{16}$O, $^{20}$Ne, etc. For instance the $0^+_6$ state of $^{16}$O at $E_{x}=15.1$ MeV is identified from a theoretical analysis as being a strong candidate of a $4\\alpha$ condensate. The calculated small width (34 keV) of $0^+_6$, consistent with data, lends credit to the existence of heavier Hoyle-analogue states. In non-self-conjugated nuclei such as $^{11}$B and $^{13}$C, we discuss candidates for the product states of clusters, composed of $\\alpha$'s, triton's, and neutrons etc. The relationship of $\\alpha$-particle condensation in finite nuclei to quartetting in symmetric nuclear matter is investigated with the help of an in-medium modified four-nucleon equation. A nonlinear order parameter equation for quartet condensation is derived and solved for $\\alpha$ particle condensation in infinite nuclear matter. The strong qualitative difference with the pairing case is pointed out.

  3. Evaluated cross section libraries and kerma factors for neutrons up to 100 MeV on {sup 16}O and {sup 14}N

    SciTech Connect (OSTI)

    Chadwick, M.B.; Young, P.G.

    1995-07-01T23:59:59.000Z

    We present evaluations of the interaction of 20 to 100 MeV neutrons with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra, for light ejectiles with A{<=}4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al.. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. The evaluated data libraries are available as electronic files.

  4. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Powe

  5. Isovector spin observables in nuclear charge reactions at LAMPF

    SciTech Connect (OSTI)

    McClelland, J.B.

    1988-01-01T23:59:59.000Z

    LAMPF has undertaken a major development program to upgrade facilities for nuclear charge-exchange studies at intermediate energies. The major components of this upgrade are a medium-resolution spectrometer and neutron time-of-flight system for good resolution (delta E < 1 MeV) charge-exchange perograms in (n,p) and (p,n) respectively. Major emphasis is placed on polarization phenomena using polarized beams and analyzing the polarization of the outgoing particle.

  6. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07T23:59:59.000Z

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  7. Generation of 9 MeV -rays by all-laser-driven Compton scattering with second-harmonic laser light

    E-Print Network [OSTI]

    Umstadter, Donald

    Generation of 9 MeV -rays by all-laser-driven Compton scattering with second-harmonic laser light-harmonic-generated laser light (3 eV) inverse-Compton-scattered from a counterpropagating relativistic (450 MeV) laser in detection. Narrower band- width -rays are generated efficiently by means of inverse Compton scattering (ICS

  8. Nuclear Celebrations

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-11-01T23:59:59.000Z

    Broadcast Transcript: The North Korean situation is frightening for many reasons but none, perhaps, more eerily disturbing than images of North Koreans celebrating in brightly colored costumes just days after the nation's underground nuclear test...

  9. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10T23:59:59.000Z

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  10. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclear Science/Nuclear

  11. Measurement and analysis of gamma-rays emitted from spent nuclear fuel above 3 MeV

    SciTech Connect (OSTI)

    Rodriguez, Douglas C.; Anderson, Elaina R.; Anderson, Kevin K.; Campbell, Luke W.; Fast, James E.; Jarman, Kenneth D.; Kulisek, Jonathan A.; Orton, Christopher R.; Runkle, Robert C.; Stave, Sean

    2013-12-01T23:59:59.000Z

    The Next Generation Safeguard Initiative (NGSI) includes an effort to determine the mass content of fissile isotopes contained within spent fuel through the spectroscopy of high-energy delayed gamma rays. Studies being performed indicate the primary difficulty is the ability to detect the desired signal in the presence of the intense background associated with spent fuel fission products. An enabling technology for this application is high-resolution high-purity germanium (HPGe) detectors capable of operating efficiently in at extremely high count rates. This presentation will describe the prospects of high-rate germanium detectors and delayed-gamma techniques, primarily discussing the efforts to merge these into a unique and viable system for measuring spent fuel.

  12. A laser application to nuclear astrophysics

    SciTech Connect (OSTI)

    Barbui, M.; Hagel, K.; Schmidt, K.; Zheng, H.; Burch, R.; Barbarino, M.; Natowitz, J. B. [Cyclotron Institute, Texas A and M University, 3366 TAMU, College Station, TX (United States); Bang, W.; Dyer, G.; Quevedo, H. J.; Gaul, E.; Bernstein, A. C.; Donovan, M. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Bonasera, A. [Cyclotron Institute, Texas A and M University, 3366 TAMU, College Station, TX, U.S.A. and INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95125 Catania (Italy); Kimura, S. [Department of Physics, Universitŕ degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Mazzocco, M. [Dipartimento di Fisica e Astronomia Universitŕ degli Studi di Padova and INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Consoli, F.; De Angelis, R.; Andreoli, P. [Associazione Euratom-ENEA Sulla Fusione, Via Enrico Fermi 45, CP 65-00044 Frascati, Rome (Italy); Ditmire, T. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX, 78712 (United States)

    2014-05-09T23:59:59.000Z

    In the last decade, the availability in high-intensity laser beams capable of producing plasmas with ion energies large enough to induce nuclear reactions has opened new research paths in nuclear physics. We studied the reactions {sup 3}He(d,p){sup 4}He and d(d,n){sup 3}He at temperatures of few keV in a plasma, generated by the interaction of intense ultrafast laser pulses with molecular deuterium or deuterated-methane clusters mixed with {sup 3}He atoms. The yield of 14.7 MeV protons from the {sup 3}He(d,p){sup 4}He reaction was used to extract the astrophysical S factor. Results of the experiment performed at the Center for High Energy Density Science at The University of Texas at Austin will be presented.

  13. Deuteron scattering on {sup 6}Li at an energy of 25 MeV

    SciTech Connect (OSTI)

    Burtebayev, N. [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Artemov, S. V. [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan); Duisebayev, B. A.; Kerimkulov, Zh. K. [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Kuranov, S. B. [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan); Sakuta, S. B., E-mail: sakuta@dni.polyn.kiae.s [Russian Research Center Kurchatov Institute (Russian Federation)

    2010-05-15T23:59:59.000Z

    At an energy of 25 MeV and in the angular range 7{sup o}-175{sup o} in the laboratory frame, angular distributions were measured for elastic deuteron scattering on {sup 6}Li nuclei and for the respective inelastic-scattering processes accompanied by the transitions to the ground state (1+) of the {sup 6}Li nucleus and to its excited state at E{sub x} = 2.186 MeV (J{sup {pi}} = 3{sup +}). The resulting data were analyzed on the basis of the optical model of the nucleus and the coupled-reaction-channel method with allowance for the mechanism of alpha-particle-cluster exchange. It is shown that only upon including, in the analysis, channel coupling and the exchange mechanism can the experimental cross sections for elastic and inelastic scattering be reproduced over the entire range of angles.

  14. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    E-Print Network [OSTI]

    Dymov, S; Bagdasarian, Z; Barsov, S; Carbonell, J; Chiladze, D; Engels, R; Gebel, R; Grigoryev, K; Hartmann, M; Kacharava, A; Khoukaz, A; Komarov, V; Kulessa, P; Kulikov, A; Kurbatov, V; Lomidze, N; Lorentz, B; Macharashvili, G; Mchedlishvili, D; Merzliakov, S; Mielke, M; Mikirtychyants, M; Mikirtychyants, S; Nioradze, M; Ohm, H; Prasuhn, D; Rathmann, F; Serdyuk, V; Seyfarth, H; Shmakova, V; Ströher, H; Tabidze, M; Trusov, S; Tsirkov, D; Uzikov, Yu; Valdau, Yu; Weidemann, C; Wilkin, C

    2015-01-01T23:59:59.000Z

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation.

  15. STATUS OF NEW 2.5 MEV TEST FACILITY AT SNS

    SciTech Connect (OSTI)

    Aleksandrov, Alexander V [ORNL; Champion, Mark [FNAL; Crofford, Mark T [ORNL; Kang, Yoon W [ORNL; Menshov, Alexander A [ORNL; Roseberry, Jr., R Tom [ORNL; Stockli, Martin P [ORNL; Webster, Anthony W [ORNL; Welton, Robert F [ORNL; Zhukov, Alexander P [ORNL

    2014-01-01T23:59:59.000Z

    A new 2.5MeV beam test facility is being built at SNS. It consists of a 65 keV H- ion source, a 2.5MeV RFQ, a beam line with various beam diagnostics and a 6 kW beam dump. The facility is capable of producing one-ms-long pulses at 60Hz repetition rate with up to 50mA peak current. The commissioning with reduced average beam power is planned for fall 2014 to verify operation of all systems. The full power operation is scheduled to begin in 2015. The status of the facility will be presented as well as a discussion of the future R&D program.

  16. Commissioning of the CERN LINAC4 BPM System with 50 Mev Proton Beamns

    E-Print Network [OSTI]

    Tan, J; Sřby, L; Sordet, M; Wendt, M

    2013-01-01T23:59:59.000Z

    The new Linac4 at CERN will provide a 160 MeV H- ion beam for charge-exchange injection into the existing CERN accelerator complex. Shorted stripline pick-ups placed in the Linac intertank regions and the transfer lines will measure beam orbit, relative beam current, beam phase, and average beam energy via the time-of-flight between two pickups. A prototype Beam Position Monitor (BPM) system has been installed in the transfer line between the existing Linac2 and the Proton Synchrotron Booster (PSB) in order to study and review the complete acquisition chain. This paper presents measurements and performance of this BPM system operating with 50 MeV proton beams, and compares the results with laboratory measurements and electromagnetic simulations.

  17. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    E-Print Network [OSTI]

    S. Dymov; T. Azaryan; Z. Bagdasarian; S. Barsov; J. Carbonell; D. Chiladze; R. Engels; R. Gebel; K. Grigoryev; M. Hartmann; A. Kacharava; A. Khoukaz; V. Komarov; P. Kulessa; A. Kulikov; V. Kurbatov; N. Lomidze; B. Lorentz; G. Macharashvili; D. Mchedlishvili; S. Merzliakov; M. Mielke; M. Mikirtychyants; S. Mikirtychyants; M. Nioradze; H. Ohm; D. Prasuhn; F. Rathmann; V. Serdyuk; H. Seyfarth; V. Shmakova; H. Ströher; M. Tabidze; S. Trusov; D. Tsirkov; Yu. Uzikov; Yu. Valdau; C. Weidemann; C. Wilkin

    2015-03-02T23:59:59.000Z

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation.

  18. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect (OSTI)

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01T23:59:59.000Z

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  19. First measurement of the 2.4 and 2.9 MeV $^6$He three-cluster resonant states via the $^3$H($^4$He,p$?$)2n four-body reaction

    E-Print Network [OSTI]

    G. Mandaglio; O. Povoroznyk; O. K. Gorpinich; O. O. Jachmenjov; A. Anastasi; F. Curciarello; V. De Leo; H. V. Mokhnach; O. Ponkratenko; Y. Roznyuk; G. Fazio; G. Giardina

    2014-05-06T23:59:59.000Z

    Two new low-lying $^6$He levels at excitation energies of about 2.4 and 2.9 MeV were observed in the experimental investigation of the p-$\\alpha$ coincidence spectra obtained by the $^3$H($^4$He,p$\\alpha$)2n four-body reaction at $E_{\\rm \\,^4He}$ beam energy of 27.2 MeV. The relevant $E^*$ peak energy and $\\Gamma$ energy width spectroscopic parameters for such $^6$He$^*$ excited states decaying into the $\\alpha$+n+n channel were obtained by analyzing the bidimensional ($E_{\\rm p}$, $E_{\\rm \\alpha}$) energy spectra. The present new result of two low-lying $^6$He$^*$ excited states above the $^4$He+2n threshold energy of 0.974 MeV is important for the investigation of the nuclear structure of neutron rich light nuclei and also as a basic test for theoretical models in the study of the three-cluster resonance feature of $^6$He.

  20. A Monitor of the Focusing Strength of Plasma Lenses Using MeV Synchrotron Radiation

    E-Print Network [OSTI]

    Clive Field; Gholam Mazaheri; Johnny S. T. Ng

    2002-01-17T23:59:59.000Z

    The focusing strength of plasma lenses used with high energy electron or positron beams can give rise to synchrotron radiation with critical energies in the MeV range. A method is described for measuring the characteristic energy of this radiation as a way of monitoring the strength of the focus. The principle has been implemented in a plasma lens experiment with a 28.5 GeV positron beam.

  1. Scattering of {sup 8}He on {sup 208}Pb at 22 MeV

    SciTech Connect (OSTI)

    Marquinez-Duran, G.; Sanchez-Benitez, A. M.; Martel, I.; Berjillos, R.; Duenas, J. A.; Parkar, V. V. [Depto. de Fisica Aplicada, Universidad de Huelva, 21071 Huelva (Spain); Acosta, L. [Depto. de Fisica Aplicada, Universidad de Huelva, 21071 Huelva, Spain and Laboratori Nazionali del Sud, INFN, Via Santa Sofia 62, 95123, Catania (Italy); Rusek, K. [Heavy Ion Laboratory, University of Warsaw (Poland); Alvarez, M. A. G.; Gomez-Camacho, J. [Centro Nacional de Aceleradores, 41092, Sevilla, Spain and Depto. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); Borge, M. J. G.; Cruz, C.; Cubero, M.; Pesudo, V.; Tengblad, O. [Instituto de Estructura de la Materia, CSIC, 28006 Madrid (Spain); Chbihi, A. [GANIL, CEA and IN2P3-CNRS, B.P. 5027, 14076 Caen cedex (France); Fernandez-Garcia, J. P.; Moro, A. M. [Depto. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); Fernandez-Martinez, B.; Labrador, J. A. [Centro Nacional de Aceleradores, 41092, Sevilla (Spain); and others

    2013-06-10T23:59:59.000Z

    The skin nucleus {sup 8}He is investigated by measuring the angular distribution of the elasticly scattered {sup 8}He and the {sup 6,4}He fragments produced in the collision with a {sup 208}Pb target at 22 MeV, just above the Coulomb barrier. The experiment was carried out at SPIRAL/GANIL in 2010. Here we present preliminary results for the elastic scattering.

  2. Voltage holding study of 1 MeV accelerator for ITER neutral beam injector

    SciTech Connect (OSTI)

    Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Dairaku, M.; Takemoto, J.; Tobari, H.; Tsuchida, K.; Yamanaka, H.; Watanabe, K.; Kojima, A.; Hanada, M.; Sakamoto, K.; Inoue, T. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2012-02-15T23:59:59.000Z

    Voltage holding test on MeV accelerator indicated that sustainable voltage was a half of that of ideal quasi-Rogowski electrode. It was suggested that the emission of the clumps is enhanced by a local electric field concentration, which leads to discharge initiation at lower voltage. To reduce the electric field concentration in the MeV accelerator, gaps between the grid supports were expanded and curvature radii at the support corners were increased. After the modifications, the accelerator succeeded in sustaining -1 MV in vacuum without beam acceleration. However, the beam energy was still limited at a level of 900 keV with a beam current density of 150 A/m{sup 2} (346 mA) where the 3 x 5 apertures were used. Measurement of the beam profile revealed that deflection of the H{sup -} ions was large and a part of the H{sup -} ions was intercepted at the acceleration grid. This causes high heat load on the grids and the breakdowns during beam acceleration. To suppress the direct interception, new grid system was designed with proper aperture displacement based on a 3D beam trajectory analysis. As the result, the beam deflection was compensated and the voltage holding during the beam acceleration was improved. Beam parameter of the MeV accelerator was increased to 980 keV, 185 A/m{sup 2} (427 mA), which is close to the requirement of ITER accelerator (1 MeV, 200 A/m{sup 2}).

  3. Author's personal copy Gamma-Light: High-Energy Astrophysics above 10 MeV

    E-Print Network [OSTI]

    Morselli, Aldo

    INAF OAC, Cagliari, Italy yINAF-IASF Palermo, Italy zNCAC, Poland) Abstract The energy range between 10Author's personal copy Gamma-Light: High-Energy Astrophysics above 10 MeV Aldo Morsellia , AndreaUniversidad Autonoma de Madrid and IFT-UAM/CSIC, Spain qDTU Space, Denmark rSRC PAS, Poland sUniv. Barcelona, Spain t

  4. Radiation Damage of F8 Lead Glass with 20 MeV Electrons

    E-Print Network [OSTI]

    Schaefer, B D; McChesney, P; Shepherd, M R; Frye, J M

    2011-01-01T23:59:59.000Z

    Using a 20 MeV linear accelerator, we investigate the effects of electromagnetic radiation on the optical transparency of F8 lead glass. Specifically, we measure the change in attenuation length as a function of radiation dose. Comparing our results to similar work that utilized a proton beam, we conclude that F8 lead glass is more susceptible to proton damage than electron damage.

  5. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; R. Alba; G. Ricco; M. Schillaci; M. Barbagallo; P. Boccaccio; A. Celentano; N. Colonna; L. Cosentino; A. Del Zoppo; A. Di Pietro; J. Esposito; P. Figuera; P. Finocchiaro; A. Kostyukov; C. Maiolino; D. Santonocito; V. Scuderi; C. M. Viberti

    2013-06-28T23:59:59.000Z

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range He3 detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval.

  6. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    E-Print Network [OSTI]

    Osipenko, M; Alba, R; Ricco, G; Schillaci, M; Barbagallo, M; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, L; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Santonocito, D; Scuderi, V; Viberti, C M

    2013-01-01T23:59:59.000Z

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range He3 detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval.

  7. NUCLEAR PROXIMITY FORCES

    E-Print Network [OSTI]

    Randrup, J.

    2011-01-01T23:59:59.000Z

    One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

  8. Accurate fission data for nuclear safety

    E-Print Network [OSTI]

    A. Solders; D. Gorelov; A. Jokinen; V. S. Kolhinen; M. Lantz; A. Mattera; H. Penttila; S. Pomp; V. Rakopoulos; S. Rinta-Antila

    2013-04-08T23:59:59.000Z

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  9. Accurate fission data for nuclear safety

    E-Print Network [OSTI]

    Solders, A; Jokinen, A; Kolhinen, V S; Lantz, M; Mattera, A; Penttila, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S

    2013-01-01T23:59:59.000Z

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons...

  10. Nuclear scales

    SciTech Connect (OSTI)

    Friar, J.L.

    1998-12-01T23:59:59.000Z

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  11. Nuclear winter

    SciTech Connect (OSTI)

    Ehrlich, A.

    1984-04-01T23:59:59.000Z

    The 13 speakers at the October 1983 Conference on the World After Nuclear War each contributed specialized knowledge to the climatic and biological effects of nuclear war. The author highlights the findings of the TTAPS (named for its authors) study and confirmation by Soviet scientists on the nuclear winter. Atmospheric consequences would come from debris blocking sunlight and creating conditions of cold and darkness that could preclude the continued existence of life. The biological consequences of cold and darkness would be reduced photosynthesis, devastating losses of food, damage and death from ionizing radiation, and a breakdown of ecosystems. Impacts on the human population would be intensified by a breakdown in social services. The author summarizes points of discussion during the conference. 4 references.

  12. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensor NodesNuclear

  13. Invariant mass distributions for the pp to p p eta reaction at Q=10 MeV

    E-Print Network [OSTI]

    P. Moskal; R. Czyzykiewicz; E. Czerwinski; D. Gil; D. Grzonka; L. Jarczyk; B. Kamys; A. Khoukaz; J. Klaja; P. Klaja; W. Krzemien; W. Oelert; J. Ritman; T. Sefzick; M. Siemaszko; M. Silarski; J. Smyrski; A. Taschner; M. Wolke; P. Wustner; J. Zdebik; M. J. Zielinski; W. Zipper

    2009-12-08T23:59:59.000Z

    Proton-proton and proton-eta invariant mass distributions and the total cross section for the pp to pp eta reaction have been determined near the threshold at an excess energy of Q=10 MeV. The experiment has been conducted using the COSY-11 detector setup and the cooler synchrotron COSY. The determined invariant mass spectra reveal significant enhancements in the region of low proton-proton relative momenta, similarly as observed previously at higher excess energies of Q=15.5 MeV and Q= 40MeV.

  14. Report to the DOE Nuclear Data Committee, 1984

    SciTech Connect (OSTI)

    Wong, C.; Haight, R.C.; Struble, G.L.

    1984-02-01T23:59:59.000Z

    Experimental results are discussed for: /sup 6/ /sup 7/Li(n,/sup 4/He) cross sections at 14 MeV, neutron elastic and inelastic scattering from carbon near 14 MeV, neutron capture cross sections for /sup 46/Ca and /sup 48/Ca at stellar temperatures, revised neutron cross sections for /sup 142/ /sup 143/ /sup 144/Nd, fragment angular distribution for neutron fission of /sup 232/Th, neutron differential scattering measurements in the actinide region, nuclear structure of /sup 244/Am, conversion coefficients of the M4 transition in /sup 193m/Ir, gamma-ray and conversion-electron decay of the /sup 238/U shape isomer, and levels of /sup 244/Cm populated by the beta decay of 10-hr /sup 244g/Am and 26-minute /sup 244m/Am. Calculations described include tests of microscopic optical models for neutron and proton scattering on light nuclei in the range 14 to 45 MeV, a new dynamic model for fission, and the necessity of discrete-level modeling in isomer ratio calculations for neutron-induced reactions on deformed nuclei. Also, a reevaluation for ENDL of sigma(n,f) and anti nu p for /sup 235/U and /sup 239/Pu from 100 keV to 20 MeV is described. 31 references. (WHK)

  15. Angular distributions of target fragments from the reactions of 292 MeV - 25. 2 GeV /sup 12/C with /sup 197/Au and /sup 238/U

    SciTech Connect (OSTI)

    Morita, Y.

    1983-05-20T23:59:59.000Z

    Angular distributions of target fragments from the reactions of /sup 12/C with /sup 197/Au and /sup 238/U were measured at projectile energies of 292 MeV, 1.0 GeV, 3.0 GeV, 12.0 GeV and 25.2 GeV. The angular distributions of the /sup 197/Au target fragments were all forwardly peaked. Extensively forward peaked angular distributions were observed at the non-relativistic projectile energies (292 MeV, 1.0 GeV). No obvious differences were observed in the angular distributions at the different relativistic projectile energies of 3.0 GeV, 12.0 GeV and 25.2 GeV. The characteristic angular distribution pattern from the relativistic projectile energy experiments was also observed in the non-relativistic energy experiments. Maximum degree of forward-peaking in the angular distributions at each projectile energy was observed at the product mass number (A) around 190 from the 292 MeV projectile energy, at A=180 from 1.0 GeV and at A=175 from 3.0 GeV and 12.0 GeV. In general, two different types of angular distributions were observed in the relativistic projectile energy experiments with the /sup 238/U target. Isotropic angular distributions were observed for the fission product nuclides. The angular distributions of the fission products at the intermediate (292 MeV) energy showed slightly forward- peaked angular distributions. Because of the long projectile-target interaction time in the primary nuclear reaction, larger momentum was transferred from the projectile to the target nucleus. Steep forward-peaked angular distributions were also observed with the /sup 238/U target.

  16. Inclusive inelastic scattering of 96. 5-MeV. pi. sup + and. pi. sup minus by the hydrogen and helium isotopes

    SciTech Connect (OSTI)

    Khandaker, M.A.; Doss, M.; Halpern, I.; Murakami, T.; Storm, D.W.; Tieger, D.R. (University of Washington, Department of Physics, FM-15, Seattle, Washington 98195 (USA)); Burger, W.J. (Massachusetts Institute of Technology, Bates Linear Accelerator Center, Middleton, Massachusetts 01949 (USA))

    1991-07-01T23:59:59.000Z

    Spectra, angular distributions, and integrated cross sections for inclusive inelastic scattering of 96.5-MeV {pi}{sup +} and {pi}{sup {minus}} from {sup 2}H, {sup 3}He, and {sup 4}He are presented. The measurements were made using a high-pressure gas cell, which permits an accurate determination of relative cross sections for all targets. The data are compared with distorted-wave impulse-approximation calculations and with a modified plane-wave impulse-approximation calculation. In addition, by combining the total inelastic cross sections from this work with estimates of single-charge-exchange cross sections and with published values and reasonable estimates of the other {pi}{sup +} cross sections at the same energy, values for total reaction and pion absorption cross sections are obtained for all the targets. The dependence of these cross sections on {ital Z}, {ital N}, nuclear density, and nuclear binding energy is discussed in terms of a simple model.

