National Library of Energy BETA

Sample records for metropolitan areas monitored

  1. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  2. Washington Metropolitan Area Transit Authority: Compressed Natural Gas Transit Bus Evaluation

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Melendez, M.

    2006-04-01

    Evaluates compressed natural gas (CNG) powered transit buses at Washington Metropolitan Area Transit Authority (WMATA), providing a comparison between them and standard diesel transit buses.

  3. Truck transport of RAM: Risk effects of avoiding metropolitan areas

    SciTech Connect (OSTI)

    Mills, G.S.; Neuhauser, K.S.

    1997-11-01

    In the transport of radioactive material (RAM), e.g., spent nuclear fuel (SNF), stakeholders are generally most concerned about risks in high population density areas along transportation routes because of the perceived high consequences of potential accidents. The most significant portions of a transcontinental route and an alternative examined previously were evaluated again using population density data derived from US Census Block data. This method of characterizing population that adjoins route segments offers improved resolution of population density variations, especially in high population density areas along typical transport routes. Calculated incident free doses and accident dose risks for these routes, and the rural, suburban and urban segments are presented for comparison of their relative magnitudes. The results indicate that modification of this route to avoid major metropolitan areas through use of non-Interstate highways increases total risk yet does not eliminate a relatively small urban component of the accident dose risk. This conclusion is not altered by improved resolution of route segments adjoining high density populations.

  4. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  5. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S.

  6. Gasoline distribution cycle and vapor emissions in Mexico City metropolitan area

    SciTech Connect (OSTI)

    Molina, M.M.; Secora, I.S.; Gallegos, J.R.M.; Grapain, V.M.G.; Villegas, F.M.R.; Flores, L.A.M.

    1997-12-31

    Ozone in the main air pollutant in Mexico City Metropolitan Area (MCMA). This kind of pollution is induced by the emissions of nitrogen oxides and hydrocarbons. According to Official Statistics National Air Pollution Quality Standard is exceeded over 300 days a year. Volatile hydrocarbons are generated in the cycle of storage transport and distribution of fuel (Gasoline Distribution Cycle). Above 17 millions of liters are handled daily in MCMA. Evaporative emission control is a complex task involving: floating roof tanks and vapor recovery units installation at bulk terminals and implementation of Phase 1 and Phase 2 vapor recovery systems at service stations. Since 1990, IMP has been involved in researching vapor emissions associated to gasoline storage and distribution cycle. Besides, the authors evaluate several technologies for bulk terminals and service stations. In this job, the authors present the results of an evaluation according to Mexican Official Standard of 500 vehicles. The gasoline vapors are trapped during refueling of cars and they are conduced to an equipment that includes an activated charcoal canister in order to adsorb them. Another Activated charcoal canister adsorbs ambient air as a reference. Experimental results showed that refueling hydrocarbon emissions are between 0.4 and 1.2 grams per liter with averages of 0.79 and 0.88 grams per liter according with two different gasoline types. These results were applied to Mexico City Vehicular fleet for the gasoline distribution cycle in order to obtain a total volatile hydrocarbon emission in Mexico City Metropolitan Area.

  7. 300 Area Process Trenches Groundwater Monitoring Plan

    SciTech Connect (OSTI)

    Lindberg, Jonathan W.; Chou, Charissa J.

    2001-08-13

    This document is a proposed groundwater monitoring plan for the 300 Area process trenches to comply with RCRA final status, corrective action groundwater monitoring.

  8. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect (OSTI)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH reactivity in the downwind plume. The model results generally showed good agreement with experimental results for the total VOC OH reactivity downwind and gave insight into the distributions of VOC chemical classes downwind. A box model with detailed gas phase chemistry (NCAR Master Mechanism), initialized with concentrations observed at one of the ground sites in the MCMA, was used to examine the expected evolution of specific VOCs over a 1-2 day period. The models clearly supported the experimental evidence for NMHC oxidation leading to the formation of OVOCs downwind, which then become the primary fuel for ozone production far away from the MCMA.

  9. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect (OSTI)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH reactivity in the downwind plume. The model results generally showed good agreement with experimental results for the total VOC OH reactivity downwind and gave insight into the distributions of VOC chemical classes downwind. A box model with detailed gas phase chemistry (NCAR Master Mechanism), initialized with concentrations observed at one of the ground sites in the MCMA, was used to examine the expected evolution of specific VOCs over a 1-2 day period. The models clearly supported the experimental evidence for NMHC oxidation leading to the formation of OVOCs downwind, which then become the primary fuel for ozone production far away from the MCMA.

  10. 300 area TEDF permit compliance monitoring plan

    SciTech Connect (OSTI)

    BERNESKI, L.D.

    1998-11-20

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

  11. Comparison of Daytime and Nighttime Populations Adjacent to Interstate Highways in Metropolitan Areas Using LandScan USA

    SciTech Connect (OSTI)

    Johnson, Paul E

    2007-01-01

    An article of similar title was published in the International Journal of Radioactive Materials Transport in 1999. The study concluded that the daytime and nighttime populations are not substantially different for the metropolitan areas examined. This study revisits the issue, but using the LandScan USA high resolution population distribution data, which includes daytime and night-time population. Segments of Interstate highway beltways, along with the direct route through the city, for Atlanta, St. Louis, and Kansas City are examined with an 800m buffer from either side of the highways. The day/night ratio of population is higher using the LandScan USA data. LandScan USA daytime and night-time data will be incorporated into the TRAGIS routing model in future.

  12. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect (OSTI)

    NELSON RL

    2008-07-18

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  13. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect (OSTI)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on-road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a comprehensive evaluation of metal containing particles in a com

  14. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    SciTech Connect (OSTI)

    Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

    2005-12-01

    An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

  15. Metropolitan Washington

    Office of Environmental Management (EM)

    Metropolitan Washington Council of Governments A White House Climate Action Champions Case Study INDEX Executive Summary...............................2 Climate Action Champion.....................2 Project Spotlight.................................3-5 Co-benefits.............................................5 Challenges and Lessons Learned.........5 Resources and Contacts........................7 2 Executive Summary The Metropolitan Washington Council of Governments (COG) is an independent,

  16. Remote Area Modular Monitoring (RAMM) infographic | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Remote Area Modular Monitoring (RAMM) infographic PDF icon ramminfographic

  17. Emission factors for domestic use of L.P. gas in the metropolitan area of Mexico City

    SciTech Connect (OSTI)

    Molina, M.M.; Schifter, I.; Ontiveros, L.E.; Salinas, A.; Moreno, S.; Melgarejo, L.A.; Molina, R.; Krueger, B.

    1998-12-31

    One of the main problems found in air pollution in the Metropolitan Area of Mexico City (MAMC) is the presence of high concentrations of ozone at ground level in the atmosphere. The official Mexican standard for ozone concentration in the air (0.11 ppm, one hour, once every 3 years) has been exceeded more than 300 days per year. Ozone is formed due to the emissions of nitrogen oxides and hydrocarbons originated from either combustion processes or vapors emanating from fuel handling operations. The results of an evaluation of several domestic devices like stoves and water heaters with L.P. gas as fuel are presented. A method for the evaluation of hydrocarbon emission was developed. A prototype of domestic installation was constructed. The prototype includes L.P. gas tank, domestic stove, water heater, piping and instrumentation. Several combinations of stoves and water heaters were evaluated. The sampling and analysis of hydrocarbons were performed using laboratory equipment originally designed for the evaluation of combustion and evaporative emissions in automobiles: a SHED camera (sealed room equipped with an hydrocarbon analyzer) was used to measure leaks in the prototype of domestic installation and a Constant Volume Sampler (CVS) for the measurement of incomplete combustion emissions. Emission factors were developed for each domestic installation.

  18. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments [OSTI]

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  19. Teleseismic-Seismic Monitoring At New River Area (DOE GTP) |...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At New...

  20. Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE...

    Open Energy Info (EERE)

    Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE GTP)...

  1. Wide-area, real-time monitoring and visualization system

    DOE Patents [OSTI]

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  2. Wide-area, real-time monitoring and visualization system

    DOE Patents [OSTI]

    Budhraja, Vikram S. (Los Angeles, CA); Dyer, James D. (La Mirada, CA); Martinez Morales, Carlos A. (Upland, CA)

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  3. Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet & Aki, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic...

  4. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect (OSTI)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  5. 300 area TEDF NPDES Permit Compliance Monitoring Plan

    SciTech Connect (OSTI)

    Loll, C.M.

    1995-09-05

    This document presents the 300 Area Treated Effluent Disposal Facility (TEDF) National Pollutant Discharge Elimination System (NPDES) Permit Compliance Monitoring Plan (MP). The MP describes how ongoing monitoring of the TEDF effluent stream for compliance with the NPDES permit will occur. The MP also includes Quality Assurance protocols to be followed.

  6. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    SciTech Connect (OSTI)

    Yvonne Townsend

    2000-05-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste.

  7. Cybersecurity Intrusion Detection and Security Monitoring for Field Area Networks

    Office of Environmental Management (EM)

    Cybersecurity Intrusion Detection and Security Monitoring for Field Area Networks Continuous security validation, intrusion detection, and situational awareness for advanced metering infrastructure and distribution automation Background Advanced metering infrastructure (AMI) and distribution automation (DA) field area networks (FANs) are among the largest, possibly most complex, networks operated by utilities in the United States. Exploitable vulnerabilities in AMI and DA systems may arise from

  8. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area. Urban Heat Island Versus Aerosol Effects

    SciTech Connect (OSTI)

    Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Lai-Yung R.; Yang, Xiuqun

    2015-10-23

    Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with the latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.

  9. Metropolitan Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The Program promotes exchanging management and technical information among area officials, ... It also demonstrates civic leadership and can generate positive publicity. Large volumes ...

  10. RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    327-33 a a RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE 0 NEVADA TEST SITE (JANUARY 1986 THROUGH DECEMBER 1986) BANEL A. GONZALEZ HEALTH PHY%ICIST SePTEMl3ER 1987 WORK PERFORMED UNDER CONTRACT NO. DE-ACXM-84-84NV10327 REYNOLDS ELECTRICAL & ENGINEERING CO., INC. POST OFFICE BOX 14400 LAS VEGAS, NV 89114 DOE/NV/10327-33 RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE NEVADA TEST SITE (JANUARY 1986 THROUGH DECEMBER 1986) Daniel A. Gonzalez Health Physicist

  11. 2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Y. E. Townsend

    2003-06-01

    Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

  12. Case history of implementation of conservation program in a multitude of diverse buildings in the metropolitan area

    SciTech Connect (OSTI)

    Khan, S.M.

    1982-06-01

    This paper outlines an energy conservation program undertaken by Jazco Corporation. Monitoring techniques were based on a calculated energy norm. Abnormalities, internal heat load, and switch-over temperature were also established. An actual physical audit verified the results. HVAC systems were found to be incompatible. Most boilers were derated. An electronic economizer cycle was installed. Occupied temperature setting, night temperature setback, dynamic load control, demand control, were all instrumented with savings. Microprocessor-based systems replaced main frame computers at a fraction of the cost. It was found that New York state lighting standards are good except where frequency of use is low.

  13. Final report for "Characterization of Fine Particulate Matter (PM) and secondary PM Precursor Gases in the Mexico City Metropolitan Area"

    SciTech Connect (OSTI)

    Prof. Jose-Luis Jimenez

    2009-05-18

    The objectives of this funded project were (a) to further analyze the data collected by our group and collaborators in Mexico City during the MCMA-2003 field campaign, with the goal of further our understanding of aerosol sources and processes; and (b) to deploy several advanced instruments, including the newly developed high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and thermal-denuder (TD), during the MILAGRO/MAX-Mex/MCMA-2006 field campaign, and to analyze those data (together with the 2003 data) to provide additional insights on the formation and transformation of aerosols in the Mexico City area. These goals were addressed in collaboration with our project partners, MIT/Molina Center, and Aerodyne Research. Overall this project was very successful, resulting on 22+ journal papers including six highly cited papers and three papers that are the most cited in their respective journals (out of several thousand papers) since the year in which they were published. Multiple discoveries, such as the the underestimation of SOA in urban areas even for short photochemical ages, the demonstration that urban POA is of similar or higher volatility than urban SOA, and the first analysis of organic aerosol elemental composition in real-time have been recently published. Several dozen presentations at major US and international conferences and seminars also acknowledged this grant.

  14. 300 Area TEDF NPDES Permit Compliance Monitoring Plan

    SciTech Connect (OSTI)

    Loll, C.M.

    1994-10-13

    This monitoring plan describes the activities and methods that will be employed at the 300 Area Treated Effluent Disposal Facility (TEDF) in order to ensure compliance with the National Discharge Elimination System (NPDES) permit. Included in this document are a brief description of the project, the specifics of the sampling effort, including the physical location and frequency of sampling, the support required for sampling, and the Quality Assurance (QA) protocols to be followed in the sampling procedures.

  15. L-Area Reactor - 1993 annual - groundwater monitoring report

    SciTech Connect (OSTI)

    Chase, J.A.

    1994-09-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in L Area: the L-Area Acid/Caustic Basin (four LAC wells), L-Area Research Wells in the southern portion of the area (outside the fence; three LAW wells), the L-Area Oil and Chemical Basin (four LCO wells), the L-Area Disassembly Basin (two LDB wells), the L-Area Burning/Rubble Pit (four LRP wells), and the L-Area Seepage Basin (four LSB wells). During 1993, tetrachloroethylene was detected above its drinking water standard (DWS) in the LAC, LAW, LCO, and LDB well series. Lead exceeded its 50 {mu}g/L standard in the LAW, LDB, and LRP series, and tritium was above its DWS in the LAW, LCO, and LSB series. Apparently anomalous elevated levels of the common laboratory contaminant bis(2-ethylhexyl)phthalate were reported during first quarter in one well each in the LAC series and LCO series, and during third quarter in a different LCO well. Extensive radionuclide analyses were performed during 1993 in the LAC, LAW, and LCO well series. No radionuclides other than tritium were reported above DWS or Flag 2 criteria.

  16. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    SciTech Connect (OSTI)

    Black, S. C.; Grossman, R. F.; Mullen, A. A.; Potter, G. D.; Smith, D. D.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982.

  17. Radiation Monitoring Data from Fukushima Area - 3/22/11 | Department of

    Energy Savers [EERE]

    Energy 2/11 Radiation Monitoring Data from Fukushima Area - 3/22/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. File AMS_Data_for_USDoS__March22_1530_JLC.pptx More Documents & Publications Radiation Monitoring Data from Fukushima Area - 3/25/11 Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area - 4/4

  18. Radiation Monitoring Data from Fukushima Area - 4/22/11 | Department of

    Energy Savers [EERE]

    Energy 22/11 Radiation Monitoring Data from Fukushima Area - 4/22/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. File 042111__AMS_Data_April_21__v1.pptx More Documents & Publications Radiation Monitoring Data from Fukushima Area - 4/7/11 Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area - 4/18

  19. Radiation Monitoring Data from Fukushima Area - 4/4/11 | Department of

    Energy Savers [EERE]

    Energy 4/11 Radiation Monitoring Data from Fukushima Area - 4/4/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. File AMS_Data_April_4__v1.pptx More Documents & Publications Radiation Monitoring Data from Fukushima Area - 4/22/11 Radiation Monitoring Data from Fukushima Area - 4/7/11 Radiation Monitoring Data from Fukushima Area

  20. Radiation Monitoring Data from Fukushima Area - 4/7/11 | Department of

    Energy Savers [EERE]

    Energy 4/7/11 Radiation Monitoring Data from Fukushima Area - 4/7/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. File 040711__AMS_Data_April_7__v3.pptx More Documents & Publications Radiation Monitoring Data from Fukushima Area - 4/22/11 Radiation Monitoring Data from Fukushima Area - 4/4/11 Radiation Monitoring Data from Fukushima Area - 3/29

  1. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    SciTech Connect (OSTI)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  2. Climate Action Champions: Metropolitan Washington Council of Governments,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC, MD, and VA | Department of Energy Metropolitan Washington Council of Governments, DC, MD, and VA Climate Action Champions: Metropolitan Washington Council of Governments, DC, MD, and VA The Metropolitan Washington Council of Governments (COG) is an independent, nonprofit association that brings area leaders together to address major regional issues in the District of Columbia, suburban Maryland, and Northern Virginia. COG and its member governments seek to create a more accessible,

  3. Radiation Monitoring Data from Fukushima Area - 4/18/11 | Department of

    Energy Savers [EERE]

    Energy 4/18/11 Radiation Monitoring Data from Fukushima Area - 4/18/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. File 041811__AMS_Data_April_18__v1.pptx More Documents & Publications Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area - 3

  4. Radiation Monitoring Data from Fukushima Area -5/6/11 | Department of

    Energy Savers [EERE]

    Energy 5/6/11 Radiation Monitoring Data from Fukushima Area -5/6/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. File 050611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents & Publications Radiation Monitoring Data from Fukushima Area Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant Radiation Monitoring Data from Fukushima Area - 5/13

  5. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    SciTech Connect (OSTI)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G.

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  6. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    SciTech Connect (OSTI)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  7. Nevada Test Site 2000 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Yvonne Townsend

    2001-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2000 was an average rainfall year: rainfall totaled 167 mm (6.6 in) at the Area 3 RWMS (annual average is 156 mm [6.5 in]) and 123 mm (4.8 in) at the Area 5 RWMS (annual average is 127 mm [5.0 in]). Vadose zone monitoring data indicate that 2000 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2000 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing well at isolating buried waste.

  8. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments.

  9. Teleseismic-Seismic Monitoring At Geysers Area (Zucca, Et Al...

    Open Energy Info (EERE)

    Monitoring Activity Date Usefulness useful DOE-funding Unknown References J. J. Zucca, L. J. Hutchings, P. W. Kasameyer (1994) Seismic Velocity And Attenuation...

  10. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.; Horton, Duane G.

    2001-01-18

    This document describes the interim status groundwater monitoring plan for Waste Management Area A-AX.

  11. Radiation Monitoring Data from Fukushima Area - 5/13/11 | Department of

    Energy Savers [EERE]

    Energy 5/13/11 Radiation Monitoring Data from Fukushima Area - 5/13/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. File 051311__Joint_DOE_GoJ_AMS_Train_Data_FINAL_v2_0.pptx More Documents & Publications Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area -5/6

  12. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

  13. Teleseismic-Seismic Monitoring At Coso Geothermal Area (2005...

    Open Energy Info (EERE)

    over a longer period of time Notes The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides...

  14. Nevada Test Site, 2006 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    David B. Hudson

    2007-06-30

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2006 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2006; Warren and Grossman, 2007; National Security Technologies, LLC, 2007). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2006 totaled 98.6 millimeters (mm) (3.9 inches [in.]) at the Area 3 RWMS and 80.7 mm (3.2 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 remains at the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of 2005. The vegetated final cover at U-3ax/bl continues to remove moisture by evapotranspiration. There was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation or were vegetated. Water drained from the bare-soil Area 3 drainage lysimeter that received three times natural precipitation. All 2006 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  15. Citizen radiation monitoring program for the TMI area

    SciTech Connect (OSTI)

    Baratta, A.J.; Gricar, B.G.; Jester, W.A.

    1981-07-01

    The purpose of the program was to develop a system for citizens to independently measure radiation levels in and around their communities. This report describes the process by which the Program was developed and operated. It also presents the methods used to select and train the citizens in making and interpreting the measurements. The test procedures used to select the equipment for the program are described as are the results of the testing. Finally, the actual monitoring results are discussed along with the citizens' reactions to the program.

  16. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    David B. Hudson, Cathy A. Wills

    2006-08-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover. Precipitation did not infiltrate to the deepest sensor on the vegetated final cover at U-3ax/bl. Water drained from all Area 3 drainage lysimeters that received three times natural precipitation, but there was no drainage from the lysimeters that received only natural precipitation. Biota monitoring data show that tritium is the primary radionuclide accessible to plants and animals. Other human-produced radionuclides in the tissues of plant and animal samples from both RWMSs were not found at concentrations higher than in biota samples collected at control locations. This suggests that sampled animals did not intrude into the waste and that waste did not move to where it is accessible to plants or animals.

  17. The Metropolitan Water District of Southern California

    Broader source: Energy.gov (indexed) [DOE]

    ERcomments@hq.doe.gov Comments on the Department of Energy's Quadrennial Energy Review: Water-Energy Nexus The Metropolitan Water District of Southern California (Metropolitan) is...

  18. Los Angeles County Metropolitan Transportation Authority Metro...

    Open Energy Info (EERE)

    County Metropolitan Transportation Authority Metro Jump to: navigation, search Name: Los Angeles County Metropolitan Transportation Authority (Metro) Place: Los Angeles, California...

