National Library of Energy BETA

Sample records for metropolitan status number

  1. Metropolitan Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metropolitan Washington Council of Governments A White House Climate Action Champions Case Study INDEX Executive Summary...............................2 Climate Action Champion.....................2 Project Spotlight.................................3-5 Co-benefits.............................................5 Challenges and Lessons Learned.........5 Resources and Contacts........................7 2 Executive Summary The Metropolitan Washington Council of Governments (COG) is an independent,

  2. Metropolitan Edison Co (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    Edison Co (Pennsylvania) Jump to: navigation, search Name: Metropolitan Edison Co Place: Pennsylvania Phone Number: 1-800-545-7741 Website: www.firstenergycorp.comconten Twitter:...

  3. Metropolitan Water District of S CA | Open Energy Information

    Open Energy Info (EERE)

    Metropolitan Water District of S CA Jump to: navigation, search Name: Metropolitan Water District of S CA Place: California Phone Number: (213) 217-6000 Website: www.mwdh2o.com...

  4. Attachment I CHPRC CONDITION REPORT FORM Status: Analysis CR NUMBER: CR-2011I 2037

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHPRC CONDITION REPORT FORM Status: Analysis CR NUMBER: CR-2011I 2037 Issue Identification and Processing Initiator: Initiating IDetifed Bannister, Roland J Document: 6/23/2011d Title of Issue: Extent of Condition review for S3000 containers Description of Issue: Extent of Condition Review arose from the Causal Analysis regarding the breached drum found in 2404WB on April 26, 2011. The scope of the review was to assess all other known S3000 (homogenous solids) waste streams to identify

  5. Los Angeles County Metropolitan Transportation Authority Metro...

    Open Energy Info (EERE)

    County Metropolitan Transportation Authority Metro Jump to: navigation, search Name: Los Angeles County Metropolitan Transportation Authority (Metro) Place: Los Angeles, California...

  6. Chicago Metropolitan Agency for Planning Data Dashboard

    Broader source: Energy.gov [DOE]

    The data dashboard for Chicago Metropolitan Agency for Planning, a partner in the Better Buildings Neighborhood Program.

  7. The Metropolitan Water District of Southern California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SW Washington, DC 20585-0121 QERcomments@hq.doe.gov Comments on the Department of Energy's Quadrennial Energy Review: Water-Energy Nexus The Metropolitan Water District of Southern ...

  8. Climate Action Champions: Metropolitan Washington Council of Governments,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC, MD, and VA | Department of Energy Metropolitan Washington Council of Governments, DC, MD, and VA Climate Action Champions: Metropolitan Washington Council of Governments, DC, MD, and VA The Metropolitan Washington Council of Governments (COG) is an independent, nonprofit association that brings area leaders together to address major regional issues in the District of Columbia, suburban Maryland, and Northern Virginia. COG and its member governments seek to create a more accessible,

  9. Chicago Metropolitan Agency for Planning Summary of Reported Data |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of Reported Data Chicago Metropolitan Agency for Planning Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Chicago Metropolitan Agency for Planning. Chicago Metropolitan Agency for Planning Summary of Reported Data (762.93 KB) More Documents & Publications Better Buildings Neighborhood Program Summary of Reported Data From July 1, 2010 - September 30, 2013 Energize New York Summary of Reported Data Maryland

  10. Chicago Metropolitan Agency for Planning Data Dashboard | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File Chicago Metropolitan Agency for Planning Data Dashboard More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Phoenix, Arizona Data ...

  11. SMARTS status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ContactsPhonebookOrganizationMapsCalendarJobs NEWS LIBRARY JOBS Search Lujan Home| Proposal Process | Ancillary Equipment | Chemical & Sample Prep | Training Office | Web Contact SMARTS INSTRUMENT STATUS Instrument Status (Last updated: 2016/03/02 14:04:07) Run Number: 97106 Title: Adams Sample 6-4 after heat treat to 1000C [abso strain -10.000 Run Status: ended Last Script Activity: 2016/02/28 20:05:52: End run 97106; mah 300000 abso strain -10.000 100.0 * * * * * * View full script Next

  12. Live Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Users Live Status Queue Look Classic Queue Look Scheduled Outages Outage Log Science Gateway Status Login Node Status Filesystem Status My NERSC Move to CRT Getting Started...

  13. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2012o.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  14. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vt060francis2010p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  15. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2011p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  16. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam Status Print Loading... You can also view the Operations Group's Beam History archives.

  17. Washington Metropolitan Area Transit Authority: Compressed Natural Gas Transit Bus Evaluation

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Melendez, M.

    2006-04-01

    Evaluates compressed natural gas (CNG) powered transit buses at Washington Metropolitan Area Transit Authority (WMATA), providing a comparison between them and standard diesel transit buses.

  18. Small Business Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Teaming Arrangements on Small Business Status The Department of Energy is planning to set aside for small businesses a number of acquisitions of a very complex nature, requiring a ...

  19. Backed apple? Metropolitan New York in the greenhouse

    SciTech Connect (OSTI)

    Hill, D.