  17. Cross section ratio and angular distributions of the reaction p + d -> 3He + eta at 48.8 MeV and 59.8 MeV excess energy

    E-Print Network [OSTI]

    P. Adlarson; W. Augustyniak; W. Bardan; M. Bashkanov; F. S. Bergmann; M. Ber?owski; H. Bhatt; M. Büscher; H. Calén; I. Ciepa?; H. Clement; D. Coderre; E. Czerwi?ski; K. Demmich; E. Doroshkevich; R. Engels; A. Erven; W. Erven; W. Eyrich; P. Fedorets; K. Föhl; K. Fransson; F. Goldenbaum; P. Goslawski; A. Goswami; K. Grigoryev; C. -O. Gullström; F. Hauenstein; L. Heijkenskjöld; V. Hejny; M. Hodana; B. Höistad; N. Hüsken; A. Jany; B. R. Jany; L. Jarczyk; T. Johansson; B. Kamys; G. Kemmerling; F. A. Khan; A. Khoukaz; D. A. Kirillov; S. Kistryn; B. K?os; H. Kleines; M. Krapp; W. Krzemie?; P. Kulessa; A. Kup??; K. Lalwani; D. Lersch; B. Lorentz; A. Magiera; R. Maier; P. Marciniewski; B. Maria?ski; M. Mikirtychiants; H. --P. Morsch; P. Moskal; H. Ohm; I. Ozerianska; A. Passfeld; E. Perez del Rio; N. M. Piskunov; P. Podkopa?; D. Prasuhn; A. Pricking; D. Pszczel; K. Pysz; A. Pyszniak; C. F. Redmer; J. Ritman; A. Roy; Z. Rudy; S. Sawant; S. Schadmand; T. Sefzick; V. Serdyuk; R. Siudak; T. Skorodko; M. Skurzok; J. Smyrski; V. Sopov; R. Stassen; J. Stepaniak; E. Stephan; G. Sterzenbach; H. Stockhorst; H. Ströher; A. Szczurek; A. Täschner; A. Trzci?ski; R. Varma; G. J. Wagner; W. W?glorz; M. Wolke; A. Wro?ska; P. Wüstner; P. Wurm; A. Yamamoto; L. Yurev; J. Zabierowski; M. J. Zieli?ski; A. Zink; J. Z?oma?czuk; P. ?upra?ski; M. ?urek

    2014-06-23T23:59:59.000Z

    We present new data for angular distributions and on the cross section ratio of the p + d -> 3He + eta reaction at excess energies of Q = 48.8 MeV and Q = 59.8 MeV. The data have been obtained at the WASA-at-COSY experiment (Forschungszentrum J\\"ulich) using a proton beam and a deuterium pellet target. While the shape of obtained angular distributions show only a slow variation with the energy, the new results indicate a distinct and unexpected total cross section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the variation of the production mechanism within this energy interval.

  18. Nuclear Golf

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-12-06T23:59:59.000Z

    Broadcast Transcript: Pay no attention to that nuclear warhead behind the 18th hole; just shout "Fore!" and drive your Titleist down the fairway. In a development that is bizarre even by North Korean standards, the country is making a move to sell...

  19. PRODUCTION DE TRITIUM DANS LE THORIUM PAR DES PROTONS DE 135 MeV Par M. LEFORT, G. SIMONOFF et X. TARRAGO

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    959 PRODUCTION DE TRITIUM DANS LE THORIUM PAR DES PROTONS DE 135 MeV Par M. LEFORT, G. SIMONOFF et thorium par des protons de 135 MeV accélérés au synchro-cyclotron d'Orsay. Le tritium était extrait des measured the cross-section of tritium production by bombardement of thorium by 135 MeV protons in the Orsay

  20. Nuclear Forensics | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forensics | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  1. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Incident Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  2. Measurement of the cross sections for the production of the isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co from natural and enriched germanium irradiated with 100-MeV protons

    SciTech Connect (OSTI)

    Barabanov, I. R.; Bezrukov, L. B.; Gurentsov, V. I.; Zhuykov, B. L.; Kianovsky, S. V.; Kornoukhov, V. N.; Kohanuk, V. M.; Yanovich, E. A. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2010-07-15T23:59:59.000Z

    The cross sections for the production of the radioactive isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co in metallic germanium irradiated with 100-MeV protons were measured, the experiments being performed both with germanium of natural isotopic composition and germanium enriched in the isotope {sup 76}Ge. The targets were irradiated with a proton beam at the facility for the production of radionuclides at the accelerator of the Institute for Nuclear Research (INR, Moscow). The data obtained will further be used to calculate the background of radioactive isotopes formed by nuclear cascades of cosmic-ray muons in new-generation experiments devoted to searches for the neutrinoless double-beta decay of {sup 76}Ge at underground laboratories.

  3. WORKSHOP ON NUCLEAR DYNAMICS

    E-Print Network [OSTI]

    Myers, W.D.

    2010-01-01T23:59:59.000Z

    L. Wilets, "Theories of Nuclear Fission", Clarendon Press,of the nuclear force, result in lower calculated fission

  4. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROM: SUBJECT: USIUK Memorandum of Understanding between National Nuclear Security Administration's (NNSA) Associate Administrator for Defense Nuclear Security (AADNS)...

  5. HRTEM study of track evolution in 120-MeV U irradiated Gd2Ti2O7...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study of track evolution in 120-MeV U irradiated Gd2Ti2O7. Abstract: High resolution Scanning Transmission Electron Microscopy (HRTEM) experiments were performed on Gd2Ti2O7...

  6. Angular Distribution and Recoil Effect for 1 MeV Au+ Ions through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Range of Ions in Matter (SRIM) code has been widely used to predict nuclear stopping power and angular distribution of ion-solid collisions. However, experimental validation...

  7. INSTRUCTIONS FOR SUBMITTING NUCLEAR

    E-Print Network [OSTI]

    waste management proceedings. Keywords Nuclear, nuclear power plant, spent fuel, nuclear waste, data of Submitted Data 3 NUCLEAR POWER PLANT DATA REQUESTS 6 A. Environmental Impacts 6 B. Spent Fuel Generation 8 C. Spent Nuclear Fuel Storage 9 D. Spent Nuclear Fuel Transport and Disposal Issues 10 E. Interim Spent

  8. Nuclear symmetry energy from the Fermi-energy difference in nuclei

    E-Print Network [OSTI]

    Ning Wang; Li Ou; Min Liu

    2013-03-15T23:59:59.000Z

    The neutron-proton Fermi-energy difference and the correlation to nucleon separation energies for some magic nuclei are investigated with the Skyrme energy density functionals and nuclear masses, with which the nuclear symmetry energy at sub-saturation densities is constrained from 54 Skyrme parameter sets. The extracted nuclear symmetry energy at sub-saturation density of 0.11 fm$^{-3}$ is 26.2 $\\pm$ 1.0 MeV with 1.5 $\\sigma$ uncertainty. By further combining the neutron-skin thickness of 208Pb, ten Skyrme forces with slope parameter of 28energy around saturation densities.

  9. Energy-dependent Lorentz covariant parameterization of the NN interaction between 50 and 200 MeV

    E-Print Network [OSTI]

    Z. P. Li; G. C. Hillhouse; J. Meng

    2007-12-03T23:59:59.000Z

    For laboratory kinetic energies between 50 and 200 MeV, we focus on generating an energy-dependent Lorentz covariant parameterization of the on-shell nucleon-nucleon (NN) scattering amplitudes in terms of a number of Yukawa-type meson exchanges in first-order Born approximation. This parameterization provides a good description of NN scattering observables in the energy range of interest, and can also be extrapolated to energies between 40 and 300 MeV.

  10. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    E-Print Network [OSTI]

    Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions D. P of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions D. P. Higginson,1,2 J. M. Mc of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons

  11. REACTIONS (p, 2pxn) SUR LE THORIUM 232 DE 30 A 120 MeV Par HENRI GAUVIN,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    836. REACTIONS (p, 2pxn) SUR LE THORIUM 232 DE 30 A 120 MeV Par HENRI GAUVIN, Laboratoire Joliot isotopes 224, 225, 226, 227, 228 de l'actinium dans le thorium 232 bombardé par des protons de 30 ŕ 120 Me (224 to 228) in the bombardment of thorium 232 with 30 to 120 MeV protons. In the low energy range (30

  12. Giant resonances in (116)Sn from 240 MeV (6)Li scattering

    E-Print Network [OSTI]

    Chen, X.; Lui, Y. -W; Clark, H. L.; Tokimoto, Y.; Youngblood, David H.

    2009-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 79, 024320 (2009) Giant resonances in 116Sn from 240 MeV 6Li scattering X. Chen, Y.-W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA (Received... multipole excitation operator Q = ? i f (ri)YML (#2;i), (2) 0556-2813/2009/79(2)/024320(8) 024320-1 2009 The American Physical Society CHEN, LUI, CLARK, TOKIMOTO, AND YOUNGBLOOD PHYSICAL REVIEW C 79, 024320 (2009) the EWSR can be evaluated by means...

  13. H-2(p,n)2p Spin Transfer from 305 to 788 Mev

    E-Print Network [OSTI]

    McNaughton, M. W.; Koch, K.; Supek, I.; Tanaka, N.; Ambrose, DA; Coffey, P.; Johnston, K.; McNaughton, K. H.; Riley, P. J.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Simon, A. J.; Mercer, D. J.; Adams, D. L.; Spinka, H.; Jeppersen, R. H.; Tripard, G. E.; Woolverton, H.

    1992-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 45, NUMBER 6 JUNE 1992 ARTICLES 2H(y, n)2p spin transfer from $05 to 7'88 Mev M. W. McNaughton, K. Koch, ' I. Supek, and N. Tanakat Los Alamos National Laboratory, Ios Alarnos, ?wMexico 876/6 D. A. Ambrose, P. Coff..., Colorado 80808 D. L. Adams Rice University, Bou,ston, Texas 77252 H. Spinka Argonne National Laboratory, Argonne, Illinois 60/89 R. H. Jeppesen University of Montana, Missoula, Montana 69812 G. E. Tripard Washington State University, Pullman...

  14. Exclusive light particle measurements for the system $^{19}$F + $^{12}$C at 96 MeV

    E-Print Network [OSTI]

    D. Bandyopadhyay; C. Bhattacharya; K. Krishan; S. Bhattacharya; S. K. Basu; A. Chatterjee; S. Kailas; A. Shrivastava; K. Mahata

    2001-10-04T23:59:59.000Z

    Decay sequence of hot ${31}^$P nucleus has been investigated through exclusive light charged particle measurements in coincidence with individual evaporation residues using the reaction ${19}^$F (96 MeV) + ${12}^$C. Information on the sequential decay chain have been extracted by confronting the data with the predictions of the statistical model. It is observed from the present analysis that such exclusive light charged particle data may be used as a powerful tool to probe the decay sequence of the hot light compound systems.

  15. The response of NE 102 to 2.6-28.0 MeV neutrons

    E-Print Network [OSTI]

    Martin, Stephen Dobie

    1979-01-01T23:59:59.000Z

    y(c), (b) the location of T, and (c) the location of a time channel T in the 0 n neutron continuum. 16 6. H vs. E spectrum for the first data run, Ed ? 12. 5 NeV. . . 20 n Proton recoil spectrum for tine channel 35 (E = 23. 5 MeV) from... Page calculated data points of Gocding and Pugh and with the measured data points of Evans and Eellamy, Nadey et al. , and Nadey and Waterman . 42 17. Zero extrapolated ~ given in table 7 fitted to the present data and to the data of refs. 5 and 6...

  16. Re-evaluation of Neutron-4He Elastic Scattering Data near 20 MeV

    E-Print Network [OSTI]

    M. Drosg; R. Avalos Ortiz; B. Hoop

    2012-10-02T23:59:59.000Z

    Measured differential elastic scattering cross sections of 17.71-, 20.97-, and 23.72-MeV neutrons from liquid helium-4 were re-evaluated and corrected for sample size and multiple scattering effects by means of a Monte Carlo technique implemented in a more recent code (MCNPX). Results indicate that earlier corrections via a code, MAGGIE-2, overestimated the size of multiple scattering effects by an order of magnitude. The corrected differential cross sections and Legendre coefficients obtained by least-squares fits are given.

  17. Giant resonances in (24)Mg and (28)Si from 240 MeV (6)Li scattering

    E-Print Network [OSTI]

    Chen, X.; Lui, Y. -W; Clark, H. L.; Tokimoto, Y.; Youngblood, David H.

    2009-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 80, 014312 (2009) Giant resonances in 24Mg and 28Si from 240 MeV 6Li scattering X. Chen,1 Y.-W. Lui,2 H. L. Clark,2 Y. Tokimoto,2 and D. H. Youngblood2 1Chemistry Department, Washington University, St. Louis, Missouri 63130, USA...-1 ?2009 The American Physical Society CHEN, LUI, CLARK, TOKIMOTO, AND YOUNGBLOOD PHYSICAL REVIEW C 80, 014312 (2009) TABLE I. Spectrometer angles used for measuring elastic scat- tering and giant resonances. The numbers in parenthesis are the slit...

  18. Comment on the Evidence for a Monopole Resonance at Approximately 20 Mev in Ni-58

    E-Print Network [OSTI]

    Garg, U.; Bogucki, P.; Bronson, J. D.; Lui, YW; Rozsa, C. M.; Youngblood, David H.

    1982-01-01T23:59:59.000Z

    be accompanied by a brief abstract and a keyword abstract. Comment on the evidence for a monopole resonance at approximately 20 MeV in 5sNi U. Garg, P. Bogucki, J. D. Bronson, Y. -W. Lui, C. M. Rozsa, * and D. H. Youngblood Cyclotron Institute, Texas Ack.... Martin, P. de Saintignon, and G. Perrin, Phys. Lett. 97B, 358 (1980). 7C. M. Rozsa, D. H. Youngblood, J. D. Bronson, Y.-W. Lui, and U. Garg, Phys. Rev. C +1, 1252 (1980). SD. C. Kocher, F. E. Bertrand, E. E. Gross, and E. New- man, Phys. Rev. C 14...

  19. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    E-Print Network [OSTI]

    R. Alba; M. Barbagallo; P. Boccaccio; A. Celentano; N. Colonna; G. Cosentino; A. Del Zoppo; A. Di Pietro; J. Esposito; P. Figuera; P. Finocchiaro; A. Kostyukov; C. Maiolino; M. Osipenko; G. Ricco; M. Ripani; C. M. Viberti; D. Santonocito; M. Schillaci

    2012-08-08T23:59:59.000Z

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  20. Neutron-Proton Analyzing Power Measurements from 375 to 775 Mev

    E-Print Network [OSTI]

    Newsom, C. R.; Hollas, C. L.; Ransome, R. D.; Riley, P. J.; Bonner, BE; Boissevain, J. G. J.; Jarmer, J. J.; McNaughton, M. W.; Simmons, J. E.; Bhatia, T. S.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Tippens, W. B.

    1989-01-01T23:59:59.000Z

    proton beam) was of nominal energy, 800 MeV, and intensity 1 ?4 pA. It was tightly bunched by the 201.25 MHz acceleration voltage into very short micro- pulses (0.25 ns width) separated by -5 ns. The neutron beam was produced by passage of the protons...-crossing angle. Various charge-symmetry- breaking models predict a difference in this angle for a polarized proton target as opposed to a polarized neutron beam. The observed energy dependence of this zero- crossing angle and some PSA predictions...

  1. Polarization transfer in (p,n) reactions at 495 MeV

    SciTech Connect (OSTI)

    Taddeucci, T.N.

    1991-01-01T23:59:59.000Z

    Polarization transfer observables have been measured with the NTOF facility at LAMPF for (p,n) reactions at 495 MeV. Measurements of the longitudinal polarization transfer parameter D{sub LL} for transitions to discrete states at 0{degrees} show convincing evidence for tensor interaction effects. Complete sets of polarization transfer observables have been measured for quasifree (p,n) reactions on {sup 2}H, {sup 12}C, {sup 40}Ca at a scattering angle of 18{degrees}. These measurements show no evidence for an enhancement in the isovector spin longitudinal response. 19 refs., 10 figs.

  2. Nuclear spin response studies in inelastic polarized proton scattering

    SciTech Connect (OSTI)

    Jones, K.W.

    1988-01-01T23:59:59.000Z

    Spin-flip probabilities S/sub nn/ have been measured for inelastic proton scattering at incident proton energies around 300 MeV from a number of nuclei. At low excitation energies S/sub nn/ is below the free value. For excitation energies above about 30 MeV for momentum transfers between about 0.35 fm/sup /minus/1/ and 0.65 fm/sup / minus/1/ S/sub nn/ exceeds free values significantly. These results suggest that the relative ..delta..S = 1(..delta..S = 0 + ..delta..S = 1) nuclear spin response approaches about 90% in the region of the enhancement. Comparison of the data with slab response calculations are presented. Decomposition of the measured cross sections into sigma(..delta..S = 0) and sigma(..delta..S = 1) permit extraction of nonspin-flip and spin-flip dipole and quadrupole strengths. 29 refs., 11 figs.

  3. Parametric study of high altitude nuclear EMP fields. Master's thesis

    SciTech Connect (OSTI)

    Lavigne, R.J.

    1984-03-01T23:59:59.000Z

    A program is developed to model the electromagnetic pulse from a high altitude nuclear detonation. A Runge-Kutta numerical technique is used to solve for the electric fields. A continuous Fourier Transform of the EMP is used to determine the frequency profile of the EMP. Parametric studies are performed to determine cause and effect relationships between burst parameters and the EMP frequency profile from 100 KHz to 100 MHz. Burst parameters studied are: gamma pulse time history, gamma ray energies from 1 MeV to 10 MeV, gamma ray yield, height of burst from 75 Km to 200 Km and intersection angle of the slant range with the geomagnetic field from 90 degrees to 30 degrees.

  4. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security The Order establishes...

  5. Nuclear fusion in muonic deuterium-helium complex

    E-Print Network [OSTI]

    V. M. Bystritsky; M. Filipowicz; V. V. Gerasimov; P. E. Knowles; F. Mulhauser; N. P. Popov; V. A. Stolupin; V. P. Volnykh; J. Wozniak

    2005-06-22T23:59:59.000Z

    Experimental study of the nuclear fusion reaction in charge-asymmetrical d-mu-3He complex is presented. The 14.6 MeV protons were detected by three pairs of Si(dE-E) telescopes placed around the cryogenic target filled with the deuterium + helium-3 gas at 34 K. The 6.85 keV gamma rays emitted during the de-excitation of d-mu-3He complex were detected by a germanium detector. The measurements were performed at two target densities, 0.0585 and 0.169 (relative to liquid hydrogen density) with an atomic concentration of 3He c=0.0469. The values of the effective rate of nuclear fusion in d-mu-3He was obtained for the first time, and the J=0 nuclear fusion rate in d-mu-3He was derived.

  6. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the great scientific challenges is

  7. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the great scientific

  8. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838Nuclear Detectionmore

  9. Nuclear Nonproliferation,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensor Nodes for

  10. NUCLEAR ENERGY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energyof Energy NREL:Education &NTSF NUCLEAR

  11. Nuclear reactor engineering

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1981-01-01T23:59:59.000Z

    Chapters are presented concerning energy from nuclear fission; nuclear reactions and radiations; diffusion and slowing-down of neutrons; principles of reactor analysis; nuclear reactor kinetics and control; energy removal; non-fuel reactor materials; the reactor fuel system; radiation protection and environmental effects; nuclear reactor shielding; nuclear reactor safety; and power reactor systems.

  12. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01T23:59:59.000Z

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  13. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; G. Ricco; B. Caiffi; F. Pompili; M. Pillon; M. Angelone; G. Verona-Rinati; R. Cardarelli; G. Mila; S. Argiro

    2015-05-25T23:59:59.000Z

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  14. NUCLEAR DEFORMATION ENERGIES

    E-Print Network [OSTI]

    Blocki, J.

    2009-01-01T23:59:59.000Z

    J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusin connection with nuclear fission. The need for a better

  15. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  16. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  17. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  18. NUCLEAR STRUCTURE DATABASE

    E-Print Network [OSTI]

    Firestone, R.B.

    2010-01-01T23:59:59.000Z

    CALIFORNIA NUCLEAR STRUCTURE DATABASE R. B. Firestone and E.11089 NUCLEAR STRUCTURE DATABASE by R.B. Firestone and E.iii- NUCLEAR STRUCTURE DATABASE R.B Firestone and E. Browne

  19. RELATIVISTIC NUCLEAR COLLISIONS: THEORY

    E-Print Network [OSTI]

    Gyulassy, M.

    2010-01-01T23:59:59.000Z

    Effects in Relativistic Nuclear Collisions", Preprint LBL-Pion Interferometry of Nuclear Collisions. 18.1 M.Gyulassy,was supported by the Office of Nuclear Physics of the U.S.

  20. Nuclear Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the...

  1. Signature of nonexponential nuclear decay

    E-Print Network [OSTI]

    Ray, A; De, A

    2015-01-01T23:59:59.000Z

    Precision tests of decay law of radioactive nuclei have not so far found any deviation from the exponential decay law at early time, as predicted by quantum mechanics. In this paper, we show that the quantum decoherence time (i.e. the timescale of nonexponential decay) of the quasifission or fission process should be of the order of attosecond considering the atom of the fissioning nucleus as a quantum detector. Hence, the observed decay timescale of the quasifission or fission process of even highly excited (EX greater than 50 MeV) transuranium and uraniumlike complexes should be rather long (of the order of attosecond) in spite of their very fast exponential decay timescale (of the order of zeptosecond) as measured by the nuclear techniques. Recent controversy regarding the observation of very long (of the order of attosecond ) and very short (of the order of zeptosecond ) quasifission or fission timescales for similar systems at similar excitation energies as obtained by direct techniques (crystal blocking...

  2. Nuclear Force from Lattice QCD

    E-Print Network [OSTI]

    Noriyoshi ISHII; Sinya AOKI; Tetsuo HATSUDA

    2006-09-30T23:59:59.000Z

    The first lattice QCD result on the nuclear force (the NN potential) is presented in the quenched level. The standard Wilson gauge action and the standard Wilson quark action are employed on the lattice of the size 16^3\\times 24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To obtain the NN potential, we adopt a method recently proposed by CP-PACS collaboration to study the pi pi scattering phase shift. It turns out that this method provides the NN potentials which are faithful to those obtained in the analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter wave function with the Schroedinger wave function for the two nucleon system, the NN potential is reconstructed so that the wave function satisfies the time-independent Schroedinger equation. In this report, we restrict ourselves to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the ``central'' NN potential V_{central}(r). The resulting potential is seen to posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm). Although the attraction in the intermediate and long distance regions is still missing in the present lattice set-up, our method is appeared to be quite promising in reconstructing the NN potential with lattice QCD.

  3. Fission Fragments Produced from Proton Irradiation of Thorium Between 40 and 200 MeV

    E-Print Network [OSTI]

    Engle, Jonathan W; Weidner, John W; Fassbender, Michael E; Bach, Hong T; Ullmann, John L; Couture, Aaron J; Bitteker, Leo J; Gulley, Mark S; John, Kevin D; Birnbaum, Eva R; Nortier, Francois M

    2013-01-01T23:59:59.000Z

    The cross sections for the formation of five residual radionuclides (72Se, 97Zr, 112Pd, 125Sb, and 147Nb) from 40- to 200-MeV proton irradiation of thorium have been measured and are reported. The atomic masses of these fragments span the expected mass distribution of radionuclides formed by fission of the target nucleus. Especially in mass regions corresponding to transitions between different relaxation mechanisms employed by available models, these data are expected to be useful to the improvement of high-energy transport codes. The predictions of the event generators incorporated into the latest release of the Monte Carlo N-Particle code (MCNP6) are compared with data measured in this work in the hope that these results may be useful to the continued process of code verification and validation in MCNP6.

  4. Fission Fragments Produced from Proton Irradiation of Thorium Between 40 and 200 MeV

    E-Print Network [OSTI]

    Jonathan W. Engle; Stepan G. Mashnik; John W. Weidner; Michael E. Fassbender; Hong T. Bach; John L. Ullmann; Aaron J. Couture; Leo J. Bitteker; Mark S. Gulley; Kevin D. John; Eva R. Birnbaum; Francois M. Nortier

    2013-11-19T23:59:59.000Z

    The cross sections for the formation of five residual radionuclides (72Se, 97Zr, 112Pd, 125Sb, and 147Nb) from 40- to 200-MeV proton irradiation of thorium have been measured and are reported. The atomic masses of these fragments span the expected mass distribution of radionuclides formed by fission of the target nucleus. Especially in mass regions corresponding to transitions between different relaxation mechanisms employed by available models, these data are expected to be useful to the improvement of high-energy transport codes. The predictions of the event generators incorporated into the latest release of the Monte Carlo N-Particle code (MCNP6) are compared with data measured in this work in the hope that these results may be useful to the continued process of code verification and validation in MCNP6.

  5. (D,he-2) Reactions at E(d)=125.2 Mev

    E-Print Network [OSTI]

    Xu, HM; Ajupova, G. K.; Betker, A. C.; Gagliardi, Carl A.; Kokenge, B.; Lui, YW; Zaruba, A. F.

    1995-01-01T23:59:59.000Z

    We have measured cross sections for (d, He-2) induced reactions on the p-shell nuclei Li-6, C-12, and C-13 and the sd-shell nucleus Mg-24 at an energy of E(d)=125.2 MeV. The measured excitation energy spectra are very similar to those from (p, n), (n, p), and (d, He-Z) reactions at higher energies. The measured 0 degrees (d, He-2) cross sections show a remarkably well-defined linear relation with...the Gamow-Teller strengths deduced either from beta decay or from (p, n) reactions. Our results demonstrate that the (d, He-2) reaction can be used as a powerful tool to study Gamow-Teller strengths in the beta(+) direction at energies as low as E...

  6. (D,he-2) Reactions at E(d)=125.2 Mev 

    E-Print Network [OSTI]

    Xu, HM; Ajupova, G. K.; Betker, A. C.; Gagliardi, Carl A.; Kokenge, B.; Lui, YW; Zaruba, A. F.

    1995-01-01T23:59:59.000Z

    We have measured cross sections for (d, He-2) induced reactions on the p-shell nuclei Li-6, C-12, and C-13 and the sd-shell nucleus Mg-24 at an energy of E(d)=125.2 MeV. The measured excitation energy spectra are very similar to those from (p, n), (n, p), and (d, He-Z) reactions at higher energies. The measured 0 degrees (d, He-2) cross sections show a remarkably well-defined linear relation with...the Gamow-Teller strengths deduced either from beta decay or from (p, n) reactions. Our results demonstrate that the (d, He-2) reaction can be used as a powerful tool to study Gamow-Teller strengths in the beta(+) direction at energies as low as E...