  19. Statistical Evaluation of Effluent Monitoring Data for the 200 Area Treated Effluent Disposal Facility

    SciTech Connect (OSTI)

    Chou, Charissa J; Johnson, Vernon G

    2000-03-08

    This report updates the original effluent variability study for the 200 Area Treated Effluent Disposal Facility (TEDF) and provides supporting justification for modifying the effluent monitoring portion of the discharge permit. Four years of monitoring data were evaluated and used to statistically justify changes in permit effluent monitoring conditions. As a result, the TEDF effluent composition and variability of the effluent waste stream are now well defined.

  20. Radiation Monitoring Data from Fukushima Area - 3/25/11 | Department of

    Energy Savers [EERE]

    Energy 5/11 Radiation Monitoring Data from Fukushima Area - 3/25/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. File AMS_Data_March25__UDPATED1

  1. Radiation Monitoring Data from Fukushima Area - 3/29/11 | Department of

    Energy Savers [EERE]

    Energy 9/11 Radiation Monitoring Data from Fukushima Area - 3/29/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. File AMS_Data_March29_FINAL

  2. Nevada Test Site 2009 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2009 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NTS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 87.6 millimeters (mm) (3.45 inches [in.]) of precipitation at the Area 3 RWMS during 2009 is 43 percent below the average of 152.4 mm (6.00 in.), and the 62.7 mm (2.47 in.) of precipitation at the Area 5 RWMS during 2009 is 49 percent below the average of 122.5 mm (4.82 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Data from the automated vadose zone monitoring system for the operational waste pit covers show that moisture from precipitation did not percolate below 90 centimeters (cm) (3 feet [ft]) before being removed by evaporation. Moisture from precipitation did not percolate below 30 cm (1 ft) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2009, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation or were vegetated, but water drained from the bare-soil Area 3 drainage lysimeter that received 3 times natural precipitation. Elevated tritium levels in plants and animals sampled from the Area 3 and Area 5 RWMSs show tritium uptake by the biota, but the low levels of other radionuclides do not indicate that there has been biota intrusion into the waste. All 2009 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  3. Nevada Test Site 2007 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-06-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2007 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2007a; 2008; Warren and Grossman, 2008). Direct radiation monitoring data indicate exposure levels at the RWMSs are at background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. A single gamma spectroscopy measurement for cesium was slightly above the minimum detectable concentration, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. The measured levels of radionuclides in air particulates are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 136.8 millimeters (mm) (5.39 inches [in.]) of precipitation at the Area 3 RWMS during 2007 is 13 percent below the average of 158.1 mm (6.22 in.), and the 123.8 mm (4.87 in.) of precipitation at the Area 5 RWMS during 2007 is 6 percent below the average of 130.7 mm (5.15 in.). Soil-gas tritium monitoring at borehole GCD-05U continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward movement percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Data from the automated vadose zone monitoring system for the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of 2005. The vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS effectively removes moisture from the cover by evapotranspiration. During 2007, there was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation or were vegetated but water drained from the bare-soil Area 3 drainage lysimeter that received 3 times natural precipitation. Elevated tritium levels in plants and animals sampled from the Area 3 and Area 5 RWMSs show tritium uptake by the biota, but the low levels of other radionuclides do not suggest that there has been intrusion into the waste. All 2007 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  4. Nevada National Security Site 2011 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-07-31

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2011 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. During the last 2 weeks of March 2011, gamma spectroscopy results for air particles showed measurable activities of iodine-131 (131I), cesium-134 (134Cs), and cesium-137 (137Cs). These results are attributed to the release of fission products from the damaged Fukushima Daiichi power plant in Japan. The remaining gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below minimum detectable concentrations. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. The 86.3 millimeters (mm) (3.40 inches [in.]) of precipitation at the Area 3 RWMS during 2011 is 44% below the average of 154.1 mm (6.07 in.), and the 64.8 mm (2.55 in.) of precipitation at the Area 5 RWMS during 2011 is 47% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 RWMS operational waste covers was not done during 2011 due to construction of the final evapotranspiration cover at these monitoring locations. Moisture from precipitation did not percolate below 122 centimeters (4 feet) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2011, there was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Ten percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2011 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  5. Nevada National Security Site 2010 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-06-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2010 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2010a; 2010b; 2011). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 246.9 millimeters (mm) (9.72 inches [in.]) of precipitation at the Area 3 RWMS during 2010 is 56 percent above the average of 158.7 mm (6.25 in.), and the 190.4 mm (7.50 in.) of precipitation at the Area 5 RWMS during 2010 is 50 percent above the average of 126.7 mm (4.99 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Data from the automated vadose zone monitoring system for the operational waste pit covers show that moisture from precipitation did not percolate below 90 centimeters (cm) (3 feet [ft]) before being removed by evaporation. Moisture from precipitation did not percolate below 61 cm (2 ft) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2010, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Water drained from both the bare-soil drainage lysimeter and the invader species drainage lysimeter that received 3 times natural precipitation. All 2010 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  6. Nevada National Security Site 2013 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, D. B.

    2014-08-19

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2013 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2013; 2014a; 2014b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are close to detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 105.8 millimeters (mm) (4.17 inches [in.]) of precipitation at the Area 3 RWMS during 2013 is 30% below the average of 150.3 mm (5.92 in.), and the 117.5 mm (4.63 in.) of precipitation at the Area 5 RWMS during 2013 is 5% below the average of 123.6 mm (4.86 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2013, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3-times natural precipitation. All 2013 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  7. Nevada National Security Site 2012 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David B.

    2013-09-10

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2012 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2012; 2013a; 2013b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 133.9 millimeters (mm) (5.27 inches [in.]) of precipitation at the Area 3 RWMS during 2012 is 12% below the average of 153.0 mm (6.02 in.), and the 137.6 mm (5.42 in.) of precipitation at the Area 5 RWMS during 2012 is 11% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2012, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2012 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  8. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    SciTech Connect (OSTI)

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L.

    1982-08-01

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

  9. F-Area Acid/Caustic Basin groundwater monitoring report: Second quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, samples from the six FAC monitoring wells at the F-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, volatile organic compounds, and other constituents. Monitoring results that exceeded the US Environmental Protection Agency's Primary Drinking Water Standards (PDWS) or the Savannah River Site flagging criteria or turbidity standards during the quarter are the focus of this report.

  10. F-Area Acid/Caustic Basin groundwater monitoring report: Second quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, samples from the six FAC monitoring wells at the F-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, volatile organic compounds, and other constituents. Monitoring results that exceeded the US Environmental Protection Agency`s Primary Drinking Water Standards (PDWS) or the Savannah River Site flagging criteria or turbidity standards during the quarter are the focus of this report.

  11. Facility effluent monitoring plan for K Area Spent Fuel. Revision 1

    SciTech Connect (OSTI)

    Hunacek, G.S.

    1995-09-01

    The scope of this document includes program plans for monitoring and characterizing radioactive and nonradioactive hazardous materials discharged in the K Area effluents. This FEMP includes complete documentation for both airborne and liquid effluent monitoring systems that monitor radioactive and nonradioactive hazardous pollutants that could be discharged to the environment under routine and/or upset conditions. This documentation is provided for each K Area facility that uses, generates, releases, or manages significant quantities of radioactive and nonradioactive hazardous materials that could impact public and employee safety and the environment. This FEW describes the airborne and liquid effluent paths and the associated sampling and monitoring systems of the K Area facilities. Sufficient information is provided on the effluent characteristics and the effluent monitoring systems so that a compliance assessment against requirements may be performed. Adequate details are supplied such that radioactive and hazardous material source terms may be related to specific effluent streams which are, in turn, related to discharge points and finally compared to the effluent monitoring system capability.

  12. Revised ground-water monitoring compliance plan for the 300 area process trenches

    SciTech Connect (OSTI)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  13. 2008 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-13

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) including calendar year 2008 results. Each of the three Pilot Wells was sampled on March 11, 2008, and September 10, 2008. These wells were sampled for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also monitored. Results from all samples collected in 2008 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. Other information in the report includes an updated Cumulative Chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  14. Chicago Metropolitan Agency for Planning Data Dashboard

    Broader source: Energy.gov [DOE]

    The data dashboard for Chicago Metropolitan Agency for Planning, a partner in the Better Buildings Neighborhood Program.

  15. H-Area, K-Area, and Par Pond Sewage Sludge Application Sites groundwater monitoring report. Third quarter 1994

    SciTech Connect (OSTI)

    1995-01-01

    Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control (SCDHEC) Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the quired by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. No constituents exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. Aluminum and iron were above Flag 2 criteria in one or more wells in the three sites during third quarter 1994. These constituents were not analyzed during the previous quarter. Third quarter results are similar to results for first quarter 1994.

  16. Environmental monitoring plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1995-09-01

    This document presents an Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG 6) at Oak Ridge National Laboratory (ORNL). This document updates a draft monitoring plan developed in 1993. The draft plan was never finalized awaiting resolution of the mechanisms for addressing RCRA concerns at a site where the CERCLA process resulted in a decision to defer action, i.e., postpone closure indefinitely. Over the past two years the Tennessee Department of Environment and Conservation (TDEC), US Department of Energy (DOE), and US Environmental Protection Agency (EPA) Region IV, have agreed that RCRA authority at the site will be maintained through a post- closure permit; ``closure`` in this case referring to deferred action. Both a Revised Closure Plan (DOE 1995a) and a Post-Closure Permit Application (DOE 1995b) have been developed to document this agreement; relevant portions of the EMP will be included in the RCRA Post-Closure Permit Application. As the RCRA issues were being negotiated, DOE initiated monitoring at WAG 6. The purpose of the monitoring activities was to (1) continue to comply with RCRA groundwater quality assessment requirements, (2) install new monitoring equipment, and (3) establish the baseline conditions at WAG 6 against which changes in contaminant releases could be measured. Baseline monitoring is scheduled to end September 30, 1995. Activities that have taken place over the past two years are summarized in this document.

  17. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  18. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Narbutovskih, Susan M.

    2001-01-01

    This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

  19. H-Area seepage basins groundwater monitoring report. Volume 1, First and second quarters 1995

    SciTech Connect (OSTI)

    1995-09-01

    Groundwater at the H-Area Seepage Basins (HASB) is monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SCl-890-008-989. The monitoring wells network is composed of 130 HSB wells that monitor the three separate hydrostratigraphic units that make up the uppermost aquifer beneath the HASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Data from 16 HSL wells are included in this report only to provide additional information for the HASB. Monitoring results are compared to the SCDHEC Groundwater Protection Standard (GWPS), established in Appendix IIID-A of the permit. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, and zinc) during the first half of 1995. Elevated constituents were found primarily in Aquifer Zone IIB and in the upper portion of Aquifer Zone IIB. However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone IIB, and Aquifer Unit IIA.

  20. Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-01-01

    This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

  1. 2012 Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443

    SciTech Connect (OSTI)

    2013-04-01

    The Central Nevada Test Area was the site of a 0.2- to 1-megaton underground nuclear test in 1968. The surface of the site has been closed, but the subsurface is still in the corrective action process. The corrective action alternative selected for the site was monitoring with institutional controls. Annual sampling and hydraulic head monitoring are conducted as part of the subsurface corrective action strategy. The site is currently in the fourth year of the 5-year proof-of-concept period that is intended to validate the compliance boundary. Analytical results from the 2012 monitoring are consistent with those of previous years. Tritium remains at levels below the laboratory minimum detectable concentration in all wells in the monitoring network. Samples collected from reentry well UC-1-P-2SR, which is not in the monitoring network but was sampled as part of supplemental activities conducted during the 2012 monitoring, indicate concentrations of tritium that are consistent with previous sampling results. This well was drilled into the chimney shortly after the detonation, and water levels continue to rise, demonstrating the very low permeability of the volcanic rocks. Water level data from new wells MV-4 and MV-5 and recompleted well HTH-1RC indicate that hydraulic heads are still recovering from installation and testing. Data from wells MV-4 and MV-5 also indicate that head levels have not yet recovered from the 2011 sampling event during which several thousand gallons of water were purged. It has been recommended that a low-flow sampling method be adopted for these wells to allow head levels to recover to steady-state conditions. Despite the lack of steady-state groundwater conditions, hydraulic head data collected from alluvial wells installed in 2009 continue to support the conceptual model that the southeast-bounding graben fault acts as a barrier to groundwater flow at the site.

  2. F-area seepage basins groundwater monitoring report. Volume 1. First and second quarters 1995

    SciTech Connect (OSTI)

    1995-09-01

    Groundwater at the F-Area Seepage Basins (FASB) is monitored in compliance with Module 111, Section C, of South Carolina Hazardous Waste Permit SCl-890-008-989, effective November 2, 1992. The monitoring well network is composed of 86 FSB wells and well HSB 85A. These wells are screened in the three hydrostratigraphic Units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1900. Data from 9 FSL wells are included in this report only to provide additional information for this area; the FSL wells are not part of Permit SCl-890-008-989. Monitoring results are compared to the SCDHEC Groundwater Protection Standard (GWPS), which is specified in the approved F-Area Seepage Basins Part B permit (November 1992). Historically and currently, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the first half of 1995, notably aluminum, iodine-129, pH, strontium-90, and zinc. The elevated constituents are found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the first half of 1995.

  3. 2009 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    SciTech Connect (OSTI)

    2010-09-01

    This report presents the 2009 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of CNTA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site from October 2008 through December 2009. It also represents the first year of the enhanced monitoring network and begins the new 5-year proof-of-concept monitoring period that is intended to validate the compliance boundary

  4. 2009 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447

    SciTech Connect (OSTI)

    2010-03-01

    This report presents the 2009 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended February 2008) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes monitoring in support of site closure. This report summarizes investigation activities associated with CAU 447 that were conducted at the PSA during fiscal year 2009.

  5. Metropolitan Edison Co (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    Edison Co (Pennsylvania) Jump to: navigation, search Name: Metropolitan Edison Co Place: Pennsylvania Phone Number: 1-800-545-7741 Website: www.firstenergycorp.comconten Twitter:...

  6. Climate Action Champions: Metropolitan Washington Council of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Metropolitan Washington Council of Governments (COG) and its member governments are pioneering efforts to address and prepare for climate change and are recognized leaders in ...

  7. H-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995

    SciTech Connect (OSTI)

    1995-06-01

    During first quarter 1995, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin were analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, major ions, radionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during third quarter are the focus of this report. Tritium exceeded the final PDWS in all four HAC wells during first quarter 1995. Carbon tetrachloride exceeded the final PDWS in well HAC 4. Aluminum exceeded its Flag 2 criterion in all four HAC wells. Iron was elevated in wells HAC 2 and 3. Total organic halogens was elevated in well HAC 3. The HAC 3 sample also exceeded the SRS turbidity standard. Groundwater flow direction in the water table beneath the H-Area Acid/Caustic Basin was to the northwest during first quarter 1995. This data is consistent with previous quarters, when the flow direction has been to the northwest or the north- northwest.

  8. H-Area Seepage Basins groundwater monitoring report. Volume 1, First and second quarters 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    During the first half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit. Samples were collected from 130 wells that monitor the three separate hydrostratigraphic units that make up the uppermost aquifer beneath the HASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B Post-Closure Care Permit Application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. HASB`s Groundwater Protection Standard is the standard for comparison. Historically, as well as currently, gross alpha, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the HASB, notably aluminum, iodine-129, mercury, nickel-63, strontium-89, strontium-90, technetium-99, and zinc during the first half of 1993. Elevated constituents are found primarily in Aquifer Zone IIB{sub 2} (Water Table) and in the upper portion of Aquifer Zone IIB{sub 1}. However, constituents exceeding standards also occur in several wells screened in the lower portion of Aquifer Zone IIB{sub 1} and Aquifer Unit IIA.

  9. 2012 Groundwater Monitoring Report Project Shoal Area Subsurface Corrective Action Unit 447

    SciTech Connect (OSTI)

    2013-03-01

    The Project Shoal Area (PSA) in Nevada was the site of a 12-kiloton underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. Analytical results from the 2012 monitoring are consistent with those of the previous years, with tritium detected only in well HC-4. The tritium concentration in groundwater from well HC-4 remains far below the U.S. Environmental Protection Agency-established maximum contaminant level of 20,000 picocuries per liter. Concentrations of total uranium and gross alpha were also detected during this monitoring period, with uranium accounting for nearly all the gross alpha activity. The total uranium concentrations obtained from this monitoring period were consistent with previous results and reflect a slightly elevated natural uranium concentration, consistent with the mineralized geologic terrain. Isotopic ratios of uranium also indicate a natural source of uranium in groundwater, as opposed to a nuclear-test-related source. Water level trends obtained from the 2012 water level data were consistent with those of previous years. The corrective action strategy for the PSA is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the current monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. While water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized.

  10. Nevada National Security Site 2010 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-01-01

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2010 results. During 2010, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 10 and August 10, 2010; at UE5PW-2 on March 10, August 10, and August 25, 2010; and at UE5PW-3 on March 31, August 10, and August 25, 2010. Static water levels were measured at each of the three pilot wells on March 1, April 26, August 9, and November 9, 2010. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2010 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  11. Nevada National Security Site 2012 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-02-11

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2012 results. During 2012, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Groundwater samples were collected at UE5PW-1, UE5PW-2, and UE5PW-3 on March 21, August 7, August 21, and September 11, 2012, and static water levels were measured at each of the three pilot wells on March 19, June 6, August 2, and October 15, 2012. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Final results from samples collected in 2012 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  12. F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    SciTech Connect (OSTI)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B{sub 2} and Aquifer Zone 2B{sub 1} wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988.

  13. Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-01-19

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  14. Method and device for remotely monitoring an area using a low peak power optical pump

    DOE Patents [OSTI]

    Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.

    2014-07-22

    A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.

  15. Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-02-27

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  16. Nevada National Security Site 2014 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David

    2015-02-19

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2014 results. Analysis results for leachate contaminants collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included. During 2014, groundwater samples were collected and static water levels were measured at three wells surrounding the Area 5 RWMS. Groundwater samples were collected at wells UE5PW-1, UE5PW-2, and UE5PW-3 on March 11 and August 12, 2014, and static water levels were measured at each of these wells on March 10, June 2, August 11, and October 14, 2014. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. General water chemistry (cations and anions) was also measured. Results from samples collected in 2014 are within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. The data from the shallow aquifer indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS, and there were no significant changes in measured groundwater parameters compared to previous years. Leachate from above the primary liner of Cell 18 drains into a sump and is collected in a tank at the ground surface. Cell 18 began receiving waste in January 2011. Samples were collected from the tank when the leachate volume approached the 3,000-gallon tank capacity. Leachate samples have been collected 16 times since January 2011. During 2014, samples were collected on February 25, March 5, May 20, August 12, September 16, November 11, and December 16. Each leachate sample was analyzed for toxicity characteristic contaminants and polychlorinated biphenyls (PCB). Beginning with the sample from July 31, 2013, pH and specific conductance were also measured. Leachate analysis results show no evidence of contamination. Results for toxicity characteristic contaminants are all below regulatory levels and analysis quantification limits. No quantifiable PCB levels were detected in any sample. Results for pH and specific conductance are also within expected ranges. After analysis, leachate was pumped from the collection tank and used in Cell 18 for dust control. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  17. Chicago Metropolitan Agency for Planning Summary of Reported Data

    Broader source: Energy.gov [DOE]

    Summary of data reported by Better Buildings Neighborhood Program partner Chicago Metropolitan Agency for Planning.