    1997-12-31

    Steps to mitigate global climate change are being negotiated internationally, but it is on the local level that its effects will be felt and actions are taken. Like many midlatitude coastal cities, metropolitan New York could expect serious consequences from global warming: killing hot spells, worsened ozone pollution, uncertain water supply, and inundation of its waterfront from higher sea level and violent storms. Seen at the local level, the opportunities and limitations of measures to mitigate or adapt to climate change become explicit. Indirect local effects from changes elsewhere in the world must also be considered.

  20. Measuring and Mitigating Urban Warming in a Northern Metropolitan Area |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Measuring and Mitigating Urban Warming in a Northern Metropolitan Area Event Sponsor: Environmental Science Seminar Start Date: Aug 25 2016 - 11:00am Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Peter Snyder Speaker(s) Title: University of Minnesota In the United States and much of the rest of the world, cities are warming at twice the rate of outlying rural areas and the planet as a whole. While the warming can

  1. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  2. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  3. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Print Loading... You can also view the Operations Group's Beam History archives

  4. (Document Number)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  5. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S.

  6. NPDF status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NPDF INSTRUMENT STATUS Waiting for runs .. Last update: Fri Mar 27 04:43:30 2015 NPDF RECENT DATA PLOTTING Select plot: GSAS - PDF...

  7. Truck transport of RAM: Risk effects of avoiding metropolitan areas

    SciTech Connect (OSTI)

    Mills, G.S.; Neuhauser, K.S.

    1997-11-01

    In the transport of radioactive material (RAM), e.g., spent nuclear fuel (SNF), stakeholders are generally most concerned about risks in high population density areas along transportation routes because of the perceived high consequences of potential accidents. The most significant portions of a transcontinental route and an alternative examined previously were evaluated again using population density data derived from US Census Block data. This method of characterizing population that adjoins route segments offers improved resolution of population density variations, especially in high population density areas along typical transport routes. Calculated incident free doses and accident dose risks for these routes, and the rural, suburban and urban segments are presented for comparison of their relative magnitudes. The results indicate that modification of this route to avoid major metropolitan areas through use of non-Interstate highways increases total risk yet does not eliminate a relatively small urban component of the accident dose risk. This conclusion is not altered by improved resolution of route segments adjoining high density populations.

  8. The influence of coyotes on an urban Canada goose population in the Chicago metropolitan area

    SciTech Connect (OSTI)

    Brown, Justin L.; /Ohio State U.

    2007-01-01

    between pre-nesting and nesting seasons (P=0.72) were similar, while between post-nesting and nesting seasons there was a nearly significant difference (P=0.07). The insignificant change in habitat use across seasons suggests that coyotes did not switch habitat use to take advantage of goose nests. Alternatively, the change in ranking of buffer habitat across seasons suggests that coyotes may have switched habitat use to take advantage of goose nests. The results are not clear as large individual variation between coyotes due to differences in habitat availability, and social status interfere with the results of the analysis. Even though I failed to find strong support for coyotes actively hunting goose nests, they nevertheless were the primary nest predator in the area and may influence Canada goose populations. To determine the potential influence of coyotes on the Canada goose population, I created a Canada goose matrix population model that included variables such as coyote predation on adults and nests as well as coyote influence on nest desertion. Using the base population model I calculated the Canada goose population to be increasing with {lambda} = 1.055. The removal of all coyote influence on the goose population would allow {lambda} to increase to 1.214. Nest predation was the most important factor related to coyotes: the removal of coyote nest predation from the model resulted in a population growth rate {lambda} = 1.157. Modeling results suggest coyotes are serving as a limiting factor for the Canada goose population within the Chicago metropolitan area.

  9. Live Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Help Staff Blogs Request Repository Mailing List Need Help? Out-of-hours Status and Password help Call operations: 1-800-66-NERSC, option 1 or 510-486-6821 Account Support ...

  10. Regulation Identifier Number Title/Subject/Purpose Rule Type

    Broader source: Energy.gov (indexed) [DOE]

    Regulation Identifier Number TitleSubjectPurpose Rule Type Status 1990-AA40 ... Amend DOE's statutory prescribed regulation, which set forth the procedural rules ...

  11. Small Business Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Teaming Arrangements on Small Business Status The Department of Energy is planning to set aside for small businesses a number of acquisitions of a very complex nature, requiring a myriad of capabilities on the part of offerors, which might result in teaming arrangements or joint ventures being formed. Given this, the Department believes that potential offerors should be aware of the Small Business Administration's regulations regarding affiliation. As such, DOE will include the following

  12. Monthly Status Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monthly Status Reports Monthly Status Reports Active Project Justification Statement Project Registration Number Assignments (Active) All Active DOE Technical Standards Document Project Registration Number Assignments (Completed) The Proposed Reaffirmations and Cancellations For Additional Information Contact: Jeffrey Feit phone: 301-903-0471 e-mail: jeffrey.feit@hq.doe.gov

  13. Status | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status Status PDF icon Status More Documents & Publications DOE O 206.2 Identity, Credential, and Access Management (ICAM) ICAM Workshop Audit Report: IG-0860

  14. Weekly Petroleum Status Report

    Gasoline and Diesel Fuel Update (EIA)

    Please go to the redesigned Weekly Petroleum Status Report.

  15. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect (OSTI)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  16. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect (OSTI)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  17. Tevatron status

    SciTech Connect (OSTI)

    Dugan, G.