  7. New Results from RENO and The 5 MeV Excess

    E-Print Network [OSTI]

    Seon-Hee Seo for the RENO Collaboration

    2014-10-29T23:59:59.000Z

    One of the main goals of RENO (Reactor Experiment for Neutrino Oscillation) is to measure the smallest neutrino mixing angle {\\theta}13 using reactor neutrinos in Korea. RENO is the first reactor experiment taking data with two identical detectors in different locations (Near and Far), which is critical to reduce systematic uncertainty in reactor neutrino flux. Our data taking has been almost continuous since Aug. 2011 and we have collected about 434,000 (54,000) electron anti-neutrinos in the Near (Far) detector by 2013. Using this data (about 800 live days) we present a new result on {\\theta}13: sin22{\\theta}13 = 0.101 +/- 0.008 (stat.) +/- 0.010 (syst.). We also report the 5 MeV excess present in the prompt signal spectrum in our data, and its correlation with our reactor thermal power.

  8. Diagnostic experiments at a 3 MeV test stand at Rutherford Appleton Laboratory (United Kingdom)

    SciTech Connect (OSTI)

    Gabor, C. [ASTeC Intense Beams Group, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P. [Isis Pulsed Spallation Neutron Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Lee, D. A. [Department of Physics, Imperial College of Science and Technology, London SW7 2AZ (United Kingdom); Pozimski, J. K. [Isis Pulsed Spallation Neutron Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, Imperial College of Science and Technology, London SW7 2AZ (United Kingdom)

    2010-02-15T23:59:59.000Z

    A front end is currently under construction consisting of a H{sup -} Penning ion source (65 keV, 60 mA), low energy beam transport (LEBT), and radio frequency quadrupole (3 MeV output energy) with a medium energy beam transport suitable for high power proton applications. Diagnostics can be divided either in destructive techniques such as beam profile monitor, pepperpot, slit-slit emittance scanner (preferably used during commissioning) or nondestructive, permanently installed devices such as photodetachment-based techniques. Another way to determine beam distributions is a scintillator with charge-coupled device camera. First experiments have been performed to control the beam injection into the LEBT. The influence of beam parameters such as particle energy and space-charge compensation on the two-dimensional distribution and profiles will be presented.

  9. Light-ion production in the interaction of 96 MeV neutrons with carbon

    E-Print Network [OSTI]

    U. Tippawan; S. Pomp; J. Blomgren; S. Dangtip; C. Gustavsson; J. Klug; P. Nadel-Turonski; L. Nilsson; M. Österlund; N. Olsson; O. Jonsson; A. V. Prokofiev; P. -U. Renberg; V. Corcalciuc; Y. Watanabe; A. J. Koning

    2008-12-03T23:59:59.000Z

    Double-differential cross sections for light-ion (p, d, t, 3He and alpha) production in carbon induced by 96 MeV neutrons have been measured at eight laboratory angles from 20 degrees to 160 degrees in steps of 20 degrees. Experimental techniques are presented as well as procedures for data taking and data reduction. Deduced energy-differential, angle-differential and production cross sections are reported. Experimental cross sections are compared with theoretical reaction model calculations and experimental data in the literature. The measured particle data show marked discrepancies from the results of the model calculations in spectral shape and magnitude. The measured production cross sections for protons, deuterons, tritons, 3He, and alpha particles support the trends suggested by data at lower energies.

  10. Surface Morphology and Phase Stability of Titanium Foils Irradiated by 136 MeV 136Xe

    E-Print Network [OSTI]

    S. Sadi; A. Paulenova; W. Loveland; P. R. Watson; J. P. Greene; S. Zhu; G. Zinkann

    2013-01-08T23:59:59.000Z

    A stack of titanium foils was irradiated with 136 MeV 136Xe to study microstructure damage and phase stability of titanium upon irradiation. X- ray diffraction, scanning electron microscopy/energy dispersive spectroscopy and atomic force microscopy were used to study the resulting microstructure damage and phase stability of titanium. We observed the phase transfor- mation of polycrystalline titanium from alpha-Ti (hexagonally closed packed (hcp)) to face centered cubic (fcc) after irradiation with 2.2 x 1015 ions/cm2. Irradiation of Ti with 1.8 x 1014-2.2 x 1015 ions/cm2 resulted in the forma- tion of voids, hillocks, dislocation loops, dislocation lines, as well as polygonal ridge networks.

  11. Surface Morphology and Phase Stability of Titanium Foils Irradiated by 136 MeV 136Xe

    E-Print Network [OSTI]

    Sadi, S; Loveland, W; Watson, P R; Greene, J P; Zhu, S; Zinkann, G

    2013-01-01T23:59:59.000Z

    A stack of titanium foils was irradiated with 136 MeV 136Xe to study microstructure damage and phase stability of titanium upon irradiation. X- ray diffraction, scanning electron microscopy/energy dispersive spectroscopy and atomic force microscopy were used to study the resulting microstructure damage and phase stability of titanium. We observed the phase transfor- mation of polycrystalline titanium from alpha-Ti (hexagonally closed packed (hcp)) to face centered cubic (fcc) after irradiation with 2.2 x 1015 ions/cm2. Irradiation of Ti with 1.8 x 1014-2.2 x 1015 ions/cm2 resulted in the forma- tion of voids, hillocks, dislocation loops, dislocation lines, as well as polygonal ridge networks.

  12. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    E-Print Network [OSTI]

    U. Tippawan; S. Pomp; A. Atac; B. Bergenwall; J. Blomgren; S. Dangtip; A. Hildebrand; C. Johansson; J. Klug; P. Mermod; L. Nilsson; M. Osterlund; N. Olsson; A. V. Prokofiev; P. Nadel-Turonski; V. Corcalciuc; A. Koning

    2006-02-14T23:59:59.000Z

    Double-differential cross sections for light-ion (p, d, t, He-3 and alpha) production in oxygen, induced by 96 MeV neutrons are reported. Energy spectra are measured at eight laboratory angles from 20 degrees to 160 degrees in steps of 20 degrees. Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons and alpha particles support the trends suggested by data at lower energies.

  13. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect (OSTI)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18T23:59:59.000Z

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  14. Measurement of np elastic scattering spin-spin correlation parameters at 484, 634, and 788 MeV

    SciTech Connect (OSTI)

    Garnett, R.W.

    1989-03-01T23:59:59.000Z

    The spin-spin correlation parameters C/sub LL/ and C/sub SL/ were measured for np elastic scattering at the incident neutron kinetic energy of 634 MeV. Good agreement was obtained with previously measured data. Additionally, the first measurement of the correlation parameter C/sub SS/ was made at the three energies, 484, 634, and 788 MeV. It was found that the new values, in general, do not agree well with phase shift predictions. A study was carried out to determine which of the isospin-0 partial waves will be affected by this new data. It was found that the /sup 1/P/sub 1/ partial wave will be affected significantly at all three measurement energies. At 634 and 788 MeV, the /sup 3/S/sub 1/ phase shifts will also change. 29 refs., 21 figs., 16 tabs.

  15. Photoneutron source based on a compact 10 MeV betatron

    SciTech Connect (OSTI)

    Bell, Z.W. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Chaklov, V.L.; Golovkov, V.M. [Tomsk Polytechnic Univ. (Russian Federation)

    1998-05-08T23:59:59.000Z

    Accelerator-based photoneutron sources have enjoyed wide use and offer the advantages of long term stability, ease of control and absence of radioactive materials. The authors report here measurements of the yield of photoneutrons from a neutron generator using a compact betatron (466 kg total weight, 900 by 560 by 350 mm betatron dimensions) at the Institute of Introscopy of the Tomsk Polytechnic University. Electrons were accelerated to energies up to 10 MeV and produced a bremsstrahlung beam with a dose rate of 0.16 Gy/min (at 10 MeV, 1 meter from the bremsstrahlung target) to irradiate LiD, Be, depleted U, and Pb neutron-producing targets. The angular distributions of photoneutrons produced by bremsstrahlung beams were measured with a long counter and integrated to determine neutron yield. In addition, neutron time of flight spectra were recorded from all targets using a 15 meter flight path perpendicular to the photon beam. The maximum observed yields were 5.2 {times} 10{sup 4} n/rad/gram target obtained with LiD, 1.7 {times} 10{sup 4} n/rad/gram from Be, 3.3 {times} 10{sup 3} n/rad/gram from U, and 7.5 {times} 10{sup 2} n/rad/gram from Pb. Optimization of target dimensions, shape, and positioning is expected to increase the yield from the LiD target by a factor of 35. With the increased yield, this compact betatron-based system could find application in the interrogation of waste containers for fissile material.

  16. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings...

  17. Nuclear Power Overview

    Broader source: Energy.gov (indexed) [DOE]

    San Onofre Nuclear Generating Station San Onofre Nuclear Generating Station Bob Ashe-Everest Southern California Edison 10 Incoming New Fuel Inspecting New Fuel SONGS Unit 1 Fuel...

  18. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

    2014-05-09T23:59:59.000Z

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  19. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  20. Direct measurement of {sup 12}C+{sup 4}He?{sup 16}O+? total cross section at E{sub cm}=1.2 MeV

    SciTech Connect (OSTI)

    Yamaguchi, H.; Sagara, K.; Fujita, K.; Kodama, D.; Narikiyo, Y.; Hamamoto, K.; Ban, T.; Tao, N.; Teranishi, T. [Department of Physics, Kyushu University (Japan)

    2014-05-02T23:59:59.000Z

    A fusion reaction of {sup 12}C+{sup 4}He?{sup 16}O+? is one of the main reactions in He-burning of stars and important for nucleosynthesis. The fusion cross section at stellar energy of E{sub cm}=0.3 MeV has not been determined precisely yet in spite of efforts for about 40 years. We plan to measure directly the total fusion cross section down to 0.7 MeV at Kyushu University Tandem accelerator Laboratory and to estimate the cross section at 0.3MeV by extrapolation. We have already measured the cross sections at 2.4 MeV and 1.5 MeV. The measurement at E{sub cm}=1.2 MeV is in progress.

  1. Photon activation analysis of the scraper in a 200-MeV electron accelerator using gamma-spectrometry depth profiling

    E-Print Network [OSTI]

    He Lijuan; Li Yuxiong; Yu Guobing; Ren Guangyi; Duan Zongjin

    2014-06-09T23:59:59.000Z

    For a high energy electron facility, the estimates of induced radioactivity in materials are of major importance to keep exposure to personnel and to the environment as low as reasonably achievable. In addition, an accurate prediction of induced radioactivity is also essential for the design, operation and decommissioning of a high energy electron linear accelerator. The research of induced radioactivity focuses on the photonuclear reaction, whose giant resonance response in the copper is ranging from 10 MeV to 28 MeV. The 200 MeV electron linac of NSRL is one of the earliest high-energy electron linear accelerators in P. R. China. The electrons are accelerated to 200 MeV by five acceleration tubes and collimated by the scrapers made of copper. At present, it is the first retired high-energy electron linear accelerator in domestic. Its decommissioning provides an efficient way for the induced radioactivity research of such accelerators, and is a matter of great significance to the accumulation of the induced radioactivity experience. When the copper target is impacted by an 158 MeV electron beam, the number of photons generated whose energy are in the range of giant resonance response is the largest. Thus, this paper focuses on the induced radioactivity for a copper target impacted by the 158 MeV electron beam. The slicing method is applied in the research. The specific activity of each slice was measured at cooling times of ten months and the results were compared with the prediction from the Monte-Carlo program FLUKA. The simulation results are in good agreement with the measurement results. The method by Monte Carlo simulation in this paper gives a reasonable prediction of the induced radioactivity problem for the high-energy electron linear accelerators, laying a foundation for the accumulation of the induced radioactivity experience.

  2. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Radiological Advisory Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  3. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  4. Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  5. High energy electrons and nuclear phenomena in petawatt laser-solid experiments

    SciTech Connect (OSTI)

    Cowan, T. E.; Ditmire, T.; Hatchett, S.; Pennington, D. M.; Perry, M. D.; Phillips, T. W.; Wilks, S. C.; Young, P. E. [Lawrence Livermore National Laboratory, Livermore, California (United States); Dong, B.; Takahashi, Y. [University of Alabama, Huntsville, Alabama (United States); Fountain, W.; Parnell, T. [Marshall Space Flight Center, Huntsville, Alabama (United States); Hunt, A. W. [Harvard University, Cambridge, Massachusetts (United States); Johnson, J. [University Space Research Association, Huntsville, Alabama (United States); Kuehl, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1999-07-12T23:59:59.000Z

    The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have developed broad-band magnetic spectrometers to measure the spectrum of high-energy electrons produced in laser-solid target experiments at the Petawatt, and have found that in addition to the expected flux of {approx}few MeV electrons characteristic of the ponderomotive potential, there is a high energy component extending to {approx}100 MeV apparently from plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed.

  6. High energy electrons and nuclear phenomena in petawatt laser-solid experiments

    SciTech Connect (OSTI)

    Cowan, T.E.; Ditmire, T.; Hatchett, S.; Pennington, D.M.; Perry, M.D.; Phillips, T.W.; Wilks, S.C.; Young, P.E. [Lawrence Livermore National Laboratory, Livermore, California (United States)] Dong, B. [University of Alabama, Huntsville, Alabama (United States); Parnell, T.; Takahashi, Y. [Marshall Space Flight Center, Huntsville, Alabama (United States)] Hunt, A.W. [Harvard University, Cambridge, Massachusetts (United States)] Johnson, J. [University Space Research Association, Huntsville, Alabama (United States)] Kuehl, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1999-07-01T23:59:59.000Z

    The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have developed broad-band magnetic spectrometers to measure the spectrum of high-energy electrons produced in laser-solid target experiments at the Petawatt, and have found that in addition to the expected flux of {approximately}few MeV electrons characteristic of the ponderomotive potential, there is a high energy component extending to {approximately}100 MeV apparently from plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed. {copyright} {ital 1999 American Institute of Physics.}

  7. Tabulated equation of state for supernova matter including full nuclear ensemble

    SciTech Connect (OSTI)

    Buyukcizmeci, N.; Botvina, A. S.; Mishustin, I. N. [Frankfurt Institute for Advanced Studies, J.W. Goethe University, D-60438 Frankfurt am Main (Germany)

    2014-07-01T23:59:59.000Z

    This is an introduction to the tabulated database of stellar matter properties calculated within the framework of the Statistical Model for Supernova Matter (SMSM). The tables present thermodynamical characteristics and nuclear abundances for 31 values of baryon density (10{sup –8} < ?/?{sub 0} < 0.32, ?{sub 0} = 0.15 fm{sup –3} is the normal nuclear matter density), 35 values of temperature (0.2 MeV < T < 25 MeV), and 28 values of electron-to-baryon ratio (0.02 < Y{sub e} < 0.56). The properties of stellar matter in ? equilibrium are also considered. The main ingredients of the SMSM are briefly outlined, and the data structure and content of the tables are explained.

  8. Partial gamma-ray production cross sections for (n,xng) reactions in natural argon from 1 - 30 MeV

    E-Print Network [OSTI]

    S. MacMullin; M. Boswell; M. Devlin; S. R. Elliott; N. Fotiades; V. E. Guiseppe; R. Henning; T. Kawano; B. H. LaRoque; R. O. Nelson; J. M. O'Donnell

    2012-07-10T23:59:59.000Z

    Background: Neutron-induced backgrounds are a significant concern for experiments that require extremely low levels of radioactive backgrounds such as direct dark matter searches and neutrinoless double-beta decay experiments. Unmeasured neutron scattering cross sections are often accounted for incorrectly in Monte Carlo simulations. Purpose: Determine partial gamma-ray production cross sections for (n,xng) reactions in natural argon for incident neutron energies between 1 and 30 MeV. Methods: The broad spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE) was used used for the measurement. Neutron energies were determined using time-of-flight and resulting gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Results: Partial gamma-ray cross sections were measured for six excited states in Ar-40 and two excited states in Ar-39. Measured (n,xng) cross sections were compared to the TALYS and CoH3 nuclear reaction codes. Conclusions: These new measurements will help to identify potential backgrounds in neutrinoless double-beta decay and dark matter experiments that use argon as a detection medium or shielding. The measurements will also aid in the identification of neutron interactions in these experiments through the detection of gamma rays produced by (n,xng) reactions.

  9. Measurement of the Wolfenstein parameters for proton-proton and proton-neutron scattering at 500 MeV

    SciTech Connect (OSTI)

    Marshall, J.A.

    1984-07-01T23:59:59.000Z

    Using liquid hydrogen and liquid deuterium targets respectively, forward angle (ten degrees to sixty degrees in the center of Mass) free proton-proton and quasielastic proton-proton and proton-neutron triple scattering data at 500 MeV have been obtained using the high resolution spectrometer at the Los Alamos Meson Physics Facility. The data are in reasonable agreement with recent predictions from phase shift analyses, indicating that the proton-nucleon scattering amplitudes are fairly well determined at 500 MeV. 32 references.

  10. Detection efficiency of Ge(Li) and HPGe detectors for. gamma. -rays up to 10 MeV

    SciTech Connect (OSTI)

    Lin, J.; Henry, E.A.; Meyer, R.A.

    1980-08-11T23:59:59.000Z

    The relative efficiency up to 9.7 MeV was calibrated for two coaxial detectors, one Ge(Li) and one high purity Ge. The efficiency curves were determined by using a combination of standard radioactive sources and (n,..gamma..) reactions. Based on the result of this work, the general slope of the two detector efficiency curves appears to be similar and in agreement with earlier work reported by McCallum and Coote. When plotted as a semilogarithmic function of energy the efficiency is linear from 2 to 9.7 MeV.

  11. Search for the giant pairing vibration through (p,t) reactions around 50 and 60 MeV

    SciTech Connect (OSTI)

    Mouginot, B.; Khan, E.; Azaiez, F.; Franchoo, S.; Ramus, A.; Scarpaci, J. A.; Stefan, I. [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Neveling, R.; Buthelezi, E. Z.; Foertsch, S. V.; Smit, F. D. [iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Fujita, H.; Usman, I. [iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Mabiala, J.; Mira, J. P.; Swartz, J. A. [iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Department of Physics, University of Stellenbosch, Matieland 7602 (South Africa); Papka, P. [Department of Physics, University of Stellenbosch, Matieland 7602 (South Africa)

    2011-03-15T23:59:59.000Z

    The existence of the giant pairing vibration (GPV) in {sup 120}Sn and {sup 208}Pb was investigated using the (p,t) reaction at incident proton energies of 50 MeV and 60 MeV for the scattering angles 0 deg. and 7 deg. No clear signature for the GPV was found, providing an upper limit for the cross section of {sigma}{sub max} = 0.2 mb. Theoretical interpretations for the low cross section of the GPV are discussed.

  12. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    SciTech Connect (OSTI)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01T23:59:59.000Z

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig.

  13. Comparison of inclusive inelastic scattering of. pi. sup + and. pi. sup minus from nuclei at 100 MeV

    SciTech Connect (OSTI)

    Rosenzweig, D.P.; Amann, J.F.; Boudrie, R.L.; Doss, K.G.R.; Drake, D.M.; Halpern, I.; Khandaker, M.A.; Nelson, J.; Storm, D.W.; Tieger, D.R.; Wood, S.A. (Department of Physics, University of Washington, FM-15 Seattle, Washington 98195 (United States) Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) Saskatchewan Accelerator Laboratory, Saskatoon, Saskatchewan, S7N 0W0 (Canada) Bates Linear Accelerator Center, Massachusetts Institute of Technology, Middleton, Massachusetts 01949 (United States))

    1992-11-01T23:59:59.000Z

    Inclusive inelastic scattering spectra from C, Ca, Sn, and Pb were measured for 100-MeV pions at a number of angles. The observed ratios of the {pi}{sup {minus}} and {pi}{sup +} total inelastic cross sections for the different targets are explained in terms of a simple model which is based on the assumption that the scattered pion has interacted with only one nucleon. This model also accounts for the ratio between normal and charge-exchange scattering cross sections at 100 MeV.

  14. Spectral Structure of Electron Antineutrinos from Nuclear Reactors

    E-Print Network [OSTI]

    D. A. Dwyer; T. J. Langford

    2014-07-04T23:59:59.000Z

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principle calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructure in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of this substructure can constrain nuclear reactor physics. The substructure can be a systematic uncertainty for measurements utilizing the detailed spectral shape.

  15. Spectral Structure of Electron Antineutrinos from Nuclear Reactors

    E-Print Network [OSTI]

    Dwyer, D A

    2014-01-01T23:59:59.000Z

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principle calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructure in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of this substructure can constrain nuclear reactor physics. The substructure can be a systematic uncertainty for measurements utilizing the detailed spectral shape.

  16. Suppression of soft nuclear bremsstrahlung in proton-nucleus collisions

    E-Print Network [OSTI]

    M. J. van Goethem; L. Aphecetche; J. C. S. Bacelar; H. Delagrange; J. Diaz; D. d'Enterria; M. Hoefman; R. Holzmann; H. Huisman; N. Kalantar--Nayestanaki; A. Kugler; H. Loehner; G. Martinez; J. G. Messchendorp; R. W. Ostendorf; S. Schadmand; R. H. Siemssen; R. S. Simon; Y. Schutz; R. Turrisi; M. Volkerts; H. W. Wilschut

    2001-11-30T23:59:59.000Z

    Photon energy spectra up to the kinematic limit have been measured in 190 MeV proton reactions with light and heavy nuclei to investigate the influence of the multiple-scattering process on the photon production. Relative to the predictions of models based on a quasi-free production mechanism a strong suppression of bremsstrahlung is observed in the low-energy region of the photon spectrum. We attribute this effect to the interference of photon amplitudes due to multiple scattering of nucleons in the nuclear medium.

  17. Nuclear thermodynamics from chiral low-momentum interactions

    E-Print Network [OSTI]

    Corbinian Wellenhofer; Jeremy W. Holt; Norbert Kaiser; Wolfram Weise

    2014-06-30T23:59:59.000Z

    We investigate the thermodynamic equation of state of isospin-symmetric nuclear matter with microscopic nuclear forces derived within the framework of chiral effective field theory. Two- and three-body nuclear interactions constructed at low resolution scales form the basis for a perturbative calculation of the finite-temperature equation of state. The nuclear force models and many-body methods are benchmarked against bulk properties of isospin-symmetric nuclear matter at zero temperature, which are found to be well reproduced when chiral nuclear interactions constructed at the lowest resolution scales are employed. The calculations are then extended to finite temperatures, where we focus on the liquid-gas phase transition and the associated critical point. The Maxwell construction is applied to construct the physical equation of state, and the value of the critical temperature is determined to be T_c =17.2-19.1 MeV, in good agreement with the value extracted from multifragmentation reactions of heavy ions.

  18. The Joys of Nuclear Engineering

    SciTech Connect (OSTI)

    Jon Carmack

    2009-10-02T23:59:59.000Z

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  19. The Joys of Nuclear Engineering

    ScienceCinema (OSTI)

    Jon Carmack

    2010-01-08T23:59:59.000Z

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  20. Partial-wave analysis of elastic {sup 4}He{sup 4}He scattering in the energy range 40-50 MeV

    SciTech Connect (OSTI)

    Dubovichenko, S. B. [Fesenkov Astrophysical Institute (Kazakhstan)], E-mail: sergey@dubovichenko.net

    2008-01-15T23:59:59.000Z

    A partial-wave analysis of elastic {sup 4}He{sup 4}He scattering is performed in the energy range 40-50 MeV.