  18. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  19. The Metropolitan Water District of Southern California

    Broader source: Energy.gov (indexed) [DOE]

    General Manager October 9, 2014 Office of Energy Policy and Systems Analysis EPSA-60, QER Meeting Comments U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585-0121 QERcomments@hq.doe.gov Comments on the Department of Energy's Quadrennial Energy Review: Water-Energy Nexus The Metropolitan Water District of Southern California (Metropolitan) is pleased to provide these comments to the U.S. Department of Energy (DOE) on issues surrounding water use in the energy sector and

  20. SITE CHARACTERIZATION AND MONITORING DATA FROM THE AREA 5 PILOT WELLS

    SciTech Connect (OSTI)

    BECHTEL NEVADA; U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2005-09-01

    Three exploratory boreholes were drilled and completed to the uppermost alluvial aquifer in Area 5 of the Nevada Test Site, Nye County, Nevada, in 1992. The boreholes and associated investigations were part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level, mixed, and high-specific-activity waste at this site. This series of boreholes was specifically designed to characterize the hydrogeology of the thick vadose zone and to help define the water quality and hydraulic properties of the uppermost aquifer. Wells UE5PW-1, UE5PW-2, and UE5PW-3 are located in a triangular array near the southeast, northeast, and northwest corners, respectively, of the approximately 2.6-square-kilometer Area 5 Radioactive Waste Management Site to give reasonable spatial coverage for sampling and characterization, and to help define the nearly horizontal water table. Two of the wells, UE5PW-1 and UE5PW-2, penetrated only unconsolidated alluvial materials. The third well, located closer to the margin of the basin, penetrated both alluvium and underlying ash-flow and bedded tuff units. The watertable was encountered at the elevation of approximately 734 meters. The results of laboratory testing of core and drill cuttings samples indicate that the mineralogical, material, and hydrologic properties of the alluvium are very similar within and between boreholes. Additional tests on the same core and drill cuttings samples indicate that hydrologic conditions within the alluvium are also similar between pilot wells. Both core and drill cuttings samples are dry (less than 10 percent water content by weight) throughout the entire unsaturated section of alluvium, and water content increases slightly with depth in each borehole. Water potential measurements on core samples show a large positive potential gradient (water tends to move upward, rather than downward) to a depth of approximately 30.5 meters in each borehole, and a nearly zero potential gradient throughout the remaining portion of the vadose zone. These hydrologic condition data and hydrologic property data indicate that little net downward liquid flow is occurring (if any) through the thick vadose zone. Conversely, gas flow by diffusion, and possibly by advection, may be an important transport mechanism. Environmental tracer measurements made on water extracted from geologic samples suggest that water vapor in the upper portion of the vadose zone is moving upward in response to evaporative demand of the present arid climate. Preliminary water quality data indicate that the key hazardous and radioactive constituents do not exceed appropriate standards. Monitoring instruments and equipment were installed in each pilot well for making in-situ measurements of key hydrologic and pneumatic parameters and to monitor change in these parameters over time.

  1. F-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1

    SciTech Connect (OSTI)

    1997-03-01

    SRS monitors groundwater quality at the F-Area HWMF as mandated by the permit and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the permit. The facility is describes in the introduction to Module III, Section C, of the permit. The F-Area HWMF well network monitors three district hydrostratigraphic units in the uppermost aquifer beneath the facility. The hydrostratigraphy at the F-Area HWMF is described in permit section IIIC.H.2, and the groundwater monitoring system is described in IIIC.H.4 and Appendix IIIC-B. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act (RCRA) Part B post-closure care permit application for the F-Area HWMF submitted to SCDHEC in December 1990. Sampling and analysis are conducted as required by section IIIC.H.6 at the intervals specified in permit sections IIIC.H.10 and Appendix IIIC-D for the constituents specified in Appendix IIIC-D. Groundwater quality is compared to the GWPS list in section IIIC.H.1 and Appendix IIIC-A.

  2. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    A. T. Urbon

    2001-08-01

    The Area 12 Fleet Operations Steam Cleaning site is located in the southeast portion of the Area 12 Camp at the Nevada Test Site (Figure 1). This site is identified in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 23, 2001. Because of questionable representativeness and precision of the results, the site was resampled on June 12, 2001. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the December 1997 Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1997). If after six years the rate of degradation appears to be so slow that the greatest concentration of total petroleum hydrocarbons (TPH) present at the site would not decay within 30 years of the site closure, the site will be reevaluated with consideration to enriching the impacted soil at the site to enhance the degradation process. A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report, samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in TPH concentrations at the site. Sampling results from 2000 revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, the data results from 2000 were not directly correlated with previous results. Post-closure monitoring activities for 2001 consisted of the following: Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2); Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]); Site inspection to evaluate the condition of the fencing and signs; and Preparation and submittal of the Post-Closure Monitoring Report.

  3. Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  4. Metropolitan Water District of S CA | Open Energy Information

    Open Energy Info (EERE)

    Metropolitan Water District of S CA Jump to: navigation, search Name: Metropolitan Water District of S CA Place: California Phone Number: (213) 217-6000 Website: www.mwdh2o.com...

  5. Alternative Fuels Data Center: Metropolitan Utilities District Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles With Natural Gas Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center:

  6. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  7. Survey of Revegetated Areas on the Fitzner/Eberhardt Arid Lands Ecology Reserve: Status and Initial Monitoring Results

    SciTech Connect (OSTI)

    Downs, Janelle L.; Link, Steven O.; Rozeboom, Latricia L.; Durham, Robin E.; Cruz, Rico O.; Mckee, Sadie A.

    2011-09-01

    During 2010, the U.S. Department of Energy (DOE), Richland Operations Office removed a number of facilities and debris from the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument (HRNM). Revegetation of disturbed sites is necessary to stabilize the soil, reduce invasion of these areas by exotic weeds, and to accelerate re-establishment of native plant communities. Seven revegetation units were identified on ALE based on soils and potential native plant communities at the site. Native seed mixes and plant material were identified for each area based on the desired plant community. Revegetation of locations affected by decommissioning of buildings and debris removal was undertaken during the winter and early spring of 2010 and 2011, respectively. This report describes both the details of planting and seeding for each of the units, describes the sampling design for monitoring, and summarizes the data collected during the first year of monitoring. In general, the revegetation efforts were successful in establishing native bunchgrasses and shrubs on most of the sites within the 7 revegetation units. Invasion of the revegetation areas by exotic annual species was minimal for most sites, but was above initial criteria in 3 areas: the Hodges Well subunit of Unit 2, and Units 6 and 7.

  8. Nevada National Security Site 2013 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David B

    2014-02-13

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2013 results. Beginning with this report, analysis results for leachate collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included.

  9. Detection and monitoring of air emissions and emergency response planning within three geographic areas

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report gives the results of air emissions and emergency response planning in the following areas: Baton Rouge/New Orleans; Philadelphia/Wilmington/South Jersey; and Niagara Falls/Buffalo.

  10. Waste Area Group 10, Operable Unit 10-08, Annual Monitoring Status Report for Fiscal Year 2009

    SciTech Connect (OSTI)

    Howard Forsythe

    2010-02-04

    This report documents the status of Fiscal Year 2009 groundwater monitoring performed in Waste Area Group 10 at the U.S. Department of Energy Idaho National Laboratory Site, as identified in the Groundwater Monitoring and Field Sampling Plan for Operable Unit 10-08. Twelve of the fourteen required wells were sampled, and all ten required intervals from the Westbay wells were sampled. Two wells were not sampled because they were in the process of being converted into multiple-sample-interval Westbay wells by the U.S. Geological Survey. Groundwater samples were analyzed for volatile organic compounds identified on the Contract Laboratory Program target analyte list as well as metals (filtered), anions, and radionuclides (i.e., I-129, tritium, Tc-99, gross alpha, gross beta, and Sr-90). No contaminant exceeded maximum contaminant levels in wells along the southern boundary of the Idaho National Laboratory Site or in guard wells. Iron was above its secondary maximum contaminant level of 300 ug/L in one well. The cause of the elevated iron concentration is uncertain. Lead was detected just below its action level. However, the zinc concentration was also elevated in these wells, and the source of the lead is probably galvanized riser pipe in the wells. Once the galvanized pipe is replaced, both lead and zinc concentrations should decline, as has been observed at other Waste Area Group 10 wells.

  11. FY 2000 Tanks Focus Area Corrosion Monitoring Technical Committee Meeting Summary Report

    SciTech Connect (OSTI)

    NORMAN, E.C.

    2000-07-19

    The primary purpose of the annual meeting between the corrosion monitoring personnel at the various DOE sites is to facilitate communications and promote technology transfer between the two sites. The close communications and good spirit of teamwork being exhibited between the parties representing the Hanford and Savannah River Sites has helped the Savannah River Site effort avoid many of the problems encountered during the initial development effort at Hanford. Similar benefits can be expected over the next few years as the ORNL program is developed. Expected products of this meeting as defined in Milestone A.4-1 of TTP RL0-9-WT-41 are reports on the status of technical work at the sites, discussions of emerging technical issues, and results of laboratory experiments and field trials. The formal meeting, informal discussions throughout the week, and the presentation materials shown in the attachment to this document fulfill the expectations of this meeting. At the conclusion of the meeting it was agreed that close communications should continue between the concerned parties at ORNL, SRTC and Hanford. Tentative plans were made to hold a similar meeting in approximately one year.

  12. Area 2: Inexpensive Monitoring and Uncertainty Assessment of CO2 Plume Migration using Injection Data

    SciTech Connect (OSTI)

    Srinivasan, Sanjay

    2014-09-30

    In-depth understanding of the long-term fate of CO? in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO? in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models that reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO? plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO? plume migration in two field projects the In Salah CO? Injection project in Algeria and CO? injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO? plume, the effect of CO?-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.

  13. Chicago Metropolitan Agency for Planning Data Dashboard | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File Chicago Metropolitan Agency for Planning Data Dashboard More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Phoenix, Arizona Data ...

  14. Environmental Radiation Monitoring at the Areas of the Former Military Technical Bases at the Russian Far East - 12445

    SciTech Connect (OSTI)

    Kiselev, Sergey M.; Shandala, Nataliya K.; Titov, Alexey V.; Seregin, Vladimir A.; Akhromeev, Sergey V.; Lucyanec, Anatoly I.; Glinsky, Mark L.; Glagolev, Andrey V.

    2012-07-01

    After termination of operation at the serviced facilities of the nuclear fleet of the former Soviet Union, the Military Technical Base in Sysoeva Bay has been reorganized to the site for SNF and RW temporary storage (STS). The main activities of STS are receipt, storage and transmission to radioactive waste reprocessing. Establishment of the RW management regional centre in the Far-Eastern region at the STS in Sysoeva Bay implies intensification of SNF and RW management in this region that can result in increasing ecological load to the adjacent areas and settlements. Regulatory supervision of the radiation safety at the areas of the Former Military Technical Bases at the Russian Far East is one of the regulatory functions of the Federal Medical Biological Agency (FMBA of Russia). To regulate SNF an RW management and provide the effective response to changing radiation situation, the environmental radiation monitoring system is arranged. For this purpose, wide range of environmental media examinations at the Sysoeva Bay STS was performed by Burnasyan Federal Medical Biophysical Centre - a technical support organization of FMBA of Russia in collaboration with the Federal State Geological Enterprise 'Hydrospecgeology' (Federal Agency for Entrails). Regulation during the RW and SNF management is continuous process, which the FMBA of Russia implements in close cooperation with other Russian responsible authorities - the State Atomic Energy Corporation 'Rosatom' and Federal Agency for Entrails. The Environmental radiation monitoring findings served as a basis for the associated databank arrangement. The radio ecological monitoring system was arranged at the facilities under inspection for the purpose of the dynamic control of the radiation situation. It presupposes regular radiometry inspections in-situ, their analysis and assessment of the radiation situation forecast in the course of the STS remediation main stages. Some new data on the radiation situation at the facilities will appear in future and the prognostic assessment will become more precise. The mentioned natural, practical and theoretical works is a base for the development of the set of regulatory documents to assure radiation protection and safety of workers, public and environment, as well as development of documents to regulate SNF and RW management at the STS facilities. (authors)

  15. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-06-01

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

  16. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect (OSTI)

    Slater, Lee; Day-Lewis, Frederick; Lane, John; Versteeg, Roelof; Ward, Anderson; Binley, Andrew; Johnson, Timothy; Ntarlagiannis, Dimitrios

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in the depth to the Hanford-Ringold inland over a critical region where borehole information is absent, identifying evidence for a continuous depression in the H-R contact between the IFRC and the river corridor. Strong natural contrasts in temperature and specific conductance of river water compared to groundwater at this site, along with periodic river stage fluctuations driven by dam operations, were exploited to yield new insights into the dynamics of groundwater-surface water interaction. Whereas FO-DTS datasets have provided meter-scale measurements of focused groundwater discharge at the riverbed along the corridor, continuous resistivity monitoring has non-invasively imaged spatiotemporal variation in the resistivity inland driven by river stage fluctuations. Time series and time-frequency analysis of FO-DTS and 3D resistivity datasets has provided insights into the role of forcing variables, primarily daily dam operations, in regulating the occurrence of focused exchange at the riverbed and its extension inland. High amplitudes in the DTS and 3D resistivity signals for long periods that dominate the stage time series identify regions along the corridor where stage-driven exchange is preferentially focused. Our work has demonstrated how time-series analysis of both time-lapse resistivity and DTS datasets, in conjunction with resistivity/IP imaging of lithology, can improve understanding of groundwater-surface water exchange along river corridors, offering unique opportunities to connect stage-driven groundwater discharge observed with DTS on the riverbed to stage-driven groundwater and solute fluctuations captured with resistivity inland.

  17. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with windmore » speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less

  18. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relations Plan Long-Term Environmental Stewardship Sustainability Strategy Public Reading Room: Environmental Documents, Reports RELATED NEWS Los Alamos National Laboratory...

  19. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  20. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    SciTech Connect (OSTI)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with wind speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.

  1. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than {approximately}1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network.

  2. Annual Report on Environmental Monitoring Activities for FY 1995 (Baseline Year) at Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-06-01

    This report describes baseline contaminant release conditions for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). The sampling approach and data analysis methods used to establish baseline conditions were presented in ``Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (EMP).`` As outlined in the EMP, the purpose of the baseline monitoring year at WAG 6 was to determine the annual contaminant releases from the site during fiscal year 1995 (FY95) against which any potential changes in releases over time could be compared. The baseline year data set provides a comprehensive understanding of release conditions from all major waste units in the WAG through each major contaminant transport pathway. Due to a mandate to reduce all monitoring work, WAG 6 monitoring was scaled back and reporting efforts on the baseline year results are being minimized. This report presents the quantified baseline year contaminant flux conditions for the site and briefly summarizes other findings. All baseline data cited in this report will reside in the Oak Ridge Environmental Information system (OREIS) database, and will be available for use in future years as the need arises to identify potential release changes.

  3. Evaluation of Using Caged Clams to Monitor Contaminated Groundwater Exposure in the Near-Shore Environment of the Hanford Site 300 Area

    SciTech Connect (OSTI)

    Larson, Kyle B.; Poston, Ted M.; Tiller, Brett L.

    2008-01-31

    The Asiatic clam (Corbicula fluminea) has been identified as an indicator species for locating and monitoring contaminated groundwater in the Columbia River. Pacific Northwest National Laboratory conducted a field study to explore the use of caged Asiatic clams to monitor contaminated groundwater upwelling in the 300 Area near-shore environment and assess seasonal differences in uranium uptake in relation to seasonal flow regimes of the Columbia River. Additional objectives included examining the potential effects of uranium accumulation on growth, survival, and tissue condition of the clams. This report documents the field conditions and procedures, laboratory procedures, and statistical analyses used in collecting samples and processing the data. Detailed results are presented and illustrated, followed by a discussion comparing uranium concentrations in Asiatic clams collected at the 300 Area and describing the relationship between river discharge, groundwater indicators, and uranium in clams. Growth and survival, histology, and other sources of environmental variation also are discussed.

  4. Final report on the waste area grouping perimeter groundwater quality monitoring well installation program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Greene, J.A.

    1991-06-01

    A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included.

  5. Transition from Consultation to Monitoring-NRC's Increasingly Focused Review of Factors Important to F-Area Tank Farm Facility Performance - 13153

    SciTech Connect (OSTI)

    Barr, Cynthia; Grossman, Christopher; Alexander, George; Parks, Leah; Fuhrmann, Mark; Shaffner, James; McKenney, Christepher; Pabalan, Roberto; Pickett, David; Dinwiddie, Cynthia

    2013-07-01

    In consultation with the NRC, DOE issued a waste determination for the F-Area Tank Farm (FTF) facility in March 2012. The FTF consists of 22 underground tanks, each 2.8 to 4.9 million liters in capacity, used to store liquid high-level waste generated as a result of spent fuel reprocessing. The waste determination concluded stabilized waste residuals and associated tanks and auxiliary components at the time of closure are not high-level and can be disposed of as LLW. Prior to issuance of the final waste determination, during the consultation phase, NRC staff reviewed and provided comments on DOE's revision 0 and revision 1 FTF PAs that supported the waste determination and produced a technical evaluation report documenting the results of its multi-year review in October 2011. Following issuance of the waste determination, NRC began to monitor DOE disposal actions to assess compliance with the performance objectives in 10 CFR Part 61, Subpart C. To facilitate its monitoring responsibilities, NRC developed a plan to monitor DOE disposal actions. NRC staff was challenged in developing a focused monitoring plan to ensure limited resources are spent in the most cost-effective manner practical. To address this challenge, NRC prioritized monitoring areas and factors in terms of risk significance and timing. This prioritization was informed by NRC staff's review of DOE's PA documentation, independent probabilistic modeling conducted by NRC staff, and NRC-sponsored research conducted by the Center for Nuclear Waste Regulatory Analyses in San Antonio, TX. (authors)

  6. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 112: AREA 23 HAZARDOUS WASTE TRENCHES, NEVADA TEST SITE, NEVADA; FOR THE PERIOD OCTOBER 2003 - SEPTEMBER 2004

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2004-12-01

    Corrective Action Unit (CAU) 112, Area 23 Hazardous Waste Trenches, Nevada Test Site (NTS), Nevada, is a Resource Conservation and Recovery Act (RCRA) unit located in Area 23 of the NTS. This annual Post-Closure Inspection and Monitoring Report provides the results of inspections and monitoring for CAU 112. This report includes a summary and analysis of the site inspections, repair and maintenance, meteorological information, and neutron soil moisture monitoring data obtained at CAU 112 for the current monitoring period, October 2003 through September 2004. Inspections of the CAU 112 RCRA unit were performed quarterly to identify any significant physical changes to the site that could impact the proper operation of the waste unit. The overall condition of the covers and facility was good, and no significant findings were observed. The annual subsidence survey of the elevation markers was conducted on August 23, 2004, and the results indicated that no cover subsidence4 has occurred at any of the markers. The elevations of the markers have been consistent for the past 11 years. The total precipitation for the current reporting period, october 2003 to September 2004, was 14.0 centimeters (cm) (5.5 inches [in]) (National Oceanographic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division, 2004). This is slightly below the average rainfall of 14.7 cm (5.79 in) over the same period from 1972 to 2004. Post-closure monitoring verifies that the CAU 112 trench covers are performing properly and that no water is infiltrating into or out of the waste trenches. Sail moisture measurements are obtained in the soil directly beneath the trenches and compared to baseline conditions for the first year of post-closure monitoring, which began in october 1993. neutron logging was performed twice during this monitoring period along 30 neutron access tubes to obtain soil moisture data and detect any changes that may indicate moisture movement beneath each trench. Soil moisture results obtained to date indicate that the compliance criterion of less than 5% Residual Volumetric Moisture Content was met. Soil conditions remain dry and stable beneath the trenches, and the cover is functioning as designed within the compliance limits.

  7. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2012o.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  8. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vt060francis2010p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  9. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2011p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  10. Monitoring of arsenic, boron and mercury by lichen and soil analysis in the Mt. Amiata geothermal area (central Italy)

    SciTech Connect (OSTI)

    Loppi, S.

    1997-12-31

    Epiphytic lichens and top-soils from the Mt. Amiata geothermal field (central Italy) were analyzed for their As, B and Hg content. Three areas were selected: (1) Abbadia S. Salvatore, where a large Hg mine with smelting and roasting plant was located; (2) Piancastagnaio, where there are geothermal power plants; (3) a remote site far from mines and geothermal power plants. The results showed that the geothermal power plants do not represent a macroscopic source of arsenic and boron contamination in the area. As far as mercury is concerned, at the Hg mining area of Abbadia S. Salvatore concentrations were extremely high both in soil and epiphytic lichens, and the anomalous content in these organisms was due to the uptake of elemental mercury originating from soil degassing. At the geothermal area of Piancastagnaio, soil mercury was not different from that in the control area, but Hg in lichens was almost twice the control levels, suggesting that the gaseous emissions from the geothermal power plants are an important source of air contamination.

  11. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada, for Calendar Year 2007

    SciTech Connect (OSTI)

    2008-09-01

    This report presents data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area Surface Corrective Action Unit (CAU) 417 in May 2007. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated the site and soil cover were in good condition. No new cracks or fractures were observed in the soil cover during the annual inspection. A crack on the west portion of the cover was observed during the last quarterly inspection in December 2006. This crack was filled with bentonite as part of the maintenance activities conducted in February 2007 and will be monitored during subsequent annual inspections. The vegetation on the soil cover was adequate but showing signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. New DOE Office of Legacy Management signs with updated emergency phone numbers were installed as part of this annual inspection, no issues were identified with the warning signs and monuments at the other two UC-1 locations. The annual subsidence survey was conducted at UC-1 CMP and UC-4 Mud Pit C as part of the maintenance activities conducted in February 2007. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. A vegetation survey of the UC-1 CMP cover and adjacent areas was conducted as part of the annual inspection in May 2007. The vegetation survey indicated that revegetation continues to be successful, although stressed due to the area's prevailing drought conditions. The vegetation should continue to be monitored to document any changes in the plant community and to identify conditions that could potentially require remedial action to maintain a viable vegetation cover on the site. It is suggested that future vegetation surveys be conducted once every 2 years or as needed to help monitor the health of the vegetation.