    1989-03-01

    The Fermilab Tevatron is both the world's highest energy accelerator system and first large-scale superconducting synchrotron. Since Tevatron commissioning in July 1983, the accelerator has operated in 1984, 1985 and 1987 with extracted beams of 800 GeV for three runs of fixed target physics, and in 1987, and 1988, with proton-antiproton colliding beams at 900 /times/ 900 GeV. This paper will focus on the collider operation of the Tevatron: its present status and the outlook for its longer-term future evolution. 18 refs., 3 figs., 2 tabs.

  18. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  19. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  20. NIF Status Update - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    status NIF Status Update - 2014 May - Highlights of May Experiments on NIF Gigabar Equation-of-State Experiments Production of Beryllium Capsules for NIF Begins First Weekly...

  1. Status of Corrective Actions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP AIB Report Status of Corrective Actions Status of Corrective Actions at LANL Department of Energy Issues Accident Investigation Board (AIB) Report on February 14 Incident ...

  2. Acquisition & Financial Assistance Rules Status_May_2016.xlsx

    Broader source: Energy.gov (indexed) [DOE]

    Regulation Identifier Number TitleSubjectPurpose Rule Type Status 1990-AA40 ... Amend DOE's statutory prescribed regulation, which set forth the procedural rules ...

  3. Gasoline distribution cycle and vapor emissions in Mexico City metropolitan area

    SciTech Connect (OSTI)

    Molina, M.M.; Secora, I.S.; Gallegos, J.R.M.; Grapain, V.M.G.; Villegas, F.M.R.; Flores, L.A.M.

    1997-12-31

    Ozone in the main air pollutant in Mexico City Metropolitan Area (MCMA). This kind of pollution is induced by the emissions of nitrogen oxides and hydrocarbons. According to Official Statistics National Air Pollution Quality Standard is exceeded over 300 days a year. Volatile hydrocarbons are generated in the cycle of storage transport and distribution of fuel (Gasoline Distribution Cycle). Above 17 millions of liters are handled daily in MCMA. Evaporative emission control is a complex task involving: floating roof tanks and vapor recovery units installation at bulk terminals and implementation of Phase 1 and Phase 2 vapor recovery systems at service stations. Since 1990, IMP has been involved in researching vapor emissions associated to gasoline storage and distribution cycle. Besides, the authors evaluate several technologies for bulk terminals and service stations. In this job, the authors present the results of an evaluation according to Mexican Official Standard of 500 vehicles. The gasoline vapors are trapped during refueling of cars and they are conduced to an equipment that includes an activated charcoal canister in order to adsorb them. Another Activated charcoal canister adsorbs ambient air as a reference. Experimental results showed that refueling hydrocarbon emissions are between 0.4 and 1.2 grams per liter with averages of 0.79 and 0.88 grams per liter according with two different gasoline types. These results were applied to Mexico City Vehicular fleet for the gasoline distribution cycle in order to obtain a total volatile hydrocarbon emission in Mexico City Metropolitan Area.

  4. Metropolitan Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... local communities and agencies to surpass this goal. Bulk renewable energy ... Procurement Program operates with the ... County and the Cities of Bowie and ...

  5. New York Natural Gas Number of Commercial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...

  6. New Mexico Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...

  7. North Dakota Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  8. Quantum random number generator

    DOE Patents [OSTI]

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  9. Updates and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Updates and Status Current Status: Up Carver Email Announcements Archive An archive of email announcements sent to NERSC users regarding Carver. Read More » Timeline Timeline of significant Carver events. Read More » Last edited: 2016-04-29 11:34:35

  10. Updates and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Updates and Status Current Status: Up Announcements All recent NERSC announcements affecting Euclid. Read More » Email Announcements Archive An archive of email announcements sent to NERSC users regarding Euclid. Read More » Known Problems All known current problems with Euclid. Read More » Timeline Timeline of significant Euclid events. Read More » Last edited: 2016-04-29 11:34:40

  11. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  12. Quantum random number generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  13. Heuristic status polling

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.; Ratterman, Joseph D.

    2011-06-07

    Methods, compute nodes, and computer program products are provided for heuristic status polling of a component in a computing system. Embodiments include receiving, by a polling module from a requesting application, a status request requesting status of a component; determining, by the polling module, whether an activity history for the component satisfies heuristic polling criteria; polling, by the polling module, the component for status if the activity history for the component satisfies the heuristic polling criteria; and not polling, by the polling module, the component for status if the activity history for the component does not satisfy the heuristic criteria.

  14. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  15. Document Details Document Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA

  16. Updates and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Updates and Status Current Status: Retired on April 30, 2012 Announcements A list of key Franklin announcements and system changes. Read More » Email Announcements Archive An archive of email announcements sent to NERSC users regarding Franklin. Read More » Franklin Timeline This page records a brief timeline of significant events and user environment changes on Franklin. Read More » Last edited: 2016-04-29 11:34:24

  17. Updates and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Updates and Status Current Status: Up Open Issues List of known problems, submitted bug reports and issues we are actively working on. Read More » Hopper Featured Announcements A list of key Hopper announcements and system changes. Read More » Hopper Email Announcements Archive An archive of email announcements sent to NERSC users regarding Hopper. Read More » Announcements Hopper OS upgrade and new SW set to default next Wed, Feb 27 21 February 2013, 10:29 am Hopper scheduled

  18. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area. Urban Heat Island Versus Aerosol Effects

    SciTech Connect (OSTI)

    Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Lai-Yung R.; Yang, Xiuqun

    2015-10-23

    Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with the latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.