  1. Measurement of Energy Distribution of Deuterium-Tritium Fusion Alpha-particles and MeV Energy Knock-on Deuterons in JET Plasmas

    E-Print Network [OSTI]

    Measurement of Energy Distribution of Deuterium-Tritium Fusion Alpha-particles and MeV Energy Knock-on Deuterons in JET Plasmas

  2. TUDE DE LA RACTION 54Fe(3He, p) 56Co A E(3He) = 18 MeV TUDE DE LA RACTION 54Fe(3He,p) 56CoA E(3He) = 18 MeV

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    une cellule effet Peltier : une jonction de 600 p d'épaisseur ŕ barričre de surface, et une jonction calculs, sauf celle du niveau J = 1+ ŕ 1,721 MeV (pic no 9) qu'ils trouvent trop haut en énergie. Cet état

  3. ANNOUNCEMENT NUCLEAR ENGINEERING FACULTY POSITION

    E-Print Network [OSTI]

    Tennessee, University of

    ANNOUNCEMENT NUCLEAR ENGINEERING FACULTY POSITION The Department of Nuclear Engineering at the Assistant or Associate Professor level. These areas include, but are not limited to, nuclear system instrumentation & controls, monitoring and diagnostics, reactor dynamics, nuclear security, nuclear materials

  4. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10.1088/0029-5515/50/9/095005

    E-Print Network [OSTI]

    Vlad, Gregorio

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005, Warsaw, Poland E-mail: Pizzuto@frascati.enea.it Received 5 January 2009, accepted for publication 15 June) in the energy range 0.5­1 MeV. The total power input will be in the 30­40 MW range under different plasma

  5. Monitoring system for a liquid-cooled nuclear fission reactor

    DOE Patents [OSTI]

    DeVolpi, Alexander (Bolingbrook, IL)

    1987-01-01T23:59:59.000Z

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  6. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16T23:59:59.000Z

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  7. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14T23:59:59.000Z

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  8. Nuclear Reaction Data Centers

    SciTech Connect (OSTI)

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01T23:59:59.000Z

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  9. Catalysinganenergyrevolution Nuclear Failures

    E-Print Network [OSTI]

    Laughlin, Robert B.

    extraction, fuel manufacture and management of spent fuel and waste. Currently, CEA is a large FrenchCatalysinganenergyrevolution France's Nuclear Failures The great illusion of nuclear energy greenpeace.org #12;Contents 2 Greenpeace International France's Nuclear Failures The French nuclear industry

  10. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15T23:59:59.000Z

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  11. Focus Article Nuclear winter

    E-Print Network [OSTI]

    Robock, Alan

    the climatic effects of nuclear war. Smoke from the fires started by nuclear weapons, especially the black in recorded human history. Although the number of nuclear weapons in the world has fallen from 70,000 at its and Russia could still produce nuclear winter. This theory cannot be tested in the real world. However

  12. RIKEN Review No. 23 (July, 1999): Focused on Selected Topics in Nuclear Collective Excitations How to go from finite nuclei to infinite nuclear matter

    E-Print Network [OSTI]

    Lakshmidhar Satpathy

    The traditional path of going from finite nuclei to infinite nuclear matter (INM) via Bethe-Weiszacker (BW) like mass formulas based on liquid drop model (LDM) is faulty and without strong theoretical basis. The defect is attributed to its use of liquid drop without any reference to particles as its basis, which is classical in nature. It does not possess an essential property of an interacting many-fermion system namely, the single particle property, in particular the Fermi state. In fact the volume term of such mass formulas does not corresspond to the ground state of INM. It is shown that, the defect is repaired in the infinite nuclear matter model by the use of generalized Hugenholtz-Van Hove theorem of many-body theory. This model uses infinite nuclear matter with well defined quantum mechanical attributes for its basis. The resulting expansion has the coefficients which are at the ground state of nuclear matter. It results into a successful mass formula for nuclei. Then using this model, the saturation density 0.1620 fm-3 and binding energy per nucleon of nuclear matter 16.108 MeV are determined from the masses of all known nuclei. The corresponding radius constant r0 equal to 1.138 fm thus determined, agrees quite well with that obtained from electron scattering data, leading to the resolution of the so-called ‘r0-paradox’. Finally a well defined and stable value of 288 20 MeV for the incompressibility of nuclear matter K1,is extracted from the same set of masses and a nuclear equation of state is thus obtained. Thus a well defined path from finite nuclei to nuclear matter is found out.

  13. Non-invasive field measurements of soil water content using a pulsed 14 MeV neutron generator

    E-Print Network [OSTI]

    Johnson, Peter D.

    Non-invasive field measurements of soil water content using a pulsed 14 MeV neutron generator S-3120, United States 1. Introduction Knowledge of soil water content is critical to agricultural, hydrological from H will be a function of the soils' water-content. To the best of our knowledge

  14. Calibration of a long counter for fast neutrons with energies from 2 to 14 MeV

    E-Print Network [OSTI]

    Orr, Michael Lee

    1993-01-01T23:59:59.000Z

    +07 neutrons/second) to determine the detectors efficiency at the mean energy of the source, 4.3 MeV. The detector was found to have an efficiency of 0.85 counts-centimeter2/neutron at a source to detector distance of 1 meter. This compares favorably...

  15. Effects of 1 MeV Electron Beam Irradiation on Multilayer Graphene Grown on 6H-SiC(0001)

    E-Print Network [OSTI]

    Kim, Sehun

    Effects of 1 MeV Electron Beam Irradiation on Multilayer Graphene Grown on 6H-SiC(0001) Ki-359, Korea ReceiVed: June 11, 2008; ReVised Manuscript ReceiVed: July 14, 2008 Graphene layers grown on 6H of the graphene layer. Since Geim and his co-workers1 extracted individual ultrathin sheets of carbon atoms

  16. Beryllium and Graphite Neutron Total Cross-Section Measurements from 0.4 to 20 MeV

    E-Print Network [OSTI]

    Danon, Yaron

    Beryllium and Graphite Neutron Total Cross-Section Measurements from 0.4 to 20 MeV M. J. Rapp,* Y of the neutron total cross section of natural beryllium and carbon (graphite) in the energy range of 0.4 to 20 Me a verification of the accuracy in the measurement and analytical methods used. The measurements of beryllium

  17. Publications Raymond C Smith Smith, R. C. and R. E. Taylor (1958). "Multiple scattering of 600-Mev.

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    1 of 12 Publications ­ Raymond C Smith Smith, R. C. and R. E. Taylor (1958). "Multiple scattering of 600-Mev. Electrons in thin foils." Physical Review 111: 647-649. Smith, R. C. and R. F. Mozley (1960 Physics at Rochester 22- 23. Smith, R. C. and R. F. Mozley (1963). "Positive pion production by polarized

  18. COMPTITION FISSION-SPALLATION DANS LES CIBLES DE THORIUM BOMBARDES PAR PROTONS DE 155 MeV

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    338. COMPÉTITION FISSION-SPALLATION DANS LES CIBLES DE THORIUM BOMBARDÉES PAR PROTONS DE 155 Me isotopes du thorium et de l'actinium, par bombardement de Th 232 par des protons de 155 MeV. Ces sections were made on the formation of several isotopes of thorium, and actinium, by bombarding Th 232 by 155 Me

  19. Analyzing power of the {sup 40}Ca(p-vector,p{alpha}) reaction at 100 MeV

    SciTech Connect (OSTI)

    Neveling, R.; Buthelezi, Z.; Foertsch, S. V.; Lawrie, J. J.; Steyn, G. F.; Smit, F. D. [iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129 (South Africa); Cowley, A. A. [iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129 (South Africa); Department of Physics, University of Stellenbosch, Matieland 7602 (South Africa); Fujita, H. [iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129 (South Africa); School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Hillhouse, G. C. [Department of Physics, University of Stellenbosch, Matieland 7602 (South Africa); Wyngaardt, S. M. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Botha, N. T. [iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129 (South Africa); Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Mudau, L. [iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129 (South Africa); Department of Physics, University of the Western Cape, Bellville 7535 (South Africa); Ntshangase, S. S. [iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129 (South Africa); Department of Physics, University of Zululand, Kwadlangezwa 3886 (South Africa)

    2008-03-15T23:59:59.000Z

    Analyzing powers have been measured for the {sup 40}Ca(p-vector,p{alpha}){sup 36}Ar reaction at an incident energy of 100 MeV for coplanar scattering angles corresponding to zero recoil momentum of the residual nucleus. Predictions based on the distorted wave impulse approximation fail to reproduce the data.

  20. Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons

    E-Print Network [OSTI]

    Jackman, Charles H.

    Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons Xiaohua Fang,1 2008; published 11 September 2008. [1] We present a new parameterization of the altitude profile of the ionization rate in the Earth's atmosphere due to precipitating energetic electrons. Precipitating electrons

  1. Time scale of the fission process in the reaction 50A MeV 20Ne + 165Ho

    E-Print Network [OSTI]

    Mdeiwayeh, Nader

    1995-01-01T23:59:59.000Z

    The pre-scission time in the de-excitation of highly excited 178W produced in the reaction of 2ONe + 165Ho at 50A MeV was determined as a function of fission fragment mass asymmetry. The techniques employed used the pre-scission and post scission...

  2. The first SEPServer event catalogue ~68-MeV solar proton events observed at 1 AU in 19962010

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    The first SEPServer event catalogue ~68-MeV solar proton events observed at 1 AU in 1996­2010 Rami of Helsinki, 00014 Helsinki, Finland *Corresponding author: e-mail: rami.vainio@helsinki.fi 2 Department of Physics and Astronomy, University of Turku, 20014 Finland 3 Institut fu¨r Experimentelle und Angewandte

  3. Photon activation analysis of the scraper in a 200-MeV electron accelerator using gamma-spectrometry depth profiling

    E-Print Network [OSTI]

    Lijuan, He; Guobing, Yu; Guangyi, Ren; Zongjin, Duan

    2014-01-01T23:59:59.000Z

    For a high energy electron facility, the estimates of induced radioactivity in materials are of major importance to keep exposure to personnel and to the environment as low as reasonably achievable. In addition, an accurate prediction of induced radioactivity is also essential for the design, operation and decommissioning of a high energy electron linear accelerator. The research of induced radioactivity focuses on the photonuclear reaction, whose giant resonance response in the copper is ranging from 10 MeV to 28 MeV. The 200 MeV electron linac of NSRL is one of the earliest high-energy electron linear accelerators in P. R. China. The electrons are accelerated to 200 MeV by five acceleration tubes and collimated by the scrapers made of copper. At present, it is the first retired high-energy electron linear accelerator in domestic. Its decommissioning provides an efficient way for the induced radioactivity research of such accelerators, and is a matter of great significance to the accumulation of the induced ...

  4. Corrosion of Target and Structural Materials in Water Irradiated by an 800 MeV Proton Beam

    E-Print Network [OSTI]

    Corrosion of Target and Structural Materials in Water Irradiated by an 800 MeV Proton Beam Darryl P National Laboratory Los Alamos, NM 87545 U.S.A. Abstract Radiation enhanced, aqueous corrosion of solid. In this paper we briefly describe our current methods for control and in situ monitoring of corrosion

  5. Materials Corrosion and Mitigation Strategies for APT: Corrosion of Tungsten in an 800 MeV Proton Beam at the

    E-Print Network [OSTI]

    Materials Corrosion and Mitigation Strategies for APT: Corrosion of Tungsten in an 800 MeV Proton Beam at the Weapons Neutron Research Facility R. Scott Lillard, Darryl P. Butt Materials Corrosion corrosion. Energy deposition and thermal hydraulic calculations predict that the surface temperature

  6. The Corrosion of Alloy 718 During 800 MeV Proton Irradiation R.S. Lillard, G.J. Willcutt

    E-Print Network [OSTI]

    The Corrosion of Alloy 718 During 800 MeV Proton Irradiation R.S. Lillard, G.J. Willcutt¶ , D.L. PileW , D.P. Butt* Materials Corrosion and Environmental Effects Lab Materials Science and Technology, proton flux decreased radially from the beam center), two methods for determing corrosion rate from

  7. 200 MeV Proton Radiography Studies with a Hand Phantom Using a Prototype Proton CT Scanner

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    200 MeV Proton Radiography Studies with a Hand Phantom Using a Prototype Proton CT Scanner Tia.F.W. Sadrozinski, K. Schubert, R. Schulte, B. Schultze, D. Steinberg, M. Witt, A. Zatserklyaniy Abstract--Proton alignment and verification procedures for proton beam radiation therapy. The quality of the image, both

  8. The Energy Loss of Li and C Ions with MeV Energies in the Polycarbonate and Polypropylene

    SciTech Connect (OSTI)

    Miksova, R.; Mackova, A. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 40096 Usti nad Labem (Czech Republic); Hnatowicz, V. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic)

    2011-12-13T23:59:59.000Z

    Stopping power and straggling of Li ions and C ions at mean energy 3.8-5.4 MeV and 5.6-6.9 MeV, respectively, in polycarbonate (PC) and at mean energy 3.7-5.2 MeV and 6.8-8.0 MeV in polypropylene (PP) foils have been measured using ion beams from a Tandetron 4130 MC accelerator. The ions scattered from a thin, primary gold target were registered by a surface barrier detector partially covered with a thin foil of the investigated polymer. The stopping power was determined from the energy difference between the signals from the ions directly backscattered from the Au layer and the ions backscattered and slowed down in the foil. The foil thickness was determined by the weighing procedure. The experimentally determined stopping powers were compared with those calculated with the SRIM 2010 code. The measured stopping powers are in good agreement for Li and C in PC, the differences being within 0.1-1.6% for Li and 0.2-2.1% for C. For Li and C in PP, the stopping powers are lower than the calculated ones, the differences being within 0.5-2.8% for Li and 3.6-6.1% for C. The energy straggling was determined from the width of the RBS signals. The experimentally determined energy straggling was found to fluctuate around the values calculated according to Bohr theory.

  9. Cross sections for neutron-deuteron elastic scattering in the energy range 135–250 MeV

    E-Print Network [OSTI]

    Ertan, E.

    We report new measurements of the neutron-deuteron elastic scattering cross section at energies from 135 to 250 MeV and center-of-mass angles from 80[degrees] to 130[degrees]. Cross sections for neutron-proton elastic ...

  10. A system for differential neutron scattering experiments in the energy range from 0.5 to 20 MeV

    E-Print Network [OSTI]

    Danon, Yaron

    A system for differential neutron scattering experiments in the energy range from 0.5 to 20 MeV F 2010 Accepted 15 April 2010 Available online 27 May 2010 Keywords: Scattering Neutron Benchmark dependent scattered neutron distributions. Scattering measurements were performed on carbon and molybdenum

  11. Quasi-differential neutron scattering from 238 U from 0.5 to 20 MeV

    E-Print Network [OSTI]

    Danon, Yaron

    Quasi-differential neutron scattering from 238 U from 0.5 to 20 MeV A.M. Daskalakis a, , R Measurement Neutron scattering Time-of-flight experiment Benchmark a b s t r a c t The Rensselaer Polytechnic scattering sample 30 m from the source. Eight liquid scintillator (EJ-301) proton recoil fast neutron

  12. Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons

    E-Print Network [OSTI]

    Pasko, Victor

    . Introduction [2] Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating fromTerrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium accelerationV) of terrestrial gamma-ray flashes (TGFs). This analysis provides the first direct evidence that TGFs are produced

  13. Excitation functions of $^{nat}$Pb(d,x)$^{206,205,204,203,202}$Bi, $^{203cum,202m,201cum}$Pb and $^{202cum,201cum}$Tl reactions up to 50 MeV

    E-Print Network [OSTI]

    F. Ditrói; F. Tárkányi; S. Takács; A. Hermanne; A. V. Ignatyuk

    2014-11-27T23:59:59.000Z

    Cross-sections of deuteron induced nuclear reactions on lead were measured up to 50 MeV using the standard stacked foil irradiation technique and high resolution $\\gamma$-ray spectrometry. Experimental cross-sections and derived integral yields are presented for the $^{nat}$Pb(d,x)$^{206,205,204,203,202}$Bi, $^{203cum,202m,201cum}$Pb and $^{202cum,201cum}$Tl reactions. The experimental data were compared with the results from literature and with the data in the TENDL-2013 library (obtained with TALYS code). The cross-section data were analyzed also with the theoretical results calculated by using the ALICE-IPPPE-D and EMPIRE-D codes.

  14. Experimental Determination of In-Medium Cluster Binding Energies and Mott Points in Nuclear Matter

    E-Print Network [OSTI]

    K. Hagel; R. Wada; L. Qin; J. B. Natowitz; S. Shlomo; A. Bonasera; G. Röpke; S. Typel; Z. Chen; M. Huang; J. Wang; H. Zheng; S. Kowalski; C. Bottosso; M. Barbui; M. R. D. Rodrigues; K. Schmidt; D. Fabris; M. Lunardon; S. Moretto; G. Nebbia; S. Pesente; V. Rizzi; G. Viesti; M. Cinausero; G. Prete; T. Keutgen; Y. El Masri; Z. Majka

    2012-03-20T23:59:59.000Z

    In medium binding energies and Mott points for $d$, $t$, $^3$He and $\\alpha$ clusters in low density nuclear matter have been determined at specific combinations of temperature and density in low density nuclear matter produced in collisions of 47$A$ MeV $^{40}$Ar and $^{64}$Zn projectiles with $^{112}$Sn and $^{124}$Sn target nuclei. The experimentally derived values of the in medium modified binding energies are in good agreement with recent theoretical predictions based upon the implementation of Pauli blocking effects in a quantum statistical approach.

  15. Inspection of the objects on the sea floor by using 14 MeV tagged neutrons

    SciTech Connect (OSTI)

    Valkovic, V. [A.C.T.d.o.o., Prilesje 4, Zagreb (Croatia); Sudac, D.; Obhodas, J. [Dept. of Experimental Physics, Inst. Ruder Boskovic, Zagreb (Croatia); Matika, D. [Inst. for Researches and Development of Defense Systems, Zagreb (Croatia); Kollar, R. [A.C.T.d.o.o., Prilesje 4, Zagreb (Croatia); Nad, K.; Orlic, Z. [Dept. of Experimental Physics, Inst. Ruder Boskovic, Zagreb (Croatia)

    2011-07-01T23:59:59.000Z

    Variety of objects found on the sea floor needs to be inspected for the presence of materials which represent the threat to the environment and to the safety of humans. We have demonstrated that the sealed tube 14 MeV neutron generator with the detection of associated alpha particles can be used underwater when mounted inside ROV equipped with the hydraulic legs and variety of sensors for the inspection of such objects for the presence of threat materials. Such a system is performing the measurement by using the NaI gamma detector and an API-120 neutron generator which could be rotated in order to maximize the inspected target volume. The neutron beam intensity during the 10-30 min. measurements is usually 1 x 10{sup 7} n/s in 4{pi}. In this report the experimental results for some of commonly found objects containing TNT explosive or its simulant are presented. The measured gamma spectra are dominant by C, O and Fe peaks enabling the determination of the presence of explosives inside the ammunition shell. Parameters influencing the C/O ratio are discussed in some details. (authors)

  16. Suzaku Observations of Extreme MeV Blazar Swift J0746.3+2548

    SciTech Connect (OSTI)

    Watanabe, Shin; Sato, Rie; Takahashi, Tadayuki; Kataoka, Jun; Madejski, Greg; Sikora, Marek; Tavecchio, Fabrizio; Sambruna, Rita; Romani, Roger; Edwards, Philip G.; Pursimo, Tapio

    2008-12-01T23:59:59.000Z

    We report the Suzaku observations of the high luminosity blazar SWIFT J0746.3+2548 (J0746) conducted in November 2005. This object, with z = 2.979, is the highest redshift source observed in the Suzaku Guaranteed Time Observer (GTO) period, is likely to show high gamma-ray flux peaking in the MeV range. As a result of the good photon statistics and high signal-to-noise ratio spectrum, the Suzaku observation clearly confirms that J0746 has an extremely hard spectrum in the energy range of 0.3-24 keV, which is well represented by a single power-law with a photon index of {Lambda}{sub ph} {approx_equal} 1.17 and Galactic absorption. The multiwavelength spectral energy distribution of J0746 shows two continuum components, and is well modeled assuming that the high-energy spectral component results from Comptonization of the broad-line region photons. In this paper we search for the bulk Compton spectral features predicted to be produced in the soft X-ray band by scattering external optical/UV photons by cold electrons in a relativistic jet. We discuss and provide constraints on the pair content resulting from the apparent absence of such features.

  17. A New Lambertson Magnet for the FNAL 400 MeV Line

    SciTech Connect (OSTI)

    Jean-Francois Ostiguy et al.

    2003-07-01T23:59:59.000Z

    A new Lambertson magnet has been constructed for use at the downstream end of the Fermilab 400 MeV Linac. To reduce costs, the core is composed of laminations left over from the Main Injector dipoles with a round hole through one pole face. In contrast with more conventional Lambertson designs, the magnet is excited by two coils located above and below the field region. The integrated transverse fringe field at the end of the field-free region is minimized using a pole piece extension with 75% packing factor followed by a thick flux return plate. The relatively low packing factor prevents saturation of the extension by the return flux while preserving the odd longitudinal symmetry of the transverse flux distribution. Measurements show better than an order of magnitude reduction of the integrated transverse field, in good agreement with simulations. later found that despite the presence of these extensions, the dipole kicks experienced by the beam in the end regions remained substantial enough to steer the beam away from the dump. Dipole correctors were installed; however, both operationally and from a safety point of view, they are somewhat of a nuisance because the excitations need to be carefully readjusted following every shutdown. A decision was made to build an improved version of the magnet, with the constraint that the lamination geometry should not be modified.

  18. Earth occultation technique with EGRET calorimeter data above 1 MeV

    SciTech Connect (OSTI)

    Dingus, Brenda L. [University of Utah, Salt Lake City, Utah 84112 (United States); Bertsch, D. L. [NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Schneid, E. J. [Northrop-Grumman, Bethpage, New York 11714 (United States)

    1997-05-10T23:59:59.000Z

    The technique of earth occultation has produced many exciting results from the BATSE data. We examine the possibility of using this technique on the Total Absorption Shower Calorimeter (TASC) of EGRET. The TASC has an effective area of a few 1000 cm{sup 2} and is 8 radiation lengths deep. Spectra from 1-200 MeV are collected every 33 sec and the rate at 4 energies is monitored every 2 sec. The detector is unshielded and uncollimated so the background is large. The statistical error on the background measurements require several days of exposure to detect the Crab at the lowest energies. Longer exposures would be needed due to systematic errors in determining the background. However, the wide field of view (the effective area is nearly 1000 cm{sup 2} even through the back of the spacecraft) could be used to monitor variability and confirm fluxes of sources such as the black hole candidates, Cyg X-1 and GRO J0422+33.

  19. Delbruck scattering at energies of 140450 MeV Sh. Zh. Akhmadaliev, G. Ya. Kezerashvili, S. G. Klimenko, V. M. Malyshev, A. L. Maslennikov, A. M. Milov,

    E-Print Network [OSTI]

    Delbru¨ck scattering at energies of 140­450 MeV Sh. Zh. Akhmadaliev, G. Ya. Kezerashvili, S. G on a bismuth germanate (Bi4Ge3O12) target at photon energies 140­450 MeV and scattering angles 2.6­16.6 mrad

  20. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01T23:59:59.000Z

    it would transfer nuclear technology. Washington Post. 26preferences: the export of sensitive nuclear technology.export of sensitive nuclear technology presents a kind of

  1. Dynamics of nuclear envelope and nuclear pore complex formation

    E-Print Network [OSTI]

    Anderson, Daniel J.

    2008-01-01T23:59:59.000Z

    Limited expression of nuclear pore membrane glycoprotein 210suggests cell-type specific nuclear pores in metazoans. Expand Dultz, E. (2008). Nuclear pore complex assembly through

  2. Nuclear structure studies with medium energy probes. [Northwestern Univ

    SciTech Connect (OSTI)

    Seth, Kamal K.

    1980-01-01T23:59:59.000Z

    Progress in the continuing program of experimental research in nuclear structure with medium-energy probes during the year 1979-1980 is reviewed, and the research activities planned for the year 1980-1981 are discussed. In the study of pion-induced reactions emphasis is placed on investigation of isovector characteristics of nuclear excitations and on double charge exchange reactions. Pion production studies form the major part of the program of experiments with proton beams of 400 to 800 MeV at LAMPF. Current emphasis is on the bearing of these investigations on di-baryon existence. The study of high-spin states and magnetic scattering constitute the main goals of the electron scattering program at Bates. Representative results are presented; completed work is reported in the usual publications. (RWR)

  3. $^8$He nuclei stopped in nuclear track emulsion

    E-Print Network [OSTI]

    D. A. Artemenkov; A. A. Bezbakh; V. Bradnova; M. S. Golovkov; A. V. Gorshkov; G. Kaminsky; N. K. Kornegrutsa; S. A. Krupko; K. Z. Mamatkulov; R. R. Kattabekov; V. V. Rusakova; R. S. Slepnev; R. Stanoeva; S. V. Stepantsov; A. S. Fomichev; V. Chudoba; P. I. Zarubin; I. G. Zarubina

    2014-10-20T23:59:59.000Z

    The fragment separator ACCULINNA in the G. N. Flerov Laboratory of Nuclear Reactions of JINR was used to expose a nuclear track emulsion to a beam of radioactive $^{8}$He nuclei of energy of 60 MeV and enrichment of about 80%. Measurements of decays of $^{8}$He nuclei stopped in the emulsion allow one to evaluate possibilities of $\\alpha$-spectrometry and to observe a thermal drift of $^{8}$He atoms in matter. Knowledge of the energy and emission angles of $\\alpha$-particles allows one to derive the energy distribution of $\\alpha$-decays Q$_{2\\alpha}$. The presence of a "tail" of large values Q$_{2\\alpha}$ is established. The physical reason for the appearance of this "tail" in the distribution Q$_{2\\alpha}$ is not clear. Its shape could allow one to verify calculations of spatial structure of nucleon ensembles emerging as $\\alpha$-pairs of decays via the state $^8$Be$_{2+}$.

  4. Nuclear thermodynamics and the in-medium chiral condensate

    E-Print Network [OSTI]

    Salvatore Fiorilla; Norbert Kaiser; Wolfram Weise

    2012-04-19T23:59:59.000Z

    The temperature dependence of the chiral condensate in isospin-symmetric nuclear matter at varying baryon density is investigated using thermal in-medium chiral effective field theory. This framework provides a realistic approach to the thermodynamics of the correlated nuclear many-body system and permits calculating systematically the pion-mass dependence of the free energy per particle. One- and two-pion exchange processes, $\\Delta(1232)$-isobar excitations, Pauli blocking corrections and three-body correlations are treated up to and including three loops in the expansion of the free energy density. It is found that nuclear matter remains in the Nambu-Goldstone phase with spontaneously broken chiral symmetry in the temperature range $T\\lesssim 100\\,$MeV and at baryon densities at least up to about twice the density of normal nuclear matter, $2\\rho_0 \\simeq 0.3\\, $fm$^{-3}$. Effects of the nuclear liquid-gas phase transition on the chiral condensate at low temperatures are also discussed.

