Sample records for metric tons year

  1. (Data in metric tons of silver content unless otherwise noted)

    E-Print Network [OSTI]

    146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production.S. refiners of commercial-grade silver, with an estimated total output of 6,500 tons from domestic and foreign to minimize odor, electroplating, hardening bearings, inks, mirrors, solar cells, water purification, and wood

  2. (Data in metric tons of silver content unless otherwise noted)

    E-Print Network [OSTI]

    146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production, with an estimated total output of 2,500 tons from domestic and foreign ores and concentrates, and from old and new, mirrors, solar cells, water purification, and wood treatment. Silver was used for miniature antennas

  3. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...

    National Nuclear Security Administration (NNSA)

    Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  4. (Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2004. Two companies,

    E-Print Network [OSTI]

    80 INDIUM (Data in metric tons unless otherwise noted) Domestic Production and Use: Indium-efficiency photovoltaic devices. A major manufacturer is testing indium for a new application as a heat-management material in computers, which could increase consumption by 40 metric tons per year. The estimated

  5. 9,997,638 Metric Tons of CO2 Injected as of April 9, 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  6. 9,805,742 Metric Tons of CO2 Injected as of February 27, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  7. 9,981,117 Metric Tons of CO2 Injected as of April 2, 2015 | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  8. 9,355,469 Metric Tons of CO2 Injected as of January 29, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  9. 9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  10. 10,045,885 Metric Tons of CO2 Injected as of April 16, 2015

    Broader source: Energy.gov [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

  11. 10,180,047 Metric Tons of CO2 Injected as of May 28, 2015 | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  12. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon% of the titanium metal used was in aerospace applications. The remaining 40% was used in the armor, chemical

  13. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada and Utah. Ingot was produced. In 2011, an estimated 66% of the titanium metal was used in aerospace applications. The remaining 34

  14. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon produced titanium forgings, mill products, and castings. In 1996, an estimated 65% of the titanium metal

  15. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    182 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon% of the titanium metal used was in aerospace applications. The remaining 35% was used in the chemical process

  16. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon produced titanium forgings, mill products, and castings. In 1997, an estimated 65% of the titanium metal

  17. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two operations in Nevada and Utah. Ingot was made forged components, mill products, and castings. In 2005, an estimated 65% of the titanium metal was used

  18. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon% of the titanium metal used was in aerospace applications. The remaining 40% was used in armor, chemical processing

  19. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two operations in Nevada and Utah. Ingot was made forged components, mill products, and castings. In 2004, an estimated 60% of the titanium metal was used

  20. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Utah. Ingot to produce forged components, mill products, and castings. In 2001, an estimated 65% of the titanium metal

  1. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada, Oregon, and Utah. Ingot and castings. In 2006, an estimated 72% of the titanium metal was used in aerospace applications. The remaining

  2. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada and Utah. Ingot was produced. In 2012, an estimated 72% of the titanium metal was used in aerospace applications. The remaining 28

  3. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    170 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada and Utah. Titanium ingot and castings. In 2013, an estimated 73% of the titanium metal was used in aerospace applications. The remaining

  4. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada, Oregon, and Utah. Ingot and castings. In 2007, an estimated 76% of the titanium metal was used in aerospace applications. The remaining

  5. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless noted)

    E-Print Network [OSTI]

    178 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless noted) Domestic Production and Use: Titanium sponge metal was produced by two firms in Nevada and Oregon. Ingot was made by the two sponge producers and by nine other firms in seven States. About 30 companies produced titanium forgings, mill

  6. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two operations in Nevada and Utah. Ingot was made forged components, mill products, and castings. In 2002, an estimated 65% of the titanium metal used

  7. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by four operations in Nevada, Oregon, and Utah. Ingot and castings. In 2010, an estimated 75% of the titanium metal was used in aerospace applications. The remaining

  8. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada, Oregon, and Utah. Ingot and castings. In 2008, an estimated 79% of the titanium metal was used in aerospace applications. The remaining

  9. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two operations in Nevada and Utah. Ingot was made forged components, mill products, and castings. In 2003, an estimated 55% of the titanium metal used

  10. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada, Oregon, and Utah. A fourth, an estimated 76% of the titanium metal was used in aerospace applications. The remaining 24% was used in armor

  11. Energy Department Sponsored Project Captures One Millionth Metric Ton of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy Act of 2005 | Department ofCO2 |

  12. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 94% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  13. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 95% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  14. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless surface mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  15. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States. About 95% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  16. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless surface mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  17. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless proprietary data. Based on average prices, the value of titanium mineral concentrates consumed in the United is zircon. About 95% of titanium mineral concentrates were consumed by five titanium pigment producers

  18. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 94% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  19. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise mining operations in Florida, Georgia, and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  20. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise mining operations in Florida, Georgia, and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  1. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 94% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  2. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of TiO2 content, unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of TiO2 content, unless otherwise-mineral sands operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 95% of titanium mineral concentrates was consumed by TiO2 pigment producers

  3. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless-mineral sands operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 95% of titanium mineral concentrates was consumed by TiO2 pigment producers

  4. Planning for the 400,000 tons/year AISI ironmaking demonstration plant

    SciTech Connect (OSTI)

    Aukrust, E. (LTV Steel Corp., Cleveland, OH (United States). AISI Direct Steelmaking Program)

    1993-01-01T23:59:59.000Z

    The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

  5. 2 million tons per year: A performing biofuels supply chain for

    E-Print Network [OSTI]

    1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

  6. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont. Together, these firms operated about 820 mines. Estimated value of all marketable clay produced was about

  7. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, and Wisconsin. A total of 238 companies operated approximately 700 clay pits or quarries. The leading 20 firms

  8. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, these firms operated approximately 739 mines. The estimated value of all marketable clay produced was about $1

  9. (Data in thousand metric tons, unless noted) Domestic Production and Use: In 1995, clays were produced in most States except Alaska, Delaware, Hawaii,

    E-Print Network [OSTI]

    44 CLAYS (Data in thousand metric tons, unless noted) Domestic Production and Use: In 1995, clays, these firms operated about 983 mines. Estimated value of all marketable clay produced was about $1.8 billion. Major domestic uses for specific clays were estimated as follows: kaolin--55% paper, 8% kiln furniture

  10. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode Island, Vermont, and Wisconsin. A total of 233 companies operated approximately 650 clay pits or quarries

  11. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode clay produced was about $2.14 billion. Major domestic uses for specific clays were estimated as follows

  12. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    . 18.5% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free 11.0% ad val. Waste and scrap18 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana, Oregon

  13. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2004, 6 companies operated 14 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    . Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 7602.00.0000 Free. Depletion20 ALUMINUM1 (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2004, 6 companies operated 14 primary aluminum reduction plants; 6 smelters continued

  14. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    .10.3000 2.6% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 760222 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana, Oregon

  15. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2001, 12 companies operated 23 primary aluminum reduction plants. The 11

    E-Print Network [OSTI]

    coils) 7601.10.3000 2.6% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste20 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2001, 12 companies operated 23 primary aluminum reduction plants. The 11 smelters east

  16. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2003, 7 companies operated 15 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    . Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 7602.00.0000 Free. Depletion, prices in the aluminum scrap and secondary aluminum alloy markets fluctuated through September but closed20 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production

  17. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2006, based on contained zinc recoverable from

    E-Print Network [OSTI]

    186 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production accounted for about 80% of total U.S. production. Two primary and 12 large- and medium-sized secondary, and rubber industries. Major coproducts of zinc mining and smelting, in order of decreasing tonnage, were

  18. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2003, based on contained zinc recoverable from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production three-fourths of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber

  19. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2002, based on contained zinc recoverable from

    E-Print Network [OSTI]

    190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production% of production. Two primary and 13 large- and medium-sized secondary smelters refined zinc metal of commercial principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining

  20. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2004, based on contained zinc recoverable from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters refined zinc metal were used principally by the agriculture, chemical, paint, and rubber industries. Major coproducts

  1. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine operation in Nevada. The mine's production capacity was expanded in 2012, and a new lithium hydroxide plant opened in North

  2. (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    100 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

  3. (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    98 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

  4. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    100 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, Russia, and the United States also were major producers. Australia, Canada, and Zimbabwe were major producers of lithium

  5. (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    96 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

  6. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    98 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, Russia, and the United States also were major producers. Australia, Canada, and Zimbabwe were major producers of lithium

  7. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from

  8. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies

    E-Print Network [OSTI]

    44 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

  9. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

  10. (Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2007. Indium-containing

    E-Print Network [OSTI]

    were exported to Canada for processing. Two companies, one in New York and the other in Rhode Island gallium diselenide (CIGS) solar cells require approximately 50 metric tons of indium to produce 1 gigawatt of solar power. Research was underway to develop a low-cost manufacturing process for flexible CIGS solar

  11. (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China,

    E-Print Network [OSTI]

    , but growing through the recycling of lithium batteries. Import Sources (1994-97): Chile, 96%; and other, 4 lithium salts from battery recycling and lithium hydroxide monohydrate from former Department of Energy102 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production

  12. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2007, the United States consumed about 11% of world chromite ore production in

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption was about $408 million as measured

  13. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2000, the United States consumed about 13% of world chromite ore production in

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel and superalloys

  14. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 13% of world chromite ore production in various

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals, chromium ferroalloys, and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal by end use was: stainless and heat-resisting steel, 76%; full-alloy steel, 8

  15. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2001, the United States consumed about 14% of world chromite ore production in

    E-Print Network [OSTI]

    46 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel and superalloys

  16. (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production and Use: In 2005, the United States consumed about 11% of world chromite ore production

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production. Imported chromite was consumed by one chemical firm to produce chromium chemicals. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel

  17. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2011, the United States was expected to consume about 5% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2010 was $883 million as measured by the value

  18. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2009, the United States was expected to consume about 7% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and chromium metal. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2008 was $1,283 million

  19. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 14% of world chromite ore production in various

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel and superalloys, respectively. The value

  20. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2012, the United States was expected to consume about 6% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production company produced chromium metal. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2011 was $1

  1. (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production and Use: In 2004, the United States consumed about 10% of world chromite ore production

    E-Print Network [OSTI]

    46 CHROMIUM (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production. Imported chromite was consumed by one chemical firm to produce chromium chemicals. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel

  2. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 16% of world chromite ore production in various

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals, chromium ferroalloys, and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal by end use was: stainless and heat-resisting steel, 74%; full-alloy steel

  3. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2010, the United States was expected to consume about 2% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2009 was $358 million as measured by the value

  4. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2008, the United States consumed about 10% of world chromite ore production in

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2007 was $548 million as measured

  5. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 12% of world chromite ore production in various

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals, chromium ferroalloys, and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal by end use was: stainless and heat-resisting steel, 68%; full-alloy steel, 8

  6. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: In 1997, little if any tungsten concentrate was produced from U.S. mines.

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production in a significant decrease in mine production. The amount of tungsten concentrates remaining in stockpiles in China for the tungsten industry. Once the stockpiles are depleted, world mine production will have to increase to meet

  7. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: Limited shipments of tungsten concentrates were made from a California mine in

    E-Print Network [OSTI]

    178 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and primary products, wrought and unwrought tungsten, and waste and scrap: China, 43%; Germany, 11%; Canada,630 1,450 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

  8. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2012. Approximately eight

    E-Print Network [OSTI]

    176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,200 3,630 1,610 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

  9. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2010. Approximately

    E-Print Network [OSTI]

    176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2006­09): Tungsten contained in ores and concentrates, intermediate and primary products, Trends, and Issues: World tungsten supply is dominated by Chinese production and exports. China

  10. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: In 1998, little if any tungsten concentrate was produced from U.S. mines.

    E-Print Network [OSTI]

    184 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: In 1998, little if any tungsten concentrate was produced from U.S. mines. Approximately 10 companies in the United States processed tungsten concentrates, ammonium paratungstate, tungsten oxide, and

  11. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California produced tungsten concentrates in 2009. Approximately eight

    E-Print Network [OSTI]

    176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2005-08): Tungsten contained in ores and concentrates, intermediate and primary products, and Issues: World tungsten supply was dominated by Chinese production and exports. China's Government limited

  12. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California restarted operations and made its first shipment of tungsten

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and primary products, wrought and unwrought tungsten, and waste and scrap: China, 43%; Canada, 16%; Germany, 9 by Chinese production and exports. China's Government restricted the amounts of tungsten that could

  13. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in 1994 of ores and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste

  14. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in

    E-Print Network [OSTI]

    178 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in 1994. In 2000, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 39%; Russia, 21

  15. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2013. Approximately eight

    E-Print Network [OSTI]

    174 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,100 2,300 2,240 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

  16. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2011. Approximately

    E-Print Network [OSTI]

    176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production (2007­10): Tungsten contained in ores and concentrates, intermediate and primary products, wrought: World tungsten supply is dominated by Chinese production and exports. China's Government regulates its

  17. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were

    E-Print Network [OSTI]

    and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were closed temporarily, and Issues: In February 2013, the owner of the 270,000-ton-per-year Hannibal, OH, smelter filed for chapter in October. In June, the Sebree, KY, smelter was sold as part of a corporate restructuring. Expansion

  18. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2007, based on zinc contained in concentrate, was about

    E-Print Network [OSTI]

    190 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production U.S. production. One primary and 12 large- and medium-sized secondary smelters refined zinc metal by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting, in order

  19. (Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use: The value of zinc mined in 1995 was about $700 million. Essentially all came from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use were used principally by the agricultural, chemical, paint, and rubber industries. Major coproducts--United States: 1991 1992 1993 1994 1995e Production: Mine, recoverable 518 523 488 570 600 Primary slab zinc 253

  20. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from domestic or South

  1. (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.

    E-Print Network [OSTI]

    176 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 92% of the primary tin consumed

  2. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 90% of the primary tin consumed domestically in 2012. The major uses were as follows

  3. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.

    E-Print Network [OSTI]

    174 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 80% of the primary tin consumed

  4. (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S.

    E-Print Network [OSTI]

    180 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

  5. (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only

    E-Print Network [OSTI]

    178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

  6. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2006. The major uses were as follows

  7. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 86% of the primary tin consumed domestically in 2008. The major uses were as follows

  8. (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only

    E-Print Network [OSTI]

    176 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 97% of the primary tin. The major uses

  9. (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.

    E-Print Network [OSTI]

    174 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 77% of the primary tin consumed

  10. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2005. The major uses were as follows

  11. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2009. The major uses were as follows

  12. (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S.

    E-Print Network [OSTI]

    178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

  13. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    168 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms accounted for about 90% of the primary tin consumed domestically in 2013. The major uses for tin

  14. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 91% of the primary tin consumed domestically in 2010. The major uses were as follows

  15. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2007. The major uses were as follows

  16. (Data in thousand metric tons of boric oxide (B2O3) unless otherwise noted) Domestic Production and Use: Two companies in southern California produced boron minerals, mostly sodium

    E-Print Network [OSTI]

    proprietary data, U.S. boron production and consumption in 2010 were withheld. The leading boron producer standards with respect to heat conservation, which directly correlates to higher consumption of borates32 BORON (Data in thousand metric tons of boric oxide (B2O3) unless otherwise noted) Domestic

  17. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2006,

    E-Print Network [OSTI]

    178 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2006, approximately. Import Sources (2002-05): Tungsten contained in ores and concentrates, intermediate and primary products

  18. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2003,

    E-Print Network [OSTI]

    180 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2003, approximately and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 49

  19. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2005,

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2005, approximately. Import Sources (2001-04): Tungsten contained in ores and concentrates, intermediate and primary products

  20. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded U.S. production of tungsten concentrates was in 1994. In 2001,

    E-Print Network [OSTI]

    180 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded U.S. production of tungsten concentrates was in 1994. In 2001, approximately, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 41%; Russia, 21

  1. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2002,

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2002, approximately, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 48%; Russia, 16

  2. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2004,

    E-Print Network [OSTI]

    180 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2004, approximately (2000-03): Tungsten content of ores and concentrates, intermediate and primary products, wrought

  3. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  4. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    moderately. Cost-cutting measures were expected to idle mining operations in Green Cove Springs, FL year of rutile. The first of two dredges was refurbished and commissioned at the Sierra Rutile mine in Sierra Leone. The second dredge is scheduled for start-up in 2007 and is expected to raise capacity

  5. DEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein, Marilyn Brown, Richard Brown,

    E-Print Network [OSTI]

    Wh/year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metricDEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein June 2009 Short title: Defining a standard metric for electricity savings Keywords: Electricity savings

  6. DEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein, Marilyn Brown, Richard Brown,

    E-Print Network [OSTI]

    Diamond, Richard

    Wh/year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metricDEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein title: Defining a standard metric for electricity savings Keywords: Electricity savings, energy

  7. (Data in thousand metric tons, gross weight, unless noted) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    purposes as producing dry cell batteries, as an ingredient in plant fertilizers and animal feed Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled of nonstockpile- grade materials, as follows: 16,400 tons of natural battery ore, 81 tons of chemical ore, and 392

  8. (Data in thousand metric tons, gross weight, unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    for such nonmetallurgical purposes as producing dry cell batteries, as an ingredient in plant fertilizers and animal feed Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled of nonstockpile-grade materials, as follows: 16,400 tons of natural battery ore, 81 tons of chemical ore, and 392

  9. (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and

    E-Print Network [OSTI]

    ,000 tons of the material from the Department of Energy's stockpile, while the remaining 10,000 tons,700 1,800 150,000 160,000e Bolivia -- -- -- 5,400,00 Brazil 32 32 910 NA Canada 660 660 180,000 360

  10. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01T23:59:59.000Z

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  11. Our 6-year-old plantation in Escanaba is growing 3.6 dry tons per acre each year.