  19. Modular redundant number systems

    SciTech Connect (OSTI)

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  20. Impact of Teaming Arrangements on Small Business Status | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Impact of Teaming Arrangements on Small Business Status Impact of Teaming Arrangements on Small Business Status Impact of Teaming Arrangements on Small Business Status The Department of Energy is planning to set aside for small businesses a number of acquisitions of a very complex nature, requiring a myriad of capabilities on the part of offerors, which might result in teaming arrangements or joint ventures being formed. Given this, the Department believes that potential offerors

  1. Nuclear proliferation status report. Status report

    SciTech Connect (OSTI)

    1992-07-01

    This report contains information concerning the nuclear proliferation status of the following countries: (1) Russia, (2) Ukraine, (3) Belarus, (4) Kazakhstan, (5) Israel, (6) India, (7) Pakistan, (8) South Africa, (9) North Korea, (10) Iraq, (11) Iran, (12) Lybia, (13) Algeria, (14) Syria, (15) Brazil, (16) Argentina, and (17) Taiwan.

  2. New Hampshire Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  4. New Hampshire Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  7. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Virginia Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. Vermont Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  11. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  12. Virginia Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. West Virginia Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. Wisconsin Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. Vermont Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. West Virginia Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Washington Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Washington Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. Washington Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. Wisconsin Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Vermont Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. West Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. New York Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. New Mexico Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. New Jersey Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. New Mexico Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  7. North Carolina Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  8. North Carolina Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  9. North Dakota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. North Dakota Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. North Carolina Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. Acquisition & Financial Assistance Rules Status | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition & Financial Assistance Rules Status Acquisition & Financial Assistance Rules Status Subscribe to Acquisition & Financial Assistance Rules Status Updates PDF icon ...

  13. NWP Small Business Status through June 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Status through June 2014

  14. NIF Status Update - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    news NIF Status Update - 2014 May Gigabar Equation-of-State Experiment Reaches Record Pressures On May 29, the NIF Team fired two gigabar (Gbar)-class equation-of-state experiments...

  15. Fast Global File Status

    Energy Science and Technology Software Center (OSTI)

    2013-01-01

    Fast Global File Status (FGFS) is a system software package that implimints a scalable mechanism to retrieve file information, such as its degree of distribution or replication and consistency.

  16. PDSF Login Node Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Help Staff Blogs Request Repository Mailing List Need Help? Out-of-hours Status and Password help Call operations: 1-800-66-NERSC, option 1 or 510-486-6821 Account Support ...

  17. Updates and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Help Staff Blogs Request Repository Mailing List Need Help? Out-of-hours Status and Password help Call operations: 1-800-66-NERSC, option 1 or 510-486-6821 Account Support ...

  18. o CNMS Status Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Town Hall User Meeting (see attached slides) * Agenda: o Intro of UEC o CNMS Status Update o UEC activities o Nominations for open seat on the UEC * Activities o Monthly Telecon o...

  19. Updates and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates and Status Current Status: Up Open Issues List of known problems, submitted bug reports and issues we are actively working on Read More » Timeline and Updates A list of major system changes and updates Read More » Email Announcements Archive An archive of email announcements sent to NERSC users regarding Edison Read More » Last edited: 2016-04-29 11:34:32

  20. Safety system status monitoring

    SciTech Connect (OSTI)

    Lewis, J.R.; Morgenstern, M.H.; Rideout, T.H.; Cowley, P.J.

    1984-03-01

    The Pacific Northwest Laboratory has studied the safety aspects of monitoring the preoperational status of safety systems in nuclear power plants. The goals of the study were to assess for the NRC the effectiveness of current monitoring systems and procedures, to develop near-term guidelines for reducing human errors associated with monitoring safety system status, and to recommend a regulatory position on this issue. A review of safety system status monitoring practices indicated that current systems and procedures do not adequately aid control room operators in monitoring safety system status. This is true even of some systems and procedures installed to meet existing regulatory guidelines (Regulatory Guide 1.47). In consequence, this report suggests acceptance criteria for meeting the functional requirements of an adequate system for monitoring safety system status. Also suggested are near-term guidelines that could reduce the likelihood of human errors in specific, high-priority status monitoring tasks. It is recommended that (1) Regulatory Guide 1.47 be revised to address these acceptance criteria, and (2) the revised Regulatory Guide 1.47 be applied to all plants, including those built since the issuance of the original Regulatory Guide.