  5. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  6. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  7. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

  8. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. Nuclear Data for Fusion Energy Technologies: Requests, Status and Development Needs

    SciTech Connect (OSTI)

    Fischer, U. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Postfach 3640, D-76021 Karlsruhe (Germany); Batistoni, P. [Associazione Euratom-ENEA sulla Fusione, ENEA Fusion Divison, Via E. Fermi 27, I-00044 Frascati (Italy); Cheng, E. [TSI Research, Inc., P.O. Box 2754, Rancho Santa Fe, CA 92067 (United States); Forrest, R.A. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Nishitani, T. [Fusion Neutronics Laboratory, JAERI, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2005-05-24T23:59:59.000Z

    The current status of nuclear data evaluations for fusion technologies is reviewed. Well-qualified data are available for neutronics and activation calculations of fusion power reactors and the next-step device ITER, the International Thermonuclear Experimental Reactor. Major challenges for the further development of fusion nuclear data arise from the needs of the long-term fusion programme. In particular, co-variance data are required for uncertainty assessments of nuclear responses. Further, the nuclear data libraries need to be extended to higher energies above 20 MeV to enable neutronics and activation calculations of IFMIF, the International Fusion Material Irradiation Facility. A significant experimental effort is required in this field to provide a reliable and sound database for the evaluation of cross-section data in the higher energy range.

  10. Constraints on the time-scale of nuclear breakup from thermal hard-photon emission

    E-Print Network [OSTI]

    R. Ortega; D. d'Enterria; G. Martinez; D. Baiborodin; H. Delagrange; J. Diaz; F. Fernandez; H. Loehner; T. Matulewicz; R. W. Ostendorf; S. Schadmand; Y. Schutz; P. Tlusty; R. Turrisi; V. Wagner; H. W. Wilschut; N. Yahlali

    2005-08-26T23:59:59.000Z

    Measured hard photon multiplicities from second-chance nucleon-nucleon collisions are used in combination with a kinetic thermal model, to estimate the break-up times of excited nuclear systems produced in nucleus-nucleus reactions at intermediate energies. The obtained nuclear break-up time for the $^{129}${Xe} + $^{nat}${Sn} reaction at 50{\\it A} MeV is $\\Delta$$\\tau$ $\\approx$ 100 -- 300 fm/$c$ for all reaction centralities. The lifetime of the radiating sources produced in seven other different heavy-ion reactions studied by the TAPS experiment are consistent with $\\Delta$$\\tau$ $\\approx$ 100 fm/$c$, such relatively long thermal photon emission times do not support the interpretation of nuclear breakup as due to a fast spinodal process for the heavy nuclear systems studied.

  11. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

  12. Nuclear Safety Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

  13. NUCLEAR SCIENCE ANNUAL REPORT 1975

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Gove and A. H. Wapstra, Nuclear Data Tables 11, 127 (1972).P. Jackson, Chalk River Nuclear Laboratories Report (1975)national Conference on Nuclear Structure and Spec­ troscopy,

  14. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    the previous year. NUCLEAR TECHNOLOGY AND FUEL CYCLES China’third-generation nuclear technology and reactor design, withs own third-generation nuclear technology. Westing- house,

  15. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Nuclear Laboratories, AECL, Chalk River, Ontario, Canada.Nuclear Laboratories, AECL, Chalk River, Ontario, Canada. 1.Nuclear Laboratories, AECL, Chalk River, Ontario, Canada. 1.

  16. Reactor & Nuclear Systems Publications | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications The...

  17. CONSTRAINING THE SYMMETRY PARAMETERS OF THE NUCLEAR INTERACTION

    SciTech Connect (OSTI)

    Lattimer, James M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Lim, Yeunhwan, E-mail: james.lattimer@stonybrook.edu, E-mail: yeunhwan.lim@gmail.com [Department of Physics Education, Daegu University, Gyeongsan 712-714 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    One of the major uncertainties in the dense matter equation of state has been the nuclear symmetry energy. The density dependence of the symmetry energy is important in nuclear astrophysics, as it controls the neutronization of matter in core-collapse supernovae, the radii of neutron stars and the thicknesses of their crusts, the rate of cooling of neutron stars, and the properties of nuclei involved in r-process nucleosynthesis. We show that fits of nuclear masses to experimental masses, combined with other experimental information from neutron skins, heavy ion collisions, giant dipole resonances, and dipole polarizabilities, lead to stringent constraints on parameters that describe the symmetry energy near the nuclear saturation density. These constraints are remarkably consistent with inferences from theoretical calculations of pure neutron matter, and, furthermore, with astrophysical observations of neutron stars. The concordance of experimental, theoretical, and observational analyses suggests that the symmetry parameters S{sub v} and L are in the range 29.0-32.7 MeV and 40.5-61.9 MeV, respectively, and that the neutron star radius, for a 1.4 M{sub Sun} star, is in the narrow window 10.7 km

  18. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Savers [EERE]

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  19. Routine production of copper-64 using 11.7MeV protons

    SciTech Connect (OSTI)

    Jeffery, C. M.; Smith, S. V.; Asad, A. H.; Chan, S.; Price, R. I. [Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia); Centre for Forensic Science, University of Western Australia, Nedlands, Western Australia, 6009 (Australia) and ARC Centre of Excellence in A (Australia); ARC Centre of Excellence in Antimatter-Matter Studies, Australian National University, Canberra, ACT 0200 (Australia) and Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia); ARC Centre of Excellence in Antimatter-Matter Studies, Australian National University, Canberra, ACT 0200 (Australia) and Imaging and Applied (Australia); Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia); Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia) and School of Physics, University of Western Australia, Nedlands, Western Australia, 6009 (Australia)

    2012-12-19T23:59:59.000Z

    Reliable production of copper-64 ({sup 64}Cu) was achieved by irradiating enriched nickel-64 ({sup 64}Ni, >94.8%) in an IBA 18/9 cyclotron. Nickel-64 (19.1 {+-} 3.0 mg) was electroplated onto an Au disc (125{mu}m Multiplication-Sign 15mm). Targets were irradiated with 11.7 MeV protons for 2 hours at 40{mu}A. Copper isotopes ({sup 60,61,62,64}Cu) were separated from target nickel and cobalt isotopes ({sup 55,57,61}Co) using a single ion exchange column, eluted with varying concentration of low HCl alcohol solutions. The {sup 64}Ni target material was recovered and reused. The {sup 64}Cu production rate was 1.46{+-}0.3MBq/{mu}A.hr/mg{sup 64}Ni(n = 10) (with a maximum of 2.6GBq of {sup 64}Cu isolated after 2hr irradiation at 40uA. Radionuclidic purity of the {sup 64}Cu was 98.7 {+-} 1.6 % at end of separation. Cu content was < 6mg/L (n = 21). The specific activity of {sup 64}Cu was determined by ICP-MS and by titration with Diamsar to be 28.9{+-}13.0GBq/{mu}mol[0.70{+-}0.35Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n = 10) and 13.1{+-}12.0GBq/{mu}mol[0.35{+-}0.32Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n 9), respectively; which are in agreement, however, further work is required.

  20. The Evolution of Swift/BAT blazars and the origin of the MeV background

    SciTech Connect (OSTI)

    Ajello, M.; /SLAC /KIPAC, Menlo Park; Costamante, L.; /Stanford U., HEPL /KIPAC, Menlo Park; Sambruna, R.M.; Gehrels, N.; /NASA, Goddard; Chiang, J.; /SLAC /KIPAC, Menlo Park; Rau, A.; /Caltech; Escala, A.; /SLAC /KIPAC, Menlo Park /Cerro Calan Observ.; Greiner, J.; /Garching, Max Planck Inst., MPE; Tueller, J.; /NASA, Goddard; Wall, J.V.; /British Columbia U.; Mushotzky, R.F.; /NASA, Goddard

    2009-10-17T23:59:59.000Z

    We use 3 years of data from the Swift/BAT survey to select a complete sample of X-ray blazars above 15 keV. This sample comprises 26 Flat-Spectrum Radio Quasars (FSRQs) and 12 BL Lac objects detected over a redshift range of 0.03 < z < 4.0. We use this sample to determine, for the first time in the 15-55 keV band, the evolution of blazars. We find that, contrary to the Seyfert-like AGNs detected by BAT, the population of blazars shows strong positive evolution. This evolution is comparable to the evolution of luminous optical QSOs and luminous X-ray selected AGNs. We also find evidence for an epoch-dependence of the evolution as determined previously for radio-quiet AGNs. We interpret both these findings as a strong link between accretion and jet activity. In our sample, the FSRQs evolve strongly, while our best-fit shows that BL Lacs might not evolve at all. The blazar population accounts for 10-20% (depending on the evolution of the BL Lacs) of the Cosmic X-ray background (CXB) in the 15-55 keV band. We find that FSRQs can explain the entire CXB emission for energies above 500 keV solving the mystery of the generation of the MeV background. The evolution of luminous FSRQs shows a peak in redshift (z{sub c} = 4.3 {+-} 0.5) which is larger than the one observed in QSOs and X-ray selected AGNs. We argue that FSRQs can be used as tracers of massive elliptical galaxies in the early Universe.

  1. Preliminary Safety Analysis Report (PSAR), The NSLS 200 MeV Linear Electron Accelerator

    SciTech Connect (OSTI)

    Blumberg, L.N.; Ackerman, A.I.; Dickinson, T.; Heese, R.N.; Larson, R.A.; Neuls, C.W.; Pjerov, S.; Sheehan, J.F.

    1993-06-15T23:59:59.000Z

    The radiological, fire and electrical hazards posed by a 200 MeV electron Linear Accelerator, which the NSLS Department will install and commission within a newly assembled structure, are addressed in this Preliminary Safety Analysis Report. Although it is clear that this accelerator is intended to be the injector for a future experimental facility, we address only the Linac in the present PSAR since neither the final design nor the operating characteristics of the experimental facility are known at the present time. The fire detection and control system to be installed in the building is judged to be completely adequate in terms of the marginal hazard presented - no combustible materials other than the usual cabling associated with such a facility have been identified. Likewise, electrical hazards associated with power supplies for the beam transport magnets and accelerator components such as the accelerator klystrons and electron gun are classified as marginal in terms of potential personnel injury, cost of equipment lost, program downtime and public impact perceptions as defined in the BNL Environmental Safety and Health Manual and the probability of occurrence is deemed to be remote. No unusual features have been identified for the power supplies or electrical distribution system, and normal and customary electrical safety standards as practiced throughout the NSLS complex and the Laboratory are specified in this report. The radiation safety hazards are similarly judged to be marginal in terms of probability of occurrence and potential injury consequences since, for the low intensity operation proposed - a factor of 25 less than the maximum Linac capability specified by the vendor - the average beam power is only 0.4 watts. The shielding specifications given in this report will give adequate protection to both the general public and nonradiation workers in areas adjacent to the building as well as radiation workers within the controlled access building.

  2. B53 Nuclear Bomb Dismantlement | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    Dismantlement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  3. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    Spent Fuel Assay Using Nuclear Resonance Fluo- rescence,” Annual Meeting of the Institute of Nuclear Material Management,

  4. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    of the Institute of Nuclear Material Management, Tucson, AZ,Assay, Institute of Nuclear Materials Management 51st Annual

  5. Nuclear disarmament verification

    SciTech Connect (OSTI)

    DeVolpi, A.

    1993-12-31T23:59:59.000Z

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification.

  6. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Schively, Dixon P. (Richland, WA)

    1985-01-01T23:59:59.000Z

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  7. Triangle Universities Nuclear Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.

  8. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15T23:59:59.000Z

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  9. NUCLEAR PLANT AND CONTROL

    E-Print Network [OSTI]

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: software require- ments, safety analysis, formal, the missiles, and the digital protection systems embed- ded in nuclear power plants. Obviously, safety method SOFTWARE SAFETY ANALYSIS OF DIGITAL PROTECTION SYSTEM REQUIREMENTS USING A QUALITATIVE FORMAL

  10. Hegemony and nuclear proliferation

    E-Print Network [OSTI]

    Miller, Nicholas L. (Nicholas LeSuer)

    2014-01-01T23:59:59.000Z

    Contrary to longstanding of predictions of nuclear tipping points, the number of states interested in nuclear weapons has sharply declined in recent decades. In contrast to existing explanations, this dissertation argues ...

  11. The production of /sup 38/Ar and /sup 39/Ar by 14-MeV neutrons on /sup 39/K

    SciTech Connect (OSTI)

    Foland, K.A.; Borg, R.J.; Mustafa, M.G.

    1987-02-01T23:59:59.000Z

    The authors have determined the cross sections for the production of /sup 38/Ar and /sup 39/Ar from the (n,n'rho) and (n,rho) reactions by neutrons of -- 14 MeV incident on /sup 39/K. Three potassium-bearing specimens were irradiated with fluences of --10/sup 17/ neutrons, and the argon isotopes were measured by mass spectrometry. Previously reported measurements are in substantial disagreement with our results. Values from the three new measurements are consistent with each other and our computational modeling. Nevertheless, there remains an unexplained increase in the cross sections for both reactions as the neutron energy increases from --14.5 to 14.8 MeV.

  12. Bremsstrahlung of 350--450 MeV protons as a tool to study $NN$ interaction off-shell

    E-Print Network [OSTI]

    N. A. Khokhlov; V. A. Knyr; V. G. Neudatchin; Andrey M. Shirokov

    1997-07-18T23:59:59.000Z

    The $pp\\to pp\\gamma$ bremsstrahlung cross section is calculated within the method of coordinate space representation. It is shown that in the beam energy range of 350--450~MeV a deep attractive NN-potential with forbidden states (Moscow potential) and realistic meson exchange potentials (MEP) give rise to the cross sections that differ essentially in shape: the cross sections nearly coincide in the minima but differ by a factor of 5 approximately in the maxima. Therefore, the $pp\\to pp\\gamma$ reaction at energies $\\sim$350--450~Mev can be used to study $NN$ interaction off-shell and to discriminate experimentally between MEP and Moscow potential.

  13. A measurement of the 4He(g,n) reaction from 23 < Eg < 70 MeV

    E-Print Network [OSTI]

    B. Nilsson

    2006-10-19T23:59:59.000Z

    A comprehensive set of 4He(g,n) absolute cross-section measurements has been performed at MAX-lab in Lund, Sweden. Tagged photons from 23 < Eg < 70 MeV were directed toward a liquid 4He target, and neutrons were identified using pulse-shape discrimination and the Time-of-flight Technique in two liquid-scintillator detector arrays. Seven-point angular distributions have been measured for fourteen photon energies. The results have been subjected to complementary Transition-coefficient and Legendre-coefficient analyses. The results are also compared to experimental data measured at comparable photon energies as well as Recoil-Corrected Continuum Shell Model, Resonating Group Method, and Effective Interaction Hyperspherical-Harmonic Expansion calculations. For photon energies below 29 MeV, the angle-integrated data are significantly larger than the values recommended by Calarco, Berman, and Donnelly in 1983.

  14. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  15. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

  16. Nuclear Nonproliferation Programs | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initiatives Nonproliferation Technology Nonproliferation Systems Safeguards and Security Technology International Safeguards Nuclear Material Detection and Characterization For...

  17. Nuclear Multifragmentation Critical Exponents

    E-Print Network [OSTI]

    Wolfgang Bauer; William Friedman

    1994-11-14T23:59:59.000Z

    We show that the critical exponents of nuclear multi-fragmentation have not been determined conclusively yet.

  18. Dynamical fission in {sup 124}Sn+{sup 64}Ni collision at 35A MeV

    SciTech Connect (OSTI)

    De Filippo, E.; Pagano, A.; Cardella, G.; Lanzano, G.; Papa, M.; Pirrone, S.; Politi, G. [INFN, Sezione di Catania and Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Piasecki, E.; Siwek-Wilczynska, K.; Skwira, I.; Swiderski, L. [Institute of Experimental Physics, Warsaw University, Warsaw (Poland); Amorini, F.; Anzalone, A.; Baran, V.; Bonasera, A.; Cavallaro, S.; Colonna, M.; Di Toro, M.; Giustolisi, F.; Iacono-Manno, M. [INFN, Laboratori Nazionali del Sud and Dipartimento di Fisica e Astronomia, Universita di Catania (Italy)] [and others

    2005-06-01T23:59:59.000Z

    Some properties of fast, nonequilibrium splitting of projectiles in the {sup 124}Sn+{sup 64}Ni reaction at 35A MeV were determined using the 4{pi} CHIMERA detector system. In particular the charge distributions, in- and out-of-plane angular distributions, and relative velocities of projectilelike fragments were measured. The time scale of the process was estimated and it turned out that the process is sequential but much faster than the ordinary, equilibrated fission.

  19. GAMMA-RAY OBSERVATIONS OF CYGNUS X-1 ABOVE 100 MeV IN THE HARD AND SOFT STATES

    SciTech Connect (OSTI)

    Sabatini, S.; Tavani, M.; Del Santo, M.; Campana, R.; Evangelista, Y.; Piano, G.; Del Monte, E.; Giusti, M.; Striani, E. [INAF/IAPS-Roma, I-00133 Roma (Italy)] [INAF/IAPS-Roma, I-00133 Roma (Italy); Coppi, P. [Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)] [Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Pooley, G. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)] [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Chen, A.; Giuliani, A. [INAF/IASF-Milano, I-20133 Milano (Italy)] [INAF/IASF-Milano, I-20133 Milano (Italy); Bulgarelli, A. [INAF/IASF-Bologna, I-40129 Bologna (Italy)] [INAF/IASF-Bologna, I-40129 Bologna (Italy); Cattaneo, P. W. [INFN-Pavia, I-27100 Pavia (Italy)] [INFN-Pavia, I-27100 Pavia (Italy); Colafrancesco, S. [INAF-OAR, I-00040 Monteporzio Catone (Italy)] [INAF-OAR, I-00040 Monteporzio Catone (Italy); Longo, F. [Dip. Fisica and INFN Trieste, I-34127 Trieste (Italy)] [Dip. Fisica and INFN Trieste, I-34127 Trieste (Italy); Morselli, A. [INFN Roma Tor Vergata, I-00133 Roma (Italy)] [INFN Roma Tor Vergata, I-00133 Roma (Italy); Pellizzoni, A. [INAF-OAC, I-09012 Capoterra (Italy)] [INAF-OAC, I-09012 Capoterra (Italy); Pilia, M. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands)] [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

    2013-04-01T23:59:59.000Z

    We present the results of multi-year gamma-ray observations by the AGILE satellite of the black hole binary system Cygnus X-1. In a previous investigation we focused on gamma-ray observations of Cygnus X-1 in the hard state during the period mid-2007/2009. Here we present the results of the gamma-ray monitoring of Cygnus X-1 during the period 2010/mid-2012 which includes a remarkably prolonged 'soft state' phase (2010 June-2011 May). Previous 1-10 MeV observations of Cyg X-1 in this state hinted at a possible existence of a non-thermal particle component with substantial modifications of the Comptonized emission from the inner accretion disk. Our AGILE data, averaged over the mid-2010/mid-2011 soft state of Cygnus X-1, provide a significant upper limit for gamma-ray emission above 100 MeV of F{sub soft} < 20 Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1} , excluding the existence of prominent non-thermal emission above 100 MeV during the soft state of Cygnus X-1. We discuss theoretical implications of our findings in the context of high-energy emission models of black hole accretion. We also discuss possible gamma-ray flares detected by AGILE. In addition to a previously reported episode observed by AGILE in 2009 October during the hard state, we report a weak but important candidate for enhanced emission which occurred at the end of 2010 June (2010 June 30 10:00-2010 July 2 10:00 UT) exactly coinciding with a hard-to-soft state transition and before an anomalous radio flare. An appendix summarizes all previous high-energy observations and possible detections of Cygnus X-1 above 1 MeV.

  20. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National Nuclear Data Center - 1952* High Flux Beam Reactor - 1964 Technical Support for NRC - 1974

  1. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

  2. Nuclear fact book

    SciTech Connect (OSTI)

    Hill, O.F.; Platt, A.M.; Robinson, J.V.

    1983-05-01T23:59:59.000Z

    This reference provides significant highlights and summary facts in the following areas: general energy; nuclear energy; nuclear fuel cycle; uranium supply and enrichment; nuclear reactors; spent fuel and advanced repacking concepts; reprocessing; high-level waste; gaseous waste; transuranic waste; low-level waste; remedial action; transportation; disposal; radiation information; environment; legislation; socio-political aspects; conversion factors; and a glossary. (GHT)

  3. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Demazičre, Christophe

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed absorption cross-section behavior. Consequently, if NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;Demazičre

  4. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. Consequently, if*E-mail: demaz@nephy.chalmers.se NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;high-burnup fuel

  5. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  6. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  7. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics science-innovationassetsimagesicon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and...

  8. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    the potential of nuclear power to combat global warming havecompetitive today, and for nuclear power to succeed, it must

  9. Nuclear data review and compilation for ATW systems

    SciTech Connect (OSTI)

    Guzhovskii, B.; Gorelov, V.; Il`in, V.; Farafontov, G.; Grebennikov, A.

    1994-10-01T23:59:59.000Z

    In order to solve the problem of nuclear power waste transmutation in neutron flux it is necessary to know the characteristics of neutron interaction for a great number of nuclei in the energy range from 0 to hundreds of MeV. The authors distinguished the most important aspect of this problem that one of nuclear data for actinides, (from Th to Cm isotopes) They have given the overview of evaluations of characteristic of interaction between neutrons and these nuclei leading to transformation from target-nucleus to neighboring actinide-nucleus or fission fragments in the limited energy range from 0 to 14 MeV. The review was carried out by comparison of mentioned characteristics from the modern versions of ENDL-82, JENDL-3, ENDF/B-6 and BROND-2 neutron evaluated data among themselves and with recommended data of previous publications and, in some cases, with the measurement results. ENDL-82 and ENDF/B-6 versions were made in USA laboratories, JENDL-3 was made in the laboratories of Japan and BROND-2 version was made in the laboratories of former USSR. The comparison of nuclear data from various libraries was carried out by the most economic method permitting, nevertheless, fully judge of available uncertainties in the knowledge of competitive nuclear data which are important from the point of view of problem of transmutation in various energies neutron flux. The following characteristics were considered: (a) fission and capture cross-sections at thermal point (E{sub n}=0.0253 eV); (b) infinitely dilute resonance integrals of fission and capture designated by I{sub f} and I{sub {gamma}} (c) averaged on {sup 252}Cf spontaneous fission neutron spectrum cross-sections of fission, capture and the (n,2n) reactions; (d) cross-sections of fission and the (n,2n), (n,3n) reactions at the point En = 14 MeV; (e) fission and capture resonance integrals for a interval of sets with the increasing upper (E {sub max}) and lower (E {sub min}) limits of integral.

  10. Isoscalar E0 strength between 6 and 11 MeV in Ca-40

    E-Print Network [OSTI]

    Youngblood, David H.; Lui, YW; Clark, HL; Tokimoto, Y.; John, B.

    2003-01-01T23:59:59.000Z

    V. DOI: 10.1103/PhysRevC.68.057303 PACS number(s): 25.55.Ci, 24.30.Cz, 27.40.1z The location of the isoscalar giant monopole resonance is important because its energy can be directly related to the nuclear compressibility and from... in the figure. The multipole components of the giant resonance peak were obtained [1] by dividing the peak into multiple regions (bins) by excitation energy and then comparing the angular distributions obtained for each of these bins to distorted- wave Born...

  11. np-elastic analyzing power A(N0) at 485 and 788 MeV

    E-Print Network [OSTI]

    McNaughton, M. W.; McNaughton, K. H.; Glass, G.; Riley, P. J.; Auer, KH; Davis, CA; Gulmez, E.; Hiebert, John C.; Jeppersen, R. H.; Ransome, R. D.; Spinka, H.; Sum, V.; Supek, I.; Tripard, G. E.; Woolverton, H.

    1996-01-01T23:59:59.000Z

    44, 2267 ~1991!. @21# C. Lechanoine-Leluc and F. Lehar, Rev. Mod. Phys. 65, 47 ~1993!. @22# M.W. McNaughton, Polarization Phenomena in Nuclear Phys- ics, edited by G.G. Ohlson, R.E. Brown, N. Jarmie, M.W. Mc- Naughton, and G.M. Hale, AIP Conf..., and previous data; enlargement of part of Fig. 1. @15# W.R. Ditzler et al . , Phys. Rev. D 46, 2792 ~1992!. @16# S. Nath et al . , Phys. Rev. D 39, 3520 ~1989!. and A.J. Salthouse, AIP Conf. Proc. No. 42 ~AIP, New York, 1978!, p. 142. 53 1097np...

  12. Neutron Cross-Section Evaluations for {sup 238}U up to 150 MeV

    SciTech Connect (OSTI)

    Ignatyuk, A.V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Lunev, V.P. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Shubin, Yu.N. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Gai, E.V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Titarenko, N.N. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Ventura, A. [ENEA (Italy); Gudowski, W. [Royal Institute of Technology, Stockholm (Sweden)

    2000-11-15T23:59:59.000Z

    Investigations aimed at the development of neutron cross-section evaluations for {sup 238}U at intermediate energies are briefly described. The coupled-channels optical model is used to calculate the neutron total, the elastic and reaction cross sections, and the elastic-scattering angular distributions. Evaluations of the neutron and charged particle emission cross sections and of the fission cross sections are obtained on the basis of the statistical description that includes direct, preequilibrium, and equilibrium mechanisms of nuclear reactions. The Kalbach parameterization of angular distributions is used to describe the double-differential cross sections of emitted neutrons and charged particles in ENDF/B-VI format.