    E-Print Network [OSTI]

    hybrids, aspen, and European larch in Michigan's Upper Peninsula. USDA: A guide to insect, disease The paper and oriented-strand board industries in Michigan consume a large quantity of aspen fiber each year. Prices for aspen pulpwood have hit record highs in recent years as a result of increased demand

  12. (Data in thousand metric tons, gross weight, unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    for such nonmetallurgical purposes as producing dry cell batteries, as an ingredient in plant fertilizers and animal feed Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled inventories of nonstockpile-grade materials, as follows, in tons: natural battery ore, 16,800; chemical ore

  13. (Data in thousand metric tons, gross weight, unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    of ore were used for such nonmetallurgical purposes as production of dry cell batteries, as an ingredient Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled, as follows, in tons: natural battery, 16,800, and metallurgical, 331,000. Prepared by Thomas S. Jones [(703

  14. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters

    E-Print Network [OSTI]

    and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters continued. Most of the production decreases continued to take place in the Pacific Northwest. Domestic smelters from 693 thousand tons at yearend 2004. World Smelter Production and Capacity: Production Yearend

  15. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2003, clay and shale production was reported in all States except Alaska,

    E-Print Network [OSTI]

    ; bentonite-- 25% pet waste absorbent, 21% drilling mud, 21% foundry sand bond, 15% iron ore pelletizing,300 Imports for consumption: Artificially activated clay and earth 17 18 21 27 20 Kaolin 57 63 114 158 275,980 Consumption, apparent 37,500 35,600 34,800 34,600 34,600 Price, average, dollars per ton: Ball clay 40 42 42

  16. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons,

    E-Print Network [OSTI]

    [(703) 648­4978, dedelste@usgs.gov] #12;49 COPPER 80% year-on-year increase in China's net imports 975 Secondary 54 46 38 37 60 Copper from all old scrap 156 138 143 153 170 Imports for consumption 33% of the U.S. copper supply. Import Sources (2008­11): Unmanufactured: Chile, 43%; Canada, 32

  17. Materials management in an internationally safeguarded fuels reprocessing plant. [1500 and 210 metric tons heavy metal per year

    SciTech Connect (OSTI)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01T23:59:59.000Z

    The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium.

  18. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters

    E-Print Network [OSTI]

    and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed the entire year. Demolition of two smelters that had been idle for several years was started in 2010. Based: During the first half of 2010, production from domestic primary aluminum smelters had stabilized after

  19. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were

    E-Print Network [OSTI]

    and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were closed the entire year, and demolition of 1 smelter that had been idle since 2000 was completed in 2009. Of the operating smelters, three were temporarily idled and parts of four others were temporarily closed in 2009. Based

  20. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were

    E-Print Network [OSTI]

    and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were closed the entire year. One smelter that was closed in 2009 was reopened during the first quarter of 2011. Five potlines that were closed in late 2008 and early 2009 at four other smelters were also restarted in early 2011. Based

  1. A Year of Radiation Measurements at the North Slope of Alaska Second Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    S.A. McFarlane, Y. Shi, C.N. Long

    2009-04-15T23:59:59.000Z

    In 2009, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the second quarter metrics are reported in Evaluation of Simulated Precipitation in CCSM3: Annual Cycle Performance Metrics at Watershed Scales. For ARM, the metrics will produce and make available new continuous time series of radiative fluxes based on one year of observations from Barrow, Alaska, during the International Polar Year and report on comparisons of observations with baseline simulations of the Community Climate System Model (CCSM).

  2. Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the

    E-Print Network [OSTI]

    Toohey, Darin W.

    to their high cellulose diet and their lack of the special enzyme that breaks down cellulose. Instead they rely on the bacteria that can be found in their stomach. This bacteria uses non-protein nitrogen in order to create short chain fatty acids or proteins. The cow regurgitates and chews its food further in order

  3. (Data in thousand metric tons of boric oxide (B O ), unless otherwise noted)2 3 Domestic Production and Use: The estimated value of boric oxide contained in minerals and compounds produced in

    E-Print Network [OSTI]

    to reduce debt. The company leased the facilities for a term of 15 years. Electricity and steam produced), 14% (Foreign). Government Stockpile: None. Prepared by Phyllis A. Lyday, (703) 648-7713 [Fax: (703, insulating and reinforcing fiberglass, and agriculture. One company sold its electric and steam generating

  4. (Data in thousand metric tons of boric oxide (B O ), unless otherwise noted)2 3 Domestic Production and Use: The estimated value of boric oxide contained in minerals and compounds produced in

    E-Print Network [OSTI]

    was centered in southern California. The largest producer operated an open pit tincal and kernite mine in the world. Importation of borates from northern Chile continued. Ulexite is mined in Chile production during the year. Neodymium-iron-boron alloys are used to produce the strongest magnetic material

  5. (Data in metric tons of silver content unless otherwise noted)

    E-Print Network [OSTI]

    in casino chips, freeway toll transponders, gasoline speed purchase devices, passports, and on packages,680 6,600 Exports 2 797 685 478 796 1,000 Consumption, apparent 5,250 6,300 4,600 7,220 7,850 Price September 2011, silver prices averaged $36.39 per troy ounce. The overall rise in silver prices corresponded

  6. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    concentrates: Australia, 48%; South Africa, 47%; and other, 5%. Zirconium, unwrought, including powder: France, 51%; Germany, 10%; United Kingdom, 10%; South Africa, 9%; and other, 20%. Hafnium, unwrought: France. The leading consumers of zirconium metal and hafnium metal are the nuclear energy and chemical process

  7. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    consumers of zirconium and hafnium metal are the nuclear energy and chemical process industries. Salient during metal production and fabrication and was recycled by companies in Oregon and Utah. Scrap zirconium. Zirconium and hafnium metal were produced from zircon by two domestic producers, one in Oregon and the other

  8. (Data in metric tons of silver content unless otherwise noted)

    E-Print Network [OSTI]

    odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,250 1,250 1,280 Refinery: Primary 2,210 791 779 796 800 Secondary (new and old scrap) 1,110 1,220 1

  9. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    %; electrical and electronics, 9%; dental and other, 22%. Salient Statistics--United States: 2006 2007 2008 2009,630 9,700 Net import reliance 6 as a percentage of apparent consumption E E E E 33 Recycling: In 2010­09): 2 Canada, 31%; Mexico, 30%; Peru, 13%; Chile, 8%; and other, 18%. Tariff: Most imports of unwrought

  10. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    %; electrical and electronics, 7%; dental and other, 21%. Salient Statistics--United States: 2005 2006 2007 2008 ounce 4 446 606 699 *874 950 Employment, mine and mill, number 5 7,910 8,350 9,130 9,560 9,600 Net%; Peru, 29%; Mexico, 16%; Chile, 9%; and other, 16%. Tariff: Most imports of unwrought gold, including

  11. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    %; dental, 10%; electrical and electronics, 7%; and other, 29%. Salient Statistics--United States: 2007 2008,560 9,630 10,200 10,300 Net import reliance 6 as a percentage of apparent consumption E E E 40 36 Sources (2007­10): 2 Mexico, 49%; Canada, 25%; Colombia, 8%; Peru, 5%; and other, 13%. Tariff: Most

  12. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    %; dental, 12%; electrical and electronics, 5%; and other, 17%. Salient Statistics--United States: 2008 2009 9,560 9,650 10,300 11,200 12,000 Net import reliance 6 as a percentage of apparent consumption E E consumption. Import Sources (2008­11): 2 Mexico, 57%; Canada, 20%; Colombia, 9%; Peru, 3%; and other, 11

  13. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    ). Government Stockpile: None. Events, Trends, and Issues: Domestic consumption of zirconium mineral coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy,610 1,720 Zirconium oxide1 1,520 1,600 2,260 3,340 2,270 Consumption, zirconium ores and concentrates

  14. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    Stockpile: None. Events, Trends, and Issues: Domestic consumption of zirconium mineral concentrates coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy,830 1,910 Zirconium oxide1 1,600 2,260 3,340 2,400 3,310 Consumption, zirconium ores and concentrates

  15. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    @usgs.gov, fax: (703) 648-7757] #12;187 ZIRCONIUM AND HAFNIUM Events, Trends, and Issues: Domestic consumption coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy,080 2,300 Zirconium oxide1 2,260 3,340 2,400 2,970 1,700 Consumption, zirconium ores and concentrates

  16. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    , expansion projects, and development projects were placed on hold because of the drop in the price of gold,140 8,140 Price, dollars per troy ounce 4 975 1,228 1,572 1,673 1,400 Employment, mine and mill, number, and Issues: The estimated gold price in 2013 was 16% lower than the price in 2012. This was the first time

  17. (Data in metric tons1 of gold content, unless noted)

    E-Print Network [OSTI]

    of Defense administers a Government-wide secondary precious metals recovery program. Events, Trends Refinery: Primary 225 284 243 241 240 Secondary 153 163 152 148 150 Imports2 154 159 144 114 115 Exports2

  18. Self-benchmarking Guide for Data Centers: Metrics, Benchmarks, Actions

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01T23:59:59.000Z

    good practice” for data center infrastructure efficiency metric. Data Center Benchmarking Guidegood practice benchmark and 0.6 kW/ton as a better practice benchmark. Data Center Benchmarking Guide

  19. Defining a Standard Metric for Electricity Savings

    SciTech Connect (OSTI)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01T23:59:59.000Z

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  20. AN APPLICATION OF URBANSIM TO THE AUSTIN, TEXAS REGION: INTEGRATED-MODEL FORECASTS FOR THE YEAR 2030

    E-Print Network [OSTI]

    Kockelman, Kara M.

    , as well as energy consumption and greenhouse gas emissions. This work describes the modeling of year-2030 policies significantly impact the region's future land use patterns, traffic conditions, greenhouse gas (emitting over 6 billion metric tons of CO2-equivalents annually, and accounting for 22.2% of the world

  1. LNG to the year 2000

    SciTech Connect (OSTI)

    Davenport, S.T.

    1984-04-01T23:59:59.000Z

    By 2000, about 190 MM metric-tpy of LNG will be moving in world trade, with Asia-Pacific as the dominant producer By the year 2000, approximately 190 million metric tons per year of LNG will be moving in worldwide trade. Production of LNG will be spread throughout most of the world, with Asia-Pacific as the dominant producer. LNG will be delivered only to the heavily industrialized areas of North America, Europe and Asia-Pacific. The success of any LNG project will be dependent on its individual economics, market needs, financial planning, and governmental permit processes. We hope industry will be able to put together the LNG projects required to meet the quanitities of production forecast here for the year 2000.

  2. Metric Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MODERN GRID S T R A T E G Y Smart Grid Metrics Monitoring our Progress Smart Grid Implementation Workshop Joe Miller - Modern Grid Team June 19, 2008 1 Conducted by the National...

  3. 90-Ton Triple Cylinder Jack Design

    SciTech Connect (OSTI)

    Jaques, Al; /Fermilab

    1988-09-26T23:59:59.000Z

    The three D-Zero cryostats (2 EC and 1 CC) will rest on three carriages which in turn ride on a set of hardened ways in the center beam. A pair of Tychoway rollers will be fitted to each of the four corners of the three carriages to provide the rolling support. In the final design, the two EC cryostats will be able to roll out and away from the CC cryostat in order to provide access to the space between each cryostat for maintenance and repairs. The cryostat will be frequently accessed, about once a month. during a collider run. The heaviest cryostat weighs about 360 tons. The large roller weight in one position for such a long period of time, created a concern about the rollers dimpling the hardened ways or even suffering permanent deformations themselves. There is also the possibility that the vertical position of the cryostat will need to be adjusted to align it with the beam line or that the carriage and cryostat will have to be lifted to remove and service the rollers. A device or system was needed to (1) relieve the weight of the cryostats from the rollers and the hardened ways, and (2) minimally adjust the vertical position of the cryostats, if necessary, and/or service the rollers. Compact hydraulic jacks seemed to be the answer. The first and foremost criteria was capacity. It was desired that the jacks be rated to twice the actual load. A jack is to be placed beside each roller, giving a total of eight per cryostat. The load per jack for a 360 ton cryostat would then be 45 tons, leaving 90 tons as the required capacity. The second and equally important criteria to be met was size. After installation of the Tychoway rollers. room to mount these jacks is very limited underneath the carriage. The space surrounding the bottom of the carriage is cluttered with wiring and plumbing and thus further limits available space for the jacks. What was left was a 3.75-inch x 6.0625-inch x 12.25-inch rectangular envelope on each side of a pair of rollers (see Appendix A).

  4. E TON Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europe GmbH JumpOne MoliTON

  5. DAYLIGHTING METRICS FOR RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    unknown authors

    It is now widely accepted that the standard method for daylighting evaluation- the daylight factor- is due for replacement with metrics founded on absolute values for luminous quantities predicted over the course of a full year using sun and sky conditions derived from standardised climate files. The move to more realistic measures of daylighting introduces significant levels of additional complexity in both the simulation of the luminous quantities and the reduction of the simulation data to readily intelligible metrics. The simulation component, at least for buildings with standard glazing materials, is reasonably well understood. There is no consensus however on the composition of the metrics, and their formulation is an ongoing area of active research. Additionally, non-domestic and residential buildings present very different evaluation scenarios and it is not yet clear if a single metric would be applicable to both. This study uses a domestic dwelling as the setting to investigate and explore the applicability of daylighting metrics for residential buildings. In addition to daylighting provision for task and disclosing the potential for reducing electric lighting usage, we also investigate the formulation of metrics for non-visual effects such as entrainment of the circadian system.

  6. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 29 NU (TechAdmin Support) 5 YEAR 2014 American Indian...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 9 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 22 NN (Engineering) 23 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American Indian...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 13 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 59 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 3 YEAR 2014 American...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  18. OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62%

    E-Print Network [OSTI]

    Guillas, Serge

    OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62% Landfill 1080 tons / 38% Electricals 36 Landfill As of Monday 7 March 2011, no general waste generated from the Bloomsbury Campus has been sent to landfill. Through partnership between UCL Estates and Office and General, an agreement has been reached

  19. 6.347 metric tons of netting and rope worth $ 10 million .

    E-Print Network [OSTI]

    in the aeration tanks . Heat treatment did not noticeably affect the taste or keep- ing quality of the oyster meat ng. when oysters are held at temperatures just above freezing. or immediately aft er frozen oysters

  20. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    , electronics, electroplating, medical and wound care, mirrors, solar energy, and water purification. Salient base8 2004 2005e United States 1,250 1,300 25,000 80,000 Australia 2,240 2,250 31,000 37,000 Canada 1

  1. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    ,250 2,000 Shipments from Government stockpile excesses 220 232 109 -- -- Consumption, apparent NA NA 4 and technical uses. Industrial and technical uses include photographic materials, electrical products, catalysts,360 1,700 1,700 Imports for consumption2 3,250 3,010 2,540 3,330 2,800 Exports2 2,890 2,950 3,080 2

  2. 9,959,066 Metric Tons of CO2 Injected as of March 26, 2015 |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

  3. 9,932,381 Metric Tons of CO2 Injected as of March 18, 2015 |...

    Office of Environmental Management (EM)

    210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

  4. 9,894,105 Metric Tons of CO2 Injected as of March 12, 2015 |...