  12. Workplace Charging Challenge Partner: Washington Area New Automobile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dealers Association | Department of Energy Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Washington Area New Automobile Dealers Association (WANADA) serves as the representative organization for all franchised new car dealers in the metropolitan Washington region. Workplace charging matches the vision of these

  13. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect (OSTI)

    2009-01-01

    This report presents data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area Surface Corrective Action Unit (CAU) 417 in May of 2008. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. Three new cracks or fractures were observed in the soil cover during the annual inspection and were immediately filled with bentonite chips. The vegetation on the soil cover was adequate, but showed signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations. The annual subsidence survey was conducted at UC-1 CMP and UC-4 Mud Pit C in August 2008. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed.

  14. FINAL PROJECT REPORT: A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect (OSTI)

    Lee Slater

    2011-08-15

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing ~60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along ~3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in the depth to the Hanford-Ringold inland over a critical region where borehole information is absent, identifying evidence for a continuous depression in the H-R contact between the IFRC and the river corridor. Strong natural contrasts in temperature and specific conductance of river water compared to groundwater at this site, along with periodic river stage fluctuations driven by dam operations, were exploited to yield new insights into the dynamics of groundwater-surface water interaction. Whereas FO-DTS datasets have provided meter-scale measurements of focused groundwater discharge at the riverbed along the corridor, continuous resistivity monitoring has non-invasively imaged spatiotemporal variation in the resistivity inland driven by river stage fluctuations. Time series and time-frequency analysis of FO-DTS and 3D resistivity datasets has provided insights into the role of forcing variables, primarily daily dam operations, in regulating the occurrence of focused exchange at the riverbed and its extension inland. High amplitudes in the DTS and 3D resistivity signals for long periods that dominate the stage time series identify regions along the corridor where stage-driven exchange is preferentially focused. Our work has demonstrated how time-series analysis of both time-lapse resistivity and DTS datasets, in conjunction with resistivity/IP imaging of lithology, can improve understanding of groundwater-surface water exchange along river corridors, offering unique opportunities to connect stage-driven groundwater discharge observed with DTS on the riverbed to stage-driven groundwater and solute fluctuations captured with resistivity inland.

  15. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  16. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  17. Application Monitoring Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Monitoring

  18. Chicago Metropolitan Agency for Planning Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chicago Metropolitan Agency for Planning Summary of Reported Data From July 1, 2010 - September 30, 2013 Better Buildings Neighborhood Program Report Produced By: U.S. Department of Energy June 2014 CHICAGO METROPOLITAN AGENCY FOR PLANNING SUMMARY OF REPORTED DATA Revised June 2014 ii ACKNOWLEDGMENTS This document presents a summary of data reported by an organization awarded federal financial assistance (e.g., grants, cooperative agreements) through the U.S. Department of Energy's (DOE's)

  19. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Project | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt060_ti_francis_2012_o.pdf More Documents & Publications DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project Puget Sound Clean Cities Petroleum Reduction Project

  20. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Project | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt060_ti_francis_2011_p.pdf More Documents & Publications DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project Clean Cities 2009 Petroleum Displacement Awards

  1. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Project | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt060_francis_2010_p.pdf More Documents & Publications DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project Clean Cities Recovery Act: Vehicle & Infrastructure Deployment

  2. Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Monitoring Environmental Monitoring Tour Sampling for known and unexpected contaminants

  3. Washington Metropolitan Area Transit Authority: Biodiesel Fuel Comparison Final Data Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

  4. Areas Participating in the Oxygenated Gasoline Program (Released in the STEO July 1999)

    Reports and Publications (EIA)

    1999-01-01

    Section 211(m) of the Clean Air Act (42 U.S.C. 7401-7671q) requires that gasoline containing at least 2.7% oxygen by weight is to be used in the wintertime in those areas of the county that exceed the carbon monoxide National Ambient Air Quality Standards (NAAQS). The winter oxygenated gasoline program applies to all gasoline sold in the larger of the Consolidated Metropolitan Statistical Area (CMSA) or Metropolitan Statistical Area (MSA) in which the nonattainment area is located.

  5. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Monitoring Hopper Batch Jobs See the man pages for more options. The Job Information page has more information on current queue status, completed...

  6. MPO SAN ANTONIO - BEXAR COUNTY METROPOLITAN PLANNING ORGANIZATION

    Office of Environmental Management (EM)

    5-11 Figure 5-11: 1-Hour Ozone Time Series Observed (C506) v. Predicted (CAMx) for WRF AACOG Base Case Run 3, 2006 5-12 5.3.2 Hourly NO X Time Series Time series plots of modeled and predicted hourly NO X for each monitor located in the San Antonio MSA were constructed. The model over predicted NO X emissions at the C58 monitor on almost every day during the June 2006 episode. The average predicted hourly NO X was 7.3 ppb, while the average observed hourly NO X was only 3.9 ppb. Likewise, the

  7. United States Environmental Monitoring

    Office of Legacy Management (LM)

    EPA 60014-91/030 Environmental Protection Systems Laboratory DOE/DP00539-063 Agency P.O. Box 93478 Las Vegas NV 891 93-3478 Research and Development Offsite Environmental Monitoring Report: 1 - 3 5 Radiation Monitorina Around * / (- P 7 1 United States ~ u c l g a r Test Areas Calendar Year 1990 This page intentionally left blank EPN60014-90 DOWDP Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1990 Contributors: D.J. Chaloud,

  8. Monitoring materials

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2002-01-01

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  9. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Overview Please see the man pages of the commands below for more options. The Job Information page has more information on current queue status,...

  10. Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Monitoring Environmental Monitoring Tour Sampling for known and unexpected contaminants Open full screen to view more You are running an unsupported browser, some...

  11. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization » Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2016-02-01 08:06:18

  12. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  13. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Patents [OSTI]

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  14. Self-Configuring Network Monitor

    Energy Science and Technology Software Center (OSTI)

    2004-05-01

    Self-Configuring Network Monitor (SCNM) is a passive monitoring that can collect packet headers from any point in a network path. SCNM uses special activation packets to automatically activate monitors deployed at the layer three ingress and egress routers of the wide-area network, and at critical points within the site networks. Monitoring output data is sent back to the application data source or destination host. No modifications are required to the application or network routing infrastructuremore » in order to activate monitoring of traffic for an application. This ensures that the monitoring operation does not add a burden to the networks administrator.« less

  15. Radiation Monitoring Data from Fukushima Area

    Office of Energy Efficiency and Renewable Energy (EERE)

    In March, 2011 the U.S. Department of Energy released data recorded from its Aerial Measuring System as well as ground detectors deployed along with its Consequence Management Response Teams. Today...

  16. Comprehensive air monitoring plan: general monitoring report

    SciTech Connect (OSTI)

    Not Available

    1980-03-31

    Recommendations are provided for general monitoring of hydrogen sulfide (H/sub 2/S) in ambient air in parts of Colusa, Lake, Mendocino, Napa, and Sonoma counties potentially impacted by emissions from geothermal development projects in the Geysers-Calistoga Known Geothermal Resource Area. Recommendations for types, placement, performance guidelines, and criteria and procedure for triggering establishment and termination of CAMP monitoring equipment were determined after examination of four factors: population location; emission sources; meteorological considerations; and data needs of permitting agencies and applicants. Three alternate financial plans were developed. Locations and equipment for immediate installation are recommended for: two air quality stations in communities where the State ambient air quality standard for H/sub 2/S has been exceeded; three air quality trend stations to monitor progress in reduction of H/sub 2/S emissions; two meteorological observation stations to monitor synoptic wind flow over the area; and one acoustic radar and one rawinsonde station to monitor air inversions which limit the depth of the mixing layer.

  17. Groundwater Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring Groundwater Monitoring LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge

  18. Visualizing Diurnal Population Change in Urban Areas for Emergency Management

    SciTech Connect (OSTI)

    Kobayashi, Tetsuo; Medina, Richard M; Cova, Thomas

    2011-01-01

    There is an increasing need for a quick, simple method to represent diurnal population change in metropolitan areas for effective emergency management and risk analysis. Many geographic studies rely on decennial U.S. Census data that assume that urban populations are static in space and time. This has obvious limitations in the context of dynamic geographic problems. The U.S. Department of Transportation publishes population data at the transportation analysis zone level in fifteen-minute increments. This level of spatial and temporal detail allows for improved dynamic population modeling. This article presents a methodology for visualizing and analyzing diurnal population change for metropolitan areas based on this readily available data. Areal interpolation within a geographic information system is used to create twenty-four (one per hour) population surfaces for the larger metropolitan area of Salt Lake County, Utah. The resulting surfaces represent diurnal population change for an average workday and are easily combined to produce an animation that illustrates population dynamics throughout the day. A case study of using the method to visualize population distributions in an emergency management context is provided using two scenarios: a chemical release and a dirty bomb in Salt Lake County. This methodology can be used to address a wide variety of problems in emergency management.

  19. United States Environmental Monitoring EPA

    Office of Legacy Management (LM)

    United States Environmental Monitoring EPA 600/R-93/141 Environmental Protection Systems Laboratory January 1992 Agency P.O. Box 93478 Las Vegas NV 89193-3478 Research and Development _EPA Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1991 Available to DOE and DOE contractors from the Office of Scientificand Technical Information, P.O. Box 62, Oak ridge,TN 39831; pricesavailablefrom (615) 576-8401 Availableto the publicfrom

  20. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  1. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Monitoring Hopper Batch Jobs See the man pages for more options. The Job Information page has more information on current queue status, completed jobs, ALPS logs and job summary statistics. Job Commands Command Description qsub batch_script Submits batch script to the queue. The output of qsub will be a jobid qdel jobid Deletes a job from the queue qhold jobid Puts a job on hold in the queue. To delete a job from the hopper xfer queue users must add an additional

  2. Electrostatic monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Cumbria, GB); Luff, Craig Janson (Cumbria, GB); Dockray, Thomas (Cumbria, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  3. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to monitor, submit and hold jobs on Cori. For more information please refer to the man pages of these commands. Job Commands Command Description sqs NERSC custom script lists...

  4. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-10-18

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  5. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-10-06

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  6. Flow cytometer jet monitor system

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA)

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  7. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  8. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Overview Please see the man pages of the commands below for more options. The Job Information page has more information on current queue status, completed jobs, and job summary statistics. Command Description qsub batch_script Submit batch script to queue; returns job_id. qdel job_id Delete job from queue. qhold job_id Place job on hold in queue. qrls job_id Release held job. qalter Change attributes of submitted job. qmove new_queue job_id Move job to a different

  9. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  10. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  11. Restoration Monitoring-A Simple Photo Monitoring Method | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Restoration Monitoring-A Simple Photo Monitoring Method Restoration Monitoring-A Simple Photo Monitoring Method Restoration Monitoring-A Simple Photo Monitoring Method PDF icon ...

  12. Monitoring Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013 Topographic map showing placement of monitoring wells Topographic map showing placement of monitoring wells

  13. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  14. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  15. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three...

  16. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, Philippe (Augusta, GA)

    1994-01-01

    A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

  17. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-06-14

    A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

  18. Global change monitoring with lichens

    SciTech Connect (OSTI)

    Insarov, G.

    1997-12-31

    Environmental monitoring involves observations and assessment of changes in ecosystems and their components caused by anthropogenetic influence. An ideal monitoring system enables quantification of the contemporary state of the environment and detect changes in it. An important function of monitoring is to assess environment quality of areas that are not affected by local anthropogenic impacts, i.e. background areas. In background areas terrestrial ecosystems are mainly affected by such anthropogenic factors as lowered air pollution and global climate change. Assessment of biotic responses to altered climatic and atmospheric conditions provides an important basis for ecosystem management and environmental decision making. Without the ability to make such assessment, sustainability of ecosystems as a support system for humans remains uncertain.

  19. Sandia National Laboratories: Technology Training and Demonstration Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Training and Demonstration Area Visiting Research Scholars CMC Publications The Center for Global Security and Cooperation (CGSC) Cooperative Monitoring Center Technology Training and Demonstration Area Training and Technology Demonstration Area Sandia's Technology Training and Demonstration Area (TTD) showcases technologies that can be cooperatively applied to a range of monitoring applications across the globe: Nonproliferation Counterterrorism International security (including

  20. Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Engineering Institute Structural Health Monitoring Structural Health Monitoring is the process of implementing a damage detection strategy for...

  1. Sandia Energy - Monitoring Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Systems Home Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Monitoring Systems Monitoring Systemscwdd2015-06-02T22:40:49+00:00...

  2. Monitoring Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013...

  3. United States Environmental Protection Agency Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15027 Las Vegas NV 89114 EPA-60014-81 -047 DOE/DP/00539-043 June 1981 Research and Development &EPA Off site Environmental &WI I' Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1980 prepared for the Nevada Operations Off ice U.S. Department of Energy EPA-600/4-81-047 DOE/DP/00539-043 June 1981 OFFSITE ENVIRONMENTAL MONITORING REPORT Radiation monitoring around United States nuclear test areas, calendar year 1980 D. D. Smith, R. F. Grossman,

  4. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  5. Process Monitor

    Energy Science and Technology Software Center (OSTI)

    2003-12-01

    This library is used to get process information (eg memory and timing). By setting an environment variable, the runtime system loads libprocmon.so while loading your executable. This library causes the SIGPROF signal to be triggered at time intervals. The procmon signal handler calls various system routines (eg clock_gettime, malinfo, getrusage, and ioctl {accessing the /proc filesystem}) to gather information about the process. The information is then printed to a file which can be viewed graphicallymore » via procmon_plot.pl. This information is obtained via a sampling approach. As with any sampling approach, the information it gathers will not be completely accurate. For example, if you are looking at memory high-water mark the memory allocation and freeing could have occurred between samples and thus would not be "seen" by this program. See "Usage" below for environment variables that affect this monitor (eg time between sampling).« less

  6. Ecological Monitoring - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Safety and Resource Protection (PSRP) Ecological Monitoring Public Safety and Resource Protection (PSRP) Public Safety and Resource Protection Home Cultural Resource Program and Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic Monitoring Ecological Monitoring Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Ecological Monitoring Ecological Monitoring The Hanford site encompasses 586 square miles

  7. Real-time performance monitoring and management system

    DOE Patents [OSTI]

    Budhraja, Vikram S. (Los Angeles, CA); Dyer, James D. (La Mirada, CA); Martinez Morales, Carlos A. (Upland, CA)

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  8. Audible radiation monitor

    DOE Patents [OSTI]

    Odell, Daniel M. C. (11 Russellwood Ct., Aiken, SC 29803)

    1993-01-01

    A method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  9. Luminosity monitor.

    SciTech Connect (OSTI)

    Underwood, D. G.

    1998-07-16

    Luminosity monitors are needed in each experiment doing spin physics at RHIC. They concentrate on the luminosity aspects here because, for example, with a 10{sup {minus}3} raw asymmetry in an experiment, an error of 10{sup {minus}4} in the luminosity is as significant as a 10% polarization error. Because luminosity is a property of how two beams overlap, the luminosity at an interaction region must be measured at that interaction region in order to be relevant to the experiment at that interaction region. The authors will have to do the physics and the luminosity measurements by using labels on the event sums according to the polarization labels on the colliding bunches. Most likely they will not have independent polarization measurement on each bunch, but only on all the filled bunches in a ring, or perhaps all the bunches that are actually used in an experiment. Most analyses can then be handled by using the nine combinations gotten from three kinds of bunches in each ring, +, {minus} and empty bunches. The empty bunches are needed to measure beam-gas background, (and some, like six in a row, are needed for the beam abort). Much of the difficulty comes from the fact that they must use a physics process to represent the luminosity. This process must have kinematic and geometric cuts both to reduce systematics such as beam-gas backgrounds, and to make it representative of the part of the interaction diamond from which the physics events come.

  10. Strain monitoring averts line failure in Rockies

    SciTech Connect (OSTI)

    Miller, B.; Bukovansky, M.

    1987-08-10

    The case history of a landslide in the U.S. Rocky Mountains shows that the potential for pipeline monitoring in geologically sensitive areas, those subject to landslides and subsidence, for example. A properly installed monitoring system monitored by the pipeline operator, Western Gas Supply Co. (West Gas), Denver, provided an early warning of increasing line strains. The problem was complicated by rugged topography which is described here. Stability analysis was the key technique utilized in the process.

  11. Portal Monitor Future Development Work: Hardware Improvements

    SciTech Connect (OSTI)

    Browne, Michael C.

    2012-07-03

    LANL portal monitor was a modification of a previously installed (permanent) unattended monitoring system (UMS). Modifications to the UMS to make the portal were sometimes based on mistaken assumptions about exercise-specific installation and access. Philosophical approach to real-time portal differs in some areas from UMS.

  12. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

  13. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  14. Teleseismic-Seismic Monitoring At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  15. United States Environmental Protection Agency Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93478 Las Vegas NV 89193-3478 EPA 600/4-91/030 DOE/DP00539-063 Research and Development Radiation Monitoring Around United States Nuclear Test Areas Calendar Year 1990 EPA/600/4-90 DOWDP Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 4 990 Contributors: D.J. Chaloud, B.B. Dicey, D.G. Easterly, C.A. Fontana, R.W. Holloway, A.A. Mullen, V.E. Niemann, W.G. Phillips, D.D. Smith, N.R. Sunderland, D.J. Thorn& and Nuclear

  16. ICDP Complex Groundwater Monitoring Plan REV 5

    SciTech Connect (OSTI)

    Cahn, L. S.

    2007-08-09

    This Groundwater Monitoring Plan, along with the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions, constitutes the sampling and analysis plan for groundwater and perched water monitoring at the Idaho CERCLA Disposal Facility (ICDF). A detection monitoring system was installed in the Snake River Plan Aquifer to comply with substantive requirements of "Releases from Solid Waste Management Units" of the Resource Conservation and Recovery Act. This detection monitoring wells constructed in the Snake River Plain Aquifer.

  17. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  18. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  19. Groundwater Monitoring Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring Network Groundwater Monitoring Network The network includes 92 natural sources, 102 regional aquifer wells, 41 intermediate-depth wells and springs, and 67 wells in alluvium in canyons. August 1, 2013 Map of LANL's groundwater monitoring network Map of LANL's groundwater monitoring network

  20. Ecological Monitoring and Compliance Program 2007 Report

    SciTech Connect (OSTI)

    Hansen, Dennis; Anderson, David; Derek, Hall; Greger, Paul; Ostler, W. Kent

    2008-03-01

    In accordance with U.S. Department of Energy (DOE) Order 450.1, 'Environmental Protection Program', the Office of the Assistant Manager for Environmental Management of the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) requires ecological monitoring and biological compliance support for activities and programs conducted at the Nevada Test Site (NTS). National Security Technologies, LLC (NSTec), Ecological Services has implemented the Ecological Monitoring and Compliance (EMAC) Program to provide this support. EMAC is designed to ensure compliance with applicable laws and regulations, delineate and define NTS ecosystems, and provide ecological information that can be used to predict and evaluate the potential impacts of proposed projects and programs on those ecosystems. This report summarizes the EMAC activities conducted by NSTec during calendar year 2007. Monitoring tasks during 2007 included eight program areas: (a) biological surveys, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) biological monitoring at the Nonproliferation Test and Evaluation Complex (NPTEC). The following sections of this report describe work performed under these eight areas.

  1. Mathematical Modeling of Hepatitis C Prevalence Reduction with Antiviral Treatment Scale-Up in Persons Who Inject Drugs in Metropolitan Chicago

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Echevarria, Desarae; Gutfraind, Alexander; Boodram, Basmattee; Major, Marian; Del Valle, Sara; Cotler, Scott J.; Dahari, Harel

    2015-08-21

    New direct-acting antivirals (DAAs) provide an opportunity to combat hepatitis C virus (HCV) infection in persons who inject drugs (PWID). Here we use a mathematical model to predict the impact of a DAA-treatment scale-up on HCV prevalence among PWID and the estimated cost in metropolitan Chicago.

  2. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOE Patents [OSTI]

    McCown, Steven H. (Rigby, ID); Derr, Kurt W. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID)

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  3. Teleseismic-Seismic Monitoring At Coso Geothermal Area (1980...

    Open Energy Info (EERE)

    it is elongate in approximately the N-S direction. References Reasenberg, P.; Ellisworth, W.; Walter, A. (10 May 1980) Teleseismic evidence for a low-velocity body under the Coso...

  4. Teleseismic-Seismic Monitoring At Coso Geothermal Area (2004...

    Open Energy Info (EERE)

    for the optimal solution which best predicts observed travel times. In each case the models predict a nearly vertical scatterer southwest of stations S4 and Y4, each southeast...