  13. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV

    E-Print Network [OSTI]

    J. W. Weidner; S. G. Mashnik; K. D. John; F. Hemez; B. Ballard; H. Bach; E. R. Birnbaum; L. J. Bitteker; A. Couture; D. Dry; M. E. Fassbender; M. S. Gulley; K. R. Jackman; J. L. Ullmann; L. E. Wolfsberg; F. M. Nortier

    2012-05-15T23:59:59.000Z

    Cross sections for 223,225Ra, 225Ac and 227Th production by the proton bombardment of natural thorium targets were measured at proton energies below 200 MeV. Our measurements are in good agreement with previously published data and offer a complete excitation function for 223,225Ra in the energy range above 90 MeV. Comparison of theoretical predictions with the experimental data shows reasonable-to-good agreement. Results indicate that accelerator-based production of 225Ac and 223Ra below 200 MeV is a viable production method.

  14. Nuclear spirals in galaxies

    E-Print Network [OSTI]

    Witold Maciejewski

    2006-11-08T23:59:59.000Z

    Recent high-resolution observations indicate that nuclear spirals are often present in the innermost few hundred parsecs of disc galaxies. My models show that nuclear spirals form naturally as a gas response to non-axisymmetry in the gravitational potential. Some nuclear spirals take the form of spiral shocks, resulting in streaming motions in the gas, and in inflow comparable to the accretion rates needed to power local Active Galactic Nuclei. Recently streaming motions of amplitude expected from the models have been observed in nuclear spirals, confirming the role of nuclear spirals in feeding of the central massive black holes.

  15. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28T23:59:59.000Z

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  16. TENDL-2011: TALYS-based Evaluated Nuclear Data Library

    SciTech Connect (OSTI)

    Rochman, D.; Koning, A. J. [Nuclear Research and Consultancy Group, Petten (Netherlands)

    2012-07-01T23:59:59.000Z

    The 4. release of the TENDL library, TENDL-2011 (TALYS-based Evaluated Nuclear Data Library) is described. This library consists of a complete set of nuclear reaction data for incident neutrons, photons, protons, deuterons, tritons, helions and alpha particles, from 10-5 eV up to 200 MeV, for all isotopes from {sup 6}Li to {sup 281}Ds that are either stable of have a half-life longer than 1 second. All data are completely and consistently evaluated using a software system consisting of the TALYS-1.2 nuclear reaction code, and other programs to handle resonance data, experimental data, data from existing evaluations, and to provide the final ENDF-6 formatting. The result is a nuclear data library with mutually consistent reaction information for all isotopes and a quality that increases with yearly updates. To produce this library, TALYS input parameters are adjusted for many nuclides so that calculated cross sections agree with experimental data, while for important nuclides experimental data are directly included. All information is available on www.talys.eu and www.talys.eu/TENDL-2011. (authors)

  17. The status of nuclear data for transmutation calculations

    SciTech Connect (OSTI)

    Wilson, W.B.; England, T.R.; MacFarlane, R.E.; Muir, D.W.; Young, P.G.

    1995-12-01T23:59:59.000Z

    At this point, the accurate description of transmutation products in a radiation environment is more a nuclear data problem than a code development effort. We have used versions of the CINDER code for over three decades to describe the transmutation of nuclear reactor fuels in radiation environments. The need for the accurate description of reactor neutron-absorption, decay-power, and decay-spectra properties have driven many AEC, ERDA, and DOE supported nuclear data development efforts in this period. The level of cross-section, decay, and fission-yield data has evolved from rudimentary to a comprehensive ENDF/B-VI library permitting great precision in reactor calculations. The precision of the data supporting reactor simulations provides a sturdy foundation for the data base required for the wide range of transmutation problems currently studied. However, such reactor problems are typically limited to neutron energies below 10 MeV or so; reaction and decay data are required for actinides of, say, 90 {le} Z {le} 96 neutron-rich fission products of 22 {le} Z {le} 72. The expansion into reactor structural materials and fusion systems extends these ranges in energy and Z somewhat. The library of nuclear data, constantly growing in breadth and quality with international cooperation, is now described in the following table.

  18. Simulation of Nuclear Resonance Fluorescence in Geant4

    SciTech Connect (OSTI)

    Jordan, David V.; Warren, Glen A.

    2007-12-31T23:59:59.000Z

    Abstract– Ongoing research at Pacific Northwest National Laboratory (PNNL) is assessing the utility of exploiting nuclear resonance fluorescence (NRF) to detect bulk samples of special nuclear materials, high explosives, and related illicit cargo constituents in a variety of cargo inspection scenarios. PNNL has developed a Monte Carlo radiation transport simulation capability for studying the NRF signal response in order to facilitate computational studies of these inspection scenarios. The simulation framework implements NRF as a new physics process, “G4NRF,” in the Geant4 modeling toolkit, and leverages the Evaluated Nuclear Structure Data File (ENSDF) database of nuclear level properties to determine isotope-specific parameters of the NRF response model in general cargo constituents. The G4NRF package has been benchmarked against bremsstrahlung photon-beam data collected at the University of California at Santa Barbara’s 5.3 MeV accelerator. A series of cargo-inspection scenario studies utilizing the NRF simulation package is currently in progress.

  19. Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

    SciTech Connect (OSTI)

    Moustakidis, Ch. C.; Lalazissis, G. A. [Department of Theoretical Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Niksic, T. [Physics Department, Faculty of Science, University of Zagreb, HR-10000 Zagreb (Croatia); Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb, HR-10000 Zagreb (Croatia); Physik-Department der Technischen Universitaet Muenchen, D-85748 Garching (Germany); Ring, P. [Physik-Department der Technischen Universitaet Muenchen, D-85748 Garching (Germany)

    2010-06-15T23:59:59.000Z

    The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}MeV fm{sup -3}.

  20. Cross sections and barriers for nuclear fission induced by high-energy nucleons

    SciTech Connect (OSTI)

    Grudzevich, O. T., E-mail: ogrudzevich@ippe.ru [Leipunsky Institute for Physics and Power Engineering (Russian Federation); Yavshits, S. G. [Khlopin Radium Institute (Russian Federation)] [Khlopin Radium Institute (Russian Federation)

    2013-03-15T23:59:59.000Z

    The cross sections for the fission of {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu target nuclei that was induced by 20- to 1000-MeV neutrons and protons were calculated. The respective calculations were based on the multiconfiguration-fission (MCFx) model, which was used to describe three basic stages of the interaction of high-energy nucleons with nuclei: direct processes (intranuclear cascade), equilibration of the emerging compound system, and the decay of the compound nucleus (statistical model). Fission barriers were calculated within the microscopic approach for isotopic chains formed by 15 to 20 nuclei of the required elements. The calculated fission cross sections were compared with available experimental data. It was shown that the input data set and the theoretical model used made it possible to predict satisfactorily cross section for nuclear fission induced by 20- to 1000-MeV nucleons.

  1. Observation of the critical end point in the phase diagram for hot and dense nuclear matter

    E-Print Network [OSTI]

    Lacey, Roy A

    2014-01-01T23:59:59.000Z

    Excitation functions for the Gaussian emission source radii difference ($R^2_{\\text{out}} - R^2_{\\text{side}}$) obtained from two-pion interferometry measurements in Au+Au ($\\sqrt{s_{NN}}= 7.7 - 200$ GeV) and Pb+Pb ($\\sqrt{s_{NN}}= 2.76$ TeV) collisions, are studied for a broad range of collision centralities. The observed non-monotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature vs. baryon chemical potential ($T,\\mu_B$) plane of the nuclear matter phase diagram. A Finite-Size Scaling (FSS) analysis of these data indicate a second order phase transition with the estimates $T^{\\text{cep}} \\sim 165$~MeV and $\\mu_B^{\\text{cep}} \\sim 100$~MeV for the location of the critical end point. The critical exponents ($\

  2. Density dependence of the nuclear symmetry energy from measurements of neutron radii in nuclei

    SciTech Connect (OSTI)

    Vińas, X.; Centelles, M. [Departament d'Estructura i Constituents de la Matčria and Institut de Cičncies del Cosmos, Facultat de Física, Universitat de Barcelona, Martí i Franqučs 1, 08028 Barcelona (Spain); Roca-Maza, X. [Dipartimento di Fisica, Universitŕ degli Studi di Milano and INFN, Sezione di Milano, I-20133 Milano (Italy); Warda, M. [Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie–Sk?odowskiej ul. Radziszewskiego 10, 20-031 Lublin (Poland)

    2014-07-23T23:59:59.000Z

    We study the density dependence of the nuclear symmetry energy, characterized by its slope parameter L, by means of the information provided by the neutron radius and the neutron skin thickness in finite nuclei. These quantities are extracted from the analysis of data obtained in antiprotonic atoms, from the parity-violating asymmetry at low-momentum transfer in polarized electron scattering in {sup 208}Pb, and from the electric dipole polarizability obtained via polarized proton inelastic scattering at forward angles in {sup 208}Pb. All these experiments provide different constraints on the slope L of the symmetry energy but the corresponding values have a considerable overlap in a range around 50 MeV ? L ? 70 MeV, in a reasonable agreement with other estimates that use different observables and methods to extract L.

  3. Thermal hard-photons probing multifragmentation in nuclear collisions around the Fermi energy

    E-Print Network [OSTI]

    D. G. d'Enterria; G. Martínez

    2000-07-06T23:59:59.000Z

    Hard-photon (E$_{\\gamma} >$ 30 MeV) emission issuing from proton-neutron bremsstrahlung collisions is investigated in four different heavy-ion reactions at intermediate bombarding energies ($^{36}$Ar+$^{197}$Au, $^{107}$Ag, $^{58}$Ni, $^{12}$C at 60{\\it A} MeV) coupling the TAPS photon spectrometer with two charged-particle multidetectors covering more than 80% of the solid angle. The hard-photon spectra of the three heavier targets result from the combination of two distinct exponential distributions with different slope parameters, a result which deviates from the behaviour expected for hard-photon production just in first-chance proton-neutron collisions. The thermal origin of the steeper bremsstrahlung component is confirmed by the characteristics of its slope and angular distribution. Such thermal hard-photons convey undisturbed information of the thermodynamical state of hot and excited nuclear systems undergoing multifragmentation.

  4. Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2004-01-01T23:59:59.000Z

    Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

  5. Cross-section measurements of the {sup 14}N({alpha},p){sup 17}O and {sup 14}N({alpha},{alpha}){sup 14}N reactions between 3.5 and 6 MeV

    SciTech Connect (OSTI)

    Terwagne, G.; Genard, G. [Centre de Recherche en Physique de la Matiere et du Rayonnement, Laboratoire d'Analyses par Reactions Nucleaires, University of Namur (FUNDP), 61 Rue de Bruxelles, B-5000 Namur (Belgium); Yedji, M.; Ross, G. G. [INRS-Energie, Materiaux et Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2008-10-15T23:59:59.000Z

    The cross-section of the {sup 14}N({alpha},p{sub 0}){sup 17}O reaction at angles of 90 deg., 135 deg., and 165 deg. was measured for incident energies between 3.5 and 6.0 MeV simultaneously with the cross-section of the {sup 14}N({alpha},{alpha}){sup 14}N reaction at 165 deg. Interference between these two reactions at the angle of 165 deg. and around 3.9 MeV was taken into account. The technique used is very powerful, thanks to the Ta{sub 450nm}/C target being implanted with a high dose of nitrogen. The {sup 14}N({alpha},p{sub 0}){sup 17}O reaction exhibits some resonances allowing traces of nitrogen to be quantified. This reaction also offers an alternative to the {sup 14}N(d,{alpha}){sup 12}C and {sup 14}N({sup 3}He,p){sup 16}O nuclear reactions for profiling nitrogen in the first few microns below the surface. Moreover, by using {alpha}-particles, Rutherford backscattering spectroscopy can be performed simultaneously with a good mass resolution to depth profile high Z elements in the sample. The sensitivity of these reactions (0.1%) has been tested by measuring the nitrogen traces in a titanium oxide film deposited on silicon. Depth profiling of nitrogen in a TiN layer on a silicon substrate was also performed. In addition, we publish for the first time some cross-sections values for the {sup 14}N({alpha},p{sub 1}){sup 17}O reaction at 90 deg. and 165 deg.; this measurement is a challenging task.

  6. Tunable nanometer electrode gaps by MeV ion irradiation J.-C. Cheang-Wong, K. Narumi, G. M. Schrmann, M. J. Aziz, and J. A. Golovchenko

    E-Print Network [OSTI]

    the electrical proper- ties of electrodes in situ.2,4­6 Amorphous materials, such as SiO2 or Pd80Si20, are knownTunable nanometer electrode gaps by MeV ion irradiation J.-C. Cheang-Wong, K. Narumi, G. M://apl.aip.org/features/most_downloaded Information for Authors: http://apl.aip.org/authors #12;Tunable nanometer electrode gaps by MeV ion

  7. Effects of the nuclear equation of state on the r-mode instability and evolution of neutron stars

    E-Print Network [OSTI]

    Ch. C. Moustakidis

    2015-03-17T23:59:59.000Z

    I study the effect of nuclear equation of state on the r-mode instability of a rotating neutron star. I consider the case where the crust of the neutron star is perfectly rigid and I employ the related theory introduced by Lindblom {\\it et al.} \\cite{Lidblom-2000}. The gravitational and the viscous time scales, the critical angular velocity and the critical temperature are evaluated by employing a phenomenological nuclear model for the neutron star matter. The predicted equations of state for the $\\beta$-stable nuclear matter are parameterized by varying the slope $L$ of the symmetry energy at saturation density on the interval $72.5 \\ {\\rm MeV} \\leq L \\leq 110 \\ {\\rm MeV}$. The effects of the density dependence of the nuclear symmetry energy on r-mode instability properties and the time evolution of the angular velocity are presented and analyzed. A comparison of theoretical predictions with observed neutron stars in low-mass x-ray binaries (LMXBs) and millisecond radio pulsars (MSRPs) is also performed and analyzed. I estimate that it may be possible to impose constraints on the nuclear equation of state, by a suitable treatment of observations and theoretical predictions of the rotational frequency and spindown rate evolution of known neutron stars.

  8. Coherent Nuclear Radiation

    E-Print Network [OSTI]

    V. I. Yukalov; E. P. Yukalova

    2004-06-22T23:59:59.000Z

    The main part of this review is devoted to the comprehensive description of coherent radiation by nuclear spins. The theory of nuclear spin superradiance is developed and the experimental observations of this phenomenon are considered. The intriguing problem of how coherence develops from initially incoherent quantum fluctuations is analysed. All main types of coherent radiation by nuclear spins are discussed, which are: free nuclear induction, collective induction, maser generation, pure superradiance, triggered superradiance, pulsing superradiance, punctuated superradiance, and induced emission. The influence of electron-nuclear hyperfine interactions and the role of magnetic anisotropy are studied. Conditions for realizing spin superradiance by magnetic molecules are investigated. The possibility of nuclear matter lasing, accompanied by pion or dibaryon radiation, is briefly touched.

  9. Instrumentation for Nuclear Applications

    SciTech Connect (OSTI)

    NONE

    1998-09-18T23:59:59.000Z

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards.

  10. Nuclear Science References Database

    E-Print Network [OSTI]

    B. Pritychenko; E. B?ták; B. Singh; J. Totans

    2014-07-08T23:59:59.000Z

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

  11. Prompt muon-induced fission: a sensitive probe for nuclear energy dissipation and fission dynamics

    E-Print Network [OSTI]

    Volker E. Oberacker; A. Sait Umar; Feodor F. Karpeshin

    2004-03-30T23:59:59.000Z

    Following the formation of an excited muonic atom, inner shell transitions may proceed without photon emission by inverse internal conversion, i.e. the muonic excitation energy is transferred to the nucleus. In actinides, the 2p -> 1s and the 3d -> 1s muonic transitions result in excitation of the nuclear giant dipole and giant quadrupole resonances, respectively, which act as doorway states for fission. The nuclear excitation energy is typically 6.5 - 10 MeV. Because the muon lifetime is long compared to the timescale of prompt nuclear fission, the motion of the muon in the Coulomb field of the fissioning nucleus may be utilized to learn about the dynamics of fission.

  12. Shear viscosity of hot nuclear matter by the mean free path method

    E-Print Network [OSTI]

    D. Q. Fang; Y. G. Ma; C. L. Zhou

    2014-04-17T23:59:59.000Z

    The shear viscosity of hot nuclear matter is investigated by using the mean free path method within the framework of IQMD model. Finite size nuclear sources at different density and temperature are initialized based on the Fermi-Dirac distribution. The results show that shear viscosity to entropy density ratio decreases with the increase of temperature and tends toward a constant value for $\\rho\\sim\\rho_0$, which is consistent with the previous studies on nuclear matter formed during heavy-ion collisions. At $\\rho\\sim\\frac{1}{2}\\rho_0$, a minimum of $\\eta/s$ is seen at around $T=10$ MeV and a maximum of the multiplicity of intermediate mass fragment ($M_{\\text{IMF}}$) is also observed at the same temperature which is an indication of the liquid-gas phase transition.

  13. INDEPENDENT PARTICLE ASPECTS OF NUCLEAR DYNAMICS

    E-Print Network [OSTI]

    Robel, M.C.

    2011-01-01T23:59:59.000Z

    situations: nuclear vibrations, fission, collisions, theformulae to nuclear vibrations, fission, collisions, thenuclear phenomena: nuclear vibrations, fission, collisions,

  14. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2010-07-13T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05T23:59:59.000Z

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  17. Assessing the nuclear age

    SciTech Connect (OSTI)

    Ackland, L.; McGuire, S.

    1986-01-01T23:59:59.000Z

    This book presents papers on nuclear weapons and arms control. Topics considered include historical aspects, the arms race, nuclear power, flaws in the non-proliferation treaty, North-South issues, East-West confrontation, Soviet decision making with regard to national defense, US and Soviet perspectives on national security, ballistic missile defense (''Star Wars''), political aspects, nuclear winter, stockpiles, US foreign policy, and military strategy.

  18. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    SciTech Connect (OSTI)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24T23:59:59.000Z

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  19. Alignment of He-Like and H-Like P-States of 48-Mev Foil Excited mg Ions 

    E-Print Network [OSTI]

    Palinkas, J.; Pedrazzini, G. J.; Church, David A.; Kenefick, R. A.; Fulton, C. A.; Watson, R. L.; Wang, D. W.

    1985-01-01T23:59:59.000Z

    PHYSICAL REVIEW A VOLUME 31, NUMBER 2 FEBRUARY 1985 Alignment of He- and H-like P states of 48-MeV foil-excited Mg ions J. Palinkas and G. J. Pedrazzini Cyclotron Institute, Texas Ac%M University, College Station, Texas 77843 D. A. Church and R... with known polarization, and it should be noted that synchrotron radiation presents interesting and useful possibilities in this regard. The determination of the reflectivity for unpolarized radiation is somewhat easier in the sense that it does...

  20. Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions

    E-Print Network [OSTI]

    S. Terashima; H. Sakaguchi; H. Takeda; T. Ishikawa; M. Itoh; T. Kawabata; T. Murakami; M. Uchida; Y. Yasuda; M. Yosoi; J. Zenihiro; H. P. Yoshida; T. Noro; T. Ishida; S. Asaji; T. Yonemura

    2008-02-02T23:59:59.000Z

    Cross sections and analyzing powers for proton elastic scattering from $^{116,118,120,122,124}$Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm$^{-1}$ to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.

  1. Cross sections for neutron-deuteron elastic scattering in the energy range 135-250 MeV

    E-Print Network [OSTI]

    E. Ertan; T. Akdogan; M. B. Chtangeev; W. A. Franklin; P. A. M. Gram; M. A. Kovash; J. L. Matthews; M. Yuly

    2012-11-22T23:59:59.000Z

    We report new measurements of the neutron-deuteron elastic scattering cross section at energies from 135 to 250 MeV and center-of-mass angles from $80^\\circ$ to $130^\\circ$. Cross sections for neutron-proton elastic scattering were also measured with the same experimental setup for normalization purposes. Our $nd$ cross section results are compared with predictions based on Faddeev calculations including three-nucleon forces, and with cross sections measured with charged particle and neutron beams at comparable energies.

  2. 225-Ac and 223-Ra Production via 800 MeV Proton Irradiation of Natural Thorium Target

    E-Print Network [OSTI]

    J. W. Weidner; S. G. Mashnik; K. D. John; B. Ballard; E. R. Birnbaum; L. J. Bitteker; A. Couture; M. E. Fassbender; G. S. Goff; R. Gritzo; F. M. Hemez; W. Runde; J. L. Ullmann; L. E. Wolfsberg; F. M. Nortier

    2012-04-10T23:59:59.000Z

    Cross sections for the formation of 225,227-Ac, 223,225-Ra, and 227-Th via the proton bombardment of natural thorium targets were measured at a nominal proton energy of 800 MeV. No earlier experimental cross section data for the production of 223,225-Ra, 227-Ac and 227-Th by this method were found in the literature. A comparison of theoretical predictions with the experimental data shows agreement within a factor of two. Results indicate that accelerator-based production of 225-Ac and 223-Ra is a viable production method.

  3. New data on activation cross section for deuteron induced reactions on ytterbium up to 50 MeV

    E-Print Network [OSTI]

    F. Tárkányi; F. Ditrói; S. Takács; A. Hermanne; A. V. Ignatyuk

    2014-12-02T23:59:59.000Z

    Activation cross sections of deuteron induced reactions on ytterbium for production of $^{177g,173,172,171,170,169,167}$Lu, $^{177,175,169}$Yb and $^{173,168,167,165}$Tm were extended up to 50 MeV deuteron energy. The new data are in acceptable agreement with the earlier experimental data in the overlapping energy region. The experimental data are compared with the predictions of the ALICE-D, EMPIRE-D and TALYS 1.4 (TENDL-2013 on-line library results) codes.

  4. Cross section of the /sup 58/Ni (n, p) reaction for neutron energies of 7-10 MeV

    SciTech Connect (OSTI)

    Kornilov, N.V.; Balitskii, A.V.; Baryba, V.Y.; Daroci, S.; Papp, Z.; Raics, P.; Rudenko, A.N.

    1985-08-01T23:59:59.000Z

    The authors first present experimental data on the cross section of the /sup 58/Ni (n, p) reaction obtained by various authors. Data is presented to convincingly support the estimates of ENDF/B IV and BOSPOR. On the basis of the foregoing, the authors conclude that despite the appearance of new experimental data, in the 7-10 MeV neutron-energy rante, they have not yet attained the required accuracy in measuring the cross section of the /sup 58/Ni (n, p) reaction. Solving this problem, they say, will require new experiments carried out with an error of less than 5% and high energy resolution.

  5. Nucleon transverse momentum-dependent parton distributions from domain wall fermion calculations at 297 MeV pion mass

    SciTech Connect (OSTI)

    Engelhardt, Michael; Musch, Bernhard; Bhattacharya, Tanmoy; Gupta, Rajan; Hagler, Phillip; Negele, John; Pochinsky, Andrew; Shafer, Andreas; Syritsyn, Sergey; Yoon, Boram

    2014-12-01T23:59:59.000Z

    Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297MeV, on a lattice with spacing 0.084fm, selected TMD observables are accessed and compared to previous explorations at heavier pion masses on coarser lattices.

  6. Light cluster production in E/A = 61 MeV 36Ar + 112,124Sn reactions

    E-Print Network [OSTI]

    R. Ghetti; J. Helgesson; V. Avdeichikov; B. Jakobsson; N. Colonna; G. Tagliente; H. W. Wilschut; V. L. Kravchuk

    2005-07-22T23:59:59.000Z

    Experimental kinetic energy distributions and small-angle two-particle correlation functions involving deuterons and tritons are compared for 36Ar+ 112,124Sn collisions at E/A = 61 MeV (i.e. for systems similar in size, but with different isospin content). A larger triton yield is observed from the more neutron-rich system, as predicted by IBUU simulations, while the emission times of the light clusters are found to be the same for the two Sn-target systems. For both systems, the time sequence tau_{d} < tau_{p} < tau_{t}, is deduced for charged particles emitted from the intermediate velocity source.

  7. Long range absorption in the scattering of 6He on 208Pb and 197Au at 27 MeV

    E-Print Network [OSTI]

    O. R. Kakuee; M. A. G. Alvarez; M. V. Andres; S. Cherubini; T. Davinson; A. Di Pietro; W. Galster; J. Gomez-Camacho; A. M. Laird; M. Lamehi-Rachti; I. Martel; A. M. Moro; J. Rahighi; A. M. Sanchez-Benitez; A. C. Shotter; W. B. Smith; J. Vervier; P. J. Woods

    2005-11-17T23:59:59.000Z

    Quasi-elastic scattering of 6He at E_lab=27 MeV from 197Au has been measured in the angular range of 6-72 degrees in the laboratory system employing LEDA and LAMP detection systems. These data, along with previously analysed data of 6He + 208Pb at the same energy, are analyzed using Optical Model calculations. The role of Coulomb dipole polarizability has been investigated. Large imaginary diffuseness parameters are required to fit the data. This result is an evidence for long range absorption mechanisms in 6He induced reactions.

  8. Nuclear Spectra from Skyrmions

    SciTech Connect (OSTI)

    Manton, N. S. [DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2009-08-26T23:59:59.000Z

    The structures of Skyrmions, especially for baryon numbers 4, 8 and 12, are reviewed. The quantized Skyrmion states are compared with nuclear spectra.

  9. Nuclear Physics from QCD

    E-Print Network [OSTI]

    U. van Kolck

    2008-12-20T23:59:59.000Z

    Effective field theories provide a bridge between QCD and nuclear physics. I discuss light nuclei from this perspective, emphasizing the role of fine-tuning.

  10. Tag: nuclear deterrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    class"field-item even" property"content:encoded">

    The National Nuclear Security Administration has completed a major capital improvement project that has...