    Broader source: Energy.gov (indexed) [DOE]

    210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

  5. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,230 1,230 Refinery: Primary 2,530 2,210 791 779 1,600 Secondary (new and old scrap) 981 1,110 1,220 1

  6. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    boards, electroplating, hardening bearings, mirrors, solar cells, wood treatment to resist mold,140 1,220 Refinery: Primary 2,580 1,140 2,530 3,150 2,500 Secondary (old scrap) 1,010 1,920 980 1,500 1

  7. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,260 1,120 Refinery: Primary 1,140 2,530 3,150 4,110 2,500 Secondary (old scrap) 1,920 980 1,500 1,540 1

  8. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    , hardening bearings, mirrors, solar cells, wood treatment to resist mold, and water purification. Silver,580 2,580 1,140 2,530 1,000 Secondary 1,030 1,010 1,920 980 1,050 Imports for consumption2 4,300 4,510 4

  9. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    and technical uses. Industrial and technical uses include photographic materials, electrical and electronic and mill,6 number 1,500 1,100 1,000 980 900 Net import reliance7 as a percentage of apparent consumptione. Import Sources (2000-03):2 Mexico, 44%; Canada, 34%; United Kingdom 11; Peru, 7%; and other, 4%. Tariff

  10. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    and technical uses. Industrial and technical uses include photographic materials, electrical and electronic, mine and mill,6 number 1,550 1,550 1,500 1,500 1,300 Net import reliance7 as a percentage of apparent. Import Sources2 (1997-2000): Mexico, 38%; Canada, 37%; Peru, 8%; United Kingdom, 8%; and other, 9

  11. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    and technical uses. Industrial and technical uses include photographic materials, electrical products, catalysts,400 1,550 1,550 1,600 1,500 Net import reliance7 as a percent of apparent consumptione NA E 43 39 52-99): Canada, 36%; Mexico, 31%; Peru, 8%; United Kingdom, 5%; and other, 20%. Tariff: No duties are imposed

  12. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    by industrial and technical uses. Industrial and technical uses include photographic materials, electrical -- Employment, mine and mill,6 number 1,550 1,500 1,500 1,100 1,100 Net import reliance7 as a percentage scrap in 2001. Import Sources2 (1998-2001): Canada, 40%; Mexico, 37%; Peru, 7%; United Kingdom, 3

  13. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    and technical uses. Industrial and technical uses include photographic materials, electrical and electronic and mill,6 number 1,500 1,500 1,100 1,000 980 Net import reliance7 as a percentage of apparent consumptione. Import Sources2 (1999-2002): Mexico, 45%; Canada, 42%; Peru, 5%; United Kingdom, 4%; and other, 4

  14. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...

    Office of Environmental Management (EM)

    2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that...

  15. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless noted)

    E-Print Network [OSTI]

    Imports:3 Thorium ore (monazite) -- -- -- -- 22 Rare-earth metals, alloys 271 352 235 284 406 Cerium Exports:3 Thorium ore, monazite -- -- 3 27 -- Rare-earth metals, alloys 71 44 194 329 456 Cerium compounds. Rare-earth metals, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad val. 31.3% ad val

  16. (Data in metric tons1 of gold content, unless otherwise noted)

    E-Print Network [OSTI]

    ) and the U.S. Department of Defense administers a Government-wide secondary precious metals recovery program 1999 2000 2001e Production: Mine 362 366 341 353 350 Refinery: Primary 270 277 265 197 220 Secondary

  17. (Data in metric tons1 of gold content unless otherwise noted)

    E-Print Network [OSTI]

    ), and the U.S. Department of Defense administers a Governmentwide secondary precious-metals recovery program 2008e Production: Mine 258 256 252 238 230 Refinery: Primary 222 195 181 176 170 Secondary (new and old

  18. (Data in metric tons1 of gold content, unless otherwise noted)

    E-Print Network [OSTI]

    1997 1998 1999e Production: Mine 317 326 362 366 340 Refinery: Primary (2 ) (2 ) 270 277 260 Secondary above) and the U.S. Department of Defense administers a Government-wide secondary precious metals recovery program. Prepared by Earle B. Amey [(703) 648-4969, eamey@usgs.gov, fax: (703) 648-7757] #12

  19. (Data in metric tons1 of gold content unless otherwise noted)

    E-Print Network [OSTI]

    2006e Production: Mine 298 277 258 256 260 Refinery: Primary 196 194 222 163 180 Secondary (new and old above), and the U.S. Department of Defense administers a Government wide secondary precious-metals recovery program. Events, Trends, and Issues: Domestic gold mine production in 2006 was estimated to be 2

  20. (Data in metric tons1 of gold content, unless otherwise noted)

    E-Print Network [OSTI]

    ) and the U.S. Department of Defense administers a Government-wide secondary precious metals recovery program Secondary (new and old scrap) 163 143 82 83 85 Imports2 278 221 223 193 125 Exports2 522 523 547 489 165

  1. (Data in metric tons1 of gold content unless otherwise noted)

    E-Print Network [OSTI]

    2007e Production: Mine 277 258 256 252 240 Refinery: Primary 194 222 195 181 190 Secondary (new and old above), and the U.S. Department of Defense administers a Governmentwide secondary precious-metals recovery program. Events, Trends, and Issues: Domestic gold mine production in 2007 was estimated to be 6

  2. (Data in metric tons1 of gold content, unless otherwise noted)

    E-Print Network [OSTI]

    above) and the U.S. Department of Defense administers a secondary precious metals recovery program Secondary (new and old scrap) 143 82 83 89 95 Imports2 221 223 194 217 220 Exports2 523 547 489 257 320

  3. Energy Department Project Captures and Stores One Million Metric Tons of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'KaneSystemsDepartmentCarbon | Department of

  4. An estimated three billion metric tons of mineral aerosols are injected into the tropo-

    E-Print Network [OSTI]

    Science Expeditions (AEROSE) are a series of intensive field experiments conducted aboard the U seasons through 2010.The ongo- ing AEROSE mission focuses on providing a set of critical measurements as they transit the Atlantic Ocean. The three central scientific questions addressed by AEROSE are as follows: (1

  5. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies HighAnnounces

  6. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident atConference | DepartmentU.S. LNG

  7. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency, and MoreEnergyof Energy DOEEnergy DOEDOE to

  8. Metrics for enterprise transformation

    E-Print Network [OSTI]

    Blackburn, Craig D. (Craig David), S. M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The objective of this thesis is to depict the role of metrics in the evolving journey of enterprise transformation. To this end, three propositions are explored: (i) metrics and measurement systems drive transformation, ...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJEK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 25 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR7

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43 YEAR

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144 YEAR

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 2013

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 20138

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 201387

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558563

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR85573380 YEAR

  1. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826 YEAR

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 2014

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 201434

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43417

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434170

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR 2012

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR424

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR4247

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42478

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR40

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR4096

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR17

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008748611196 YEAR

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males16

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144707

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 201447072540

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 563

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 5637831

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378318

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 28

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 2801

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280192

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733

  1. Year

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444 U.S.Working and.

  2. Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology

    E-Print Network [OSTI]

    Sanchez, Marla

    2010-01-01T23:59:59.000Z

    $/MBtu) Electric Heat Rate (Btu/kWh) kWh = kilowatthour; TWh= terawatthour; MBtu = Million Btu; MtC = Metric tons ofon heavy load. Idle Rate (Btu/h) Table 6-9. Energy Star

  3. Surveillance Metrics Sensitivity Study

    SciTech Connect (OSTI)

    Bierbaum, R; Hamada, M; Robertson, A

    2011-11-01T23:59:59.000Z

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  4. Surveillance metrics sensitivity study.

    SciTech Connect (OSTI)

    Hamada, Michael S. (Los Alamos National Laboratory); Bierbaum, Rene Lynn; Robertson, Alix A. (Lawrence Livermore Laboratory)

    2011-09-01T23:59:59.000Z

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  5. Cyber threat metrics.

    SciTech Connect (OSTI)

    Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott

    2012-03-01T23:59:59.000Z

    Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.

  6. THERMAL MODELING ANALYSIS OF SRS 70 TON CASK

    SciTech Connect (OSTI)

    Lee, S.; Jordan, J.; Hensel, S.

    2011-03-08T23:59:59.000Z

    The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

  7. Performance Metrics for Commercial Buildings

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

    2010-09-30T23:59:59.000Z

    Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

  8. Farm Buildings Pocketbook in Metric 

    E-Print Network [OSTI]

    Anonymous

    1971-01-01T23:59:59.000Z

    Some useful advice giving standards, dimensions and data in metric for those interested in the design of farm buildings

  9. Social Media Ad Metrics Definitions

    E-Print Network [OSTI]

    Collins, Gary S.

    these metrics to encourage growth through consistency. Social media speaks to a new way of understanding howSocial Media Ad Metrics Definitions Released May 2009 #12;Social Media Metrics Definitions © 2008 & Social Media Committee. About the IAB's User-Generated Content & Social Media Committee: The User

  10. Measurable Control System Security through Ideal Driven Technical Metrics

    SciTech Connect (OSTI)

    Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor

    2008-01-01T23:59:59.000Z

    The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based on the two case studies and evaluation of the seven assessments, the security ideals demonstrated their value in guiding security thinking. Further, the final set of core technical metrics has been demonstrated to be both usable in the control system environment and provide significant coverage of standard security issues.

  11. Metrics for Energy Resilience

    SciTech Connect (OSTI)

    Paul E. Roege; Zachary A. Collier; James Mancillas; John A. McDonagh; Igor Linkov

    2014-09-01T23:59:59.000Z

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today?s energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system?s energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth.

  12. All conformally flat pure radiation metrics

    E-Print Network [OSTI]

    S. Brian Edgar; Garry Ludwig

    1996-12-20T23:59:59.000Z

    The complete class of conformally flat, pure radiation metrics is given, generalising the metric recently given by Wils.

  13. KCP relocates 18-ton machine | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministration Field Officerelocates 18-ton machine

  14. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2001 declined to 1.34 million metric tons and was

    E-Print Network [OSTI]

    at about $2.2 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico%; electric and electronic products, 28%; transportation equipment, 11%; industrial machinery and equipment, and metal exchanges 314 532 565 334 800 Employment, mine and mill, thousands 13.2 13.0 11.6 10.2 10 Net

  15. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2000 declined to 1.45 million metric tons and was

    E-Print Network [OSTI]

    at about $2.8 billion. The principal mining States, in descending order, Arizona, Utah, New Mexico construction totaled 41%; electric and electronic products, 27%; transportation equipment, 12%; industrial, yearend, refined6 146 314 532 564 280 Employment, mine and mill, thousands 13.3 13.2 13.0 11.6 10 Net

  16. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2002 declined to 1.13 million metric tons and was

    E-Print Network [OSTI]

    at about $1.9 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico alloy products consumed1 in building construction totaled 44%; electric and electronic products, 25,020 Employment, mine and mill, thousands 13.0 10.3 9.1 8.2 7 Net import reliance4 as a percentage of apparent

  17. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1998 declined to 1.85 million metric tons and was

    E-Print Network [OSTI]

    at about $3.3 billion. The five principal mining States, in descending order, Arizona, Utah, New Mexico in building construction, 42%; electric and electronic products, 25%; industrial machinery and1 equipment, 11, refined 119 163 146 314 4505 Employment, mine and mill, thousands 13.1 13.8 13.3 13.2 13.0 Net import

  18. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1999 declined to 1.66 million metric tons and was

    E-Print Network [OSTI]

    at about $2.8 billion. The five principal mining States, in descending order, Arizona, Utah, New Mexico construction, 42%; electric and electronic products, 26%; transportation equipment, 12%; industrial machinery and mill, thousands 13.8 13.3 13.2 13.0 12.0 Net import reliance6 as a percent of apparent consumption 7 14

  19. Quotients of Metric Spaces

    E-Print Network [OSTI]

    Herman, Robert A.

    1968-01-01T23:59:59.000Z

    . PRELIMINARIES 1 CHAPTER II . SFACBS IN WHICH SEQUENCES SUFFICE 6 CHAPTER III . QUOTIENTS OF SEPARABLE METRIC SPACES Ik CHAPTER IV. GENERAL QUOTIENT SPACES 25 CHAPTER V. CLOSED QUOTIENT MAPS 35 CHAPTER VI. OPEN QUOTIENT MAPS 50 CHAPTER VII. OPEN AND CLOSED... QUOTIENT MAPS 55 CHAPTER VIII. ANOTHER RESULT 6l BIBLIOGRAPHY 65 CHAPTER I. PRELIMINARIES We begin by stating some basic definitions and theorems. Definition 1 . 1 ; Let f be a function from a topological space X onto a set Y. Then the quotient...

  20. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    . The approximate distribution in 2002 by end use was as follows: petroleum refining catalysts, 27%; glass polishing. The estimated value of refined rare earths consumed in the United States was more than $1 billion-earth metals, alloy 1,780 2,470 1,420 1,450 1,130 Cerium compounds 3,990 4,310 3,850 2,540 2,630 Mixed REOs 5

  1. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    in 2001 by end use was as follows: glass polishing and ceramics, 34%; petroleum refining catalysts, 16-earth products. Domestic ore production was valued at an estimated $28 million. The estimated value of refined, alloy 953 1,780 2,470 1,420 1,520 Cerium compounds 4,940 3,990 4,310 3,850 2,660 Mixed REO's 2,530 5

  2. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    , was as follows: chemical catalysts, 22%; metallurgical applications and alloys, 21%; petroleum refining catalysts, and importer of rare-earth products in 2010. The estimated value of refined rare earths imported by the United) -- -- -- -- -- Rare-earth metals, alloy 867 784 564 188 250 Cerium compounds 2,590 2,680 2,080 1,500 1,400 Mixed REOs

  3. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    %; permanent magnets, 16%; petroleum refining catalysts, 12%; metallurgical additives and alloys, 9%; rare-earth products. Domestic ore production was valued at an estimated $28 million. The estimated value of refined, alloy 529 953 1,780 2,470 1,670 Cerium compounds 1,810 4,940 3,990 4,310 4,940 Mixed REOs 974 2,530 5

  4. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    , televisions, computer monitors, radar, and X-ray intensifying film, 10%; petroleum refining catalysts, 8 continued to be a major exporter and consumer of rare-earth products in 2006. The estimated value of refined-earth metals, alloy 1,450 1,130 804 880 947 Cerium compounds 2,540 2,630 1,880 2,170 2,530 Mixed REOs 1,040 2

  5. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    %; glass polishing and ceramics, 14%; metallurgical additives and alloys, 13%; petroleum refining catalysts continued to be a major exporter and consumer of rare-earth products in 2004. The estimated value of refined,980 Mixed REOs 2,190 2,040 1,040 2,150 1,540 Rare-earth chlorides 1,330 2,590 1,800 1,890 1,520 Rare

  6. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    , televisions, and x-ray-intensifying film, 14%; chemicals and petroleum refining catalysts, 11%; ceramics, 3, and importer of rare-earth products in 2008. The estimated value of refined rare earths imported by the United,880 2,170 2,590 2,680 2,180 Mixed REOs 1,660 640 1,570 2,570 2,750 Rare-earth chlorides 1,310 2,670 2

  7. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    of rare earths by end use was as follows: automotive catalytic converters, 25%; petroleum refining, and consumer of rare-earth products in 2007. The estimated value of refined rare earths consumed in the United -- Rare-earth metals, alloy 1,130 804 880 867 831 Cerium compounds 2,630 1,880 2,170 2,590 3,090 Mixed

  8. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    catalytic converters, 9%; glass polishing and ceramics, 6%; permanent magnets, 5%; petroleum refining, and importer of rare-earth products in 2009. The estimated value of refined rare earths imported by the United) -- -- -- -- 20 Rare-earth metals, alloy 880 867 784 679 210 Cerium compounds 2,170 2,590 2,680 2,080 1,190 Mixed

  9. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    ,380 840 1,350 1,400 Rare-earth metals, alloys 1,470 1,390 4,920 1,380 3,400 Other rare-earth compounds 1,750 5,480 2,300 Rare-earth oxides, compounds 9,900 8,820 5,130 3,980 3,700 Rare-earth metals, alloy 784 scrap. Import Sources (2007­10): Rare-earth metals, compounds, etc.: China, 79%; France, 6%; Estonia, 4

  10. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    ) 56 11 -- -- -- Rare-earth metals, alloys 429 529 953 1,780 2,370 Cerium compounds 3,180 1,810 4,940 3 metals, alloys 250 991 724 1,600 1,830 Cerium compounds 6,100 5,890 4,640 3,960 3,870 Other rare-earth-99): Monazite: Australia, 67%; France, 33%; Rare-earth metals, compounds, etc.: China, 71%; France, 23%; Japan