  5. Teleseismic-Seismic Monitoring At Clear Lake Area (Skokan, 1993...

    Open Energy Info (EERE)

    4 illustrates seismicity from January of 1969 to June of 1977 (Rapolla and Keller, 1984). During this span, most of the seismicity occurred in the region of the Geysers...

  6. Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975...

    Open Energy Info (EERE)

    array of 26 three-component stations near the center of the anomaly. References Young, C.Y.; Ward, R.W. (1 May 1980) Three-dimensional Q (super -1) model of the Coso Hot...

  7. Teleseismic-Seismic Monitoring At Coso Geothermal Area (1998...

    Open Energy Info (EERE)

    for an earthquake of comparable magnitude at the Coso region. References Bhattacharyya, J.; Gross, S.; Lees, J.; Hastings, M. (1 June 1999) Recent earthquake sequences at Coso:...

  8. Teleseismic-Seismic Monitoring At Coso Geothermal Area (1996...

    Open Energy Info (EERE)

    network. The results show irregular strengthening with time of the wave-speed ratio V pV s at shallow depths. The period from 1996 through 2006 was studied, and the results...

  9. Teleseismic-Seismic Monitoring At Coso Geothermal Area (1983...

    Open Energy Info (EERE)

    Exploration Basis To study anomalous shear wave attenuation in the shallow crust Notes V s and V p wave amplitudes were measured from vertical component seismograms of...

  10. Teleseismic-Seismic Monitoring At Coso Geothermal Area (1988...

    Open Energy Info (EERE)

    VpVs variation Notes A tomographic inversion for the 3D variations of the VpV s, the ratio of compressional to shear velocity, was performed. Iterative back...

  11. ARG-US Remote Area Modular Monitoring (RAMM) | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supported by the U.S. Department of Energy, Office of Environmental Management, and Packaging Certification Program. RAMM Infographic Download full infographic Contact us To...

  12. Teleseismic-Seismic Monitoring At Coso Geothermal Area (2006...

    Open Energy Info (EERE)

    Exploration Basis To assess the benefits of surface seismic surveys Notes Different migration procedures were applied to image a synthetic reservoir model and seismic data. After...

  13. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Ileana M....

  14. Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011...

    Open Energy Info (EERE)

    Date 2011 - 2012 Usefulness not indicated DOE-funding Unknown Exploration Basis Map hydraulic structure within the field from seismic data Notes 2011: 16 years of seismicity were...

  15. Teleseismic-Seismic Monitoring At Hawthorne Area (Lazaro, Et...

    Open Energy Info (EERE)

    GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy...

  16. Corrosion monitoring apparatus

    DOE Patents [OSTI]

    Isaacs, Hugh S. (Shoreham, NY); Weeks, John R. (Stony Brook, NY)

    1980-01-01

    A corrosion monitoring device in an aqueous system which includes a formed crevice and monitoring the corrosion of the surfaces forming the crevice by the use of an a-c electrical signal.

  17. Lustre Monitoring Tools

    Energy Science and Technology Software Center (OSTI)

    2007-05-05

    The Lustre Monitoring Tools software package is a set of utilities developed to facilitate real-time and historical monitoring of the performance of a Lustre FileSystem.

  18. Seismic Monitoring - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Resource Protection Home Cultural Resource Program and Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic...

  19. Workplace Charging Challenge Partner: Washington Area New Automobile...

    Broader source: Energy.gov (indexed) [DOE]

    franchised new car dealers in the metropolitan Washington region. Workplace charging matches the vision of these dealers to support the creation of sustainable electric vehicle...

  20. Monitoring and Managing Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs Monitoring and Managing Jobs Monitoring and Managing Batch Jobs These are some basic commands for monitoring and modifiying batch jobs while they're queued or running. NERSC has developed a new tool for monitoring and viewing the state of batch jobs for genepool called qs. Please read about Monitoring jobs with qs Action How to do it Comment Get a listing of your jobs and their states qs -u If you skip the -u option, you'll get all the jobs on Genepool/Phoebe. qstat -u user_name If you skip

  1. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  2. Appendix K Disposal Cell Groundwater Monitoring Plan

    Office of Legacy Management (LM)

    Disposal Cell Groundwater Monitoring Plan

  3. Remote Monitoring Transparency Program

    SciTech Connect (OSTI)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.; Croessmann, C.D.; Horton, R.D.; Matter, J.C.; Czajkowski, A.F.; Sheely, K.B.; Bieniawski, A.J.

    1996-12-31

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the US without compromising the national security of the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct-use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring will have on the national security of participating countries.

  4. Power consumption monitoring using additional monitoring device

    SciTech Connect (OSTI)

    Tru?c?, M. R. C. Albert, ?. Tudoran, C. Soran, M. L. F?rca?, F.; Abrudean, M.

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  5. Community Environmental Monitoring Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Monitoring Program (CEMP) Nevada National Security Site Those results that are slightly above background are far below U.S. Environmental Protection Agency regulatory limits. To date, monitoring station results show that tritium levels are at or below background. * * CEMP's network of monitoring stations use instruments to detect airborne radiation (if present) and record weather data. This information is available real-time on the CEMP web site at www.cemp.dri.edu. * Private

  6. Groundwater Periodic Monitoring Reports

    Broader source: Energy.gov [DOE]

    At the May 13, 2015 Committee meeting David Rhodes DOE, Provided Information on the Watersheds at LANL and the Monitoring Schedule for Each.

  7. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  8. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  9. Environmental monitoring plan

    SciTech Connect (OSTI)

    Holland, R.C.

    1997-02-01

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 52 refs., 10 figs., 12 tabs.

  10. Sandia Energy - Sensing & Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensing & Monitoring Home Climate Permalink Gallery The Rush to Exploit an Increasingly Ice-Free Arctic Climate, Earth Sciences Research Center, Global, Global Climate & Energy,...

  11. Sandia Energy - Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Wind (CREW) Database Energy, Monitoring, News, News & Events, Renewable Energy, Wind Energy Sandia Releases First Findings from Its Continuous Reliability Enhancement for Wind...

  12. WIPP Documents - Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the operational period. The standards issued by the EPA are contained in Title 40 CFR, Part 191, Subpart A. Strategic Plan for Groundwater Monitoring at the WIPP DOE...

  13. Environmental Radiological Effluent Monitoring and Environmental Surveillance

    Office of Environmental Management (EM)

    Environmental Radiological Effluent Monitoring and Environmental Surveillance U.S. Department of Energy AREA ENVR Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1216-2015 NOT MEASUREMENT SENSITIVE INTENTIONALLY BLANK DOE-HDBK-1216-2015 iii TABLE OF CONTENTS PARAGRAPH PAGE 1 INTRODUCTION ............................................................................................................... 1 1.1 Objectives

  14. Special Section Guest Editorial. Advances in Remote Sensing for Monitoring

    Office of Scientific and Technical Information (OSTI)

    Global Environmental Changes (Journal Article) | SciTech Connect Special Section Guest Editorial. Advances in Remote Sensing for Monitoring Global Environmental Changes Citation Details In-Document Search Title: Special Section Guest Editorial. Advances in Remote Sensing for Monitoring Global Environmental Changes This paper focuses on advances in remote sensing for monitoring global environmental changes, and discussed10 papers selected from a number of areas of expertise. Authors: Zhou,

  15. Special Section Guest Editorial. Advances in Remote Sensing for Monitoring

    Office of Scientific and Technical Information (OSTI)

    Global Environmental Changes (Journal Article) | SciTech Connect Special Section Guest Editorial. Advances in Remote Sensing for Monitoring Global Environmental Changes Citation Details In-Document Search Title: Special Section Guest Editorial. Advances in Remote Sensing for Monitoring Global Environmental Changes This paper focuses on advances in remote sensing for monitoring global environmental changes, and discussed10 papers selected from a number of areas of expertise. Authors: Zhou,

  16. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  17. High Temperature ESP Monitoring

    Broader source: Energy.gov [DOE]

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure.

  18. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  19. Standard-E hydrogen monitoring system field acceptance testprocedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-02-01

    The purpose of this document is to demonstrate that the Standard-E Hydrogen Monitoring Systems (SHMS-E) installed on the Waste Tank Farms in the Hanford 200 Areas are constructed as intended by the design.

  20. Sweet Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so...

  1. U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area | Department of Energy Radiation Monitoring Data from Fukushima Area U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima Area March 22, 2011 - 12:00am Addthis Today the U.S. Department of Energy released data recorded from its Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. The information has also been shared with the government of Japan as part of the United States' ongoing efforts to support

  2. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical ...

  3. : H. Jack Elackwell, Area Manager, LAAO DATE:

    Office of Legacy Management (LM)

    O.&E b.&AORANDti~ l > : H. Jack Elackwell, Area Manager, LAAO DATE: June 5, 1973 70~ : ~$?$Z~H-Division Leader ,WE~,T : ENVIRONMENTAL RADIOACTIVITY SURVEY OF LOS ALAMOS COMIMUNITY LAND AREAS ' MBOL : H8M-73-102 At your request an environmental radioactivity survey of four' .tracts of AEC-owned land in Los Alamos County was conducted. The monitoring and analysis of samples paralleled that described in Los Alamos Scientific Laboratory Report LA5097-MS, "Los Alamos Land Areas

  4. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    SciTech Connect (OSTI)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data transmission in place of NSA Type 1 devices.

  5. Section 42: Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Waste Isolation Pilot Plant Monitoring (40 CFR § 194.42) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Monitoring (40 CFR § 194.42) Table of Contents 42.0 Monitoring (40 CFR § 194.42) 42.1 Requirements 42.2 Background 42.3 1998 Certification Decision 42.4 Changes in the CRA-2004 42.5 EPA's Evaluation of Compliance for the 2004 Recertification 42.6 Changes or New Information Between

  6. Environmental monitoring plan - environmental monitoring section. Revision 1

    SciTech Connect (OSTI)

    Wilt, G.C.; Tate, P.J.; Brigdon, S.L.

    1994-11-01

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

  7. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  8. Laser beam monitoring system

    DOE Patents [OSTI]

    Weil, Bradley S. (Knoxville, TN); Wetherington, Jr., Grady R. (Harriman, TN)

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  9. Monitored Retrievable Storage Background

    Broader source: Energy.gov [DOE]

    `The U.S. Government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an Integral part of the...

  10. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  11. 200 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  12. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  13. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    700 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  14. Fiber optic monitoring device

    DOE Patents [OSTI]

    Samborsky, James K. (605 Groves Blvd., N. Augusta, SC 29841)

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  15. Structural Health Monitoring Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Example Usages LANL/UCSD Engineering Institute LA-CC-14-046 LA-UR-14-21093 c Copyright 2014, Los Alamos National Security, LLC All rights reserved. May 30, 2014 Example Usages Contents Data Set Descriptions Integrating Examples Modal Analysis Condition-Based Monitoring Active Sensing Outlier Detection Data Set Descriptions Experimental Procedure Description of the 3-Story Structure Experimental Procedure Description of the Condition-Based Monitoring Example Data Integrating Examples Example

  16. Structure function monitor

    DOE Patents [OSTI]

    McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM); Ackermann, Mark R. (Albuquerque, NM)

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  17. Verification Monitoring Report

    Office of Legacy Management (LM)

    and Analytical Update for the Durango, Colorado, Processing Site August 2014 LMS/DUP/S11345 This page intentionally left blank LMS/DUP/S11345 Verification Monitoring Report and Analytical Update for the Durango, Colorado, Processing Site August 2014 This page intentionally left blank U.S. Department of Energy Verification Monitoring Report and Analytical Update-Durango, Colorado, Processing Site August 2014 Doc. No. S11345 Page i Contents Abbreviations

  18. DOE - NNSA/NFO -- Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Click to subscribe to NNSS News Monitoring Environmental Monitoring photo The Nevada Field Office's management and operations contractor, National Security Technologies, LLC, conducts radiological monitoring activities at and near the Nevada National Security Site (NNSS) through the Routine Radiological Environmental Monitoring Program. Environmental media monitored by the Nevada Field Office include water, air, plants, and

  19. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect (OSTI)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  20. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  1. Monitoring: The missing piece

    SciTech Connect (OSTI)

    Bjorkland, Ronald

    2013-11-15

    The U.S. National Environmental Policy Act (NEPA) of 1969 heralded in an era of more robust attention to environmental impacts resulting from larger scale federal projects. The number of other countries that have adopted NEPA's framework is evidence of the appeal of this type of environmental legislation. Mandates to review environmental impacts, identify alternatives, and provide mitigation plans before commencement of the project are at the heart of NEPA. Such project reviews have resulted in the development of a vast number of reports and large volumes of project-specific data that potentially can be used to better understand the components and processes of the natural environment and provide guidance for improved and efficient environmental protection. However, the environmental assessment (EA) or the more robust and intensive environmental impact statement (EIS) that are required for most major projects more frequently than not are developed to satisfy the procedural aspects of the NEPA legislation while they fail to provide the needed guidance for improved decision-making. While NEPA legislation recommends monitoring of project activities, this activity is not mandated, and in those situations where it has been incorporated, the monitoring showed that the EIS was inaccurate in direction and/or magnitude of the impact. Many reviews of NEPA have suggested that monitoring all project phases, from the design through the decommissioning, should be incorporated. Information gathered though a well-developed monitoring program can be managed in databases and benefit not only the specific project but would provide guidance how to better design and implement future activities designed to protect and enhance the natural environment. -- Highlights: NEPA statutes created profound environmental protection legislative framework. Contrary to intent, NEPA does not provide for definitive project monitoring. Robust project monitoring is essential for enhanced environmental management. Adaptive database framework is needed to accommodate project-monitoring data.

  2. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  3. Wireless boundary monitor system and method

    DOE Patents [OSTI]

    Haynes, Howard D.; Ayers, Curtis W.

    1997-01-01

    A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments.

  4. Wireless boundary monitor system and method

    DOE Patents [OSTI]

    Haynes, H.D.; Ayers, C.W.

    1997-12-09

    A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments. 4 figs.

  5. High Performance Network Monitoring

    SciTech Connect (OSTI)

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  6. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  7. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, Tuncer M. (Naperville, IL); Shu, Deming (Darien, IL)

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  8. Monitoring and Managing Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring and Managing Jobs Monitoring and Managing Jobs Commonly Used Commands Action How to do it Comment Get a summary of all batch jobs sgeusers Shows a tally of all jobs for all users including their states. This is a script that parses the output of qstat and is maintained by PDSF staff (located in /common/usg/bin). Do "sgeusers -h" for usage info. Get a listing of your jobs and their states qstat -u user_name If you skip the -u option, you'll get all the jobs on PDSF. Get

  9. Monitoring jobs with qs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs » Monitoring jobs with qs Monitoring jobs with qs qs is an alternative tool to the SGE-provided qstat for querying the queue status developed at NERSC. qs provides an enhanced user interface designed to make it easier to see resource requests, utilization, and job position in the queue. qs provides a centralized web-service that can be queried using either the provided "qs" client, or by HTTP connection to the qs server. qs reports data from a cached copy of the genepool UGE

  10. Neutral beam monitoring

    DOE Patents [OSTI]

    Fink, Joel H. (Livermore, CA)

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  11. Preliminary draft: comprehensive air-monitoring plan report

    SciTech Connect (OSTI)

    Not Available

    1980-02-15

    The topography of the CAMP Study Area, climate, and air pollution meteorology are described. The population analysis indicated limited growth during the next 10 years in the CAMP Study Area. Analysis of emission sources (current and projected) included a presentation of the types of emissions and their impact on the Study Area population (receptors). The general conclusion was drawn that of the non-condensible gases emitted, and considered pollutants, hydrogen sulfide was the only one for which monitoring would be recommended. Recommendations for type, placement, performance criteria, and the timing of establishment and terminating monitoring equipment were determined.

  12. Appendix MON: WIPP Monitoring Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MON-2014 WIPP Monitoring Programs United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix MON-2014 Table of Contents MON-1.0 Introduction MON-1.1 Compliance Monitoring Program MON-1.2 Preclosure and Postclosure Monitoring MON-1.3 Monitoring Assessment MON-1.4 Appendix Summary MON-2.0 Compliance Monitoring Program Requirements MON-2.1 Compliance Certification/Recertification MON-3.0 Preclosure

  13. F-Area Hazardous Waste Management Facility Corrective Action Report, Third and Fourth Quarter 1997. Volume 1

    SciTech Connect (OSTI)

    1998-03-01

    SRS monitors groundwater quality at the F-Area HWMF and provides results of this monitoring to the SCDHEC semiannually as required by the RCRA permit. SRS also performs monthly sampling in accordance with Section of the UIC application.

  14. CY15 Livermore Computing Focus Areas

    SciTech Connect (OSTI)

    Connell, Tom M.; Cupps, Kim C.; D'Hooge, Trent E.; Fahey, Tim J.; Fox, Dave M.; Futral, Scott W.; Gary, Mark R.; Goldstone, Robin J.; Hamilton, Pam G.; Heer, Todd M.; Long, Jeff W.; Mark, Rich J.; Morrone, Chris J.; Shoopman, Jerry D.; Slavec, Joe A.; Smith, David W.; Springmeyer, Becky R; Stearman, Marc D.; Watson, Py C.

    2015-01-20

    The LC team undertook a survey of primary Center drivers for CY15. Identified key drivers included enhancing user experience and productivity, pre-exascale platform preparation, process improvement, data-centric computing paradigms and business expansion. The team organized critical supporting efforts into three cross-cutting focus areas; Improving Service Quality; Monitoring, Automation, Delegation and Center Efficiency; and Next Generation Compute and Data Environments In each area the team detailed high level challenges and identified discrete actions to address these issues during the calendar year. Identifying the Centers primary drivers, issues, and plans is intended to serve as a lens focusing LC personnel, resources, and priorities throughout the year.

  15. Summary of Weldon Spring Site Focus Area

    Office of Legacy Management (LM)

    of Weldon Spring Site Focus Area Work Session February 5, 2003 Weldon Spring Interpretive Center Focus Area: Monitoring and Maintenance This was the third of three work sessions that focus on specific issues addressed in the draft Long-Term Stewardship Plan for the Weldon Spring, Missouri, Site, dated August 9, 2002. At 6:00 p.m., before the start of the work session, Dan Collette, Technical Support Manager for S.M. Stoller, the U.S. Department of Energy (DOE) Grand Junction Office (GJO)

  16. Rack protection monitor

    DOE Patents [OSTI]

    Orr, Stanley G. (Wheaton, IL)

    2000-01-01

    A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

  17. Rack Protection Monitor

    SciTech Connect (OSTI)

    Orr, Stanley G.

    1998-10-21

    A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

  18. United States Environmental Monitoring EPAJ60014-901016 Environmental Protection Systems Laboratory DOE/DP/00539-062

    Office of Legacy Management (LM)

    EPAJ60014-901016 Environmental Protection Systems Laboratory DOE/DP/00539-062 Agency P.O. Box 93478 May 1990 Las Vegas NV 891 93-3478 Research and Development - Offsite Environmental lcrgw Monitoring Report Radiation Monitoring d ,& Around United States Nuclear Test Areas Calendar Year 1989 This page intentionally left blank EPN60014-90/016 DOEIDP100539-062 May 1990 Offsite Environmental Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1989

  19. Sandia Energy Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rspace-warning-area-established-to-aid-research-explorationfeed 0 Sandia Wind-Turbine Blade Flaw Detection Experiments in Denmark http:energy.sandia.govsandia-wind-turbine-bla...

  20. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31

    The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergencies where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.

  1. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Area Principles The Inner Area principles proposed by the Tri-Parties are a good beginning toward consideration of what kind of approach will be needed to remedy the problems of the Central Plateau. However, the Board feels that some principles have been overlooked in the preparation of these. [1] While it has been generally agreed that designated waste disposal facilities of the Inner Area (like ERDF and IDF) would not be candidates for remediation. What happened to the remedial approach

  2. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  3. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf).

  4. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Final Disposition Reactor Current Status (a) Decision Area Final Disposition B National Historic Landmark (2008) 100-BC ROD for Decommissioning of Eight Surplus Production ...

  5. Focus Area 3 Deliverables

    Office of Environmental Management (EM)

    Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task and Description...