  11. Reference handbook: Nuclear criticality

    SciTech Connect (OSTI)

    Not Available

    1991-12-06T23:59:59.000Z

    The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

  12. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UserResearcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns...

  13. Nuclear Safety Regulatory Framework

    Broader source: Energy.gov (indexed) [DOE]

    overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

  14. Nuclear power attitude trends

    SciTech Connect (OSTI)

    Nealey, S.M.

    1981-11-01T23:59:59.000Z

    The increasing vulnerability of nuclear power to political pressures fueled by public concerns, particularly about nuclear plant safety and radioactive waste disposal, has become obvious. Since Eisenhower's Atoms-for-Peace program, utility and government plans have centered on expansion of nuclear power generating capability. While supporters have outnumbered opponents of nuclear power expansion for many years, in the wake of the Three Mile Island (TMI) accident the margin of support has narrowed. The purpose of this paper is to report and put in perspective these long-term attitude trends.

  15. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  16. Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25T23:59:59.000Z

    To prevent unauthorized dissemination of Unclassified Controlled Nuclear Information (UCNI). Cancels DOE 5635.4 and DOE 5650.3A

  17. National Nuclear Security Administration

    Broader source: Energy.gov (indexed) [DOE]

    and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area...

  18. Nuclear | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclearNuclear Nuclear An error

  19. National Nuclear Science Week 2012 - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Know Nuclear National Nuclear Science Week January 23 - 27, 2012 Fostering a deeper public understanding Logos for: National Nuclear Science Week, Nuclear Workforce Initiative,...

  20. Nuclear Reactions and Reactor Safety

    E-Print Network [OSTI]

    Onuchic, José

    Nuclear Reactions and Reactor Safety DO NOT LICK We haven't entirely nailed down what element nuclear chain reaction, 1938 #12;Nuclear Chain Reactions Do nuclear chain reactions lead to runaway explosions? or ? -Controlled nuclear chain reactions possible: control energy release/sec -> More

  1. Nuclear fuel cycle information workshop

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

  2. Nuclear analysis of an annular Li{sub 2}O blanket system surrounding an artificially simulated 14-MeV line source and comparison of calculations to measurements

    SciTech Connect (OSTI)

    Youssef, M.Z.; Abdou, M.A.; Kumar, A. [Univ. of California, Los Angeles, CA (United States)] [and others

    1995-09-01T23:59:59.000Z

    Experimental simulation to a line source has been realized at the Japan Atomic Energy Research Institute (JAERI) Fusion Neutronics Source within the U.S. Department of Energy/JAERI collaborative program on fusion neutronics. This simulation, achieved by cyclic movement of an annular Li{sub 2}O test assembly relative to a stationary point source, was a step forward in better simulation of the energy and angular distributions of the incident neutron source found in tokamak plasmas. Thus, compared with other experiments previously performed with a stationary point source, the uncertainties (that are system dependent) in calculating important neutronics parameters, such as tritium production rate (TPR), will be more representative of those anticipated in a fusion reactor. Calculations were performed independently by the United States and JAERI for many measured items that included TPR from {sup 6}Li(T{sub 6}), {sup 7}Li(T{sub 7}), in-system spectrum measurements, and various activation measurements. In this paper, the calculated-to-measured values for the aforementioned measured items are given, as obtained separately by the United States and JAERI. In addition, the mean value of the prediction uncertainties of the local and line-integrated TPR and the associated standard deviations are given based on the calculational and experimental results obtained in all the experiments. 34 refs., 35 figs., 5 tabs.

  3. Nuclear analysis of integral experiments on a Li{sub 2}O test assembly with local heterogeneities utilizing a 14-MeV neutron source

    SciTech Connect (OSTI)

    Youssef, M.Z.; Kumar, A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)] [and others

    1995-09-01T23:59:59.000Z

    The integral experiments and postanalyses performed in Phase IIC of the U.S. Department of Energy (U.S. DOE)/Japan Atomic Energy Research Institute (JAERI) collaborative program on fusion neutronics focused on rest blankets that include the actual heterogeneities found in several blanket designs. In one arrangement, multi-layers of Li{sub 2}O and beryllium were placed in an edge-on, horizontally alternating configuration, and in the second arrangement, vertical water coolant channels were deployed. The main objective has been to examine the accuracy of predicting key parameters such as tritium production rate (TPR), in-system spectrum, and other reaction rates around these heterogeneities and to experimentally verify the enhancement in TPR by beryllium in the first experiment. The prediction accuracy was examined in terms of calculated-to-experimental values (c/e){sub i} of the neutronics parameters at several spatial locations. Average local (c/e){sub i} values were statistically calculated for TPR from Li-6 (T{sub 6}) and from Li-7 (T{sub 7}) in addition to quantifying the prediction uncertainties in the line-integrated TPR. A relationship was developed between the prediction uncertainty in the integrated TPR and the corresponding values in the total breeding zone. This relationship enabled us to identify which subzone contributes the most to the prediction uncertainty in the overall integrated TPR. 39 refs., 23 figs., 13 tabs.

  4. NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398

    E-Print Network [OSTI]

    Pázsit, Imre

    annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

  5. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    W. Bertozzi and R.J. Ledoux, “Nuclear resonance ?uorescenceUrakawa, “Compton ring for nuclear waste management,” Nucl.and B.J. Quiter, “Using Nuclear Resonance Fluorscence for

  6. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01T23:59:59.000Z

    204. Bhatia, Shyam. 1988. Nuclear rivals in the Middle East.of the merits of selective nuclear proliferation. Journal ofThe Case for a Ukranian nuclear deterrent. Foreign Affairs.

  7. RADIONUCLIDE INVENTORY MANAGEMENT AT THE NEW 100 MeV ISOTOPE PRODUCTION FACILITY AT LANL

    SciTech Connect (OSTI)

    Fassbender, M.E.; Phillips, D.R.; Nortier, F.M.; Trellue, H.R.; Hamilton, V.T.; Heaton, R.C.; Jamriska, D.J.; Kitten, J.J.; Lowe, C.E.; McCurdy, L.M.; Pitt, L.R.; Salazar, L.L.; Sullivan, J.W.; Valdez, F.O.; Peterson, E.J.

    2004-10-03T23:59:59.000Z

    The Isotope Production Facility (IPF) at Los Alamos is operated on the authorization basis of a radiological facility with an inventory limit of a Category 3 Nuclear Facility. For the commissioning of IPF, a ''dummy'' target stack containing Zn, Nb and Al disks, and a ''prototype'' stack were irradiated with a proton beam. The ''prototype'' stack contained two pressed RbCl disks, encapsulated in stainless steel, and a Ga metal target. Typical ''prototype'' stack beam parameters were 88.9 {micro}A, 101.3 h. Operation procedures require the projection of all generated radionuclide activities. This is mandatory in order to determine both maximum beam current and maximum beam exposure time. The Monte Carlo code MCNPX and the burn-up code CINDER90 were used to determine maximum beam parameters prior to irradiation. After irradiation, activity estimates were calculated assuming actual average beam parameters. They were entered into an online inventory database, and were later, after chemical separation and radioactive assays, replaced by experimental values. A comparison of ''prototype'' stack experimental yield data to Monte Carlo calculation results showed that the computer codes provide realistic, conservative estimates.

  8. Development of nuclear models for higher energy calculations

    SciTech Connect (OSTI)

    Bozoian, M.; Siciliano, E.R.; Smith, R.D.

    1988-01-01T23:59:59.000Z

    Two nuclear models for higher energy calculations have been developed in the regions of high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-model code with higher energy improvements is compared with data at 200 and 318 MeV. In the region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic scattering which are important in understanding features of cross sections and spin observables. These include (1) contributions from multi-step processes; (2) damping of the continuum response from 2p-2h excitations; (3) the ''optimal'' choice of frame in which to evaluate the nucleon-nucleon amplitudes; and (4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the DWIA and the eikonal approximation. 33 refs., 15 figs.

  9. Measurement of Activation Reaction Rate Distributions in a Lead Assembly Bombarded with 500-MeV Protons

    SciTech Connect (OSTI)

    Takada, Hiroshi; Meigo, Shin-ichro; Sasa, Toshinobu; Tsujimoto, Kazufumi; Yasuda, Hideshi [Japan Atomic Energy Research Institute (Japan)

    2000-05-15T23:59:59.000Z

    Reaction rate distributions of various activation detectors such as the {sup nat}Ni(n,x){sup 58}Co, {sup 197}Au(n,2n){sup 196}Au, and {sup 197}Au(n,4n){sup 194}Au reactions were measured to study the production and the transport of spallation neutrons in a lead assembly bombarded with protons of 500 MeV. The measured data were analyzed with the nucleon-meson transport code NMTC/JAERI combined with the MCNP4A code using the nuclide production cross sections based on the JENDL Dosimetry File and those calculated with the ALICE-F code. It was found that the NMTC/JAERI-MCNP4A calculations agreed well with the experiments for the low-energy-threshold reaction of {sup nat}Ni(n,x){sup 58}Co. With the increase of threshold energy, however, the calculation underestimated the experiments, especially above 20 MeV. The reason for the disagreement can be attributed to the underestimation of the neutron yield in the tens of mega-electron-volt regions by the NMTC/JAERI code.

  10. Residual Nuclide Production by Proton-Induced Reactions on Uranium for Energies between 20 and 70 MeV

    SciTech Connect (OSTI)

    Uosif, M.A.M. [Center for Radiation Protection and Radioecology, University Hannover (Germany); Physics Department, Al-Azhar University, Faculty of Science, Assiut (Egypt); Michel, R. [Center for Radiation Protection and Radioecology, University Hannover (Germany); Herpers, U. [Dept. for Nuclear Chemistry, University of Cologne (Germany); Kubik, P.-W. [Institute for Particle Physics, ETH Hoenggerberg, Zurich (Switzerland); Duijvestijn, M.; Koning, A. [Nuclear Research and Consultancy Group, Petten (Netherlands)

    2005-05-24T23:59:59.000Z

    Within the HINDAS project, proton-irradiation experiments were performed at the injector cyclotron of the Paul Scherrer Institute at Villigen/Switzerland in order to investigate the production of residual nuclides from natural uranium. The stacked-foil technique was used to cover proton energies between 20 MeV and 70 MeV. Copper targets were used for monitoring the proton beam using the reaction 65Cu (p,n)65Zn. Residual radionuclides were measured by off-line {gamma}-spectrometry. Excitation functions were obtained for the production of 91Y, 95Zr, 95mNb, 99Mo, 103Ru, 112Pd, 115Cd, 124Sb, 126Sb, 127Sb, 132Te, 131I, 134Cs, 136Cs, 137Cs, 140Ba, 141Ce, 144Ce, 147Nd, and 238Np. The experimental data are compared to the sparse results of earlier measurements and with theoretical excitation functions calculated by the newly developed TALYS code. Good agreement between theory and experiment was obtained for product masses up to 115. For higher-mass fission products and for 238Np, there are still systematic deviations between theory and experiment. These deviations are discussed as deficits of the fission model in the heavy part of the fission product distribution.

  11. Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

  12. Lifetime measurement of the 6.79 MeV state in {sup 15}O with the AGATA demonstrator

    SciTech Connect (OSTI)

    Michelagnoli, C.; Depalo, R.; Ur, C. A.; Menegazzo, R.; Broggini, C.; Bazzacco, D.; Caciolli, A.; Farnea, E.; Lunardi, S.; Bemmerer, D.; Keeley, N.; Erhard, M.; Fueloep, Zs.; Gottardo, A.; Marta, M.; Mengoni, D.; Mijatovic, T.; Recchia, F.; Rossi-Alvarez, C.; Szuecs, T. [Dipartimento di Fisica e Astronomia Galileo Galilei, Universita di Padova (Italy) and INFN Padova (Italy); Dipartimento di Fisica e Astronomia Galileo Galilei, Universita di Padova (Italy); and others

    2012-11-12T23:59:59.000Z

    The preliminary results of a new direct measurement of the lifetime of the first excited 3/2{sup +} state in {sup 15}O are discussed. An accurate evaluation of this lifetime is of paramount importance for the determination of the cross section of the {sup 14}N(p,{gamma}){sup 15}O reaction, the slowest one in the CNO cycle, at the energies of the solar Gamow peak. The {sup 2}H({sup 14}N,{sup 15}O)n reaction in inverse kinematics at 32MeV beam energy (XTU Tandem, LNL) was used to populate the level of interest, which decays via a 6.79 MeV E1 gamma-ray transition to the ground state. Gamma rays were detected with 4 triple clusters of HPGe detectors of the AGATA Demonstrator array. The energy resolution and position sensitivity of this state-of-the-art gamma-ray spectrometer have been exploited to investigate the Doppler Shift Attenuation effect on the lineshape of the gamma-ray peak in the energy spectrum. The deconvolution of the lifetime effects from those due to the kinematics of the emitting nuclei has been performed using detailed Monte Carlo simulations of the gamma emission and detection. CDCC-CRC calculations for the nucleon transfer process have been used for this purpose and preliminary results are shown.

  13. First detection of >100 MeV gamma rays associated with a behind-the-limb solar flare

    E-Print Network [OSTI]

    Pesce-Rollins, Melissa; Petrosian, Vahe'; Liu, Wei; da Costa, Fatima Rubio; Allafort, Alice; Chen, Qingrong

    2015-01-01T23:59:59.000Z

    We report the first detection of >100 MeV gamma rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ~ 9.9 degrees behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ~30 minutes with energies up to GeV. The LAT emission centroid is consistent with the RHESSI hard X-ray source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distri...

  14. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    SciTech Connect (OSTI)

    James Simpson; David Chichester

    2011-06-01T23:59:59.000Z

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations were run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  15. International Nuclear Safeguards | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary LoanSafeguards | National Nuclear

  16. Medium energy nuclear physics research

    SciTech Connect (OSTI)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01T23:59:59.000Z

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T{sub 20} experiment, the UMass group was able to complete data acquisition on experiments involving 180{degrees} elastic magnetic scattering on {sup 117}Sn and {sup 41}Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e{prime}) measurements were made in November of 1987 on {sup 10}B in order to better determine the p{sub 3/2} wave function from the transition from the J{sup pi} = 3{sup +} ground state to the O{sup +} excited state at 1.74 MeV. In 1988, (e,e{prime}p) coincidence measurements on {sup 10}B were completed. The objective was to obtain information on the p{sub 3/2} wave function by another means.

  17. Nuclear Safety Information Agreement Between the U.S. Nuclear...

    Office of Environmental Management (EM)

    Information Agreement Between the U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, and the U.S. Department of Energy, Office of Environment,...

  18. Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory...

    Office of Legacy Management (LM)

    111989 Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia. Pennsylvania 19406 Dear Mr. Kinneman: -;' .-. 'W...

  19. Western Interstate Nuclear Compact State Nuclear Policy (Multiple States)

    Broader source: Energy.gov [DOE]

    Legislation authorizes states' entrance into the Western Interstate Nuclear Compact, which aims to undertake the cooperation of participating states in deriving the optimum benefit from nuclear and...

  20. (U) Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-23T23:59:59.000Z

    Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  1. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  2. Nuclear physics and cosmology

    SciTech Connect (OSTI)

    Coc, Alain [Centre de Sciences Nucléaires et de Sciences de la Matičre (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, F-91405 Orsay Campus (France)

    2014-05-09T23:59:59.000Z

    There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.

  3. Nuclear Science & Engineering

    E-Print Network [OSTI]

    .90 76 Nuclear 19.9 1.68 25 Natural Gas 17.7 5.87 91 Hydroelectricity 6.6 Petroleum 3.0 5.39 88 Non Nuclear Science & Engineering Natural Gas Source: Sproule Associates Ltd. Generating costs are high. Gas shutdown: · Pickering 1 (515 MW(e), PHWR, Canada) reconnected 26 Sep 05 Final shutdowns: 3 reactors, Sweden

  4. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    Brief 2013-9 January 2013 China’s Nuclear Industry Aftera significant impact on the future of China’s nuclear power.the importance of safety as China builds more nuclear power

  5. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Letters 24, 1507 (1970); Nuclear Data B4, 663 (1970). 5. R.S. Hager and E. C. Seltzer, Nuclear Data A4, 1 (1968). 6. H.J. Nijgh, and R. Van Lieshout, Nuclear Spectroscopy Tables (

  6. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on “Nuclear Responsibility” on theof the Alliance for Nuclear Responsibility. The information

  7. THz Dynamic Nuclear Polarization NMR

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The ...

  8. Supporting Our Nation's Nuclear Industry

    ScienceCinema (OSTI)

    Lyons, Peter

    2013-05-29T23:59:59.000Z

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  9. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    2013-9 January 2013 China’s Nuclear Industry After FukushimaMarch 2011 Fukushima nuclear accident has had a significanton the future of China’s nuclear power. First, it highlights

  10. Pulsed, Photonuclear-induced, Neutron Measurements of Nuclear Materials with Composite Shielding

    SciTech Connect (OSTI)

    James Jones; Kevin Haskell; Rich Waston; William Geist; Jonathan Thron; Corey Freeman; Martyn Swinhoe; Seth McConchie; Eric Sword; Lee Montierth; John Zabriskie

    2011-07-01T23:59:59.000Z

    Active measurements were performed using a 10-MeV electron accelerator with inspection objects containing various nuclear and nonnuclear materials available at the Idaho National Laboratory’s Zero Power Physics Reactor (ZPPR) facility. The inspection objects were assembled from ZPPR reactor plate materials to evaluate the measurement technologies for the characterization of plutonium, depleted uranium or highly enriched uranium shielded by both nuclear and non-nuclear materials. A series of pulsed photonuclear, time-correlated measurements were performed with unshielded calibration materials and then compared with the more complex composite shield configurations. The measurements used multiple 3He detectors that are designed to detect fission neutrons between pulses of an electron linear accelerator. The accelerator produced 10-MeV bremsstrahlung X-rays at a repetition rate of 125 Hz (8 ms between pulses) with a 4-us pulse width. All inspected objects were positioned on beam centerline and 100 cm from the X-ray source. The time-correlated data was collected in parallel using both a Los Alamos National Laboratory-designed list-mode acquisition system and a commercial multichannel scaler analyzer. A combination of different measurement configurations and data analysis methods enabled the identification of each object. This paper describes the experimental configuration, the ZPPR inspection objects used, and the various measurement and analysis results for each inspected object.

  11. World nuclear outlook 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-29T23:59:59.000Z

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  12. World nuclear outlook 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  13. US nuclear weapons policy

    SciTech Connect (OSTI)

    May, M.

    1990-12-05T23:59:59.000Z

    We are closing chapter one'' of the nuclear age. Whatever happens to the Soviet Union and to Europe, some of the major determinants of nuclear policy will not be what they have been for the last forty-five years. Part of the task for US nuclear weapons policy is to adapt its nuclear forces and the oganizations managing them to the present, highly uncertain, but not urgently competitive situation between the US and the Soviet Union. Containment is no longer the appropriate watchword. Stabilization in the face of uncertainty, a more complicated and politically less readily communicable goal, may come closer. A second and more difficult part of the task is to deal with what may be the greatest potential source of danger to come out of the end of the cold war: the breakup of some of the cooperative institutions that managed the nuclear threat and were created by the cold war. These cooperative institutions, principally the North Atlantic Treaty Organization (NATO), the Warsaw Pact, the US-Japan alliance, were not created specifically to manage the nuclear threat, but manage it they did. A third task for nuclear weapons policy is that of dealing with nuclear proliferation under modern conditions when the technologies needed to field effective nuclear weapons systems and their command and control apparatus are ever more widely available, and the leverage over some potential proliferators, which stemmed from superpower military support, is likely to be on the wane. This paper will make some suggestions regarding these tasks, bearing in mind that the unsettled nature of that part of the world most likely to become involved in nuclear weapons decisions today must make any suggestions tentative and the allowance for surprise more than usually important.

  14. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  15. Pollux | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Pollux | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  16. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  17. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  18. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  1. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  2. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  3. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  4. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  5. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  6. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  7. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  8. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  9. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  10. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  11. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

  12. Search for solar axion emission from 7Li and D(p,gamma)3He nuclear decays with the CAST gamma-ray calorimeter

    E-Print Network [OSTI]

    CAST Collaboration; S. Andriamonje; S. Aune; D. Autiero; K. Barth; A. Belov; B. Beltran; H. Brauninger; J. M. Carmona; S. Cebrian; J. I. Collar; T. Dafni; M. Davenport; L. Di. Lella; C. Eleftheriadis; J. Englhauser; G. Fanourakis; E. Ferrer. Ribas; H. Fischer; J. Franz; P. Friedrich; T. Geralis; I. Giomataris; S. Gninenko; H. Gomez; M. Hasinoff; F. H. Heinsius; D. H. H. Hoffmann; I. G. Irastorza; J. Jacoby; K. Jakovcic; D. Kang; K. Konigsmann; R. Kotthaus; M. Krcmar; K. Kousouris; M. Kuster; B. Lakic; C. Lasseur; A. Liolios; A. Ljubicic; G. Lutz; G. Luzon; D. W. Miller; J. Morales; A. Ortiz; T. Papaevangelou; A. Placci; G. Raffelt; H. Riege; A. Rodriguez; J. Ruz; I. Savvidis; Y. Semertzidis; P. Serpico; L. Stewart; J. D. Vieira; J. Villar; J. Vogel; L. Walckiers; K. Zioutas

    2010-03-06T23:59:59.000Z

    We present the results of a search for a high-energy axion emission signal from 7Li (0.478 MeV) and D(p,gamma)3He (5.5 MeV) nuclear transitions using a low-background gamma-ray calorimeter during Phase I of the CAST experiment. These so-called "hadronic axions" could provide a solution to the long-standing strong-CP problem and can be emitted from the solar core from nuclear M1 transitions. This is the first such search for high-energy pseudoscalar bosons with couplings to nucleons conducted using a helioscope approach. No excess signal above background was found.

  13. Prompt muon-induced fission: a probe for nuclear energy dissipation

    E-Print Network [OSTI]

    Volker E. Oberacker

    1999-05-04T23:59:59.000Z

    We solve the time-dependent Dirac equation for a muon which is initially bound to a fissioning actinide nucleus. The computations are carried out on a 3-D cartesian lattice utilizing the Basis-Spline collocation method. The muon dynamics is sensitive to the nuclear energy dissipation between the outer fission barrier and the scission point. From a comparison with experimental data we find a dissipated energy of about 10 MeV and a fission time delay due to friction of order $2 \\times 10^{-21}$ s.

  14. Nuclear-fission studies with relativistic secondary beams: analysis of fission channels

    E-Print Network [OSTI]

    C. Boeckstiegel; S. Steinhaeuser; K. -H. Schmidt; H. -G. Clerc; A. Grewe; A. Heinz; M. de Jong; A. R. Junghans; J. Mueller; B. Voss

    2007-12-21T23:59:59.000Z

    Nuclear fission of several neutron-deficient actinides and pre-actinides from excitation energies around 11 MeV was studied at GSI Darmstadt by use of relativistic secondary beams. The characteristics of multimodal fission of nuclei around 226Th are systematically investigated and interpreted as the superposition of three fission channels. Properties of these fission channels have been determined for 15 systems. A global view on the properties of fission channels including previous results is presented. The positions of the asymmetric fission channels are found to be constant in element number over the whole range of systems investigated.

  15. Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission)

    E-Print Network [OSTI]

    V. A. Karnaukhov; H. Oeschler; A. Budzanowski; S. P. Avdeyev; A. S. Botvina; E. A. Cherepanov; W. Karcz; V. V. Kirakosyan; P. A. Rukoyatkin; I. Skwirczynska; E. Norbeck

    2008-01-29T23:59:59.000Z

    Critical temperature Tc for the nuclear liquid-gas phase transition is stimated both from the multifragmentation and fission data. In the first case,the critical temperature is obtained by analysis of the IMF yields in p(8.1 GeV)+Au collisions within the statistical model of multifragmentation (SMM). In the second case, the experimental fission probability for excited 188Os is compared with the calculated one with Tc as a free parameter. It is concluded for both cases that the critical temperature is higher than 16 MeV.

  16. Isoscalar giant resonances in Si-28 and the mass dependence of nuclear compressibility

    E-Print Network [OSTI]

    Youngblood, David H.; Lui, YW; Clark, HL.

    2002-01-01T23:59:59.000Z

    the mass dependence of the GMR energy quite well and this led to the conclusion that a Gogny interaction with Knm523165 MeV was consistent with the data. 0556-2813/2002/65~3!/034302~7!/$20.00 65 034302- s dependence of nuclear compressibility . Lui... of the spectrometer was 4? and ray tracing was used ?2002 The American Physical Society1 an a ~fm D. H. YOUNGBLOOD, Y.-W. LUI, AND H. L. CLARK PHYSICAL REVIEW C 65 034302 shape at low excitation @Eq. ~1!# to model particle threshold effects: Y ~continuum!5A1B...

  17. Monthly/Annual Energy Review - nuclear section

    Reports and Publications (EIA)

    2015-01-01T23:59:59.000Z

    Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

  18. A study of gross features in the reaction 310 MeV [superscript 16]o on [superscript 40]Ca

    E-Print Network [OSTI]

    Tervisidis, Fotis

    1981-01-01T23:59:59.000Z

    . Nagatani, T. Udagawa, and T. Tamura, Proceedings of the International Conference on Nuclear Physics, August 1980, Berkeley, California. 4 C. K. Gelbke, D. K. Scott, M. Bini, D. L. Hendrie, J. L. Laville, J. Mahoney, M. C. Mermax, and C. Olmer, Phys... Citizen. He graduated in Nuclear Physics in 1978 obtaining the degree "Laurea" at the Florence University, Italy. The title of his thesis was: "Research of Isobaric Analog Resonances in prohibited Channels" and was performed at the National Laboratory...