  1. Web Operational Status Boards

    SciTech Connect (OSTI)

    2004-04-16

    Web Operational Status Boards (WebOSB)is a web-based application designed to acquire, display, and update highly dynamic status information between multiple users and jurisdictions. WebOSB is able to disseminate real-time status information?support the timely sharing of information?with constant, dynamic updates via personal computers and the Internet between emergency operations centers (EOCs), incident command centers, and to users outside the EOC who need to know the information (hospitals, shelters, schools). The WebOSB application far exceeds outdated information-sharing methods used by emergency workers: whiteboards, Word and Excel documents, or even locality-specific Web sites. WebOSB?s capabilities include the following elements: - Secure access. Multiple users can access information on WebOSB from any personal computer with Internet access and a secure ID. Privileges are use to control access and distribution of status information and to identify users who are authorized to add or edit information. - Simultaneous update. WebOSB provides options for users to add, display, and update dynamic information simultaneously at all locations involved in the emergency management effort, A single status board can be updated from multiple locations enabling shelters and hospitals to post bed availability or list decontamination capability. - On-the-fly modification. Allowing the definition of an existing status board to be modified on-the-fly can be an asset during an emergency, where information requirements can change quickly. The status board designer feature allows an administrator to quickly define, modi,, add to, and implement new status boards in minutes without needing the help of Web designers and computer programmers. - Publisher/subscriber notification. As a subscriber, each user automatically receives notification of any new information relating to specific status boards. The publisher/subscriber feature automatically notified each user of any new

  2. Web Operational Status Boards

    Energy Science and Technology Software Center (OSTI)

    2004-04-16

    Web Operational Status Boards (WebOSB)is a web-based application designed to acquire, display, and update highly dynamic status information between multiple users and jurisdictions. WebOSB is able to disseminate real-time status information—support the timely sharing of information—with constant, dynamic updates via personal computers and the Internet between emergency operations centers (EOCs), incident command centers, and to users outside the EOC who need to know the information (hospitals, shelters, schools). The WebOSB application far exceeds outdated information-sharingmore » methods used by emergency workers: whiteboards, Word and Excel documents, or even locality-specific Web sites. WebOSB’s capabilities include the following elements: - Secure access. Multiple users can access information on WebOSB from any personal computer with Internet access and a secure ID. Privileges are use to control access and distribution of status information and to identify users who are authorized to add or edit information. - Simultaneous update. WebOSB provides options for users to add, display, and update dynamic information simultaneously at all locations involved in the emergency management effort, A single status board can be updated from multiple locations enabling shelters and hospitals to post bed availability or list decontamination capability. - On-the-fly modification. Allowing the definition of an existing status board to be modified on-the-fly can be an asset during an emergency, where information requirements can change quickly. The status board designer feature allows an administrator to quickly define, modi,, add to, and implement new status boards in minutes without needing the help of Web designers and computer programmers. - Publisher/subscriber notification. As a subscriber, each user automatically receives notification of any new information relating to specific status boards. The publisher/subscriber feature automatically notified each user of any

  3. Automation Status | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automation Status Automation Status Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Automation Status (1.93 MB) More Documents & Publications PEM Stack Manufacturing: Industry Status 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report Manufacturing Barriers to High Temperature PEM Commercialization

  4. Number

    Office of Legacy Management (LM)

    engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. ...

  5. Environmental benefits of replacing fuel oil by natural gas in the metropolitan region of Sao Paulo, Brazil

    SciTech Connect (OSTI)

    Kondo, S.; Assuncao, J.V. de

    1998-12-31

    The Metropolitan Region of Sao Paulo (Brazil) has a population 16.322 million people (1995 estimate) living in an area of 8,051 km2 with most of them concentrated in the city of Sao Paulo with 9.8 million people and 4.6 million cars. Although with an air quality better than some other Latin American megacities such as Mexico and Santiago do Chile, the air quality still exceeds the national air quality standards. In 2/17/1993 Brazilian Petroleum Company (PETROBRAS) and the Bolivian Petroleum Company (Yacimientos Petroliferos Fiscales Bolivianos -- YPFB) signed an agreement to bring natural gas from Bolivia to the south and southeast of Brazil. The end of the construction of the gas pipeline will be in 1999, and it will deliver 4 million Nm3/day of natural gas to COMGAS Sao Paulo State Gas Company. This amount will increase to 8.1 million Nm3/day by the year 2006, that will be sufficient to supply the Sao Paulo Metropolitan Region market need at that time. In this study an estimate of the influence in the air quality was performed supposing the substitution of fuel oil by natural gas in industry and also in diesel buses. The results showed that there will be benefits in relation to sulfur dioxide, PM10, greenhouse gases and trace elements, and negligible effects in relation to NO{sub x}, NMTOC and carbon monoxide.

  6. FRIB Cryogenic Plant Status

    SciTech Connect (OSTI)

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  7. Los Alamos National Laboratory Site Cleanup By the Numbers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Los Alamos National Laboratory Site Cleanup By the Numbers Los Alamos National Laboratory Site Cleanup By the Numbers Status of the Los Alamos Cleanup Activities as of May 2016 LANL-Site-By-The-Numbers-May-2016.pdf (778.6 KB) More Documents & Publications Los Alamos National Laboratory Site Cleanup By the Numbers Los Alamos National Laboratory Site Cleanup By the Numbers Audit Report: IG-0793 CX-010905: Categorical Exclusion Determination

  8. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural

  9. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural Gas Industrial

  10. Glueballs: a status report

    SciTech Connect (OSTI)

    Scharre, D.L.