  6. Rulison Monitoring Plan

    SciTech Connect (OSTI)

    2010-07-01

    The Project Rulison Monitoring Plan has been developed as part of the U.S. Department of Energy (DOE) Office of Legacy Management's mission to protect human health and the environment. The purpose of the plan is to monitor fluids from gas wells for radionuclides that would indicate contamination is migrating from the Rulison detonation zone to producing gas wells, allowing action to be taken before the contamination could pose a risk. The Monitoring Plan (1) lists the contaminants present and identifies those that have the greatest potential to migrate from the detonation zone (radionuclide source term), (2) identifies locations that monitor the most likely transport pathways, (3) identifies which fluids will be sampled (gas and liquid) and why, (4) establishes the frequency of sampling, and (5) specifies the most practical analyses and where the analysis results will be reported. The plan does not affect the long-term hydrologic sampling conducted by DOE since 1972, which will continue for the purpose of sampling shallow groundwater and surface water near the site. The Monitoring Plan was developed in anticipation of gas wells being drilled progressively nearer the Rulison site. DOE sampled 10 gas wells in 1997 and 2005 at distances ranging from 2.7 to 7.6 miles from the site to establish background concentrations for radionuclides. In a separate effort, gas industry operators and the Colorado Oil and Gas Conservation Commission (COGCC) developed an industry sampling and analysis plan that was implemented in 2007. The industry plan requires the sampling of gas wells within 3 miles of the site, with increased requirements for wells within 1 mile of the site. The DOE plan emphasizes the sampling of wells near the site (Figure 1), specifically those with a bottom-hole location of 1 mile or less from the detonation, depending on the direction relative to the natural fracture trend of the producing formation. Studies indicate that even the most mobile radionuclides created by the test are unlikely to migrate appreciable distances (hundreds of feet) from the detonation zone (Cooper et al. 2007, 2009). The Monitoring Plan was developed to provide a cautious and comprehensive approach for detecting any potential contaminant migration from the Rulison test site. It also provides an independent confirmation of results from the industry sampling and analysis plan while effectively increasing the sampling frequency of wells near the site.

  7. Integrated monitoring plan for the Hanford groundwater monitoring project

    SciTech Connect (OSTI)

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  8. 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Office of Scientific and Technical Information (OSTI)

    Technologies (Conference) | SciTech Connect 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies No abstract prepared. Authors: Wetovsky, Marvin A. [1] ; Anderson, Dale [1] ; Arrowsmith, Stephen J. [1] ; Begnaud, Michael L. [1] ; Hartse, Hans E. [1] ; Maceira, Monica [1] ; Patton, Howard J. [1] ; Randall, George E. [1] ; Rowe,

  9. Radionuclide Sensors for Water Monitoring

    SciTech Connect (OSTI)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2004-06-29

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  10. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

  11. Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  12. Sensing & Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Monitoring - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  13. Environmental Monitoring Data System

    Energy Science and Technology Software Center (OSTI)

    2004-04-21

    A set of database management tools, data processing tools, and auxiliary support functionality for processing and handling semi-structured environmental monitoring data. The system provides a flexible description language for describing the data, allowing the database to store disparate data from many different sources without changes to the configuration. The system employs XML to support unlimited named allribute/value pairs for each object defined in the system.

  14. Environmental Groundwater Monitoring Report

    Office of Legacy Management (LM)

    -460 Environmental Groundwater Monitoring Report Third Quarter, 1997 October 1997 Approved for public release; further dissemination unlimited. Environmental Restoration U.S. Department of Energy Nevada Operations Office This report has been reproduced directly from the best available copy. 1 - I : ~vailablk to DOE and DOE contractors from the. Office of Scientific - and Technical .Information, P.O. Box 62, Oak Ridge, TN 3783 1 ; prices available from (423) 576-840 1. Available to the public

  15. Hexavalent chromium monitor

    DOE Patents [OSTI]

    Tao, Shiquan; Winstead, Christopher B.

    2005-04-12

    A monitor is provided for use in measuring the concentration of hexavalent chromium in a liquid, such as water. The monitor includes a sample cell, a light source, and a photodetector. The sample cell is in the form of a liquid-core waveguide, the sample cell defining an interior core and acting as a receiver for the liquid to be analyzed, the interior surface of the sample cell having a refractive index of less than 1.33. The light source is in communication with a first end of the sample cell for emitting radiation having a wavelength of about and between 350 to 390 nm into the interior core of the waveguide. The photodetector is in communication with a second end of the waveguide for measuring the absorption of the radiation emitted by the light source by the liquid in the sample cell. The monitor may also include a processor electronically coupled to the photodetector for receipt of an absorption signal to determine the concentration of hexavalent chromium in the liquid.

  16. Results of Wind Monitoring Effort at Sand Point

    Energy Savers [EERE]

    Results of Wind Monitoring at Sand Point 24 June, 2009 Report Outline Project Overview/Summary of Results Project Location Project Instrumentation Discussion of Wind Resource Appendix Project Overview/Summary of Results As part of the NREL Native American Anemometer Loan Program an anemometers was installed near Sand Point, Alaska to assess the area's wind energy potential. This report describes the wind resource measured at this location. The monitoring period ran from 14 February 2004 to 6

  17. Environmental monitoring report, May 10, 1993--June 1, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Tennessee Department of Environment and Conservation (TDEC) DOE Oversight Division (DOE-O) monitoring effort will serve as oversight with ongoing compliance and ambient sampling by Oak Ridge Reservation (ORR), Department of Energy (DOE) and contractor staff programs. These sources provide a comprehensive database which must be reviewed and analyzed in order to streamline DOE-O sampling efforts. DOE-O monitoring is necessary to provide quality control, to ensure compliance, to ensure completeness, and to assure protection of public health and the environment. The Tennessee Oversight Agreement (TOA), includes a section on Environmental Monitoring as Attachment A. To accomplish these objectives, DOE-O will implement the following monitoring programs: surface waters; ground water; air; fish and wildlife. In addition, radiation monitoring has been conducted in all of these areas.

  18. Long-Term Ecological Monitoring Field Sampling Plan for 2007

    SciTech Connect (OSTI)

    T. Haney R. VanHorn

    2007-07-31

    This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007 investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.

  19. Radiological Monitoring Continues at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Monitoring Continues at WIPP CARLSBAD, N.M., February 19, 2014 - Radiological control personnel continue to collect surface and underground monitoring samples at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) after an underground air monitor detected airborne radiation around 11:30 p.m. (MT) on February 14. Recent laboratory analyses by Carlsbad Environmental Monitoring and Research Center (CEMRC) found some trace amounts of americium and plutonium from a

  20. SEPA United States Environmental Monitoring EPA/600/4-861022

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEPA United States Environmental Monitoring EPA/600/4-861022 Environmental Protection Systems Laboratory DOE/DP/00539/056 Agency P.O. Box 15027 April 1986 Las Vegas NV 89114-5027 3 Research and Development Off-Site Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1985 prepared for the United States Department of Energy under Interagency Agreement Number DE-AI08-76DP00539 EPA-600/4-86-022 DOE/DP/00539-056 April 1986 OFF-SITE

  1. Optimizing Monitoring Designs under Alternative Objectives

    SciTech Connect (OSTI)

    Gastelum, Jason A.; USA, Richland Washington; Porter, Ellen A.; USA, Richland Washington

    2014-12-31

    This paper describes an approach to identify monitoring designs that optimize detection of CO2 leakage from a carbon capture and sequestration (CCS) reservoir and compares the results generated under two alternative objective functions. The first objective function minimizes the expected time to first detection of CO2 leakage, the second more conservative objective function minimizes the maximum time to leakage detection across the set of realizations. The approach applies a simulated annealing algorithm that searches the solution space by iteratively mutating the incumbent monitoring design. The approach takes into account uncertainty by evaluating the performance of potential monitoring designs across a set of simulated leakage realizations. The approach relies on a flexible two-tiered signature to infer that CO2 leakage has occurred. This research is part of the National Risk Assessment Partnership, a U.S. Department of Energy (DOE) project tasked with conducting risk and uncertainty analysis in the areas of reservoir performance, natural leakage pathways, wellbore integrity, groundwater protection, monitoring, and systems level modeling.

  2. Optimizing Monitoring Designs under Alternative Objectives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gastelum, Jason A.; USA, Richland Washington; Porter, Ellen A.; USA, Richland Washington

    2014-12-31

    This paper describes an approach to identify monitoring designs that optimize detection of CO2 leakage from a carbon capture and sequestration (CCS) reservoir and compares the results generated under two alternative objective functions. The first objective function minimizes the expected time to first detection of CO2 leakage, the second more conservative objective function minimizes the maximum time to leakage detection across the set of realizations. The approach applies a simulated annealing algorithm that searches the solution space by iteratively mutating the incumbent monitoring design. The approach takes into account uncertainty by evaluating the performance of potential monitoring designs across amore » set of simulated leakage realizations. The approach relies on a flexible two-tiered signature to infer that CO2 leakage has occurred. This research is part of the National Risk Assessment Partnership, a U.S. Department of Energy (DOE) project tasked with conducting risk and uncertainty analysis in the areas of reservoir performance, natural leakage pathways, wellbore integrity, groundwater protection, monitoring, and systems level modeling.« less

  3. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    SciTech Connect (OSTI)

    Richard P. Wells

    2007-03-23

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year.

  4. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  5. Sandia Energy - Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Monitoring & Treatment Technology Home Climate & Earth Systems WaterEnergy Nexus Water Monitoring & Treatment Technology Water Monitoring & Treatment Technologycwdd2015-05-0...

  6. Carbon Storage Monitoring, Verification and Accounting Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting ...

  7. Honey Lake Geothermal Area

    Broader source: Energy.gov [DOE]

    The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

  8. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  9. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective leadership, fiscal responsibility and program success. Education: K-16 Science, Technology, Engineering and Math (STEM) programs that are focused on reducing the achievement gap. Lockheed Martin dedicates 50% of its support to STEM education programs & activities. Customer & Constituent Relations:

  10. Hanford 300 Area ROD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area ROD Briefing to the Hanford Advisory Board March 6, 2014 Larry Gadbois -- EPA Recap of the 300 Area ROD Primary new concept -- Uranium Sequestration: * Purpose: Accelerate restoration of groundwater uranium contamination. * Protect groundwater from downward leaching from the vadose zone (overlying soil). * Add phosphate to chemically bond with uranium into geologically stable autunite. Does not dissolve. * Dissolve phosphate in water, apply at ground surface, inject into the ground,

  11. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  12. Lithium niobate explosion monitor

    DOE Patents [OSTI]

    Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  13. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  14. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  15. Lithium niobate explosion monitor

    DOE Patents [OSTI]

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  16. User Program Performance Monitor

    Energy Science and Technology Software Center (OSTI)

    1983-09-30

    PROGLOOK makes it possible to monitor the execution of virtually any OS/MVT or OS/VS2 Release 1.6 load module. The main reason for using PROGLOOK is to find out which portions of a code use most of the CPU time so that those parts of the program can be rewritten to reduce CPU time. For large production programs, users have typically found it possible to reduce CPU time by 10 to 30 percent without changing themore »program''s function.« less

  17. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  18. Monitoring of tritium

    DOE Patents [OSTI]

    Corbett, James A.; Meacham, Sterling A.

    1981-01-01

    The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

  19. Milliwave melter monitoring system

    DOE Patents [OSTI]

    Daniel, William E. (North Augusta, SC); Woskov, Paul P. (Bedford, MA); Sundaram, Shanmugavelayutham K. (Richland, WA)

    2011-08-16

    A milliwave melter monitoring system is presented that has a waveguide with a portion capable of contacting a molten material in a melter for use in measuring one or more properties of the molten material in a furnace under extreme environments. A receiver is configured for use in obtaining signals from the melt/material transmitted to appropriate electronics through the waveguide. The receiver is configured for receiving signals from the waveguide when contacting the molten material for use in determining the viscosity of the molten material. Other embodiments exist in which the temperature, emissivity, viscosity and other properties of the molten material are measured.

  20. High sensitivity charge amplifier for ion beam uniformity monitor

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  1. Millimeter wave sensor for monitoring effluents

    DOE Patents [OSTI]

    Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.

    1995-01-01

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  2. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  3. Remotely Monitored Sealing Array Software

    SciTech Connect (OSTI)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support active tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.

  4. Remotely Monitored Sealing Array Software

    Energy Science and Technology Software Center (OSTI)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to lastmore » for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support active tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.« less

  5. The community environmental monitoring program: a historical perspective

    SciTech Connect (OSTI)

    Karr, L.H.; Hartwell, W.T.; Tappen, J.; Giles, K.

    2007-07-01

    With the Community Environmental Monitoring Program (CEMP) entering its 26. year of monitoring the offsite areas around the Nevada Test Site (NTS), a look back on the history and the hows and whys of its formation is in order. In March of 1979, the accident at Three-Mile Island Nuclear Power Generating Plant near Middletown, Pennsylvania occurred, and Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV), along with other governmental agencies such as the U.S. Department of Energy (DOE), was requested to provide monitoring personnel. Public concerns over the accident were high, especially for those living around the power plant. It was found that involving the local community in the sample collection process helped to ease some of the concerns, and the Citizens Monitoring Program (CMP) was instituted. This idea was brought back to Las Vegas and in 1981, the NTS Community Monitoring Program was started to involve the communities surrounding and downwind of the NTS, who were experiencing many of the same concerns, in the monitoring of the Nuclear Weapons Testing Program. By reviewing the history of the CEMP, one can see what the concerns of the local communities were, how they were addressed, and the effect this has had on them. From the standpoint of stakeholders, getting information on radiation safety issues from an informed local citizen rather than from a government agency official living elsewhere can only have a positive effect on how the public views the reliability of the monitoring data. (authors)

  6. Environmental monitoring, restoration and assessment: What have we learned

    SciTech Connect (OSTI)

    Gray, R.H.

    1990-01-01

    The Twenty-Eighth Hanford Symposium on Health and the Environment was held in Richland, Washington, October 16--19, 1989. The symposium was sponsored by the US Department of Energy and the Pacific Northwest Laboratory, operated by Battelle Memorial Institute. The symposium was organized to review and evaluate some of the monitoring and assessment programs that have been conducted or are currently in place. Potential health and environmental effects of energy-related and other industrial activities have been monitored and assessed at various government and private facilities for over three decades. Most monitoring is required under government regulations; some monitoring is implemented because facility operators consider it prudent practice. As a result of these activities, there is now a substantial radiological, physical, and chemical data base for various environmental components, both in the United States and abroad. Symposium participants, both platform and poster presenters, were asked to consider, among other topics, the following: Has the expenditure of millions of dollars for radiological monitoring and assessment activities been worth the effort How do we decide when enough monitoring is enough Can we adequately assess the impacts of nonradiological components -- both inorganic and organic -- of wastes Are current regulatory requirements too restrictive or too lenient Can monitoring and assessment be made more cost effective Papers were solicited in the areas of environmental monitoring; environmental regulations; remediation, restoration, and decommissioning; modeling and dose assessment; uncertainty, design, and data analysis; and data management and quality assurance. Individual reports are processed separately for the databases.

  7. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, James E. (Knoxville, TN)

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  8. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, J.E.

    1988-03-31

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  9. Gamma-Ray Large Area Space Telescope: Mission Overview (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Gamma-Ray Large Area Space Telescope: Mission Overview Citation Details In-Document Search Title: Gamma-Ray Large Area Space Telescope: Mission Overview The new Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in the middle of 2008. It contains the high energy gamma-ray telescope Large Area Telescope (LAT) which covers the energy range from 20 MeV to >300 GeV and the GLAST Burst Monitor (GMB), covering 8 keV-30 MeV energy range. The GLAST

  10. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  11. Commercial Building Performance Monitoring and Evaluation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Performance Monitoring and Evaluation Commercial Building Performance Monitoring and Evaluation The Building Technologies Office (BTO) uses performance metrics to ...

  12. DOE - Office of Legacy Management -- Rulison Monitoring

    Office of Legacy Management (LM)

    Rulison Monitoring Rulison, Colorado, Site Natural Gas Well Monitoring Results Monitoring Results Natural Gas Wells Near Project Rulison Third Quarter 2015 Monitoring Results for Natural Gas Wells Near Project Rulison Second Quarter 2015 Monitoring Results for Natural Gas Wells Near Project Rulison First Quarter 2015 Monitoring Results for Natural Gas Wells Near Project Rulison Third Quarter 2014 Monitoring Results for Natural Gas Wells Near Project Rulison Second Quarter 2014 Monitoring Results

  13. Electron launching voltage monitor

    DOE Patents [OSTI]

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  14. Electron launching voltage monitor

    DOE Patents [OSTI]

    Mendel, Clifford W. (Albuquerque, NM); Savage, Mark E. (Albuquerque, NM)

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  15. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  16. Ignition system monitoring assembly

    SciTech Connect (OSTI)

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  17. Cylinder monitoring program

    SciTech Connect (OSTI)

    Alderson, J.H.

    1991-12-31

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  18. Digital ac monitor

    DOE Patents [OSTI]

    Hart, George W. (Natick, MA); Kern, Jr., Edward C. (Lincoln, MA)

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  19. Digital ac monitor

    DOE Patents [OSTI]

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  20. Groundwater monitoring system

    DOE Patents [OSTI]

    Ames, Kenneth R. (Pasco, WA); Doesburg, James M. (Richland, WA); Eschbach, Eugene A. (Richland, WA); Kelley, Roy C. (Kennewick, WA); Myers, David A. (Richland, WA)

    1987-01-01

    A groundwater monitoring system includes a bore, a well casing within and spaced from the bore, and a pump within the casing. A water impermeable seal between the bore and the well casing prevents surface contamination from entering the pump. Above the ground surface is a removable operating means which is connected to the pump piston by a flexible cord. A protective casing extends above ground and has a removable cover. After a groundwater sample has been taken, the cord is disconnected from the operating means. The operating means is removed for taking away, the cord is placed within the protective casing, and the cover closed and locked. The system is thus protected from contamination, as well as from damage by accident or vandalism.

  1. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  2. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  3. Well Monitoring System for EGS

    Broader source: Energy.gov [DOE]

    EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

  4. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009

    SciTech Connect (OSTI)

    Brenda R. Pace; Julie B. Braun

    2009-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  5. Concepts for Environmental Radioactive Air Sampling and Monitoring

    SciTech Connect (OSTI)

    Barnett, J. M.

    2011-11-04

    Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

  6. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect (OSTI)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  7. Global disease monitoring and forecasting with Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  8. Standard-E hydrogen monitoring system shop acceptance test procedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-10-02

    The purpose of this report is to document that the Standard-E Hydrogen Monitoring Systems (SHMS-E), fabricated by Mid-Columbia Engineering (MCE) for installation on the Waste Tank Farms in the Hanford 200 Areas, are constructed as intended by the design. The ATP performance will verify proper system fabrication.

  9. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA)

    1996-01-01

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  10. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, R.J.; Basel, R.A.

    1996-03-12

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  11. Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Not Available

    1994-06-14

    This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

  12. Environmental Monitoring Plan, Revision 6

    SciTech Connect (OSTI)

    Gallegos, G M; Bertoldo, N A; Blake, R G; Campbell, C G; Grayson, A R; Nelson, J C; Revelli, M A; Rosene, C A; Wegrecki, T; Williams, R A; Wilson, K R; Jones, H E

    2012-03-02

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment. Specifically, environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring is also a major component of compliance demonstration for permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. LLNL prepares the EMP because it provides an organizational framework for ensuring that environmental monitoring work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 458.1, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies.

  13. Instrumentation for slope stability -- Experience from an urban area

    SciTech Connect (OSTI)

    Flentje, P.; Chowdhury, R.

    1999-07-01

    This paper describes the monitoring of several existing landslides in an urban area near Wollongong in the state of New South Wales, Australia. A brief overview of topography and geology is given and reference is made to the types of slope movement, processes and causal factors. Often the slope movements are extremely slow and imperceptible to the eye, and catastrophic failures are quite infrequent. However, cumulative movements at these slower rates do, over time, cause considerable distress to structures and disrupt residential areas and transport routes. Inclinometers and piezometers have been installed at a number of locations and monitoring of these has been very useful. The performance of instrumentation at different sites is discussed in relation to the monitoring of slope movements and pore pressures. Interval rates of inclinometer shear displacement have been compared with various periods of cumulative rainfall to assess the relationships.

  14. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 Prepared by Under Contract No. DE-AC52-06NA25946 March 2007 DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Available for sale to the public,

  15. Property:AreaGeology | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak...

  16. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  17. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, Michael J. (Plainfield, IL)

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  18. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, Paul (Acton, MA)

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  19. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  20. OpenSM Monitoring System

    Energy Science and Technology Software Center (OSTI)

    2015-04-17

    The OpenSM Monitoring System includes a collection of diagnostic and monitoring tools for use on Infiniband networks. The information this system gathers is obtained from a service, which in turn is obtained directly from the OpenSM subnet manager.

  1. Bay Area | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  2. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  3. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  4. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.