  11. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    at Mountain Pass were further processed into rare-earth compounds and metal products. The United States,980 3,770 2,840 5,800 Rare-earth metals, alloy 226 525 468 240 390 Exports: 2 Cerium compounds 840 1,350 1,640 992 730 Rare-earth metals, alloys 4,930 1,380 3,030 2,080 1,000 Other rare-earth compounds 455

  12. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    Thorium ore (monazite) -- -- -- 22 -- Rare-earth metals, alloys 352 235 284 905 442 Cerium compounds 806 1:3 Thorium ore, monazite -- 3 27 -- -- Rare-earth metals, alloys 44 194 329 444 272 Cerium compounds.20.0000 Free Free. Rare-earth metals, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad val. 31

  13. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    -- -- -- -- Imports: Thorium ore (monazite) -- 22 56 11 --3 Rare-earth metals, alloys 284 905 429 529 760 Cerium 121 123 Exports: Thorium ore, monazite 27 -- -- -- --3 Rare-earth metals, alloys 329 444 250 991 856 (monazite) 2612.20.0000 Free Free. Rare-earth metals, whether or not intermixed or interalloyed 2805

  14. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    ) -- -- -- -- -- Rare-earth metals, alloy 1,420 1,450 1,130 804 945 Cerium compounds 3,850 2,540 2,630 1,880 2,210 Mixed, compounds 9,150 7,260 10,900 11,400 9,800 Ferrocerium, alloys 118 89 111 105 142 Exports:2 Rare-earth metals-04): Rare-earth metals, compounds, etc.: China, 76%; France, 14%; Japan, 6%; Austria, 2%; and other, 2

  15. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    at Mountain Pass, CA, were further processed into rare-earth compounds and metal products. The United States -- -- -- -- 7,000 Exports: 2 Cerium compounds 1,380 840 1,350 1,640 1,100 Rare-earth metals, alloys 1,390 4,980 3,770 2,700 Rare-earth metals, alloy 679 226 525 468 280 Thorium ore (monazite or various thorium

  16. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    10,000 e 5,000 5,000 Imports:3 Thorium ore (monazite) 22 56 11 -- -- Rare-earth metals, alloys 905,720 5,600 Ferrocerium, alloys 78 107 121 117 122 Exports:3 Rare-earth metals, alloys 444 250 991 724 1%; Rare-earth metals, compounds, etc.: China, 75%; France, 19%; Japan, 3%; United Kingdom, 1%; and other

  17. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    : Thorium ore (monazite) -- -- 22 56 --3 Rare-earth metals, alloys 235 284 905 429 507 Cerium compounds 1 Exports: Thorium ore, monazite 3 27 -- -- --3 Rare-earth metals, alloys 194 329 444 250 879 Cerium for individual rare-earth metals and compounds, with most import categories slightly behind 1996's record high

  18. 10,248,196 Metric Tons of CO2 Injected as of June 19, 2015 | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhat is theBrian Larsen 1010 Resources

  19. Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System

    SciTech Connect (OSTI)

    Oliveira Neto, Francisco Moraes [ORNL] [ORNL; Chin, Shih-Miao [ORNL] [ORNL; Hwang, Ho-Ling [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

  20. Metrics for border management systems.

    SciTech Connect (OSTI)

    Duggan, Ruth Ann

    2009-07-01T23:59:59.000Z

    There are as many unique and disparate manifestations of border systems as there are borders to protect. Border Security is a highly complex system analysis problem with global, regional, national, sector, and border element dimensions for land, water, and air domains. The complexity increases with the multiple, and sometimes conflicting, missions for regulating the flow of people and goods across borders, while securing them for national security. These systems include frontier border surveillance, immigration management and customs functions that must operate in a variety of weather, terrain, operational conditions, cultural constraints, and geopolitical contexts. As part of a Laboratory Directed Research and Development Project 08-684 (Year 1), the team developed a reference framework to decompose this complex system into international/regional, national, and border elements levels covering customs, immigration, and border policing functions. This generalized architecture is relevant to both domestic and international borders. As part of year two of this project (09-1204), the team determined relevant relative measures to better understand border management performance. This paper describes those relative metrics and how they can be used to improve border management systems.

  1. August 2003 IT SECURITY METRICS

    E-Print Network [OSTI]

    August 2003 IT SECURITY METRICS Elizabeth B. Lennon, Editor Information Technology Laboratory approach to measuring information security. Evaluating security at the sys tem level, IT security metrics and techniques contained in NIST SP 800-26, Security Self-Assessment Guide for Information Technology Systems

  2. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    SciTech Connect (OSTI)

    Fujinaga, H.; Yamazaki, N.; Takebe, N. [Japan Nucelar Fuel Conversion Co., Ltd., Ibaraki (Japan)

    1991-12-31T23:59:59.000Z

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  3. Weighting and Bayes Nets for Rollup of Surveillance Metrics

    SciTech Connect (OSTI)

    Henson, Kriste [Los Alamos National Laboratory; Sentz, Kari [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory

    2012-04-30T23:59:59.000Z

    The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the same form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.

  4. Variable metric conjugate gradient methods

    SciTech Connect (OSTI)

    Barth, T.; Manteuffel, T.

    1994-07-01T23:59:59.000Z

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  5. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Office of Environmental Management (EM)

    resiliency metrics for the energy sector and use cases o The framing of a resilience roadmap, and the implication and consequences of introducing new energy resilience metrics...

  6. Technical Workshop: Resilience Metrics for Energy Transmission...

    Energy Savers [EERE]

    of and need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures. Issues important to resilience metrics were identified and...

  7. Characterization of Arsenic Contamination on Rust from Ton Containers

    SciTech Connect (OSTI)

    Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

    2013-01-01T23:59:59.000Z

    The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

  8. Daylight metrics and energy savings

    SciTech Connect (OSTI)

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31T23:59:59.000Z

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  9. Segmental alternations and metrical theory

    E-Print Network [OSTI]

    Vaysman, Olga

    2009-01-01T23:59:59.000Z

    This dissertation focuses on phonological alternations that are influenced or constrained by word-internal prosody, i.e. prominence and foot structure, and what these alternations can tell us about metrical theory. Detailed ...

  10. Normalization of Process Safety Metrics

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

  11. Mining metrics for buried treasure

    E-Print Network [OSTI]

    D. A. Konkowski; T. M. Helliwell

    2005-01-07T23:59:59.000Z

    The same but different: That might describe two metrics. On the surface CLASSI may show two metrics are locally equivalent, but buried beneath one may be a wealth of further structure. This was beautifully described in a paper by M.A.H. MacCallum in 1998. Here I will illustrate the effect with two flat metrics -- one describing ordinary Minkowski spacetime and the other describing a three-parameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out the beautiful hidden classical singularity structure of the latter (a structure first noticed by Tod in 1994) and then show how quantum considerations can illuminate the riches. I will then discuss how quantum structure can help us understand classical singularities and metric parameters in a variety of exact solutions mined from the Exact Solutions book.

  12. Variable buoyancy system metric

    E-Print Network [OSTI]

    Jensen, Harold Franklin

    2009-01-01T23:59:59.000Z

    Over the past 20 years, underwater vehicle technology has undergone drastic improvements, and vehicles are quickly gaining popularity as a tool for numerous oceanographic tasks. Systems used on the vehicle to alter buoyancy, ...

  13. Criticality safety review of 2 1/2 -, 10-, and 14-ton UF sub 6 cylinders

    SciTech Connect (OSTI)

    Broadhead, B.L.

    1991-10-01T23:59:59.000Z

    Currently, UF{sub 6} cylinders designed to contain 2{1/2} tons of UF{sub 6} are classified as Fissile Class 2 packages with a transport index (TI) of 5 for the purpose of transportation. The 10-ton UF{sub 6} cylinders are classified as Fissile Class 1 with no TI assigned for transportation. The 14-ton cylinders, although not certified for transport with enrichments greater than 1 wt % because they have no approved overpack, can be used in on-site operations for enrichments greater than 1 wt %. The maximum {sup 235}U enrichments for these cylinders are 5.0 wt % for the 2{1/2}-ton cylinder and 4.5 wt % for the 10- and 14-ton cylinders. This work reviews the suitability for reclassification of the 2{1/2}-ton UF{sub 6} packages as Fissile Class 1 with a maximum {sup 235}U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum {sup 235}U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2{1/2}-ton UF{sub 6} cylinders meet the 10 CFR.71 criteria for Fissile Class 1 packages, and no TI is needed for criticality safety purposes; however, a TI may be required based on radiation from the packages. Similarly, the 10- and 14-ton UF{sub 6} packages appear acceptable for a maximum enrichment rating change to 5 wt % {sup 235}U. 11 refs., 13 figs., 7 tabs.

  14. COSMOS{sup SM} based composite metrics

    SciTech Connect (OSTI)

    Culross, M.J.; Leslie, M.D.; Toland, J.A. [Raytheon E-Systems, Dallas, TX (United States)

    1996-12-31T23:59:59.000Z

    Process improvement is one of the goals of many organizations. Metrics for measuring process improvement are key to consistent, focused improvement. This paper introduces an approach for developing robust metrics suitable for measuring the improvement in complex processes. The approach uses the Cosmos framework to guide the user in where to collect metrics and it uses the composite metric to guide the user in how to collect metrics.

  15. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds

    Broader source: Energy.gov [DOE]

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

  16. A FLUKA Study of $\\beta$-delayed Neutron Emission for the Ton-size DarkSide Dark Matter Detector

    E-Print Network [OSTI]

    Empl, Anton

    2014-01-01T23:59:59.000Z

    In the published cosmogenic background study for a ton-sized DarkSide dark matter search, only prompt neutron backgrounds coincident with cosmogenic muons or muon induced showers were considered, although observation of the initiating particle(s) was not required. The present paper now reports an initial investigation of the magnitude of cosmogenic background from $\\beta$-delayed neutron emission produced by cosmogenic activity in DarkSide. The study finds a background rate for $\\beta$-delayed neutrons in the fiducial volume of the detector on the order of < 0.1 event/year. However, detailed studies are required to obtain more precise estimates. The result should be compared to a radiogenic background event rate from the PMTs inside the DarkSide liquid scintillator veto of 0.2 events/year.

  17. Thermodynamic Metrics and Optimal Paths

    SciTech Connect (OSTI)

    Sivak, David; Crooks, Gavin

    2012-05-08T23:59:59.000Z

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  18. Horizon thermodynamics and composite metrics

    E-Print Network [OSTI]

    Lorenzo Sindoni

    2012-11-12T23:59:59.000Z

    We examine the conditions under which the thermodynamic behaviour of gravity can be explained within an emergent gravity scenario, where the metric is defined as a composite operator. We show that due to the availability of a boundary of a boundary principle for the quantum effective action, Clausius-like relations can always be constructed. Hence, any true explanation of the thermodynamic nature of the metric tensor has to be referred to an equilibration process, associated to the presence of an H-theorem, possibly driven by decoherence induced by the pregeometric degrees of freedom, and their entanglement with the geometric ones.

  19. Clean Cities 2013 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.; Singer, M.

    2014-10-01T23:59:59.000Z

    Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.

  20. A Proposal for a Ton Scale Bubble Chamber for Dark Matter Detection

    SciTech Connect (OSTI)

    Collar, Juan; Dahl, C.Eric; Fustin, Drew; Robinson, Alan; /Chicago U.; Behnke, Ed; Behnke, Joshua; Breznau, William; Connor, Austin; Kuehnemund, Emily Grace; Levine, Ilan; Moan, Timothy; /Indiana U., South Bend /Fermilab

    2010-10-07T23:59:59.000Z

    The nature of non-baryonic dark matter is one of the most intriguing questions for particle physics at the start of the 21st century. There is ample evidence for its existence, but almost nothing is known of its properties. WIMPs are a very appealing candidate particle and several experimental campaigns are underway around the world to search for these particles via the nuclear recoils that they should induce. The COUPP series of bubble chambers has played a significant role in the WIMP search. Through a sequence of detectors of increasing size, a number of R&D issues have arisen and been solved, and the technology has now been advanced to the point where the construction of large chambers requires a modest research effort, some development, but mostly just engineering. It is within this context that we propose to build the next COUPP detector - COUPP-500, a ton scale device to be built over the next three years at Fermilab and then deployed deep underground at SNOLAB. The primary advantages of the COUPP approach over other technologies are: (1) The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector. (2) The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles. (3) The ability to build large chambers cheaply and with a choice of target fluids. (4) The ability to increase the size of the chambers without changing the size or complexity of the data acquisition. (5) Sensitivity to spin-dependent and spin-independent WIMP couplings. These key advantages should enable the goal of one background event in a ton-year of exposure to be achieved. The conceptual design of COUPP-500 is scaled from the preceding devices. In many cases all that is needed is a simple scaling up of components previously used. Calibration and R&D are still needed on some aspects of the system. We know we have the ability to distinguish alpha-induced events from nuclear recoils, but we do not yet know whether the combination of material purity and rejection are good enough to run for a year with no alpha background. We also need to have more detailed measurements of the detector threshold and a better understanding of its high gamma rejection. In addition, there are important checks to make on the longevity of the detector components in the hydraulic fluid and on the chemistry of the active fluid. The 2009 PASAG report explicitly supported the construction of the COUPP-500 device in all funding scenarios. The NSF has shown similar enthusiasm. It awarded one of its DUSEL S4 grants to assist in the engineering needed to build COUPP-500. The currently estimated cost of COUPP-500 is $8M, about half the $15M-$20M price tag expected by the PASAG report for a next generation dark matter search experiment. The COUPP-500 device will have a spin independent WIMP-nucleus cross-section sensitivity of 6 x 10{sup -47} cm{sup 2} after a background-free year of running. This device should then provide the benchmark against which all other WIMP searches are measured.

  1. THE 10,000 YEAR PLAN

    SciTech Connect (OSTI)

    L. Srisuro

    2006-02-10T23:59:59.000Z

    Pharkya, a Ph.D. candidate in materials science and engineering, works in the area of corrosion science, predicting how materials will perform over extended periods of time. Her particular focus is a nickel-chromium-molybdenum alloy called C-22, a highly corrosion-resistant metal. Pharkya's aim is to help determine whether containers made from C-22 can be used to store high-energy nuclear waste--for 10,000 years and longer. Pharkya's work is part of a plan by the U.S. Department of Energy to consolidate the country's nuclear waste in a single proposed repository. The proposed repository is in Yucca Mountain located in a remote Nevada desert. Currently about 70,000 metric tons of spent nuclear fuel and high-level radioactive waste are divided between approximately 100 sites around the country. The undertaking, Pharkya emphasizes, is massive. To study just the corrosion aspects of the packaging, Case is collaborating with eight other universities, five national labs and Atomic Energy of Canada Limited. Even with so many players, the study will likely take several years to complete. Heading the entire group is Joe Payer, a professor of materials science and engineering at Case and Pharkya's mentor. ''I came here to have the opportunity to work with Dr. Payer, an expert in corrosion, but I didn't know specifically what I would be working on'', Pharkya recalls. ''I was pretty thrilled when I learned about the vastness of the project--my research would be just a small part of this huge topic--and the impact of the research we would be doing''.

  2. The 10,000 Year Plan

    SciTech Connect (OSTI)

    L.Srisaro

    2006-02-10T23:59:59.000Z

    Pallavi Pharkya thinks a lot about the future. Pharkya, a Ph.D. candidate in materials science and engineering, works in the area of corrosion science, predicting how materials will perform over extended periods of time. Her particular focus is a nickel-chromium-molybdenum alloy called C-22, a highly corrosion-resistant metal. Pharkya's aim is to help determine whether containers made from C-22 can be used to store high-energy nuclear waste--for 10,000 years and longer. Pharkya's work is part of a plan by the U.S. Department of Energy to consolidate the country's nuclear waste in a single proposed repository. The proposed repository is in Yucca Mountain located in a remote Nevada desert. Currently about 70,000 metric tons of spent nuclear fuel and high-level radioactive waste are divided between approximately 100 sites around the country. The undertaking, Pharkya emphasizes, is massive. To study just the corrosion aspects of the packaging, Case is collaborating with eight other universities, five national labs and Atomic Energy of Canada Limited. Even with so many players, the study will likely take several years to complete. Heading the entire group is Joe Payer, a professor of materials science and engineering at Case and Pharkya's mentor. ''I came here to have the opportunity to work with Dr. Payer, an expert in corrosion, but I didn't know specifically what I would be working on'', Pharkya recalls. ''I was pretty thrilled when I learned about the vastness of the project--my research would be just a small part of this huge topic--and the impact of the research we would be doing''.