    1982-01-01

    It is expected from quantum chromodynamics (QCD) that glueballs, bound states which contain gluons but no valence quarks, should exist. To date, no conclusive evidence for glueballs has been presented. After a brief review of the expected properties and experimental signatures of glueballs the status of some glueball candidate states are discussed.

  11. ARM - Measurement - Particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  12. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  13. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  14. Mathematical Modeling of Hepatitis C Prevalence Reduction with Antiviral Treatment Scale-Up in Persons Who Inject Drugs in Metropolitan Chicago

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Echevarria, Desarae; Gutfraind, Alexander; Boodram, Basmattee; Major, Marian; Del Valle, Sara; Cotler, Scott J.; Dahari, Harel

    2015-08-21

    New direct-acting antivirals (DAAs) provide an opportunity to combat hepatitis C virus (HCV) infection in persons who inject drugs (PWID). Here we use a mathematical model to predict the impact of a DAA-treatment scale-up on HCV prevalence among PWID and the estimated cost in metropolitan Chicago.

  15. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  16. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  17. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  18. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  19. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  20. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  1. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  2. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  3. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  4. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  5. LAMPF: proposal status and summaries

    SciTech Connect (OSTI)

    Rayburn, L.; Talley, B.

    1982-03-01

    Revisions and additions are given for LAMPF proposal summaries and status reports. These apply to LA-7444-MS. (GHT)

  6. Electronic Status Board

    Energy Science and Technology Software Center (OSTI)

    2004-06-02

    This software was developed to post real-time process status and building conditions to operators, system engineers, system managers, and all support personnel. Data input is via operator console, strategically located throughout the facility, or by electronic rounds tablet. The system requires a person to log in with a unique user id and password to edit data. Viewing system status does not require log in and can be done from any desktop location running FileMaker. Oncemore » logged into the system, all new records saved are stamped with date, time and user name, and a historical copy is created that can be brought up to review status. There is no limitation to the amount of records that can be saved in the historical databases. The system will flag all out of limit conditions on the screen and enter that record on a turnover summery page which displays only flagged items. System conditions are displayed on a plasma display which scrolls through the various system condition screens. The system also shows floor plans that reflect specific building radiological conditions which aides in pre job briefings to show all hazards to personnel entering specific locations. The input screen is displayed on a second standard computer monitor connected to the input PC. There are several popup screens that require user intervention to ensure that the user wants to edit the data, is editing the appropriate sytem, and if they want to continue to stay logged into the system. Each workstation is connected to a Uninterrupted Power Supply which will shut each system down safely in a power failure. The server is configured to print out current status upon notification from the UPS that power has failed. The system also has a video input card which is connected to a DVD/VCR which shows safety meetings, and images taken from a digital camera used to show specific locations/items for pre-job briefings.« less

  7. Fuel Cell Development Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and

  8. MARS Flight Engineering Status

    SciTech Connect (OSTI)

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  9. DFC Technology Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pinakin Patel Mohammad Farooque FuelCell Energy, Inc. 3 Great Pasture Road Danbury, Ct 06813 DFC Technology Status * Distributed generation puts power where it's needed * Increases power reliability * Near zero emissions allow units to be sited almost anywhere - even polluted urban areas * Reduces need for central generation plants * Reduces grid congestion and need for new transmission lines * Distributed generation enables smart grid * Balances the grid with 24/7 power * Meets requirements for

  10. SuperNEMO status

    SciTech Connect (OSTI)

    Chapon, A. [Universite de Caen Basse-Normandie, ENSICAEN, LPC Caen, UMR 6534, 6 boulevard du Marechal Juin, 14050 CAEN Cedex (France); Collaboration: SUPERNEMO Collaboration

    2011-12-16

    The SuperNEMO experiment aims to reach a sensitivity up to 10{sup 26} years on the half-life of neutrinoless double beta decay. The SuperNEMO project strongly inherits from the previous Nemo3 experiment. It will consist of a ''tracko-calo'' modular detector with at least 100 kg of betabeta isotope. The current status of the main R and D tasks will be presented: enrichment and production of source foils, radiopurity control, tracker and calorimeter.

  11. Comparison of Daytime and Nighttime Populations Adjacent to Interstate Highways in Metropolitan Areas Using LandScan USA

    SciTech Connect (OSTI)

    Johnson, Paul E

    2007-01-01

    An article of similar title was published in the International Journal of Radioactive Materials Transport in 1999. The study concluded that the daytime and nighttime populations are not substantially different for the metropolitan areas examined. This study revisits the issue, but using the LandScan USA high resolution population distribution data, which includes daytime and night-time population. Segments of Interstate highway beltways, along with the direct route through the city, for Atlanta, St. Louis, and Kansas City are examined with an 800m buffer from either side of the highways. The day/night ratio of population is higher using the LandScan USA data. LandScan USA daytime and night-time data will be incorporated into the TRAGIS routing model in future.