  5. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  6. Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    v*Zy- i , . r ,v * -i S # Af [, (e- . - o -A tl }r- 0 v-" l^~4~S J l ^-)^ I^U^ck iM clti ^ <p< ^^i~oeii ^' Western Area Power Administration Follow-up to Nov. 25, 2008 Transition Meeting Undeveloped Transmission Right-of-Way Western has very little undeveloped transmission right-of-way. There is a 7-mile right- of-way between Folsom, CA and Roseville, CA where Western acquired a 250' wide right-of-way but is only using half of it. Another line could be built parallel to Western's line

  7. F-Area Hazardous Waste Management Facility Semiannual Correction Action Report, Vol. I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-11-18

    The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site is routinely monitored for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  8. Construction of MV-6 Well Pad at the Central Nevada Test Area Completed

    Broader source: Energy.gov [DOE]

    A new groundwater monitoring/validation (MV) well was installed at the Central Nevada Test Area (CNTA) in September 2013. LM proposed this well to the Nevada Division of Environmental Protection ...

  9. Determination of leakage areas in nuclear piping

    SciTech Connect (OSTI)

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  10. Measurement of emission fluxes from Technical Area 54, Area G and L. Final report

    SciTech Connect (OSTI)

    Eklund, B.

    1995-03-15

    The emission flux (mass/time-area) of tritiated water from TA-54 was measured to support the characterization of radioactive air emissions from waste sites for the Radioactive Air Emissions Management (RAEM) program and for the Area G Performance Assessment. Measurements were made at over 180 locations during the summers of 1993 and 1994, including randomly selected locations across Area G, three suspected areas of contamination at Area G, and the property surrounding TA-54. The emission fluxes of radon were measured at six locations and volatile organic compounds (VOCs) at 30 locations. Monitoring was performed at each location over a several-hour period using the U.S. EPA flux chamber approach. Separate samples for tritiated water, radon, and VOCs were collected and analyzed in off-site laboratories. The measured tritiated water emission fluxes varied over several orders of magnitude, from background levels of about 3 pCi/m{sup 2}-min to 9.69 x 10{sup 6} pCi/m{sup 2}-min near a disposal shaft. Low levels of tritiated water were found to have migrated into Pajarito Canyon, directly south of Area G. The tritium flux data were used to generate an estimated annual emission rate of 14 Curies/yr for all of Area G, with the majority of this activity being emitted from relatively small areas adjacent to several disposal shafts. The estimated total annual release is less than 1% of the total tritium release from all LANL in 1992 and results in a negligible off-site dose. Based on the limited data available, the average emission flux of radon from Area G is estimated to be 8.1 pCi/m{sup 2}-min. The measured emission fluxes of VOCs were < 100 {mu}g/m{sup 2}-min, which is small compared with fluxes typically measured at hazardous waste landfills. The air quality impacts of these releases were evaluated in a separate report.

  11. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Yan (Palo Alto, CA)

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  12. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  13. What We Monitor & Why

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What We Monitor & Why What We Monitor & Why We protect human health and the environment by monitoring wildlife, plants, water quality, and air quality. June 27, 2012 Raft Trip: rafts on the Rio Grande Workers prepare for the annual Fall sampling campaign on the Rio Grande in White Rock Canyon near Los Alamos, NM. Crews take samples of spring and surface water, as well as sediment, at numerous locations along the canyon from Otowi Bridge to the Cochiti Reservoir. The rafts carry people,

  14. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  15. Summary of Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-03-01

    This is a summary booklet of the main report: Hanford Site Groundwater Monitoring for Fiscal Year 2005. It is the summary section of the main report with a CD of the entire report included. The main report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energys Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

  16. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    SciTech Connect (OSTI)

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen; McOmish, Sarah; Allen, Keir; Tolk, Keith; Weeks, George E.

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deployment of the room-within-a-room system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but the individual technologies used to create the system deployed during this exercise required further development.

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other TWG Concerns Expressed * Truck shipments should avoid Las Vegas metropolitan area and Hoover Dam - Generators are required to avoid Las Vegas metropolitan area and Hoover Dam ...

  18. DOE/EIA-0555(94)71

    U.S. Energy Information Administration (EIA) Indexed Site

    g The most recent definitions of Metropolitan Statistical Areas--issued by the Office of Management and Budget formerly known as Standard Metropolitan Statistical Areas were those...

  19. T-1 Training Area

    SciTech Connect (OSTI)

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  20. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  1. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2010

    SciTech Connect (OSTI)

    Weiss, R. L.; Lawrence, B. L.

    2011-06-09

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD2 and the ERDF Amended ROD (EPA 1999). The overall objective of the groundwater monitoring program is to determine whether ERDF has impacted the groundwater. This objective is complicated by the fact that the ERDF is situated downgradient of the numerous groundwater contamination plumes originating from the 200 West Area.

  2. ORISE: Media Analysis and Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as AutoINFORM (Auto Immunization News FOR Managers), that enable the monitoring of social media, email and other Web content. On average, ORISE tracks, codes and analyzes...

  3. Intelligent Shift Register Monitor Software

    Energy Science and Technology Software Center (OSTI)

    2001-01-19

    The ISR Monitor program is used to acquire data from a neutron detector connected to an AMSR electronics unit. The program stores all data collected in internal memory and dumps its stored data to an external computer upon request.

  4. Radiological Monitoring Continues at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation around 11:30 p.m. (MT) on February 14. Recent laboratory analyses by Carlsbad Environmental Monitoring and Research Center (CEMRC) found some trace amounts of americium...

  5. Web Application Monitoring Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tips for Understanding the Relationship Between a Web Application and SLAs At the heart of ... Web Application Monitoring - How it Can Help Just because your web app is online, doesn't ...

  6. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect (OSTI)

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  7. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, Mark Alexander (Pittsford, NY); Grot, Stephen Andreas (West Henrietta, NY)

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  8. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, M.A.; Grot, S.A.

    1998-06-09

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  9. ORISE: Media Analysis and Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Analysis and Monitoring The Oak Ridge Institute for Science and Education (ORISE) uses comprehensive media analysis and monitoring tools to define media interest and the public's perceptions of a particular issue. ORISE's media analysis process includes analyzing news reports combined with media outlet data, such as circulation, readership, number of viewers and listeners; recording frequency of publication and collecting quotes from subject matter experts. To improve the overall

  10. Stack Monitor Operating Experience Review

    SciTech Connect (OSTI)

    L. C. Cadwallader; S. A. Bruyere

    2009-05-01

    Stack monitors are used to sense radioactive particulates and gases in effluent air being vented from rooms of nuclear facilities. These monitors record the levels and types of effluents to the environment. This paper presents the results of a stack monitor operating experience review of the U.S. Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) database records from the past 18 years. Regulations regarding these monitors are briefly described. Operating experiences reported by the U.S. DOE and in engineering literature sources were reviewed to determine the strengths and weaknesses of these monitors. Electrical faults, radiation instrumentation faults, and human errors are the three leading causes of failures. A representative all modes failure rate is 1E-04/hr. Repair time estimates vary from an average repair time of 17.5 hours (with spare parts on hand) to 160 hours (without spare parts on hand). These data should support the use of stack monitors in any nuclear facility, including the National Ignition Facility and the international ITER project.

  11. OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE

    Office of Legacy Management (LM)

    FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1977 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 July 1978 This work performed under a Memorandum of Understanding No. EY-76-A-08-0539 for the U.S. DEPARTMENT OF ENERGY O F F - S I T E ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA T E S T S I T E AND OTHER T E S T AREAS USED F O R

  12. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  13. Environmental Monitoring Plan, Revision 5

    SciTech Connect (OSTI)

    Gallegos, G M; Blake, R G; Bertoldo, N A; Campbell, C G; Coty, J; Folks, K; Grayson, A R; Jones, H E; Nelson, J C; Revelli, M A; Wegrecki, T; Williams, R A; Wilson, K

    2010-01-27

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 450.1A, Environmental Protection Program. Specifically, in conformance with DOE Order 450.1A, Attachment 1, paragraph 1(b)(5), environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring also serves to demonstrate compliance with permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality. (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work. (3) An integrated sampling approach to avoid duplicative data collection. Until its cancellation in January 2003, DOE Order 5400.1 required the preparation of an environmental monitoring plan. Neither DOE Order 450.1A nor the ISO 14001 standard are as prescriptive as DOE Order 5400.1, in that neither expressly requires an EMP. However, LLNL continues to prepare the EMP because it provides an organizational framework for ensuring that this work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 5400.5, Radiation Protection of the Public and the Environment, and DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 450.1A, DOE Order 5400.5, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies. (See LLNL [1992] and LLNL [2008] for information about LLNL's CERCLA activities).

  14. Idaho National Laboratory Cultural Resource Monitoring Report for 2013

    SciTech Connect (OSTI)

    Julie B. Williams; Brenda Pace

    2013-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resource recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.

  15. Nondestructive Evaluation and Monitoring Projects NASA White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) ... Monitoring of Composite Tanks Pipeline and Pressure Vessel R&D under the ...

  16. Radiation Exposure Monitoring Systems - Other Related Sites ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiation Exposure Monitoring Systems - Other Related Sites Radiation Exposure Monitoring Systems - Other Related Sites Other Related Sites DOE - Main Home Page - the home page for ...

  17. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for ...

  18. Radiation Exposure Monitoring Systems Data Reporting Guide |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposure Monitoring Systems Data Reporting Guide December 17, 2015 Instructions for preparing occupational exposure data for submittal to the Radiation Exposure Monitoring System ...

  19. Monitoring Plan for Weatherization Assistance Program, State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring Plan for Weatherization Assistance Program, State Energy Program and Energy Efficiency and Conservation Block Grants Monitoring Plan for Weatherization Assistance ...

  20. Power Monitoring for Connected Lighting Systems

    Energy Savers [EERE]

    * Provides more granular data * Dependent on connectivity * Moving to utility-grade or revenue- grade accuracy Power-Monitoring Implementations 5 A centralized power-monitoring...

  1. Monitoring Switchyard Electricity | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Switchyard ... Monitoring Switchyard Electricity Monitoring electricity coming in through the switchyard to the Y-12 Plant

  2. Hanford Site ground-water monitoring for January through June 1988

    SciTech Connect (OSTI)

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  3. DOE Designates Southwest Area and Mid-Atlantic Area National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    not a major source of potential generation for the area in the Southwest experiencing critical congestion, nor is it an area with a transmission constraint that would separate the...

  4. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Patterson, Eileen F.

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael; Harste, Hans; Maceira, Monica; Patton, Howard; Phillips, Scott; Randall, George; Rowe, Charlotte; Stead, Richard; Steck, Lee; Whitaker, Rod; Yang, Xiaoning

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    SciTech Connect (OSTI)

    Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael; Harste, Hans; Maceira, Monica; Patton, Howard; Phillips, Scott; Randall, George; Revelle, Douglas; Rowe, Charlotte; Stead, Richard; Steck, Lee; Whitaker, Rod; Yang, Xiaoning

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Characterization, monitoring, and sensor technology catalogue

    SciTech Connect (OSTI)

    Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

  10. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    SciTech Connect (OSTI)

    INL Cultural Resource Management Office

    2010-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  11. IDENTIFICATION OF DOE'S POST-CLOSURE MONITORING NEEDS AND REQUIREMENTS

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    1999-01-01

    The 2006 plan sets an ambitious agenda for the U.S. Department of Energy (DOE), Office of Environmental Management (EM) and the remediation of sites contaminated by decades of nuclear weapons production activities. The plan's primary objective is to reduce overall clean up costs by first eliminating the environmental problems that are most expensive to control and safely maintain. In the context of the 2006 Plan, closure refers to the completion of area or facility specific cleanup projects. The cleanup levels are determined by the planned future use of the site or facility. Use restrictions are still undecided for most sites but are highly probable to exclude residential or agricultural activities. Most of the land will be remediated to ''industrial use'' levels with access restrictions and some areas will be closed-off through containment. Portions of the site will be reserved for waste disposal, either as a waste repository or the in-situ immobilization of contaminated soil and groundwater, and land use will be restricted to waste disposal only. The land used for waste disposal will require monitoring and maintenance activities after closure. Most of the land used for industrial use may also require such postclosure activities. The required postclosure monitoring and maintenance activities will be imposed by regulators and stakeholders. Regulators will not approve closure plans without clearly defined monitoring methods using approved technologies. Therefore, among all other more costly and labor-intensive closure-related activities, inadequate planning for monitoring and lack of appropriate monitoring technologies can prevent closure. The purpose of this project is to determine, document, and track the current and evolving postclosure monitoring requirements at DOE-EM sites. This information will aid CMST-CP in guiding its postclosure technology development and deployment efforts.

  12. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research

  13. Hanford Site ground-water monitoring for July through December 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  14. Wind Turbine Drivetrain Condition Monitoring (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2011-10-01

    This presentation details the Gearbox Reliability Collaborative Condition Monitoring program at NREL.

  15. Radiation Exposure Monitoring Systems Data Reporting Guide

    Broader source: Energy.gov [DOE]

    Instructions for preparing occupational exposure data for submittal to the Radiation Exposure Monitoring System (REMS) repository.

  16. Grantee Checklist for the Inspection & Monitoring Requirement

    Broader source: Energy.gov [DOE]

    This document walks Grantees through the Inspection and Monitoring requirement of the Quality Work Plan.

  17. Quality Work Plan Inspection and Monitoring Requirement

    Broader source: Energy.gov [DOE]

    Inspection and monitoring requirements for Weatherization Assistance Program's comprehensive Quality Work Plan.

  18. Device for monitoring cell voltage

    DOE Patents [OSTI]

    Doepke, Matthias (Garbsen, DE); Eisermann, Henning (Edermissen, DE)

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  19. Monitoring plan for Everest, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.

    2009-03-23

    This transmittal is a response to your request of January 22, 2009, for a letter work plan outlining a program of annual groundwater and surface water monitoring at Everest, Kansas. Once yearly, they propose to conduct surface water sampling at the 5 locations shown in Figure 1 and groundwater sampling in the 16 wells identified in Figure 2. The wells will be sampled according to the low-flow procedure. The next sampling event is planned for April 2009. The surface water and groundwater samples collected will be preserved, shipped, and analyzed for volatile organic compounds as in previous work at Everest. Results will be reported to the KDHE. This monitoring program will continue until identified plume conditions at the site indicate a technical justification to change the monitoring program.

  20. Method & apparatus for monitoring plasma processing operations

    DOE Patents [OSTI]

    Smith, Jr., Michael Lane; Ward, Pamela Denise; Stevenson, Joel O'Don

    2004-10-19

    The invention generally relates to various aspects of a plasma process and, more specifically, to the monitoring of such plasma processes. One aspect relates to a plasma monitoring module that may be adjusted in at least some manner so as to re-evaluate a previously monitored plasma process. For instance, optical emissions data on a plasma process that was previously monitored by the plasma monitoring module may be replayed through the plasma monitoring module after making at least one adjustment in relation to the plasma monitoring module.

  1. Relating to monitoring ion sources

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM)

    2002-01-01

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  2. Toward reactor monitoring with antineutrinos

    SciTech Connect (OSTI)

    Guillon, Benoit; Cormon, S.; Fallot, M.; Giot, L.; Martino, J.; Cribier, M.; Lasserre, T.

    2007-07-01

    The fundamental knowledge on neutrino properties acquired in recent years as well as the great experimental progress made on neutrino detection open nowadays the possibility of applied neutrino physics. Among it, the International Atomic Energy Agency (IAEA) asked to its member states to study the possibility of nuclear reactor monitoring applications, such as the thermal power measurement or the fuel composition bookkeeping. In this context, we report studies aiming at a better determination of the antineutrino energy spectrum emitted by nuclear power plants, necessary for reactor monitoring applications, but also for experiments studying the ground properties of these particles. (authors)

  3. Process Monitoring for Nuclear Safeguards

    SciTech Connect (OSTI)

    Ehinger, Michael H [ORNL] [ORNL; Pomeroy, George D [ORNL] [ORNL; Budlong-Sylvester, Kory W [ORNL] [ORNL

    2009-01-01

    Process Monitoring has long been used to evaluate industrial processes and operating conditions in nuclear and non-nuclear facilities. In nuclear applications there is a recognized need to demonstrate the safeguards benefits from using advanced process monitoring on spent fuel reprocessing technologies and associated facilities, as a complement to nuclear materials accounting. This can be accomplished by: defining credible diversion pathway scenarios as a sample problem; using advanced sensor and data analysis techniques to illustrate detection capabilities; and formulating 'event detection' methodologies as a means to quantify performance of the safeguards system. Over the past 30 years there have been rapid advances and improvement in the technology associated with monitoring and control of industrial processes. In the context of bulk handling facilities that process nuclear materials, modern technology can provide more timely information on the location and movement of nuclear material to help develop more effective safeguards. For international safeguards, inspection means verification of material balance data as reported by the operator through the State to the international inspectorate agency. This verification recognizes that the State may be in collusion with the operator to hide clandestine activities, potentially during abnormal process conditions with falsification of data to mask the removal. Records provided may show material is accounted for even though a removal occurred. Process monitoring can offer additional fidelity during a wide variety of operating conditions to help verify the declaration or identify possible diversions. The challenge is how to use modern technology for process monitoring and control in a proprietary operating environment subject to safeguards inspectorate or other regulatory oversight. Under the U.S. National Nuclear Security Administration's Next Generation Safeguards Initiative, a range of potential safeguards applications for process monitoring are under conceptual development and evaluation. This paper reports on a study of process monitoring for a sample problem involving spent fuel reprocessing with aqueous reprocessing technologies. This includes modeling the processes in the context of a nuclear material diversion scenario and measuring the associated process chemistry. A systems-centric model is applied using actual and simulated plant data, advanced sensors, anomaly detection methods, statistical analysis and data authentication methods, to help illustrate the benefits of process monitoring applications.

  4. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  5. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  6. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  7. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractors revegetation and mitigation areas on the Hanford Site.

  8. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contracts revegetation and mitigation areas on the Hanford Site.

  9. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  10. Shared performance monitor in a multiprocessor system

    DOE Patents [OSTI]

    Chiu, George; Gara, Alan G; Salapura, Valentina

    2014-12-02

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  11. Hanford Site ground-water monitoring for April through June 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  12. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  13. SSL Demonstration: Area Lighting, Yuma Sector Border Patrol Area, AZ

    SciTech Connect (OSTI)

    2015-05-28

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This document is a summary brief of the Phase 1.0 and 1.1 reports previously published on this demonstration.

  14. Sanitary landfill groundwater monitoring data

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-05-01

    This report for first quarter 1992 contains sanitary landfill groundwater monitoring data for the Savannah River Plant. The data tables presented in this report are copies of draft analytical results and therefore do contain errors. These errors will be corrected when the finalized data is received from the laboratory.

  15. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  16. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, D.

    1997-03-18

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.

  17. Monitoring systems for large hydrogenerators

    SciTech Connect (OSTI)

    Bruzzone, N.; Gandolfi, P.; Mencaroni, R.; Trotello, E.

    1998-07-01

    Yacyret is the largest hydroelectric power plant, at present under construction, in the world: it is located on an island on the Rio Paran, in Paraguay, near the Argentina border. The power plant has twenty 172.5 MVA, 84-pole hydrogenerators (units 1-10 supplied by Mitsubishi, units 11-20 manufactured by Siemens and Ansaldo). The last ten are equipped with a special monitoring system supplied by Ansaldo. The MONTRA system makes possible on-line control of the air-gap, by means of 8 special sensors, Air Gap Monitoring System (AGMS) commercialized by VibroSystem (Canada); installation and commissioning of the system were by Ansaldo. On the same ten units a system for on-line monitoring and analysis of partial discharges (commercially named SCAPAR) developed by Ansaldo is provided too. At present the tenth unit is under commissioning and all the ten eventual units supplied by Siemens and Ansaldo will be equipped with the above mentioned monitoring system

  18. Surfactant monitoring by foam generation

    DOE Patents [OSTI]

    Mullen, Ken I. (Los Alamos, NM)

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  19. EFM units monitor gas flow

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This paper describes the radio-controlled pipeline monitoring system established by Transcontinental Gas Pipe Line Corp. which was designed to equip all its natural gas purchasing metering facilities with electronic flow measurement computers. The paper describes the actual radio equipment used and the features and reliability of the equipment.

  20. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  1. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  2. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area (Redirected from Stillwater Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2...

  3. Chena Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Chena Area...

  4. Salton Sea Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salton Sea Geothermal Area (Redirected from Salton Sea Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salton Sea Geothermal Area Contents 1 Area Overview 2...

  5. Heber Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Heber Geothermal Area (Redirected from Heber Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber Geothermal Area Contents 1 Area Overview 2 History and...

  6. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  7. PPPL Area Map | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Area Map View Larger Map

  8. Desert Peak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Desert Peak Geothermal Area (Redirected from Desert Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak Geothermal Area Contents 1 Area Overview 2...