  3. Interpretation of the Cosmological Metric

    E-Print Network [OSTI]

    Richard J. Cook; M. Shane Burns

    2008-09-03T23:59:59.000Z

    The cosmological Robertson-Walker metric of general relativity is often said to have the consequences that (1) the recessional velocity $v$ of a galaxy at proper distance $\\ell$ obeys the Hubble law $v=H\\ell$, and therefore galaxies at sufficiently great distance $\\ell$ are receding faster than the speed of light $c$; (2) faster than light recession does not violate special relativity theory because the latter is not applicable to the cosmological problem, and because ``space itself is receding'' faster than $c$ at great distance, and it is velocity relative to local space that is limited by $c$, not the velocity of distant objects relative to nearby ones; (3) we can see galaxies receding faster than the speed of light; and (4) the cosmological redshift is not a Doppler shift, but is due to a stretching of photon wavelength during propagation in an expanding universe. We present a particular Robertson-Walker metric (an empty universe metric) for which a coordinate transformation shows that none of these interpretation necessarily holds. The resulting paradoxes of interpretation lead to a deeper understanding of the meaning of the cosmological metric.

  4. Homogeneous Einstein metrics on SU(n)

    E-Print Network [OSTI]

    Abid H. Mujtaba

    2011-10-10T23:59:59.000Z

    It is known that every compact simple Lie group admits a bi-invariant homogeneous Einstein metric. In this paper we use two ansatz to probe the existence of additional inequivalent Einstein metrics on the Lie group SU (n) for arbitrary n. We provide an explicit construction of (2k+1) inequivalent Einstein metrics on SU (2k) and 2k inequivalent Einstein metrics on SU (2k + 1).

  5. Daylight metrics and energy savings J. Mardaljevic

    E-Print Network [OSTI]

    LBNL-4585E Daylight metrics and energy savings Authors: J. Mardaljevic Institute of Energy 2009; 0: 1­23 ! Daylight metrics and energy savings J. Mardaljevic a , L. Heschong b , E.S. Lee c comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor

  6. Design and Development of Performance Metrics for Elite Runners

    E-Print Network [OSTI]

    Mittal, Nikhil R.

    2012-01-01T23:59:59.000Z

    metric with distance for Jimmy for both feet Figure 5.29:metric vs. Distance for Jimmy Figure 5.32: Over-strideCDEL metric vs. Distance for Jimmy Figure 5.35: CDEL metric

  7. Multi-Metric Sustainability Analysis

    SciTech Connect (OSTI)

    Cowlin, S.; Heimiller, D.; Macknick, J.; Mann, M.; Pless, J.; Munoz, D.

    2014-12-01T23:59:59.000Z

    A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.

  8. Normalization of Process Safety Metrics 

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    , for this research, the number of process safety incidents is not available; since all the companies just started recording process safety incidents after API RP 745 was issued. Therefore, the most similar reported indicator-operational oil spills is used... for lagging metrics testing as a proper substitute. The major related data was obtained for this section as follows: • Process and environmental incidents (operational oil spills) • Total oil production volume • Total natural gas production volume • Total...

  9. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect (OSTI)

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15T23:59:59.000Z

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  10. Metrics and Benchmarks for Energy Efficiency in Laboratories

    E-Print Network [OSTI]

    Mathew, Paul; Rumsey Engineers

    2008-01-01T23:59:59.000Z

    gsf, ton/m 2 ), boiler efficiency (%), pumping efficiency (to evaluate the efficiency of chiller and boiler systems in

  11. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2004 rose to 1.16 million tons and was valued at

    E-Print Network [OSTI]

    .4 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico, accounted for 99 consumers. Copper and copper alloy products were used in building construction, 48%; electric and electronic exchanges 334 952 1,030 657 130 Employment, mine and mill, thousands 9.1 8.2 7.0 6.8 7.0 Net import reliance

  12. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,

    E-Print Network [OSTI]

    , and was valued at about $9 billion. Arizona, Utah, New Mexico, Nevada, and Montana--in descending order and miscellaneous consumers. Copper and copper alloys products were used in building construction, 44%; electric 236 270 Employment, mine and mill, thousands 8.3 9.5 10.6 11.5 12.0 Net import reliance 4

  13. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2003 declined to 1.12 million tons and was valued at

    E-Print Network [OSTI]

    .0 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico, accounted for 99 alloy products were used in building construction, 46%; electric and electronic products, 23 Employment, mine and mill, thousands 10.3 9.1 8.2 7.0 6.8 Net import reliance4 as a percentage of apparent

  14. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2006 rose to more than 1.2 million tons and was

    E-Print Network [OSTI]

    Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also recovered at mines, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric, and metal exchanges 1,030 657 134 66 115 Employment, mine and mill, thousandse 7.0 6.8 7.0 7.0 7.2 Net

  15. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2005 fell nominally to 1.15 million tons and was

    E-Print Network [OSTI]

    Mexico, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric exchanges 952 1,030 657 134 70 Employment, mine and mill, thousands 8.2 7.0 6.8 7.0 7.0 Net import reliance4

  16. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2008 increased by about 12% to 1.3 million tons and

    E-Print Network [OSTI]

    --Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric, mine and mill, thousands 6.4 7.0 8.4 9.7 11.2 Net import reliance4 as a percentage of apparent

  17. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons

    E-Print Network [OSTI]

    and its value rose to about $10 billion. Arizona, Utah, New Mexico, Nevada, and Montana--in descending construction, 45%; electric and electronic products, 23%; transportation equipment, 12%; consumer and general.5 Net import reliance 4 as a percentage of apparent consumption 37 31 21 32 35 Recycling: Old scrap

  18. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2007 declined nominally to 1.19 million tons, but its

    E-Print Network [OSTI]

    --Arizona, Utah, New Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 51%; electric, mine and mill, thousandse 6.8 7.0 7.0 7.2 7.3 Net import reliance4 as a percentage of apparent

  19. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2009 declined by about 9% to 1.2 million tons and its

    E-Print Network [OSTI]

    --Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 50%; electric and mill, thousands 7.0 8.4 9.7 11.9 9.1 Net import reliance4 as a percentage of apparent consumption 42 38

  20. Comparing Resource Adequacy Metrics: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-09-01T23:59:59.000Z

    As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

  1. Metric Construction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II JumpMepsolarMesilla,MethanetoMetric

  2. Description of the Sandia National Laboratories science, technology & engineering metrics process.

    SciTech Connect (OSTI)

    Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter

    2010-04-01T23:59:59.000Z

    There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.

  3. Computing K3 and CY n-fold Metrics

    E-Print Network [OSTI]

    Gordon Chalmers

    2005-07-27T23:59:59.000Z

    The derivative expnsion in the context of IIB string scattering compactified on non-trivial K3 and other Calabi-Yau manifolds is formulated. The scattering data in terms of automorphic functions can be inverted to find the these metrics. The solutions are parameterized by the moduli information, and the metrics may be found to any desired accuracy in derivatives. Metric information to low orders in derivatives allows for a counting of curves inside the manifold; in addition, the coefficients of these exponential terms via D-brane wrappings are polynomials that may admit an invariant interpretation in cohomology. An interesting case pertaining to M-theory compactifications is the collection of seven-dimensional $G_2$ manifolds; they can also be obtained when the moduli space degenerates into cases, such as a toroidal one or other limit in which modular functions on the space are known. Note: this work was written two years ago; the recipe without the explicit form of the scattering and metrics is given.

  4. Towards Efficient Supercomputing: A Quest for the Right Metric.

    SciTech Connect (OSTI)

    Hsu, C.-H. (Chung-Hsing); Feng, W. C. (Wu-Chun); Archuleta, J. S. (Jeremy S.)

    2005-01-01T23:59:59.000Z

    Over the past decade, we have been building less and less efficient supercomputers, resulting in the construction of substantially larger machine rooms and even new buildings. In addition, because of the thermal power envelope of these supercomputers, a small fortune must be spent to cool them. These infrastructure costs coupled with the additional costs of administering and maintaining such (unreliable) supercomputers dramatically increases their total cost of ownership. As a result, there has been substantial interest in recent years to produce more reliable and more efficient supercomputers that are easy to maintain and use. But how does one quantify efficient supercomputing? That is, what metric should be used to evaluate how efficiently a supercomputer delivers answers? We argue that existing efficiency metrics such as the performance-power ratio are insufficient and motivate the need for a new type of efficiency metric, one that incorporates notions of reliability, availability, productivity, and total cost of ownership (TCO), for instance. In doing so, however, this paper raises more questions than it answers with respect to efficiency. And in the end, we still return to the performance-power ratio as an efficiency metric with respect to power and use it to evaluate a menagerie of processor platforms in order to provide a set of reference data points for the high-performance computing community.

  5. Deep Energy Retrofit Performance Metric Comparison: Eight California Case Studies

    SciTech Connect (OSTI)

    Walker, Iain; Fisher, Jeremy; Less, Brennan

    2014-06-01T23:59:59.000Z

    In this paper we will present the results of monitored annual energy use data from eight residential Deep Energy Retrofit (DER) case studies using a variety of performance metrics. For each home, the details of the retrofits were analyzed, diagnostic tests to characterize the home were performed and the homes were monitored for total and individual end-use energy consumption for approximately one year. Annual performance in site and source energy, as well as carbon dioxide equivalent (CO{sub 2}e) emissions were determined on a per house, per person and per square foot basis to examine the sensitivity to these different metrics. All eight DERs showed consistent success in achieving substantial site energy and CO{sub 2}e reductions, but some projects achieved very little, if any source energy reduction. This problem emerged in those homes that switched from natural gas to electricity for heating and hot water, resulting in energy consumption dominated by electricity use. This demonstrates the crucial importance of selecting an appropriate metric to be used in guiding retrofit decisions. Also, due to the dynamic nature of DERs, with changes in occupancy, size, layout, and comfort, several performance metrics might be necessary to understand a project’s success.

  6. The d-bar-Neumann operator and the Kobayashi metric

    E-Print Network [OSTI]

    Kim, Mijoung

    2004-09-30T23:59:59.000Z

    between compactness of the partialdiff-Neumann operator and the property K in any convex domain. We also find a local property of the Kobayashi metric [Theorem IV.1], in which the domain is not necessary pseudoconvex. We find a more general condition than... through his deep insight, inexhaustible patience, and constant encouragement has been an inspiration to me during these years as his student. vi TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II...

  7. Sandia National Laboratories: performance metric evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    metric evaluation PV Plant Performance Technical Briefing Published in PV Power Tech On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  8. Implicit Multifunction Theorems in complete metric spaces

    E-Print Network [OSTI]

    2010-06-10T23:59:59.000Z

    Implicit Multifunction Theorems in complete metric spaces. Huynh Van Ngai ? Nguyen Huu Tron† and. Michel Théra ‡. Abstract. In this paper, we establish some ...

  9. Defining a Standard Metric for Electricity Savings

    E-Print Network [OSTI]

    Koomey, Jonathan

    2009-01-01T23:59:59.000Z

    1991. The Potential for Electricity Efficiency Improvementswww.eia.doe.gov/cneaf/electricity/page/eia860.html>. FigureA STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*,

  10. Original Article Error Bounds and Metric Subregularity

    E-Print Network [OSTI]

    2014-06-18T23:59:59.000Z

    theory of error bounds of extended real-valued functions. Another objective is to ... Another observation is that neighbourhood V in the original definition of metric.

  11. TORIC LEBRUN METRICS AND JOYCE METRICS NOBUHIRO HONDA AND JEFF VIACLOVSKY

    E-Print Network [OSTI]

    Viaclovsky, Jeff

    TORIC LEBRUN METRICS AND JOYCE METRICS NOBUHIRO HONDA AND JEFF VIACLOVSKY Abstract. We show that Foundation under grant DMS-1105187. Mathematics Subject Classification (2010) 53A30. 1 #12;2 NOBUHIRO HONDA

  12. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01T23:59:59.000Z

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  13. Reparametrization invariance of the classical metric

    E-Print Network [OSTI]

    G. G. Kirilin

    2006-11-16T23:59:59.000Z

    There is a statement on the parametrization dependence of the classical metric in the recent paper of N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, gr-qc/0610096. I completely disagree with this statement. Here I show reparametrization invariance of the classical metric.

  14. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01T23:59:59.000Z

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  15. Program for implementing software quality metrics

    SciTech Connect (OSTI)

    Yule, H.P.; Riemer, C.A.

    1992-04-01T23:59:59.000Z

    This report describes a program by which the Veterans Benefit Administration (VBA) can implement metrics to measure the performance of automated data systems and demonstrate that they are improving over time. It provides a definition of quality, particularly with regard to software. Requirements for management and staff to achieve a successful metrics program are discussed. It lists the attributes of high-quality software, then describes the metrics or calculations that can be used to measure these attributes in a particular system. Case studies of some successful metrics programs used by business are presented. The report ends with suggestions on which metrics the VBA should use and the order in which they should be implemented.

  16. Topology on locally finite metric spaces

    E-Print Network [OSTI]

    Capraro, Valerio

    2011-01-01T23:59:59.000Z

    The necessity of a theory of General Topology and, most of all, of Algebraic Topology on locally finite metric spaces comes from many areas of research in both Applied and Pure Mathematics: Molecular Biology, Mathematical Chemistry, Computer Science, Topological Graph Theory and Metric Geometry. In this paper we propose the basic notions of such a theory and some applications: we replace the classical notions of continuous function, homeomorphism and homotopic equivalence with the notions of NPP-function, NPP-local-isomorphism and NPP-homotopy (NPP stands for Nearest Point Preserving); we also introduce the notion of NPP-isomorphism. We construct three invariants under NPP-isomorphisms and, in particular, we define the fundamental group of a locally finite metric space. As first applications, we propose the following: motivated by the longstanding question whether there is a purely metric condition which extends the notion of amenability of a group to any metric space, we propose the property SN (Small Neighb...

  17. Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-04-08T23:59:59.000Z

    This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

  18. adaptive metric knn: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We also prove that the set of points where a path with values in a metric space Maleva, Olga 97 SOBOLEV METRICS ON THE MANIFOLD OF ALL RIEMANNIAN METRICS Mathematics Websites...

  19. Comparative vs. Absolute Performance Assessment with Environmental Sustainability Metrics

    E-Print Network [OSTI]

    High, Karen

    Comparative vs. Absolute Performance Assessment with Environmental Sustainability Metrics Xun Jin Different goals and potential audiences determine that two types of environmental performance assessments metrics can be partitioned into two camps. One suite of metrics aim to assess the environmental

  20. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01T23:59:59.000Z

    This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.