  12. Regulation Identifier Number Title/Subject/Purpose Rule Type

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7/21/2016. Highlighted areas denote changes from the last update. Regulation Identifier Number Title/Subject/Purpose Rule Type Status 1990-AA40 Adminstrative Requirements for Other Transactions: revise requirements for technology investment agreements to broaden to support all types of other transactions. NOPR Drafting Notice of Proposed Rule-making for Federal Register 1901-AB37 Enforcement of Classified Information Security Requirements: Amend DOE's statutory prescribed regulation, which set

  13. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect (OSTI)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  14. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  15. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  16. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  19. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  10. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  15. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  16. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  17. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  18. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  19. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  2. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  3. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  5. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  7. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  8. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  11. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  17. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  3. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  8. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  10. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  12. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 - = No Data Reported; -- = Not

  19. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  2. California Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 - = No Data Reported; -- = Not Applicable; NA =

  3. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  4. California Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  5. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  8. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 40,886 41,594 43,703 1990's 45,364 45,925 46,859 45,529 45,042 45,935 47,055 48,195 47,110 49,930 2000's 52,384 49,815 49,383 50,691 50,839 52,572 52,982 52,389 53,903 54,510 2010's 54,842 55,028 55,407 55,500 56,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. Connecticut Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 411,349 417,831 424,036 1990's 428,912 430,078 432,244 427,761 428,157 431,909 433,778 436,119 438,716 442,457 2000's 458,388 458,404 462,574 466,913 469,332 475,221 478,849 482,902 487,320 489,349 2010's 490,185 494,970 504,138 513,492 522,658 - = No Data Reported; -- = Not

  11. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  14. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  18. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  5. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  7. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  8. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  10. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  12. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  13. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  15. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 317,217 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 -

  18. National Hydrogen Learning Demonstration Status | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning Demonstration Status National Hydrogen Learning Demonstration Status Download presentation slides from the Fuel Cell Technologies Program webinar "National Hydrogen ...

  19. RIA Overview and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Office of Science Laboratory Operated by The University of Chicago Office of Science U.S. Department of Energy Guy Savard Argonne National Laboratory & University of Chicago Based on Material presented at the ATLAS Operation's Review December 8-10, 2003 by The Californium Source Upgrade 2 Pioneering Science and Technology Office of Science U.S. Department of Energy 12/8-10/2003 ATLAS Upgrade Guy Savard ATLAS Status * ATLAS only low-energy accelerator for stable ions operating as a

  20. Weekly Petroleum Status Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Petrolem Reports Weekly Petroleum Status Report Data for week ending Sept. 2, 2016 | Release Date: Sept. 8, 2016 | Next Release Date: Sept. 14, 2016 | full report Previous Issues Week: September 8, 2016 August 31, 2016 August 24, 2016 August 17, 2016 August 10, 2016 August 3, 2016 July 27, 2016 July 20, 2016 July 13, 2016 July 7, 2016 June 29, 2016 June 22, 2016 June 15, 2016 June 8, 2016 June 2, 2016 prior issues Go Exports Notice: Beginning with the publication on August 31, 2016, the Weekly

  1. Current status of APEX

    SciTech Connect (OSTI)

    Betts, R.R.

    1993-10-01

    The ATLAS Positron Experiment (APEX) is designed to investigate narrow structures observed in the energy spectra of positions and positron-electron coincidences produced in collisions of high Z ions with high Z targets at Coulomb barrier energies. The apparatus consists of a large diameter uniform-field solenoid mounted transverse to the beam direction. Scattered heavy ions are detected in a gas-counter array. Electrons and positrons transversing the solenoid are detected in highly segmented silicon arrays surrounded by position sensitive NaI detectors for positron identification. The concept of APEX and the current status of the apparatus will be discussed.

  2. Status of Wheeler Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  3. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  4. EBIS preinjector construction status

    SciTech Connect (OSTI)

    Alessi,J.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lessard, E.; Lockey, R.; LoDestro, V.; Mapes, M.; McCafferty, D.; McNerney, A.; Okamura, M.; Pendzick, A.; Phillips, D.; Pikin, A.; Raparia, D.; Ritter, J.; Scaduto, J.; Snydstrup, L.; Wilinski, M.; Zaltsman, A.; et al.

    2008-09-29

    A new heavy ion preinjector is presently under construction at Brookhaven National Laboratory. This preinjector uses an Electron Beam Ion Source (EBIS), and an WQ and IH Linac, both operating at 100.625 MHz, to produce 2 MeV/u ions of any species for use, after further acceleration, at the Relativistic Heavy Ion Collider, and the NASA Space Radiation Laboratory. Among the increased capabilities provided by this preinjector are the ability to produce ions of any species, and the ability to switch between multiple species in 1 second, to simultaneously meet the needs of both physics programs. Fabrication of all major components for this preinjector is in process, with testing of the EBIS and WQ starting this year. The status of this construction is presented.

  5. Emission factors for domestic use of L.P. gas in the metropolitan area of Mexico City

    SciTech Connect (OSTI)

    Molina, M.M.; Schifter, I.; Ontiveros, L.E.; Salinas, A.; Moreno, S.; Melgarejo, L.A.; Molina, R.; Krueger, B.