  9. 2002 WIPP Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-09-30

    DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  10. Ecological Monitoring and Compliance Program Fiscal Year 2002 Report

    SciTech Connect (OSTI)

    C. A. Wills

    2002-12-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada (BN) during fiscal year 2002. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, and (5) biological monitoring at the HAZMAT Spill Center. Biological surveys for the presence of sensitive species and important biological resources were conducted for 26 NTS projects. These projects have the potential to disturb a total of 374 acres. Thirteen of the projects were in desert tortoise habitat, and 13.38 acres of desert tortoise habitat were disturbed. No tortoises were found in or displaced from project areas, and no tortoises were accidentally injured or killed at project areas or along paved roads. Compilation of historical wildlife data continued this year in efforts to develop faunal distribution maps for the NTS. Photographs associated with the NTS ecological landform units sampled to create the NTS vegetation maps were cataloged for future retrieval and analysis. The list of sensitive plant species for which long-term population monitoring is scheduled was revised. Six vascular plants and five mosses were added to the list. Plant density estimates from ten populations of Astragalus beatleyae were collected, and eight known populations of Eriogonum concinnum were visited to assess plant and habitat status. Minimal field monitoring of western burrowing owl burrows occurred. A report relating to the ecology of the western burrowing owl on the Nevada Test Site was prepared which summarizes four years of data collected on this species' distribution, burrow use, reproduction, activity patterns, and food habits. Bat roost sites within seven buildings slated for demolition were identified, and a BN biologist was a contributing author of the Nevada Bat Conservation Plan published by the Nevada Bat Working Group. Thirty-three adult horses and five foals were counted this year. Six active raptor nests (two American kestrel, two Red-tailed hawk, and two Great-horned owl nests) were found and monitored this year. Selected wetlands and man-made water sources were monitored for physical parameters and wildlife use. No dead animals were observed this year in any plastic-lined sump. The chemical release test plan for one experiment at the HAZMAT Spill Center on Frenchman Lake playa was reviewed. Seasonal sampling of downwind and upwind transects near the spill center was conducted to document baseline conditions of biota.

  11. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    SciTech Connect (OSTI)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID to build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.

  12. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID tomore » build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.« less

  13. Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson PDF icon Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA More Documents & Publications Smooth Brome Monitoring at Rocky Flats-2005 Results EA-0847: Final Environmental Assessment Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site

  14. Environmental Monitoring Plan: Environmental Monitoring Section. Appendix A, Procedures

    SciTech Connect (OSTI)

    1995-02-01

    This document presents information about the environmental monitoring program at Lawrence Livermore National Laboratory. Topics discussed include: air sampling; air tritium calibrations; storm water discharge; non-storm water discharge; sampling locations; ground water sampling; noise and blast forecasting; analytical laboratory auditing; document retention; procedure writing; quality assurance programs for sampling; soil and sediment sampling; sewage sampling; diversion facility tank sampling; vegetation and foodstuff sampling; and radiological dose assessments.

  15. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    SciTech Connect (OSTI)

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in fiscal year 1999, and monitoring is no longer required. Groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100 K, D, and H) and strontium-90 (100 N) reaching the Columbia River. The objective of two remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. Subsurface source characterization and vadose zone monitoring, soil-vapor monitoring, sediment sampling and characterization, and vadose zone remediation were conducted in fiscal year 1999. Baseline spectral gamma-ray logging at two single-shell tank farms was completed, and logging of zones at tank farms with the highest count rate was initiated. Spectral gamma-ray logging also occurred at specific retention facilities in the 200 East Area. These facilities are some of the most significant potential sources of remaining vadose zone contamination. Finally, remediation and monitoring of carbon tetradoride in the 200 West Area continued, with an additional 972 kilograms of carbon tetrachloride removed from the vadose zone in fiscal year 1999.

  16. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  17. Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  18. Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and facilities together at the Large Hadron Collider4 (LHC) to learn about the ... abnormalities, and saved the time and resources of strained operations staff. 8. ...

  19. Groundwater monitoring plan for the proposed state-approved land disposal structure

    SciTech Connect (OSTI)

    Reidel, S.P.

    1993-10-13

    This document outlines a detection-level groundwater monitoring program for the state-approved land disposal structure (SALDS). The SALDS is an infiltration basin proposed for disposal of treated effluent from the 200 Areas of the Hanford Site. The purpose of this plan is to present a groundwater monitoring program that is capable of determining the impact of effluent disposal at the SALDS on the quality of groundwater in the uppermost aquifer. This groundwater monitoring plan presents an overview of the SALDS, the geology and hydrology of the area, the background and indicator evaluation (detection) groundwater monitoring program, and an outline of a groundwater quality assessment (compliance) program. This plan does not provide a plan for institutional controls to track tritium beyond the SALDS.

  20. Prospects for the introduction of wide area monitoring using environmental sampling for proliferation detection

    SciTech Connect (OSTI)

    Wogman, Ned A.

    2013-05-04

    Abstract paper which would like to be considered for submission to the MARC IX Conference as well as for the future publication in the Journal of Radioanalytical and Nuclear Chemistry.

  1. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Wilson, R. C.; Lewis, K. K.

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring. (CBS)

  2. Software solutions for emission monitoring

    SciTech Connect (OSTI)

    DeFriez, H.; Schillinger, S.; Seraji, H.

    1996-12-31

    Industry and state and federal environmental regulatory agencies are becoming ever more conciliatory due to the high cost of implementing the Clean Air Act Amendments of 1990 (CAAA) for the operation of Continuous Emissions Monitoring Systems (CEMS). In many cases the modifications do nothing to reduce emissions or even to measure the pollution, but simply let the source owner or operator and the permitting authority agree on a monitoring method and/or program. The EPA methods and standards developed under the Code of Federal Regulations (CFRs) have proven to be extremely costly and burdensome. Now, the USEPA and state agencies are making efforts to assure that emissions data has a strong technical basis to demonstrate compliance with regulations such as Title V.

  3. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  4. Mojo Application Monitoring Tool Suite

    Energy Science and Technology Software Center (OSTI)

    2009-12-11

    Mojo is a software tool suite that can be used to monitor the progress of compute jobs on Linux Clusters and other high-performance computing platforms.Mojo is designed to allow system administrators to monitor the health and progress of computing jobs, and to allow users to view the progress and status of their own jobs. The facilities provided include the ability to notify users of job “hangs”, and to take an automated action (e.g killing themore » job) when something goes wrong. These operations can lead to a more efficient use of scarce resources.« less

  5. Ecological Monitoring and Compliance Program 2014 Report

    SciTech Connect (OSTI)

    Hall, Derek B.; Anderson, David C.; Greger, Paul D.; Ostler, W. Kent

    2015-05-12

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the programs activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2014. Program activities included (a) biological surveys at proposed activity sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, and (f) habitat restoration monitoring. During 2014, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives. Sensitive and protected/regulated species of the NNSS include 42 plants, 1 mollusk, 2 reptiles, 236 birds, and 27 mammals. These species are protected, regulated, or considered sensitive according to state or federal regulations and natural resource agencies and organizations. The desert tortoise (Gopherus agassizii) and the western yellow-billed cuckoo (Coccyzus americanus) are the only species on the NNSS protected under the Endangered Species Act, both listed as threatened. However, only one record of the cuckoo has ever been documented on the NNSS, and there is no good habitat for this species on the NNSS. It is considered a rare migrant. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 18 projects. A total of 199.18 hectares (ha) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found during these surveys included a predator burrow, one sidewinder rattlesnake (Crotalus cerastes), two mating speckled rattlesnakes (Crotalus mitchellii), and several species of cacti. NSTec provided to project managers a written summary report of all survey findings and mitigation recommendations, where applicable. Of the 18 projects on the NNSS, 15 occurred within the range of the threatened desert tortoise. Approximately 2.19 ha of desert tortoise habitat were disturbed. No desert tortoises were accidentally injured or killed by project activities, and no tortoises were killed by vehicles. On 13 occasions, tortoises were moved off the road and out of harms way. Six tortoises were found and transmitters attached as part of an approved study to assess impacts of vehicles on tortoises on the NNSS. NSTec biologists continued to monitor 37 juvenile desert tortoises as part of a collaborative effort to study survival and temperament of translocated animals. From 1978 until 2013, there has been an average of 11.2 wildland fires per year on the NNSS with an average of about 83.7 ha burned per fire. There were no wildland fires documented on the NNSS during 2014. Results from the wildland fuel surveys showed a very low risk of wildland fire due to reduced fuel loads caused by limited natural precipitation. Limited reptile trapping and reptile roadkill surveys were conducted to better define species distribution on the NNSS. Sixteen reptiles were trapped representing five species. Combined with data from 2013, 183 road kills were detected, representing 11 snake and 8 lizard species. Selected natural water sources were monitored to assess trends in physical and biological parameters, and one new water source was found. Wildlife use at five water troughs and four radiologically contaminated sumps was documented using motion-activated cameras. As part of the statewide effort to disseminate information throughout the botanical community, NSTec prepared a shape file with site-specific data for all 17 sensitive plants on the NNSS and provided it to the Nevada Natural Heritage Program for inclusion in their statewide database. No field surveys were conducted this year for sensitive plants on the NNSS due to poor growing conditions. Surveys of sensitive and protected/regulated animals during 2014 focused on winter raptors, bats, wild horses (Equus caballus), mule deer (Odocoileus hemionus), desert bighorn sheep (Ovis Canadensis nelsoni), and mountain lions (Puma concolor). Two permanent, long-term winter raptor survey routes were established and sampled in January and February. A total of 27 raptors representing 4 species were observed. The wild horse population increased from 30 to 41, with several yearlings recruiting into the population, possibly due to the death of a mountain lion known to prey on horse foals. Mule deer abundance and density measured with standardized deer surveys was similar to 2013 and appears to be stable. Desert bighorn sheep, including rams, ewes, and lambs, were detected using motion-activated cameras at four water sources. There are plans to conduct helicopter surveys to census the population during September 2015 and then capture and radio-collar up to 20 sheep during November 2015. Over 150 sheep scat samples have been collected for genetic analysis to try to determine how sheep on the NNSS are related to surrounding sheep populations. Information is presented about bird mortalities, Migratory Bird Treaty Act compliance, and a summary of nuisance animals and their control on the NNSS. A total of 93 mountain lion images (i.e., photographs or video clips) were taken during 220,379 camera hours at 16 of 32 sites sampled and another 11,946 images of at least 29 species other than mountain lions were taken as well. A mountain lion telemetry study continued in 2014. NNSS7 was tracked from January 1 to November 15 using a global positioning system satellite transmitter. He consumed 21 mule deer, 17 desert bighorn sheep, 1 juvenile bobcat, and 3 coyotes. Mule deer were primarily taken in the summer and fall. No new mountain lions were captured. A minimum of four adult lions (two males, two females), a subadult male, and three kittens were known to inhabit the NNSS during 2014. Two previously revegetated sites on the NNSS and one on the Tonopah Test Range (TTR) were monitored in 2014. The cover cap on the U-3ax/bl disposal unit, revegetated in 2000, and the 92-Acre Site at the Area 5 Radioactive Waste Management Complex, revegetated in 2011, were the restoration sites monitored on the NNSS. The Corrective Action Unit 407 Rollercoaster RADSAFE site, revegetated in 2000, was the restoration site monitored on the TTR. Plant cover and density were recorded at all sites except U-3ax/bl (qualitative monitoring), and reclamation success standards were evaluated, where applicable.

  6. Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring & Treatment Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  7. AREA

    Broader source: Energy.gov (indexed) [DOE]

    or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO...

  8. GTA Beamloss-Monitor System

    SciTech Connect (OSTI)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-01-01

    The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, {gamma}) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitor System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 {mu}s assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper.

  9. GTA Beamloss-Monitor System

    SciTech Connect (OSTI)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-09-01

    The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, {gamma}) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitor System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 {mu}s assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper.

  10. Surrond Area Resturants | Department of Energy

    Energy Savers [EERE]

    Surrond Area Resturants Surrond Area Resturants PDF icon Surrounding Area Restaurants.pdf More Documents & Publications 2016 DOE Project Management Workshop - Area Restaurants 2015 APM Workshop - Surrounding Area Restaurants Directory of Potential Stakeholders for DOE Actions under NEPA

  11. NEFC-LV-539-31 ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEFC-LV-539-31 ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND XJCLEAR DETONATIONS January through December 1973 by the Monitoring Operations Laboratory National Environmental Research Center U. S. ENVIROm,iENTXL PROTECTION AGENCY Las Vegas, Nevada Published Xay 1974 This work performed under a Memorandum of Understanding No. AT(26-l)-539 fcr the U. S. ATOMIC ENLIIGY COMMISSION PREFACE The Atomic Energy Commission (AEC) has used the Nevada Test

  12. OZONE PRODUCTION IN THE PHILADELPHIA URBAN AREA DURING NE-OPS 99.

    SciTech Connect (OSTI)

    KLEINMAN,L.I.; DAUM,P.H.; BRECHTEL,F.; LEE,Y.N.; NUNNERMACKER,L.J.; SPRINGSTON,S.R.; WEINSTEIN-LLOYD,J.

    2001-10-01

    As part of the 1999 NARSTO Northeast Oxidant and Particulate Study (NE-OPS) field campaign, the DOE G-1 aircraft sampled trace gases and aerosols in and around the Philadelphia metropolitan area. Twenty research flights were conducted between July 25 and August 11. The overall goals of these flights were to obtain a mechanistic understanding of O{sub 3} production; to characterize the spatial and temporal behavior of photo-oxidants and aerosols; and to study the evolution of aerosol size distributions, including the process of new particle formation. Within the NE-OPS program, other groups provided additional trace gas, aerosol, and meteorological observations using aircraft, balloon, remote sensing, and surface based instruments (Phillbrick et al., 2000). In this article we provide an overview of the G-1 observations related to O{sub 3} production, focusing on the vertical distribution of pollutants. Ozone production rates are calculated using a box model that is constrained by observed trace gas concentrations. Highest O{sub 3} concentrations were observed on July 31, which we present as a case study. On that day, O{sub 3} concentrations above the 1-hour 120 ppb standard were observed downwind of Philadelphia and also in the plume of a single industrial facility located on the Delaware River south of the city.

  13. Wind Turbine Drivetrain Condition Monitoring - An Overview

    SciTech Connect (OSTI)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  14. ORISE: DOE's Radiation Exposure Monitoring System (REMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring System (REMS) ORISE maintains large database of radition exposure records for the U.S. Department of Energy ORISE staff monitoring radiation data for DOE Rule 10 CFR 835...

  15. Environmental Monitoring, Remediation, and Surveillance Committee Fiscal

    Office of Environmental Management (EM)

    Year 2012 Work Plan | Department of Energy Monitoring, Remediation, and Surveillance Committee Fiscal Year 2012 Work Plan Environmental Monitoring, Remediation, and Surveillance Committee Fiscal Year 2012 Work Plan Topics: Groundwater Surface water Consent Order PDF icon EMSR-FY12-WP - September 1, 2011 More Documents & Publications Environmental Monitoring and Remediation Committee Fiscal Year 2013 Work Plan Environmental Monitoring and Remediation Committee Fiscal Year 2015 Work Plan

  16. Oregon Industrial Stormwater Discharge Monitoring Report (DEQ...

    Open Energy Info (EERE)

    discharge. Form Type ApplicationNotice Form Topic Industrial Stormwater Discharge Monitoring Report Organization Oregon Department of Environmental Quality Published...

  17. Computers and Monitors | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computers and Monitors Buying a Computer or Monitor If you have a need to purchase a computer and/or monitor, follow this How To Guide to search the registry for EPEAT products. On your purchase requisition, indicate whether or not the item is EPEAT registered. *Acceptable Justifications/exceptions will be rare for computer or monitor through the Ames Laboratory storeroom. Both items offered through the storeroom are registered as EPEAT Gold* Office Electronics - look for ENERGY STAR and

  18. Ecological Monitoring and Compliance Program 2014 Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecological Monitoring and Compliance Program 2014 Report ii This Page Intentionally Left Blank Ecological Monitoring and Compliance Program 2014 Report iii EXECUTIVE SUMMARY The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations

  19. Sandia National Laboratories: Cooperative Monitoring Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooperative Monitoring Center IPB Building "Achieving International Security Through Technical Collaborations" Established at Sandia National Laboratories in 1994, the Cooperative...

  20. Environmental Monitoring, Surveillance, and Control Programs...

    Office of Environmental Management (EM)

    ... source air emissions characterization (including monitoring programs), air pollution control equipment operation and maintenance, and reporting and compliance management systems. ...

  1. Wind Turbine Structural Health Monitoring - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing wind farms Applications and Industries Wind turbine structural health monitoring Individual turbine maintenance Wind farm energy production optimization Technology...

  2. EMSL-LV-539-4 ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR EMSL-LV-539-4 May 1976 TEST SITE DETONATIONS January through December 1975 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of Understanding No. AT(26-l)-539 for the U.S. ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION EMSL-LV-539-4 EMSL-LV-539-4 May 1976

  3. SWSA 6 interim corrective measures environmental monitoring: FY 1990 results

    SciTech Connect (OSTI)

    Ashwood, T.L.; Spalding, B.P.

    1991-07-01

    This report presents the results and conclusions from a multifaceted monitoring effort associated with the high-density polyethylene caps installed in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL) as an interim corrective measure (ICM). The caps were installed between November 1988 and June 1989 to meet Resource Conservation and Recovery Act (RCRA) requirements for closure of those areas of SWSA 6 that had received RCRA-regulated wastes after November 1980. Three separate activities were undertaken to evaluate the performance of the caps: (1) wells were installed in trenches to be covered by the caps, and water levels in these intratrench wells were monitored periodically; (2) samples were taken of the leachate in the intratrench wells and were analyzed for a broad range of radiological and chemical contaminants; and (3) water levels in wells outside the trenches were monitored periodically. With the exception of the trench leachate sampling, each of these activities spanned the preconstruction, construction, and postconstruction periods. Findings of this study have important implications for the ongoing remedial investigation in SWSA 6 and for the design of other ICMs. 51 figs., 2 tabs.

  4. Improved Characterization and Monitoring of Electromagnetic Sources -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Characterization and Monitoring of Electromagnetic Sources Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary LLNL's technology is useful in fields such as power systems engineering, security monitoring, and vehicle tracking to identify, locate and monitor a particular source of

  5. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  6. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect (OSTI)

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  7. Facility Effluent Monitoring Plan for the 3720 Building

    SciTech Connect (OSTI)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

  8. The Node Monitoring Component of a Scalable Systems Software Environment

    SciTech Connect (OSTI)

    Samuel James Miller

    2006-08-09

    This research describes Fountain, a suite of programs used to monitor the resources of a cluster. A cluster is a collection of individual computers that are connected via a high speed communication network. They are traditionally used by users who desire more resources, such as processing power and memory, than any single computer can provide. A common drawback to effectively utilizing such a large-scale system is the management infrastructure, which often does not often scale well as the system grows. Large-scale parallel systems provide new research challenges in the area of systems software, the programs or tools that manage the system from boot-up to running a parallel job. The approach presented in this thesis utilizes a collection of separate components that communicate with each other to achieve a common goal. While systems software comprises a broad array of components, this thesis focuses on the design choices for a node monitoring component. We will describe Fountain, an implementation of the Scalable Systems Software (SSS) node monitor specification. It is targeted at aggregate node monitoring for clusters, focusing on both scalability and fault tolerance as its design goals. It leverages widely used technologies such as XML and HTTP to present an interface to other components in the SSS environment.

  9. Progress Update: M Area Closure

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

  10. Fire in a contaminated area

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-08-28

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Fire in Contaminated Area. The calculations needed to quantify the risk associated with this accident scenario are included within.

  11. Security Area Vouching and Piggybacking

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    Establishes requirements for the Department of Energy (DOE) Security Area practice of "vouching" or "piggybacking" access by personnel. DOE N 251.40, dated 5-3-01, extends this directive until 12-31-01.

  12. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  13. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for system-wide...

  14. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring...

    Office of Environmental Management (EM)

    Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup PDF icon Draft Work Plan - February 4,...

  15. EMSL-LV-0539-18 I OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 I OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1977 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 July 1978 This work performed under a Memorandum of Understanding No. EY-76-A-08-0539 .for the U.S. DEPARTMENT OF ENERGY EMSL-LV-0539-18 OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST

  16. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    SciTech Connect (OSTI)

    Hartman, M.J.

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.

  17. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Borough, PA)

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  18. Focus Areas | Department of Energy

    Energy Savers [EERE]

    Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward

  19. Carlsbad Area Office Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The

  20. CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA

    Office of Legacy Management (LM)

    r r r r r r t r r t r r r * r r r r r r CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY COMMlSSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA September 1970 Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, Nevada 338592 ...._- _._--_ .. -- - - - - - - .. .. - .. - - .. - - - CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA FACILITY RECORDS 1970 This page intentionally left blank - - .. - - - PURPOSE This facility study has