  19. Nuclear Renaissance Requires Nuclear Enlightenment W J Nuttall

    E-Print Network [OSTI]

    Aickelin, Uwe

    Nuclear Renaissance Requires Nuclear Enlightenment W J Nuttall Judge Business School, Cambridge University, Trumpington Street Cambridge, CB2 1AG UK Abstract Nuclear energy was developed by technocratic as a result of global anthropogenic climate change, nuclear power might actually represent a means to preserve

  20. NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842

    E-Print Network [OSTI]

    Demazière, Christophe

    annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G evenly distrib- uted throughout the core of a commercial nuclear reactor. The novelty

  1. Nuclear Regulatory Commission issuances

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

  2. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19T23:59:59.000Z

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  3. Activation cross sections of $?$-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of $^{178}$W/$^{178m}$Ta generator

    E-Print Network [OSTI]

    F. Tárk'anyi; S. Tak'acs; F. Ditrói; A. Hermanne; A. V. Ignatyuk; M. S. Uddin

    2014-12-01T23:59:59.000Z

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of $^{178m}$Ta through $^{nat}$Hf($\\alpha$,xn)$^{178}$W-$^{178m}$Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions $^{nat}$Hf($\\alpha$,x)$^{179,177,176,175}$W, $^{183,182,178g,177,176,175}$Ta, $^{179m,177m,175}$Hf were also assessed. Stacked foil irradiation technique and $\\gamma$-ray spectrometry were used. New experimental cross section data for the $^{nat}$Ta(d,xn)$^{178}$W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ($^3$He,x)) production routes for $^{178}$W.

  4. Analyses of engineering-oriented neutronics integral experiments utilizing beryllium in various configurations with 14 MeV point source

    SciTech Connect (OSTI)

    Youssef, M.; Abdou, M.; Kumar, A. [Univ. of California, Los Angeles, CA (United States)] [and others

    1994-12-31T23:59:59.000Z

    The analysis of integral experiments on tritium breeding rate (TPR), in-system spectrum, and several reaction rates inside a Li{sub 2}O test assembly were performed in a closed geometry with a 14 MeV point source in which beryllium has been extensively utilized as a neutron multiplier. This activity was part of the USDOE/JAERI Collaborative Program on Fusion Blanket Neutronics with the objective of verifying the present neutron transport codes and databases in predicting key design parameters such as TPR. The test assembly itself (with dimension of {approximately}87 cm x {approximately}87 cm x 60 cm) is located at one end of a Li{sub 2}CO{sub 3} enclosure and the neutron point source is located at a distance of {approximately}78 cm from the assembly. The enclosure is surrounded from the outside by polyethylene layer (5 cm-thick) to minimize the neutron wall-room effect.

  5. Absolute calibration of image plates for electrons at energy between 100 keV and 4 MeV

    SciTech Connect (OSTI)

    Chen Hui; Back, Norman L.; Eder, David C.; MacPhee, Andrew G.; Ping Yuan; Song, Peter M.; Throop, Alan [Lawrence Livermore National Laboratory, Livermore, California 94550-9234 (United States); Bartal, Teresa; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); Link, Anthony J.; Van Woerkom, Linn [Ohio State University, Columbus, Ohio 43210 (United States)

    2008-03-15T23:59:59.000Z

    We measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV and 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on solid density targets. This paper presents the calibration results of image plate photon stimulated luminescence per electron at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energy depositions at these angles. These provide a complete set of tools that allows extraction of our absolute calibration to other spectrometer setting at this electron energy range.

  6. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun

    SciTech Connect (OSTI)

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Cao, Jianming [Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States)

    2014-08-15T23:59:59.000Z

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5?MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.

  7. Design of a backscatter 14-MeV neutron time-of-flight spectrometer for experiments at ITER

    SciTech Connect (OSTI)

    Dzysiuk, N.; Hellesen, C.; Conroy, S.; Ericsson, G.; Hjalmarsson, A.; Skiba, M. [Div. Applied Nuclear Physics, Dept. Physics and Astronomy, Uppsala University, Box 516, Uppsala, 751 20 (Sweden)

    2014-08-21T23:59:59.000Z

    Neutron energy spectrometry diagnostics play an important role in present-day experiments related to fusion energy research. Measurements and thorough analysis of the neutron emission from the fusion plasma give information on a number of basic fusion performance quantities, on the condition of the neutron source and plasma behavior. Here we discuss the backscatter Time-of-Flight (bTOF) spectrometer concept as a possible instrument for performing high resolution measurements of 14 MeV neutrons. The instrument is based on two sets of scintillators, a first scatterer exposed to a collimated neutron beam and a second detector set placed in the backward direction. The scintillators of the first set are enriched in deuterium to achieve neutron backscattering. The energy resolution and efficiency of a bTOF instrument have been determined for various geometrical configurations. A preliminary design of optimal geometry for the two scintillator sets has been obtained by Monte Carlo simulations based on the MCNPX code.

  8. Faddeev calculation for breakup neutron-deuteron scattering at 14.1 MeV lab energy

    E-Print Network [OSTI]

    V M Suslov; I Filikhin; B Vlahovic; M A Braun; I Slaus

    2013-04-03T23:59:59.000Z

    A new computational method for solving the nucleon-deuteron breakup scattering problem has been applied to study the inelastic neutron-deuteron scattering on the basis of the configuration-space Faddeev equations. This method is based on the spline-decomposition in the angular variable and on a generalization of the Numerov method for the hyperradius. The Merkuriev-Gignoux-Laverne approach has been generalized for arbitrary nucleon-nucleon potentials and with an arbitrary number of partial waves. Neutron-deuteron observables at the incident nucleon energy 14.1 MeV have been calculated using the charge-independent AV14 nucleon-nucleon potential. Results have been compared with those of other authors and with experimental neutron-deuteron scattering data.

  9. Direct and equilibrium processes in (p,n) reactions at a proton energy 22. 2 MeV

    SciTech Connect (OSTI)

    Biryukov, N.S.; Zhuravlev, B.V.; Rudenko, A.P.; Sal'nikov, O.A.; Trykova, V.I.

    1980-03-01T23:59:59.000Z

    Neutron spectra from (p,n) reactions in /sup 27/Al, /sup 52/Cr, /sup 56/Fe, /sup 58,60/Ni, /sup 90,91,94/Zr, /sup 115/In, /sup 181/Ta, and /sup 197/Au have been measured for a proton energy 22.2 +- 0.2 MeV at angles 30, 60, 90, 120, and 150/sup 0/. The measurements were made in a time-of-flight neutron spectrometer at the 150-cm cyclotron at our institute. Analysis of the data shows that the nonequilibrium parts of the spectra are practically completely due to direct processes, which are responsible for the asymmetry in the neutron angular distribution.

  10. Proton-${}^3$H scattering calculation: Elastic and charge-exchange reactions up to 30 MeV

    E-Print Network [OSTI]

    Deltuva, A

    2015-01-01T23:59:59.000Z

    Proton-${}^3$H elastic scattering and charge-exchange reaction ${}^3$H$(p,n){}^3$He in the energy regime above four-nucleon breakup threshold are described in the momentum-space transition operator framework. Fully converged results are obtained using realistic two-nucleon potentials and two-proton Coulomb force as dynamic input. Differential cross section, proton analyzing power, outgoing neutron polarization, and proton-to-neutron polarization transfer coefficients are calculated between 6 and 30 MeV proton beam energy. Good agreement with the experimental data is found for the differential cross section both in elastic and charge-exchange reactions; the latter shows a complicated energy and angular dependence. The most sizable discrepancies between predictions and data are found for the proton analyzing power and outgoing neutron polarization in the charge-exchange reaction, while the respective proton-to-neutron polarization transfer coefficients are well described by the calculations.

  11. Process architectures using MeV implanted blanket buried layers for latch-up improvements on bulk silicon

    SciTech Connect (OSTI)

    Rubin, L.M.; Simonton, R.B.; Wilson, S.D. [Eaton Corporation, Beverly, MA (United States); Morris, W. [Silicon Engineering, Austin, TX (United States)

    1996-12-31T23:59:59.000Z

    Doped buried layers formed by MeV ion implantation are attractive alternatives to expensive epitaxial substrates for controlling latch-up in CMOS devices. Two different process architecture approaches for forming effective buried layers are discussed. P+ Around Boundary (PAB), and a more recent derivative, BILLI are compared to a Buried Layer/Connecting Layer (BUCL) architecture, with regards to latch-up resistance, process flexibility, and future scalability. While both architectures have been shown to increase latch-up trigger current on bulk silicon, the BUCL process provides greater latch-up control and process/device flexibility. Process and device simulations as well as experimental data indicate that a properly chosen set of implants for both n-well, p-well, and buried layer structures can yield latch-up isolation superior to 3mm epi.

  12. Nuclear Emergency Search Team

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20T23:59:59.000Z

    To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

  13. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    60 Vermont Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347...

  14. Pioneering the nuclear age

    SciTech Connect (OSTI)

    Seaborg, G.T.

    1988-09-01T23:59:59.000Z

    This paper reviews the historical aspects of nuclear physics. The scientific aspects of the early transuranium elements are discussed and arms control measures are reviewed. 11 refs., 14 figs. (LSP)

  15. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26T23:59:59.000Z

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  16. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07T23:59:59.000Z

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

  17. Relativistic Nuclear Collisions

    E-Print Network [OSTI]

    Reinhard Stock

    2009-07-29T23:59:59.000Z

    A comprehensive introduction is given to the field of relativistic nuclear collisions, and the phase diagram of strongly interacting matter. The content of this complex of reviews is shown.

  18. JPRS report, nuclear developments

    SciTech Connect (OSTI)

    NONE

    1991-03-28T23:59:59.000Z

    This report contains articles concerning the nuclear developments of the following countries: (1) China; (2) Japan, North Korea, South Korea; (3) Bulgaria; (4) Argentina, Brazil, Honduras; (5) India, Iran, Pakistan, Syria; (6) Soviet Union; and (7) France, Germany, Turkey.

  19. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01T23:59:59.000Z

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  20. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28T23:59:59.000Z

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  1. Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    Michael F. Simpson; Jack D. Law

    2010-02-01T23:59:59.000Z

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  2. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration FY 2011 - FY 2015 Budget Outlook Managing the NNSA 4.0% Science, Technology & Engineering 14.5% Stockpile Support 17.9% Preventing the Spread of...

  3. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

  4. PDFs for nuclear targets

    E-Print Network [OSTI]

    Karol Kovarik

    2010-06-25T23:59:59.000Z

    Understanding nuclear effects in parton distribution functions (PDF) is an essential component needed to determine the strange and anti-strange quark contributions in the proton. In addition Nuclear Parton Distribution Functions (NPDF) are critically important for any collider experiment with nuclei (e.g. RHIC, ALICE). Here two next-to-leading order chi^2-analyses of NPDF are presented. The first uses neutral current charged-lepton Deeply Inelastic Scattering (DIS) and Drell-Yan data for several nuclear targets and the second uses neutrino-nucleon DIS data. We compare the nuclear corrections factors (F_2^Fe/F_2^D) for the charged-lepton data with other results from the literature. In particular, we compare and contrast fits based upon the charged-lepton DIS data with those using neutrino-nucleon DIS data.

  5. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E. [Los Alamos National Laboratory

    2012-08-14T23:59:59.000Z

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  6. Western Nuclear Science Alliance

    SciTech Connect (OSTI)

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07T23:59:59.000Z

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  7. Nuclear Science Center - 4 

    E-Print Network [OSTI]

    Unknown

    2009-01-01T23:59:59.000Z

    How does the American public assess risk when it comes to national security issues? This paper addresses this question by analyzing variation in citizen probability assessments of the terrorism risk of nuclear power plants. Drawing on the literature...

  8. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  9. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing WAS DEEPLY INVOLVED IN ALMOST EVERY ASPECT OF BUILDING THE PLANTS THROUGH · Quality Assurance · Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  10. Time features of delayed neutrons and partial emissive-fission cross sections for the neutron-induced fission of {sup 232}Th nuclei in the energy range 3.2-17.9 MeV

    SciTech Connect (OSTI)

    Roshchenko, V. A., E-mail: roshchenko@ippe.ru; Piksaikin, V. M., E-mail: piksa@ippe.ru; Korolev, G. G.; Egorov, A. S., E-mail: egorov@ippe.r [Institute of Physics and Power Engineering (Russian Federation)

    2010-06-15T23:59:59.000Z

    The energy dependence of the relative abundances of delayed neutrons and the energy dependence of the half-lives of their precursors in the neutron-induced fission of {sup 232}Th nuclei in the energy range 3.2-17.9 MeV were measured for the first time. A systematics of the time features of delayed neutrons is developed. This systematics makes it possible to estimate the half-life of delayed-neutron precursors as a function of the nucleonic composition of fissile nuclei by using a single parameter set for all nuclides. The energy dependence of the partial cross sections for emissive fission in the reaction {sup 232}Th(n, f) was analyzed on the basis of data obtained for the relative abundances of delayed neutrons and the aforementioned half-lives and on the basis of the created systematics of the time features of delayed neutrons. It was shown experimentally for the first time that the decrease in the cross section after the reaction threshold in the fission of {sup 232}Th nuclei (it has a pronounced first-chance plateau) is not an exclusion among the already studied uranium, plutonium, and curium isotopes and complies with theoretical predictions obtained for the respective nuclei with allowance for shell, superfluid, and collective effects in the nuclear-level density and with allowance for preequilibrium neutron emission

  11. Reactor- Nuclear Science Center 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    A COMPARISON OF NUCLEAR REACTOR CONTROL ROOM DISPLAY PANELS A Thesis by FRANCES RENAE BOWERS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1988... Major Subject: Industrial Engineering A COMPARISON OF NUCLEAR REACTOR CONTROL ROOM DISPLAY PANELS A Thesis by FRANCES RENAE BOWERS Approved as to style and content by: Rod er . oppa (Cha' of 'ttee) R. Quinn Brackett (Member) rome . Co gleton...

  12. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01T23:59:59.000Z

    10-01096) Journal of Nuclear Technology, in Press. [46] G.W.Library for Nuclear Science and Technology,” Nuclear Datacalculations,” Nuclear Data for Science and Technology

  13. After nuclear war - a nuclear winter

    SciTech Connect (OSTI)

    Tangley, L.

    1984-01-01T23:59:59.000Z

    The environmental and biological consequences of nuclear war were discussed by more than 100 eminent biologists, physicists and atmospheric scientists at the recent World after Nuclear War conference. The long-term effects were determined to be worse than the well-known immediate effects. They predicted that 225 million tons of smoke would be generated within a few days in their baseline scenario. As a result, the amount of sunlight reaching the earth would be reduced to a few percent of normal and temperatures would fall to -23/sup 0/C. About 30% of the northern middle latitudes would receive more than 250 rads radiation dose for several months and about 50% of the land area would receive more than 100 rads. Dangerous levels of solar ultraviolet light would burn through the atmosphere. It was also determined that these effects would be felt in the southern hemisphere. Those who survived the blast, fire and prompt radiation would face starvation from shutdown of plant photosynthesis and inhibition of phytoplankton photosynthesis. Huge wildfires and acid rains would stress any surviving plants and animals. Conference participants agreed that scientists had taken a new and significant step toward understanding the full consequences of nuclear war.

  14. Superpower nuclear minimalism

    SciTech Connect (OSTI)

    Graben, E.K.

    1992-01-01T23:59:59.000Z

    During the Cold War, the United States and the Soviet Union competed in building weapons -- now it seems like America and Russia are competing to get rid of them the fastest. The lengthy process of formal arms control has been replaced by exchanges of unilateral force reductions and proposals for reciprocal reductions not necessarily codified by treaty. Should superpower nuclear strategies change along with force postures President Bush has yet to make a formal pronouncement on post-Cold War American nuclear strategy, and it is uncertain if the Soviet/Russian doctrine of reasonable sufficiency formulated in the Gorbachev era actually heralds a change in strategy. Some of the provisions in the most recent round of unilateral proposals put forth by Presidents Bush and Yeltsin in January 1992 are compatible with a change in strategy. Whether such a change has actually occurred remains to be seen. With the end of the Cold War and the breakup of the Soviet Union, the strategic environment has fundamentally changed, so it would seem logical to reexamine strategy as well. There are two main schools of nuclear strategic thought: a maximalist school, mutual assured destruction (MAD) which emphasizes counterforce superiority and nuclear war- fighting capability, and a MAD-plus school, which emphasizes survivability of an assured destruction capability along with the ability to deliver small, limited nuclear attacks in the event that conflict occurs. The MAD-plus strategy is based on an attempt to conventionalize nuclear weapons which is unrealistic.

  15. Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: Dependence in the binary parameters

    E-Print Network [OSTI]

    Francois Foucart; M. Brett Deaton; Matthew D. Duez; Evan O'Connor; Christian D. Ott; Roland Haas; Lawrence E. Kidder; Harald P. Pfeiffer; Mark A. Scheel; Bela Szilagyi

    2014-06-19T23:59:59.000Z

    We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_\\odot-10M_\\odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperature nuclear-theory based equation of state. In the range of black hole spins in which the neutron star is tidally disrupted ($\\chi_{\\rm BH}\\gtrsim 0.7$), we show that the merger consistently produces large amounts of cool ($T\\lesssim 1\\,{\\rm MeV}$), unbound, neutron-rich material ($M_{\\rm ej}\\sim 0.05M_\\odot-0.20M_\\odot$). A comparable amount of bound matter is initially divided between a hot disk ($T_{\\rm max}\\sim 15\\,{\\rm MeV}$) with typical neutrino luminosity $L_\

  16. The elements of nuclear power

    SciTech Connect (OSTI)

    Bennet, D.J.; Thomson, J.R.

    1989-01-01T23:59:59.000Z

    An introduction to the principles of nuclear fission power generation. Describes the physical processes which occur in a nuclear reactor and discusses the theory behind the calculations. Also covers heat transfer in reactors, thermodynamic power cycles, reactor operators, and radiation shielding. Material covered includes topics on the effects of nuclear radiation on humans, the safety of nuclear reactors and of those parts of the nuclear fuel cycle which deal with fuel element manufacture and the reprocessing of irradiated fuel.

  17. Panel report: nuclear physics

    SciTech Connect (OSTI)

    Carlson, Joseph A [Los Alamos National Laboratory; Hartouni, Edward P [LLNL

    2010-01-01T23:59:59.000Z

    Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that supports the project Building a Universal Nuclear Energy Density Fuctional whose goals are to provide the unified approach to calculating the properties of nuclei. The successful outcome of this, and similar projects is a first steps toward a predictive nuclear theory based on fundamental interactions between constituent nucleons. The application of this theory to the domain of nuclei important for national security missions will require computational resources at the extreme scale, beyond what will be available in the near term future.

  18. Model Action Plan for Nuclear Forensics and Nuclear Attribution

    SciTech Connect (OSTI)

    Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J

    2004-03-01T23:59:59.000Z

    Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases.

  19. Liquid-gas phase transition in hot asymmetric nuclear matter with density-dependent relativistic mean-field models

    E-Print Network [OSTI]

    Guang-Hua Zhang; Wei-Zhou Jiang

    2013-02-14T23:59:59.000Z

    The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low densities and empirical properties of nuclear matter. The critical temperature of the liquid-gas phase transition is obtained to be 15.7 MeV in symmetric nuclear matter falling on the lower edge of the small experimental error bars. In hot asymmetric matter, the boundary of the phase-coexistence region is found to be sensitive to the density dependence of the symmetry energy. The critical pressure and the area of phase-coexistence region increases clearly with the softening of the symmetry energy. The critical temperature of hot asymmetric matter separating the gas phase from the LG coexistence phase is found to be higher for the softer symmetry energy.

  20. Experimental determination of the symmetry energy of a low density nuclear gas

    E-Print Network [OSTI]

    S. Kowalski; J. B. Natowitz; S. Shlomo; R. Wada; K. Hagel; J. Wang; T. Materna; Z. Chen; Y. G. Ma; L. Qin; A. S. Botvina; D. Fabris; M. Lunardon; S. Moretto; G. Nebbia; S. Pesente; V. Rizzi; G. Viesti; M. Cinausero; G. Prete; T. Keutgen; Y. El Masri; Z. Majka; A. Ono

    2006-11-15T23:59:59.000Z

    Experimental analyses of moderate temperature nuclear gases produced in the violent collisions of 35 MeV/nucleon$^{64}$Zn projectiles with $^{92}$Mo and $^{197}$Au target nuclei reveal a large degree of alpha particle clustering at low densities. For these gases, temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A $\\leq 4$. At densities of 0.01 to 0.05 times the ground state density of symmetric nuclear matter, the temperature and density dependent symmetry energies are 10.7 to 13.5 MeV. These values are much larger than those obtained in mean field calculations. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation.

  1. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  2. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun Jul AugSameWatts Bar Nuclear

  3. Chernobyl Nuclear Accident | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclear

  4. International Nuclear Security | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary LoanSafeguards | National

  5. Nuclear Controls | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838 NovemberNuclearControls

  6. Nuclear Detonation Detection | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838Nuclear Detection

  7. Nuclear Forensics | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838NuclearForensics |

  8. Nuclear Incident Team | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838NuclearForensics

  9. Nuclear Material Removal | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery Nuclear Material

  10. Nuclear Operations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensor Nodes

  11. Nuclear Security 101 | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensorAdvisors New

  12. Nuclear Security Enterprise | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensorAdvisors

  13. Nuclear Verification | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclear

  14. defense nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian NuclearNational5/%2A en Office ofcontractingcyber

  15. Impact of the In-medium Nucleon-nucleon Cross Section Modification on Early-reaction-phase Dynamics Below 100 A MeV

    SciTech Connect (OSTI)

    Basrak, Z.; Zoric, M. [Ruder Boskovic Institute, Zagreb (Croatia); Eudes, P.; Sebille, F. [Subatech, EMN-IN2P3/CNRS-Universite de Nantes, Nantes (France)

    2009-08-26T23:59:59.000Z

    With a semi-classical transport model studied is the impact of the in-medium NN cross section modifications on the early energy transformation, dynamical emission and quasiprojectile properties of the Ar+Ni and Ni+Ni reactions at 52, 74 and 95(90) A MeV.

  16. The Effect of 800 MeV Proton Irradiation on the Mechanical Properties of Tungsten at Room Temperature and at 475 Degrees C

    SciTech Connect (OSTI)

    Maloy, S A.; James, M R.; Sommer, Walter F.; Willcutt, Gordon; Lopez, M; Romero, T J.; Toloczko, Mychailo B.

    2005-08-01T23:59:59.000Z

    For the accelerator production of tritium (APT), the accelerator driven transmutation facility (ADTF), and the advanced fuel cycle initiative (AFCI), tungsten is being proposed as a target material to produce neutrons. In this study, tungsten rods were irradiated at the 800MeV Los Alamos Neutron Science Center (LANSCE) proton accelerator for six months.

  17. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    SciTech Connect (OSTI)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15T23:59:59.000Z

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  18. {sup 6}Li({pi}{sup +}, {ital pp}){sup 4}He{sub g.s.} reaction at 100 and 165 MeV incident pion energies

    SciTech Connect (OSTI)

    Papandreou, Z.; Huber, G.; Lolos, G.; Cormier, J.; Mathie, E.; Naqvi, S. [Department of Physics, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)] [Department of Physics, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Ottewell, D.; Tacik, R.; Walden, P. [TRIUMF, Vancouver, British Columbia, V6T 2A3 (Canada)] [TRIUMF, Vancouver, British Columbia, V6T 2A3 (Canada); Jones, G.; Trelle, R. [Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 2A6 (Canada)] [Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 2A6 (Canada); Aslanoglou, X. [Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701 (United States)] [Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701 (United States); Humphrey, D. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, Kentucky 42101 (United States)] [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, Kentucky 42101 (United States)

    1995-06-01T23:59:59.000Z

    Differential and total cross sections for {pi}{sup +} absorption on {sup 6}Li leading to the {ital pp}+{sup 4}He{sub g.s} final state are presented at incident pion energies of 100 and 165 MeV. The narrow width of the {ital pp} angular correlation is observed and reported.

  19. Tenfold enhancement of MeV Proton generation by a moderate ultra-short laser interaction with H2O nano-wire targets

    E-Print Network [OSTI]

    Zigler, A; Bruner, N; Schleifer, E; Eisenmann, S; Henis, Z; Botton, M; Pikuz, S A; Faenov, A Y; Gordon, D; Sprangle, P

    2010-01-01T23:59:59.000Z

    Compact sources of high energy protons (50-500MeV) are expected to be key technology in a wide range of scientific applications. Particularly promising is the target normal sheath acceleration (TNSA) scheme, holding record level of 67MeV protons generated by a peta-Watt laser. In general, laser intensity exceeding 10^18 W/cm2 is required to produce MeV level protons. Enhancing the energy of generated protons using compact laser sources is very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions. Here we report on the first generation of 5.5-7.5MeV protons by modest laser intensities (4.5 x 10^17 W/cm2) interacting with H2O nano-wires (snow) deposited on a Sapphire substrate. In this setup, the plasma near the tip of the nano-wire is subject to locally enhanced laser intensity with high spatial gradients, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. Nano-wire engine...

  20. Sandia National Laboratories: Nuclear Energy Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Nuclear Energy Publications Nuclear Energy Safety Fact Sheets Assuring Safe Transportation of Nuclear and Hazardous Materials Human Reliability Assessment (HRA)...