    1998-12-31

    One of the main problems found in air pollution in the Metropolitan Area of Mexico City (MAMC) is the presence of high concentrations of ozone at ground level in the atmosphere. The official Mexican standard for ozone concentration in the air (0.11 ppm, one hour, once every 3 years) has been exceeded more than 300 days per year. Ozone is formed due to the emissions of nitrogen oxides and hydrocarbons originated from either combustion processes or vapors emanating from fuel handling operations. The results of an evaluation of several domestic devices like stoves and water heaters with L.P. gas as fuel are presented. A method for the evaluation of hydrocarbon emission was developed. A prototype of domestic installation was constructed. The prototype includes L.P. gas tank, domestic stove, water heater, piping and instrumentation. Several combinations of stoves and water heaters were evaluated. The sampling and analysis of hydrocarbons were performed using laboratory equipment originally designed for the evaluation of combustion and evaporative emissions in automobiles: a SHED camera (sealed room equipped with an hydrocarbon analyzer) was used to measure leaks in the prototype of domestic installation and a Constant Volume Sampler (CVS) for the measurement of incomplete combustion emissions. Emission factors were developed for each domestic installation.

  6. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments [OSTI]

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  7. Status report on new whole waveform discriminants and preliminary results (Deliverable {number_sign}12)

    SciTech Connect (OSTI)

    Walter, W.R.

    1995-06-01

    The Treaty Verification Program at Lawrence Livermore National Laboratory has made good progress during fiscal year 1995 on devising and testing whole seismic waveform modeling methods to identify seismic events using only a few stations. This research is carried out under the Comprehensive Test Ban Treaty Research and Development Program (CTBTR and D) under task S4.3.4. For regions where the path is calibrated, this modeling can potentially identify and discriminate between clandestine underground nuclear events and other sources of seismic waves such as earthquakes and mine collapses. In regions where the path is not calibrated but is seismically active, the author is investigating the use of moderate to large earthquakes to obtain the necessary path calibration. Research has focused on improving whole waveform techniques for determining the source mechanism of moderate (magnitude greater than about 3.5) seismic events from a few three-component broadband sensors in regions where the paths are calibrated. Presently the author is also using these waveform techniques in new regions to test and improve path calibrations as well as to identify events. As part of this work, he has applied these waveform techniques to events of high monitoring interest with excellent results. In this report he discusses fitting three main types of events, explosions, earthquakes and mine collapses.

  8. Status of MICE

    SciTech Connect (OSTI)

    Soler, F. J. P.

    2010-03-30

    The Muon Ionization Cooling Experiment (MICE) is an experiment currently under construction at the Rutherford Appleton Laboratory (RAL) in the UK. The aim of the experiment is to demonstrate the concept of ionization cooling for a beam of muons, crucial for the requirements of a Neutrino Factory and a Muon Collider. Muon cooling is achieved by measuring the reduction of the four dimensional transverse emittance for a beam of muons passing through low density absorbers and then accelerating the longitudinal component of the momentum using RF cavities. The absorbers are maintained in a focusing magnetic field to reduce the beta function of the beam and the RF cavities are kept inside coupling coils. The main goal of MICE is to measure a fractional drop in emittance, of order -10% for large emittance beams, with an accuracy of 1%(which imposes a requirement that the absolute emittance be measured with an accuracy of 0.1%). This paper will discuss the status of MICE, including the progress in commissioning the muon beam line at the ISIS accelerator at RAL, the construction of the different detector elements in MICE and the prospects for the future.

  9. The Status of Glueballs

    SciTech Connect (OSTI)

    Lindenbaum, S.J. |

    1993-04-14

    The Status of Glueballs is presented considering that most popular candidates from among the isoscalars in the J{sup PC} = 0{sup ++}, 0{sup {minus}+} and 2{sup ++} channels. It is shown that in the 0{sup ++} channel the f{sub 0}(1720) which was discovered earlier (the S*{prime}(1720)) at BNL is highly likely the same state as the SLAC {theta}(1720) now that its spin has been found to be 0 instead of the 2 claimed for a long period. In the {sup ++} channel there is likely a complex of 2-3 states {zeta}/{eta}(1280), {lambda}/{eta}(1420) and {iota}/{eta}(1520) involving at least one extra isosclar. In the 2{sup ++}, the g{sub T}(2010), g{sub T}{prime}(2300) and g{sub T}{double_prime}(2340) {phi}{phi} states found in {pi}{sup {minus}} p {yields} {phi}{phi}n (OZI forbidden glueball filter channel) strikingly, approximately, completely break the OZI suppression and comprise within the errors all the {phi}{phi} cross-section. The only viable explanation of these states in the context of QCD is that they are produced by 1-3 primary 2{sup ++} glueballs. All alternate explanations in the past 15 years have failed.

  10. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Current: 0.00 mA Beam Status: Down Loss Rate: 0.00 mA/min SPEAR Plot SPEAR Operator Messages No operator message. SSRL BEAMLINES Beamline Steering Periods Gap(mm) Field(T) K Pwr(W) Yield(Ah) 1 Closed Fault - 48.0 0.000 - 0 0.00 2 Open Fault - 48.0 0.000 - 0 0.00 4 Open - 10 168.0 0.117 2.52 0 0.00 5 Open - 14 120.0 0.017 0.22 0 0.00 6 Open Fault 27 176.0 0.061 0.40 0 0.00 7 Open - 10 167.6 0.118 2.53 0 0.00 8 Open Fault - 48.0 0.000 - 0 0.00 9 Open - 8 191.5 0.125 3.22 0 0.00 10 Open Fault