  1. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and

    E-Print Network [OSTI]

    States is extremely difficult because of the large number of compounds used in a wide variety of end uses are estimated as follows: ceramics and glass, 31%; batteries, 23%; lubricating greases, 9%; air treatment, 6 conditions improved for lithium-based products in 2010. Sales volumes for the major lithium producers were

  2. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    . Estimation of value for the lithium mineral compounds produced in the United States is extremely difficult lithium company identified its end-use markets as ceramics and glass, 21%; batteries, 19%; lubricating greases, 16%; pharmaceuticals and polymers, 9%; air conditioning, 8%; primary aluminum production, 6

  3. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and

    E-Print Network [OSTI]

    be published. Estimation of value for the lithium mineral compounds produced in the United States is extremely as follows: batteries, 25%; ceramics and glass, 18%; lubricating greases, 12%; pharmaceuticals and polymers, 7%; air conditioning, 6%; primary aluminum production, 4%; continuous casting, 3%; chemical

  4. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2013, the United States was expected to consume about 6% of world chromite

    E-Print Network [OSTI]

    primary metal: South Africa, 29%; Kazakhstan, 20%; Russia, 12%; China, 5%; and other 34%. Total imports Normal Trade Relations 12­31­13 Ore and concentrate 2610.00.0000 Free. Ferrochromium: Carbon more than 4% 7202.41.0000 1.9% ad val. Carbon more than 3% 7202.49.1000 1.9% ad val. Other: Carbon more than 0

  5. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2002, the United States consumed about 14% of world chromite ore production in

    E-Print Network [OSTI]

    -2001): Chromium contained in chromite ore and chromium ferroalloys and metal: South Africa, 50%; Kazakhstan, 20, Kazakhstan, and South Africa) accounted for about 76% of world production. South Africa alone accounts States -- -- -- 7,000 India 1,680 1,900 18,000 39,000 Kazakhstan 2,050 2,300 410,000 410,000 South Africa

  6. (Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon metal and alloys (excluding semiconductor-grade silicon)

    E-Print Network [OSTI]

    metal: Brazil, 37%; South Africa, 25%; Canada, 14%; Norway, 6%; and other, 18%. Total: Brazil, 20%; China, 16%; South Africa, 13%; Canada, 12%; and other, 39%. Tariff: Item Number Normal Trade Relations energy costs. Demand for silicon metal comes primarily from the aluminum and chemical industries

  7. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2002, clay and shale production was reported in all States except Alaska,

    E-Print Network [OSTI]

    to be as follows: ball clay--35% floor and wall tile, 22% sanitaryware, and 43% other uses; bentonite--28% pet for consumption: Artificially activated clay and earth 19 17 18 21 20 Kaolin 53 57 63 114 155 Other 14 16 16 13 49, not elsewhere classified 432 329 357 344 464 Total3 5,230 4,800 5,260 4,970 4,990 Consumption, apparent 36

  8. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clay and shale production was reported in all States except Alaska,

    E-Print Network [OSTI]

    % floor and wall tile, 22% sanitaryware, and 43% other uses; bentonite--26% pet waste absorbent, 25,280 9,450 9,160 8,800 9,030 Total3 41,800 41,600 42,200 40,800 40,600 Imports for consumption classified 390 432 329 357 363 Total3 5,080 5,230 4,800 5,260 5,130 Consumption, apparent 36,800 36,500 37

  9. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2004, clay and shale production was reported in 41 States. About 240

    E-Print Network [OSTI]

    --31% floor and wall tile, 20% sanitaryware, and 49% other uses; bentonite--25% pet waste absorbent, 20,800 8,110 8,010 7,680 8,780 Total3 40,800 39,600 39,300 40,000 48,900 Imports for consumption, not elsewhere classified 357 344 449 420 516 Total3 5,260 4,970 4,960 4,980 5,580 Consumption, apparent 35

  10. (Data in thousand metric tons, gross weight, unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    of ore were used for such nonmetallurgical purposes as production of dry cell batteries, as an ingredient Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled inventory inventory for disposal FY 2001 FY 2001 Battery: Natural ore 103 0.2 103 27 1 Synthetic dioxide 3

  11. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    as production of dry cell batteries, plant fertilizers and animal feed, and as a brick colorant. Manganese Recycling: Manganese was recycled incidentally as a minor constituent of ferrous and nonferrous scrap inventory inventory for disposal FY 2006 FY 2006 Manganese ore: Battery grade -- 18 -- 27 -- Chemical grade

  12. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese has not been produced

    E-Print Network [OSTI]

    Torgersen, Christian

    purposes as production of dry cell batteries, in plant fertilizers and animal feed, and as a brick colorant of apparent consumption 100 100 100 100 100 Recycling: Manganese was recycled incidentally as a minor inventory for disposal FY 2009 FY 2009 Manganese ore: Battery grade -- -- 18 -- Chemical grade -- -- 23

  13. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    as production of dry cell batteries, in plant fertilizers and animal feed, and as a brick colorant. Manganese of apparent consumption 100 100 100 100 100 Recycling: Manganese was recycled incidentally as a minor inventory inventory for disposal FY 2007 FY 2007 Manganese ore: Battery grade 16 2 16 27 2 Chemical grade 0

  14. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced

    E-Print Network [OSTI]

    Torgersen, Christian

    as production of dry cell batteries, plant fertilizers and animal feed, and as a brick colorant. Manganese Recycling: Manganese was recycled incidentally as a minor constituent of ferrous and nonferrous scrap inventory inventory for disposal FY 2005 FY 2005 Manganese ore: Battery grade -- 18 -- 27 23 Chemical grade

  15. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    as production of dry cell batteries, in plant fertilizers and animal feed, and as a brick colorant. Manganese 100 100 100 100 Recycling: Manganese was recycled incidentally as a minor constituent of ferrous FY 2008 FY 2008 Manganese ore: Battery grade -- -- 18 16 Chemical grade -- -- -- -- Metallurgical

  16. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2012, clay and shale production was reported in 40 States. About 180 companies

    E-Print Network [OSTI]

    : Insignificant. Import Sources (2008­11): Brazil, 80%; Mexico, 5%; Canada, 4%; United Kingdom, 2%; and other, 9 and pet litter were expected to decline. Fuller's earth could see slight gains as sales increase

  17. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2013, clay and shale production was reported in 40 States. About 180 companies

    E-Print Network [OSTI]

    . Import Sources (2009­12): Brazil, 83%; Canada, 6%; Mexico, 4%; and other, 7%. Prepared by Robert L. Virta. Bentonite sales declined slightly because sales to most markets, except pet litter, appeared to have declined. Fuller's earth saw slight gains, mainly because of sales increases for pet litters and fluid

  18. (Data in metric tons of tungsten, unless otherwise noted) Domestic Production and Use: In 1996, one mine in California produced tungsten concentrate. The mine operated at

    E-Print Network [OSTI]

    38 63 44 10 32 Government stockpile shipments, concentrate -- -- -- -- -- Consumption: Reported and equipment, 80%; electrical and electronic machinery and equipment and transportation, 9%; lamps and lighting shipments W W W W W Imports for consumption, concentrate 2,500 1,700 3,000 4,200 3,100 Exports, concentrate

  19. (Data in metric tons of tin content, unless noted) Domestic Production and Use: In 1995, there was no domestic tin mine production. Production of tin at the only

    E-Print Network [OSTI]

    ,600 2,560 2,000 Shipments from Government stockpile excesses 6,195 6,310 6,022 5,620 5,000 Consumption and containers, 32%; electrical, 23%; construction, 9%; transportation, 11%; and other, 25%. The estimated value of primary metal consumption in 1995, based on the New York composite price, was $300 million. Salient

  20. (Data in metric tons of tungsten content, unless noted) Domestic Production and Use: In 1995, one mine in California produced tungsten concentrate. The mine operated

    E-Print Network [OSTI]

    , concentrate 21 38 63 44 -- Government stockpile shipments, concentrate -- -- -- -- -- Consumption: Reported and equipment, 77%; electrical and electronic machinery and equipment and transportation, 10%; lamps, mine shipments W W W W W Imports for consumption, concentrate 7,800 2,500 1,700 3,000 5,500 Exports

  1. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and

    E-Print Network [OSTI]

    and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and the United the recycling of lithium batteries. Import Sources (2005-08): Chile, 63%; Argentina, 35%; China, 1%; and other in 2009. Many claims in Nevada, as well as in Argentina, Australia, Bolivia, and Canada, have been leased

  2. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, Russia batteries. Import Sources (2003-06): Chile, 69%; Argentina, 29%; and other, 2%. Tariff: Item Number Normal operations in Chile dominate the world market; a facility at a brine deposit in Argentina produced lithium

  3. (Data in thousand metric tons of copper content, unless noted) Domestic Production and Use: Domestic mine production in 1995 continued its upward trend, begun in 1984, rising

    E-Print Network [OSTI]

    , Arizona, Utah, New Mexico, Montana, and Michigan, accounted for 97% of domestic production; copper in building construction, 42%; electric and electronic products, 22%; industrial machinery and equipment, 13, refined5 132 205 153 119 135 Employment, mine and mill, thousands 13.7 13.6 13.3 13.2 13.3 Net import

  4. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1997, 13 companies operated 22 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    , 26%; building, 16%; electrical, 8%; consumer durables, 8%; and other, 10%. Salient Statistics, yearend 168 16 14 12 10 Employment, primary reduction, number 18,800 17,800 17,800 18,200 18,000 Net%; Venezuela, 5%; Mexico, 3%; and other, 12%. Tariff: Item Number Most favored nation (MFN) Non-MFN4 12

  5. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production, which had remained unchanged in 1995, resumed the

    E-Print Network [OSTI]

    States, in descending order, Arizona, Utah, New Mexico, Nevada, and Montana, accounted for 98 alloy products were consumed in1 building construction, 40%; electric and electronic products, 25.3 13.1 13.8 14.0 Net import reliance as a percent of6 apparent consumption 2 7 13 7 13 Recycling: Old

  6. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1998, 13 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    %; building, 14%; electrical, 8%; consumer durables, 7%; and other, 10%. Salient Statistics--United States, yearend 16 14 12 ( ) --2 Employment, primary reduction, number 17,800 17,800 18,200 18,000 18,300 Net%; Venezuela, 6%; Mexico, 3%; and other, 12%. Tariff: Item Number Normal Trade Relations (NTR) Non-NTR5 12

  7. (Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2000. Domestically

    E-Print Network [OSTI]

    Statistics--United States: 1996 1997 1998 1999 2000e Production, refinery -- -- -- -- -- Imports fluctuations. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves2 Reserve

  8. (Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2002. Domestically

    E-Print Network [OSTI]

    Statistics--United States: 1998 1999 2000 2001 2002e Production, refinery -- -- -- -- -- Imports. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves3 Reserve base3 2001

  9. (Data in metric tons, unless noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1995. Domestic indium

    E-Print Network [OSTI]

    , refinery NA NA NA NA -- Imports for consumption 36.3 36.3 73.4 70.2 73.0 Exports NA NA NA NA NA marketed through a U.S. company. World Refinery Production, Reserves, and Reserve Base: Refinery

  10. (Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2001. Domestically

    E-Print Network [OSTI]

    --United States: 1997 1998 1999 2000 2001e Production, refinery -- -- -- -- -- Imports for consumption 85.5 75 77 fluctuations caused by economic uncertainties. World Refinery Production, Reserves, and Reserve Base: Refinery

  11. (Data in metric tons, unless otherwise noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1997. Domestically

    E-Print Network [OSTI]

    --United States: 1993 1994 1995 1996 1997e Production, refinery -- -- -- -- -- Imports for consumption 73.4 70 for the indium market remains promising. World Refinery Production, Reserves, and Reserve Base: Refinery

  12. (Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor-and solar-

    E-Print Network [OSTI]

    Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor- and solar- grade silicon) produced in the United States in 2009 was $470 million. Four companies produced silicon materials in six plants. Of those companies, three produced ferrosilicon in four plants. Metallurgical

  13. By Joseph Gambogi Titanium comprises about 0.62% of the Earth's crust and At yearend, only 267 metric tons of rutile were left in the NDS

    E-Print Network [OSTI]

    1 TITANIUM By Joseph Gambogi Titanium comprises about 0.62% of the Earth's crust and At yearend, ilmenite, as uncommitted inventory. None of the titanium sponge in the leucoxene, perovskite, rutile, and sphene. Elemental titanium, NDS was authorized for disposal. The NDS inventory of Ti, is a lightweight

  14. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters were temporarily idled. The 11 smelters east of the Mississippi River accounted for 75% of the production; whereas the remaining 11 smelters, which included the 9 Pacific Northwest smelters, accounted for only 25%. Based upon

  15. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were

    E-Print Network [OSTI]

    and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts, production was curtailed at two smelters owing to high electricity prices, power supply issues, and a sharp

  16. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2000, based on contained zinc recoverable from

    E-Print Network [OSTI]

    three-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined 92 Employment: Mine and mill, numbere 2,700 2,500 2,400 2,500 2,600 Smelter primary, numbere 1,000 1 production of zinc concentrate by about 3% in 2000. U.S. mine production greatly exceeded smelter capacity

  17. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were

    E-Print Network [OSTI]

    and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were closed temporarily quarter of 2012, the leading U.S. aluminum producer announced that its smelter in Alcoa, TN, which had potlines at its Rockdale, TX, smelter also would be permanently closed. Failure to obtain favorable power

  18. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1999, based on contained zinc recoverable from

    E-Print Network [OSTI]

    %. Three primary and eight secondary smelters refined zinc metal of commercial grade in 1999. Of zinc metal,500 Smelter primary, numbere 1,000 1,000 1,000 1,000 1,000 Net import reliance3 as a percent of apparent. The planned tripling of refinery capacity at the Clarksville, TN, smelter was suspended by Pasminco Ltd

  19. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2000, 12 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    , and Issues: Domestic primary aluminum production decreased owing in large part to the smelter production cutbacks caused by increased energy costs, particularly in the Pacific Northwest. Domestic smelters aluminum smelter in Hawesville, KY. The acquisition was subject to the completion of a labor agreement

  20. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were

    E-Print Network [OSTI]

    and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were temporarily idled. Domestic smelters operated at about 62% of rated or engineered capacity. Imports for consumption increased Smelter Production and Capacity: Production Yearend capacity 2005 2006e 2005 2006e United States 2,481 2

  1. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were

    E-Print Network [OSTI]

    and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts were obtained by producers. Domestic smelters operated at about 69% of rated or engineered capacity

  2. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2001, based on contained zinc recoverable from

    E-Print Network [OSTI]

    -fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined zinc metal of commercial,500 2,600 2,400 Smelter primary, numbere 1,000 1,000 1,000 1,000 900 Net import reliance3 greatly exceeded smelter capacity, necessitating exports of concentrate. More than one-third of all

  3. (Data in metric tons of contained lithium, unless noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and

    E-Print Network [OSTI]

    by Joyce A. Ober, (703) 648-7717. #12;97 LITHIUM Events, Trends, and Issues: The Department of Energy (DOE produced lithium compounds for domestic consumption as well as for export to other countries. The use% of estimated domestic consumption. Other major end uses for lithium were in the manufacture of lubricants

  4. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2005, based on contained zinc recoverable from

    E-Print Network [OSTI]

    accounted for 86% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters Production: Mine, zinc in ore1 842 780 768 739 760 Primary slab zinc 203 182 187 189 250 Secondary slab zinc a major price recovery that started in the third quarter of 2004 and picked up renewed momentum

  5. (Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2008. Indium-containing

    E-Print Network [OSTI]

    : Data on the quantity of secondary indium recovered from scrap were not available. Indium is most loop--from collection of scrap to production of secondary materials--now takes less than 30 days. ITO to dissolve the ITO, from which the indium is recovered. Indium recovery from tailings was thought to have

  6. (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China, the

    E-Print Network [OSTI]

    and Use: Chile was the largest lithium chemical producer in the world, followed by China, the United of lower production costs as compared to the costs for hard rock ores. Most of the lithium minerals mined purchased from a producer in Chile. The increased production of low-cost lithium carbonate in South America

  7. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    SciTech Connect (OSTI)

    Newvahner, R.L. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  8. Office of HC Strategy Budget and Performance Metrics (HC-50)...

    Energy Savers [EERE]

    Strategy Budget and Performance Metrics (HC-50) Office of HC Strategy Budget and Performance Metrics (HC-50) Mission Statement and Function Statement The Office of Human Capital...

  9. Design and Development of Performance Metrics for Elite Runners

    E-Print Network [OSTI]

    Mittal, Nikhil R.

    2012-01-01T23:59:59.000Z

    Loss (CDEL) CDEL is another important metric for analyzing runningLoss (CDEL) CDEL is another important metric for analyzing running

  10. Integration of the EM Corporate QA Performance Metrics With Performanc...

    Office of Environmental Management (EM)

    Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process...

  11. Recovery Act | Department of Energy

    Office of Environmental Management (EM)

    of metric tons per year. Utility to Purchase Low-Carbon Power from Innovative Clean Coal Plant Lawrence Livermore National Laboratory demonstrated coal gasification in...

  12. Energy-Momentum Distribution in Weyl Metrics

    E-Print Network [OSTI]

    M. Sharif; Tasnim Fatima

    2005-07-16T23:59:59.000Z

    In this paper, we evaluate energy and momentum density distributions for the Weyl metric by using the well-known prescriptions of Einstein, Landau-Lifshitz, Papaterou and M$\\ddot{o}$ller. The metric under consideration is the static axisymmetric vacuum solution to the Einstein field equations and one of the field equations represents the Laplace equation. Curzon metric is the special case of this spacetime. We find that the energy density is different for each prescription. However, momentum turns out to be constant in each case.

  13. Invariant torsion and G_2-metrics

    E-Print Network [OSTI]

    Diego Conti; Thomas Bruun Madsen

    2014-10-22T23:59:59.000Z

    We introduce and study a notion of invariant intrinsic torsion geometry which appears, for instance, in connection with the Bryant-Salamon metric on the spinor bundle over S^3. This space is foliated by six-dimensional hypersurfaces, each of which carries a particular type of SO(3)-structure; the intrinsic torsion is invariant under SO(3). The last condition is sufficient to imply local homogeneity of such geometries, and this allows us to give a classification. We close the circle by showing that the Bryant-Salamon metric is the unique complete metric with holonomy G_2 that arises from SO(3)-structures with invariant intrinsic torsion.

  14. A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin

    E-Print Network [OSTI]

    Hobor, Aquinas

    A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor a logical framework for specifying and proving asser- tions about program termination. Although termination. Here we propose to integrate termination requirements directly into our specification logic

  15. The Scale of the Energy Challenge 22,000 gallons of fuel oil 150 tons of coal

    E-Print Network [OSTI]

    Hochberg, Michael

    and rooftops in the United States. The total land area required by nuclear power plants is small! Ã? 20 15The Scale of the Energy Challenge Biomass Wind Nuclear Solar 22,000 gallons of fuel oil 150 tons

  16. Clean Cities Annual Metrics Report 2009 (Revised)

    SciTech Connect (OSTI)

    Johnson, C.

    2011-08-01T23:59:59.000Z

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  17. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    H. Moradpour; S. Nasirimoghadam

    2015-06-14T23:59:59.000Z

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  18. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    Moradpour, H

    2015-01-01T23:59:59.000Z

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  19. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Broader source: Energy.gov (indexed) [DOE]

    their progress to-date on developing a long-term roadmap on resilience metrics for electric power, gas, and oil infrastructure and their proposed uses. Location The session...

  20. Contributions to Metric Number Technical Report

    E-Print Network [OSTI]

    Dent, Alexander W.

    Contributions to Metric Number Theory Paul Rowe Technical Report RHUL­MA­2002­2 5 December 2002, Professor Glyn Harman, for sug- gestions of problems to attempt, helpful advice on methods and help

  1. Clean Cities 2011 Annual Metrics Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities 2011 Annual Metrics Report Caley Johnson National Renewable Energy Laboratory Technical Report NRELTP-7A30-56091 December 2012 NREL is a national laboratory of the...

  2. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    E-Print Network [OSTI]

    Lin, Jiang

    2008-01-01T23:59:59.000Z

    Agg. Ind.App &T&D Efficinecy Energy Demand Elasticity of GDPAgg. Ind.App &T&D Efficinecy Figure 14 Energy Intensity 4.1energy consumption by sector in three scenarios Historical LBNL BPS Agg. Ind.App Efficinecy

  3. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    E-Print Network [OSTI]

    Lin, Jiang

    2008-01-01T23:59:59.000Z

    Inland coastal Coal, oil and oil product, crude oil, otherCoal, oil and oil product, crude oil, other Steam, diesel,Internation al Crude oil, oil products, NG, other Gas Fuel

  4. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    E-Print Network [OSTI]

    Lin, Jiang

    2008-01-01T23:59:59.000Z

    Naphtha Feed Stock Coal Heavy oil NG biomass Electricityheat Ammonia NG Fuel Oil Heavy oil Electric ity heat CoalCoke Electricit y NG Heavy oil Coal Coke Electricity Diesel

  5. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    E-Print Network [OSTI]

    Lin, Jiang

    2008-01-01T23:59:59.000Z

    2. Recent Trends in Energy Consumption in China Between 1980trends and policy options for reducing energy consumption orenergy consumption comprises a much larger share which is also expected to be the trend

  6. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    E-Print Network [OSTI]

    Lin, Jiang

    2008-01-01T23:59:59.000Z

    boiler boiler stove district heating heat pump conditionerSmall cogen Stove District heating Heat pump Centralized AC

  7. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    E-Print Network [OSTI]

    Lin, Jiang

    2008-01-01T23:59:59.000Z

    E. I.. 1996. China's Energy A forecast to 2015, U.S. DOEChina’s energy/GDP elasticity remains at 1 and economic growth unfolds as forecast,

  8. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    E-Print Network [OSTI]

    Lin, Jiang

    2008-01-01T23:59:59.000Z

    Heat Pump Centralized AC by NG Electric water heater Gasheater gas boiler boiler stove district heating heat pump conditioner Air conditioning Lighting Cooking and waterWater heating Technologies Electric heater Gas boiler Boiler Small cogen Stove District heating Heat pump

  9. Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovemberiMid-LevelMoab Marks 6-Million-Ton CleanupAccomplishes

  10. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  11. Product Concept Metrics: a Preliminary Study Working Paper

    E-Print Network [OSTI]

    Takala, Roope

    Metrics for product concept evaluation and screening is a relatively unstudied topic of product development.

  12. Identifying Metrical and Temporal Structure with an Autocorrelation Phase Matrix

    E-Print Network [OSTI]

    Eck, Doug

    - odic and metrical structure in digital audio. Oscillator models (Large and Kolen, 1994; Eck, 2002) have

  13. The dynamics of metric-affine gravity

    SciTech Connect (OSTI)

    Vitagliano, Vincenzo, E-mail: vitaglia@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy); Sotiriou, Thomas P., E-mail: T.Sotiriou@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Liberati, Stefano, E-mail: liberati@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy)

    2011-05-15T23:59:59.000Z

    Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to study the properties of metric-affine gravity.

  14. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1997 was essentially unchanged at 1.9 million metric

    E-Print Network [OSTI]

    Mexico, Nevada, and Montana, accounted for 98% of domestic production; copper was also recovered at mines in building construction, 43%; electric and electronic products, 24%; industrial1 machinery and equipment, 12 119 163 146 2505 Employment, mine and mill, thousands 13.3 13.1 13.8 13.2 13.3 Net import reliance

  15. Implementing the Data Center Energy Productivity Metric

    SciTech Connect (OSTI)

    Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.

    2012-10-01T23:59:59.000Z

    As data centers proliferate in both size and number, their energy efficiency is becoming increasingly important. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high performance computing data center. We found that DCeP was successful in clearly distinguishing between different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve (or even maximize) energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and among data centers.

  16. Metric Cubes in Some Music of Brahms

    E-Print Network [OSTI]

    Murphy, Scott

    2009-01-01T23:59:59.000Z

    Pl ea se n ot e th at t hi s is a n au th or -p ro du ce d PD F of a n ar ti cl e ac ce pt ed fo r pu bl ic at io n fo llo w in g pe er r ev ie w . T he p ub lis he r ve rs io n is a va ila bl e on it s si te . [This...: Murphy, Scott. “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56. DOI:10.1215/00222909-2009-020. Abstract: The metric cube is a kind of graph of meters proposed as a complement to the types of metric spaces...

  17. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01T23:59:59.000Z

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  18. Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders

    SciTech Connect (OSTI)

    Lykins, M.L.

    1995-08-01T23:59:59.000Z

    A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

  19. XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos

    E-Print Network [OSTI]

    K. Arisaka; H. Wang; P. F. Smith; D. Cline; A. Teymourian; E. Brown; W. Ooi; D. Aharoni; C. W. Lam; K. Lung; S. Davies; M. Price

    2009-01-07T23:59:59.000Z

    A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.

  20. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31T23:59:59.000Z

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  1. Metrics for a Sustainable Produced By

    E-Print Network [OSTI]

    Levinson, David M.

    Metrics for a Sustainable EcoVillage #12;2 Produced By: Nam Nguyen Master of Urban and Regional Project Manager Project for Pride in Living (PPL) Jeffrey Skrenes Housing Director Hawthorne Neighborhood Council Photo source: Unless otherwise noted, photos are provided by People for Pride in Living

  2. Clean Cities 2010 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-10-01T23:59:59.000Z

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  3. Einstein Product Metrics in Diverse Dimensions

    E-Print Network [OSTI]

    K. R. Koehler

    2006-01-27T23:59:59.000Z

    We use direct products of Einstein Metrics to construct new solutions to Einstein's Equations with cosmological constant. We illustrate the technique with three families of solutions having the geometries Kerr/de Sitter X de Sitter, Kerr/anti-de Sitter X anti-de Sitter and Kerr X Kerr.

  4. Einstein Metrics on Rational Homology 7-Spheres

    E-Print Network [OSTI]

    Einstein Metrics on Rational Homology 7-Spheres Charles P. Boyer Krzysztof Galicki Michael Nakamaye Abstract: In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2-connected rational homology 7-spheres. These appear to be the #12;rst non-regular examples of Sasakian-Einstein

  5. An Attack Surface Metric Pratyusa K. Manadhata

    E-Print Network [OSTI]

    K. Manadhata This research was sponsored in part by the Defense Advanced Research Project Agency by the National Science Foundation under grants no. CCR-0121547 and CNS-0433540, SAP Labs, LLC under award no metrics has recently become more pressing. In this thesis, we introduce the measure of a software system

  6. Fourier Transform, Riemann Surfaces and Indefinite Metric

    E-Print Network [OSTI]

    Fominov, Yakov

    Fourier Transform, Riemann Surfaces and Indefinite Metric P. G. Grinevich, S.P.Novikov Zakharov Park, College Park, USA #12;What is Fourier Transform in Riemann Surfaces? Which Problems need it? Discrete Analog of The Fourier/Laurent bases in Riemann Sur- faces was constructed by Krichever-Novikov (KN

  7. Performance Metrics Research Project - Final Report

    SciTech Connect (OSTI)

    Deru, M.; Torcellini, P.

    2005-10-01T23:59:59.000Z

    NREL began work for DOE on this project to standardize the measurement and characterization of building energy performance. NREL's primary research objectives were to determine which performance metrics have greatest value for determining energy performance and to develop standard definitions and methods of measuring and reporting that performance.

  8. Clean Cities 2011 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-12-01T23:59:59.000Z

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  9. Evaluation Criteria for Human-Automation Performance Metrics

    E-Print Network [OSTI]

    Pina, Patricia Elena

    Previous research has identified broad metric classes for human-automation performance to facilitate metric selection, as well as understanding and comparison of research results. However, there is still lack of an objective ...

  10. Ideal Based Cyber Security Technical Metrics for Control Systems

    SciTech Connect (OSTI)

    W. F. Boyer; M. A. McQueen

    2007-10-01T23:59:59.000Z

    Much of the world's critical infrastructure is at risk from attack through electronic networks connected to control systems. Security metrics are important because they provide the basis for management decisions that affect the protection of the infrastructure. A cyber security technical metric is the security relevant output from an explicit mathematical model that makes use of objective measurements of a technical object. A specific set of technical security metrics are proposed for use by the operators of control systems. Our proposed metrics are based on seven security ideals associated with seven corresponding abstract dimensions of security. We have defined at least one metric for each of the seven ideals. Each metric is a measure of how nearly the associated ideal has been achieved. These seven ideals provide a useful structure for further metrics development. A case study shows how the proposed metrics can be applied to an operational control system.

  11. Metrics and Benchmarks for Energy Efficiency in Laboratories

    E-Print Network [OSTI]

    Mathew, Paul

    2007-01-01T23:59:59.000Z

    tons/gsf), boiler efficiency (%), pump- ing efficiency (hp/F W/gpm H7 Reheat Energy Use Factor Boiler Rated EfficiencyBoiler Part Load Efficiency Energy Recovery System

  12. Financial Metrics Data Collection Protocol, Version 1.0

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Gorrissen, Willy J.; Wang, Na

    2010-04-30T23:59:59.000Z

    Brief description of data collection process and plan that will be used to collect financial metrics associated with sustainable design.

  13. Complex Systems--Goals & Metrics Long-term Objective

    E-Print Network [OSTI]

    Hayden, Nancy J.

    ://www.uvm.edu/cmplxsys/. Moving forward--Goals, Metrics, and Resources: Approach: Kaizen. Measurability is ke

  14. U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits.

  15. 26The Frequency of Large Meteor Impacts On February 14, 2013 a 10,000 ton meteor

    E-Print Network [OSTI]

    over the town of Chelyabinsk and the explosion caused major damage to the town injuring 1,000 people `discovered' for many decades afterwards, the Chelyabinsk Meteor was extensively videoed by hundreds explodes with an energy of 4.2x109 Joules. How many tons of TNT did the Chelyabinsk Meteor yield

  16. Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,

    E-Print Network [OSTI]

    Columbia University

    analyses the global waste market, with particular reference to municipal solid waste (MSW). Key NoteGlobal MSW Generation in 2007 estimated at two billion tons Global Waste Management Market between growth in wealth and increase in waste -- the more affluent a society becomes, the more waste

  17. The Nature of Faint Blue Stars in the PHL and Ton Catalogues based on Digital Sky Surveys

    E-Print Network [OSTI]

    Andernach, H; W., W Copo Cordova; Santiago-Bautista, I del C

    2015-01-01T23:59:59.000Z

    We determined accurate positions for 3000 of the "faint blue stars" in the PHL (Palomar-Haro-Luyten) and Ton/TonS catalogues. These were published from 1957 to 1962, and, aimed at finding new white dwarfs, provide approximate positions for about 10750 blue stellar objects. Some of these "stars" had become known as quasars, a type of objects unheard-of before 1963. We derived subarcsec positions from a comparison of published finding charts with images from the first-epoch Digitized Sky Survey. Numerous objects are now well known, but unfortunately neither their PHL or Ton numbers, nor their discoverers, are recognized in current databases. A comparison with modern radio, IR, UV and X-ray surveys leads us to suggest that the fraction of extragalactic objects in the PHL and Ton catalogues is at least 15 per cent. However, because we failed to locate the original PHL plates or finding charts, it may be impossible to correctly identify the remaining 7726 PHL objects.

  18. Metrics Are Fitness Functions Too Mark Harman John Clark

    E-Print Network [OSTI]

    Singer, Jeremy

    that there is an alternative, complementary, view of a metric: as a fitness function, used to guide a search for optimal' (MAFF) approach offers a number of additional benefits to metrics research and practice because systems. It describes the properties of a metric which make it a good fitness function and explains

  19. Metrics for measuring distances in configuration spaces

    SciTech Connect (OSTI)

    Sadeghi, Ali, E-mail: ali.sadeghi@unibas.ch; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland)] [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Lill, Markus A. [Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907 (United States)] [Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907 (United States)

    2013-11-14T23:59:59.000Z

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices.

  20. Metric perturbation theory of quantum dynamics

    E-Print Network [OSTI]

    Antony L Tambyrajah

    2006-10-06T23:59:59.000Z

    A theory of quantum dynamics based on a discrete structure underlying the space time manifold is developed for single particles. It is shown that at the micro domain the interaction of particles with the underlying discrete structure results in the quantum space time manifold. Regarding the resulting quantum space-time as perturbation from the Lorentz metric it is shown it is possible to discuss the dynamics of particles in the quantum domain.

  1. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01T23:59:59.000Z

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  2. Optical metrics and birefringence of anisotropic media

    E-Print Network [OSTI]

    Alexander B. Balakin; Winfried Zimdahl

    2005-04-12T23:59:59.000Z

    The material tensor of linear response in electrodynamics is constructed out of products of two symmetric second rank tensor fields which in the approximation of geometrical optics and for uniaxial symmetry reduce to "optical" metrics, describing the phenomenon of birefringence. This representation is interpreted in the context of an underlying internal geometrical structure according to which the symmetric tensor fields are vectorial elements of an associated two-dimensional space.

  3. Variable metric methods for automatic history matching

    E-Print Network [OSTI]

    Armasu, Razvan

    1985-01-01T23:59:59.000Z

    . Automatic history matching codes presently in use employ steepest descent with optimal control, and although they were proven superior to others, their performance is not entirely satisfactory due to the poor rate of convergence as the performance index... rates of convergence when compared to the steepest descent They can be made to start out as steepest descent and end up as a second order algorithm, using functional and gradient information only, In this work several variable metric algorithms...

  4. High temperature experiments on a 4 tons UF6 container TENERIFE program

    SciTech Connect (OSTI)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31T23:59:59.000Z

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  5. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  6. CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON

    SciTech Connect (OSTI)

    Mickalonis, J.

    2014-06-01T23:59:59.000Z

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  7. Status of ArDM-1t: First observations from operation with a full ton-scale liquid argon target

    E-Print Network [OSTI]

    ArDM Collaboration; J. Calvo; C. Cantini; M. Daniel; U. Degunda; S. Di Luise; L. Epprecht; A. Gendotti; S. Horikawa; L. Knecht; B. Montes; W. Mu; M. Munoz; S. Murphy; G. Natterer; K. Nguyen; K. Nikolics; L. Periale; C. Regenfus; L. Romero; A. Rubbia; R. Santorelli; F. Sergiampietri; D. Sgalaberna; T. Viant; S. Wu

    2015-05-10T23:59:59.000Z

    ArDM-1t is the first operating ton-scale liquid argon detector for direct search of Dark Matter particles. Developed at CERN as Recognized Experiment RE18, the experiment has been approved in 2010 to be installed in the Spanish underground site LSC (Laboratorio Subterraneo de Canfranc). Under the label of LSC EXP-08-2010 the ArDM detector underwent an intensive period of technical completion and safety approval until the recent filling of the target vessel with almost 2 ton of liquid argon. This report describes the experimental achievements during commissioning of ArDM and the transition into a stage of first physics data taking in single phase operational mode. We present preliminary observations from this run. A first indication for the background discrimination power of LAr detectors at the ton-scale is shown. We present an outlook for completing the detector with the electric drift field and upgrade of the scintillation light readout system with novel detector modules based on SiPMs in order to improve the light yield.

  8. Metrics For Comparing Plasma Mass Filters

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2012-08-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter. __________________________________________________

  9. Metrics for comparing plasma mass filters

    SciTech Connect (OSTI)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-10-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  10. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01T23:59:59.000Z

    Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes

  11. Software Modeling of S-Metrics Visualizer: Synergetic Interactive Metrics Visualization Tool

    E-Print Network [OSTI]

    Dascalu, Sergiu

    utilization, earned-value cost and schedule performance) to provide enhanced management insight in a timely and visualization tool for Windows. Throughout the software development process managers must be aware problems that occur throughout the project's evolution. Software metrics help managers to better monitor

  12. A study on metrics for simulation programming languages

    E-Print Network [OSTI]

    Nallapati, Kumar V.

    1986-01-01T23:59:59.000Z

    proposes models for metrics specially designed for use in simulation modeling which can help in evaluating the performance and resource requirements of simulation programming languages. Certain existing software metrics for general purpose programming... GPSS and SIMAN. With these characteristics and the existing metrics, models were developed for evaluation of software and hardware requirements for a given simulation problem. ACKNOWLEDGEMENTS I thank Dr. Sallie Sheppard, Chairperson of my committee...

  13. Spherically Symmetric, Metrically Static, Isolated Systems in Quasi-Metric Gravity

    E-Print Network [OSTI]

    Dag Østvang

    2014-05-09T23:59:59.000Z

    The gravitational field exterior respectively interior to a spherically symmetric, isolated body made of perfect fluid is examined within the quasi-metric framework (QMF). It is required that the gravitational field is "metrically static", meaning that it is static except for the effects of the global cosmic expansion on the spatial geometry. Dynamical equations for the gravitational field are set up and an exact solution is found for the exterior part. Besides, equations of motion applying to inertial test particles moving in the exterior gravitational field are set up. By construction the gravitational field of the system is not static with respect to the cosmic expansion. This means that the radius of the source increases and that distances between circular orbits of inertial test particles increase according to the Hubble law. Moreover it is shown that if this model of an expanding gravitational field is taken to represent the gravitational field of the Sun (or isolated planetary systems), this has no serious consequences for observational aspects of planetary motion. On the contrary some observational facts of the Earth-Moon system are naturally explained within the QMF. Finally the QMF predicts different secular increases for two different gravitational coupling parameters. But such secular changes are neither present in the Newtonian limit of the quasi-metric equations of motion nor in the Newtonian limit of the quasi-metric field equations valid inside metrically static sources. Thus standard interpretations of space experiments testing the secular variation of G are explicitly theory-dependent and do not apply to the QMF.

  14. Resilient Control Systems Practical Metrics Basis for Defining Mission Impact

    SciTech Connect (OSTI)

    Craig G. Rieger

    2014-08-01T23:59:59.000Z

    "Resilience” describes how systems operate at an acceptable level of normalcy despite disturbances or threats. In this paper we first consider the cognitive, cyber-physical interdependencies inherent in critical infrastructure systems and how resilience differs from reliability to mitigate these risks. Terminology and metrics basis are provided to integrate the cognitive, cyber-physical aspects that should be considered when defining solutions for resilience. A practical approach is taken to roll this metrics basis up to system integrity and business case metrics that establish “proper operation” and “impact.” A notional chemical processing plant is the use case for demonstrating how the system integrity metrics can be applied to establish performance, and

  15. Enterprise performance measurement system : metric design framework and tools

    E-Print Network [OSTI]

    Teo, Kai Siang

    2013-01-01T23:59:59.000Z

    Existing metric selection methodologies and performance measurement frameworks provide practicing managers with good checklists and tools to evaluate and design their enterprise performance measurement systems (EPMS) and ...

  16. On the Riemann Extension of the Schwarzschild Metric

    E-Print Network [OSTI]

    V. Dryuma

    2004-04-30T23:59:59.000Z

    Some solutions of the Einstein equations for the eight-dimensional Riemann extension of the classical four-dimensional Schwarzschild metric are considered.

  17. Hölder Metric Subregularity with Applications to Proximal Point Method

    E-Print Network [OSTI]

    2012-02-02T23:59:59.000Z

    Feb 2, 2012 ... analysis and generalized differentiation, we derive neighborhood and ...... failure of metric subregularity in the above very natural sense.

  18. Summary of Proposed Metrics - QER Technical Workshop on Energy...

    Energy Savers [EERE]

    resources available) to enable decisions - Prototype metrics - Use Cases created for electric power, oil, and natural gas systems o Applies common principles across energy...

  19. On isotropic metric of Schwarzschild solution of Einstein equation

    E-Print Network [OSTI]

    T. Mei

    2006-10-24T23:59:59.000Z

    The known static isotropic metric of Schwarzschild solution of Einstein equation cannot cover with the range of r<2MG, a new isotropic metric of Schwarzschild solution is obtained. The new isotropic metric has the characters: (1) It is dynamic and periodic. (2) It has infinite singularities of the spacetime. (3) It cannot cover with the range of 0metric.

  20. Conceptual Framework for Developing Resilience Metrics for the...

    Office of Environmental Management (EM)

    Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States (September 2014) Conceptual Framework for Developing...

  1. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect (OSTI)

    Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

    2012-08-10T23:59:59.000Z

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  2. Western Area Power Administration annual site environmental report for calendar year 2005

    SciTech Connect (OSTI)

    none,

    2005-12-31T23:59:59.000Z

    This document outlines the accomplishments and status of the environmental program of the Western Area Power Administration (Western) for calendar year 2005. In 2005, Western submitted 190 reports to state and local emergency response personnel and had 60 California Hazardous Materials Business Plans in place as required under the Emergency Planning and Community Right-to-Know Act. These reports identify the hazardous substances contained at these sites. At sites where potential oil spills could harm surrounding ecosystems and waterways, Western prepares Spill Prevention, Control, and Countermeasure (SPCC) plans. These plans identify measures to prevent spills from harming the environment, such as identifying the need for secondary containment at facilities. Western currently has SPCC plans for 154 facilities in 13 states. In 2005, Western updated 19 SPCC plans and prepared one new plan. Western operated under 107 environmental permits in 2005. Western evaluates the impact of its planned actions on the environment by preparing National Environmental Policy Act documentation. In 2005, Western completed or was working on 60 categorical exclusions, 18 environmental assessments and eight environmental impact statements, issued six Findings of No Significant Impact, and prepared four Mitigation Action Plans. Western held several public workshops/meetings and consulted with 70 American Indian Tribes for various projects. In 2005, Western was working on or had completed 11 Section 7 consultations under the Endangered Species Act. In 2005, Western recycled more than 3,600 metric tons of electrical equipment, mineral oil dielectric fluid, asphalt, fluorescent and metal halide light bulbs, wood poles and crossarms, and other items as well as office waste. Western made $437,816 worth of purchases containing recovered content materials. Western met the requirement of Executive Order 13148, Greening the Government through Leadership in Environmental Management to have its Environmental Management System in place by December 31, 2005.

  3. 1,153-ton Waste Vault Removed from 300 Area - Vault held waste...

    Energy Savers [EERE]

    Reactor Among Richland Operations Office's 2014 Accomplishments Much Accomplished at Hanford in 2010: Richland Operations Office Prime Contractors Cite Past Year's Cleanup...

  4. Dragon Year

    E-Print Network [OSTI]

    Hacker, Randi

    2012-01-11T23:59:59.000Z

    Broadcast Transcript: Can you believe it? It's New Year again. It seems like only yesterday we were celebrating the advent of the year of the Rabbit and now, here it is, the year of the Dragon. January 22nd is New Year's ...

  5. Einstein metrics and Brans-Dicke superfields

    SciTech Connect (OSTI)

    Marques, S.

    1988-01-01T23:59:59.000Z

    It is obtained here a space conformal to the Einstein space-time, making the transition from an internal bosonic space, constructed with the Majorana constant spinors in the Majorana representation, to a bosonic ''superspace,'' through the use of Einstein vierbeins. These spaces are related to a Grassmann space constructed with the Majorana spinors referred to above, where the ''metric'' is a function of internal bosonic coordinates. The conformal function is a scale factor in the zone of gravitational radiation. A conformal function dependent on space-time coordinates can be constructed in that region when we introduce Majorana spinors which are functions of those coordinates. With this we obtain a scalar field of Brans-Dicke type. 11 refs.

  6. Symplectic fusion rings and their metric

    E-Print Network [OSTI]

    D. Gepner; A. Schwimmer

    1992-04-08T23:59:59.000Z

    The fusion of fields in a rational conformal field theory gives rise to a ring structure which has a very particular form. All such rings studied so far were shown to arise from some potentials. In this paper the fusion rings of the WZW models based on the symplectic group are studied. It is shown that they indeed arise from potentials which are described. These potentials give rise to new massive perturbations of superconformal hermitian symmetric models. The metric of the perturbation is computed and is shown to be given by solutions of the sinh--gordon equation. The kink structure of the theories is described, and it is argued that these field theories are integrable. The $S$ matrices for the fusion theories are argued to be non--minimal extensions of the $G_k\\times G_1/ G_{k+1}$ $S$ matrices with the adjoint perturbation, in the case of $G=SU(N)$.

  7. Bi-metric Gravity and "Dark Matter"

    E-Print Network [OSTI]

    I. T. Drummond

    2000-08-18T23:59:59.000Z

    We present a bi-metric theory of gravity containing a length scale of galactic size. For distances less than this scale the theory satisfies the standard tests of General Relativity. For distances greater than this scale the theory yields an effective gravitational constant much larger than the locally observed value of Newton's constant. The transition from one regime to the other through the galactic scale can explain the observed rotation curves of galaxies and hence the effects normally attributed to the presence of dark matter. Phenomena on an extragalactic scale such as galactic clusters and the expansion of the universe are controlled by the enhanced gravitational coupling. This provides an explanation of the missing matter normally invoked to account for the observed value of Hubble's constant in relation to observed matter.

  8. Distance Metric Learning for Large Margin Nearest Neighbor Classification

    E-Print Network [OSTI]

    Weinberger, Kilian

    Distance Metric Learning for Large Margin Nearest Neighbor Classification Kilian Q. Weinberger}@cis.upenn.edu Abstract We show how to learn a Mahanalobis distance metric for k-nearest neigh- bor (kNN) classification in kNN classification--for example, achieving a test error rate of 1.3% on the MNIST handwritten digits

  9. Cortical Hemisphere Registration Via Large Deformation Diffeomorphic Metric Curve

    E-Print Network [OSTI]

    Qiu, Anqi

    on the relation between individual brains and the atlas. This is a powerful approach allowing us to study a largeCortical Hemisphere Registration Via Large Deformation Diffeomorphic Metric Curve Mapping Anqi Qiu1 Science, Johns Hopkins University Abstract. We present large deformation diffeomorphic metric curve

  10. Comparison of Distance Metrics for Hierarchical Data in Medical Databases

    E-Print Network [OSTI]

    Aickelin, Uwe

    sufficiently well in clustering the patient population using k-means clustering algorithm. I. INTRODUCTIONComparison of Distance Metrics for Hierarchical Data in Medical Databases Diman Hassan, Uwe of these metrics have been compared to other measures to find their efficiency. In [5], a comparison has been made

  11. Metrics for Evaluating Conventional and Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Mann, M. K.

    2013-01-01T23:59:59.000Z

    With numerous options for the future of natural gas, how do we know we're going down the right path? How do we designate a metric to measure and demonstrate change and progress, and how does that metric incorporate all stakeholders and scenarios?

  12. Estimation of Photovoltaic System Reliability and Performance Metrics

    E-Print Network [OSTI]

    Liberzon, Daniel

    1 Estimation of Photovoltaic System Reliability and Performance Metrics Sairaj V. Dhople, Student reliability and perfor- mance analysis of grid-tied photovoltaic (PV) systems is for- mulated using Markov and energy yield, and reliability metrics such as availability. The paper also provides an analytical method

  13. The Posterior metric and the Goodness of Gibbsianness

    E-Print Network [OSTI]

    Külske, Christof

    exhibit the minimal necessary structure for such double-layer systems. As- suming no a priori metric, specification, posterior metric. University of Groningen, Institute of Mathematics and Computing Science, Dobrushin uniqueness has a lot of advantages, being not very technical, but very general, requiring little

  14. advanced web metrics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    web metrics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A Survey of Web Metrics DEVANSHU DHYANI...

  15. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    SciTech Connect (OSTI)

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11T23:59:59.000Z

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24 practical diagnostics range from a few hundred dollars to many thousands of dollars. The higher costs are associated with infrared thermography and state-of-the-art automated diagnostic systems. Most tests can be performed in one hour or less, using equipment priced toward the lower end of the cost spectrum.

  16. Transitive closure and metric inequality of weighted graphs: detecting protein interaction modules using cliques

    E-Print Network [OSTI]

    Ding, Chris; He, Xiaofeng; Xiong, Hui; Peng, Hanchuan; Holbrook, Stephen R.

    2006-01-01T23:59:59.000Z

    Closure and Metric Inequality of Weighted Graphs – Detectingleads to a transitivity inequality which is equivalentto ultra-metric inequality. This can be used to de?ne

  17. Schwarzschild-like metric and a quantum vacuum

    E-Print Network [OSTI]

    P. R. Silva

    2013-02-01T23:59:59.000Z

    A quantum vacuum, represented by a viscous fluid, is added to the Einstein vacuum, surrounding a spherical distribution of mass. This gives as a solution, in spherical coordinates, a Schwarzschild-like metric. The plot of g00 and g11 components of the metric, as a function of the radial coordinate, display the same qualitative behavior as that of the Schwarzschild metric. However, the temperature of the event horizon is equal to the Hawking temperature multiplied by a factor of two, while the entropy is equal to half of the Bekenstein one.

  18. Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

    SciTech Connect (OSTI)

    Lori Braase

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and Commercialization. The activities performed during the feasibility assessment phase include laboratory scale experiments; fuel performance code updates; and analytical assessment of economic, operational, safety, fuel cycle, and environmental impacts of the new concepts. The development and qualification stage will consist of fuel fabrication and large scale irradiation and safety basis testing, leading to qualification and ultimate NRC licensing of the new fuel. The commercialization phase initiates technology transfer to industry for implementation. Attributes for fuels with enhanced accident tolerance include improved reaction kinetics with steam and slower hydrogen generation rate, while maintaining acceptable cladding thermo-mechanical properties; fuel thermo-mechanical properties; fuel-clad interactions; and fission-product behavior. These attributes provide a qualitative guidance for parameters that must be considered in the development of fuels and cladding with enhanced accident tolerance. However, quantitative metrics must be developed for these attributes. To initiate the quantitative metrics development, a Light Water Reactor Enhanced Accident Tolerant Fuels Metrics Development Workshop was held October 10-11, 2012, in Germantown, Maryland. This document summarizes the structure and outcome of the two-day workshop. Questions regarding the content can be directed to Lori Braase, 208-526-7763, lori.braase@inl.gov.

  19. Analysis of Solar Cell Quality Using Voltage Metrics: Preprint

    SciTech Connect (OSTI)

    Toberer, E. S.; Tamboli, A. C.; Steiner, M.; Kurtz, S.

    2012-06-01T23:59:59.000Z

    The highest efficiency solar cells provide both excellent voltage and current. Of these, the open-circuit voltage (Voc) is more frequently viewed as an indicator of the material quality. However, since the Voc also depends on the band gap of the material, the difference between the band gap and the Voc is a better metric for comparing material quality of unlike materials. To take this one step further, since Voc also depends on the shape of the absorption edge, we propose to use the ultimate metric: the difference between the measured Voc and the Voc calculated from the external quantum efficiency using a detailed balance approach. This metric is less sensitive to changes in cell design and definition of band gap. The paper defines how to implement this metric and demonstrates how it can be useful in tracking improvements in Voc, especially as Voc approaches its theoretical maximum.

  20. A Graph Analytic Metric for Mitigating Advanced Persistent Threat

    SciTech Connect (OSTI)

    Johnson, John R.; Hogan, Emilie A.

    2013-06-04T23:59:59.000Z

    This paper introduces a novel graph analytic metric that can be used to measure the potential vulnerability of a cyber network to specific types of attacks that use lateral movement and privilege escalation such as the well known Pass The Hash, (PTH). The metric is computed from an oriented subgraph of the underlying cyber network induced by selecting only those edges for which a given property holds between the two vertices of the edge. The metric with respect to a select node on the subgraph is defined as the likelihood that the select node is reachable from another arbitrary node in the graph. This metric can be calculated dynamically from the authorization and auditing layers during the network security authorization phase and will potentially enable predictive deterrence against attacks such as PTH.